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1 Introduction

This Bachelor thesis deals with the so-called Seshadri constant of a polar-
ized variety (X,L) (i.e., a variety X with a line bundle L) at a closed point
x ∈ X. Roughly speaking, it measures the positivity of L with respect to
the intersection pairing at x. In particular, the Nakai–Moishezon criterion
correctly suggests that it is positive for ample line bundles.
Originally defined by Demailly in 1990, this invariant has sparked interest
because some theorems indicate that it might encode a lot of geometric in-
formation, like the existence of certain fibrations, and because the famous
Nagata conjecture can be formulated via (multi-point) Seshadri constants.
However, Seshadri constants are very difficult to calculate, so that one often
has to make do with estimates.
This thesis is structured as follows: After recalling some basic definitions
and facts from intersection theory we will define and discuss Seshadri con-
stants. In the next three chapters we restrict ourselves to the surface case
and present various theorems about Seshadri constants: We will provide a
proof of a result by Ein and Lazarsfeld ([EL93]) concerning a lower bound
for the Seshadri constant at ‘very general’ points. Then we will explain the
main results of [Bau99], where the author discusses Seshadri constants of
the canonical bundle on minimal surfaces of general type. Finally we will
sketch the proof of a result that computes Seshadri constants for a large
class of abelian surfaces.

Notations and Conventions. Variety always refers to a proper integral
scheme X over a fixed algebraically closed field k of arbitrary character-
istic. If we want to drop the condition of being integral or proper we say
nonintegral or nonproper varieties. Still we want nonproper varieties to be
separated and of finite type snd we want nonintegral varieties to be equidi-
mensional. A subvariety of X is always assumed to be a closed subvariety,
unless stated otherwise. A proper subvariety is a subvariety that does not
coincide with X. A point x ∈ X is always assumed to be a closed point.
A curve (surface) is a variety of dimension 1 (resp. 2). In particular curves
and surfaces are always integral. Given a morphism f : X → T of varieties
and a point t ∈ T we denote its fibre by Xt. If π : X̃ → X is a blow up and
V ⊂ X a subvariety, its strict transform is denoted by Ṽ .
Given a coherent sheaf F on the variety X we use the short cut hi (F ) :=
hi (X,F ) := dimkH

i (X,F ) for i ≥ 0.
Given two sequences a, b with an, bn ≥ 0 for n � 0 write a = O (b) if
∃C > 0 : ∀n � 0 : an ≤ C · bn. If an, bn > 0 for n � 0 we write a ∼ b if
limn→∞

an
bn

= 1.
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2 Intersection theory

In this chapter we recall basic notions and facts from intersection theory.
Fix a variety X over an algebraically closed field k (actually most facts in
this chapter still work if we drop the integrality assumption). Its Picard
group PicX is isomorphic to the group of Cartier divisors modulo linear
equivalence. So we can and will make no distinction between line bundles
and Cartier divisors. Very often we will write L+M instead of L⊗M for
line bundles L, M . By abuse of notation we will not distinguish between
Cartier divisors (like curves on a surface) and Cartier divisors modulo linear
equivalence in many cases. If X has a canonical bundle, denote it by KX .
We have the

Theorem 2.1 (Snapper). Let F be a coherent OX-module and let L1, . . . , Lt
be line bundles on X. Then

ϕ (n1, . . . , nt) := χ (F ⊗ Ln1
1 ⊗ . . .⊗ L

nt
t )

is a numerical polynomial in n1, . . . , nt of degree ≤ s = dim (Supp (F )).

For nonsingular X this follows from the Hirzebruch–Riemann–Roch theo-
rem. But for general X there is a much easier proof in [Kle66]. If s ≤ t, this
theorem enables us to give the

Definition 2.1. The intersection number or intersection multiplicity of
L1, . . . , Lt with F , denoted by (L1 . . . Lt · F ), is the coefficient of the mono-
mial n1 · . . . · nt in ϕ. When talking about the intersection number as a
function of L1, . . . , Lt, we also say intersection form or intersection pairing,
if t = 2. If L := L1 = . . . = Lt, we use the short cut

(
L·t · F

)
for the

intersection number.
If F = OY with Y a closed subscheme of X, write (L1 . . . Lt · Y ) instead of
(L1 . . . Lt · OY ). If Y = X we write (L1 . . . Lt) for short.

By general properties of numerical polynomials the intersection number is
always an integer.
Some facts stated here for future use are:

Lemma 2.2. (L1 . . . Lt · F ) is a symmetric multilinear form in L1, . . . , Lt.

Lemma 2.3. If t = dimX, the leading coefficient of the polynomial χ (L⊗n)
is
(
L·t
)
/t!.

Lemma 2.4. Let f : Y → X be a proper morphism between varieties and
assume t ≥ dimX,dimY . Then for all line bundles L1, . . . , Lt on X we
have

(f∗L1 . . . f
∗Lt) = deg (f) · (L1 . . . Lt) .

Note that we are using the convention deg (f) = 0, if f is not generically
finite.
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Lemma 2.5. If Y ⊂ Z ⊂ X are subvarieties with dimY = s, then for all
line bundles L1, . . . , Ls on X we have

(i∗L1 . . . i
∗Ls · Y ) = (L1 . . . Ls · Y ) ,

where i : Z ↪→ X is the canonical embedding.

(Quick) proofs can be found in [Kle66]. Note that Lemma 2.3 and [Har77,
Prop. III.5.3] imply

Corollary 2.6. If L is ample, then h0 (X,L⊗n) ∼ nt
(
L·t
)
/t!.

The next issue is positivity. Let us recall the well-known

Theorem 2.7 (Nakai–Moishezon Criterion). A line bundle L on X is ample
if and only if

(
L·t · V

)
> 0 for all subvarieties V ⊂ X of positive dimension

t.

This allows us to think of ample line bundles as ‘positive’ line bundles. By
analogy ‘semi-positive’ and ‘zero’ line bundles are given by the

Definition 2.2. A line bundle L on X is called nef (numerically trivial),
if
(
L·t · V

)
is nonnegative (trivial) for all subvarieties V ⊂ X of dimension

t > 0. If L −M is numerically trivial for line bundles L, M , we say that
those line bundles are numerically equivalent and write L ≡M .

Definition 2.3. A nef line bundle L on X is called big and nef, if its top-
intersection

(
L· dimX

)
is positive.

We have:

Lemma 2.8. If f : Y → X is a proper morphism between varieties and if
L is a nef line bundle on X, then f∗L is also nef.

Proof. This is immediate from Lemma 2.4. Note that the proof breaks
down, if we replace ‘nef’ by ‘ample’, because f might contract subvarieties
of Y .

Theorem 2.9 (Kleiman). L is nef (numerically trivial), if and only if
(L · C) is nonnegative (resp. trivial) for all curves C ⊂ X.

Proof. [Kle66, Thm. II.2.1, III.2.1]

One is tempted to think the theorem still holds when ‘nef’ is substituted by
‘ample’ and ‘≥’ by ‘> 0’, but this is false. Instead the correct analogon is
Seshadri’s criterion, which will be proved in the next chapter.
The quotient N1 (X) := Pic (X) / ≡ is called the Néron-Severi group of X.
We have the
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Theorem 2.10 (Theorem of the base). The abelian group N1 (X) is free of
finite rank ρ (X). This rank is also called the Picard number of X.

Proof. [LN59]. For k algebraically closed there is a quick proof in [Har77,
Appendix B.5]. More information about available proofs is given in [Kah06,
Chap. 1].

A basic notion that will play a role in the next chapters is the multiplcity
of points in varieties:

Definition 2.4. Let X be an arbitrary variety and let x ∈ X. The Hilbert
polynomial Px of the local ring OX,x has degree n = dimX. We define the
multiplicity multxX to be n! times the leading coefficient of Px.
Using the Chinese remainder theorem one can show that multx (−) is an
additive function of effective d-cycles for every d ≥ 0.

Remark 2.5. If X is a variety that is smooth at x ∈ X, and if V ⊂ X
is a subvariety of codimension 1, then there is an alternative definition for
multx V : It is the largest integer m such that IV,x ⊂ mm, where IV ⊂ OX
is the ideal sheaf of V and m the maximal ideal of A := OX,x.
Indeed, by the regularity ofA the prime ideal IV,x is principal. It is generated
by, say, f ∈ mm \mm+1. Consider the exact sequence

0 −→
(
mi : (f)

)
/mi −→ A/mi f−→ A/mi −→ A/mi + (f) −→ 0

for i ≥ m. Using the integrality of the associated graded ring of A we get(
mi : (f)

)
= mi−m. Therefore

dimA/mi + (f) = dimmi−m/mi = dimA/mi − dimA/mi−m.

An elementary calculation shows that this is asymptotically a polynomial
with leading coefficient m/ (dimX − 1)!.

It turns out that this multiplicity can be described via intersection numbers:

Proposition 2.11. Let X be an arbitrary variety of dimension n and let
π : X̃ → X be the blow up of a point x ∈ X. Then

multxX = (−1)1+n · (E·n) ,

where E is the exceptional divisor.

Proof. Let m ⊂ OX be the ideal sheaf of x. We have X̃ = Proj
⊕

i≥0 m
i and

E = Proj
⊕

i≥0 m
i/mi+1. Its ideal sheaf is

IE = OX̃ (1) =
⊕̃
i≥0

mi+1.
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For m ≥ 0 let E(m) be given by the ideal sheaf ImE = OX̃ (m). Then we
have

h0
(
X̃,OE(m)

)
= h0

X̃, ˜⊕
i≥0

mi/mi+m

 = dimOX,x/mm
x ∼ Px (m) .

We want to compare this expression with χ (OE(m)). This will be done by
studying the short exact sequence

0 −→ ImE −→ OX̃ −→ OE(m) −→ 0.

Applying the direct image functor π∗ and using the additivity of the Euler
characteristic gives

n∑
q=0

(−1)q · χ
(
Rqπ∗OX̃

)
=

n∑
q=0

(−1)q · χ (Rqπ∗ImE )

+

n∑
q=0

(−1)q · χ (Rqπ∗OE(m)) =: Σ1 + Σ2.

By a standard argument using the Leray spectral sequence we can show
Σ1 = χ (ImE ) (cf. [Băd01, proof of Lem. 1.18]). Also note that the line
bundle OX̃ (1) is relatively ample, so Rqπ∗ImE = 0 for m � 0 and q > 0 by
[Gro61, Prop. 2.6.1]. Hence Rqπ∗OE(m)

∼= Rqπ∗OX̃ for m � 0 and q > 0.
In particular this expression is independent of m if m is sufficiently large.
Combining all this we calculate

multxX = lim
m→∞

n! · Px (m)

mn
= lim

m→∞

n! · Σ2

mn

= lim
m→∞

−n! · Σ1

mn
= − ((−E)·n) = (−1)1+n · (E·n) .

Corollary 2.12. Let H be an effective divisor and let C be a curve on a
projective variety X such that C intersects H in finitely many points. Choose
s points x1, . . . , xs ∈ H ∩ C and assume that none of them is a singularity
of X. Then

(H · C) ≥
s∑
i=1

multxi H ·multxi C.

Proof. Assume s 6= 0 (otherwise this is trivial). Let π : X̃ → X be the
blow up of x1, . . . , xs. Denote the exceptional divisors by E1, . . . , Es (in the
corresponding order).
Then we have π∗H = H̃+

∑
µi ·Ei for some integers µi. By the projectivity

assumption PicX contains ample line bundles. Using similar arguments as
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in [Har77, Exc. II.7.5] we can write H = L1 − L2, where L1, L2 are very
ample. Hence H is linearly equivalent to a divisor that does not contain
x1, . . . , xs, because we can find divisors in |Li|, i = 1, 2, which do not go
through those points. Therefore

0 =
(
E·n−1
i · π∗H

)
=
(
E·n−1
i · H̃

)
+ µi · (E·ni )

= (−1)n ·multxH + µi · (−1)1+n

⇒ µi = multxH.

for all i by Proposition 2.11. Note that we used smoothness of xi here.

This,
(
Ei · C̃

)
= multxC and Lemma 2.4 imply

(H · C) =
(
π∗H · C̃

)
=
(
H̃ · C̃

)
+
∑

multxi H ·multxi C.

This finishes the proof.

Next, some cohomological results:

Theorem 2.13 (Fujita’s vanishing theorem). Let X be a projective k-
scheme and let H be an ample line bundle. Given any coherent sheaf F ,
there exists an integer m (F,H), such that for all nef divisors L we have

∀m ≥ m (F,H) : ∀i > 0 : H i (X,F ⊗ (mH + L)) = 0.

Proof. [Fuj83, 5.1]. Note that the theorem holds in every characteristic.

Corollary 2.14. Let L be a nef line bundle in the situation as in Fujita’s
theorem and let n be the dimension of X. Then

hi (X,F ⊗ (mL)) = O
(
mn−i) .

Proof of the corollary. We will just reproduce the corresponding proof of
[Laz04, Thm. 1.4.40]. We proceed by induction on n. For n = 0 this is
trivial. Assume the statement holds for n− 1. Choose an ample line bundle
H. By the previous theorem all the higher cohomologies of F ⊗ (mL+ µH)
vanish for µ ≥ m (F,H) and m > 0. Without loss of generality we have
m (F,H) = 1. We may assume that there exists a Cartier divisor D ∈ |H|
that does not contain any of the associated points of F . This gives us a
short exact sequence (use [Liu02, Exc. 7.1.12])

0 −→ F ⊗ (mL) −→ F ⊗ (mL+H) −→ F ⊗ (mL+H) |D−→ 0

and we obtain

hi (X,F ⊗ (mL)) ≤ hi−1 (D,F ⊗ (mL+H) |D) = O
(
m(n−1)−(i−1)

)
for i > 0. This and χ (F ⊗ (mL)) = O (mn) also imply the result for i =
0.
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Corollary 2.15. In the situation as in Fujita’s theorem assume (L·n) > 0
and choose a positive real number α, such that αn < (L·n). Then for m� 0
the following holds: For all smooth x ∈ X there exists a divisor Dx ∈ |mL|
such that multx (Dx) ≥ m · α.

Proof. The sections of |mL| with multiplicity ≥ c at an arbitrary smooth
point x ∈ X correspond to the kernel of the map

H0 (X,mL)→ OX,x → OX,x/mc
x

corresponding to an isomorphism (mL)x
∼→ OX,x by Remark 2.5. Hence

we can guarantee the existence of such a section, if the dimension d1 of the
left vector space is larger than the dimension d2 of the right vector space.
We compute d1 = h0 (X,mL) ∼ mn(L·n)

n! and d2 =
(
n+c−1
n

)
∼ cn

n! using the

regularity of the local ring OX,x. So for m� 0 and m ·α < c < m · (L·n)1/n

we are done.

Theorem 2.16. If X is a smooth projective variety and char k = 0 and L
a big and nef line bundle, then

H i (X,KX + L) = 0

for i > 0.

Proof. [Laz04, Thm. 4.3.1]. Note that this is a generalization of the Kodaira
vanishing theorem.

The next thing we are going to discuss are R-divisors, i.e., elements of
PicR (X) = Pic (X) ⊗Z R or N1

R (X) = N1 (X) ⊗Z R. The intersection
form on Pic (X) naturally induces an intersection form on PicR (X). The
definitions of amplitude, nefness and numerical equivalence in terms of inter-
section multiplicities on Pic (X) can be transferred to R-divisors verbatim.
One can show that N1

R (X) is the quotient of PicR (X) modulo numerical
equivalence. Kleiman’s criterion for R-divisors still holds. Both facts are
not obvious, but proofs can be found in [Laz04, Chap. 1.3, 1.4]
One advantage of working with R-divisors is the following

Proposition 2.17. For projective X amplitude (nefness) is an open (resp.
closed) property, i.e., the set of ample (nef) divisors Amp (X) ,Nef (X) ⊂
N1

R (X) ∼= Rρ(X) is open (resp. closed). Furthermore the first set is the
interior of the second one and the second set is the closure of the first one.
If X is just proper, nefness is still a closed property.

Clearly both sets are convex and invariant under multiplication with positive
real numbers, so those sets are sometimes called the ample and the nef cone.
Finally we state the
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Theorem 2.18 (Hodge index theorem). If X is a projective nonsingular
surface, then the intersection pairing has signature (1, ρ (X)− 1).

Corollary 2.19. In the same situation as above we have have

(L ·D)2 ≥
(
L·2
)
·
(
D·2
)

for any two divisors, such that
(
L·2
)
> 0.

Proof of the corollary. If (L ·D) = 0 then
(
D·2
)
≤ 0 by the previous the-

orem and the inequality is true. If (L ·D) 6= 0, let λ :=
−(L·2)
(L·D) . Then

(L · (L+ λ ·D)) = 0 and the same argument implies

0 ≥ (L+ λ ·D)2 =
(
L·2
)
·

(
−1 +

(
L·2
)
·
(
D·2
)

(L ·D)2

)
.

This is equivalent to the inequality we want to show.

Usually we will refer to the corollary by the name ‘Hodge index theorem’.
Let us close this chapter with a lemma that will be of some use in chapter
4. Note that this is Exc. V.1.11(a) in [Har77].

Lemma 2.20. Given a smooth surface X, an ample line bundle L and
d ≥ 0, the set{

c ∈ N1 (X) | 0 ≤ (c · L) ≤ d,∃M ∈ c : |M | 6= ∅
}

is finite. Remember that c is just a numerical equivalence class by definition.

Proof. Let c be an element of this set and let C ⊂ X be a nonintegral curve
whose numerical equivalence class is equal to c. By the Hodge index theorem

we have
(
C ·2
)
≤ (L·C)2

(L·2)
, so

(
c·2
)

is bounded from above. By the openness

of amplitude L − 1
kKX is ample for some sufficiently large integer k > 0.

Hence kL−KX is ample. Nakai–Moishezon implies ((kL−KX) · C) > 0⇒
kd ≥ k (L · C) > (KX · C) and by the adjunction formula we have(

C ·2
)

= 2pa (C)− 2− (KX · C) > −2− kd.

So
(
c·2
)

can take on only finitely many values. Say,
(
c·2
)

= ν and (c · L) =
λ. Let M1, . . . ,Mr be an orthonormal basis of L⊥ (in N1

R (X)). We have
c = λL +

∑r
i=1 µiMi with real numbers µ1, . . . , µr. Because of

(
c·2
)

= ν2

we have
∑r

i=1 µ
2
i = const. Hence c lies in a ball with center λL. Since

c ∈ N1
R (X) is also contained in the lattice N1 (X), there are only finitely

many possibilities.

Remark 2.6. Once we know that
(
c·2
)

takes on only finitely many values,
it suffices to assume that

(
L·2
)
> 0.
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3 Basic properties of Seshadri constants

For this section let X denote a variety over an algebraically closed field k
with dimX ≥ 2. We will closely follow [Laz04, Ch. 5.1].

Definition 3.1. For a (nef) line bundle L on X and a point x ∈ X define
the (local) Seshadri constant

ε (L;x) := inf

{
(L · C)

multxC
| C ⊂ X is a curve through x

}
.

Also define the global Seshadri constant by

ε (L) := inf
x∈X

ε (L;x) .

For future reference define

ε (L; 1) := sup
x∈X

ε (L;x) ;

later we will call it the Seshadri constant at a very general point.

Remark 3.2. Note that if we considered nonintegral curves C, this would
not make a difference, because for any two nonintegral curves C, D 3 x we
have

(L · (C +D))

multx (C +D)
=

(L · C) + (L ·D)

multxC + multxD
≥ min

(
(L · C)

multxC
,

(L ·D)

multxD

)
.

Remark 3.3. Of course we could make the same definition if L is more gen-
erally an R-divisor. Fixing x ∈ X it is clear that ε (−;x) is invariant under
numerical equivalence, so it induces a map Nef (X)→ R≥0. One easily sees
that ε (−;x) is a convex function and in particular continuous everywhere
and differentiable almost everywhere. Also note that the Seshadri constant
is positively homogeneous, i.e., ε (λL;x) = λ · ε (L;x) for all λ ≥ 0. So the
Seshadri constant is well-behaved in the first variable. Nevertheless it might
behave wildly in the second variable.

Remark 3.4. In general local and global Seshadri constants of a line bundle
L differ. But they clearly coincide if X is homogeneous, i.e., if AutX acts
transitively on X. In particular this holds for abelian varieties X.

Remark 3.5 (Nagata conjecture). One can also define the r-point Seshadri
constant of L at points x1, . . . , xr

ε (L;x1, . . . , xr) := inf

{
(L · C)∑r

ρ=1 multxρ C
| C ∩ {x1, . . . , xr} 6= ∅ is a curve

}
.
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The Nagata conjecture says that for a very general (cf. next chapter) set of
points x1, . . . , xr ∈ P2 with r ≥ 9 we have

ε (OP2 (1) ;x1 . . . xr) =
1√
r
.

In 1959 Nagata found a short proof for this when r is a perfect square
and used this to construct a counterexample for Hilbert’s 14th problem
([Nag59]). Although the Nagata conjecture deals with the most basic ex-
ample of calculating r-point Seshadri constants one can think of, it is still
unsolved in all the other cases. Note that the previous remark is of no use
here, because AutP2 does not even act 3-transitively on P2.
As 1-point Seshadri constants are already difficult to calculate, we will re-
strict ourselves to the case r = 1 in the remainder of this thesis. Sporadically
though, we will point out when easy generalizations of some proofs are pos-
sible.

Remark 3.6. Let L be very ample. So think of X as a closed subvariety
of some Pn and assume L = OX (1). Then for all curves C ⊂ X that pass
through x we have

(L · C) = (OPn (1) · C) = degC ≥ multxC

by Lemma 2.5 and Corollary 2.12 (x might not be a smooth point of X, but
it is a smooth point of Pn), hence ε (L) ≥ 1.
If L is just ample, then

ε (L) ≥ 1

m
by Remark 3.3, where m > 0 is chosen in such a way that mL is very ample.
Thus global Seshadri constants of ample line bundles are positive. We will
show below that the conversion also holds, such that we obtain the Seshadri
criterion of amplitude. Actually the name ‘Seshadri constant’ comes from
this criterion.

Example 3.7. Let V be a vector space of dimension n, let r ≤ n and
let Gr (r, n) be the corresponding Grassmannian. Assume dim Gr (r, n) =
r (n− r) ≥ 2. Let L be the line bundle associated to the Plücker embedding.
Let x ∈ X. We already know ε (L;x) ≥ 1 by the previous remark. In fact
equality holds. In order to see this, assume X ⊂ P (

∧r V ). If (v1, . . . , vn)
is a basis of V , we may assume x = [v1 ∧ . . . ∧ vr]. Then the line C that
passes through x and [v1 ∧ . . . ∧ vr−1 ∧ vr+1] lies in X. We obtain

ε (L;x) = 1

because of (L · C) = degC = 1 = multxC. Note that we obtain

ε (OPn (1) ;x) = 1

for all points x ∈ Pn (n ≥ 2) as a special case.
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Example 3.8. Now let X = P1 × P1. We have PicX = Z2 with L1 =
P1 × {0}, L2 = {0} × P1 as generators. Both generators are inverse images
of the nef divisor {0} ⊂ P1 under the canonical projections π1, π2 : X → P1

and so nef themselves by Lemma 2.8. One easily shows
(
L·21
)

=
(
L·22
)

=
0 and (L1 · L2) = 1. Using this one can show that the divisors mL1 +
nL2 for nonnegative integers m, n are the only nef divisors on X. We
want to calculate the Seshadri constants of mL1 + nL2. The surface X is
homogeneous, so local and global Seshadri constants coincide. We claim
ε (mL1 +mL2) = min (m,n). Assume m ≤ n. The Segre embedding X →
P3 is given by L1 +L2, so this line bundle is very ample and 1 ≤ ε (L1 + L2).
Thus m ≤ ε (mL1 +mL2) ≤ ε (mL1 + nL2) by convexity. Equality holds
because of ((mL1 + nL2) · L2) = m.

Remark 3.9. Unfortunately Seshadri constants are very difficult to calcu-
late. Even for surfaces nontrivial examples with known values are hard to
come by. So one should aim for good bounds instead. Upper bounds are
easy to obtain by the first definition. If one wants to estimate, say, ε (L;x)

one can calculate (L·C)
multx C

for an arbitrary curve C 3 x and this is automat-
ically an upper bound. In Remark 3.3 we will get to know a basic, but
important upper bound. However, lower bounds are more difficult to find.
Indeed, establishing a lower bound is one of the most challenging parts of
the proofs in the last three chapters.

Remark 3.10. All known values of the Seshadri constant are rational. As
we will see later, one can even show that the Seshadri constants of a nef line
bundle L on a (smooth) surface are rational or equal to

√
(L2) respectively.

There is an alternative definition: Fix a point x ∈ X (possibly singular)
and consider its blow up π : X̃ → X. Let E = π−1 (x) be the exceptional
divisor. Then we have:

Proposition 3.1. ε (L;x) = max {ε ≥ 0 | π∗L− εE is nef}

Proof. Let ε ≥ 0. It suffices to show the equivalence

ε ≤ ε (L;x)⇐⇒ π∗L− εE is nef.

That the maximum on the right hand side is really a maximum follows from
the closedness of nefness.
Let C ⊂ X be an arbitrary curve. Then we have

(L · C) =
(
π∗L · C̃

)
and multxC =

(
E · C̃

)
by Proposition 2.11. So ε ≤ ε (L;x) is equivalent to

(L · C)− ε ·multxC ≥ 0⇔
(

(π∗L− εE) · C̃
)
≥ 0

12



for all such curves. Now every curve C ′ ⊂ X̃ that is not a subvariety of E

satisfies π̃∗C ′ = C ′, so this is equivalent to ((π∗L− εE) · C ′) ≥ 0 for all C ′.
If C ′ is a subvariety of E, then this inequality is still correct, because π∗L
is nef by Lemma 2.8 and (E · C ′) < 0. Hence this is equivalent to π∗L− εE
being nef.

Remark 3.11. Given r points x1, . . . , xr, we still have

ε (L;x1, . . . , xr) = max {ε ≥ 0 | π∗L− εE is nef} .

But now π : X̃ → X is the blow up of x1, . . . , xr and E is the sum of the r
exceptional divisors.

Remark 3.12. Note that for 0 ≤ ε < ε (L;x) the divisor π∗L − εE might
still lie on the boundary of the nef cone, nevertheless it is at least big and
nef, because(

(π∗L− εE)· dimX
)
>
(

(π∗L− ε (L;x) · E)· dimX
)
≥ 0.

If L is ample, one can say that π∗L−εE is ample as well by Nakai–Moishezon:
Let V ′ ⊂ X̃ be a subvariety and let V = π (V ′). Then we have(

(π∗L− εE)· dimV ′ · V ′
)
>
(

(π∗L− ε (L;x) · E)· dimV ′ · V ′
)
≥ 0,

if V ′ ∩E 6= ∅. If V ′ ∩E = ∅, the left-hand side is equal to
(
L·dimV · V

)
> 0.

Theorem 3.2 (Seshadri’s Criterion). A line bundle L on X is ample if and
only if the global Seshadri constant ε (L) is defined and positive.

Proof. One direction has already been proven in Remark 3.6. So assume
ε := ε (L) > 0. Then we have ε (L|V ) > 0 for all closed subvarieties V ⊂ X.
By induction on n = dimX we may assume that L|V is ample for all closed
subvarieties V ⊂ X of smaller dimension. In particular

(
L· dimV · V

)
> 0,

so Nakai–Moishezon tells us that it suffices to show (L·n) > 0.
Indeed, let π : X̃ → X be the blow up with respect to some point x ∈ X and
let E be the exceptional divisor. We may assume that x is no base-point of
|L|. This implies

(
π∗L·m · E·(n−m)

)
= 0 for all 0 < m < n. Now the nefness

of π∗L− εE and Kleiman’s criterion imply

(L·n)− εn ·multxX = ((π∗L− εE)·n) ≥ 0.

We will later see ε (L; 1) ≥ 1 for ample L in Theorem 4.5 under some extra
assumptions. So one might wonder if there is a better universal bound in
the theorem above. The next example shows that the answer is no.

13



Example 3.13 (Miranda). Let δ > 0. We want to construct an ample line
bundle L on some surface X, such that

ε (L;x) < δ

for some x ∈ X.
Choose an integer m > 1

δ and a curve Γ ⊂ P2 with a point p ∈ Γ of mul-
tiplicity m. We may assume that Γ has degree d > 1. We can choose a
nonsingular curve Γ′ in P2 of degree d that meets Γ transversally in or-
dinary points (points of multiplicity 1) of Γ, such that the linear system
generated by Γ and Γ′ only contains curves, i.e., not nonintegral curves.
This follows from the following argument: Using the standard identifica-

tion |OP2 (e)| = P(e+1
2 )−1 for e > 0 the set of nonintegral degree d curves

corresponds to the union of the images of the Segre embeddings

σe1,e2 : P(e1+1
2 )−1 × P(e2+1

2 )−1 → P(d+1
2 )−1

for all positive integers e1, e2 adding up to d. Setting e := e1 the dimension
of imσe1,e2 is equal to(

e+ 1

2

)
+

(
d− e+ 1

2

)
− 2 =

e (e+ 1)

2
+

(d− e) (d− e+ 1)

2
− 2

≤ 1 (1 + 1)

2
+

(d− 1) d

2
− 2 =

d2 − d− 2

2
.

Thus the nonintegral curves in |OP2 (d)| form an algebraic set B of codi-
mension at least d ≥ 2. So the ‘cone’ Γ, B has codimension at least 1. By
Bertini almost all nonintegral degree d curves Γ′ intersect Γ transversally.
Also almost all of them do not contain a multiple point of Γ and again by
Bertini almost all of them are nonsingular. Choose one outside of Γ, B and
we are done.
Having guaranteed the existence of Γ′ we can define the blow up

π : X → P2

at the base points Γ ∩ Γ′ of 〈Γ,Γ′〉. Let C, C ′ be the strict transforms of
Γ, Γ′. The morphism π induces a map π∗ : 〈Γ,Γ′〉 → 〈C,C ′〉 given by strict
transforms. Each Γ′′ ∈ 〈Γ,Γ′〉 is birational to π∗ (Γ′′), so all elements of
〈C,C ′〉 are integral. Furthermore Γ and Γ′ are isomorphic to their respec-
tive strict transform. In particular C has a point x of multiplicity m. By
construction 〈C,C ′〉 is basepointfree and it induces a morphism f : X → P1.
Let E ⊂ X be an exceptional divisor.
Define L := aC + E for some integer a ≥ 2. We claim that this is the
example we are looking for. The first thing we need to check is amplitude.
We know that all elements of 〈C,C ′〉 are numerically equivalent, so

(
C ·2
)

=
(C · C ′) = 0. The equalities (C · E) = 1 and

(
E·2
)

= −1 imply(
L·2
)

= 2a− 1 > 0, (L · E) = a− 1 > 0, (L · C) = 1 > 0.

14



If D ⊂ X is an arbitrary curve, there are two cases: D might dominate
P1. Then D = E or (E ·D) ≥ 0 ⇒ (L ·D) ≥ (aC ·D) > 0. Or D is
contained in a fiber of f , i.e., in an element of 〈C,C ′〉. But all elements
of this linear system are integral, so D lies in this linear system and is
numerically equivalent to C. Therefore L is ample by Nakai–Moishezon.
Apart from that we have

ε (L;x) ≤ (L · C)

multx (C)
=

1

m
< δ,

as stated.

However, we have a good upper bound:

Proposition 3.3. Let V ⊂ X be a subvariety of dimension d > 0 passing
through x. Then

ε (L;x) ≤

( (
L·d · V

)
multx (V )

) 1
d

with equality for some V .

Proof. We adopt the notation of the proof of Seshadri’s criterion. Write
ε := ε (L;x). The divisor π∗L− εE is nef, so(

(π∗L− εE)·d · Ṽ
)
≥ 0.

Now Lemma 2.4 and Proposition 2.11 imply the inequality. As π∗L− εE is
not ample, π∗L− εE has trivial intersection with some subvariety V ′. Then
we have equality with V = π (V ′).

Remark 3.14. Given x ∈ X and L it is very difficult to say which dimension
V might have if equality holds for V . This corresponds to the fact, that all
known values of the Seshadri constants are rational.

Remark 3.15. If d = dimX, this implies that

ε (L;x) ≤ d

√
(L·d).

If X is a surface and x ∈ X a smooth point, we also see that ‘inf’ can be
replaced by ‘min’ in our first definition if equality does not hold, or more
concretely: There exists a curve C 3 x with

ε (L;x) =
(L · C)

multxC
.

In particular ε (L;x) is rational unless it is equal to
√

(L·2).
This proposition also tells us that Seshadri constants are uninteresting when
L is not big and nef.
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Remark 3.16. The proof can be easily transferred to r-point Seshadri con-
stants. Of course V has to pass through some of the points x1, . . . , xr and
multx V has to be substituted by

∑
multxi V . Consequently we get

ε (L;x1, . . . , xr) ≤
√

(L·2)

r

in the surface case. Note that this implies ‘one half’ of the Nagata conjecture.

Remark 3.17. In the case when X is a projective surface, one can prove
Remark 3.15 differently using:

Lemma 3.4. Let L be a big and nef line bundle on a projective surface X.
Given a real number ξ > 0, a smooth point x ∈ X and k > 0 such that there
exists a D ∈ |kL| with

(L ·D)

multxD
≤ ξ
√

(L·2),

the following holds: Every curve C ⊂ X passing through x with

(L · C)

multxC
<

1

ξ

√
(L·2)

is a component of D.

Proof. Assume by way of contradiction C 6⊂ D. Then C ∩ D is finite (by
our conventions curves are always integral) and by Corollary 2.12 we have

k (L · C) = (D · C) ≥ multxD ·multxC >
(L ·D)

ξ
√

(L·2)
· ξ (L · C)√

(L·2)
= k (L · C) ,

contradiction.

Assume now ε (L;x) <
√

(L·2). Fix a real number 1 < ξ <
√

(L·2)/ε (L;x).

Choose a sequence of curves Cn 3 x with ε (L;x) = limn→∞
(L·Cn)

multx Cn
. Then

we have (L·Cn)
multx Cn

< 1
ξ

√
(L·2) for n� 0. By Corollary 2.15 with α = 1

ξ there

exists D ∈ |kL| with (L·D)
multxD

≤ ξ
√

(L·2) for some k > 0. Lemma 3.4 implies
that Cn is a component of D for n� 0. In particular there are only finitely
many Cn and the result follows.

If L is ample and x smooth there is also a third definition for the local
Seshadri constant. Therefore we first give a

Definition 3.18. Given a line bundle L on X, a point x ∈ X with ideal
sheaf mx ⊂ OX and s ≥ −1, we say that |L| separates s-jets at x if the
canonical map

H0 (X,L)→ H0
(
X,L⊗OX/ms+1

x

)
= Lx/m

s+1
x Lx

is surjective.
Denote by s (L;x) the maximum over all s such that |L| separates s-jets at
x.
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Remark 3.19. First, note that the maximum does exist because of dimLx =
dimOX,x = ∞. Second, note that s (L;x) ≥ 0 if and only if x is no base
point of the linear system. Third, note that if |L| separates s-jets at x, then
it also separates s′-jets for s′ ≤ s. Fourth, also note that this is equivalent
to the injectivity of

H1
(
X,L⊗ms+1

x

)
→ H1 (X,L) .

This is for instance the case when the left cohomology group vanishes.

Now we have the

Theorem 3.5. Let L be an ample line bundle on X and x ∈ X be a smooth
point. Then

ε (L;x) = lim
k→∞

s (kL;x)

k
.

Proof. Set ε := ε (L;x) and sk := s (kL;x). We will show

ε ≥ lim sup
k→∞

sk
k
≥ lim inf

k→∞

sk
k
≥ ε.

So our proof consists of two parts.
First we will show ε ≥ sk

k for k > 0. Despite Remark 3.9 this will be the
elementary half. Fix a curve C 3 x. Denote its ideal sheaf localized at x
by I. In OX,x this is a prime ideal of height 1. We have I ∩ msk

x /m
sk+1
x 6=

msk
x /m

sk+1
x , because otherwise we would have

√
I = mx. Choose an element

α ∈ msk
x \

(
I ∪msk+1

x

)
and choose an isomorphism ϕ : (kL)x → OX,x. We

have ϕ−1 (α) /∈ msk+1
x (kL)x. Now let D be a divisor given by some preimage

of the nontrivial element ϕ−1 (α) under the surjective map H0 (X, kL) →
(kL)x /m

sk+1
x (kL)x. Then we have multxD ≥ sk and C 6⊂ D by construc-

tion, hence

k · (L · C) = (kL · C) = (D · C) ≥ multxD ·multxC ≥ sk ·multxC

⇒ ε (L;x) ≥ sk
k
.

Part two will build upon Fujita’s vanishing theorem and the following fact,
which we will prove afterwards:

Lemma 3.6. Let X be a proper k-scheme and let x ∈ X be a smooth point
with ideal sheaf mx ⊂ OX . Let π : X̃ → X be its blow up with exceptional
divisor E. Then we have

H i
(
X̃, π∗L− aE

)
∼= H i (X,L⊗ma

x)

for all line bundles L on X and for all integers i, a ≥ 0.

17



The assumption that x ∈ X is smooth is crucial here. Otherwise the lemma
would be false.
Fix integers p0, q0 � 0, such that 0 < ε − p0

q0
� 1. Denote the blow up at

x by π : X̃ → X and denote the exceptional divisor by E. By Remark 3.12
π∗ (q0L) − p0E is ample. By Fujita’s vanishing theorem there exists m0,
such that we have

H1
(
X̃,m (π∗ (q0L)− p0E) +D

)
= 0

for every m ≥ m0 and every nef line bundle D. Now let k > m0q0 be
arbitrary. Write k = mq0 + q1 with 0 ≤ q1 < q0. Setting D = π∗ (q1L) we
obtain in particular

H1 (X, kL⊗mmp0
x ) ∼= H1

(
X̃, π∗ (kL)−mp0E

)
= 0

by Lemma 3.6, so |kL| separates (mp0 − 1)-jets. Thus

sk
k
≥ mp0 − 1

k
≥ mp0 − 1

(m+ 1) k
=

(
m

m+ 1

)
p0

q0
− 1

(m+ 1) q0
.

By easy convergence arguments we obtain lim inf skk ≥ ε.

Proof of Lemma 3.6. Let a ≥ 0. First, note that for all a ≥ 0 we have
π∗ (−aE) |E = ma

x/m
a+1
x . Second, by the smoothness of x we have E =

P
(
mx/m

2
x

) ∼= PdimX−1. Hence Riπ∗ (−aE) = Riπ∗ (OE (a)) = 0 for i > 0.
Besides, we have a short exact sequence

0 −→ − (a+ 1)E −→ −aE −→ (−aE) |E−→ 0.

By induction on a we obtain π∗ (−aE) = ma
x and Riπ∗ (−aE) = 0 for i >

0. Indeed, by [Har77, Prop. V.3.4] (the proof given there also works for
dimX 6= 2) the assertion holds for a = 0. If the induction hypothesis works
for a, then we get the result for a + 1 by applying π∗ to the short exact
sequence from above and by using the two facts we stated at the beginning.
Now the proposition easily follows from [Har77, Exc. III.8.1] and [Har77,
Exc. III.8.3].

Unfortunately this theorem is hardly suitable for applications. But if we
stick to a special case there is a better result:

Theorem 3.7. Let X be smooth of dimension n and char k = 0. If ε (L;x) >
0 and k, s are nonnegative integers, such that ε (kL;x) > s + n, then
|KX + kL| separates s-jets.
If conversely there exist positive real numbers c, ε (like n/ε (L;x)), such that
for all nonnegative integers k, s with kε > s+cε the linear system |KX + kL|
separates s-jets, then ε (L;x) ≥ ε.
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Proof. We may assume k = 1. Adopt the notation from the previous proof.
We have KX̃ = π∗KX + (n− 1)E. Since ε (L;x) > s + n, the divisor
π∗L− (n+ s)E is big and nef by Remark 3.12. Hence

KX̃ + π∗L− (n+ s)E = π∗ (KX + L)− (s+ 1)E

and Lemma 3.6 and Theorem 2.16 imply

H1
(
X, (KX + L)⊗ms+1

x

)
= H1

(
X̃, π∗ (KX + L)− (s+ 1)E

)
= 0

and we are done. Note that Theorem 2.16 requires the assumption char k =
0.
For the second part let C 3 x be a curve. Write m = multxC. Let s > 0
be arbitrary and k :=

⌊
s
ε + c

⌋
+ 1. By assumption |KX + kL| separates s-

jets. By the same argument as in the proof of the previous theorem this
implies the existence of a global section D ∈ |KX + kL| with multxD ≥ s
and C 6⊂ D. Hence

((KX + kL) · C) ≥ multx (D) ·multx (C) ≥ s ·m

⇒ (L · C)

m
≥ s

k
− (KX · C)

k ·m
.

Letting s→∞ gives the result.

4 Seshadri constants at very general points

In Miranda’s example we have seen an ample line bundle L on some surface
X, such that ε (L;x) is very small for a specific point x ∈ X. In this chapter
we will see that this is an ‘exception’, i.e., for most of the points x ∈ X the
Seshadri constant ε (L;x) is much larger. The surface X was even birational
to P2, and in P2 such behaviour does not occur. This leads us to consider
the value of the Seshadri constant at a ‘generic’ point (not to be confused
with the scheme theoretical generic point). The following definition will be
useful for future use:

Definition 4.1. Let X be a variety. We say that a property for closed
points holds at a general (very general point) x ∈ X, if it holds for all x off
a proper subvariety (respectively countable union of proper subvarieties) of
X.

From now on we assume that k is uncountable. Otherwise the definition of
very general points would be inane. Also assume char k = 0. We have:

Proposition 4.1. Let f : X → T be a proper morphism of noetherian
schemes and L be a line bundle on X. Write Lt = L|Xt for all fibres Xt. If
Lt0 is ample for some t0, then L|U is ample for some open neighbourhood
U 3 t0.
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Proof. Proofs can be found in [Laz04, Thm. 1.2.17] or in [Gro61, III.4.7.1].

Corollary 4.2 ([Laz04, Prop. 1.4.14]). Let f : X → T be a projective
morphism of varieties and let L be a line bundle on X. If Lt0 is nef for at
least one point t0 ∈ T , then Lt is nef at a very general point.

Proof. Let A be a line bundle of X which is ample relative to T . In particular
At is ample for all t. If Lt is nef, Lt+

1
mAt is ample for all integers m > 0 by

Nakai–Moishezon. The conversion holds by the closedness of nefness. Fix
m > 0. Then mLt0 + At0 is ample and by Proposition 4.1 mLt + At, and
therefore also Lt + 1

mAt is ample for all t off a proper subvariety Sm ⊂ T .
Thus Lt is nef for all t /∈

⋃
Sm.

Remark 4.2. If L is a Q-divisor, i.e., if kL is a line bundle for some integer
k > 0, then for all t ∈ T the divisor kLt is nef if and only if Lt is nef. Hence
the result is also true for Q-divisors.

Corollary 4.3. Let f : X → T be a surjective projective morphism with a
section x : T → X, t 7→ xt and let L be a line bundle on X. Then there
exists ε > 0 such that ε (Lt;xt) = ε for very general t.

Proof. Let
ε := sup

t∈T
ε (Lt;xt)

By Remark 3.15 ε <∞. Let π : X̃ → X be the blow up along the image of
x. Denote the exceptional divisor by E. For all t ∈ T this morphism induces
the blow up πt : X̃t → Xt at xt. Denote the exceptional divisor by Et ⊂ X̃t.
Now let δ be a rational number such that ε (Lt0 ;xt0) ≥ δ for some point
t0 ∈ T . Then (π∗L− δE)t0 is nef. Remark 4.2 implies that (π∗L− δE)t is
nef for very general t, i.e., ε (Lt;xt) ≥ δ for very general t. Apply this to a
sequence (δm)m of rational numbers δm ↑ ε and we obtain ε ≥ ε (Lt;xt) ≥ ε
for very general t.

Now let X be a variety, p1, p2 : X × X → X the projection onto the first,
second factor and ∆ : X → X ×X the diagonal morphism. Let L be a nef
line bundle on X and let L := p∗1 (L). Setting f = p2, x = ∆ and L = L in
the corollary above gives us the

Corollary 4.4. For all nef line bundles L on a variety X we have

ε (L; 1) = ε (L;x)

for very general points x ∈ X.

After this discussion we now come to the main theorem of this chapter,
shown by Ein and Lazarsfeld in [EL93]:
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Theorem 4.5. Let e be a positive integer and let L be line bundle on the
smooth surface X with

(
L·2
)
≥ 2e2 − 2e + 1 and (L · C) ≥ e for every

irreducible curve C ⊂ X. Then ε (L; 1) ≥ e. If e > 1 or more generally(
L·2
)
> 1, we even have ε (L;x) ≥ e for general x ∈ X.

Note that L is ample by Nakai–Moishezon. For e = 1 the assumptions just
say that L shall be ample.
Before giving a proof we recall the notion of an algebraic family. We say that
a flat morphism f : X → T of arbitrary nonproper varieties is an algebraic
family. Another way to think of that is to say f determines a ‘continu-
ous’ deformation (Xt)t∈T . If f is projective, flatness of f is equivalent to
saying that the Hilbert polynomial Pt of Xt is independent of t by [Har77,
Thm. III.9.9]. In particular all fibres have the same dimension. In the proof
we will mainly encounter the special case, where T is a smooth nonproper
curve and X is a closed subscheme of X ×T of codimension 1, i.e., an effec-
tive Cartier divisor. In that case we write Ct = Xt and we have a family of
curves.
An important tool for studying such a family at a point t ∈ T is the Kodaira–
Spencer map

ρt : TtT → H0 (Ct,Nt) ,

where TtT is the tangent space of T at t and Nt is the normal bundle to
Ct in X (note that Nt = Ct|Ct is invertible also for singular Ct). We will
investigate this map later. For the proof we just need to know two things:
First, it is intuitively the derivative of t 7→ Ct. So one expects it to be trivial
for all t if and only if Ct does not move, i.e., Ct1 = Ct2 for all t1, t2 ∈ T .
Second, if we also have a family (xt)t∈T of points on the curves Ct with high
multiplicity, then Ct has a high self-intersection number if ρt is nontrivial.
More precisely: If multxt (Ct) ≥ m for all t, then

(
C ·2t
)
≥ m (m− 1) if

ρt 6= 0.
Now we start with the proof:

Proof. In order to show ε (L, 1) ≥ e, we need to inspect the ‘bad’ points
x and want to show there are not too many of them, i.e., we consider the
points x with

ε (L;x) < e⇔ ∃ curve C ⊂ X : multx (C) >
(L · C)

e
.

Therefore we consider the set

S =

{
(C, x) | x ∈ C ⊂ X curve, multx (C) >

(L · C)

e

}
.

It is the union of the sets

Sd =

{
(C, x) | x ∈ C ⊂ X curve, multx (C) >

(L · C)

e
, (L · C) ≤ d

}
.
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for d = 0, 1, . . . . Let us say a subset M ⊂ S is parametrized by a family
C ⊂ X × X × T → T , if the fibres of that family make up M . Each Sd
can be parametrized by a bounded family, so that S can be parametrized
by countably many families (*). We will come to a proof of this statement
later.
If we can show that each family (Ct 3 xt)t∈T is trivial, we get the first
statement of Theorem 4.5. Suppose this family is nontrivial. Without loss of
generality T is a nonproper curve (otherwise substitute T by a curve C ⊂ T ,
such that the family is still nontrivial) and smooth (after substitution of T
by an open subscheme). Each Ct is reduced and hence only finitely many
points on it have multiplicity greater 1 (curves are always integral by our

conventions). Thus mt := multxt (Ct) >
(L·Ct)
e ≥ 1 for all t implies that

(Ct)t∈T is already nontrivial. We may assume that (mt)t is constantly m
(cf. (*)). By a previous remark we have ρt∗ 6= 0 for some point t∗. As we
mentioned before, this implies

(
C ·2
)
≥ m (m− 1), where C := Ct∗ . On the

other hand
(
L·2
) (
C ·2
)
≤ (L · C)2 by the Hodge index theorem. Hence(

2e2 − 2e+ 1
)
m (m− 1) ≤

(
L·2
) (
C ·2
)
≤ (L · C)2 ≤ (em− 1)2 ,

and elementary arguments show that this is impossible for m > 1. This
finishes the proof of the first statement.
Now suppose

(
L·2
)
≥ 2. We are done if we can show S = Sd for some

integer d. An easy calculation shows α := e/
√

(L·2) < 1. Observe that by
Corollary 2.15 there exists a positive integer k such that for all y ∈ X we
can find a divisor Dy ∈ |k · L| with multy (Dy) ≥ k · α. We claim that we
can choose d := k ·

(
L·2
)
. Indeed, let (C, x) ∈ S. We have

(L · C)

multxC
< e = α

√
(L·2)

and
(L ·Dx)

multxDx
≤ 1

α

√
(L·2).

By Lemma 3.4 the curve C is a component of Dx and we obtain

(L · C) ≤ (L ·Dx) = d,

i.e., (C, x) ∈ Sd.

Filling the gaps. (*) Here, Hilbert schemes will prove themselves helpful. So
let us first review those objects. Denote the category of locally noetherian
k-schemes by Schk. Fix a projective variety X and an embedding in some
Pn. Define the Hilbert functor

HilbX : Schk −→ Sets

T 7−→ {closed subschemes C ⊂ X × T flat over T} .
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It is a highly nontrivial fact that this functor is represented by a scheme
HilbX, the so-called Hilbert scheme of X. It is separated, but unfortu-
nately not noetherian in general.
Nevertheless for each numerical polynomial P ∈ Q [x] one can define a
subfunctor HilbPX ⊂ HilbX by imposing the following extra condition on
the families C → T : All fibres Ct ⊂ Pn have the same Hilbert polyno-
mial P . Each of those functors is representable by a closed subscheme
HilbP X ⊂ HilbX. One can show that

HilbX =
∐

P num. pol.

HilbP X

and that each HilbP X is projective over k.
Finally, note that Hom (Spec k,HilbX) corresponds to all closed subschemes
ofX and that id ∈ Hom (HilbX,HilbX) corresponds to a family C → HilbX
that parametrizes all closed subschemes of X. Analogous statements hold
when HilbX is substituted by HilbP X.
Now let us focus on the special case when X is a smooth surface. For k suf-
ficiently large, kL is very ample. Fix the embedding X ⊂ Pn induced by kL.
Fix d ≥ 0. The set in Lemma 2.20 is finite; let c1, . . . , cs ∈ N1 (X) be its el-
ements. Let Ci be effective representatives of ci for i = 1, . . . , s respectively.
If Pi denotes the Hilbert polynomial of Ci, it does not depend on Ci. Indeed,
degPi = dimCi = 1, Pi (0) = 1 − pa (Ci) = −1

2 · ((ci +KX) · ci) and the
leading coefficient of Pi is degCi = (ci · kL). Conversely every nonintegral
curve C ⊂ X with Hilbert polynomial Pi satisfies (L · C) = 1

k · degCi ≤ d.
Therefore the set

S′′′d = {C ⊂ X | C is a nonintegral curve with (L · C) ≤ d}

is parametrized by a subset T ⊂
∐s
i=1 HilbPi X. One can show that T is an

open subvariety. Hence the set

S′′d = S′′′d ×X

is parametrized by T × X. Let S′d be defined like Sd, but without the
assumption that the curves C are integral. We are done if we can show that
S′d ⊂ S′′d corresponds to a closed subscheme Y of T ×X and that Sd ⊂ S′d
corresponds to an open subscheme Z of Y . By tedious arguments using the
notions of ‘open’ and ‘closed’ subfunctors (cf. [EH00, VI.1.1]) one sees that
this boils down to the following two facts:
If T is a nonproper variety and C ⊂ X × T → T a family of curves, then
{t ∈ T | Ct is integral} is an open subset of T (k). If additionally x ⊂ X×T
is a family of points, then {t ∈ T | multxt Ct > µ} is a closed subset of T (k).
We omit the proofs.
(**) The second thing that needs to be settled is to make the arguments
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with the Kodaira–Spencer map more precise.
Fix families f : C → T , x : D → T of curves Ct ⊂ X, points xt ∈ Ct
respectively over a nonproper curve T . Fix a point 0 ∈ T . We want to
define ρ0 now. An element of T0T is essentially the same thing as a morphism
τ : Spec k [t] /t2 → T with image 0. We have X = ProjA for some graded
regular ring A. The curve C0 ⊂ X is given by a homogeneous ideal I ⊂ A.
After base change of f via τ we obtain an infinitesimal deformation C →
Spec k [t] /t2 of C0. This corresponds to a flat ring homomorphism k [t] /t2 →
A [t] /J with t 7→ t, such that A/I ∼= A [t] / (J, t). One easily shows that

A [t]→ A, t 7→ 0 sends J to I and that the kernel of A→ A [t] /J
t→ A [t] /J

is contained in J . Now define ρ0 (τ) ∈ HomA/I

(
I/I2, A/I

)
as follows: If

a ∈ I there exists b ∈ A such that a + bt ∈ J . Set ρ0 (τ) (a) = b. Tedious
checks show that ρ0 is k-linear and well-defined.
Now we want to show:

Lemma 4.6. If f is nontrivial, the set {t ∈ T | ρt 6= 0} is dense in T .

Lemma 4.7. If multxt Ct ≥ m for all t ∈ T , then ρt vanishes to order
≥ m − 1 at xt, i.e., im ρt ⊂ H0

(
Ct,Nt ⊗mm−1

xt

)
, where mxt ⊂ OX is the

ideal sheaf of {xt}.

We will just prove those lemmas for k = C. By standard arguments this can
be extended to the general case.
Without loss of generality T is connected and f nontrivial. Then f stays
nontrivial if we substitute T by an open subset. Hence it suffices to prove
{t ∈ T | ρt 6= 0} 6= ∅ in Lemma 4.6. Because of k = C the nonproper curves
D, T only have finitely many singularities. After shrinking T we may assume
that D and T are nonsingular. Now after application of [Har77, Cor. III.10.7]
we may even assume that x is étale.
Choose a point 0 ∈ T and a tangent τ : Spec k [t] /t2 → T at 0. We have a
factorization

Spec k [t] /t2
ι→ Spec kJtK ϕ→ Spec ÔT,0

κ→ SpecOT,0

The morphism ϕ is an isomorphism by regularity of T , but it is not unique.
If u ∈ OT,0 is a uniformizing parameter though, we have (κ ◦ ϕ)∗ (u) =
λτ t + r with a uniquely determined scalar λτ and some r ∈ t2kJtK. Let
p : CJtK := C ×T Spec kJtK→ Spec kJtK be the canonical projection. An easy
calculation shows

ρ0 (τ) =
∂

∂t
p∗ (λτ t+ r) |t=0∈ H0 (C0,N0) .

Now we will proceed by analytical methods: From now on we think of C, D,
T as complex analytical spaces. As x is étale, it is a local biholomorphism.
The morphism κ ◦ ϕ corresponds to a chart t : U → V ⊂ T with U ⊂ C
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open. We may assume U = V = T and t = id. After shrinking X and T
we may assume X ⊂ An and x : D ∼→ T . Write x−1 (t) = (a1 (t) , . . . , an (t))
for t ∈ T . Use the shortcut Ft (x1, . . . , xn) = p∗ (λτ t+ r). Then Ct is
given by the homogeneous polynomial Ft for all t ∈ T . By assumption
Ft has multiplicity ≥ m at (0, . . . , 0) for all t. Writing Ft =

∑
i Fit

i, this
implies Fi ∈ (x1, . . . , xn)m := (x1, . . . , xn)m kJx1, . . . , xn, tK for all i. Hence
∂
∂tFt |t=0∈ (x1, . . . , xn)m−1 and Lemma 4.7 follows.
Lemma 4.6 follows from the fact, that Ft is a holomorphic function.
In applications we will not directly use Lemma 4.7, but the following

Corollary 4.8. If in the situation of the lemma ρ0 6= 0 for some 0 ∈ T ,
then

(
C ·20
)
≥ m (m− 1).

Proof. We write C = C0 and x = x0. Let π : X̃ → X be the blow up of x
with exceptional divisor E. By the proof of Corollary 2.12 we have π∗C =
C̃ + µE, where µ := multxC. It follows from our assumption ρ0 6= 0 and
from Lemma 4.7 that H0

(
C,OC (C)⊗mm−1

x

)
is nontrivial. By Lemma 3.6

this is equivalent to
∣∣(f∗ (OC (C)) + (1−m)E) |C̃

∣∣ 6= ∅. Thus(
f∗ (OC (C)) · C̃

)
≥
(

(m− 1)E · C̃
)

= µ (m− 1)

⇒
(
C ·2
)

=
(
C̃ ·2
)

=
(
f∗ (OC (C)) · C̃

)
≥ µ (m− 1) ≥ m (m− 1) .

Remark 4.3. Write C = C0. By similar, but more elaborate arguments, Xu
shows

(
C ·2
)
≥ m (m− 1)+1 for m > 1 in [Xu95, Lem. 1]. The main trick lies

in showing, for instance, that the nontrivial section ofH0
(
C,OC (C)⊗mm−1

x

)
also vanishes at another point, if x ∈ C has at two least tangent directions.
With this result one can improve Theorem 4.5: We just substitute 2e2−2e+1
by 2e2 − 2e.

Remark 4.4. Unfortunately one cannot directly apply the Lefschetz prin-
ciple to Theorem 4.5 because of the notion of very general points. But if we
just stick to statements about properties for general points, we get analogous
results for arbitrary algebraically closed fields k. Let us give one example: If
L is ample, we have

(
M ·2

)
≥ 2e2− 2e and (M · C) ≥ e for all curves C ⊂ X

with e = 2 and M = 2L. Then we have

ε (L;x) =
1

2
· ε (M ;x) ≥ 1

2

for general x ∈ X.

Now let us close this chapter with another application of the previous lemma.
We present the following proposition shown by Steffens in [Ste98]:
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Proposition 4.9. If the smooth surface X has Picard number 1, then

ε (L; 1) ≥
⌊√

(L·2)
⌋

for all nef line bundles L.

Proof. Without loss of generality L is a generator of N1 (X). Let α :=⌊√
(L·2)

⌋
. Assume the statement is false. By the arguments in Theorem 4.5

there exists a nontrivial family (Ct, xt)t∈T with α ·multxt Ct > (L · Ct) for
all t. By Lemma 4.6 and Corollary 4.8 this gives us a curve C with (L · C) <
α ·multxC =: αm and

(
C ·2
)
≥ m (m− 1). By the assumption N1 (X) = Z

we have C ≡ dL for some d ≥ 0. Hence

(L · C) = d
(
L·2
)
≥ dα2 ⇒ dα < m⇒ dα ≤ m− 1.

Therefore

m (m− 1) ≤
(
C ·2
)

= d (L · C) < dαm ≤ m (m− 1) ,

contradiction.

5 Example: Canonical bundle on certain surfaces

After our somewhat general discussion of the Seshadri constant in the pre-
vious two chapters we now turn to concrete examples. In this chapter we
will discuss the main results of [BS08].
The setting is as follows: We fix a smooth surface X over an algebraically
closed, uncountable field k of characteristic 0, which is minimal and of gen-
eral type, i.e., X does not contain (−1)-curves and has Kodaira dimension
2 (keep in mind that X is automatically projective).

Remark 5.1. This is actually equivalent to KX being big and nef:
Indeed, assume KX is big and nef. That X has Kodaira dimension 2 is clear
by Corollary 2.14. Choose m > 0, such that |mKX | 6= ∅, and choose an
element D. If C is a (−1)-curve, then (KX · C) = −1 by the adjunction
formula. But KX is nef, contradiction.
If X is minimal and of general type, again choose D ∈ |mKX | for m � 0.
If KX is not nef, there exists a curve C with (KX · C) < 0 ⇒ (D · C) < 0.
Hence C is a component of D and

(
C ·2
)
< 0. By the adjunction formula C

is a (−1)-curve, contradiction. By the same arguments as above we also get
the bigness of X.

So X is a surface for which

• it makes sense to consider the Seshadri constants of KX (KX is nef)
and for which

• not all Seshadri constants of KX are 0 (KX is big and nef).
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Although this is the most general setting in which it is sensible to study the
Seshadri constants of the canonical bundle, one can show the following three
results ([BS08], the first result also holds if we drop the extra assumptions
on k):

Theorem 5.1. Let x ∈ X.

(a) ε (KX ;x) = 0 if and only if x lies on a (−2)-curve.

(b) If 0 < ε (KX ;x) < 1, we have

ε (KX ;x) =
m− 1

m

for some integer m ≥ 2 and this Seshadri constant is computed by a
curve C, such that multx (C) = m.

(c) If 0 < ε (KX ;x) < 1 and
(
K ·2X

)
≥ 2, then

(i) m = 2 and C can be chosen in such a way that pa (C) = 1, or

(ii) m = 3 and C can be chosen in such a way that pa (C) = 2.

(d) If 0 < ε (KX ;x) < 1 and
(
K ·2X

)
≥ 3 only the first case is possible.

Theorem 5.2. We have ε (KX ; 1) ≥ 1 where equality holds if and only if(
K ·2X

)
= 1.

Theorem 5.3. If
(
K ·2X

)
≥ 6, we have ε (KX ; 1) ≥ 2 with equality if and

only if X admits a genus 2 fibration over a smooth curve.

Remark 5.2. Case (a) in Theorem 5.1 only happens for x in a proper
subvariety of X. Indeed, if C is a (−2)-curve we have (KX · C) = 0 by the
adjunction formula. By Remark 2.6 with L = KX and d = 0 there are only
finitely many numerical equivalence classes c which contain a (−2)-curve.
Since

(
c·2
)

= −2, the class c contains only one curve and we are done.

Remark 5.3. It is unknown whether every value for m in Theorem 5.1(b)
can occur. However, Bauer gives an example for m = 2.

Proof of Theorem 5.1. (a) Because of
(
K ·2X

)
≥ 1 we have ε (KX ;x) = 0 if

and only if there exists a curve C 3 x with (KX · C) = 0. This and the
Hodge index theorem automatically imply

(
C ·2
)
< 0. So the adjunction

formula implies that (KX · C) = 0 is equivalent to C being a (−2)-curve.
(b) Remark 3.15 implies ε (KX ;x) = d

m for some curve C 3 x with m :=
multx (C) and d := (KX · C). The inequality 0 < ε (KX ;x) < 1 implies
m ≥ d + 1 ≥ 2. We want to show m ≤ d + 1. If m = 2, this is trivial, so
assume m ≥ 3. By the Hodge index theorem we have(

C ·2
)
≤ d2(

K ·2X
) =:

d2

c
.
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By the adjunction formula we have

pa (C) = 1 +
1

2
((C +KX) · C) ≤ 1 +

d (d/c+ 1)

2
.

But C has a point of multiplicity m, hence(
m

2

)
≤ pa (C)− pg (C) ≤ 1 +

d (d/c+ 1)

2
(1)

by [Har77, Ex. V.3.9.2]. This easily implies m ≤ d + 1 because of m ≥ 3
and c ≥ 1.
(c) Know we assume c ≥ 2. Then (1) implies m ≤ 3 because otherwise we
would have m < d+ 1, and we are done.
(d) Same argument as before, now using c ≥ 3.

Theorem 5.2 and Theorem 5.3 require some more work. Indeed, their proofs
crucially depend on the following lemma that requires the type of variational
arguments we came across in the previous chapter:

Lemma 5.4. Let L be a big and nef line bundle on a smooth surface X. If

ε (L; 1) <

√
3

4
(L·2),

then X is fibered by nonintegral curves computing ε (L; 1), or more precisely:
There is a flat family f : X → B (Fx := f−1 (x) for x ∈ B) such that

ε (L; 1) = ε (L;x) =
(L · Fx)

multy (Fx)

for general y ∈ Fx.
Note that ε (L; 1) is an integer in this case, because for general y ∈ Fx we
have multy Fx = 1.

Proof. Let

Σ :=

{
(C, x) | C 3 x is a curve,

(L · C)

multxC
≤ ε (L; 1)

}
.

By the arguments we came across in the last chapter this set is parametrized
by countably many families. As k is uncountable and ε (L; 1) = ε (L;x) for
very general x ∈ X, there exists a nontrivial family (Ct ∈ xt)t∈T of elements
of Σ such that (Ct)t∈T is also a nontrivial family. We may also assume
ε (L; 1) = ε (L;xt) for very general t ∈ T . Call those points t ∈ T good.
Without loss of generality this family and T are smooth and m := multxt Ct
is constant by (*).
By the Hodge index theorem we have(

L·2
)
·
(
C ·2t
)
≤ (L · Ct)2 <

3

4
m2
(
L·2
)
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for all t ∈ T . This and Remark 4.3 imply

m2 −m+ 1 <
3

4
m2 ⇔ (m− 2)2 < 0

for m > 1, contradiction. Hence m = 1 and
(
C ·2t
)
< 3

4 ⇒
(
C ·2t
)
≤ 0.

Corollary 4.8 implies equality.
Fix a good point 0 ∈ T . Embed T into a smooth proper curve T̄ . For
k � 0 the linear system |k0| (in T̄ ) is very ample. By Bertini k0 is linearly
equivalent to some nonsingular divisor t1 + . . .+ tk with support in T \ {0}.
In other words, the points ti are pairwise different. The family (Ct)t∈T is
given by a flat morphism f : C → T and [Liu02, Lem. 7.1.33] implies Ct1 +
. . . + Ctk ∈ |kC0|. The base-point-free linear system 〈kC0, Ct1 + . . .+ Ctk〉
induces a fibration g : X → P1. Unfortunately this is not the fibration we
are looking for if k > 1. But there is the Stein factorization

X B

P1

f

g h

over a smooth curve B. We have g−1 (1) = Ct1 + . . . + Ctk for some point
1 ∈ P1. This curve has exactly k connected components, because the curves
Ctκ are connected (by integrality). Hence h−1 (1) consists of k points and we
have deg h = k. This implies that for instance Ct1 is a fiber of the fibration
f . But Ct1 ≡ C0, so f is the fibration with the right properties (because all
fibres are numerically equivalent).

Remark 5.4. The constant 3
4 is optimal. Indeed, let X ⊂ P3 be a smooth

cubic and L = OX (1). Then we have

ε (L; 1) =
3

2
=

√
3

4
(L·2).

In particular, this Seshadri constant is no integer anymore.
Let us prove this. Fix a point x ∈ X. By inspection of the short exact
sequence

0 −→ OP3 (−2) −→ OP3 (1) −→ OX (1) −→ 0

we obtain h0 (X,L) = h0
(
P3,OP3 (1)

)
− h0

(
P3,OP3 (−2)

)
= 4, because the

higher cohomologies of OP3 (−2) vanish. Since this is larger than
(

2+2−1
2

)
=

3, there exists a divisor C ∈ |L| with multxC ≥ 2 by the proof of Corol-
lary 2.15. By [Har77, Ex. II.8.20.3] we have KX = −L and by [Har77,
Exc. V.1.5(a)] we have

(
L·2
)

=
(
K ·2X

)
= 3, hence

ε (L;x) ≤ (L · C)

multxC
≤ 3

2
=

√
3

4
(L·2).
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Assume by way of contradiction that ε (L; 1) < 3
2 . Then Lemma 5.4 implies

ε (L; 1) = 1 and the existence of a fibration f : X → B of nonintegral curves
F with (L · F ) = 1. It follows from the proof of the lemma that at least
one fiber is integral. By one of the two facts stated at the end of (*) in
the previous chapter this implies that all fibers except for finitely many are
integral. But if F is one of those fibers, we have

(
F ·2
)
≤ (L · F ) /

(
L·2
)

=
1/3⇒

(
F ·2
)
≤ 0 by the Hodge index theorem and(

F ·2
)

= 2pa (F )− 2− (KX · F ) = 2pa (F )− 2 + (L · F ) = 2pa (F )− 1,

hence pa (F ) = 0 and F is a (−1)-curve. So F is one of the 27 lines on X and
this contradicts the infinitude of possibilities for F (alternative argument:
F is the only effective divisor in its numerical equivalence class and by
Lemma 2.20 there are only finitely many possibilities).

Proof of Theorem 5.2. If
(
K ·2X

)
= 1, we have ε (KX ; 1) ≤ 1 by Remark 3.15.

Lemma 5.4 implies ε (KX ; 1) = 1.
Conversely assume now ε (KX ; 1) ≤ 1 and

(
K ·2X

)
≥ 2. Again Lemma 5.4

implies equality and the existence of infinitely many curves C ⊂ X with
(KX · C) = 1. But by the Hodge index theorem we have(

K ·2X
) (
C ·2
)
≤ (KX · C)2 = 1⇒

(
C ·2
)
≤ 0.

By the adjunction formula pa (C) = 1 + 1
2

((
C ·2
)

+ (KX · C)
)

the self-
intersection number of C is odd, so we have

(
C ·2
)
≤ −1. Hence C is the

only curve in its numerical equivalence class. By Lemma 2.20 there are only
finitely many elements in N1 (X) with degree 1 with respect to KX . This
gives us a contradiction.

Proof of Theorem 5.3. Assume ε (KX ; 1) ≤ 2. Theorem 5.2 and Lemma 5.4
tell us that equality holds. Let f : X → B be like in Lemma 5.4. Then all
fibres C satisfy

pa (C) = 1 +
1

2

((
C ·2
)

+ (KX · C)
)

= 2.

If conversely f : X → B is a genus 2 fibration over a smooth curve, then for
all x ∈ X we have (KX · Fx) = 2⇒ ε (KX ;x) ≤ 2 by the adjunction formula,
where Fx := f−1 (f (x)). Hence ε (KX ; 1) ≤ 2 and, as already noted, this
implies equality.

Remark 5.5. Bauer uses a slightly stronger version of Lemma 5.4.

6 Example: Calculation of Seshadri constants on
abelian surfaces with Picard number 1

Seshadri constants on abelian surfaces X are particularly well understood.
We will demonstrate this fact by presenting a result shown by Bauer in
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[Bau99] in the case k = C and ρ (X) = 1. This theorem is remarkable,
because it computes Seshadri constants in terms of the minimal solution of
some Pell equation. Of course, this is clear evidence for the supposition that
Seshadri constants are difficult to compute in general.
The assumption ρ (X) = 1 just says N1 (X) = ZL for some line bundle L
(one can show ρ (X) ≤ 4 ([BL04, Exc. 2.5]) and [BL04, Exc. 10.7] suggests
that the case ρ (X) = 1 is the ‘normal’ one). The surface X is projective,
hence kL is very ample for some integer k 6= 0. Without loss of generality we
have k > 0 and L is ample. Our goal is to compute its Seshadri constants.
Note that ε (L;x) = ε (L) for all x ∈ X by Remark 3.4. Also note that by
Riemann–Roch we have

χ (L) =
((L−KX) · L)

2
+ χ (OX) .

It is a general fact that on abelian surfaces the canonical bundle is trivial.
Hence

(
L·2
)

= 2d for some positive integer d. We show

Theorem 6.1. In the situation described in the paragraph above we have:

(a) If
√

2d is rational, then ε (L) =
√

2d.

(b) If
√

2d is irrational, then

ε (L) = 2d · k0

l0
,

where (k0, l0) is the primitive solution of the Pell equation l2− 2dk2 =
1.

Before we can start with the proof we need to state some facts:

1. The 2-torsion group consists of exactly 16 points e1 = 0, . . . , e16 on
X. In other words, those are the fixed points of the natural involution
ι : X → X (cf. [Mum74, Appl. 3 in Ch. II.6]). Let π : X̃ → X denote
the blow up at those points. The morphism ι lifts to a fixed-point-free
involution ι̃ : X̃ → X̃. This gives us a group action of Z/2Z on X̃. Its
quotient K is a smooth K3 surface, the so-called Kummer surface of
X. There is a canonical morphism ϕ : X̃ → K.

2. The line bundle 2L is numerically equivalent to a symmetric line bun-
dle, i.e., a line bundle Lsym with ι∗Lsym

∼= Lsym. This is the rea-
son: The map ι∗ : N1 (X) → N1 (X) is a group isomorphism, so
we either have ι∗L ≡ L or ι∗L ≡ −L. But by Lemma 2.8 the
line bundle ι∗L is nef, so we are left with the first case. Therefore
we have 2L ≡ L + ι∗L =: Lsym. Now let k be a positive integer.
Clearly kLsym is still symmetric. Hence ι∗ induces an involution on
|kLsym| = P

(
H0 (X, kLsym)

)
. Let

H0 (X, kLsym) = H0 (X, kLsym)+ ⊕H0 (X, kLsym)−
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be the corresponding eigenspace decomposition, i.e., the decomposi-
tion into so-called symmetric and anti-symmetric divisors. Then one
can show that the dimension of the first summand is 2 + 2dk2. Bauer
shows this in [Bau94] by the following line of argument: He shows
that ϕ∗π

∗Lsym admits a decomposition into line bundles M+,M−

with h0 (K,M±) = dimH0 (X,Lsym)± (this is elementary). Using the
properties of K3 surfaces and Riemann–Roch he establishes χ (M+) =
2+2dk2, and using more involved arguments he shows that the higher
cohomologies of M+ vanish.
Given that, we can prove the existence of a symmetric divisor D ∈
|kLsym| with multe1 (D) ≥

⌊
2
√

2dk2 + 1
⌋

by using similar arguments

as in Corollary 2.15. But instead of H0 (X, kLsym) we consider the
vector space H0 (X, kLsym)+ and instead of OX,x/mc

e1 we consider the
subspace of symmetric elements, i.e., elements that are invariant un-
der ι. One can show that the symmetric elements are exactly the
ones with odd degree. The dimension of the corresponding subspace
is dc/2e2 and we want this number to be smaller than 2+2dk2. Choose

c =
⌊
2
√

2dk2 + 1
⌋

and we get our divisor D.

3. Let C be a symmetric effective divisor on X. We say that a 2-torsion
point e is an even, odd 2-torsion point of C, if multeC is even, odd
respectively. If oC is the number of odd 2-torsion points of C, we
have oC ∈ {0, 4, 6, 10, 12, 16}. This is shown by analytical methods
in [BL04, Ch. 4.7]. The main idea for the proof is as follows: The
2-torsion subgroup X2 ⊂ X is a 4-dimensional F2-vector space;

q : X2 −→ F2

e 7−→ (multeC −mult0C) mod 2

is a quadratic form (this is the difficult part) and by basic arguments
with quadratic forms one gets #q−1 (1) ∈ {0, 4, 6, 10, 12, 16}.
If oC = 0, one can show that C is divisible by 2 in N1 (X).

Proof of Theorem 6.1. (a) This follows from Proposition 4.9.
(b) We will closely follow the proof of [Bau99, Thm. 6.1]. By one of the
facts stated above there is a symmetric divisor in |k0Ls| with

multe1 (D) ≥
⌊
2
√

2dk2 + 1
⌋

= 2l0.

Thus

ε (L) ≤ (L ·D)

multe1 (D)
≤ (L · 2k0L)

2l0
= 2d · k0

l0
.

Now suppose this upper bound is not sharp, i.e., we have a curve C 3 e1

with
(L · C)

multe1 (C)
< 2d · k0

l0
.
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As ι : X → X is an automorphism, we have multe1 (ι∗C) = multe1 (C) and
(L · ι∗C) = (L · C) due to L ≡ ι∗L. By Lemma 3.4 we thus have C = ι∗C,
so C is symmetric, and by the same argument C is a component of D, in
particular C ≡ k1L with k1 ≤ 2k0.
Write mi := multei (C) for i = 1, . . . , 16. Our next aim is to prove a Pell-
like equation involving those multiplicites and k1. Remember the blow up
π : X̃ → X and the morphism ϕ : X̃ → K. The proper transform of C
under the blow up is

C̃ = π∗C −
16∑
i=1

multei (C) · Ei,

where Ei = π−1 (ei), i = 1, . . . , 16 are the exceptional divisors. The curve

C and therefore also the curve C̃ are symmetric. Hence C̃ = ϕ−1ϕ
(
C̃
)

, so

C̄ := ϕ
(
C̃
)

is still an integral curve. Then h0
(
K, C̄

)
= 1, because otherwise

there are infinitely many curves in |C| with the same multiplicities at the
2-torsion points as C. But this contradicts Lemma 3.4.
This implies

(
C̄ ·2
)

= −2, because from the exact sequence

0 −→ −C̄ −→ OK −→ OC̄ −→ 0

we get h2
(
K, C̄

)
= h0

(
K,−C̄

)
= 0 and h1

(
K, C̄

)
= h1

(
K,−C̄

)
= 0 by

Serre duality and h1 (K,OK) = 0 and finally by Riemann–Roch

1 = χ
(
C̄
)

=
1

2

(
C̄ ·2
)

+ χ (OK) =
1

2

(
C̄ ·2
)

+ 2.

Now we arrive at the equation

k2
1 · 2d−

16∑
i=1

m2
i =

(
C ·2
)
−

16∑
i=1

m2
i

=
(
C̃ ·2
)

=
(
ϕ∗C̄ ·2

)
= degϕ ·

(
C̄ ·2
)

= −4.

Hence
k2

1 · 2d−m2
1 ≥ −4.

Note that this expression is negative, because otherwise we would have

(L · C)

m1
=

k1

m1
· 2d ≥

√
2d.

So N := k2
1 · 2d−m2

1 ∈ {−4,−3,−2,−1}. This gives us 4 cases:
Case 1. N = −4. We automatically get 2|m1 and mi = 0 for i > 1. Hence
oC = 0 and as we noted before, this implies 2|k1. Now (k1/2, l1/2) is a
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solution of l2 − 2dk2 = 1 and by k1 ≤ 2k0 and the minimality of (k0, l0) we
obtain

k1 = 2k0 and m1 = 2l0 ⇒
(L · C)

m1
= 2d · k0

l0
,

contradiction.
Case 2. N = −3. By elementary arguments we get that m1 is odd. Exactly
one of the numbers mi, i ≥ 2, is 1 and all the other numbers are 0 because
of
∑1

i=2 6m2
i = 1. So we have oC = 2 and this is impossible.

Case 3. N = −2. Then m1 is even and by similar arguments as before, we
get oC = 3 and a contradiction.
Case 4. N = −1. In other words: (k1,m1) solves the Pell equation l2 −
2dk2 = 1 and similarly as in the first case we get k1 = k0 and m1 = l0 and
the same contradiction as in the first case.

References
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