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Modulraum kubischer Flächen

Diese Bachelorarbeit soll einen vollständigen und detaillierten Beweis des folgenden Sat-
zes erarbeiten:

Der Modulraum der kubischen Flächen ist isomorph zum gewichteten projektiven Raum
P (1, 2, 3, 4, 5).

Zu Anfang wollen wir uns einige elementare Grundlagen der Geometrischen Invarian-
tentheorie aneignen, auf denen die Beweise aufbauen. Nach der Behandlung weiterer
Voraussetzungen, namentlich der Sylvesterform einer kubischen Fläche und des Begri�es
des gewichteten projektiven Raumes, widmen wir uns dem längsten und mühsamsten
Teil des Beweises, der Berechnung der Invarianten der kubischen Flächen und ihrer Voll-
ständigkeit. Die Arbeit wird abgeschlossen durch einige Bemerkungen über die aus dem
Satz resultierende Korrespondenz von kubischen Flächen und dem gewichteten projekti-
ven Raum. Die theoretischen Grundlagen werden nach Bedarf entwickelt und Beispiele
immer in Hinblick auf ihre Anwendung im Spezialfall der kubischen Flächen gegeben.
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1 Introduction

This Bachelor's thesis should give a complete and detailed proof of the following theorem
known from classical algebraic geometry:

Theorem 1.1. The moduli space of cubic surfaces M is isomorphic to the weighted
projective space P(1, 2, 3, 4, 5).

To begin with, we shall recapitulate some basic facts from Geometric Invariant Theory
which are built upon in the proofs. Having provided some additional prerequisites,
namely the Sylvester form of a cubic surface and the notion of a weighted projective space,
we shall proceed to the longest and most tedious part of the proof, the computation of
the invariants of the cubic surfaces. The article will conclude with some remarks on the
correspondence of the space of cubic surfaces and the weighted projective space resulting
from the aforementioned theorem. The theory will be developed as needed and examples
will always be given with regard to their application in the special case of cubic surfaces.
Let me start by giving an overview over the notions used in the proof.
We investigate the space of cubic surfaces on P3 and the natural action of the special

linear group SL (4) on it which identi�es projectively equivalent orbits. The quotient
map from the space of cubic surfaces onto the set of orbits creates di�culties as we
would like the map to be continuous and the quotient to be Hausdor� but the orbits
under SL (4) are in general not closed, so a good quotient does not always exist. One
therefore considers two types of quotients of invariant subvarieties of the space of cubic
surfaces, and we shall see shortly that there are su�ciently large subsets, the semi-stable
points and the stable points, on which these quotients exist.
The theorem to be proven in this thesis says now that one of these quotients is isomor-

phic to a generalization of the projective space, called weighted projective space, where
C× acts with di�erent weights.
The main part of the proof will involve �nding all invariant polynomials on the cubic

surfaces, i.e. the polynomials in the coe�cients of the cubic polynomials de�ning the
surfaces which are constant on orbits. This has already been done in the early 20th
century by the Irish theologian and mathematician G. Salmon. However, his proofs are
quite geometrical and not fully exact. The �rst such complete proof has been given by
the Russian mathematician N. Beklemishev. His proof on the other hand is very concise,
and it will therefore be the aim of this thesis to treat this matter with more detail, which
allows us to correct some minor mistakes.
The author thanks his adviser D. Huybrechts for the statement of the problem and his

continued support.

2 Basic results from Geometric Invariant Theory

In order to comprehend the concepts used in the proofs, we need to become acquainted
with dual versions of some notions of representation theory which are suited better for
the use in algebraic geometry, taken from [Muk03, Ch. 3.3(b), Ch. 4.1]. For the rest of
this section, let k denote an algebraically closed �eld of characteristic 0.
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We start by recalling

De�nition 2.1. An a�ne algebraic group is an a�ne scheme G = SpecA, where A is
a �nitely generated k-algebra, with k-algebra homomorphisms µ : A → A ⊗k A (comul-
tiplication), e : A→ k (coidentity) and ι : A→ A (coinverse) satisfying

(Ass) The following diagram commutes.

A A⊗k A

A⊗k A A⊗k A⊗k A

µ

µ

µ⊗ idA

idA ⊗ µ

(Id) The composition A
µ−→ A⊗k A

e⊗idA−−−−→ k ⊗k A→ A is the identity map on A.

(Inv) The composition A
µ−→ A⊗k A

ι⊗idA−−−−→ A⊗k A
m−→ A is the equal to j ◦ e, where m

is the multiplication in the k-algebra A and j : k → A is the canonical inclusion.

One can see easily that these axioms just correspond to the usual associativity, exis-
tence of an identity element and of an inverse postulated for an ordinary group.
As examples, consider

De�nition 2.2. The algebraic group Gm := Spec
(
k
[
X,X−1

])
together with the co-

multiplication µ : k
[
X,X−1

]
→ k

[
X,X−1

]
⊗ k

[
X,X−1

]
, X 7→ X ⊗X, the coidentity

e : k
[
X,X−1

]
→ k, X 7→ 1 and the coinversion ι : k

[
X,X−1

]
→ k

[
X,X−1

]
, X 7→ X−1

is called the one-dimensional algebraic torus.

De�nition 2.3. The algebraic group SL (n, k) := Spec ((k [Xij ]) / (det (X)− 1)) , 1 ≤
i, j ≤ n together with the comultiplication

µ : k [Xij ] / (det (X)− 1)→ (k [Xij ] / (det (X)− 1))⊗k (k [Xij ] / (det (X)− 1))

Xij 7→
n∑
l=1

Xil ⊗Xlj ,

the coidentity e : k [Xij ] / (det (X)− 1)→ k, Xij 7→ δij and the coinversion

ι : k [Xij ] / (det (X)− 1)→ k [Xij ] / (det (X)− 1) , Xij 7→ (adj (X))ij ,

where det (X) and adj (X) denote the determinant and the adjugate matrix of the matrix
X = (Xij)1≤i,j≤n respectively, is called the special linear group.

Again, one checks easily that Gm and SL (n, k) really are algebraic groups and that
their underlying topological spaces are just the multiplicative group k× resp. the special
linear group known from linear algebra.

De�nition 2.4. An action of an a�ne algebraic group G = SpecA as in De�nition 2.1
on an a�ne variety X = SpecR is a morphism a : G×X → X determined by a k-algebra
homomorphism α : R→ R⊗k A (coaction) satisfying
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(Ass) The following diagram commutes.

R R⊗k A

R⊗k A R⊗k A⊗k A

α

α

α⊗ idA

idR ⊗ µ

(Id) The composition R
α−→ R⊗k A

idR⊗e−−−−→ R⊗k k ∼= R is the identity map on R.

Once more, this corresponds to the usual axioms for associativity and the identity
element of a group action. We use the notation g.x := a (g, x) for g ∈ G and x ∈ X. The
group action is generalized to

De�nition 2.5. An (algebraic) representation of an a�ne algebraic group G = SpecA
as in De�nition 2.1 is a pair (V, ρ), where V is a k-vector space and ρ : V → V ⊗k A a
k-vector space homomorphism satisfying

(Ass) The following diagram commutes.

V V ⊗k A

V ⊗k A V ⊗k A⊗k A

ρ

ρ

ρ⊗ idA

idV ⊗ µ

(Id) The composition V
ρ−→ V ⊗k A

idV ⊗e−−−−→ V ⊗k k ∼= V is the identity map on R.

In particular, every group action of an algebraic group G = SpecA on an a�ne scheme
X = SpecR gives rise to the representation (R,α) since every k-algebra is naturally a
k-vector space. In [Muk03, Rem. 4.3] it is checked that this de�nition of a representation
is equivalent to the usual one known from representation theory. Beware that under this
equivalence a representation in the above sense corresponds to a linear action of G on
the dual space V ∗.
Let us return to invariant theory.

De�nition 2.6. Let (W,ρ) be a representation of an algebraic group G = SpecA. Then
a vector w ∈ W is called G-invariant if ρ (w) = w ⊗ 1. The subspace of G-invariant
vectors is denoted by WG.

If the representation actually comes from a group action of G on some X = SpecR,
the vector space R is in addition a ring and RG a subring of R.
In the case R = k [X1, . . . , Xn], there already is another notion of invariants from

Classical Invariant Theory. Speci�cally, an f ∈ R is an invariant in the classical sense,
if f (a (g, p)) = f (p) for all closed points (g, p) in the a�ne scheme G × X. Here a
denotes the group action a : G×X → X corresponding to the coaction homomorphism
α : R→ R⊗k A. One sees in the following way that both notions coincide.
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Lemma 2.7. Let G, X and a be as above. Then for all f ∈ R = O (X) the equivalence

f ∈ RG ⇔ f (a (g, p)) = f (p) for all closed points (g, p) ∈ G×X

holds.

Proof. Let f =
∑

α∈Nn fαX
α ∈ R = O (X) which can also be seen as a morphism

X → A1
k given by ϕ : k [T ]→ R, T 7→ f .

By de�nition, f is G-invariant if and only if the diagram

A⊗k k [X1, . . . , Xn] k [X1, . . . , Xn]

k [X1, . . . , Xn] k[T ]

α

1⊗ id

ϕ

ϕ

is commutative. But since the A 7→ Spec (A) gives an equivalence between the cate-
gory of commutative rings and the category of a�ne schemes, the commutativity of this
diagram is in turn equivalent to the commutativity of

G×X X

X A1
k

a

p2

f

f

,

where p2 is the second projection. This just means f (a (g, p)) = f (p) for all closed
points (g, p) ∈ G×X, which is the classical notion of an invariant.

Thus, from now on we shall use both de�nitions of invariants under a group action
interchangeably.

De�nition 2.8. An algebraic group G = SpecA is called linearly reductive, if for every
�nite-dimensional representation W of G and every non-trivial G-invariant linear form
l : W → k, there is a w ∈WG with l (w) 6= 0.

There are many di�erent, equivalent de�nitions for linearly reductive groups, e.g.
[Muk03, Def. 4.36, Prop. 4.37, Lem. 4.74].

Proposition 2.9. Every �nite group as well as the groups Gm and SL (n) , n ∈ N∗ are
linearly reductive.

Proof. [Muk03, Prop. 4.38, Prop. 4.41 and Thm. 4.43].

In the literature one may also come across geometrically reductive groups, but, at least
in characteristic zero, every linearly reductive group is already geometrically reductive,
so all theorems about the latter carry over.
We can now come to the de�nition of quotients under group actions.
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De�nition 2.10. Let G be an algebraic group acting on a variety X.

(i) A categorical quotient is aG-invariant morphism π : X → Y =: X�G which satis�es
the universal property forG-invariant morphisms, i.e. for anyG-invariant morphism
g : X → Z there is a unique morphism ḡ : Y → Z such that g = ḡ ◦ π.

(ii) A geometric quotient is a categorical quotient such that Ψ: G×X → X×X, (g, x) 7→
(g.x, x) satis�es im Ψ = X ×Y X.

One can check that categorical and geometric quotient are unique up to isomorphism.

Theorem 2.11. Let G be a linearly reductive group which acts on an a�ne variety
X = Spec (R). Then the categorical quotient of X with respect to the action of G exists
and is of the form X�G = Spec

(
RG
)
.

Proof. [Dol03, Thm. 6.1].

Remark 2.12. This result actually allows us to compute a wide range of quotients un-
der the action of a linearly reductive group since the universal property de�ning the
categorical quotient is local. Hence in order to check that a map p : X → Y is a categor-
ical quotient, it su�ces to do so for all restrictions pi : p−1 (Ui) → Ui where (Ui)i is an
open covering of Y , ideally such that the p−1 (Ui) are a�ne, cf. also [MFK94, Ch. 1, �2,
Rem. (5)].

Corollary 2.13. Let G be a linearly reductive group which acts on a normal a�ne variety
X = SpecR. Then X�G is also a normal a�ne variety.

Proof. By Theorem 2.11, we know that X�G is an a�ne variety of the form Spec
(
RG
)
.

Recall that an a�ne variety is normal if and only if its coordinate ring is normal, i.e. an
integral domain which is integrally closed in its quotient �eld. Hence, we have to show
that RG is integrally closed in Quot

(
RG
)
. First note that Quot

(
RG
)
⊆ (Quot (R))G.

Let now q ∈ Quot
(
RG
)
and n ∈ N∗, r0, . . . , rn−1 ∈ RG such that qn + rn−1q

n−1 + . . .+

r1q+ r0 = 0. As R is normal by assumption, we have q ∈ R∩ (Quot (R))G = RG. Thus,
RG is normal.

In particular, the theorem shows that the coordinate ring of the quotient X�G of an
a�ne variety X = SpecR under the action of a linearly reductive group G is O (X�G) =
RG = (O (X))G. If G is �nite (cf. Proposition 2.9), one has even

Lemma 2.14. Let G be a �nite algebraic group which acts on an a�ne variety X =
SpecR. Then the function �eld of X�G is given by K (X�G) = (K (X))G.

Proof. Since

K (X�G) = Quot (O (X�G)) = Quot
(
RG
)

and

(K (X))G = (Quot (O (X)))G = (Quot (R))G ,

we have to show that Quot
(
RG
)

= (Quot (R))G. Clearly, we have Quot
(
RG
)
⊆

(Quot (R))G. Let now f1
f2
∈ (Quot (R))G. Since G is �nite, we get the equality f1

f2
=
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f1·
∏

g∈Gr{e} g.f2∏
g∈G g.f2

, where e denotes the identity element of G. But now
∏
g∈G g.f2 ∈ RG

and f1
f2
∈ (Quot (R))G by assumption, so

f1 ·
∏

g∈Gr{e}

g.f2 =
f1
f2
·
∏
g∈G

g.f2 ∈ (Quot (R))G ∩R = RG

is G-invariant as well, hence f1
f2
∈ Quot

(
RG
)
.

It is not yet clear whether there is a similar concrete interpretation of general categor-
ical and geometric quotients. This turns out to be the case for all quotients which satisfy
some additional conditions.

De�nition 2.15. Let G be an algebraic group acting on a variety X. A G-invariant
morphism p : X → Y to another variety Y is called a good categorical quotient if it
satis�es

(i) For all U ⊆ Y open, the corresponding ring homomorphism O (U)→ O
(
p−1 (U)

)
is isomorphic onto the subring O

(
p−1 (U)

)G
.

(ii) For all W ⊆ X closed and G-invariant, the image p (W ) under p is a closed subset
of Y .

(iii) For allW1,W2 ⊆ X closed and G-invariant,W1∩W2 = ∅ implies p (W1)∩p (W2) =
∅.

It is called a good geometric quotient if Ψ: G×X → X ×X, (g, x) 7→ (g.x, x) ful�ls the
additional requirement

(iv) im Ψ = X ×Y X

as above.

Proposition 2.16. A good categorical quotient is a categorical quotient.

Proof. [Dol03, Prop. 6.2].

Corollary 2.17. A good geometric quotient is a geometric quotient.

All categorical quotients treated in this thesis will actually be good categorical quo-
tients.

Lemma 2.18. Let G be an algebraic group acting on a variety X and p : X → Y be a
good categorical quotient. Then p is surjective.

Proof. By property (i), the corresponding ring homomorphism O (U) → O
(
p−1 (U)

)
is

injective for every a�ne open U ⊆ Y , so p is dominant. At the same time, p (X) is closed
in Y by property (ii), hence p (X) = p (X) = Y .
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Corollary 2.19. Let G be an algebraic group acting on a variety X and p : X → Y be a
good categorical quotient. Then for all V ⊆ X open and G-invariant with p−1 (p (V )) =
V , the image p (V ) under p is an open subset of Y .

Proof. By assumption, the set X rV is G-invariant and closed. Hence property (ii) and
Lemma 2.18 yield that p (V ) = p (X) r p (X r V ) = Y r p (X r V ) is open.

Corollary 2.20. If an algebraic group G acts on an irreducible variety X and p : X → Y
is a good categorical quotient, then Y is also an irreducible variety.

Proof. By the preceding lemma, one has p (X) = Y , and images of irreducible spaces
under continuous maps are again irreducible.

Lemma 2.21. For a good categorical quotient p : X → X�G, we have:

(i) For two x1, x2 ∈ X the equality p(x1) = p(x2) holds if and only if Gx1 ∩Gx2 6= ∅.

(ii) Each �bre p−1 (y) for some y ∈ X�G contains a unique closed orbit.

Proof. [Dol03, Cor. 6.1].

This lemma allows us to think of the categorical quotient X�G as the set of closed
orbits of X or, in other words, the quotient of X by the equivalence relation x1 ∼ x2 ⇔
Gx1 ∩Gx2 6= ∅.

3 Stable and semistable points in the space of cubic surfaces

In what follows, we denote by V := C[X0, . . . , X3]3 the space of homogeneous cubic
polynomials of degree 3 on the projective space P3 and by |O(3)| := P(V ) the space of
the corresponding cubic surfaces, i.e. the space of the zero sets of all f ∈ V . Note that
f1, f2 ∈ V have the same zero set if and only if f1 = λf2 for some λ ∈ C×. As there
are

(
4+3−1

3

)
= 20 di�erent monomials of degree 3 in X0, . . . , X3, we have V ∼= A20 and

|O(3)| ∼= P19. We further �x k = C and G = SL(4), which acts linearly on V by its
natural action on P3 via (g.f)(p) = f(g−1p) for all p ∈ P3.
We shall now start by de�ning the semi-stable and stable points of V and then show

that they have the property mentioned in the introduction, namely the existence of a
categorical resp. geometric quotient on them.

De�nition 3.1. An element f ∈ V is said to be

(i) semi-stable if 0 /∈ G.f and

(ii) stable if G.f ⊆ V is closed and the stabilizer Gf is �nite.

The set of semi-stable resp. stable points is denoted by V ss resp. V s.

Since G acts linearly on V , the stabilizer of 0 is the whole (in�nite) group G and
consequently one has V s ⊆ V ss.
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Remark 3.2. Both subsets are G-invariant open subvarieties.

Proposition 3.3. There exists a categorical quotient of V ss and a geometric quotient of
V s.

Proof. [MFK94, Thm. 1.10].

Since all g ∈ G, f ∈ V and λ ∈ C× ful�l g. (λf) = λ (g.f), the action of G on V
gives rise to an action of G on |O(3)| = P(V ). The de�nition of (semi-)stable points is
also independent of the multiplication with a non-zero scalar, hence we can say that a
cubic surface given by f = 0 for some f ∈ V is (semi-)stable if and only if f is so, which
coincides with the general notion of (semi-)stability. The semi-stable resp. stable points
of |O(3)| are again denoted by |O(3)|ss resp. |O(3)|s.
In order to determine the semi-stable and stable cubic surfaces, we need to classify

some singularities that can occur in a cubic surface.

De�nition 3.4. Let X, Y be varieties over C. Then two points p ∈ X and q ∈ Y are
analytically isomorphic if there is a C-algebra isomorphism Ôp ∼= Ôq.

De�nition 3.5. A cubic surface V (f) ⊆ P3 has

(i) an ordinary double point at p ∈ V (f) if and only if p is analytically isomorphic to
the origin in the a�ne variety V

(
x2 + y2 + z2

)
⊂ A3.

(ii) an ordinary cusp at p ∈ V (f) if and only if p is analytically isomorphic to the
origin in the a�ne variety V

(
x2 + y2 + z3

)
⊂ A3.

In the more general theory one says that f has a singularity of type A1 resp. type A2 in
p.

The second type of singularities does not occur in the classi�cation of the surfaces, but
will play an important role in its proof.

Theorem 3.6. (i) The stable cubic surfaces are exactly the ones which are smooth or
have only ordinary double points.

(ii) There is only one point contained in the categorical but not in the geometric quo-
tient. It corresponds to the closed orbit of X3

0 −X1X2X3 (cf. Lemma 2.21).

Some form of this theorem can already be found in [MFK94]. The proof given here
follows [Bea09] and relies on the Hilbert-Mumford Numerical Criterion which is being
introduced now:

De�nition 3.7. A one-parameter subgroup of G is a non-trivial algebraic group homo-
morphism λ : Gm → G.

One important property of these morphisms which will be needed later is stated by

Lemma 3.8. Let λ : Gm → G be a one-parameter subgroup of G. Then the matrices of
λ(G) are simultaneously diagonalizable.
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Proof. As λ : Gm → G is an algebraic group homomorphism, it is a rational representa-
tion of Gm. The ring of regular functions on Gm is the ring of Laurent polynomials

A := C[z, z−1] =
⊕
n∈Z

Cχn,

where χn(z) = zn are characters of Gm for all n ∈ Z. Therefore, the character group
of Gm spans A as a C-module and Gm is by de�nition a diagonalizable group. It is a
standard fact from representation theory of linear algebraic groups that the image of the
rational representation λ is then conjugate to a subgroup of the diagonal matrices, see
e.g. [Bor91, Prop. 8.4].

Since G acts on V , a one-parameter subgroup λ : Gm → G gives rise to an action of
Gm on V which in turn induces a morphism Gm → V, t 7→ λ (t) .f for all f ∈ V . If that
morphism extends to a morphism A1 → X, the image of the origin is called the limit of
λ at f as t→ 0 and denoted by limt→0 λ(t).f .
The criterion can now be stated as follows:

Proposition 3.9. An element f ∈ V is

(i) not semi-stable if and only if there exists a one-parameter subgroup λ : Gm → G
such that limt→0 λ(t).f = 0 and

(ii) not stable if and only if f = 0 or there exists a one-parameter subgroup λ : Gm → G
such that limt→0 λ(t).f /∈ G.f (in particular, the limit exists).

Proof. [MFK94, Thm. 2.1].

The Zariski tangent space is insu�cient to describe completely the structure of a
surface around a singularity. That is better re�ected by a more general construction,
called the tangent cone, here again only de�ned for the special case of a hypersurface.

De�nition 3.10. Let S ⊆ An be a hypersurface given by a polynomial f ∈ k[x1, . . . , xn].
Let p ∈ An and

f =
∑
α∈Nn

aα(x− p)α with aα = 0 for almost all α ∈ Nn

be an expansion of f around p, where we use the usual multi-index notation. Set

m := min{k ∈ N : aα 6= 0 for some α ∈ Nn, |α| = k}.

Then f in
p =

∑
|α|=m aα(x− p)α is called the initial form of f in p and TCp(S) = V (f in

p )
the tangent cone of S in p.

Remark 3.11. Of course, there is a more algebraic de�nition for the tangent cone, but
the concrete one given will be completely su�cient for our purposes. In particular, it
gives a useful necessary condition for a singularity to be an ordinary double point or
cusp: Keeping in mind De�nition 3.5, if a cubic surface f = 0 has an ordinary double
point resp. cusp in p ∈ U for a U ⊆ P3 a�ne open, then f in

p must be a quadric of rank 3
resp. 2.
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We are now ready to verify the classi�cation given above.

Proof of Theorem 3.6. Step 1 Cubic surfaces with at most singularities of type A1 or A2

are semi-stable.
Let �rst S = V (f) be a cubic surface corresponding to a f =

∑
α∈N4, |α|=3 aαX

α ∈ V
which is not semi-stable. Then S has a singularity which is not an ordinary double
point or cusp. For this it can be assumed that S is irreducible. The Hilbert-Mumford
criterion stated in Proposition 3.9 tells us that we can choose a one-parameter subgroup
λ : Gm → G with limt→0 λ(t).f = 0. By Lemma 3.8, one can, after a possible base
change, assume

λ(t) = diag(λ0(t), . . . , λ3(t)) for all t ∈ Gm

for some λ0(t), · · · , λ3(t) ∈ C[t, t−1], as λ(t) is a homomorphism of algebraic groups.
From λ(t) ∈ SL(4) for all t ∈ Gm it follows that

λ0(t) · · · · · λ3(t) = 1 for all t ∈ Gm.

If some λi(t) was not a monomial, it would have a zero at some t0 ∈ Gm, so
∏
j 6=i λj

would have a pole in this point, which is impossible since it is a Laurent polynomial. One
therefore concludes that λi(t) = tri for ri ∈ Z, i = 0, . . . , 3, and

∑3
i=0 ri = 0. Assume

further without loss of generality that r0 ≤ · · · ≤ r3.
The action of λ(t) on f yields

λ(t).f =
∑

α∈N4, |α|=3

aα (tr0X0)
α0 · · · (tr3X3)

α3 =
∑

α∈N4, |α|=3

tr·αaαX
α.

As limt→0 λ(t)f = 0, we get r · α > 0 for all α ∈ N4 with aα 6= 0.
Since f is irreducible by assumption, not every monomial Xα can be divided by X3,

in other words, there exists an α ∈ N4 such that aα 6= 0 and α3 = 0. But then r · α > 0
and the linear ordering of the ri imply r2 > 0. This also means that no monomial can
be of the form X2

0Xi or X0X1Xi with i = 0, . . . , 3, because

2r0 + ri ≤ r0 + r1 + ri ≤ r0 + r1 + r3 = −r2 < 0,

which is impossible.
Hence on the open a�ne subset {X0 6= 0}, the polynomial f is given in local coordinates

x1 =
X1

X0
, x2 =

X2

X0
, x3 =

X3

X0

by f (x1, x2, x3) = f2 (x1, x2, x3) + f3 (x1, x2, x3) with f2 = a22x
2
2 + a23x2x3 + a33x

2
3 and

f3 homogeneous of degree 3. We are going to show that f has a singularity not of type
A1 or A2 in p := (0, 0, 0) ∈ {X0 6= 0}.
If f2 = 0, then f in

p is not a quadric and f has no ordinary double point or cusp in p by
Remark 3.11.
If f2 6= 0, then f in

p = f2. Again by Remark 3.11, we know that for p to be an ordinary
double point or cusp, f2 must have rank 3 or 2. The former is impossible since f2 depends
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only on x2 and x3. The latter is possible only if a22 6= 0 or a23 6= 0, which in turn implies
r0+2r2 = (r0, r1, r2, r3)·(1, 0, 2, 0) > 0 or r0+r2+r3 = (r0, r1, r2, r3)·(1, 0, 1, 1) > 0. Since
r2 ≤ r3, in either case one has r1 = − (r0 + r2 + r3) < 0. In particular, r · (0, 3, 0, 0) < 0
and x31 cannot be contained in f3, so f does not have an ordinary cusp in p.
It can thus be concluded that a cubic surface which is smooth or has only ordinary

double points and cusps must be semi-stable.
In fact, one can even show:

Step 2 Cubic surface with at most singularities of type A1 are already stable.
To prove this, let S = V (f) now be a non-stable cubic surface and λ : Gm → G a one-

parameter subgroup for which the limit limt→0 λ(t).f exists. One again can conclude

λ(t).f =
∑

α∈N4, |α|=3

tr·αaαX
α

for some r0 ≤ r1 ≤ r2 ≤ r3, only this time the existence of the limit gives merely the
condition r · α ≥ 0 from which follows only r2 ≥ 0.
If r2 > 0, one concludes as before that no monomial of f can be of the form X2

0Xi or
X0X1Xi, i = 0 . . . , 3, and therefore f in

p , p := (0, 0, 0) ∈ {X0 6= 0}, cannot be a quadric
of rank 3, meaning that f does not have an ordinary double point in p.
If r2 = 0, one has r0+r1+r3 = r0+r1+r2+r3 = 0. Hence, if r0 < r1, then f still contains
neither any monomial of the form X2

0Xi, since 2r0 +ri < r0 +ri+r3 = 0, nor of the form
X0X

2
1 or X0X1X2, i.e. the only additionally possible monomial would be X0X1X3. On

the other hand, X0X
2
2 cannot occur because of r0 + 2r2 = r0 < 0. In consequence, f in

p

is given either by a cubic form or a quadric of the form f2 = a13x1x3 + a23x2x3 + a33x
2
3

which corresponds to the matrix  0 0 a13
2

0 0 a23
2

a13
2

a23
2 a33


and has thus rank ≤ 2. In either case, f does not have an ordinary double point in p.
The remaining case r2 = 0, r0 = r1 leads, together with

∑
i ri = 0, to r = (−n,−n, 0, 2n)

for some n ∈ N. One checks that in this case, S has at least one cusp.
We have seen by now that a cubic surface with only ordinary double points or ordinary

cusps is semi-stable and one with only ordinary double points is stable. It remains to
show that these conditions are already su�cient, i.e. that cubic surfaces with a singularity
of another type than A1, A2 cannot be semi-stable and that the ones with ordinary cusps
cannot be stable.
Step 3 Semi-stable cubic surfaces have at most singularities of type A1 or A2.
Let S = V (f), with f =

∑
α∈N4, |α|=3 aαX

α ∈ V as before, have a singularity not
of type A1. After a possible coordinate change, this singularity lies in the point p :=
[1 : 0 : 0 : 0]. In the standard local a�ne coordinates of the neighbourhood {X0 6= 0} of
p the function f (x1, x2, x3) must not contain a linear or constant term, since this would
mean that the di�erential at p would not vanish and hence f would not have a singularity
in p. Thus, we have

f = X0g (X1, X2, X3) + h (X1, X2, X3)

11



with g homogeneous of degree 2, h homogeneous of degree 3 and the rank of g less than
3 because f has no ordinary double point in p.
If the quadric g has rank 0 or 1, we can, after a further coordinate change, assume g = 0
or g = X2

3 . In either case, the one-parameter subgroup λ : Gm → G corresponding to
r = (−5, 1, 1, 3), when acting on f , has the limit

lim
t→0

λ(t).f = lim
t→0

∑
α∈N4, |α|=3

tr·αaαX
α = 0,

as r · α > 0 for α = (1, 0, 0, 2) and every α with non-vanishing coe�cient in h. So f is
not semi-stable.
If the quadric g has rank 2, we can assume g = X2

2 + X2
3 = (X2 + iX3) (X2 − iX3) and

after another coordinate change g = X2X3.
If f further does not have an ordinary cusp point at p, f , and thus h, cannot contain
the monomial X3

1 . But then (−5,−1, 3, 3) · α > 0 for α = (1, 0, 1, 1) and every α with
non-vanishing coe�cient in h, and by the same reasoning as above, f is not semi-stable.
It can already be concluded that cubic surfaces with singularities not of type A1 or A2

are not semi-stable.
Step 4 Stable cubic surfaces have at most singularities of type A1.
If, at last, f has an ordinary cusp, it is semi-stable, but not stable: It has already

been shown that it is semi-stable. As f has an ordinary cusp, the coe�cient c of the
monomial X3

1 in f must not vanish. To see that f is not stable, it su�ces to show that
the cubic polynomial f0 = X0X2X3 + cX3

1 is in the closure of the orbit of f . For if
f was stable, its orbit would be closed and would contain f0 which would therefore be
stable as well. But the stabilizer of f0 is in�nite, since it contains the diagonal matrices
diag (ξ0, 1, ξ2, ξ3) ∈ SL(4,C) with ξ0ξ2ξ3 = 1.
So let λ : Gm → G be the one-parameter subgroup corresponding to r = (−2, 0, 1, 1).

Recalling that f is of the form f = X0X2X3 + h(X1, X2, X3), one sees that the only α
for which r · α = 0 and the coe�cient aα 6= 0 are (1, 0, 1, 1) and (0, 3, 0, 0), so

lim
t→0

λ(t).f = X0X2X3 + cX3
1

is in the closure of the orbit of f under the euclidean topology and hence also under the
Zariski topology.
To conclude the proof of the second part of the theorem, notice that with X0X2X3 +

cX3
1 also the surface S0 corresponding to X0X2X3 − X3

1 is contained in the closure of
the orbit of each semi-stable, but not stable cubic surface. Since a quadric XiXj can
be written as X2

i + X2
j after a change of coordinates as seen above, the singular points

[1 : 0 : 0 : 0], [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1] of S0 in the open a�ne subsets {X0 6= 0},
{X2 6= 0} and {X3 6= 0} are all ordinary cusps. In {X1 6= 0}, the surface S0 has no
singularities because the di�erential of x0x2x3 − 1 vanishes only in points in which the
polynomial itself does not vanish, namely where at least two of the coordinates vanish.
The surface S0 is therefore semi-stable, as it contains only ordinary cusps. It is in the

orbit closure of each semi-stable, not stable surface, so there is only one point contained in
the categorical but not in the geometric quotient by Lemma 2.21(i). By Lemma 2.21(ii),
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there is a unique closed orbit which maps to this point. Since the closure of this orbit is
the orbit itself, S0 must already be contained in that orbit which concludes the proof.

Remark 3.12. In particular, from Step 3 of the proof follows that a non-stable cubic
polynomial f ∈ V is, after a possible linear change of coordinates, given by a polynomial
of the form

(a) h (X1, X2, X3),

(b) X0X
2
3 + h (X1, X2, X3) or

(c) X0X2X3 + h (X1, X2, X3),

where h (X1, X2, X3) is a homogeneous polynomial of degree 3.

Since we have now familiarized ourselves with the semi-stable points V ss and |O(3)|ss,
we can �nally see

De�nition 3.13. The categorical quotientM := |O(3)|ss�G is called the moduli space
of cubic surfaces.

In order to compute the the moduli space of cubic surfaces, we need an analogue to
Theorem 2.11 in the projective case.

Lemma 3.14. There is an isomorphism |O(3)|ss�G ∼= Proj
(
O (V )G

)
.

Proof. [Dol03, Prop. 8.1] with L = OP19 (1).

Thus, it su�ces to compute O (V )G, the ring of invariants of the cubic forms on P3.

4 The Sylvester form of the homogeneous cubic polynomials

For the computation of O (V )G, it is not advisable to consider cubic polynomials f ∈ V
in their most general form because we would have to look at a 20-dimensional space
whose structure is quite di�cult to grasp. It will be shown that it is su�cient to restrict
oneself to an open subset of that space with a somewhat easier structure, the set of the
cubics with a Sylvester form:
A general f ∈ V can be written as the linear combination of the cubes of �ve linear

forms, each four of which are linearly independent and whose sum vanishes. In other
words, one embeds (non-canonically) P3 into P4 as the hyperplane

∑4
i=0Xi = 0 and

can then write f as the restriction of a homogeneous cubic polynomial on P4 to that
hyperplane.

Theorem 4.1. A general homogeneous polynomial f ∈ V can be written as

f =

4∑
i=0

λiX
3
i ,

4∑
i=0

Xi = 0,

where the coe�cients λ0, . . . , λ4 ∈ C are unique up to permutation and a common scalar
factor.
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Proof. A modern proof can be found in [Dol12, Cor. 9.4.2].

De�nition 4.2. A cubic surface V (f) given by the equations

f =

4∑
i=0

λiX
3
i = 0,

4∑
i=0

Xi = 0

is said to have a non-degenerate Sylvester form, if λi 6= 0 for all i = 0, . . . , 5. Otherwise,
it has a degenerate Sylvester form.

If a surface is given by a Sylvester form, its corresponding Hessian surface is also of a

simple form. In what follows, let He (f) =
(

∂2f
∂Xi∂Xj

)
i,j=0,...,n

denote the Hessian matrix

of a homogeneous polynomial f on Pn and Hf its determinant.

Lemma 4.3. Let V (f) be a surface given by a Sylvester equation

f =
4∑
i=0

λiX
3
i = 0,

4∑
i=0

Xi = 0

and N = |{i : λi = 0}| be the number of vanishing coe�cients. If N ≤ 4, the Hessian
surface V (Hf ) is a surface of degree 4−N . If in addition V (f) is non-degenerate, the
Hessian is given by

4∑
i=0

∏
j 6=i

λjXj = 0,

4∑
i=0

Xi = 0. (1)

Proof. A proof which uses techniques from Classical Algebraic Geometry can be found
in [Dol12, Sect. 9.4.2].

In the following, we need

De�nition 4.4. Let pijk ∈ V
(∑4

i=0Xi

)
⊆ P4 denote the points given by Xi =

Xj = Xk = 0 (in the hyperplane the vanishing of three coordinates already de�nes

a unique point), lij ⊂ V
(∑4

i=0Xi

)
⊂ P4 the lines given by Xi = Xj = 0 and

Ei ⊂ V
(∑4

i=0Xi

)
⊂ P4 the hyperplanes given by Xi = 0.

Proposition 4.5. Let V (f) be a cubic surface given by a non-degenerate Sylvester equa-
tion. Then every singular point of V (f) is a singular point of the Hessian V (Hf ) and
the pijk are the only points which are singular points of V (Hf ) and not of V (f).

Proof. For this proof, let us not embed P3 into P4, i.e. drop the condition
∑4

i=0Xi = 0
and instead regard X4 = − (X0 + . . .+X3) as a function of X0, . . . , X3, which of course
amounts to the same thing. This will simplify signi�cantly the di�erentiating needed for
the computations of the singular points.
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Let S := V
(∏4

i=0Xi

)
. We show �rst that on the open set P3 rS, the singular points

of V (f) coincide with the singular points of V (Hf ) and then that on S, V (f) has no
singular points and V (Hf ) only the singular points pijk.
On P3 r S, the Hessian is given by the equation

∑4
i=0

1
λiXi

= 0 because the λi do not

vanish by assumption and we can divide Equation (1) from Lemma 4.3 by
∏4
i=0 λiXi.

A point p = [p0 : p1 : p2 : p3] ∈ P3 r S is a singular point of V (Hf ) if and only for all
i = 0, . . . , 3

∂Hf

∂Xi
(p) = 0⇔ 1

λip2i
− 1

λ4p24
= 0⇔ λip

2
i − λ4p24 = 0⇔ ∂f

∂Xi
(p) = 0,

where p4 = − (p0 + p1 + p2 + p3). Hence, p is a singular point of V (Hf ) if and only if it
is a singular point of V (f).
On S, the surface V (f) has no singularities. For if there was a singular point p =

[p0 : p1 : p2 : p3] ∈ S, again p4 := − (p0 + p1 + p2 + p3), one would have 3λip
2
i −3λ4p

2
4 =

∂f
∂Xi

(p) = 0 for all i = 0, . . . , 3 from which follows immediately λip
2
i = λjp

2
j for all

i, j ∈ {0, . . . , 4}. Then pi = 0 for an i ∈ {0, . . . , 4} implies pj = 0 for all j = 0, . . . , 3
because the λj do not vanish by assumption, but this is impossible.
It remains to identify the singular points of V (Hf ) which lie in in S. Let p =

[p0 : p1 : p2 : p3] ∈ S, p4 := − (p0 + p1 + p2 + p3) and i ∈ {0, . . . , 4} such that pi = 0.
The point p is in the zero locus of Hf if and only if 0 = Hf (p) =

∑4
j=0

∏
l 6=j λlpl =∏

l 6=i λlpl, which is in turn equivalent to the existence of an l ∈ {0, . . . 4}, l 6= i such that
pl = 0 (because λj 6= 0, j = 0, . . . , 4 by assumption). Hence, the Hessian in S is given by
V (Hf )∩S =

⋃
i 6=j lij . One sees easily from the explicit form of the Hessian in Equation

(1) that the only potentially singular points of V (Hf ) in S are the vertices pijk given by
Xi = Xj = Xk = 0. On the other hand, these actually are singular points of the Hessian
since di�erentiating Equation (1) with respect to the Xi leaves a sum of terms which
contain the product of three di�erent coordinates and therefore vanish when evaluated
at the pijk.

De�nition 4.6. The pentahedron spanned by the planes Ei is called the Sylvester pen-
tahedron.

5 The weighted projective space

To clarify the statement of the main theorem we need to become acquainted with the
notion of the weighted projective space. We shall follow [Dol82] where the reader may
also �nd more advanced results which cannot be discussed here.

De�nition 5.1. Let Q := (q0, . . . , qr) be a �nite tuple of non-zero natural numbers and
S (Q) := C [T0, . . . , Tr] the algebra graded by deg Ti = qi.
Then P (Q) := Proj (S (Q)) is called the weighted projective space of type Q.

Note that we get the usual projective space as the special case Pr = P(1, . . . , 1). We
shall use the notation of the previous de�nition for the entire section.
In the following, we shall often use the following
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De�nition 5.2. Let S be a graded ring, a ∈ N∗ a natural number. Then one denotes by
S(a) :=

⊕∞
n=0 Sna the subring of S obtained as the direct sum of all homogeneous parts

of degree divisible by a and graded by taking the Sna to be the homogeneous elements
of degree n.

One checks easily that S(a) really de�nes a graded ring. One of its relations to the
original ring S is stated as

Lemma 5.3. Let S be a graded ring, a ∈ N∗. Then there exists an isomorphism of
schemes from Proj (S) onto Proj

(
S(a)

)
.

Proof. [Gro61, Prop. 2.4.7].

Using this, we get

Lemma 5.4. Let Q = (q0, . . . , qr), Q′ = (aq0, . . . , aqr) for some a ∈ N∗. Then there is
an isomorphism P (Q) ∼= P (Q′).

Proof. From S (Q′)m = S (Q)am for all m ∈ N, one concludes S (Q′) = S (Q)(a) and, by
Lemma 5.3,

P (Q) = Proj (S (Q)) ∼= Proj
(
S (Q)(a)

)
= Proj

(
S
(
Q′
))

= P
(
Q′
)
.

By the preceding lemma, we can always assume without loss of generality that

gcd (q0, . . . , qr) = 1

In fact, it can, by the following proposition, even be assumed that each r numbers are
coprime.

Proposition 5.5. Let Q = (q0, . . . , qr) ∈ (N∗)r+1. Then a tuple Q′ = (q′0, . . . , q
′
r) ∈

(N∗)r+1 exists such that there is an isomorphism P (Q) ∼= P (Q′) and for i = 0, . . . , r, one
has gcd

(
q′0, . . . , q

′
i−1, q

′
i+1, . . . , q

′
r

)
= 1.

Proof. De�ne for all i ∈ {0, . . . , r}

ti = gcd (q0, . . . , qi−1, qi+1, . . . , qr)

ai = lcm (t0, . . . , ti−1, ti+1, . . . , tr)

a = lcm (t0, . . . , tr) .

From tj | qi ∀i 6= j one concludes ai | qi. In particular,

gcd (ai, ti) | gcd (qi, ti) = gcd (q0, . . . , qr) = 1,

which yields gcd (ai, ti) = 1. Furthermore,

aiti = gcd (ai, ti) · lcm (ai, ti)

= 1 · lcm (lcm (t0, . . . , ti−1, ti+1, . . . , tr) , ti)

= lcm (t0, . . . , tr) = a.
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Now let Q′ :=
(
q0
a0
, . . . , qrar

)
and let us prove that it has got the desired properties.

The �rst part of the statement will be another application of Lemma 5.3. To compute
S (Q)(a), note that a monomial Tα1

1 · . . . · Tαr
r ∈ S (Q) has degree an for some n ∈ N if

and only if a | α0q0 + · · ·+ αrqr, which is in turn equivalent to

ti | α0q0 + · · ·+ αrqr for all i = 1, . . . , r. (2)

On the other hand, one has for all i that gcd (qi, ti) = gcd (q1, . . . , qr) = 1 and ti | qj , j 6=
i. Consequently, (2) holds if and only if ti | αi for all i, so S (Q)(a) = C

[
T t00 , . . . , T

tr
r

]
.

Since the T tii are of degree qiti = a qiai = aq′i in S (Q), they are of degree q′i in S (Q)(a)

(cf. De�nition 5.2). Therefore, S (Q′) ∼= S (Q)(a) and, by Lemma 5.3,

P (Q) = Proj (S (Q)) ∼= Proj
(
S (Q)(a)

)
∼= Proj

(
S
(
Q′
))

= P
(
Q′
)
.

It remains to show the second part. Let i ∈ {0, . . . , r}. As ti | aj ∀j 6= i, there are
a′j ∈ N∗, j 6= i such that aj = a′jti. Hence,

gcd
(
q′0, . . . , q

′
i−1, q

′
i+1, . . . , q

′
r

)
= gcd

(
q0
a0
, . . . ,

qi−1
ai−1

,
qi+1

ai+1
, . . . ,

qr
ar

)
=

1

ti
gcd

(
q0
a′0
, . . . ,

qi−1
a′i−1

,
qi+1

a′i+1

, . . . ,
qr
a′r

)
divides 1

ti
gcd (q0, . . . , qi−1, qi+1, . . . , qr) = 1, from what follows already

gcd
(
q′0, . . . , q

′
i−1, q

′
i+1, . . . , q

′
r

)
= 1.

From now on, we shall therefore assume without loss of generality that

gcd (q0, . . . , qi−1, qi+1, . . . , qr) = 1 for all i = 0, . . . , r.

Interpretations of the weighted projective spaces

Since the previous discussion of the weighted projective space has been quite abstract,
let us introduce two interpretations designed to make this notion more concrete.
Analogously to the de�nition of Pr as the quotient of Ar+1 r {(0)} under the lin-

ear action of the one-dimensional torus Gm, one may consider the action of Gm on
Ar+1 = Spec (C [Y0, . . . , Yr]) with deg Yi = 1 for all i = 0, . . . , r, de�ned by the coaction
homomorphism

α : C [Y0, . . . , Yr]→ C⊗C C
[
X,X−1

]
, Yi 7→ Yi ⊗Xqi for i = 0, . . . r.

De�ning the Gm-invariant set U := Ar+1 r {(0)}, we have an open a�ne cover U =⋃
i=0,...,rD (Yi). By Theorem 2.11 and Proposition 2.9, for all i = 0, . . . , r, we get a

categorical quotient of D (Yi) of the form

D (Yi) ∼= Spec
(
C [Y0, . . . , Yn]Yi

)
� Spec

((
C [Y0, . . . , Yn]Yi

)Gm
)
.

17



But f ∈ C [Y0, . . . , Yn]Yi is invariant with respect to the action of Gm if and only if the
powers of X which arise when applying α are the same for numerator and denominator

of f . This just means Spec
((

C [Y0, . . . , Yn]Yi
)Gm

)
∼= Spec

((
C [T0, . . . , Tn]Ti

)
0

)
, where

deg Tj = qj for all j.
On the other hand,

Spec
((

C [T0, . . . , Tn]Ti
)
0

)
= Spec

(
C [T0, . . . , Tn](Ti)

)
= D+ (Ti) .

This gives us for all i = 0, . . . , r the categorical quotient D (Yi) � D+ (Ti). Since the
quotient maps glue and (D+ (Ti))i is an open cover of Proj (S (Q)) = P (Q), we get the
morphism p : U → P (Q) which is again a categorical quotient by Remark 2.12.
Let us examine the action of Gm on the closed points of Ar+1:

Let (t, a) ∈ Gm × Ar+1 be a closed point, given by the maximal ideal

m = (Y0 − a0, . . . , Yr − ar, X − t) .

Then (Y0 − tq0a0, . . . , Yr − tqnar) ⊆ α−1 (m) because for all i = 0, . . . , r

α (Yi − tqiai) = YiX
qi − tqiai = Xqi (Yi − ai) + ai (Xqi − tqi)

= Xqi (Yi − ai) + ai (X − t)
qi∑
l=1

Xqi−ltl−1 ∈ m.

As (Y0 − tq0a0, . . . , Yn − tqnan) is already a maximal ideal in C [Y0, . . . , Yn], we must
have α−1 (m) = (Y0 − tq0a0, . . . , Yn − tqnan). In other words, (t, (a0, . . . , ar)) is mapped
to (a0t

q0 , . . . , art
qr), and P (Q) is the complex analytic quotient space

(
Cr+1 r {0}

)
/C×

for this action.
This �rst interpretation allows us in particular to give coordinates to the weighted

projective space, similar to those of the usual one. Since the construction is very similar to
that of the ordinary projective space, one might try to construct the weighted projective
space as a quotient of the projective space by another, possibly smaller group. This is
the idea of the second interpretation of the weighted projective space.
For �xed Q = (q0, . . . , qr) ∈ (N∗)r+1 and 0 ≤ i ≤ r, consider

µqi := Spec ((C [Xi]) / ((Xqi
i − 1)))

as a subgroup of Gm, the group of qi-th roots of unity. Then one checks easily that

β : C [Y0, . . . , Yr]→ (C [Y0, . . . , Yr]⊗C C [X0, . . . , Xr]) / ((Xq0
0 − 1, . . . , Xqr

r − 1))

Yi 7→ Yi ⊗ X̄i

de�nes an action of µQ := µqo × . . .× µqr on Pr.
Clearly, a power Y m

i is an invariant under this action, i.e. β (Y m
i ) = Y m

i ⊗ 1, if and
only if qi | m. Since under β every Yi is mapped to a tensor product which contains only
Xi, a polynomial f ∈ C [Y0, . . . , Yr] is invariant if and only if it contains only products of
Y q0
0 , . . . , Y qr

r , so C [Y0, . . . , Yr]
µQ = C [Y q0

0 , . . . , Y qr
r ]. Hence, if S (Q) = C [T0, . . . , Tr] is
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graded as above by deg Ti = qi, then ϕ : S (Q)→ C [Y0, . . . , Yr]
µQ , Ti 7→ Y qi

i is a graded
ring isomorphism. Similarly to the �rst interpretation, we choose an open a�ne cover
(D+ (Yi))i=0,...,r of Pr = Proj (C [Y0, . . . , Yr]) and an open a�ne cover (D+ (Ti))i=0,...,r

of P (Q) = Proj (C [T0, . . . , Tr]). By Theorem 2.11 and Proposition 2.9, the categorical
quotient of D+ (Yi) by µQ is then

D+ (Yi) ∼= Spec

(
C
[
Y0
Yi
, . . . ,

Yr
Yi

])
� Spec

(
C
[
Y0
Yi
, . . . ,

Yr
Yi

]µQ)
.

But Spec
(
C
[
Y

q0
0

Y
qi
i

, . . . , Y
qr
r

Y
qi
i

])
∼= Spec

((
C
[
T0
Ti
, . . . , TrTi

])
0

)
∼= D+ (Ti), so we have again

a categorical quotient D+ (Yi) � D+ (Ti) for all i and the quotient maps glue. By Re-
mark 2.12, we know that we have a categorical quotient P (Q) = Pr�µQ.

While the usual projective space is smooth, the weighted projective space may have
singularities which correspond to points with non-trivial stabilizers for the group action
from the second interpretation.

Proposition 5.6. An arbitrary point a = [a0 : . . . : ar] ∈ P (Q) is singular if and only if
gcd (i : ai 6= 0) > 1.

Proof. [DD85, Prop. 7].

In the special case P (1, 2, 3, 4, 5), this gives

P (1, 2, 3, 4, 5)sing = {[0 : 0 : 1 : 0 : 0] , [0 : 0 : 0 : 0 : 1] , [0 : z1 : 0 : z2 : 0] : z1z2 6= 0}.

6 The invariants of the cubic forms on P3

The aim of this section is to prove the following theorem which goes back to [Sal65]:

Theorem 6.1. The ring of invariants of the cubic forms on P3 is

O (V )G = C
[
Î8, Î16, Î24, Î32, Î40, Î100

]
.

Here, the În are invariants of degree n which will be de�ned in the following. The
invariants Î8, Î16, Î24, Î32 and Î40 are algebraically independent and there is a polynomial

P such that Î2100 = P
(
Î8, Î16, Î24, Î32, Î40

)
.

From this result we can easily follow the theorem to be proved in this thesis.

Theorem 6.2. The moduli space M of cubic surfaces S ⊂ P3 is isomorphic to the
weighted projective space P (1, 2, 3, 4, 5).

M∼= P (1, 2, 3, 4, 5)
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Proof. Let A := O (V )G. In the computation to come, it will be of advantage to know
the form of A(8). A monomial Îα8

8 Îα16
16 Îα24

24 Îα32
32 Îα40

40 Îα100
100 ∈ A has the degree

deg Îα8
8 Îα16

16 Îα24
24 Îα32

32 Îα40
40 Îα100

100 =

5∑
i=1

α8i deg Î8i + α100 deg Î100

=
5∑
i=1

α8i · 8i+ α100 · 100,

and is therefore in A(8) if and only if 8 | α100 · 100 which is in turn equivalent to α100

being even. Hence, by Theorem 6.1 we have

A(8) = C
[
Î8, Î16, Î24, Î32, Î40, Î

2
100

]
= C

[
Î8, Î16, Î24, Î32, Î40, P

(
Î8, Î16, Î24, Î32, Î40

)]
= C

[
Î8, Î16, Î24, Î32, Î40

]
and using Lemma 3.14, Lemma 5.3, the de�nition of the weighted projective space and
Lemma 5.4, we obtain

M = |O(3)|ss�SL (4) ∼= Proj (A) ∼= Proj
(
A(8)

)
∼= Proj

(
C
[
Î8, Î16, Î24, Î32, Î40

])
∼= P (8, 16, 24, 32, 40) ∼= P (1, 2, 3, 4, 5) ,

which concludes the proof of the theorem.

Before we see the longsome proof of Theorem 6.1 which goes back to [Bek82], it is, for
the sake of clarity, best to outline the main ideas of the proof, and bring forward some
necessary de�nitions and explicit calculations. Especially the last part will be fairly
lengthy but hopefully treating it at this point helps presenting the actual proof of the
theorem in a more coherent manner.
Since it is quite di�cult to compute the invariants of O (V ) with respect to the action

of the rather big group G, the idea is now to simplify that computation by �nding a
much smaller subgroup H of G, at best �nite, which acts on a much smaller subspace S
of V such that O (V )G = O (S)H . Unfortunately this will not be possible, but equality
will hold if we consider only a subset of O (S)H which satis�es some additional condition.
More concretely, the proof consists of the following steps:

Step 1 Find a linear subspace S of V and a �nite subgroup H of G which acts on
S and show that there is a birational map S�H → V �G. In particular, every
F ∈ O (S)H can be continued to a rational function F̂ on all of V (see the actual
proof for details).

Step 2 Find another linear subspace S′ of V such that

O (V )G = {F ∈ O (S)H : F̂ is regular on S′}.
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Step 3 Compute {F ∈ O (S)H : F̂ is regular on S′}.

Recall that by Theorem 2.11 and Proposition 2.9, the categorical quotients S�H and
V �G of the a�ne varieties S resp. V really exist. Note that V �G is not the moduli
spaceM, which is computed by means of Lemma 3.14.
In order to �nd the subspace and the subgroup from Step 1, the ideal solution would

be to have one representative in each orbit such that all representatives together form a
su�ciently good subspace. This cannot be achieved, but there is a generalization which
can.

De�nition 6.3. Let π : V → V �G be the categorical quotient of V under the action of
the linearly reductive group G. A linear (a�ne) subspace W ⊆ V is said to be a section
if dimW = dimV �G and π|W : W → V �G is dominant.

As in Section 4, we embed P3 into P4 as the hyperplane V
(∑4

i=0Xi

)
and leave this

embedding �xed.
The correct de�nitions for the linear subspaces of V turn then out to be

S := {λ0X3
0 + λ1X

3
1 + λ2X

3
2 + λ3X

3
3 + λ4X

3
4 : λi ∈ C} and

S′ := {3α0X
2
0X1 +

1

4
α1X

3
1 + α2X

3
2 + α3X

3
3 + α4X

3
4 : αi ∈ C}.

Before we check that S and S′ are sections, let us work out the relation between the
two subspaces.

Lemma 6.4. The orbit of each element f = 3α0X
2
0X1+ 1

4α1X
3
1 +α2X

3
2 +α3X

3
3 +α4X

3
4 in

the open subset W := S′rV (α0α1) intersects S. The coe�cients λi of one representative
in the intersection are

λ0 = z−3/8
(

1− z

4

)3/4 8α0z(
z1/2 + 2

)3
λ1 = z−3/8

(
1− z

4

)3/4 −8α0z(
z1/2 − 2

)3
λi = z−3/8

(
1− z

4

)3/4
αi, i = 2, 3, 4,

where z = α1
α0
.

Note that there is an ambiguity in taking the eighth root which corresponds to the
fact, that the orbit G.f intersects S several times and therefore brings about several
representatives in S.

Proof. Given a cubic form f ∈W , we have to �nd a linear transformation g ∈ G = SL (4)
such that g.f ∈ S.
At �rst, we shall only require g to be in GL(4) and subsequently normalize it ac-

cordingly. In accordance with the �xed embedding of P3 into P4, it su�ces to �nd a
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g ∈ GL(5), which leaves the hyperplane V
(∑4

i=0Xi

)
invariant and whose restriction to

that hyperplane ful�ls g.f ∈ S.
Making the ansatz

g (X0) = αX0 + βX1

g (X1) = γX0 + δX1

g (Xi) = Xi, i = 2, 3, 4,

the requirement

g.f = 3α0 (αX0 + βX1)
2 (γX0 + δX1) +

1

4
α1 (γX0 + δX1)

3 + α2X
3
2 + α3X

3
3 + α4X

3
4

=
(

3α0α
2 +

α1

4
γ2
)
γX3

0 +

(
3α0

(
α2δ + 2αβγ

)
+

3α1

4
γ2δ

)
X2

0X1

+

(
3α0

(
β2γ + 2αβδ

)
+

3α1

4
γδ2
)
X0X

2
1 +

(
3α0β

2 +
α1

4
δ2
)
δX3

1 (3)

+ α2X
3
2 + α3X

3
3 + α4X

3
4 ∈ S

yields the conditions

0 = 3α0

(
α2δ + 2αβγ

)
+

3α1

4
γ2δ and (4)

0 = 3α0

(
β2γ + 2αβδ

)
+

3α1

4
γδ2. (5)

Furthermore, we must have

4∑
i=0

Xi = 0 =

4∑
i=0

g (Xi) = (αX0 + βX1) + (γX0 + δX1) +X2 +X3 +X4,

and equating coe�cients, we obtain α+ γ = β + δ = 1. Plugging in these relations into
(4) and (5), we get

0 = 3α0

(
α2 (1− β) + 2αβ (1− α)

)
+

3α1

4
(1− α)2 (1− β)

⇔− α0

(
α2 (1− β) + 2αβ (1− α)

)
=
α1

4
(1− α)2 (1− β) (6)

0 = 3α0

(
β2 (1− α) + 2αβ (1− β)

)
+

3α1

4
(1− α) (1− β)2

⇔− α0

(
β2 (1− α) + 2αβ (1− β)

)
=
α1

4
(1− α) (1− β)2 . (7)

If we had β = 1, equation (7) would become

α0 (1− α) = 0⇔ α = 1,

because α0 6= 0. But this would mean

det g = αδ − βγ = α (1− β)− β (1− α) = 0− 0 = 0,
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contradicting g ∈ GL (4). Thus, β 6= 1.
Analogously, equation (6) in combination with det g 6= 0 yields α 6= 1. Hence, the

right side of (7) (and thus also the left side) does not vanish and we can divide (6) by
(7) to obtain

α2 (1− β) + 2αβ (1− α)

β2 (1− α) + 2αβ (1− β)
=

1− α
1− β

⇒ α2 (1− β)2 + 2αβ (1− α) (1− β) = β2 (1− α)2 + 2αβ (1− α) (1− β)

⇒ α2 (1− β)2 = β2 (1− α)2 .

Since 0 6= det g = αδ − βγ implies α (1− β) 6= β (1− α) we can follow immediately

α (1− β) = −β (1− α) . (8)

Plugging in (8) into (6), we get

0 = α0

(
α2 (1− β)− 2α2 (1− β)

)
+
α1

4
(1− α)2 (1− β)

= −α0α
2 (1− β) +

α1

4
(1− α)2 (1− β)

⇒ α0α
2 =

α1

4
(1− α)2

⇒ α2 =
z

4
(1− α)2 , (9)

with z := α1
α0

as in the formulation of the theorem.
Similarly, we get be plugging in (8) into (7)

0 = α0

(
β2 (1− α)− 2β2 (1− α)

)
+
α1

4
(1− α) (1− β)2 = 0

= −α0β
2 (1− α) +

α1

4
(1− α) (1− β)2

⇒ β2 =
z

4
(1− β)2 .

Taking square roots, one follows

α = ±z
1/2

2
(1− α)⇒

(
1± 2

z1/2

)
α = 1⇒ α =

z1/2

z1/2 ± 2

and analogously

β =
z1/2

z1/2 ± 2
.

Since 0 6= det g = α (1− β)−β (1− α), we have to choose di�erent signs in the formulae
for α and β. The particular choice is not important because there is also an ambiguity
in the choice of the square root which corresponds to choosing di�erent signs in the
formulae.
Hence, we can just set

α =
z1/2

z1/2 + 2
and β =

z1/2

z1/2 − 2
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and conclude

γ = 1− α = 1− z1/2

z1/2 + 2
=

2

z1/2 + 2
and δ = 1− β = 1− z1/2

z1/2 − 2
=

−2

z1/2 − 2

to get the desired linear transformation g ∈ GL (4).
For g to be in SL (4), it needs to be normalized. Therefore, �rst compute

det g = αδ − βγ

=
z1/2

z1/2 + 2
· −2

z1/2 − 2
− z1/2

z1/2 − 2
· 2

z1/2 + 2

=
4z1/2

4− z
= z1/2

(
1− z

4

)−1
.

As g acts on a four-dimensional vector space, the desired transformation in SL (4), ob-
tained by multiplying g with (det g)−1/4 and by abuse of notation again called g, is given
by

g (X0) = z−1/8
(

1− z

4

)1/4( z1/2

z1/2 + 2
X0 +

z1/2

z1/2 − 2
X1

)

g (X1) = z−1/8
(

1− z

4

)1/4( 2

z1/2 + 2
X0 +

−2

z1/2 − 2
X1

)
g (Xi) = z−1/8

(
1− z

4

)1/4
Xi, i = 2, 3, 4.

As the coordinates λi of g.f ∈ S, we obtain by equating coe�cients in equation (3) (of
course for the new, normalized α, β, γ, δ)

λ0 = z−3/8
(

1− z

4

)3/4 2

z1/2 + 2

(
3α0

z(
z1/2 + 2

)2 +
α0z

4

4(
z1/2 + 2

)2
)

= z−3/8
(

1− z

4

)3/4 8α0z(
z1/2 + 2

)3
λ1 = z−3/8

(
1− z

4

)3/4 −2

z1/2 − 2

(
3α0

z(
z1/2 − 2

)2 +
α0z

4

4(
z1/2 − 2

)2
)

= z−3/8
(

1− z

4

)3/4 −8α0z(
z1/2 − 2

)3
λi = z−3/8

(
1− z

4

)3/4
αi, i = 2, 3, 4.

A very similar calculation shows

Lemma 6.5. The orbit of each element in an open subset of S intersects S′.

Proof. Proceed like in the proof of the previous lemma.

One can now easily follow
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Lemma 6.6. The subspaces S and S′ are both sections.

Proof. Let us �rst compute dimV �G. Since V ∼= A20
C is an irreducible variety, so is

the good categorical quotient V �G, cf. Corollary 2.20. Together with Lemma 2.18,
this implies that π : V → V �G is a surjective morphism of irreducible varieties, hence
there is a non-empty open subset U ⊆ V �G such that for all f̄ ∈ U , dimV �G =
dimV − dimπ−1

(
f̄
)
.

Since the stable points V s form a dense open subset of V , a general f ∈ V has
a �nite stabilizer under the action of G. Again by the irreducibility of V , one can
even pick an f ∈ V such that f lies in V s ∩ π−1 (U). But as the quotient map on
the stable points is that of a geometric quotient, one has π−1 (π (f)) = G.f . Then
dimG.f = dimG− dimGf = dimG = dimSL (4,C) = 15 because f has �nite stabilizer
(the �rst equality holds due to a basic property of G-varieties, cf. [TY05, Prop. 21.4.3]).
Therefore,

dimV �G = dimV − dimπ−1 (π (f)) = dimV − dimG.f = 20− 15 = 5.

Since every cubic form in S resp. S′ is determined by the coe�cients λi resp. αi, which can
be chosen independently, one has S ∼= S′ ∼= A5 and thus dimS = dimS′ = 5 = dimV �G.
It remains to show that π|S : S → V �G and π|S′ : S′ → V �G are dominant.
Theorem 4.1 yields that a general f ∈ V can be written in the form f =

∑4
i=0 λil

3
i

where the li are linear forms such that
∑4

i=0 li = 0 and each four li are linearly inde-
pendent. Given such an f , consider the linear transformation g̃ given by the matrix
whose i-th row is exactly li, i.e. for all (p0, . . . , p3) ∈ A4 one has g̃ ((p0, . . . , p3))i =
li ((p0, . . . , p3)) , i = 0, . . . , 3. Since the li, i = 0, . . . , 3 are linearly independent, one has
g̃ ∈ GL (4), hence g = 1

det g̃ g̃ ∈ G = SL (4) is well-de�ned. But then g.f = f ◦ g−1 =∑4
i=0 λi det g̃3X3

i in the standard embedding
∑4

i=0Xi = 0 of P3 into P4 described above
and thus g.f ∈ S. In other words, the orbit of a general f ∈ V intersects S. Since
π : V → V �G is constant on G-orbits and open on V s by Corollary 2.19, the �bre of a
general f̄ ∈ V �G has non-trivial intersection with S, hence π|S : S → V �G is dominant.
By Lemma 6.5, there is an open subset W ⊆ S such that the orbit of every f ∈ W

intersects S′, i.e. π (W ) ⊆ π (S′). A basic fact about the closure operator known from
point-set topology then leads to

π (S′) ⊇ π (W ) ⊇ π
(
W
)

= π (S) ,

which gives rise to the chain of inclusions V �G ⊇ π (S′) ⊇ π (S) = V �G. Consequently,
π (S′) = V �G and π|S′ : S′ → V �G is dominant.

There is still one other longer computation left which will be very useful in the proof.
For the rest of this section, let σi, i = 1, . . . , 5 denote the elementary symmetric poly-

nomials and v the Vandermonde determinant in the λj and τ1, τ2, τ3 denote the ele-
mentary symmetric polynomials and w the Vandermonde determinant in α2, α3, α4. If
f ∈ S′ r V (α0α1), then Lemma 6.4 speci�es the coordinates λi of one element f̃ in
G.f ∩ S. In the proof we shall need the explicit form of the elementary symmetric poly-
nomials and the Vandermonde determinant in the coordinates λi of f̃ as functions of the
coordinates αi of f .
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Lemma 6.7. Let f = 3α0X
2
0X1+ 1

4α1X
3
1 +α2X

3
2 +α3X

3
3 +α4X

3
4 ∈ S′rV (α0α1). Then

the elementary symmetric polynomials σi, i = 1, . . . , 5 and the Vandermonde determinant
v in the coordinates λi of the representative of G.f in S chosen in Lemma 6.4 as functions
of the coordinates αi of f are given by

σ1 = z−3/8
(

1− z

4

)3/4(
τ1 + 2α0z

1 + 3z
4(

1− z
4

)3
)
,

σ2 = z−3/4
(

1− z

4

)3/2(
τ2 + 2α0τ1z

1 + 3z
4(

1− z
4

)3 +
α2
0z

2(
1− z

4

)3
)
,

σ3 = z−9/8
(

1− z

4

)9/4(
τ3 + 2α0τ2z

1 + 3z
4(

1− z
4

)3 +
α2
0τ1z

2(
1− z

4

)3
)
,

σ4 = z−1/2
(

2α0τ3

(
1 +

3z

4

)
+ α2

0τ2z

)
,

σ5 = α2
0τ3z

1/8
(

1− z

4

)3/4
,

v = α0

(
3 +

z

4

)
z−9/4

(
1− z

4

)−9/2  4∏
j=2

z2α2
0 − 2α0αjz

(
1 +

3z

4

)
+ α2

j

(
1− z

4

)3w,
where z = α1

α0
as before.

Proof. With the explicit form of the λi from Lemma 6.4, one can �rst compute

λ0 · λ1 = z−3/8
(

1− z

4

)3/4 8α0z(
z1/2 + 2

)3 · z−3/8 (1− z

4

)3/4 −8α0z(
z1/2 − 2

)3
= −z−3/4

(
1− z

4

)3/2 64α2
0z

2

(z − 4)3

= z5/4
(

1− z

4

)−3/2
α2
0

λ0 + λ1 = z−3/8
(

1− z

4

)3/4 8α0z(
z1/2 + 2

)3 − z−3/8 (1− z

4

)3/4 8α0z(
z1/2 − 2

)3
= z−3/8

(
1− z

4

)3/4
8α0z

(
z1/2 − 2

)3 − (z1/2 + 2
)3

(z − 4)3

= −z5/8
(

1− z

4

)−9/4 α0

8

(
z3/2 − 6z + 12z1/2 − 8− z3/2 − 6z − 12z1/2 − 8

)
= −z5/8

(
1− z

4

)−9/4 α0

8
(−12z − 16)

= 2α0z
5/8
(

1− z

4

)−9/4(
1 +

3z

4

)
λ1 − λ0 = z−3/8

(
1− z

4

)3/4 −8α0z(
z1/2 − 2

)3 − z−3/8 (1− z

4

)3/4 8α0z(
z1/2 + 2

)3
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= −z−3/8
(

1− z

4

)3/4
8α0z

(
z1/2 + 2

)3
+
(
z1/2 − 2

)3
(z − 4)3

= z5/8
(

1− z

4

)−9/4 α0

8

(
z3/2 + 6z + 12z1/2 + 8 + z3/2 − 6z + 12z1/2 − 8

)
= z5/8

(
1− z

4

)−9/4 α0

8

(
2z3/2 + 24z1/2

)
= z9/8

(
1− z

4

)−9/4
α0

(
3 +

z

4

)
.

One can now express the values of the elementary symmetric polynomials σ1, . . . , σ5 and
the Vandermonde determinant v in the λi at g.f in the coordinates αi of f .

σ1 =
∑

0≤i≤4
λi

= 2α0z
5/8
(

1− z

4

)−9/4(
1 +

3z

4

)
+

4∑
i=2

z−3/8
(

1− z

4

)3/4
αi

= z−3/8
(

1− z

4

)3/4(
τ1 + 2α0z

1 + 3z
4(

1− z
4

)3
)
,

σ2 =
∑

0≤i<j≤4
λiλj

=
∑

2≤i<j≤4
λiλj +

[
(λ0 + λ1)

∑
2≤j≤4

λj

]
+ λ0λ1

=
∑

2≤i<j≤4
z−3/8

(
1− z

4

)3/4
αi · z−3/8

(
1− z

4

)3/4
αj

+

(
2α0z

5/8
(

1− z

4

)−9/4(
1 +

3z

4

)) ∑
2≤j≤4

z−3/8
(

1− z

4

)3/4
αj

+ z5/4
(

1− z

4

)−3/2
α2
0

= z−3/4
(

1− z

4

)3/2(
τ2 + 2α0τ1z

1 + 3z
4(

1− z
4

)3 +
α2
0z

2(
1− z

4

)3
)
,

σ3 =
∑

0≤i<j<k≤4
λiλjλk

=
∑

2≤i<j<k≤4
λiλjλk +

[
(λ0 + λ1)

∑
2≤j<k≤4

λjλk

]
+

[
λ0λ1

∑
2≤k≤4

λk

]
=

∑
2≤i<j<k≤4

z−3/8
(

1− z

4

)3/4
αi · z−3/8

(
1− z

4

)3/4
αj · z−3/8

(
1− z

4

)3/4
αk

+

(
2α0z

5/8
(

1− z

4

)−9/4(
1 +

3z

4

)) ∑
2≤j<k≤4

z−3/8
(

1− z

4

)3/4
αj · z−3/8

(
1− z

4

)3/4
αk
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+ z5/4
(

1− z

4

)−3/2
α2
0

∑
2≤k≤4

z−3/8
(

1− z

4

)3/4
αk

= z−9/8
(

1− z

4

)9/4(
τ3 + 2α0τ2z

1 + 3z
4(

1− z
4

)3 +
α2
0τ1z

2(
1− z

4

)3
)
,

σ4 =
∑

0≤i≤4

∏
j 6=i

λj

=

[
(λ0 + λ1)

∑
2≤i<j<k≤4

λiλjλk

]
+

[
λ0λ1

∑
2≤j<k≤4

λjλk

]
= 2α0z

5/8
(

1− z

4

)−9/4(
1 +

3z

4

) ∑
2≤i<j<k≤4

[
z−3/8

(
1− z

4

)3/4
αi·

·z−3/8
(

1− z

4

)3/4
αj · z−3/8

(
1− z

4

)3/4
αk

]
+

+ z5/4
(

1− z

4

)−3/2
α2
0

∑
2≤j<k≤4

z−3/8
(

1− z

4

)3/4
αj · z−3/8

(
1− z

4

)3/4
αk

= z−1/2
(

2α0τ3

(
1 +

3z

4

)
+ α2

0τ2z

)
,

σ5 =
4∏
i=0

λi

= z5/4
(

1− z

4

)−3/2
α2
0 ·

4∏
i=2

z−3/8
(

1− z

4

)3/4
αi

= α2
0τ3z

1/8
(

1− z

4

)3/4
,

v =
∏

0≤i<j≤4
(λj − λi)

= (λ1 − λ0) ·
4∏
j=2

(λj − λ0) (λj − λ1) ·
∏

2≤i<j≤4
(λj − λi)

= (λ1 − λ0) ·
4∏
j=2

(
λ2j − (λ0 + λ1)λj + λ0λ1

)
·
∏

2≤i<j≤4
(λj − λi)

= z9/8
(

1− z

4

)−9/4
α0

(
3 +

z

4

)
·

·
4∏
j=2

[
z−3/4

(
1− z

4

)3/2
α2
j − 2α0z

5/8
(

1− z

4

)−9/4(
1 +

3z

4

)
·

·z−3/8
(

1− z

4

)3/4
αj + z5/4

(
1− z

4

)−3/2
α2
0

]
·

·
∏

2≤i<j≤4

(
z−3/8

(
1− z

4

)3/4
(αj − αi)

)
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= α0

(
3 +

z

4

) 4∏
j=2

z−3/4
(

1− z

4

)−3/2((
1− z

4

)3
α2
j − 2α0z

(
1 +

3z

4

)
αj + z2α2

0

)w
= α0

(
3 +

z

4

)
z−9/4

(
1− z

4

)−9/2  4∏
j=2

z2α2
0 − 2α0αjz

(
1 +

3z

4

)
+ α2

j

(
1− z

4

)3w.
Note that there are three errors in the original paper [Bek82], namely a 2 instead of

a 3 in the power of the �rst denominator in the formula for σ3 and an additional factor
(−1) and

(
3 + z

8

)
instead of

(
3 + z

4

)
in the formula for v.

By means of σ5, one can also express the set of cubic forms which admit a non-
degenerate Sylvester equation (cf. De�nition 4.2) with linear forms li = Xi more elegantly
as S0 := S r V (σ5).
The importance of S0 lies in the possibility to apply Proposition 4.5. In what follows,

we shall need

Lemma 6.8. Let n ∈ N∗. Then for all homogeneous polynomials f on Pn and all
g = (gij) ∈ SL (n+ 1) one has Hf◦g = Hf ◦ g.

Proof. One �rst computes He (f ◦ g).
By the chain rule, one has for all p ∈ Pn

D (f ◦ g) (p) = (Df) (gp) ·Dg (p) = (Df) (gp) · g

and hence for all j ∈ {0, . . . , n}

∂ (f ◦ g)

∂Xj
(p) =

n∑
k=0

∂f

∂Xk
(gp) gkj .

Carrying out the same calculation for all ∂f
∂Xk

, one obtains for all i, j ∈ {0, . . . , n}

∂2 (f ◦ g)

∂Xi∂Xj
(p) =

∂

∂Xi

(
n∑
k=0

∂f

∂Xk
(gp) gkj

)

=
n∑
k=0

∂

∂Xi

(
∂f

∂Xk
(gp) gkj

)

=
n∑

l,k=0

∂2f

∂Xl∂Xk
(gp) gligkj

=
(
gT · ((He (f)) (gp)) · g

)
ij
,

whence He (f ◦ g) = gT · (He (f) ◦ g) · g and, as g ∈ SL (n+ 1),

Hf◦g = det (He (f ◦ g)) = det
(
gT · (He (f) ◦ g) · g

)
= (det (g))2 · det (He (f) ◦ g) = 1 · det (He (f) ◦ g) = Hf ◦ g.
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Recall that the action of G = SL (4) on V = C[X0, . . . , X3]3 is given by (g.f)(p) =
f(g−1p) ∀p ∈ P3. In order to identify the group H acting on S, we shall need

Lemma 6.9. Let f ∈ S0 and g ∈ G such that g.f ∈ S. Then g is an automorphism of
the Sylvester pentahedron (cf. De�nition 4.4).

Proof. Lemma 6.8 implies that the Hessian surface of g.f is given as the zero locus of the
polynomialHf◦g−1 = Hf ◦g−1 and therefore has the same degree as the Hessian surface of
f . Since by Lemma 4.3, the degree of a Hessian of a degenerate Sylvester form is strictly
less than the degree of a Hessian of a non-degenerate Sylvester form, the Sylvester form
of g.f (which exists as g.f ∈ S) must again be non-degenerate, i.e. g.f ∈ S0.
Let furthermore P := {pijk : i, j, k ∈ {0, . . . , 4} pairwise distinct}. Then g maps the

ten points pijk ∈ P (cf. De�nition 4.4) again into P : Indeed, since for all p ∈ V
(∑4

i=0Xi

)
one has (g.f) (gp) = f

(
g−1gp

)
= f (p) and likewise Hg.f (gp) = Hf

(
g−1gp

)
= Hf (p)

and f ∈ S0, the g (pijk) are singular points of Hg.f , but not of g.f by Proposition 4.5.
But g.f ∈ S0 as well, so another application of Proposition 4.5 gives that g (pijk) ∈ P
for all i, j, k pairwise distinct. Since g is injective, it even induces a bijection P → P .
One can now determine the image of the Ei (cf. De�nition 4.4) under g. Let i ∈
{0, . . . , 4}. There are

(
4
2

)
= 6 possibilities to choose two out of the four indices {0, . . . , 4}r

{i}, so let {jl, kl}, l = 1, . . . , 6 be all subsets of {0, . . . , 4}r {i} with two elements. Then
pijlkl ∈ Ei for all l ∈ {1, . . . , 6}. We already know that g (pijlkl) ∈ P for all l = 1, . . . , 6,
let therefore al, bl, cl ∈ {0, . . . , 4}, l = 1, . . . , 6 such that g (pijlkl) = palblcl . As g is
injective, the sets {al, bl, cl} are pairwise distinct.
One of the �ve indices 0, . . . , 4 must occur in at least four of these sets because if every

index were to occur in at most three, one could only choose 5·3
3 = 5 points from P . Let

without loss of generality a1 = a2 = a3 = a4 = a ∈ {0, . . . , 4}, in other words, g (pijlkl)
lie in Ea for l = 1, . . . , 4. One can now show that g (Ei) = Ea. First note that since
g ∈ SL (4), it maps linear subspaces to linear subspaces of the same dimension, hence it
su�ces to show that g (Ei) ⊆ Ea. As g (pijlkl) ∈ Ea, l = 1, . . . , 4, it is enough to prove
that the span pij1k1 , pij2k2 , pij3k3 , pij4k4 is equal to Ei. That is the case if the span is
two-dimensional because it is a subspace of Ei.
In order to show this, choose l1, l2 ∈ {1, . . . , 4}, l1 6= l2 such that {jl1 , kl1}∩{jl2∩kl2} 6=

∅, i.e. pijl1kl1 and pijl2kl2 have a common non-vanishing coordinate. This is of course
always possible because every point pijlkl is given by choosing two out of four indices
jl, kl ∈ {0, . . . , 4}r {i}. Without loss of generality let jl1 = jl2 = j. We get

dim(pijkl1 , pijkl2 ) = dim(pijkl1 ) + dim(pijkl2 )− dim(pijkl1 ∩ pijkl2 )

= dim(pijkl1 ) + dim(pijkl2 )− dim (∅) = 0 + 0− (−1) = 1.

Furthermore, there is an l3 ∈ {1, . . . , 4} such that {jl3 , kl3} ∩ {j} = ∅ because if j
occurred as an index in pij1k1 , pij2k2 , pij3k3 , pij4k4 , two of the points would be equal. Since
it follows from {jl3 , kl3} ∩ {j} = ∅ that the j-th coordinate of pijkl1 , pijkl2 vanishes, but
the j-th coordinate of pijl3kl3 does not, pijl3kl3 does not lie in the span pijkl1 , pijkl2 and
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hence

2 = dim(Ei) ≥ dim(pij1k1 , pij2k2 , pij3k3 , pij4k4) ≥ dim(pijkl1 , pijkl2 , pijl3kl3 )

= dim(pijkl1 , pijkl2 ) + dim(pijl3kl3 )− dim(pijkl1 , pijkl2 ∩ pijl3kl3 )

= 1 + 0− dim (∅) = 2,

from which follows pij1k1 , pij2k2 , pij3k3 , pij4k4 = Ei and therefore g (Ei) = Ea.
Since i has been chosen arbitrarily and no two hyperplanes of the Sylvester pentahedron

get mapped to the same hyperplane by the injectivity of g, one obtains the assertion.

Before we come to the main proof, let us show

Lemma 6.10. Let Fi (z) be rational functions in z and F̃t (z) =
∑N

i=0 t
iFi (z). If F̃ is

regular as z → 0 for all t 6= 0, Fi is regular as z → 0 for all i.

In the following proof, regular means always regular as z → 0, i.e. the limit limz→0 Fi (z)
of the scalar functions Fi (z) exists in C.

Proof. By partial fraction decomposition, every rational function in z can, in a neigh-
bourhood of 0, be expressed in a Laurent series with only �nitely many negative powers
of z. The part with the non-negative powers forms of course a regular function, so for
all i = 0, . . . , N there are regular functions Ri, an ni ∈ N and cij ∈ C, j = 1, . . . , ni such
that Fi (z) = Ri +

∑ni
j=1

cij
zj
. By adding zeros, we can assume without loss of generality

that n0 = . . . = nN = n. As

F̃t (z) =

N∑
i=0

tiFi (z) =

N∑
i=0

ti

Ri +

n∑
j=1

cij
zj

 =

(
N∑
i=0

tiRi

)
+

n∑
j=1

(
N∑
i=0

ticij

)
1

zj

is regular for all t 6= 0, we must have
∑N

i=0 t
icij = 0 for all t 6= 0, j = 1, . . . , n. Plugging

in N + 1 pairwise di�erent values t0, . . . , tN for t, we get1 t0 . . . tN0
...

...
...

1 tN . . . tNN

 ·
 c0j

...
cNj

 =

0
...
0

 .

But Vandermonde matrix on the left-hand side has determinant
∏

0≤k<l≤N (tl − tk) 6= 0
because the tk were chosen to be pairwise di�erent. Hence, it is injective and we must
have c0j = . . . = cNj = 0 for all j = 1, . . . , n. It follows that Fi = Ri is regular for all
i = 0, . . . , N .

We are now �nally ready to tackle the main proof of this chapter.

Proof of Theorem 6.1. Recall that the proof consists of the following steps:

Step 1 Find a �nite subgroup H of G which acts on S and show that there is a birational
map S�H → V �G. In particular, every F ∈ O (S)H can be continued to a rational
function F̂ on all of V (see the actual proof for details).
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Step 2 Show that O (V )G = {F ∈ O (S)H : F̂ is regular on S′}.

Step 3 Compute {F ∈ O (S)H : F̂ is regular on S′}.

Let us now concern with the details.
Step 1 Find a �nite subgroup H of G which acts on S and show that there is a

birational map S�H → V �G.
It seems natural to take as H the stabilizer subgroup of S in G, i.e. all h ∈ G such

that for all f ∈ S one has h.f ∈ S. Since S0 is dense in S, we can equivalently require
that h.f ∈ S for all f ∈ S0. By the proof of Proposition 6.9, one gets already h.f ∈ S0
for all f ∈ S0.
Proposition 6.9 also yields that every h ∈ H is an automorphism of the Sylvester penta-

hedron. Let us therefore determine the group of the automorphisms of the Sylvester pen-
tahedron

⋃4
i=0Ei in P4 which are in G. Since a (linear) automorphism h = (hij)i,j=0,...,4

of the Sylvester pentahedron maps every plane Ei = V (Xi) into a plane Ej = V (Xj)
with i, j ∈ {0, . . . , 4}, it has to be a permutation of the coordinates together with
a rescaling of these. More concretely, there are λ0, . . . , λ4 ∈ C× and a permutation
σ ∈ S5, σ : {0, . . . , 4} → {0, . . . , 4} such that

hij =

{
λi if j = σ (i) ,

0 if j 6= σ (i) .

On the other hand, h is in G = SL (4), hence an automorphism of P3. As P3 is

embedded into P4 as the hypersurface V
(∑4

i=0Xi

)
, h has to leave this hypersurface

invariant. In particular, let for all i, j ∈ {0, . . . , 4}, i 6= j be qij = [q0 : . . . : q4] with

ql = δli−δlj . Then qij ∈ V
(∑4

i=0Xi

)
, hence also g (qij) ∈ V

(∑4
i=0Xi

)
. But g (qij) has

λi as the σ (i)-th and −λj as the σ (j)-th coordinate and zeros in the other coordinates,
so

0 =
4∑
l=0

(g (qij))l = λi − λj ⇔ λi = λj .

Thus, λ0 = . . . = λ4 =: λ and h has to be of the form h = λPσ, where Pσ is the

permutation matrix corresponding to σ. In fact, the map λPσ leaves V
(∑4

i=0Xi

)
invariant and λPσ ∈ GL (4).
Recall that G acts on a four-dimensional vector space, so for λPσ to be in G, we still

need
λ4 · sgn (σ) = λ4 · det (Pσ) = det (λPσ) = 1.

Let ζ8 denote a primitive eighth root of unity.
If σ ∈ A5, one must have λ4 = 1 or, equivalently, λ = ζ2n8 , n = 0, . . . , 3.
If σ ∈ S5 r A5, one must have λ4 = −1 or, equivalently, λ = ζ2n+1

8 , n = 0, . . . , 3.
Since every odd permutation is the product of an even permutation with the transpo-
sition 〈0, 1〉 and

(
ζ8 · P〈0,1〉

)2
= ζ28 · 1, the group of the automorphisms of the Sylvester

pentahedron which lie in G is generated by A5 and ζ8 · P〈0,1〉.
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Obviously all these automorphisms leave the section S invariant, i.e. they map an
f ∈ S again into S, and are therefore in H. Since it has already been established in
Proposition 6.9 that every h ∈ H is an automorphism of the Sylvester pentahedron, we
can identify H with the automorphisms of the Sylvester pentahedron which lie in G, so

H =
〈
A5, ζ8 · P〈0,1〉

〉
.

In particular, H is a �nite group of order |H| = |A5| · |
〈
ζ8P〈0,1〉

〉
| = 5!

2 · 8 = 60 · 8 = 480.
For any f ∈ S0, the orbit H.f is exactly the intersection G.f ∩ S because g.f ∈ S for
any g ∈ G already implies that g is an automorphism of the Sylvester pentahedron and
therefore in H.
Next, one sees that every f ∈ S0 is stable. By Remark 3.12, there are, after a linear

change of coordinates, the following possibilities for the determinant of the Hessian matrix
of a non-stable f ∈ V . In all cases, h (X1, X2, X3) denotes a homogeneous polynomial of
degree 3.

(a) f (X0, X1, X2, X3) = h (X1, X2, X3)

He (f) =


0 0 0 0
0
0 ∗
0


Hf = det (He (f)) = 0

(b) f = X0X
2
3 + h (X1, X2, X3)

He (f) =


0 0 0 2X3

0
0 ∗

2X3


Hf = det (He (f)) = 4X2

3 · α (X0, X1, X2, X3) for some quadratic polynomial
α (X0, X1, X2, X3) since by the Leibniz rule every term needs to contain a coef-
�cient from the �rst row and from the �rst column as a factor.

(c) f = X0X2X3 + h (X1, X2, X3)

He (f) =


0 0 X3 X2

0
X3 ∗
X2


Hf = det (He (f)) = X2

2 · β1 (X0, X1, X2, X3) + X2X3 · β2 (X0, X1, X2, X3) + X2
3 ·

β3 (X0, X1, X2, X3) for some quadratic polynomials βi (X0, X1, X2, X3) , i = 1, 2, 3
since again by the Leibniz rule every term needs to contain a coe�cient from the
�rst row and from the �rst column as a factor.
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In the �rst case, the Hessian surface of f , which is given by the polynomial 0, has no
singularities at all. Thus, f /∈ S0 by Proposition 4.5. In the second and third case, every
term in the derivation of Hf with respect to every Xi contains a factor X2 or X3, hence
the Hessian surface of f has the line l23 (cf. De�nition 4.4) of singular points. Again by
Proposition 4.5, f /∈ S0.
In consequence, every f ∈ S0 is stable. In particular, π−1 ◦π (f) = G.f holds for every

f ∈ S0. Using this and the form of H, we can show the assertion of Step 1.
For all f ∈ S0, the �bre of π|S (f) under (π|S)−1 is the orbit H.f . Indeed,

(π|S)−1 (π|S (f)) = (π|S)−1 (π (f)) = π−1 (π (f)) ∩ S = G.f ∩ S = H.f

because it is known from Lemma 6.9 that g.f ∈ S already implies g ∈ H. Hence, the
quotient map π|S�H : S�H → V �G, which is well-de�ned since H is a subgroup of G, is
one-to-one on the set S0�H. As S0 ⊂ S is open, so is S0�H ⊂ S�H by Corollary 2.19.
Since S is a section, π|S�H is also dominant and therefore birational.
As a birational map between two varieties induces an isomorphism of the corresponding

function �elds, we have K (S�H) ∼= K (V �G). On the other hand, Lemma 2.11 and its
proof show that K (S)H ∼= K (S�H) and K (V �G) ⊆ K (V )G. Hence, we have the
inclusion

O (S)H ⊆ K (S)H = K (S�H) ∼= K (V �G) ⊆ K (V )G .

Denote in the following the image of an F ∈ O (S)H under this inclusion by F̂ . Note
that in particular F̂ (gs) = F (s) for all s ∈ S, g ∈ G.
Before we proceed to Step 2, let us look at some examples of invariants in O (S)H

which are continued to invariants in O (V )G. De�ne

I8 = σ24 − 4σ3σ5, I16 = σ35σ1, I24 = σ45σ4, I32 = σ65σ2,

I40 = σ85, I48 = σ95σ3 and I100 = σ185 v,

where the σi are the elementary symmetric functions and v is the Vandermonde deter-
minant in the parameters λi of the section S.
Since deg σi = i and deg v = 10, we have deg In = n, n = 8, 16, 24, 32, 40, 48, 100. In

order to show that the In are invariant under H =
〈
A5, ζ8 · P〈0,1〉

〉
, we have to show

that they are invariant under even permutations of the λi and under swapping λ0 and
λ1 followed by multiplying every λi with ζ8.
In the cases n = 8, 16, 24, 32, 40, 48, the In are polynomials in the elementary symmetric
polynomials, thus invariant under any permutation of the coordinates. They are also
invariant under the multiplication of the coordinates with an eighth root of unity because
their degree is divisible by 8.
In the case n = 100, σ5 and v are invariant under even permutations. Swapping λ0
and λ1 leaves σ185 invariant and creates an additional factor −1 in v. That factor is
cancelled out by a second −1 which arises at the multiplication of the λi with ζ8 since
deg I100 = 100 and ζ1008 = −1.
Therefore, In ∈ O (S)H , n = 8, 16, 24, 32, 40, 48, 100, and they can be continued to

În ∈ K (V )G, which are the invariants appearing in the formulation of the theorem. Note
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also that I48 = σ95σ3 = 1
4

(
σ85σ

2
4 − σ85σ24 + σ85 · 4σ3σ5

)
= 1

4

(
I224 − I40I8

)
, which accords

with the assertions of the theorem. Furthermore, S0 = S r V (σ5) = S r V
(
σ85
)

=
S r V (I40).
Step 2 Show that O (V )G = {F ∈ O (S)H : F̂ is regular on S′}.
This step is divided into three parts:

Step 2a The set of points whose orbits do not intersect S0 is given by the hypersurface
V (Î40).

Step 2b The section S′ intersects the orbits of an open set of points of V (Î40) ⊂ V .

Step 2c If F ∈ O (S)H , then F̂ ∈ O (V )G if and only if F̂ is regular on S′.

Step 2a The set of points whose orbits do not intersect S0 is given by the hypersurface
V (Î40).
Since S ∼= A5, the subvariety S0 = S r V (I40) is a�ne with coordinate ring O (S0) =

C [λ0, . . . , λ4]I40 (cf. [Har77, Lemma I.4.2]), which is normal as the localization of a
normal ring. Hence, S0 and V are normal and irreducible a�ne varieties, and so are
their quotients S0�H and V �G by Corollary 2.13 and Corollary 2.20. As it is also
known from Step 1 that π|S0�H : S0�H → V �G is birational and that π|S0�H ful�ls
(π|S0�H)−1◦(π|S0�H)

(
f̄
)

= {f̄} for all f̄ ∈ S0�H and is therefore quasi-�nite, it follows
from a corollary of Zariski's main theorem on birational transformations that π|S0�H is
an open embedding, see e.g. [Now96, Cor. 1].
In particular, π|S0�H (S0�H) ⊆ V �G is open a�ne. An application of point-set

topology yields again

π|S0�H (S0�H) = π|S0 (S0) = π|S (S0) ⊇ π|S
(
S0
)

= π|S (S)

and by the dominance of π|S , π|S0�H (S0�H) ⊇ π|S (S) = V �G, from which follows that
π|S0�H (S0�H) is dense in V �G. It is known that the complement of a dense open a�ne
subset in any variety is of pure codimension one, cf. e.g. [RV04, Cor. 2.4]. In particular,
this holds for the complement of π|S0�H (S0�H) in V �G, which is exactly the image
under π of the set of points whose orbits do not intersect S0 (because all points in S0
are stable). It has to be shown that this complement is the zero locus of the G-invariant
function Î40 ∈ K (V �G) ⊆ K (V )G and that already Î40 ∈ O (V �G) ∼= O (V )G.
Let X ⊆ (V �G) r (π|S0�H) (S0�H) be an irreducible component of the comple-

ment. Since X is of pure codimension one, it is a hypersurface given by a non-constant
irreducible polynomial f ∈ O (V �G) ∼= O (V )G (of course, irreducible means here ir-
reducible as a polynomial in O (V )G), cf. [Har77, Prop. I.1.13]. Since the inclusion
O (V �G) ⊂ K (V �G) ∼= K (S�H) is given by the restriction of a function on V to S and
the restriction of a regular function is again a regular function, we have an injective map
ϕ : O (V �G) → O (S�H) , α 7→ α|S . Then V (ϕ (f)) ⊆ (S�H) r (S0�H) = V (I40) in
S�H (use again O (S�H) ∼= O (S)H to regard I40 as a regular function on S�H). But
V (ϕ (f)) is of codimension one in S�H. Hence, every other irreducible closed subset of
S�H containing it is either equal or the whole space S�H.
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Let us show that I40 is irreducible in O (S�H) ∼= O (S)H . It su�ces to show that
any regular function on S�H which does not vanish on S0�H has degree greater or
equal to 40. Let r ∈ O (S)H with V (r) ⊆ V (σ5). Then we have

√
(σ5) ⊆

√
(r) by

the Nullstellensatz, i.e. there exists an n ∈ N and an r1 ∈ O (S) such that σn5 = r1 · r.
Recall that σ5 is the �fth elementary symmetric function in the coordinates λ0, . . . , λ4
of S, so there are n0, . . . , n4 ∈ {0, . . . , n} such that λn0

0 · . . . · λ
n4
4 = r. But r has to be

invariant under the action of H =
〈
A5, ζ8 · P〈0,1〉

〉
, so n0 = . . . = n4 and 8 | deg r. The

�rst condition implies r = σm5 for some m ≤ n and then the second condition implies
that σ85 | r, or deg r ≥ 40. Hence, I40 is irreducible in O (S)H and V (ϕ (f)) = V (I40)
since V (I40) 6= S�H.
Let us show next that we even have ϕ (f)m = In40 up to units for somem,n ∈ N. By yet

another application of the Nullstellensatz, there are ν1, ν2 ∈ N and α1, α2 ∈ O (S) such
that ϕ (f)ν1 = α1 · I40 and Iν240 = α2 · ϕ (f). From ϕ (f) , I40 ∈ (O (S))H we can follow
already α1, α2 ∈ (O (S))H . On the other hand, we have (I40)

ν1ν2 = (α2 · ϕ (f))ν1 =
α1α

ν1
2 · I40. As in the previous paragraph, α1 ∈ O (S)H and α1 | Iν1ν240 = σ8ν1ν25 implies

that α1 is some power of σ85 = I40 up to units. Let now n ∈ N and µ ∈ C× such that
α1 = µ · In−140 and m = ν1, then ϕ (f)m = α1 · I40 = µ · In40.
Under the inclusion O (S)H ⊆ K (V )G this equality becomes fm = ϕ̂ (f)m = µ̂ · In40 =

µ · În40 since the map ϕ is injective. Therefore, we have V (f) = V (Î40) and Î40 ∈ O (V )G

because f ∈ O (V )G. As V (f) was an arbitrary irreducible component of the complement
of (π|S0�H) (S0�H) in V �G, Step 2a is shown.
Step 2b The section S′ intersects the orbits of an open set of points of V (Î40) ⊂ V .
Recall that

S′ := {3α0X
2
0X1 +

1

4
α1X

3
1 + α2X

3
2 + α3X

3
3 + α4X

3
4 : αi ∈ C}

and de�ne the hypersurface N := V (α1) ⊂ S′. Our aim is to show that G.N = V (Î40).
Since the orbits of varieties under algebraic group actions are constructible sets, this of
course implies that G.N contains a dense open subset of V (Î40) = G.N and therefore
proves the assertion of Step 2b.
Let us show �rst thatG.N ⊆ V (Î40). By Step 2a, it su�ces to prove that that the orbits

of points of N do not intersect S0. Let f = 3α0X
2
0X1 + α2X

3
2 + α3X

3
3 + α4X

3
4 ∈ N . We

want to compute the Hessian surface V (Hf ) and then use Lemma 4.3 and Proposition 4.5.
As in Lemma 4.3, computing the Hessian requires techniques from Classical Algebraic
Geometry which are too extensive to be introduced in this thesis. Nonetheless, the
calculation will be given here since the author knows of no presence of it in the literature.
The required knowledge is treated in [Dol12, Ch. 1].
The cubic f de�nes a cubic surface in P3, again embedded into P4 as the hyper-

plane V
(∑4

i=0Xi

)
. Its corresponding Hessian surface V (Hf ) is the locus of points

a = [a0 : a1 : a2 : a3 : a4] ∈ V
(∑4

i=0Xi

)
such that the polar quadric

Pa (V (f)) =

4∑
i=0

ai
∂f

∂Xi
= 6a0α0X0X1 + 3a1α0X

2
0 +

4∑
i=2

3aiαiX
2
i = 0
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is singular. In the hypersurface V
(∑4

i=0Xi

)
this means that the polar a1α0X

2
0 +

2a0α0X0X1 +
∑4

i=2 aiαiX
2
i = 0 is tangent to V

(∑4
i=0Xi

)
, or equivalently that the

point [1 : 1 : 1 : 1 : 1] lies in the dual quadric 2
a0α0

U0U1 − a1
a20α0

U2
1 +

∑4
i=2

1
aiαi

U2
i = 0,

where the terms with αi = 0 are left out. Multiplication with the common denominator
now gives the equation Hf = 0 which de�nes the Hessian surface on all of P3.
Thus, if αi = 0 for some i ∈ {0, 2, 3, 4}, the Hessian surface has degree strictly less than

4. By Lemma 6.8, for every g ∈ G the Hessian of g.f is the zero locus ofHf◦g−1 = Hf ◦g−1
and therefore also of degree strictly less than 4. In particular, g.f /∈ S0 for all g ∈ G by
Lemma 4.3.
If αi 6= 0 for i = 0, 2, 3, 4, the polynomial Hf de�ning the Hessian surface of f is (up

to a non-zero scalar factor) given by

Hf = (2X0 −X1)
4∏
j=2

αjXj +X0

4∑
i=2

∏
j 6=1,i

αjXj .

Let now p = [p0 : p1 : p2 : p3 : p4] ∈ V
(∑4

i=0Xi

)
. The surface of f resp. its Hessian

surface is given by f =
∑4

i=0Xi = 0 resp. Hf =
∑4

i=0Xi = 0 and therefore singular at
p if and only if

rank

( ∂f
∂X0

(p) ∂f
∂X1

(p) ∂f
∂X2

(p) ∂f
∂X3

(p) ∂f
∂X4

(p)

1 1 1 1 1

)
= 1 resp.

rank

(
∂Hf

∂X0
(p)

∂Hf

∂X1
(p)

∂Hf

∂X2
(p)

∂Hf

∂X3
(p)

∂Hf

∂X4
(p)

1 1 1 1 1

)
= 1,

which is in turn equivalent to ∂f
∂X0

(p) = ∂f
∂X1

(p) = ∂f
∂X2

(p) = ∂f
∂X3

(p) = ∂f
∂X4

(p) = c1

resp. ∂Hf

∂X0
(p) =

∂Hf

∂X1
(p) =

∂Hf

∂X2
(p) =

∂Hf

∂X3
(p) =

∂Hf

∂X4
(p) = c2 for some c1, c2 ∈ C.

If p ∈ V
(∏4

i=0Xi

)
, p cannot be a singular point of V (f) since pi = 0 for some

i ∈ {0, . . . , 4} implies c1 = 0 and therefore pj = 0 for j = 0, 2, 3, 4, but this is impossible

as p ∈ V
(∑4

i=0Xi

)
.

Suppose that p ∈ V
(∏4

i=0Xi

)
is a singular point of the Hessian surface.

If p0 = 0, then −
∏4
j=2 αjpj =

∂Hf

∂X1
(p) =

∂Hf

∂X0
(p) = 2

∏4
j=2 αjpj , hence

∏4
j=2 αjpj = 0

and there is a j1 ∈ {2, 3, 4} such that pj1 = 0. Furthermore, 0 = −
∏4
j=2 αjpj =

∂Hf

∂X1
(p) =

∂Hf

∂Xj1
(p) = −p1

∏
j 6=0,1,j1

αjpj , so there is a j2 ∈ {1, 2, 3, 4} , j2 6= j1 such that

pj2 = 0. Thus, p = p0j1j2 for some j1, j2 ∈ {1, 2, 3, 4} , j1 6= j2.

If p0 6= 0 and p1 = 0, then −
∏4
j=2 αjpj =

∂Hf

∂X1
(p) =

∂Hf

∂X0
(p) = 2

∏4
j=2 αjpj +

2
∑4

i=2

∏
j 6=1,i αjpj , whence it follows that

∑4
i=2

∏
j 6=1,i αjpj = −3

2

∏4
j=2 αjpj . Since

p is in the zero locus of Hf , we must have 0 = Hf (p) = (2p0 − p1)
∏4
j=2 αjpj +

p0
∑4

i=2

∏
j 6=1,i αjpj = p0

2

∏4
j=2 αjpj . As p0 6= 0, there must be a j1 ∈ {2, 3, 4} such
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that pj1 = 0. As before, this implies that c2 =
∂Hf

∂X1
(p) = 0. Thus, 0 =

∂Hf

∂X0
(p) =

2
∏
j 6=1,j1

αjpj , so there is a j2 ∈ {2, 3, 4} , j2 6= j1 such that pj2 = 0. But now

0 =
∂Hf

∂Xj1
(p) = p0αj1

∏
j 6=1,j1,j2

αjpj , which is impossible because at most three coor-

dinates of p ∈ V
(∑4

i=0Xi

)
can vanish. Hence, we must have either p0 = 0 or p0, p1 6= 0.

If p0, p1 6= 0 and pj1 = 0 for some j1 ∈ {2, 3, 4}, it follows again that c2 =
∂Hf

∂X1
(p) =

−
∏4
j=2 αjpj = 0 and further 0 =

∂Hf

∂X0
(p) = 2

∏
j 6=1,j1

αjpj . Since p0 6= 0, there must be a

j2 ∈ {2, 3, 4} , j2 6= j1 such that pj2 = 0. Therefore, 0 =
∂Hf

∂Xj1
(p) = αj1p0

∏
j 6=1,j1,j2

αjpj ,

which implies p = p234 because p0 6= 0.
On the other hand it is checked easily that p0ij , i, j ∈ {1, 2, 3, 4} and p234 really are
singular points of V (Hf ), so we can conclude that these are the only singular points of

the Hessian surface in V
(∏4

i=0Xi

)
.

Now we consider the case p ∈ V
(∑4

i=0Xi

)
r V

(∏4
i=0Xi

)
.

As we have seen above, in order for the Jacobian matrix of the surface of f to have
rank 1 at p, we must have ∂f

∂Xi
(p) = c1 with c1 ∈ C for all i ∈ {0, . . . , 4}. From

∂f
∂X0

(p) = 6α0p0p1,
∂f
∂X1

(p) = 3α0p
2
0 and ∂f

∂Xi
(p) = 3αip

2
i , i = 2, 3, 4 it follows that this

is the case if and only if p =
[
ε0√
α0

: ε0
2
√
α0

: ε2√
α2

: ε3√
α3

: ε4√
α4

]
, where εi ∈ {−1, 1} for

i = 0, 2, 3, 4 (recall pi 6= 0).

On the open set V
(∑4

i=0Xi

)
r V

(∏4
i=0Xi

)
(open as a subset of P3 ∼= V

(∑4
i=0Xi

)
),

the Hessian surface of f is given by 2
α0X0

− X1

α0X2
0
+
∑4

i=2
1

αiXi
= 0. In order for the Jacobian

matrix of Hf to have rank 1, we must have ∂Hf

∂Xi
(p) = c2 with c2 ∈ C for all i ∈ {0, . . . , 4}.

From ∂Hf

∂X0
(p) = − 2

α0p20
+ 2p1

α0p30
, ∂Hf

∂X1
(p) = − 1

α0p20
and ∂Hf

∂Xi
(p) = − 1

αipi2
, i = 2, 3, 4 it

follows again that this holds if and only if p =
[
ε0√
α0

: ε0
2
√
α0

: ε2√
α2

: ε3√
α3

: ε4√
α4

]
, where

εi ∈ {−1, 1} for i = 0, 2, 3, 4.
Furthermore,

f

([
ε0√
α0

:
ε0

2
√
α0

:
ε2√
α2

:
ε3√
α3

:
ε4√
α4

])
=

3

2
· ε0√

α0
+

ε2√
α2

+
ε3√
α3

+
ε4√
α4

= Hf

([
ε0√
α0

:
ε0

2
√
α0

:
ε2√
α2

:
ε3√
α3

:
ε4√
α4

])
,

so p =
[
ε0√
α0

: ε0
2
√
α0

: ε2√
α2

: ε3√
α3

: ε4√
α4

]
lies in the zero locus of f if and only if it lies in

the zero locus of Hf . We can conclude that on V
(∑4

i=0Xi

)
rV

(∏4
i=0Xi

)
, the singular

points of V (f) coincide with the singular points of V (Hf )

Our preceding considerations have shown that the only points which are singular

points of V (Hf ) and not of V (f) in V
(∑4

i=0Xi

)
are the seven points p0ij , i, j ∈

{1, 2, 3, 4} , i 6= j, and p234. But it has been shown in the proof of Lemma 6.9 that
under a linear transformation g ∈ G, singular points of Hf which are no singular points
of f must be mapped to singular points of Hg.f which are no singular points of g.f . Since
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g is injective, Proposition 4.5 implies that there cannot be a g ∈ G such that g.f ∈ S0.
Hence,

G.N ⊂ V (Î40).

In order to prove that G.N = V (Î40), it su�ces to show that dim
(
G.N

)
= 19 =

dim(V (Î40)) (the second equation holds since V (Î40) is an irreducible hypersurface of
V ∼= A20, cf. Step 2a). We can use the same method as in the proof of Lemma 6.6. The
map ψ : G×N → G.N, (g, f) 7→ g.f is a dominant morphism of varieties, hence we have
for a general f0 ∈ G.N

dimG+ dimN = dim (G×N) = dim
(
G.N

)
+ dim

(
ψ−1 (f0)

)
.

Since the constructible set G.N contains an open dense subset of G.N and we have for all
g ∈ G and all f0 ∈ G.N that dim

(
ψ−1 (f0)

)
= dim

(
ψ−1 (g.f0)

)
, we can assume without

loss of generality that f0 ∈ N .
But then

ψ−1 (f0) = {(g, f) ∈ G×N : g.f = f0} =
{

(g, f) ∈ G×N : g−1.f0 = f
}

∼= {g ∈ G : g.f0 ∈ N} .

The set Tran (f0, N) := {g ∈ G : g.f0 ∈ N} is called the transporter of f0 and N . Since
the seven singular points p0ij , i, j ∈ {1, 2, 3, 4} , i 6= j, and p234 span the hyperplane

V
(∑4

i=0Xi

)
, every g ∈ G is already determined by the action on these points. If

g maps some f0 ∈ N again into N , it induces a permutation on these points, hence
Tran (f0, N) is �nite for all f0 ∈ N . We get

dim
(
G.N

)
= dim (G) + dim (N)− dim (Tran (f0, N)) = 15 + 4− 0 = 19,

which concludes the proof of Step 2b.
Step 2c If F ∈ O (S)H , then F̂ ∈ O (V )G if and only if F̂ is regular on S′.
Let F ∈ O (S)H . By the canonical inclusion O (S)H ⊂ K (V )G discussed above,

there are R1, R2 ∈ O (V ) such that F̂ = R1
R2

is G-invariant and extends F on the larger

domain V . In particular, R1(gs)
R2(gs)

= F̂ (gs) = F̂ (s) = F (s) for all s ∈ S, g ∈ G. Hence,
R2 can only vanish on points whose orbit do not intersect S. By Step 2a, this means
V (R2) ⊆ V (Î40) and by the Nullstellensatz there exists an α ∈ O (V ) and an n ∈ N
such that α · R2 = În40. We can therefore, after a possible expansion of the fraction,
assume without loss of generality that F̂ = R1

În40
. Since În40, F̂ ∈ K (V )G, we must also

have R1 ∈ O (V ) ∩K (V )G = O (V )G.
If F̂ is regular on V , this obviously implies that F̂ is regular on the subset S′.
Conversely, if F̂ is regular on S′, by its G-invariance and Step 2b, F̂ must be regular

on an open subset of V (Î40). But F̂ = R1

În40
, so n = 0 and F̂ = R1 ∈ O (V )G and we have

shown that
O (V )G = {F ∈ O (S)H : F̂ is regular on S′}.

Step 3 Compute {F ∈ O (S)H : F̂ is regular on S′}.
This step is again divided into three parts:
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Step 3a Show O (S)H = A0⊕A1, where A0 are the symmetric polynomials on S whose
monomials have degree 8k, k ∈ N and A1 are the polynomials of the form vs, with v
the Vandermonde determinant in the coe�cients λi and s a symmetric polynomial
whose monomials have degree 8k − 6, k ∈ N.

Step 3b Show
⊕

k∈NO (V )G8k = C[Î8, Î16, Î24, Î32, Î40].

Step 3c Show
⊕

k∈NO (V )G8k+4 =
(⊕

k∈NO (V )G8k

)
[Î100].

Step 3a Show O (S)H = A0⊕A1, where A0 are the symmetric polynomials on S whose
monomials have degree 8k, k ∈ N and A1 are the polynomials of the form vs, with v the
Vandermonde determinant in the coe�cients λi and s a symmetric polynomial whose
monomials have degree 8k − 6, k ∈ N.
Recall that H =

〈
A5, ζ8 · P〈0,1〉

〉
, where we identify an element σ ∈ A5 with the corre-

sponding permutation matrix Pσ ∈ GL (S). We therefore have to �nd the polynomials
P ∈ O (S) = C [λ0, . . . , λ4] which are invariant under the action of A5 and of ζ8 · P〈0,1〉.
The invariant ring A := C [λ0, . . . , λ4]

A5 is just the polynomial algebra generated by the
symmetric and the alternating polynomials. By the fundamental theorem of alternating
functions, we have A = C [λ0, . . . , λ4]

A5 = C [σ1, . . . , σ5, v] (cf. [Rom05]), where the sym-
metric polynomials are those in which v occurs only in even powers and the alternating
polynomials those in which v occurs only in odd powers.
A symmetric polynomial is invariant under P〈0,1〉, hence it is invariant under ζ8 ·P〈0,1〉 if
and only if its monomials have degree 8k, k ∈ N.
The action of P〈0,1〉 on an alternating polynomial produces a factor −1. Hence, an alter-
nating polynomial is invariant under ζ8 · P〈0,1〉 if and only if its monomials have degree
8k + 4, k ∈ N. Since the Vandermonde determinant occurs in every alternating poly-
nomial only in odd powers, we may equivalently say that an alternating polynomial is
invariant under ζ8 · P〈0,1〉 if and only if it is of the form vs, where s is a symmetric
polynomial whose monomials have degree 8k − 6, k ∈ N.
If we denote the subspaces of the symmetric resp. alternating polynomials described

above by A0 resp. A1, we obtain O (S)H = A0 ⊕A1.
Step 3b Show

⊕
k∈NO (V )G8k = C[Î8, Î16, Î24, Î32, Î40].

It can be checked easily that the În, n = 8, 16, 24, 32, 40 are regular on S′.
For every cubic polynomial f ∈ S′ r V (α0α1), we have found in Lemma 6.7 a represen-
tative f̃ ∈ S ∩G.f and expressed the values of the elementary symmetric functions σi in
f̃ in terms of the coordinates of f . Since the În are G-invariant, we can compute their
values on S′ r V (α0α1) simply by plugging in the formulae for the σi from Lemma 6.7
into the formulae for the In from the end of Step 1. The arising functions in the coordi-
nates z, α0, τ1, τ2, τ3 are polynomials in α0, τ1, τ2, τ3, so one only has to check that they
do not have poles for the critical values z = 0 and z = 4, which is elementary calculus.
Since V (α0) = V (λ0) ⊂ S ∩ S′, the În are regular on V (α0) as well.
Since it has been shown in Step 2b that V (α1) ⊂ V (Î40) and I40 = σ85, checking the
regularity of the În on V (α1) becomes also trivial.
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Hence, the În are regular on S′ which proves C[Î8, Î16, Î24, Î32, Î40] ⊆
⊕

k∈NO (V )G8k by
Step 2.
Verifying the other inclusion causes more trouble. We know that on S, every invariant

in
⊕

k∈NO (V )G8k can be written in the form P (σ1, . . . , σ5) where P is a polynomial. We
can now use again that the function is G-invariant and that we have found formulae
expressing for all f ∈ S′ r V (α0α1) the values of the elementary symmetric functions
σi in some representative of the orbit of f in S in the coordinates of f . It follows from
the regularity condition for P̂ that P (σ1 (z) , . . . , σ5 (z)) must be regular as a function
on S′. In particular, P (σ1 (z) , . . . , σ5 (z)) must be regular as z → 0 for any α0 6=
0, τ1, τ2, τ3 where the τi denote the elementary symmetric polynomials in α2, α3, α4 as
above. Here and in the following, regular will always mean regular as z → 0, i.e. the
limit limz→0 P (σ1 (z) , . . . , σ5 (z)) of the scalar functions P (σ1 (z) , . . . , σ5 (z)) exists in
C.
In order to show the assertion of Step 3b, it therefore su�ces to prove

Proposition 6.11. Let P (y1, . . . , y5) be a polynomial such that P (σ1 (z) , . . . , σ5 (z)) is
regular for all α0 6= 0 and τ1, τ2, τ3. Then P is a polynomial in

J8 = y24 − 4y3y5, J16 = y35y1, J24 = y45y4,

J32 = y65y2, J40 = y85 and J48 = y95y3.

Note that In = Jn (σ1, . . . , σ5) and that again J48 = 1
4

(
J2
24 − J8J40

)
.

The complicated formulae for the σi (z) from Lemma 6.7 still make it very di�cult for
us to prove the proposition. We help ourselves with the following workaround:
Recall from De�nition 3.10 that the initial form of a polynomial is its homogeneous

part of least degree. We de�ne σ′i to be the initial forms of the σi in α0 for all i = 1, . . . , 5.
From Lemma 6.7 we get

σ′1 = τ1 · z−3/8
(

1− z

4

)3/4
, σ′2 = τ2 · z−3/4

(
1− z

4

)3/2
σ′3 = τ3 · z−9/8

(
1− z

4

)9/4
, σ′4 = 2α0τ3 · z−1/2

(
1 +

3z

4

)
σ′5 = α2

0τ3z
1/8
(

1− z

4

)3/4
.

We prove now the proposition with the modi�ed condition that P (σ′1 (z) , . . . , σ′5 (z))
instead of P (σ1 (z) , . . . , σ5 (z)) is regular for all α0 6= 0 and τ1, τ2, τ3. This will allow us
to prove the original proposition by induction.
Let us �rst show the proposition with the modi�ed condition for a monomial

P = ym1
1 · . . . · ym5

5 .

For a polynomial F (y1, . . . , y5), ν (F ) will denote in the following the order of the zero
of F (σ′1 (z) , . . . , σ′5 (z)) in z = 0 (if F (σ′1 (z) , . . . , σ′5 (z)) has a pole in z = 0, ν (F ) will
be negative with absolute value the pole order of F (σ′1 (z) , . . . , σ′5 (z))). For example,
we have

ν (y1) = −3

8
, ν (y2) = −3

4
, ν (y3) = −9

8
, ν (y4) = −1

2
, ν (y5) =

1

8
.

41



Since P (σ′1 (z) , . . . , σ′5 (z)) = (σ′1)
m1 · . . . · (σ′5)

m5 is regular by assumption, we must have

n := ν (P ) = −3

8
m1 −

3

4
m2 −

9

8
m3 −

1

2
m4 +

1

8
m5 ≥ 0 and

m5 = 8n+ 3m1 + 6m2 + 9m3 + 4m4.

Therefore,

P = ym1
1 ym2

2 ym3
3 ym4

4 ym5
5 = y3m1

5 ym1
1 y4m4

5 ym4
4 y6m2

5 ym2
2 y9m3

5 ym3
3 y8n5 = Jm1

16 J
m4
24 J

m2
32 J

m3
48 J

n
40

is a polynomial in J8, J16, J24, J32, J40.
Next, let us show the proposition with the modi�ed condition for a polynomial of the

form
P (y1, y2, y3, y4, y5) = M (y1, y2, y3, y4, y5)Qn

(
y24, y3y5

)
,

where M is a monomial and Qn a homogeneous polynomial of degree n (so Qn
(
y24, y3y5

)
regarded as a polynomial in y1, y2, y3, y4, y5 has degree 2n). We shall of course try to
reduce this to the case already proven. In order to do so, we need the following statement:
For all n ∈ N∗ we have ν

(
Qn
(
y24, y3y5

))
≤ 0. If in addition k = ν

(
Qn
(
y24, y3y5

))
>

−n, then Qn
(
y24, y3y5

)
= Jn+k8 Rk

(
y24, y3y5

)
, where ν

(
Rk
(
y24, y3y5

))
= k.

This statement is proved by induction on n.
For n = 1, we must have Qn

(
y24, y3y5

)
= ay24 + by3y5 for some a, b ∈ C and thus

Qn

((
σ′4
)2
, σ′3σ

′
5

)
= a · 4α2

0τ
2
3 · z−1

(
1 +

3z

4

)2

+ b · α2
0τ

2
3 · z−1

(
1− z

4

)3
If Qn is regular as z → 0, the coe�cient of z−1 must vanish. This is the case for all α0 6= 0
and all τ3 only if 4a + b = 0. Hence Qn

(
y24, y3y5

)
reduces to ay24 − 4ay3y5 = aJ1+0

8 . So
the decomposition exists for all k > −1 and in particular ν

(
Qn
(
y24, y3y5

))
= ν (J8) = 0.

For the inductive step, let the statement be proven for n − 1. Consider a Qn satisfying
k = ν

(
Qn
(
y24, y3y5

))
> −n.

If the coe�cient of y2n4 in Qn
(
y24, y3y5

)
vanishes, there is a homogeneous polynomial

Qn−1 of degree n − 1 such that Qn
(
y24, y3y5

)
= y3y5Qn−1

(
y24, y3y5

)
. In particular,

ν
(
Qn−1

(
y24, y3y5

))
= ν

(
Qn
(
y24, y3y5

))
− ν (y3y5) = k + 9

8 −
1
8 = k + 1 > − (n− 1). By

the induction hypothesis, we have k+1 ≤ 0 and there is a homogeneous polynomial Rk+1

such that Qn−1
(
y24, y3y5

)
= Jn−1+k+1

8 Rk+1

(
y24, y3y5

)
and ν

(
Rk+1

(
y24, y3y5

))
= k + 1.

Setting Rk
(
y24, y3y5

)
= y3y5Rk+1

(
y24, y3y5

)
, we have Qn

(
y24, y3y5

)
= Jn+k8 Rk

(
y24, y3y5

)
and ν

(
Rk
(
y24, y3y5

))
= ν (y3y5) + ν

(
Rk+1

(
y24, y3y5

))
= −1 + k + 1 = k.

If the coe�cient of y2n4 in Qn
(
y24, y3y5

)
is a 6= 0, the coe�cient of y2n4 vanishes in the

polynomial
Qn
(
y24, y3y5

)
− aJn8 = Qn

(
y24, y3y5

)
− a

(
y24 − 4y3y5

)
.

From what we have just proved, we know that k = ν
(
Qn
(
y24, y3y5

)
− aJn8

)
≤ −1

or Qn
(
y24, y3y5

)
= aJn8 and that there is a homogeneous polynomial R̃k of degree

−k with ν(R̃k
(
y24, y3y5

)
) = k and Qn

(
y24, y3y5

)
− aJn8 = Jn+k8 R̃k

(
y24, y3y5

)
. Hence,

Qn
(
y24, y3y5

)
= Jn+k8 (R̃k

(
y24, y3y5

)
+ aJ−k8 ). Setting Rk

(
y24, y3y5

)
:= R̃k

(
y24, y3y5

)
+
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aJ−k8 , we have Qn
(
y24, y3y5

)
= Jn+k8 Rk

(
y24, y3y5

)
and furthermore ν

(
Rk
(
y24, y3y5

))
= k

since ν
(
R̃k
(
y24, y3y5

))
= k and ν

(
aJ−k8

)
= 0. This concludes the proof of the statement.

With the help of this statement, we can now show the proposition with the modi�ed
condition for a polynomial of the form

P (y1, y2, y3, y4, y5) = M (y1, y2, y3, y4, y5)Qn
(
y24, y3y5

)
.

Concretely, we show that there exists a polynomial R (y1, y2, y3, y4, y5) whose monomials
are all regular such that M (y1, y2, y3, y4, y5)Qn

(
y24, y3y5

)
= Jn−k8 R (y1, y2, y3, y4, y5) for

some k ≥ 0. This gives us the desired result since we have already proven the proposition
for regular monomials.
If ν (M) ≤ 0, then the regularity of

M
(
σ′1 (z) , σ′2 (z) , σ′3 (z) , σ′4 (z) , σ′5 (z)

)
Qn

((
σ′4 (z)

)2
, σ′3 (z)σ′5 (z)

)
implies that ν

(
Qn
(
y24, y3y5

))
≥ −ν (M) ≥ 0. But by the previous statement, we

must have ν
(
Qn
(
y24, y3y5

))
≤ 0 and therefore ν

(
Qn
(
y24, y3y5

))
= ν (M) = 0. Hence,

M (σ′1 (z) , σ′2 (z) , σ′3 (z) , σ′4 (z) , σ′5 (z)) and Qn
(

(σ′4 (z))2 , σ′3 (z)σ′5 (z)
)
must be regular,

and the same has to hold for all of their monomials.
If 0 < k = ν (M) < n, then the regularity of

M
(
σ′1 (z) , σ′2 (z) , σ′3 (z) , σ′4 (z) , σ′5 (z)

)
Qn

((
σ′4 (z)

)2
, σ′3 (z)σ′5 (z)

)
implies that ν

(
Qn
(
y24, y3y5

))
≥ −k. By the previous statement, we have Qn

(
y24, y3y5

)
=

Jn−k8 R−k
(
y24, y3y5

)
, andR−k

(
y24, y3y5

)
is homogeneous of degree 2k becauseQn

(
y24, y3y5

)
and Jn−k8 are homogeneous of degree 2n resp. 2 (n− k). Since (σ′4)

2 and σ′3σ
′
5 both have

a pole of order 1 at z = 0, every monomial of R−k
(
y24, y3, y5

)
has a pole of order k, thus

every monomial of MR−k is regular.
If ν (M) ≥ n, every monomial of M (y1, y2, y3, y4, y5)Qn

(
y24, y3y5

)
is regular, since as in

the previous case every monomial of Qn
(
y24, y3y5

)
has a pole of order n.

This shows the proposition with the modi�ed condition for a polynomial of the form
P (y1, y2, y3, y4, y5) = M (y1, y2, y3, y4, y5)Qn

(
y24, y3y5

)
. We can now prove it for a gen-

eral polynomial.
Let P (y1, y2, y3, y4, y5) =

∑
n1,n2

yn1
1 yn2

2 Pn1n2 (y3, y4, y5) with

Pn1n2 (y3, y4, y5) =
∑

n3,n4,n5

cn3n4n5y
n3
3 yn4

4 yn5
5

be a polynomial such that P (σ′1 (z) , . . . , σ′5 (z)) is regular for all α0 6= 0 and τ1, τ2, τ3.
Since τ1 only occurs as a factor in σ′1, applying Lemma 6.10 to P (σ′1, σ

′
2, σ
′
3, σ
′
4, σ
′
5) =∑

n1
(σ′1)

n1
∑

n2
(σ′2)

n2 Pn1n2 (σ′3, σ
′
4, σ
′
5) with t = τ1 implies that(

σ′1
)n1
∑
n2

(
σ′2
)n2 Pn1n2

(
σ′3, σ

′
4, σ
′
5

)
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is regular for all n1. Since τ2 only occurs as a factor in σ′2, it follows from the same
argument that (σ′1)

n1 (σ′2)
n2 Pn1n2 (σ′3, σ

′
4, σ
′
5) is regular for all n1, n2.

Unfortunately, this reasoning does not work for the remaining coe�cients because they
occur in more than one σ′i. However, τ3 is only a linear factor of σ′3, σ

′
4 and σ

′
5 and α0 a

linear factor of σ′4 and a quadratic factor of σ′5, so Lemma 6.10 provides at least that we
can assume without loss of generality

n4 + 2n5 = const and n3 + n4 + n5 = const.

Subtracting the �rst from the second equation, we obtain n3−n5 = const. Consequently,
Pn1n2 can be assumed to be of the form Pn1n2 (y3, y4, y5) = M (y3, y4, y5)Qn

(
y3y5, y

2
4

)
,

where M is a monomial and Qn a homogeneous polynomial of degree n.
Thus, we are left with regular polynomials of the formM (y1, y2, y3, y4, y5)Qn

(
y3y5, y

2
4

)
,

which have already been discussed. This concludes the proof of the proposition with the
modi�ed condition that P (σ′1 (z) , . . . , σ′5 (z)) be regular for all α0 6= 0 and τ1, τ2, τ3.
We show now that P (y1, y2, y3, y4, y5) is already a polynomial in the Jn if

P (σ1 (z) , . . . , σ5 (z))

is regular for all α0 6= 0 and τ1, τ2, τ3. This is done by induction on the number of
monomials occurring in P .
If P contains no monomial, this is trivial.
Let now P have n > 0 monomials. Applying again Lemma 6.10 to P (σ1, σ2, σ3, σ4, σ5)
with α0 as the graded variable t, we see that the part of P (σ1, σ2, σ3, σ4, σ5) with least
degree in α0 (the initial form of P with respect to α0) must be regular. But since the σ′i
were the initial forms of the σi with respect to α0, the initial form of P (σ1, σ2, σ3, σ4, σ5)
with respect to α0 is given by Pin (σ′1, σ

′
2, σ
′
3, σ
′
4, σ
′
5) where Pin is the sum of the monomials

cn1n2n3n4n5y
n1
1 yn2

2 yn3
3 yn4

4 yn5
5 with

∑5
i=1(degα0

σ′i) · ni minimal. Thus, it follows from the
proposition with the modi�ed condition that Pin must be a polynomial in the Jn. For the
rest of the polynomial one can use the induction hypothesis. This concludes the proof of
the proposition and therefore of Step 3b.

Step 3c Show
⊕

k∈NO (V )G8k+4 =
(⊕

k∈NO (V )G8k

)
[Î100].

This is proved completely analogously to Step 3b. First it is shown that Î100 is regular
on S′ and therefore in O (V )G.
In order to prove the other inclusion, we use that we know from Lemma 6.7 that the

Vandermonde determinant v in the coordinates λi of S can also be expressed in the
coordinates of representatives of the same G-orbits in S′ r V (α0α1) by

v = α0

(
3 +

z

4

)
z−9/4

(
1− z

4

)−9/2  4∏
j=2

z2α2
0 − 2α0αjz

(
1 +

3z

4

)
+ α2

j

(
1− z

4

)3w,
where w is the Vandermonde determinant in the coordinates α2, α3, α4 of S′. We
know further that every element P ∈

⊕
k∈NO (V )G8k+4 is given as the product P =

v ·F (σ1 (z) , . . . , σ5 (z)) of the Vandermonde determinant and a symmetric function with
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monomials of degree 8k−6, k ∈ N and must be regular on S′. As in the proof of Step 3b,
it su�ces to examine the necessary condition that v · F (σ1 (z) , . . . , σ5 (z)) is regular as
z → 0. Since v has a pole of order 9

4 in z = 0, F (σ1 (z) , . . . , σ5 (z)) must have a zero of
at least that order in z = 0.
We prove that if F (y1, . . . , y5) is a polynomial such that F (σ1 (z) , . . . , σ5 (z)) is regular

as z → 0 and has a zero of order k in z = 0, then F (y1, . . . , y5) = y8k5 R (y1 . . . , y5), where
R (σ1 (z) , . . . , σ5 (z)) is regular as z → 0.
By the same arguments as in Step 3b, it su�ces to show this for the σi replaced by σ′i

and F of the form F (y1 . . . , y5) = M (y1, . . . , y5)Qn
(
y24, y3y5

)
, where M is a monomial

and Qn a homogeneous polynomial of degree n. But the intermediate statement from
Step 3b already showed us that Qn

(
y24, y3y5

)
does not have a zero in z = 0. Hence, if F

has a zero of order k, it must come from the monomial M = ym1
1 ym2

2 ym3
3 ym4

4 ym5
5 , so

−3

8
m1 −

3

4
m2 −

9

8
m3 −

1

2
m4 +

1

8
m5 = k.

It follows that the function R (σ′1, . . . , σ
′
5) :=

M(σ′1,...,σ′5)
(σ′5)

8k is regular since the order of its
zero in z = 0 is

−3

8
m1 −

3

4
m2 −

9

8
m3 −

1

2
m4 +

1

8
m5 − k = 0.

We therefore have F (y1, . . . , y5) = y8k5 R (y1, . . . , y5) with R = F
y8k5

regular.

Since the zero of F must have at least order 9
4 , we can express the invariant P ∈⊕

k∈NO (V )G8k+4 as

P = v · F (σ1, . . . , σ5) = v · σ185 R (σ1, . . . , σ5) = I100 ·R (σ1, . . . , σ5)

for some regular symmetric R (σ1, . . . , σ5), which concludes the proof of Step 3c.
We shall �nish the proof of the theorem by showing that I8, I16, I24, I32, I40 are alge-

braically independent. In fact, σ5 is integral over C [I8, I16, I24, I32, I40], because I40 = σ85
and

σ1 =
I16
σ35
, σ2 =

I32
σ65
, σ3 =

I224 − σ85I8
4σ95

, σ4 =
I24
σ45

are rational functions in σ5, I8, I16, I24, I32, I40, so trdeg Quot (C [I8, I16, I24, I32, I40]) ≥
trdeg Quot (C [σ1, σ2, σ3, σ4, σ5]) = 5. Hence, the In, n = 8, 16, 24, 32, 40 are algebraically
independent. Since I2100 is a symmetric invariant, there exists a polynomial relation
I2100 = P (I8, I16, I24, I32, I40). This concludes the proof.

Note that we did not assume the classical result from [Sal65, Ch. XV] that the În are
invariants as has been done in the original paper [Bek82]. This makes some arguments
longer and more di�cult, but has the advantage of not relying on a computation which
is di�cult to follow.
For the sake of compliance with the literature, the invariants În will from now on be

denoted by In.
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7 Some special points and hypersurfaces

This thesis will be concluded by a short overview over geometric applications arising
from the theorem we have established. The examples come from [DvG07], where the
interested reader will �nd much more material.
We may �rst ask ourselves which cubics might correspond to the singular points of

the weighted projective space found in Proposition 5.6. We have established that the
weighted projective space is the quotient of the ordinary projective space under the action
of a �nite group. It can be seen easily that a point which has trivial stabilizer under
this action is mapped to a regular point in the quotient. So the singular points of the
weighted projective space have all a non-trivial �nite stabilizer group. This is also true
for their counterparts in the space of cubic surfaces.

Proposition 7.1. (i) The cubic surface corresponding to the point [0 : 0 : 1 : 0 : 0] ∈
P (1, 2, 3, 4, 5) is

X3
1 + ωX3

2 + ω2X3
3 − 3X2

0 (X1 +X2 +X3) = 0,

where ω is a primitive third root of unity. It does not admit a Sylvester form and
has the singular points

[
±1 : 1 : ω : ω2

]
. It has an automorphism of order 3 given

by [X0 : X1 : X2 : X3] 7→ [ωX0 : X2 : X3 : X1].

(ii) The cubic surface corresponding to the point [0 : 0 : 0 : 0 : 1] has the Sylvester form

4∑
i=0

ηiX3
i = 0,

4∑
i=0

Xi = 0,

where η is a primitive �fth root of unity. It has the singular point
[
1 : η2 : η4 : η : η3

]
and an automorphism of order 5 given by

[X0 : X1 : X2 : X3 : X4] 7→ [X1 : X2 : X3 : X4 : X0] .

We know already from the proof of the theorem that the space of cubics not admitting
a non-degenerate Sylvester form is the hyperplane Î40 = 0. We can use the invariants to
describe further interesting subspaces of the space of cubic surfaces.

Proposition 7.2. (i) The subvariety given by I24 = I40 = 0 consists of all surfaces of
the form

X3
1 +X3

2 + 2λX3
3 − 3X3

(
µX1X3 +X2X3 +X2

0

)
= 0, λ, µ ∈ C.

(ii) The subvariety given by I24 = I32 = I40 = 0 consists of all surfaces of the form

X3
1 +X3

2 + 2λX3
3 − 3X3

(
X2X3 +X2

0

)
= 0, λ ∈ C.
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(iii) The subvariety given by I8 = I24 = I40 = 0 consists of all surfaces of the form

X3
1 +X3

2 − 3X3

(
µX1X3 +X2X3 +X2

0

)
= 0, µ ∈ C.

The surfaces given by µ = 0 resp. µ3 = −1 correspond to the singular points
[0 : 1 : 0 : 0 : 0] resp. [0 : 0 : 0 : 1 : 0] of the weighted projective space P (1, 2, 3, 4, 5).

(iv) The unique orbit of all non-stable, but semi-stable cubic surfaces given by 0 =
X3

0 −X1X2X3 maps to the point [8 : 1 : 0 : 0 : 0] ∈M.
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