
COMPLEX AND REAL MULTIPLICATION FOR K3 SURFACES

D. HUYBRECHTS

These are notes of a talk at GAEL 2008. The aim was to provide an elementary introduction
to complex multiplication for K3 surfaces. The second cohomology H2(X, Q) of an algebraic
K3 surface contains the transcendental part T (X) as an irreducible sub-Hodge structure. By
definition, it is the orthogonal complement (with respect to the intersection pairing) of the
Picard group. The endomorphism ring of this weight two Hodge structure K = EndHdg(T (X))
is a number field which is either totally real (RM) or has complex multiplication (CM). For
CM fields one can show that every a ∈ K can be written as a linear combination of Hodge
isometries.

We are only using linear algebra and some elementary number theory. Hodge groups, impor-
tant for any deeper understanding, or references to Albert’s classification are avoided altogether.

The main reference is of course Zarhin’s paper [2]. The existence of the generating isometries
in the CM case is taken from Borcea’s article [1].

1. Hodge structures

Let H be a finite-dimensional vector space over Q. A Hodge structure of weight n on H

consists of a decomposition of its complexification HC := H ⊗Q C:

HC =
⊕

p+q=n

Hp,q,

where Hp,q ⊂ HC are complex linear subspaces such that complex conjugation identifies Hp,q

with Hq,p. Usually we will assume that p, q ≥ 0.

Example 1.1. i) A weight one Hodge structure on H is simply a decomposition HC = H1,0 ⊕
H0,1 with H1,0 = H0,1. This gives rise to a complex structure I on the real vector space HR by
I(v1,0 ⊕ v0,1) := iv1,0 ⊕ (−iv0,1). For v = v1,0 ⊕ v0,1 ∈ HR one easily checks that I(v) ∈ HR.

ii) A weight two Hodge structure on H is given by a decomposition into C-linear subspaces
HC = H2,0 ⊕H1,1 ⊕H0,2 such that complex conjugation identifies H2,0 with H0,2 and leaves
H1,1 invariant (as a subspace). In particular, H1,1 and H2,0⊕H0,2 are both defined over R, i.e.
H1,1 = (H1,1 ∩HR)C and similarly for H2,0 ⊕H0,2.

Geometrically Hodge structures occur as additional structures on the rational singular coho-
mology of smooth projective complex varieties or compact Kähler manifolds. To be more precise,
consider Hn(X, Q) and its complexification Hn(X, C). The quasi-isomorphism C ∼ // Ω•

X yields
a spectral sequence Ep,q

1 = Hq(X, Ωp
X) ⇒ Hp+q(X, C). One either uses Hodge theory with

respect to a Kähler metric on X or the completely algebraic arguments of Deligne and Illusie
to prove that this spectral sequence degenerates.
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Example 1.2. Weight one and two Hodge structures can geometrically be realized as follows.
i) If A = Cg/Γ is an abelian variety or a complex torus, then the weight one Hodge

structure H1(A, C) = H1,0(A) ⊕ H0,1(A) determines A completely. In fact, the projection
H1(A, C) // H0,1(A) allows one to view H1(A, Z) as a lattice in H0,1(A). The induced torus
H0,1(A)/H1(A, Z) is nothing but the dual abelian variety Â. Using the dual Hodge structure,
gives back A more directly, i.e. A ' H1,0(A)∗/H1(A, Z).

ii) For a K3 surface, i.e. a connected compact complex surface with trivial canonical bundle
KX = Ω2

X ' OX and H1(X,OX) = 0, the natural weight two Hodge structure on H2(X, Q)
has one-dimensional H2,0(X) spanned by any trivializing section of KX (a non-degenerate
holomorphic volume form σ ∈ H0(X, Ω2

X)). The space of rational classes H1,1(X) ∩H2(X, Q)
is naturally isomorphic to Pic(X)Q. To have a concrete example in mind, any abelian surface
A = C2/Γ gives rise to a K3 surface X by taking the minimal resolution of the quotient A/±,
where ± is the standard involution z � // − z. The quotient A/± has 16 ordinary double points
which give rise to 16 exceptional curves Ci, i = 1, . . . , 16. Thus H2(X, Q) = H2(A/±, Q) ⊕⊕

[Ci]Q = H2(A, Q)⊕
⊕

[Ci]Q, which of dimension 22. This K3 surface X is called the Kummer
surface associated to A.

Definition 1.3. A sub-Hodge structure of a weight n Hodge structure on H is given by a Q-
linear subspace H ′ ⊂ H such that the Hodge structure on H induces a Hodge structure on H ′,
i.e. H ′

C =
⊕

(H ′
C ∩ Hp,q). Any Hodge structure that does not contain any non-trivial proper

Hodge structure is called irreducible.

Any rational (1, 1)-class in a weight two Hodge structure spans a sub-Hodge structure. In
particular, the Hodge structure H2(X, Q) of a K3 surface is not irreducible if Pic(X) 6= 0.

2. The transcendental lattice

Since the natural weight two Hodge structure H2(X, Q) for an algebraic K3 surfaces is never
irreducible, it is usually replaced by the transcendental part T (X) ⊂ H2(X, Q) which turns out
to be irreducible. We will make use of the intersection pairing 〈 , 〉 on H2(X, Q). Its C-bilinear
extension will also be denoted by 〈 , 〉. It is easy to see that α ∈ H2(X, R) is of type (1, 1) if
and only if 〈α, σ〉 = 0. As before, σ denotes a non-trivial holomorphic two-form on X.

Definition 2.1. For an algebraic K3 surface X we define the transcendental part T (X) ⊂
H2(X, C) as the Q-linear subspace

T (X) := {α ∈ H2(X, Q) | 〈α, c1(L)〉 = 0 ∀ L ∈ Pic(X)}.

Remark 2.2. i) The Hodge index theorem shows that the intersection pairing 〈 , 〉 restricted
to Pic(X) is non-degenerate. Hence T (X) ∩ Pic(X) = 0. Thus,

H2(X, Q) = Pic(X)Q ⊕ T (X)

and 〈 , 〉 restricted to T (X) is also non-degenerate.
ii) Clearly, the transcendental part can be defined for any weight two Hodge structure en-

dowed with a non-degenerate symmetric bilinear form. In i) we would simply replace the Hodge
index theorem by the assumption that the symmetric form is non-degenerate on the subspace
of rational (1, 1)-classes.
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Proposition 2.3. If X is an algebraic K3 surface, then T (X) ⊂ H2(X, Q) is a sub-Hodge
structure. The weight two Hodge structure T (X) is irreducible.

Proof. It is easy to see that T (X)C is the set of all classes α ∈ H2(X, C) orthogonal to Pic(X)
with respect to the (C-linear extension of) the intersection product 〈 , 〉.

Next, for any v ∈ T (X)C consider its Hodge decomposition (in H2(X, C)) written as v =
v2,0 ⊕ v1,1 ⊕ v0,2. Since H2,0 ⊕H0,2 is orthogonal to Pic(X), v2,0, v0,2 ∈ T (X)C. But then also
v1,1 ∈ T (X)C. This proves that T (X) ⊂ H2(X, Q) really is â sub-Hodge structure.

Next consider a sub-Hodge structure T ′ ⊂ T (X). The intersection of T ′ with H1,1 is trivial,
for Pic(X) ∩ T (X) = 0. Thus T ′

C must contain T 2,0. If T ′ 6= T (X), then the orthogonal
complement of T ′ cannot be trivial and, since it is orthogonal to T 2,0, must be contained in
T (X)1,1 ∩ T (X). Contradiction. �

Remark 2.4. The transcendental part T (X) can equivalently be defined as the smallest sub-
Hodge structure T ⊂ H2(X, Q) such that H2,0(X) ⊂ TC. This definition works well also
for non-algebraic K3 surfaces and in fact for any weight two Hodge structure. Moreover, the
irreducibility is (almost) immediate, where we have to assume that H2,0 is one-dimensional for
the case of an arbitrary weight two Hodge structure.

Example 2.5. The above definition makes also sense for any abelian surface. For a Kummer
surface X // A/± the transcendental parts T (X) and T (A) are isomorphic as weight two Hodge
structures. If the quadratic form is included, this becomes (T (X), 〈 , 〉X) ' (T (A), 2〈 , 〉A).

3. End(T )

Let us consider an arbitrary irreducible weight two Hodge structure T with dimC T 2,0 = 1. We
will be interested in its algebra of endomorphisms. More precisely, let K := K(T ) := EndHdg(T )
be the Q-algebra of all Q-linear maps a : T // T such that its C-linear extension aC preserves
the T p,q. So by definition K is a finite-dimensional Q-algebra, which, as we will see shortly, is
in fact commutative.

The geometric motivation for studying K is explained by the following considerations.
Let us come back to the general situation of an irreducible wieght two Hodge structure T

with one dimensional T 2,0 and consider the Q-algebra homomorphism

ε : K // C,

which is defined by a|T 2,0 = ε(a) · id.

Proposition 3.1. The map ε is injective. Hence, K is commutative and, more precisely, a
number field.

Proof. Suppose a ∈ K such that ε(a) = 0. Then let T ′ be the kernel of a. Clearly, T 2,0 ⊂ T ′
C and

hence the (1, 1)-part of any class v ∈ T ′
C is again contained in T ′

C. In other words, T ′ ⊂ T (X)
is a sub-Hodge structure. Since T (X) is irreducible, either T ′ = 0, which contradicts ε(a) = 0,
or T ′ = T (X), which yields a = 0. �

What kind of algebraic number fields does one encounter as the endomorphism rings of
irreducible weight two Hodge structures? As we shall explain, only two types do occur.
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Let us consider the embeddings K � � // C. We denote the real embeddings by ρ1, . . . , ρr :
K � � // R ⊂ C and the complex ones by σ1, σ̄1, . . . , σs, σ̄s : K � � // C. In particular, [K : Q] = r+2s.

Recall that the trace TrK/Q of any a ∈ K can be written as TrK/Q(a) =
∑r

1 ρi(a)+
∑s

1 σj(a)+∑s
j σ̄j(a) =

∑r
1 ρi(a) + 2

∑s
1 Re(σj(a)). The Hodge structure T is not only a vector space over

Q, but also over K. If dimK(T ) = n, then TrT/Q(a) = n · TrK/Q(a) for all a ∈ K.
A number field K is called totally real if s = 0, i.e. all embeddings of K � � // C are real. A

number field K is a CM field if K contains a subfield K0 ⊂ K such that K0 is totally real
and K/K0 is a purely imaginary quadratic extension, i.e. there exists an element α such that
ρi(α) ∈ R<0 for all embeddings ρ : K0

� � // R and K = K0(
√
−α). If K is a CM field, one says

that T has complex multiplication. Similarly, T has real multiplication, if K is totally real.
In a first step, we will identify a totally real field K0 ⊂ K and then show that either K0 = K

or that K/K0 is purely imaginary quadratic. In order to define K0, we will have to assume
that T is endowed with a natural quadratic form. In the geometric situation this is just the
intersection pairing. So, let us assume that 〈 , 〉 is non-degenerate symmetric bilinear form on
T of signature (2,m) such that its R-linear extension is positive definite on (T 2,0 ⊕ T 0,2) ∩ TR
and such that the decomposition TR = (T 1,1 ∩ TR) ⊕ ((T 2,0 ⊕ T 0,2) ∩ TR) is orthogonal with
respect to 〈 , 〉. In particular, the R-linear extension of 〈 , 〉 is negative definite on (T 1,1 ∩ TR).

Definition 3.2. If 〈 , 〉 as above exists on T , then the involution K // K, a � // a′ is defined
by the condition

〈av, w〉 = 〈v, a′w〉
for all v, w ∈ T . In other words, a′ is the formal adjoint of a with respect to 〈 , 〉.

The definition tacitly claims that with a ∈ K also a′ ∈ K. This is granted by the following
easy lemma.

Lemma 3.3. If a ∈ K, then a′ ∈ K, i.e. with a also a′ preserves the Hodge structure.

Proof. Suppose v ∈ T 1,1. Then 〈v, a(w)〉 = 0 for all w ∈ T 2,0 ⊕ T 0,2, for a(w) is again of type
(2, 0) + (0, 2). But this shows that a′(v) is orthogonal to T 2,0 ⊕ T 0,2, i.e. also a′(v) is of type
(1, 1). The proof that a′ preserves T 2,0 and T 0,2 is similar. �

Remark 3.4. Clearly, (ab)′ = a′b′, i.e. a � // a′ is an automorphism of K. Also observe that
for a ∈ K and all v, w ∈ T one has 〈av, aw〉 = 〈a′av, w〉. Hence aa′ = 1 if and only if a is an
isometry.

Definition 3.5. Denote by K0 ⊂ K the subfield of all a ∈ K with a′ = a.

Thus, since a � // a′ is an automorphism of K of order two, its fixed field K0 = K ′ satisfies
[K : K0] ≤ 2.

To study K0, it is more convenient to work with a positive definite symmetric bilinear form,
which however is only defined over R. Let us define ( , ) on TR by setting

( , ) = 〈 , 〉 on (T 2,0 ⊕ T 0,2) ∩ TR and ( , ) = −〈 , 〉 on T 1,1 ∩ TR.

Remark 3.6. As it turns out, for any a ∈ K, the formal adjoint a′ with respect to 〈 , 〉 is also
the formal adjoint of the R-linear extension of a with respect to ( , ). Indeed,
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For any 0 6= a ∈ K one considers ξa := a′a = aa′ ∈ K. Then ξa satisfies:
i) (ξav, w) = (v, ξaw) for all v, w ∈ TR, i.e. ξa is self-adjoint.
ii) (ξav, v) = (av, av) > 0 for all 0 6= v ∈ TR.

In particular, all eigenvalues of ξa are positive and, therefore, TrT/Q(ξa) > 0 and also
TrK/Q(ξa) > 0. This will be crucial on the proof of the next proposition.

Proposition 3.7. Any number field L satisfying TrL/Q(a2) > 0 for all 0 6= a ∈ L is totally real.

Proof. As before, we denote by ρi, i = 1, . . . , r the real embeddings of L and by σ1, σ̄1, . . . , σs, σ̄s

the complex ones. We have to show that s = 0. This will be derived from a contradiction as
follows.

First observe L ⊗Q R ' Rr ⊕ Cs. Clearly, there exists a ∈ L such that ρi(a) ∼ 0 for i,
σj(a) ∼ 0 for j < s, and σs(a) ∼ i.

By assumption 0 < TrL/Q(a2) =
∑

i ρi(a2) + 2
∑

j<s Re(σj(a2)) + 2Re(σs(a2)). On the other
hand, by construction ρi(a2) = ρi(a)2 and σj(a2) = σj(a)2 for j < s are all close to zero,
whereas σs(a2) ∼ −1. This yields the contradiction 0 < TrL/Q(a2) < 0. �

Corollary 3.8. For any irreducible weight two Hodge structure T with one-dimensional T 2,0 and
endowed with a symmetric bilinear form of signature (2,m) positive definite on (T 2,0⊕T 0,2)∩TR,
the fixed field K0 of the adjoint a � // a′ is totally real. �

4. The CM case

Proposition 4.1. If K0 6= K, then K/K0 is a purely imaginary quadratic extension. In
particular, K is a CM field.

Proof. As observed earlier, if K0 6= K, then [K : K0] = 2 and, therefore, we can write K =
K0(

√
α) for some α ∈ K0.

Fix one real embedding K0 ⊂ R and suppose α ∈ R>0. The natural inclusion K0(
√

α) ⊂ R
yields one real embedding ρ1 : K // R and a second one is given by ρ2 which is the identity on
K0 and which sends

√
α to −

√
α, i.e. ρ2 = ρ1 ◦ ( )′.

Let us denote the remaining embeddings of K by ρ3, . . . , ρd (which may be real or complex).
Similar to the argument used in the proof of Proposition 3.7 we choose a ∈ K such that

ρ1(a) ∼ −1, ρ(a) ∼ 1 and ρi(a) ∼ 0 for i ≥ 3. Then on the one hand, 0 < TrK/Q(ξa) =
TrK/Q(aa′) and on the other hand TrK/Q(aa′) = ρ1(aa′) + ρ2(aa′) +

∑
i≥3 ρi(aa′) ∼ ρ1(aa′) +

ρ2(aa′) = ρ1(a)ρ1(a′) + ρ2(a)ρ2(a′) = 2ρ1(a)ρ2(a) ∼ −2. Contradiction. �

Remark 4.2. If dimQ T ≡ 1(2), then K0 = K, i.e. K is RM. Indeed, [K : Q] divides dimQ T

and [K : Q] is even for a CM field.
If dimK T = 1, i.e. [K : Q] = dimQ T , then K is a CM field. A proof not using the

Hodge group goes as follows: T ⊗Q C =
⊕

Tρ, where the sum runs over all ρ : K // C and
Tρ is the C-subspace on which the elements α ∈ K act by multiplication with ρ(α). Clearly
dimC(T ⊗Q C) = dimQ T = dimQ K = [K : Q] and hence dimC Tρ = 1. Suppose K were
totally real. Then K = Q(α) with ε(α) ∈ R. Hence σ and σ̄ are both contained in Tε, which
contradicts dimC Tε = 1.1

1Thanks to U. Schlickewei for his help with the argument.
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Remark 4.3. For the record, in the case of complex multiplication a � // a′ is given by complex
conjugation (for all complex embeddings).

As mentioned above, a ∈ K is an isometry if and only if ξa = aa′ = 1. For a ∈ K0, this is
only possible if a = ±1. Thus, in the case of real multiplication, there exist very few Hodge
isometries of T . For the CM case, the situation is completely different.

Proposition 4.4. Let T be a weight two Hodge structure with one-dimensional T 2,0 and a
symmetric bilinear form 〈 , 〉 of signature (2,m) which is positive definite on (T 2,0⊕T 0,2)∩TR.
If T has complex multiplication, then K is spanned as a Q-vector space by Hodge isometries.

We will in fact show the stronger statement that K = Q(α) for a certain Hodge isometry α.

Proof. Let us fix the following notation. As before, K0 is the fixed field of the involution a � // a′.
Then write K = K0(

√
−D) with D ∈ K0 positive under each embedding. Also, fix a primitive

element β ∈ K0, i.e. K0 = Q(β).
We start out with some elementary number theory and show that for any γ ∈ Q one has

Q(βD + γD) = K0. To see this, denote Mγ := Q(βD + γD), which is a subfield Q ⊂ Mγ ⊂ K0.
Whenever Mγ′ ⊂ Mγ for two rational numbers γ′ 6= γ, then Mγ = K0. Indeed, the inclusion
implies (βD + γD) − (βD + γ′D) ∈ Mγ and hence D ∈ Mγ . The latter yields β ∈ Mγ , i.e.
M = K0. Since K0 only has finitely many subfields, one finds that for all but finitely many
γ ∈ Q one has Mγ/2 = K0.

Similarly, one defines for γ ∈ Q the subfield Lγ := Q(D(β + γ)2) ⊂ K0. For an infinite
set S ⊂ Q the field Lγ will be the same for all γ ∈ S. Among the infinite number of sums
γ + γ′ with γ, γ′ ∈ S pick one for which M(γ+γ′)/2 = K0. Then use D(2β + γ + γ′)(γ − γ′) =
D(β + γ)2−D(β + γ′)2 to deduce that K0 = Q(D(2β + γ + γ′)) = Q(D(2β + γ + γ′)(γ− γ′)) ⊂
Q(D(β + γ)2, D(β + γ′)2) = Q(D(β + γ)2) ⊂ K0. Hence, Q(D(β + γ)2) = K0.

From the above discussion we will only need that there exists a primitive element of the form
D/ξ2, i.e. K0 = Q(D/ξ2), with ξ ∈ K0.

Then let α := (D − ξ2)/(D + ξ2) + 2ξ
√
−D/(D + ξ2) ∈ K. Easy calculations reveal that

αα′ = αᾱ = 1, i.e. α is a Hodge isometry, and α + ᾱ = 2(1− 2(D/ξ2 + 1)−1). The latter shows
D/ξ2 ∈ Q(α). Since also

√
−D ∈ Q(α), this suffices to conclude K = Q(α). �
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