Derived equivalences and stability conditions (mainly for K3 surfaces)

D. Huybrechts (Bonn)

Amsterdam, 14 December 2007

Notation

 $X = \mathsf{smooth} \mathsf{\ projective} \mathsf{\ variety} \mathsf{\ (over} \ \mathbb{C}\mathsf{\)}$

 $\mathrm{D^b}(X) := \mathrm{D^b}(\mathrm{Coh}(X)) = \mathbb{C}$ -linear triangulated category.

General questions

- $D^{b}(X) \simeq D^{b}(Y) \Leftrightarrow X \stackrel{?}{\leftrightarrow} Y$
- $\bullet \ \operatorname{Aut}(X) \subset \operatorname{Aut}(\operatorname{D^b}(X)) = ?$
- $Stab(D^{b}(X)) = ?$

Notation

 $X = \mathsf{smooth}$ projective variety (over \mathbb{C})

$$\mathrm{D^b}(X) := \mathrm{D^b}(\mathrm{Coh}(X)) = \mathbb{C}$$
-linear triangulated category.

General questions. Answers for curves g > 1

- $D^{b}(X) \simeq D^{b}(Y) \Leftrightarrow X \simeq Y$.
- $\operatorname{Aut}(X) \subset \operatorname{Aut}(\operatorname{D^b}(X)) = \mathbb{Z}[1] \oplus \operatorname{Aut}(X) \rtimes \operatorname{Pic}(X)$.
- $\operatorname{Stab}(D^{\mathrm{b}}(X)) = \widetilde{\operatorname{Gl}}_{+}(2,\mathbb{R}).$

Some open problems

- Birational invariance of $D^b(X) (\rightsquigarrow MMP)$
- Finiteness of Fourier–Mukai partners (→ MMP)
- Numerical invariants of $\mathrm{D}^{\mathrm{b}}(X)$ (\leadsto motivic integration)
- Construction of autoequivalences (→ mirror symmetry)
- Stability conditions for compact CY threefolds

Birational invariance

Conjecture (Bondal, Orlov, Kawamata) $X \sim_K Y \Rightarrow X \sim_D Y$.

$$X \sim_K Y: X \leftarrow Z \longrightarrow Y$$
 birational with $\pi_X^* \omega_X \simeq \pi_Y^* \omega_Y$. $X \sim_D Y: D^b(X) \simeq D^b(Y)$.

Special case Birational CYs are derived equivalent.

- Surfaces: OK
- Standard flop: OK (Bondal, Orlov)
- CY-threefolds: OK (Bridgeland)
- Hyperkähler manifolds: special cases OK (Kawamata, Namikawa)

Remark

- $\exists X \sim_D Y$, but $X \not\sim_K Y$: abelian varieties, K3 surfaces, CY-threefolds (Borisov, Caldararu)
- $\exists X \sim Y, X \sim_D Y$, but not $X \sim_K Y$ (Uehara)

Finiteness of FM partners

Conjecture (Kawamata) For any X there exist only finitely many $Y \sim_D X$ (up to isomorphism).

- Surfaces: OK (Bridgeland, Maciocia)
- Abelian varieties: OK (Orlov)

Conjecture (Morrison) For any CY-threefold X there exist only finitely many $Y \sim_K X$ (up to isomorphism).

Numerical invariants

Known
$$D^{b}(X) \simeq D^{b}(Y) \Rightarrow \sum_{p-q=k} h^{p,q}(X) = \sum_{p-q=k} h^{p,q}(Y)$$

Conjecture (Kontsevich) $D^{b}(X) \simeq D^{b}(Y) \Rightarrow h^{p,q}(X) = h^{p,q}(Y)$
Theorem (Batyrev, Kontsevich) $X \sim_{K} Y \Rightarrow h^{p,q}(X) = h^{p,q}(Y)$

Definition

 $\mathcal{T}=\mathbb{C}$ -linear triangulated category (e.g. $\mathcal{T}=\mathrm{D}^\mathrm{b}(X)$) Fix $K(\mathcal{T})$ \longrightarrow K ($\mathrm{rk}(K)<\infty$) (e.g. algebraic classes in $H^*(X)$).

Stability condition $\sigma \in \operatorname{Stab}(\mathcal{T})$:

- = bounded t-structure + additive $Z: K \longrightarrow \mathbb{C}$ such that:
 - $Z(E) = r(E) \exp(i\pi\phi(E))$ with $\phi(E) \in (0,1]$ and r(E) > 0, where $0 \neq E \in \mathcal{A}$ = heart of t-structure.
 - Z satisfies the HN-property: For $E \in \mathcal{A}$ there exists a filtration $0 \subset E_n \subset \ldots \subset E_0 = E$ with $F_i := E_i/E_{i+1}$ semi-stable and $\phi(F_n) > \ldots > \phi(F_0)$, i.e. $\phi(G) \leq \phi(F_i)$ for all $0 \neq G \subset F_i$.
 - 'locally finite', in particular $\mathcal{P}(\phi) := \{E \in \mathcal{A} \mid \text{semi-stable } \phi(E) = \phi\}$ of finite length.

Space of stability conditions

 $\sigma \in \operatorname{Stab}(\mathcal{T}) \leadsto \operatorname{slicing} \ \{\mathcal{P}(t)\} \in \operatorname{Slice}(\mathcal{T}) \colon \mathcal{P}(t) \subset \mathcal{T}, \ t \in \mathbb{R},$ full-additive with $\mathcal{P}(t+1) = \mathcal{P}(t)[1]$ and HN-property.

$$\operatorname{Stab}(\mathcal{T}) \subset \operatorname{Slice}(\mathcal{T}) \times K_{\mathbb{C}}^*$$

Topology - Metric topology on $\mathrm{Slice}(\mathcal{T})$: measuring the distance between

$$Z(F_1), \dots, Z(F_n)$$
 and $Z(F_1'), \dots, Z(F_m')$

for HNF (E_i) and (E_i') of any $0 \in E \in \mathcal{T}$ wrt. σ resp. σ'

- Linear topology on $K_{\mathbb{C}}^*$.
- Product topology on connected components.

Theorem (Bridgeland) The projection

$$\pi: \operatorname{Stab}(\mathcal{T}) \longrightarrow K_{\mathbb{C}}^*$$

is a local homeomorphism from each connected component Σ to a linear subspace $V_{\Sigma} \subset K_{\mathbb{C}}^*$.

Group actions

- $\operatorname{Aut}(\mathcal{T}) \times \operatorname{Stab}(\mathcal{T}) \longrightarrow \operatorname{Stab}(\mathcal{T})$, $(\Phi, \sigma = (\mathcal{Z}, \mathcal{A})) \longmapsto (\mathcal{Z} \circ \Phi^{-1}, \Phi(\mathcal{A})).$
- $\operatorname{Stab}(\mathcal{T}) \times \widetilde{\operatorname{Gl}}_{+}(2,\mathbb{R}) \longrightarrow \operatorname{Stab}(\mathcal{T})$ covering $\mathcal{K}_{\mathbb{C}}^{*} \times \operatorname{Gl}_{+}(2,\mathbb{R}) \longrightarrow \mathcal{K}_{\mathbb{C}}^{*}$, $(Z,g) \longmapsto g^{-1} \circ Z$.

$$\mathrm{Gl}_+(2,\mathbb{R}) \longrightarrow \mathrm{Gl}_+(2,\mathbb{R})$$
 universal cover.
 $\pi_1(\widetilde{\mathrm{Gl}}_+(2,\mathbb{R})) \simeq \mathbb{Z}$ induced by $S^1 = U(1) \subset \mathrm{Gl}_+(2,\mathbb{R})$.
For $k \in \mathbb{Z}$ can lift $\exp(i\pi\phi) \in U(1)$ to

$${\mathcal{P}(t)} \longmapsto {\mathcal{P}'(t) = \mathcal{P}(t + \phi + 2k)}.$$

Example $\exp(i\pi)$ lifts to the action $F \mapsto F[2k+1]$.

 $\operatorname{Stab}(X) := \operatorname{Stab}(D^{\operatorname{b}}(X)), \ K \subset H^*(X).$

Question $\operatorname{Stab}(X) \neq \emptyset$ for X a CY-threefold, abelian variety, hyperkähler manifold?

- Curves: OK (Bridgeland, Macri, Okada)
- Abelian and K3 surfaces: OK (Bridgeland)
- \mathbb{P}^n , del Pezzo surfaces (Macri)
- Special open CY-threefolds (Bridgeland), generic complex tori (Meinhardt)

•

Examples: Curves

$$C$$
 curve, $g(C) \geq 1$, $K(C) = K(D^{b}(C)) = \mathbb{Z} \oplus Pic(C)$. Choose $K(C) \twoheadrightarrow K := \mathbb{Z} \oplus NS(C) = \mathbb{Z} \oplus \mathbb{Z}$.

Example: $Z: K \longrightarrow \mathbb{C}$, $(r, d) \longmapsto -d + i \cdot r$, $\mathcal{A} = \operatorname{Coh}(C)$. This yields stability condition with $\mathcal{A} = \operatorname{Coh}(C)$ and $\mathcal{P}(\phi) = \operatorname{set}$ of semi-stable vector bundles E with $\cot(\pi\phi) = -\mu(E) = -d/r$ (for $\phi \in (0, 1)$).

Theorem $\operatorname{Stab}(\mathrm{D}^{\mathrm{b}}(\mathcal{C})) \simeq \widetilde{\operatorname{Gl}}_{+}(2,\mathbb{R})$ and $\operatorname{Stab} \longrightarrow \mathcal{K}_{\mathbb{C}}^{*}$ is universal covering $\widetilde{\operatorname{Gl}}_{+}(2,\mathbb{R}) \longrightarrow \operatorname{Gl}_{+}(2,\mathbb{R})$.

Curve like

For X surface let $\operatorname{Coh}(X) \longrightarrow \operatorname{Coh}'(X)$ quotient by subcategory of sheaves concentrated in dim < 1. Let $\mathcal{T} := \operatorname{D^b}(\operatorname{Coh}'(X))$. Then $K(\mathcal{T}) = \mathbb{Z} \oplus \operatorname{Pic}(X)$. Consider $K(\mathcal{T}) \longrightarrow K := \mathbb{Z} \oplus \operatorname{NS}(X)$.

Example For ω ample class $Z(E) := -(c_1(E).\omega) + i \cdot \operatorname{rk}(E)$ defines a stability function on $\operatorname{Coh}'(X)$ with HN-property. So $\operatorname{Stab}(\mathcal{T}) \neq \emptyset$.

Remark If $\operatorname{Pic}^0(X) \neq 0$, then $\operatorname{Gl}_+(2,\mathbb{R})$ -orbit is (simply-) connected component. For $\rho(X) > 1$ get infinitely many connected components!

Examples: K3 surfaces

X K3 surface. Fix $K(X) \longrightarrow N(X) \subset H^*(X,\mathbb{Z})$ algebraic classes and $\omega, B \in \operatorname{NS}(X)$ with ω ample, $\omega^2 > 2$. Consider full subcategory

$$\mathcal{A}(B+i\omega)\subset \mathrm{D}^{\mathrm{b}}(X)$$
 of complexes $F^{-1}\longrightarrow F^0$

s.t. ker torsion free, $\mu_{\max} \leq (B.\omega)$ and $\mu_{\min}(\operatorname{coker}/\mathit{Tors}) > (B.\omega)$.

Then $\mathcal{A}(B+i\omega)$ is heart of bounded t-structure and

$$Z: A \longrightarrow \mathbb{C}, \quad Z(E) = \langle \exp(B + i\omega), v(E) \rangle$$

is a stability function with HN-property (Bridgeland).

Recall $\langle , \rangle = \text{Mukai pairing and } v(E) = \text{ch}(E) \cdot \sqrt{\text{td}(X)}$

Derived equivalence of K3 surfaces

Theorem (Mukai, Orlov) For X and X' K3 surfaces: $D^b(X) \simeq D^b(X') \Leftrightarrow \widetilde{H}(X, \mathbb{Z}) \simeq \widetilde{H}(X', \mathbb{Z}).$

Recall $\widetilde{H}(X) := H^*(X)$ with Mukai pairing and orthogonal weight-two Hodge structure given by $\widetilde{H}^{2,0}(X) = H^{2,0}(X)$.

Theorem $D^{\mathrm{b}}(X) \simeq D^{\mathrm{b}}(X')$

- $\Leftrightarrow X \simeq X'$ or $X \simeq$ moduli space of μ -stable bundles on X'.
- \Leftrightarrow There exist rational $B+i\omega$ and $B'+i\omega'$ such that $\mathcal{A}_X(B+i\omega)\simeq\mathcal{A}_{X'}(B'+i\omega')$ (as \mathbb{C} -linear abelian categories).

Action on cohomology

Theorem (Mukai) $\Phi_{\mathcal{E}} : D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(X') \rightsquigarrow \mathsf{Hodge}$ isometry $\Phi_{\mathcal{E}}^{H} : \widetilde{H}(X, \mathbb{Z}) \xrightarrow{\sim} \widetilde{H}(X', \mathbb{Z}), \ \alpha \longmapsto p_{*}(q^{*}\alpha.v(\mathcal{E})).$

$$\rightsquigarrow$$
 representation: $\rho : \operatorname{Aut}(\mathrm{D}^{\mathrm{b}}(X)) \longrightarrow \mathrm{O}(\widetilde{H}(X,\mathbb{Z})).$

Question Can one describe image and kernel of ρ ?

Theorem (Mukai, Orlov, Hosono et al, Ploog):

$$O_+(\widetilde{H}(X,\mathbb{Z})) \subset Im(\rho).$$

 $O_+(\widetilde{H}(X,\mathbb{Z})) = \text{subgroup of Hodge isometries preserving the orientation of the positive four-space } \langle \operatorname{Re}(\sigma), \operatorname{Im}(\sigma), 1 + \omega^2/2, \omega \rangle.$

Examples of autoequivalences

• Automorphism $f: X \xrightarrow{\sim} X$

$$\stackrel{\leadsto}{\to} \Phi_{\mathcal{E}} := f_* : \mathrm{D^b}(X) \stackrel{\sim}{\longrightarrow} \mathrm{D^b}(X), \; \mathcal{E} = \mathcal{O}_{\mathrm{Graph}(f)}$$

$$\stackrel{\leadsto}{\to} \Phi_{\mathcal{E}}^H = f_*.$$

- Shift: $\Phi_{\mathcal{E}} : F \longrightarrow F[1], \ \mathcal{E} = \mathcal{O}_{\Delta}[1]$ $\leadsto \Phi_{\mathcal{E}}^H = -\mathrm{id}.$
- Line bundle twist: $L \in \text{Pic}(X)$ $\leadsto \Phi_{\mathcal{E}} : F \longmapsto F \otimes L, \ \mathcal{E} = \Delta_* L.$ $\leadsto \Phi_{\mathcal{E}}^H = \text{ch}(L) \cdot .$
- Spherical twist: $E \in \mathrm{D}^{\mathrm{b}}(X)$ with $\mathrm{Ext}^*(E,E) = H^*(S^2,\mathbb{C})$ $\leadsto \Phi_{\mathcal{E}} = T_E, \ \mathcal{E} = \mathrm{Cone}(E^{\vee} \boxtimes E \longrightarrow \mathcal{O}_{\Delta}).$ $\leadsto \Phi_{\mathcal{E}}^H = s_{\nu(E)} = \text{reflection in hyperplane } \nu(E)^{\perp}.$
- Universal family $\mathcal{E} \in \operatorname{Coh}(X \times M)$ of stable sheaves with $\dim M = 2$ and M projective. Sometimes $X \simeq M$.

Bridgeland's conjecture

Let $\Sigma \subset \operatorname{Stab}(X)$ be component containing $\mathcal{A}(B + i\omega)$.

Theorem (Bridgeland) $\Sigma \longrightarrow \mathcal{P}_0^+(X)$, $\sigma \longmapsto Z$ is a covering map.

- $\mathcal{P}^+(X) \subset \{\varphi \in N(X)_{\mathbb{C}} \mid \langle \operatorname{Re}(\varphi), \operatorname{Im}(\varphi) \rangle \text{ positive plane} \}$ connected component containing $\exp(B + i\omega)$.
- $\mathcal{P}_0^+(X) := \mathcal{P}^+(X) \setminus \bigcup_{\delta \in \Delta} \delta^\perp$, where $\Delta = \{ \delta \in \mathcal{N}(X) \mid \delta^2 = -2 \}$.

Conjecture (strong form) (Bridgeland) $\Sigma \subset \operatorname{Stab}(X)$ is the only connected component and Σ is simply connected.

Consequence There is a short exact sequence

$$0 \longrightarrow \pi_1(\mathcal{P}_0^+(X)) \longrightarrow \operatorname{Aut}(D^{\operatorname{b}}(X)) \longrightarrow O_+(\widetilde{H}(X,\mathbb{Z})) \longrightarrow 0.$$

Theorem (H., Macri, Stellari) Suppose Pic(X) = 0. Then

- \bullet Σ is simply-connected.
- $\operatorname{Aut}(D^{\operatorname{b}}(X)) = \operatorname{Aut}(X) \oplus \mathbb{Z}[1] \oplus \mathbb{Z} T_{\mathcal{O}}.$

Theorem (H., Macri, Stellari) If X is projective, then

$$\operatorname{Im}\left(\operatorname{Aut}(\operatorname{D^b}(X)) {\:\longrightarrow\:} \operatorname{O}(\widetilde{H}(X,\mathbb{Z}))\right) = \operatorname{O}_+(\widetilde{H}(X,\mathbb{Z})).$$

Szendroi: This is the 'mirror dual' of

Theorem (Donaldson) If X is differentiable K3, then

$$\operatorname{Im}\left(\operatorname{Diff}(X) {\:\longrightarrow\:} \operatorname{O}(H^2(X,\mathbb{Z}))\right) = \operatorname{O}_+(H^2(X,\mathbb{Z})).$$

Consider smooth family $\mathbb{X} \longrightarrow \mathbb{P}^1$ (not projective!) with special fibre $X = \mathbb{X}_0$ and formal neighbourhood $\mathcal{X} \longrightarrow \operatorname{Spf}(\mathbb{C}[[t]])$. Encode general fibre $\mathcal{X}_K \longrightarrow \operatorname{Spec}(\mathbb{C}((t)))$ by abelian category

$$Coh(\mathcal{X}_K) := Coh(\mathcal{X})/Coh(\mathcal{X})_{t-tors}.$$

Then $\operatorname{Coh}(\mathcal{X}_K)$ behaves like K3 surface over $\mathbb{C}((t))$. If $\mathbb{X} \longrightarrow \mathbb{P}^1$ generic twistor space, then $\mathcal{O}_{\mathcal{X}_K} \in \operatorname{Coh}(\mathcal{X}_K)$ is the only spherical object.

Consider $\Phi_{\mathcal{E}} \in \operatorname{Aut}(\mathrm{D}^{\mathrm{b}}(X))$ with $\Phi_{\mathcal{E}_0}^H = \pm \mathrm{id}_{H^2} \oplus \mathrm{id}_{H^0 \oplus H^4}$. Using deformation theory for complexes:

Theorem (Sketch) \mathcal{E}_0 deforms to $\mathcal{E}_K \in \mathrm{D^b}(\mathcal{X}_K \times \mathcal{X}_K)$ with $\Phi_{\mathcal{E}_K}$ equivalence. Hence $\Phi_{\mathcal{E}_K} = \mathcal{T}^n_{\mathcal{O}_K} \circ [m]$.

Corollary $\Phi_{\mathcal{E}_0}$ and $T^n_{\mathcal{O}} \circ [m]$ behave identically on H^* and CH^* .

Deformation theory of complexes: details

Consider extension of $\mathcal{X}_n \longrightarrow \operatorname{Spec}(R_n := \mathbb{C}[t]/t^{n+1})$ to $\mathcal{X}_{n+1} \longrightarrow \operatorname{Spec}(R_{n+1})$ and perfect complex $\mathcal{E}_n \in \operatorname{D}^{\operatorname{b}}(\mathcal{X}_n)$. Let $i_n : \mathcal{X}_n \hookrightarrow \mathcal{X}_{n+1}$.

Theorem (Lieblich, Loewen) There is an 'obstruction class'

$$o(\mathcal{E}_n) \in \operatorname{Ext}_X^2(\mathcal{E}_0, \mathcal{E}_0),$$

such that $\mathcal{E}_{n+1} \in \mathrm{D}^{\mathrm{b}}(\mathcal{X}_{n+1})$ perfect with $Li_n^*(\mathcal{E}_{n+1}) \simeq \mathcal{E}_n$ exists if and only if $o(\mathcal{E}_n) = 0$.

Theorem (H., Macri, Stellari) $o(\mathcal{E}_n) = A(\mathcal{E}_n) \cdot \kappa_n$.

Use Atiyah class $A(\mathcal{E}_n) \in \operatorname{Ext}^1(\mathcal{E}_n, \mathcal{E}_n \otimes \Omega_{\mathcal{X}_n})$ and Kodaira–Spencer class $\kappa_n \in \operatorname{Ext}^1(\Omega_{\mathcal{X}_n}, \mathcal{O}_X)$.

Chow ring under derived equivalence (in progress)

Consider $A(X) := \mathbb{Z}[X] \oplus \operatorname{Pic}(X) \oplus \mathbb{Z}[x] \subset \operatorname{CH}(X)_{\mathbb{Q}}$, where $x \in C$ rational curve in X.

Theorem (Beauville, Voisin) $A(X) \subset CH(X)$ is a subring.

Corollary If $\Phi_{\mathcal{E}}^H = \mathrm{id}$, then

$$\Phi_{\mathcal{E}}^{\mathrm{CH}}: A(X) \xrightarrow{\sim} A(X).$$

Open Consider \mathcal{E} universal family of stable bundles. Is then $\Phi_{\mathcal{E}}^{\operatorname{CH}}(A(X)) = A(M)$? $(\Leftrightarrow \operatorname{ch}(E) \in A(X)$ for any spherical object $E \in \operatorname{D^b}(X)$.)