
Jacobians of Curves on
Surfaces

Fabian Koch

Born 1st March 1994 in Cologne, Germany

3rd September 2018

Master’s Thesis Mathematics

Advisor: Prof. Dr. Daniel Huybrechts

Second Advisor: Dr. Gebhard Martin

Mathematisches Institut

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn





JACOBIANS OF CURVES ON SURFACES

Contents

1. Introduction 3

2. Preliminaries 5

3. Reduction to the generic fibre 9

4. Simplicity of the generic fibre I 15

5. Simplicity of the generic fibre II 18

6. The non-regular case 20

7. Counterexample 21

8. Generalization to other fields 22

9. The case of Q 28

References 31

1. Introduction

Take a smooth projective surface S over C and let L be a very ample line bundle

on S. We want to study the structure of the Jacobians of smooth curves in the

linear system |L|. A natural question to ask is whether the Jacobians are simple

abelian varieties, i.e. have no proper non-trivial abelian subvarieties. Unfortu-

nately, the next lemma shows that this requires Alb(S) ∼ Jac(C) or Alb(S) = 0.

Lemma 1.1. Let C be a smooth curve in |L| and K(C, S) the kernel of the natural

map Jac(C)→ Alb(S). Then Jac(C) ∼ K(C, S)× Alb(S).

Thus, a more interesting question turns out to be:

Question 1.2. For which curves C in |L| is the abelian variety K(C, S) simple?

This was answered by Ciliberto and van der Geer in [6]. Namely, they proved

the following theorem:

Theorem 1.3. Let S and L be as above. Then for a very general curve C ∈ |L|,
K(C, S) has only trivial endomorphisms. In particular, K(C, S) is simple.

Which gives us the following corollary for the case of a regular surface S (i.e.

Alb(S) = 0):
3
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Corollary 1.4. Let S be a regular smooth projective surface over C and L some

very ample line bundle on S. Then for a very general curve C ∈ |L|, Jac(C) is a

simple abelian variety.

In the first half of this thesis we work out a detailed proof of the theorem, based

on the original proof given by Ciliberto and van der Geer. We begin by giving the

necessary background in abelian varieties and curves in very ample linear systems

on surfaces in section 2, focusing on the relationship between abelian subvarieties

and endomorphisms and the structure of the discriminant divisor of |L|.
The actual proof of the theorem starts in section 3, with the case of S being reg-

ular. We use the representability of the endomorphism functor of abelian schemes

to reduce the proof to showing that the Jacobian of the generic curve of |L| has

only trivial endomorphisms and then, using degenerations given by the discrimi-

nant divisor, show that this is equivalent to the Jacobian of the generic fibre being

simple.

In sections 4 and 5 we finish the proof of theorem 1.3 in the regular case by

giving two very different proofs of the fact that the Jacobian of the generic fibre

is simple. The original proof of Ciliberto and van der Geer, given in section 4,

focuses on the relationship of endomorphisms of Jac(C) and divisors on C × C,

explicitly computing that the latter can only be trivial. The proof given in section

5 on the other hand, uses the irreducibility of the monodromy action on the

middle vanishing cohomology of hyperplane sections, which in our case will just

be H1(Jac(C),Q).

We complete the proof of theorem 1.3 in section 6 by generalizing the arguments

of the earlier sections to non-regular surfaces, showing that the techniques we used

on Jac(C) also work for K(C, S).

The latter half of this thesis then focuses on possible generalizations of theorem

1.3. In section 7 we investigate if the theorem holds for more general line bundles.

We show that in general, at least birationality of the induced map by |L| from S

to Pn is needed and give a counterexample in the case of L being ample but not

very ample.

We then look at the case of arbitrary algebraically closed ground fields k. For k

uncountable, there is the following generalization of theorem 1.3, due to Banerjee:

Theorem 1.5. Let S be a smooth projective surface over some uncountable al-

gebraically closed field k and L a very ample line bundle on S. Assume that the

embedding induced by L is a Lefschetz embedding. Then for C a very general curve

in |L|, K(C, S) is absolutely simple.
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After reviewing the necessary results from étale cohomology, we will give a proof

of this theorem in section 8. The proof is similar to the one given in section 5,

using the geometry and étale monodromy of Lefschetz pencils to proof that the

Jacobian of the generic curve is absolutely simple.

The final section focuses on the case of the ground field being Q, which is not

covered by Banerjee’s theorem. Using a consequence of the Hilbert irreducibility

theorem proven by Terasoma in [15], we will show that nevertheless, still the

following holds:

Theorem 1.6. Let S be a smooth projective surface over Q and L a very ample

line bundle on S. Then there exists a smooth curve C ∈ |L|, defined over Q, such

that K(C, S) is absolutely simple.

Acknowledgements I would like to thank my advisor Prof. Daniel Huybrechts

for many helpful comments and insightful discussions during the creation of this

thesis.

Convention All maps between schemes are morphisms. An abelian variety

over k is a complete, separated, geometrically integral group scheme over k. A

homomorphism of abelian varieties is a morphism between abelian varieties which

respects the group structure. An isogeny between two abelian varieties A and B

is a surjective homomorphism ϕ : A → B such that ker(ϕ) is finite. If such an

isogeny exists, we call A and B isogenous and denote this by A ∼ B. As we will

see below, this is an equivalence relation.

A general (closed) point in a scheme X is a closed point lying in some dense

open subset, i.e. if some result holds for a general point, it holds for all closed

points in some dense open subset U ⊂ X.

A closed point x in a scheme X is called very general, if it lies in the complement

of a countable union of nowhere dense closed subsets, i.e. x ∈ X \
⋃
i∈N Zi, where

the Zi are closed subsets of X such that X \ Zi is dense in X.

2. Preliminaries

2.1. Simple Abelian Varieties. We begin with some basic definitions and re-

sults about abelian varieties over arbitrary fields.

Definition 2.1. Let A be an abelian variety over a field k. Then A is called

simple (or k-simple), if there are no proper non-trivial abelian subvarieties of A

over k and absolutely simple, if Ak is simple over k.
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Similar to abelian groups, we can split an abelian variety into a product of its

simple abelian subvarieties.

Lemma 2.2. Let A be an abelian variety and B ⊂ A a proper abelian subvariety.

Then there exists an abelian variety C ⊂ A such that the map

B × C −→ A

(b, c) 7−→ b+ c

is an isogeny.

Proof. [12, Proposition 12.1] �

Lemma 2.3. Let A and B be simple abelian varieties and ϕ : A → B a homo-

morphism of abelian varieties. Then ϕ is either an isogeny or the 0-morphism.

Proof. The identity component of ker(ϕ) is an abelian subvariety of A, thus either

ker(ϕ) = A or |ker(ϕ)| <∞. On the other hand, im(ϕ) is an abelian subvariety of

B, so either im(ϕ) = 0 or im(ϕ) = B. If ϕ is not the 0-morphism, we thus must

have |ker(ϕ)| <∞ and im(ϕ) = B and hence ϕ is an isogeny. �

Lemma 2.4. Let A be an abelian variety. Then A ∼
∏
Adii , where the Ai are

simple abelian varieties and Ai 6∼ Aj for i 6= j. Furthermore, the di are uniquely

determined and the Ai are unique up to isogeny.

Proof. Let A be an abelian variety. Either A is simple, or there exists a proper non-

trivial simple abelian subvariety A1 of A. Then by lemma 2.2, we find another

proper non-trivial abelian subvariety B1 such that A ∼ A1 × B1. Either B1 is

simple, or we can find a proper non-trivial simple abelian variety A2 ⊂ B1 and a

proper non-trivial abelian subvariety B2 ⊂ B1 such that A ∼ A1 × A2 × B2. As

the dimension of the Bi’s shrinks with every iteration, we can only do this finitely

many times before we have a product of simple abelian varieties. The uniqueness

then easily follows from lemma 2.3. �

The simplicity of an abelian variety is closely linked with its endomorphism, as

the next two lemmas show.

Lemma 2.5. Let ϕ : A→ B be an isogeny of abelian varieties. Then there exists

an isogeny ψ : B → A such that ψ ◦ φ = [n]A and φ ◦ ψ = [n]B for some n ∈ N.

Proof. The proof for arbitrary fields is analogous to the one for k = C given in [4,

Proposition 1.2.6]. �
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Lemma 2.6. An abelian variety is simple if and only if all of its endomorphisms

are either isogenies or the 0-morphism.

Proof. The ’only if-direction’ follows immediately from lemma 2.3.

For the converse, assume A is not simple, i.e. there exists a proper non-trivial

abelian subvariety B ⊂ A. Then by lemmas 2.2 and 2.5, we find an abelian variety

C ⊂ A and an isogeny φ : B×C → A, as well an isogeny ψ : A→ B×C. Consider

idB×0C ∈ End(B×C), then ψ ◦ idB×0C ◦φ ∈ End(A) is (for dimension reasons)

neither an isogeny nor the 0-morphism. �

Knowing this, we are interested in the structure of the endomorphism ring of

an abelian variety. Namely, we want to show that it is discrete.

Lemma 2.7. Let A and B be simple abelian varieties. Then Hom(A,B) is torsion

free.

Proof. [12, Lemma 12.2] �

Hence, it will be enough to prove that for an abelian variety A, End0(A) :=

End(A)⊗Q is discrete. To do this, we need the following proposition:

Proposition 2.8. The function F : End0(A) → Q, sending an endomorphism ϕ

to its degree, is a homogenous polynomial function of degree 2g on End0(A).

Proof. [12, Proposition 12.4] �

Corollary 2.9. End0(A) is discrete.

Proof. Combining lemmas 2.3 and 2.4, we see that End0(A) =
∏

End(Adii ). Fur-

thermore, we have that End0(Adii ) ∼= Mdi(End0(Ai)), hence it is enough to prove

the statement for a simple abelian variety A.

In this case, we know by lemma 2.6 that the only degree 0 endomorphism of A

is the 0-morphism. By lemma 2.8, the function F : End0(A) → Q is continuous

in the real topology and thus U := {ϕ ∈ End0(A) | F (ϕ) < 1} is an open set in

End0(A). However, as A is simple, U = {0} and hence End0(A) is discrete. �

Remark 2.10. In the case of the Jacobian of a curve, we can describe the endo-

morphism of Jac(C) by looking at correspondences of C×C. Let N := {L1⊗L2 ∈
Pic(C × C) | L1 ∈ im(π∗1), L2 ∈ im(π∗2)} for πi the canonical projections. Then

we get the following theorem:

Proposition 2.11. There exists a canonical isomorphism of abelian groups

Pic(C × C)/N −→ End(Jac(C)) (2.1)
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Proof. The proof for arbitrary fields is analogous to the one for k = C given in [4,

Theorem 11.5.1]. �

2.2. Curves on Surfaces. Let now S be a projective surface over C and L be a

very ample line bundle on S. Then the set U of all smooth divisors in the linear

system |L| is open and we define the discriminant divisor D as the complement of

U in |L|.

Lemma 2.12. Let D := |L| \ U , then the following assertions hold:

(i)D is a divisor.

(ii) Let V ⊂ D be the set of curves with one single ordinary double point. Then V

is open and non-empty.

(iii) The general curve C ∈ V is irreducible.

Proof. Let Z ⊂ S × |L| be the algebraic subset defined by Z = {(p, C) ∈ S × |L| |
p ∈ C and C is singular at p} and p1 : Z → S and p2 : Z → |L| the projections.

Then for every s ∈ S, p−1
1 (s) is the projective space of dimension dim|L| − 3 of

curves singular at s. Thus, dimZ = dim|L| − 1 and D = p2(Z), but a priori we

could have dim(D) < dim(Z).

Claim. dim(D) = dim(Z) = dim(|L|)− 1 if (S, L) � (P2,O(1))

Proof. [16, Example 7.5] �

This proves (i). For (ii), use the following statement:

Claim. The curve corresponding to the generic point of D has only one single

ordinary double point if dim(D) = dim(Z).

Proof. [17, Page 45] �

This ends the proof of (ii), as the set of curves with one single ordinary double

point is certainly open.

Let s ∈ S be a sufficiently general point. Then by the above, we see that p−1
1 (s)

is a linear system on S with a single base point. The irreducibility then follows

by Bertini’s 2nd theorem, see [11, Theorem 5.3]. �

As we are interested in the Jacobians of the curves in the linear system, let us

compute the Picard group of an irreducible curve with one single ordinary double

point (i.e. a general curve in D) for later use.
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Lemma 2.13. Let C be an irreducible curve with a single ordinary double point

as its only singularity and π : C̃ → C its normalization. Then we get a short exact

sequence of abelian groups:

0 −→ C∗ −→ Pic(C) −→ Pic(C̃) −→ 0

Proof. Let p ∈ C be the ordinary double point and p1, p2 ∈ C̃ the two points lying

over p. Let L̃ ∈ Pic(C̃) be a line bundle and ϕ : L̃(p1)→ L̃(p2) an isomorphism of

the fibres. Then by identifying L̃(p1) and L̃(p2) via ϕ, we obtain a line bundle L

on C.

On the other hand, for a line bundle L ∈ Pic(C), we have canonical isomor-

phisms π∗L(p1) ∼= π∗L(p2) of the fibres. As these two construction are inverse to

each other, we see that there is a 1 : 1 correspondence between line bundles L on

C and pairs (L̃, ϕ), where L̃ ∈ Pic(C̃) and ϕ : L̃(p1)→ L̃(p2) an isomorphism.

Thus, ker(π∗) corresponds to the set of isomorphisms from OC̃(p1) to OC̃(p2).

BothOC̃(p1) andOC̃(p2) are canonically isomorphic to C and hence we can identify

ker(π∗) with C∗. �

For C ∈ U , the inclusion C ⊂ S induces a natural map φ : Jac(C) = Alb(C)→
Alb(S). We denote its kernel by K(C, S). This yields the following result, which

was used in the introduction.

Lemma 2.14. Jac(C) ∼ Alb(S)×K(C, S).

Proof. We know by Lemma 2.2 that there exists an abelian subvariety A ⊂ Jac(C)

such that Jac(C) ∼ K(C, S) × A, so it suffices to prove that A ∼ Alb(S), which

follows immediately if φ is surjective. To see that this holds, consider the natural

morphism i∗ : Pic0(S)→ Pic0(C) = Jac(C) induced by i, which is, up to isogeny,

dual to φ. We have a short exact sequence

0 −→ OS(−C) −→ OS −→ OC −→ 0. (2.2)

By Kodaira vanishing, H1(S,OS(−C)) = 0, so H1(S,OS) → H1(C,OC) is injec-

tive and thus i∗ has finite kernel. Hence, i∗ is injective up to isogeny and therefore

its dual φ must be surjective. �

3. Reduction to the generic fibre

We are now ready to begin the proof of theorem 1.3. Following Ciliberto and

van der Geer, we will first do this for S being a regular surface. The proof will be

done in two steps. First, we will reduce the proof to showing that the Jacobian of

the generic curve of |L| is simple, which we will then prove in the second step. If
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the Jacobian of the generic curve in |L| is trivial, there will be a non-empty open

subset of |L| in which all curves have trivial Jacobian, thus proving the theorem.

So without loss of generality, we can assume that the generic curve has genus

greater than 0.

Let x ∈ S be a general point and define |L|x to be the linear subsystem of all

curves in |L| running through x. Let U ⊂ |L|x be the open set of smooth curves

in |L|x and p : C → U the universal family of smooth curves over U . To prove

the theorem, it will suffice to show that a very general curve C ∈ |L|x has only

trivial endomorphisms. Considering |L|x instead of |L| has the advantage that

now C → U has a section given by x, and hence the relative Picard scheme of C
over U exists. Thus, we get a projective family J → U of Jacobians over U , given

by Pic0
C/U .

3.1. The functor EndJ /U . Consider the functors

HilbJ×UJ /U : (Sch/U)opp −→ Sets, T −→ HilbJ×UJ /U(T )

and

EndJ /U : (Sch/U)opp −→ Sets, T −→ HomT (JT ,JT ).

Lemma 3.1. There is an injective natural transformation i : EndJ /U → HilbJ×UJ /U

sending an endomorphism f ∈ HomT (JT ,JT ) to its graph Γf .

Proof. Let T be some U -scheme and f ∈ HomT (JT ,JT ). First note that J → U is

separated, hence f will be separated and thus Γf will be closed. Furthermore, the

first projection induces an isomorphism Γf → JT and thus Γf will be proper and

flat over U , which shows that [Γf ] ∈ HilbJ×UJ /U(T ). For T ′ → T a morphism of U -

schemes, we have that (Γf )T ′ ∼= ΓfT ′ and hence i defines a natural transformation.

The injectivity follows from the fact that Γf ∼ Γg in HilbJ×UJ /U(T ) if and only

if f = g. �

Proposition 3.2. EndJ /U is representable by a disjoint union of projective U-

schemes.

Proof. (We follow ideas given in [9, Lemma 3.4.4])

To prove this, we will show that EndJ /U is represented by a closed subscheme

of HilbJ×UJ /U . Consider the functor

MorJ /U : (Sch/U)opp −→ Sets, T −→ MorT (JT ,JT )
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Then the natural transformation i′ : MorJ /U → HilbJ×UJ /U sending f to Γf is

representable by an open embedding by [14, Theorem 5.23]. Let T be some U -

scheme and Z ⊂ (J ×U J )T a family representing an element of HilbJ×UJ /U(T ).

Let V ⊂ U be the open set such that s ∈ V if and only if Zs ⊂ Jac(Cs)× Jac(Cs)
is a graph of a morphism. Let s ∈ V , then Zs is the graph of a homomorphism

of abelian varieties if and only if the corresponding morphism sends the unit of

Jac(Cs) to the unit. This is a closed condition, so EndJ /U is represented by a

locally closed subscheme EndJ /U of HilbJ×UJ /U .

It remains to show that EndJ /U is a closed subscheme. To do this, we will prove

that i : EndJ /U → HilbJ×UJ is proper using the valuative criterion of properness.

Consider a commutative diagram:

Spec(K) EndJ /U

Spec(A) HilbJ×UJ /U ,

i

for K some field and A a DVR with quotient field K. Then i is proper if and only

if for each such diagram there exists a unique morphism s : Spec(A) → EndJ /U

that makes the diagram commute. However, for a U -scheme T , a morphism T →
EndJ /U corresponds to an endomorphism of JT , the base change of J by T → U .

So proving the valuative criterion corresponds to proving that every endomorphism

of JK can be extended to a unique endomorphism of JA. This follows immediately

from the fact that abelian schemes over Dedekind schemes are Néron models of

their generic fibres, see [5, Proposition 1.2.8]. Thus, i is proper and its image is

closed, hence EndJ /U is a closed subscheme. �

Therefore, π : EndJ /U → U is of the form
∐

i∈N EndiJ /U with the EndiJ /U being

projective schemes over U . For a point u ∈ U and x ∈ π−1(u), x corresponds to

an endomorphism of Jac(Cu) over k(x).

Lemma 3.3. We have EndJ /U
∼=

∐
d∈N EndJ /U(d), where the EndJ /U(d) param-

etrize the endomorphisms of degree d.

Proof. By lemma 2.8, we find a continuous map f : EndJ /U → Z sending a point

x to the degree of the endomorphism it corresponds to. As EndJ /U(d) = f−1(d),

this proves the lemma. �

3.2. The very general construction. Let η be a fixed geometric generic point

of U and assume End(Jη) = Z. We want to show that this implies the existence of

a countable number of closed sets Zi, such that dim(Zi) < dim(U) and for every
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[C] ∈ U \
⋃
Zi, End(Jac(C)) = Z. Looking at the construction above, the natural

idea is to take Zi = π(EndiJ /U). Unfortunately, some of the πi := π|EndiJ/U
will be

dominant, as End(Jη) always contains the homomorphisms given by multiplication

with an integer. So, to get our closed sets Zi, we will have to shrink the EndiJ /U ’s.

Let n ∈ Z and consider [n]J , the endomorphism of J given by multiplication by

the integer n in the fibres. By definition of EndJ /U , this corresponds to a morphism

sn : U → EndJ /U , which is a section of π. Let EndiJ /U be the connected component

containing the image of sn. Let EndiJ /U =
⋃
Vj be the irreducible components of

EndiJ /U and Vk the irreducible component containing im(sn). As sn is proper, we

have that im(sn) is a closed irreducible subset of Vk. By corollary 2.9, every fibre

of π is discrete. Hence, dim(Vk) ≤ dim(U) and thus im(sn) = Vk. Conversely,

every dominant Vk will be of this form, as End(Jη) = Z.

Define Ji := {j | π|Vj is not dominant} and Zi := π(
⋃
j∈Ji Vj). Then the

Zi are non-dominant by definition and for all curves [C] ∈ U \
⋃
Zi, we have

End(Jac(C)) = Z, as the points we removed from the EndiJ /U ’s corresponded to

multiplication with an integer.

3.3. Simplicity of Jη. We have shown that to prove the theorem, it is enough to

prove that End(Jη) = Z. Our next goal is to prove that this is in fact equivalent

to Jη being simple. For this, we need the following technical lemmas.

Lemma 3.4. Let Y be a projective irreducible curve with generic point η and

V ⊂ Y a non-empty open subset. Let X → V be an irreducible flat family and

X → Y a family such that X ⊂ X is dense. Then for a closed point o ∈ Y \ V ,

we have dim(X o) = dim(Xη).

Proof. By the semi-continuity of fibre dimension, we know that dim(Xη) ≤ dim(X o),

so it suffices to show that dim(X o) ≤ dim(Xη). Assume dim(X o) > dim(Xη). As

X ⊂ X is dense and X → V flat, we have dim(X ) = dim(X ) = dim(Xη) + 1. So

if dim(X o) > dim(Xη), it follows that dim(X o) ≥ dim(X ), which is impossible as

X is irreducible. �

Lemma 3.5. Let R be a DVR with maximal ideal m. Let A and B be two R-

algebras such that mA and mB are prime ideals in A and B. Let f : A→ B be an

injective R-algebra homomorphism. Assume fm : A/mA→ B/mB is injective and

the induced map f̃ : Q(A) → Q(B) is an isomorphism. Then f̃m : Q(A/mA) →
Q(B/mB) is an isomorphism as well.

Proof. We need to show that f̃m is surjective. So, let a
s
∈ Q(B/mB) and b

t
∈ Q(A)

such that f(b)
f(t)
∼ a

s
in Q(B). As long as f(t) /∈ mB, b

t
∈ Q(A/mA) will be sent
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to a
s

by f̃m. Assume f(t) ∈ mB. As a · f(t) = f(b) · s and s /∈ mB, we see that

f(b) ∈ mB as mB is a prime ideal. But then b, t ∈ mA = πA, so there exist

b′, t′ ∈ A such that b = b′ · π and t = t′ · π. Then b
t
∼ b′

s′
and after repeating this

finitely many times, we can assume that t′ /∈ mA, finishing the proof. �

Using these lemmas, we can now prove that End(Jη) = Z is equivalent to Jη
being absolutely simple.

Proposition 3.6. If Jη is absolutely simple, then End(Jη) = Z.

Proof. Let Jη be absolutely simple, then the only degree 0 endomorphism of Jη
is [0]Jη . Repeating the steps in 3.2 for EndJ /U(0) instead of EndJ /U , we find

countably many non-dominant closed sets Z ′i ⊂ U such that the Jacobian of every

curve [C] ∈ U \
⋃
Z ′i is absolutely simple. Thus, using Lemma 2.12, we can find

a Lefschetz pencil (Ct)t∈P1 in |L|x, such that the Jacobian of its generic fibre is

absolutely simple.

Let µ ∈ P1 be the generic point and µ a geometric point over µ. The idea of

the proof is to construct a homomorphism φ : End(Jac(Cµ)) → End(Gm) ' Z,

which then needs to be injective, hence proving that End(Jac(Cµ)) = Z. To

do this, consider f ∈ End(Jac(Cµ)), an endomorphism of Jac(Cµ) defined over

some finite field extension of K of k(µ). Using the equivalence of categories [1,

Theorem 0BY1], we find a non-constant morphism of smooth projective curves

P → P1, such that k(µP ) = K for µP ∈ P the generic point. Let D ⊂ |L|x be the

discriminant divisor, V ⊂ P be an open subset with V ∩D = p and call the base

change of (Ct)t∈P1 to V again (Ct)t∈V . Considering Pic0(C/V ), we find a family

over V , the fibres of which are all abelian varieties except for the fibre at p, which

is an extension of an abelian variety by the group Gm by lemma 2.13.

Let Γf ⊂ Jac(Cµ) × Jac(Cµ) be the graph of f . Taking its closure, we get a

closed set Γf ⊂ Pic0(C/V ) ×V Pic0(C/V ). As Γf is the graph of a morphism,

p1 : Γf → Pic0(C/V ) is generically finite of degree 1. Using lemma 3.4 on Γf and

the scheme theoretic image of p1, we see that dim(Pic0(Cp)) = dim((Γf )p) and

p̃1 := (p1)|(Γf )p
: (Γf )p → Pic0(Cp) is surjective. Therefore, p̃1 is also generically

finite. Furthermore, using lemma 3.5 on OC,p, we see that p̃1 is in fact generically

finite of degree 1.

By Lemma 2.13, we have a short exact sequence

0 −→ Gm −→ Pic0(Cp) −→ Jac(C̃p) −→ 0 (3.1)

for C̃p the normalization of Cp. Thus, we find a Gm in Pic0(Cp) such that

(p̃1)|p̃−1
1 (Gm) : Gm → Pic0(Cp) is generically finite of degree 1. As Gm is a curve,

https://stacks.math.columbia.edu/tag/0BY1
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there exists a non-empty open set W ⊂ Gm such that (p̃1)|p̃−1
1 (W ) is an isomor-

phism onto its image. We want p̃−1
1 (W ) to be the graph of a homomorphism

W → Gm, which will extend to an endomorphism Gm → Gm. To prove this, we

need p2(p̃−1
1 (W )) ⊂ ker(Pic0(Cp)→ Jac(C̃p)). If this were not the case, we would

get a non-trivial map W → Jac(C̃p), which would extend to a non-trivial map

from P1 to Jac(C̃p), but such a map does not exist.

Let us check that the map defined by sending f to the homomorphism of

Gm we just constructed is indeed a homomorphism. First consider [n]Jac(Cµ) ∈
End(Jac(Cµ)) for some n ∈ Z. Then the closure of the graph will just be the

graph of [n]Pic0(C/V ) and thus [n]Jac(Cµ) will be sent to [n]Gm . Furthermore, if

f, g ∈ End(Jac(Cµ)), Γf◦g is a closed subset of the contraction of Γf and Γg. So,

there exists an open set W ⊂ Gm such that (Γf◦g)|W is the contraction of (Γf )|W

and (Γg)|W and thus φ(f ◦ g) = φ(f) ◦ φ(g). Lastly, for f, g ∈ End(Jac(Cµ)),

f + g is given by s ◦ (f, g) ◦ ∆, where ∆ is the diagonal morphism and s is the

group structure on Jac(Cµ). Then by again considering contraction, we see that

φ(f + g) = φ(f) + φ(g). As every non-zero element in End(Jac(Cµ)) is an isogeny

and φ is a homomorphism, we see by lemma 2.5 that End(Jac(Cµ))→ Gm = Z is

injective. Thus, End(Jac(Cµ) = Z.

Consider an endomorphism f of Jη, which by definition corresponds to a k(η)-

point in EndJ /U . Let Z ⊂ EndJ /U be the irreducible component containing this

k(η)-point, then Z → U must be dominant. The construction in 3.2 implies, that

if f is not multiplication by an integer, we find an open set in V ⊂ U such that all

points of Z lying over V correspond to endomorphisms which are not multiplication

by an integer. Therefore, we would find a Lefschetz pencil as above such that

End(Jac(Cµ)) 6= Z, which is a contradiction. Thus, also End(Jη) = Z. �

We end the reduction steps by showing that Jη being simple already implies

that it is absolutely simple.

Lemma 3.7. Jη is simple if and only if it is absolutely simple.

Proof. The ”if-direction” holds by definition. Conversely, assume Jη is simple but

not absolutely simple. Then by assumption, there exists a finite field extension

K/k(η) and a proper non-trivial simple abelian subvariety B ⊂ JK over K.

Claim. JK ∼
∏

σ∈GBσ, where G ⊂ Gal(K/k(η)) is a subgroup with order greater

or equal two and the Bσ are the Galois conjugates of B.

Proof. Let s : JK × JK → JK be the group operation. Define morphisms sn

from
∏n

i=1 JK → JK recursively by setting sn = s ◦ (sn−1× idJK ) and s1 = s. For
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n = [K : k(η)], consider the morphism sn :
∏

σ∈Gal(K/k(η))Bσ → JK . By definition,

im(sn) will be invariant under the action of Gal(K/k(η)) and hence defined over

k(η). As Jη is simple, this shows that sn must be surjective. If ker(sn) is finite, sn

is an isogeny and we are done. Assume not. Then there exists τ ∈ Gal(K/k(η)),

such that for sn−1 :
∏

σ∈Gal(K/k(η))\{τ}Bσ → JK , im(sn−1) ∩ Bτ is non-finite. As

Bτ is simple, we have that im(sn−1) ∩ Bτ = Bτ and thus sn−1 must already be

surjective. After repeating this step a finite number of times, we find a subgroup

G ⊂ Gal(K/k(η)) of order i such that si :
∏

σ∈GBσ → JK is an isogeny. As B is

not defined over k(η), we see that i must be greater or equal to two. �

Let ϕ be the endomorphism of JK with image B. By [1, Theorem 0BXN],

there exists a normal variety U ′ with function field K and a dominant morphism

g : U ′ → U . Using [14, Theorem 5.22 (b)], we can spread ϕ to an endomorphism

over an open subset of U ′. Doing the same for the automorphisms of JK associated

with Gal(K/k(η)), we get an action of Gal(K/k(η)) defined over some open set of

U ′. Thus, we can find a Lefschetz pencil (Ct)t∈P1 in |L|x with geometric generic

point µ ∈ P1, such that ϕ and the action of Gal(K/k(η)) are defined on Jac(Cµ).

Then for B̃ = im(ϕµ), we have Jac(Cµ) ∼
∏

σ∈G B̃σ. As we showed above, there is

a homomorphism φ : End(Jµ) → Gm. For σ ∈ G, define fσ to be endomorphism

corresponding to σ ◦ (id× 0× ...× 0)◦σ−1. Then for σ, τ ∈ G with σ 6= τ , we have

fσ ◦fτ = 0, so there exists σ ∈ G such that φ(fσ) = 0. Therefore, φ(fσ) = 0 for all

σ ∈ G, as the fσ are conjugates and φ respects composition. Thus, φ(
∑
σ∈G

fσ) = 0,

which is a contradiction as
∑
σ∈G

fσ is an isogeny. �

4. Simplicity of the generic fibre I

To finish the proof in the regular case, it is enough to show that Jη is simple.

We will give two different proofs of this fact, the first being the original proof by

Ciliberto and van der Geer and the second using the geometry and monodromy of

Lefschetz pencils. The first proof relies on the correspondence given by proposition

2.11 and the fact that simplicity of Jη is equivalent to all endomorphisms of Jη
over k(η) being isogenies or the 0-morphism. We will actually prove something

slightly stronger, namely that the only endomorphisms of Jη over k(η) are the

ones given by multiplication with an integer. Looking at the construction of the

correspondence in proposition 2.11, it is easy to see that this is equivalent to

Pic(Cη × Cη)/N being equal to Z ·∆, for ∆ ⊂ Cη × Cη the diagonal.

Let T be a divisor in Cη × Cη. Using T , we will construct a rational map

φ : S → Pic(S), which will have to be constant as S is regular. This fact, combined

https://stacks.math.columbia.edu/tag/0BXN
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with the construction of the map itself, will allow us to show that O(T ) ∼ n ·∆
in Pic(Cη × Cη)/N .

4.1. Monodromy of curves. Before getting into the construction of φ, we will

look at the monodromy on the intersection of curves in our linear system, as this

is needed for the proof. Let S and L be as above and let y, z ∈ S be two general

points. Define |L|y,z as the linear subsystem of |L| of all curves passing through y

and z and let C be a smooth curve in |L|y,z. A curve D ∈ |L|y,z and C intersect

transversely at a point p, if D is smooth at p and TpC + TpD = TpS. We call D

transverse to C, if C and D meet transversely at every point p in C ∩D and let

V be the open set of curves in |L|y,z which are transverse to C.

Define I := {(p,H) ∈ C×V | p ∈ C∩H, p 6∈ {y, z}} ⊂ C×V . Then p2 : I → V

is a topological covering, as all points in the intersection of two transverse curves

have intersection multiplicity one, and we get the following lemma.

Lemma 4.1. Let D ∈ V and C ∩ D = {y, z, x1, ..., xd}. Then the image of the

monodromy map

π1(V,D) −→ Aut({x1, ..., xd})

is the full symmetric group.

Proof. The proof is analogous to the one of the lemma on page 111 in [2]. We

simply replace the linear system of all hyperplane sections with the one of hyper-

plane sections passing through y and z and consider the monodromy action on

the points in the intersection which are not y or z. �

4.2. Constructing φ. Suppose we are given a divisor T in Cη × Cη. Taking the

closure of T in C ×|L|x C gives us a divisor T in C ×|L|x C. Let Σ be a general

two-dimensional linear subsystem of |L|x whose generic member is smooth and

irreducible. We want to construct a rational map φΣ,T : S → Pic(S).

We pull back C to Σ and call it again C. Let V ⊂ S be an open set in S such

that for all y ∈ V , Σy, the linear subsystem of all curves in Σ running through y,

is a Lefschetz pencil. Consider the map p : C ×Σ C → S×S given by projection in

both factors. Set W := p−1(V ×S) and let T ′ be the pull back of T to W . Denote

by D the line bundle corresponding to (p|W )∗[T
′]. Then by the universal property

of the picard variety,

φT,Σ : V −→ Pic(S), y −→ (y × S)∗D

defines a morphism from V to Pic(S).
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Remark 4.2. (i) Let D ⊂ |L|x be the discriminant divisor (see lemma 2.12) and

D̃ = D ∩ Σ. Looking at the cartesian diagram

C̃ C

D̃ Σ,

i

we see p ◦ i(C̃) is closed of dimension smaller or equal to three in S × S. Define

Ṽ to be the complement of p ◦ i(C̃) in V × S and W̃ to be p−1(Ṽ ). Then W̃ is

smooth and p̃ := p|W̃ : W̃ → Ṽ is proper.

(ii) Let C ∈ |L|x be a general curve and y a general closed point in C. As the

pull-back of C to Σy is a Lefschetz pencil, CΣy is the blow-up of S in the base

points of Σy. Thus, p|p−1(y×C) is an isomorphism outside of the base points of Σy

and hence y × C \ Ṽ is contained in the base points of Σy.

4.3. Calculations with intersection points. Let T be a divisor in Cη×Cη. Our

goal is to show that there exists n ∈ Z, such that O(T ) is equivalent to n ·∆ in

Pic(Cη×Cη)/N . For this, consider a general curve C ∈ |L|x, a general closed point

y ∈ C and choose a general two-dimensional linear subsystem Σ containing C.

Then define Dy to be p∗([T
′])y×S, which is the divisor corresponding to φT,Σ(y).

Lemma 4.3. Let Ey be the intersection of Dy and C. This is a divisor of the

form

Ey = αx+ βy + γBx,y + TC(y) (4.1)

for fixed α, β, γ ∈ Z and Bx,y the divisor of base points of Σy different from x and

y.

Proof. Intersecting Dy and C in S is the same as intersecting p∗[T
′] and y × C

in V × S. Let T̃ := T ′ ∩ W̃ and C̃ := y × C ∩ Ṽ . Then p̃∗[T̃ ] ∩ [C̃] is the equal

to the pull-back of p∗[T
′] ∩ [y × C] to Ṽ . By remark 4.2, W̃ and Ṽ are smooth

and p̃ is proper. Thus, by the projection formula, p̃∗[T̃ ] ∩ [C̃] = p̃∗([T̃ ] ∩ p̃∗[C̃]).

Outside of the base points of Σy, p̃|p−1(C̃) is an isomorphism. Hence, outside of the

base points of Σy, [T̃ ] ∩ p̃∗[C̃] is just T̃C̃(y) and then so is p̃∗[T̃ ] ∩ [C̃]. As C \ C̃
is contained in the base points of Σy by remark 4.2, the intersection of p∗[T

′] and

y × C in V × S is given by TC(y) plus a sum of base points of Σy.

Therefore, Ey is of the form αx+ βy + γBx,y + TC(y) for some α, β, γ ∈ Z and

by continuity, α, β, γ must be the same for general y ∈ C. �

Lemma 4.4. All base points in Bx,y appear with the same multiplicity
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Proof. For general Σ and y, the curves spanning Σy are transversal, hence all

base points in Σy have multiplicity 1. If we vary Σ, the only term of Ey that

will change is Bx,y, as x, y and TC(y) only depend on y and C. Hence, we get a

monodromy action on Bx,y which is just the action from lemma 4.1. But by the

lemma, monodromy acts as the full symmetric group and hence all base points in

Bx,y must have the same multiplicity. �

As S is regular, Pic(S) is discrete and hence φT,Σ : S → Pic(S) is constant.

Thus, for general points y, y′ ∈ C, Dy and Dy′ are linearly equivalent and then so

are Ey and Ey′ . Therefore,

αx+ βy + γBx,y + TC(y) ∼ αx+ βy′ + γBx,y′ + TC(y′) (4.2)

by lemma 4.3.

As Σy and Σ′y are both linear subsystems of Σ, the intersection of the two

spanning curves must be linearly dependent and hence

x+ y +By ∼ x+ y′ +By′ . (4.3)

Combining the two equations, we get

(β − γ)y + TC(y) ∼ (β − γ)y′ + TC(y′). (4.4)

This implies that T ∼ (β − γ)∆, finishing the proof that Jη is simple and thus

the proof of theorem 1.3 in the regular case.

5. Simplicity of the generic fibre II

As promised above, we will give another argument for the simplicity of Jη, using

the irreducibility of monodromy. This time the proof will be by contradiction, so

let us assume that Jη is non-simple.

5.1. Facts about monodromy. Let X be a smooth projective variety of di-

mension n and X ⊂ Pm a closed embedding. Let U ⊂ (Pm)∗ the open set

parametrizing the smooth hyperplane sections of X and f : χU → U the corre-

sponding universal family. Let (Xt)t∈P1 be a Lefschetz pencil and o ∈ P1 a regular

value of (Xt)t∈P1 . For j : Xo ↪→ X the inclusion, we define Hn−1(Xo,Q)van :=

ker(j∗ : H
n−1(Xo,Q)→ Hn+1(X,Q)).

Remark 5.1. The monodromy representation ρ : π1(U, o) → Aut(Hn−1(Xo,Q))

given by Rn−1f∗Q leaves Hn−1(Xo,Q)van stable.
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Theorem 5.2. The monodromy representation

ρ : π1(U, o) −→ Aut(Hn−1(Xo,Q)van)

is irreducible.

Proof. [17, Theorem 3.27] �

5.2. Irreducible monodromy. We want to use the theorem in our original set-

ting, so let X = S and χU = C. We have two families over U :

C J

U

p q

Lemma 5.3. R1p∗Q ∼= R1q∗Q

Proof. As we chose U to be in |L|x, the map C → U has a section s and thus we

get a unique U -morphism φs : C → J (see [13] page 5 and 6). Then for A ⊂ U an

affine open subset, we have φ∗p : H1(JA,Q)
∼−→ H1(CA,Q) and these glue into an

isomorphism R1q∗Q
∼−→ R1p∗Q. �

Let u ∈ U be a general closed point. Then by lemma 2.12, we can find a

Lefschetz pencil through u. We assumed that S is regular, so H3(S,Q) = 0 and

thus H1(Cu,Q)van = H1(Cu,Q). By theorem 5.2, the monodromy representation

ρ : π1(U, u) → Aut(H1(Cu,Q)) is irreducible and from the above lemma and the

equivalence of local systems and monodromy representations we conclude that

R1q∗Q is irreducible.

Lemma 5.4. There exists a non-empty open subset V ⊂ U such that R1q∗Q|V has

a non-trivial local subsystem.

Proof. We assumed Jη to be non-simple, so there exists a non-trivial degree 0

endomorphism φ̃ ∈ End(Jη). Using again [14, Theorem 5.22 (b)], we find V ′ ⊂ U

open and an endomorphism φ of JV ′ such that φη = φ̃ . Then G := im(φ) is a

group scheme over V ′ and we set s′ := q|G. There exists a non-empty open subset

V ⊂ V ′ such that s := s′|V is smooth and proper. For A ⊂ V an affine open, we

have φ∗ : H1(GA,Q) → H1(JA,Q), which glues to a map ψ : R1s∗Q → R1q∗Q|V
of local systems on V .

Then dim(im(ψ)η) = dim(im(φ̃)) < dim(Jη) = dim(R1q∗Qη), so im(ψ) is the

non-trivial local subsystem we are looking for. �
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Let p ∈ V closed. As U \ V has real codimension 2, the map π1(V, p) →
π1(U, p) is surjective and thus the monodromy representation π1(V, p)→ H1(Cp,Q)

is irreducible as well. But then R1q∗Q|V must be irreducible, which is a direct

contradiction to lemma 5.4. Thus, we conclude that Jη must be simple.

6. The non-regular case

The proof closely mirrors that for regular surfaces. We only have to check that

all steps of the proof work in the more general case. First, we need a family

to replace our J . For this, consider the inclusion of U -schemes j : C ↪→ S × U ,

given by the inclusion of the curves of C into S. Then j induces a homomorphism

j̃ : J → Alb(S)× U of abelian schemes and we define K := ker(j̃).

There exists an open subset Ũ of U such that s : K → Ũ is smooth and for all

u ∈ Ũ we have Ku = K(Cu, S). Thus, K → Ũ is the family we are looking for. If

Kη = 0, then Ku = 0 for all u ∈ Ũ by flatness and the theorem holds. Hence, we

can again assume that Kη 6= 0.

6.1. Reduction Steps. To prove the representability of the endomorphism func-

tor and construct the closed sets Zi, we only used the fact that J → U is an

abelian scheme. Thus, we can simply replace J by K in the arguments of section

3.1 and 3.2 to reduce the proof to showing that End(Kη) = Z. We did, however,

use the fact that J is a family of Jacobians in section 3.3, so we need to check

that proposition 3.6 and lemma 3.7 still hold if we replace J by K.

To do this, consider a general curve C in the discriminant divisor D, which by

2.12 will have a single ordinary double point as its only singularity. The inclusion

C ⊂ S induces a map Pic0(C) → Alb(S). As Alb(S) is an abelian variety, we

cannot have a non-trivial rational map Gm → Alb(S), as this would extend to a

non-trivial map P1 → Alb(S). Looking again at

0 −→ Gm −→ Pic0(C) −→ Jac(C̃) −→ 0 (6.1)

for C̃ the normalization of C, we see that the Gm → Pic0(C) → Alb(S) must be

trivial. Thus, Gm → Pic0(C) factors through K(C, S) and we see that K(C, S) is

an extension of an abelian variety by Gm.

Using lemma 2.12, we can find a family over some open set V ⊂ P1 with all

fibres abelian varieties except one, which is an extension of an abelian variety by

Gm and proposition 3.6 and lemma 3.7 hold for K.

6.2. Irreducible Monodromy. We have again reduced the proof to showing

that Kη is simple. Both proofs for the simplicity of the generic fibre we did above
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can be generalized to non-regular surfaces. We are going to demonstrate how to

do it for the second one.

The inclusion j : C → S × U induces a morphism j∗ : R
1p∗Q → R3pr2∗Q. For

u ∈ U a closed point, the morphism on the stalk is just j′∗ : H
1(Cu,Q)→ H3(S,Q),

where j′ : Cu → S is the inclusion. So the kernel of j∗ is a local subsystems with

fibre H1(Cu,Q)van at a point u ∈ Ũ .

Claim. ker(j∗) ∼= R1s∗Q on Ũ .

Proof. Consider the maps ϕ : K → J and ψ : J → Alb(S)×Ũ and let t : Alb(S)×
Ũ → Ũ be the second projection. The map ϕ∗ : R1q∗Q → R1s∗Q of local system

induced by ϕ is surjective, as ϕ itself is injective and ψ∗ : R1t∗Q → R1q∗Q is

injective, as ψ is surjective. Thus, as φ∗ ◦ ψ∗ = 0, R1s∗Q ∼= R1q∗Q/R1t∗Q. On

the other hand, there is an orthogonal decomposition H1(Cx,Q) = H1(Cx,Q)van⊕
H1(S,Q) for x a closed point by [17, Proposition 2.27] and hence ker(j∗) ∼= R1s∗Q.

�

Thus, R1s∗Q is irreducible and analogous to the proof of lemma 5.4, we can

now show that this cannot be the case if Kη is non-simple. This finishes the proof

of the theorem.

7. Counterexample

Having proven theorem 1.3, a natural question to ask is if it holds in broader

generality. First, let us consider the case of L not being very ample. In the

original paper, Ciliberto and van der Geer actually proved the theorem, while

putting some restrictions on the surface S, for all globally generated line bundles

L, such that the map i : S → Pn induced by L is birational. It is easy to see that

for dim(im(i)) = 2, this is in most cases a necessary condition.

Lemma 7.1. Let S, L, i as above, dim(im(i)) = 2 and i not birational. Let C ∈ |L|
be a general curve and assume g(i(C)) > 0, then Jac(C) is non-simple.

Proof. As dim(im(i)) = 2, i must be generically finite and hence i′ := i|C is

generically finite as well. Let D′ := im(i′) and n : D → D′ be the normalization

of D′. Then by the universal property of normalization, there exists a morphism

f : C → D such that n ◦ f = i′. Furthermore, the genus of a curve is a birational

invariant and D is birational to D′, hence g(D) = g(D′) > 0. As i is not birational,

deg(i′) > 1 and hence by the Hurwitz formula g(C) > g(D). Thus, dim(Jac(D)) <

dim(Jac(C)) and the image of the induced homomorphism f̃ : Jac(D) → Jac(C)

is a proper non-trivial abelian subvariety of Jac(C). �
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Example 7.2. Let ϕ : X → P2 be the cyclic covering corresponding to a smooth

section of O(4)⊗2. Then ϕ is smooth and finite of degree 2 and H1(X,C) =

H1(P2,C) = 0 by [18, Proposition 1.1 (d)]. Thus, X is a smooth regular surface.

Consider the line bundle L := ϕ∗(O(3)) on X. By [18, Proposition 1.1 (b)],

ϕ∗OX ' O ⊕ O(−4) and hence ϕ∗L ' O(3) ⊗ ϕ∗OX ' O(3) ⊕ O(−1) by the

projection formula. Then H0(X,L) ' H0(P2,O(3)) and the map i induced by L

is given by X
ϕ−→ P2 → P(5

3)−1, where P2 → P(5
3)−1 is the embedding corresponding

to O(3). So i is finite but not birational and by the genus degree formula the

general curve in O(3) has genus 1. Thus, lemma 7.1 implies that the general curve

in L has non-simple Jacobian.

The example shows that theorem 1.3 can already fail for ample line bundles on

regular surfaces, so the very ample assumptions is really necessary.

8. Generalization to other fields

Another possible generalization would be to consider algebraically closed fields

other than C. Looking at theorem 1.3 and its proof, we immediately notice

two possible problems with generalizing the statement to arbitrary algebraically

closed fields. First, we used a lot of singular cohomology and monodromy in the

proof, which does not exist over other fields. As usual, the tactic here will be

to replace singular cohomology and monodromy with étale cohomology and étale

monodromy, which will allow us to use similar proof strategies over arbitrary al-

gebraically closed fields. The second problem is the more serious one, already

occurring in the statement itself. Namely, the notion of very general is not well-

behaved over countable fields, as there might not be a single closed point in the

complement of a countable union of non-dominant closed subsets.

As stated in the introduction, there is a version of theorem 1.3 in the case of

k being uncountable, due to Banerjee. Working out the ideas given by him in [3,

Lemma 2.2], we will give a proof of theorem 1.5. This will also show that even for

countable fields, at least the Jacobian of the generic curve in the linear system is

absolutely simple.

8.1. The Tate module. We collect some definitions and results about étale co-

homology and monodromy before getting into the proof of theorem 1.5.

Recall 8.1. Let X be a scheme and denote by Xét the étale site on X. Then the

category of sheaves of abelian groups on Xét has enough injectives and for a sheaf

F of abelian groups on Xét, H
r(Xét,F) is defined as the r-th derived functor of

the global section functor.
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Definition 8.2. Let X be a variety over some field k. Then we define Hr
ét(X,Zl) =

lim←−H
r(Xét,Z/lnZ) and Hr

ét(X,Ql) = Hr
ét(X,Zl)⊗Ql.

We are especially interested in the étale cohomology of abelian varieties. So

let k be an algebraically closed fields and A an abelian variety over k. For n not

divisible by char(k), we define

An(k) := ker([n]A : A(k) −→ A(k)),

which is a group of order n2g by [12, Theorem 8.2].

Definition 8.3. Let l 6= char(k) be a prime. Then we define the Tate module of

A as

TlA := lim←−Aln(k)

Theorem 8.4. Let A, k and l be as above. Then there is a canonical isomorphism

H1
ét(A,Zl)

∼−→ HomZl(TlA,Zl).

Proof. [12, Theorem 15.1]. �

8.2. The Étale fundamental group. To prove a generalization of theorem 1.3,

we will need a statement similar to theorem 5.2 in the étale case. To formulate

this, we will need a replacement of the topological fundamental group.

Definition 8.5. Let X be a scheme and x a geometric point of X.

(i) A pointed (X, x) scheme is a scheme Y together with a geometric point y of Y

and a morphism f : Y → X such that f ◦ y = x.

(ii) A pointed (X, x)-scheme f : (Y, y)→ (X, x) is called a pointed covering space

if f is finite and étale.

(iii) A pointed covering space f : (Y, y) → (X, x) is called Galois if deg(f) =

|Aut(Y/X)|.

(iv) The fundamental group of X at the geometric point x is the profinite group

π1(X, x) := lim←−
(Y,y)

Aut(Y/X),

where (Y, y) runs over the category of pointed Galois covering spaces.

Proposition 8.6. Let X be a connected scheme, x a geometric point of X and G a

locally constant sheaf of Ql vector spaces on X. Then π1(X, x) acts continuously on

the stalk Gx and the functor G → Gx is an equivalence between the category of locally

constant sheaves of Ql vector spaces and the category of continuous representations

of π1(X, x) on finite-dimensional Ql vector spaces.
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Proof. [8, Proposition A I.8]. �

8.3. The tame fundamental group. Unfortunately, this is not quite the group

we need to formulate the étale analogues of the Picard–Lefschetz formula and

theorem 5.2. For this, we need to define the tame fundamental group. From

here on out, we fix an algebraically closed field k. Consider a smooth k-variety

T and U ⊂ T open such that T \ U has pure codimension 1. Let X → U be

a Galois covering space of U . Let X be the normalization of T in the function

field of X and η be the generic point of an irreducible component of T \ U . Then

X → U is called a tamely ramified Galois covering space if for all geometric

points α : Spec(Ω) → X lying over η, the order eα of the ramification group

Gα := {σ ∈ Aut(X/T ) | σ ◦ α = α} is invertible in OX,im(α).

Definition 8.7. Let u ∈ U be a closed point. The profinite group

πt1(U, u) := lim←−
(X,x)

Aut(X/U),

with (X, x) running over all tamely ramified pointed Galois covering spaces of

(U, u), is called the tame fundamental group of U at the point u. It is a quotient

group of the étale fundamental group π1(U, u).

Remark 8.8. Let T and U be as above and consider a tamely ramified pointed

Galois covering space X of U . Let s : Spec(k) → X be a closed point and define

Gs := {σ ∈ Aut(X/T ) | σ ◦ s = s} and es = |Gs| as above. Then for µes(k), the

group of es-th roots of unity of k, there exists an isomorphism

φs : µes(k) −→ Gs,

which is characterized by φ(ξ) · x = s̃(ξ) · x, where x is a generating element

of the maximal ideal of OX,s and s̃(ξ) is an inverse image of ξ under the map

s# : OX,s → k.

Proof. [8, Lemma A.I.12]. �

Let X,T, U and u be as above. Let s : Spec(k)→ T \ U be a closed point and

n ∈ N be a natural number such that all prime numbers p - n are invertible in

OT,s and define Ẑ(n)(1) = lim←−
(e,n)=1

µe(k). Let t ∈ lim←−
(X,x)

HomT (Spec(k), X) and define

φ̃t to be the projective limit of the homomorphisms φt(X,x). Then the conjugacy

class of φ̃t does not depend on t and we denote by

γs : Ẑ(n)(1) −→ πt1(U, u)

any element of this conjugacy class.
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Remark 8.9. There is a natural map Ẑ(p)(1) = lim←−
(e,p)=1

µe(k)→ lim←−
n

Z/lnZ = Zl(1)

induced by sending µln(k) to Z/lnZ.

We are only really interested in the case of T being P1
k and X being a Lefschetz

pencil. So let U ⊂ P1
k be a non-empty open subset, P1

k \U = {so, ..., sn} and u ∈ U
a closed point.

Proposition 8.10. Let p = 1 if char(k) = 0, otherwise let p = char(k). For a

suitable choice of the homomorphisms

γsi : Ẑ(p)(1) −→ πt1(U, u) i = 0, ..., n

in their conjugacy class, the images generate a dense subgroup.

Proof. [8, Proposition A I.15]. �

8.4. The Picard–Lefschetz formula. We are now finally ready to state an ana-

logue of theorem 5.2 in the étale case. Let C̃ → P1 be a Lefschetz pencil of curves.

Let {s0, ..., sn} be the set of points corresponding to curves with ordinary double

point and V := P1 \{s0, ..., sn} . Then we can look at the tame fundamental group

πt1(V, v) for some closed point v ∈ V .

Theorem 8.11. Let f : C̃ → P1, V and {s0, ..., sn} be as above. By theorem 8.6,

the locally constant sheaf R1f∗Ql induces a continuous representation

ρ : π1(V, v)→ Aut(H1
ét(C̃v,Ql)), for which the following holds:

(i) The monodromy representation ρ : π1(V, v)→ Aut(H1
ét(C̃v,Ql)) factors through

πt1(V, v).

(ii) For each si, there exists a vanishing cycle δsi in H1
ét(C̃v,Ql) ⊗ Ql(1), which

depends up to conjugation only on si and not on v. Furthermore, all the vanishing

cycles δsi are conjugate up to sign.

(iii) For a ∈ H1
ét(C̃v,Ql) and u ∈ Ẑ(p)(1) we have

ρ(γsi(u))(a) = a+ ũ〈a, δsi〉δsi ,

where ũ is the natural image of u in Zl(1) ⊂ Ql(1) under the map defined in

remark 8.9.

Proof. [8, Theorem 3.7.1]. �

Corollary 8.12. Let Ev(Cv) =
∑

i,σ∈πt1(V,v)

Ql(−1)σ(δsi) be the space of vanishing

cycles. Then the induced representation of πt1(V, v) on Ev(Cv) is irreducible.
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Proof. By [8, Corollary 3.7.4], the action of πt1(V, v) on Ev(Cv)/(Ev(Cv)∩Ev(Cv)⊥)

is irreducible. Furthermore, [7, Corollaire 4.3.9] shows that Ev(Cv) ∩ Ev(Cv)⊥ =

0. �

8.5. Lefschetz Pencils. Before we can use the description of the monodromy

of Lefschetz pencils we gave above in the proof, we have to check that Lefschetz

pencils exist in the linear system |L|, as we did in the complex case in lemma 2.12.

Unfortunately, this need not be true over arbitrary fields, which leads us to the

following definition.

Definition 8.13. LetX be an irreducible variety with a closed embedding i : X ↪→
Pnk . Then i is called a Lefschetz embedding, if Lefschetz pencils form an open dense

subset in Gr(1,Pn∗k ).

While not every closed embedding is a Lefschetz embedding, we do however

have the following.

Proposition 8.14. Let X be a smooth irreducible variety with a closed embedding

i : X ↪→ Pnk and denote by (d) : Pn ↪→ P(n+dd )−1 the d-th Veronese embedding. Then

the following holds:

(i) For all d ≥ 2, (d) ◦ i is a Lefschetz embedding.

(ii) If char(k) = 0, i is a Lefschetz embedding.

Proof. [10, Théorème 2.5] �

Remark 8.15. The condition d ≥ 2 is really necessary, i.e. there exist embeddings

of smooth varieties into projective space which are not Lefschetz pencils. For an

example, check [10, Exemple 3.4].

Corollary 8.16. Let X be a smooth irreducible variety and L a very ample line

bundle on X. Then the general line in the linear system |L⊗2| is a Lefschetz pencil.

8.6. Generalization of the theorem. We go back to our original situation, i.e.

S is a smooth projective surface over an algebraically closed field k, L is a very

ample line bundle on S and x ∈ S is a general point. Then C → U , the universal

family of smooth curves in |L|x, is a smooth family of curves with a section given

by x. Hence, J := Pic0(C/U) is defined and gives us a smooth family J → U

of Jacobians of curves. By considering the kernel of J → Alb(S) × U , we find a

smooth family of abelian varieties K → W over some open subset W ⊂ U with

Ku ∼= K(Cu, S) for all u ∈ W as in section 6.
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Theorem 8.17. Let k be an uncountable algebraically closed field, S, L, U as above

and C a very general curve in U . Assume that the embedding induced by L is a

Lefschetz embedding, then K(C, S) is absolutely simple.

Proof. The construction in 3.2 works for any abelian scheme over any uncountable

field. Thus, we again conclude that it is enough to prove that the generic fibre of

K → U is absolutely simple. Assume it were not. By lemma 2.6, there exists an

endomorphism ϕ of the generic fibre Kη, defined over some finite field extension L

of k(η), which is neither an isogeny nor the 0-morphism. By [1, Theorem 0BXN],

there exists a normal variety U ′ with function field L and a dominant morphism

g : U ′ → U . Let η′ ∈ U ′ be the generic point, then the ϕ we found above is an

endomorphism of (KU ′)η′ . By the usual trick, this will spread to an endomorphism

ϕ̃ of KU ′ over an open set V ′ ⊂ U ′. Using this, we can find a Lefschetz pencil

C̃ → P1 in |L|x with generic point µ ∈ P1, such that ϕ̃ induces an endomorphism

of K(C̃µ, S), defined over some finite field extension K of k(µ), which is neither

an isogeny nor the 0-morphism. By [1, Theorem 0BY1], there exists a normal

projective curve D with function field K and a surjective morphism φ : D → P1.

Let µ′ be the generic point of D. Then Kµ′ is non-simple by lemma 2.6. Let

A ⊂ Kµ′ be a non-trivial proper abelian subvariety and Ũ ⊂ P1 the open set of

smooth curves in the Lefschetz pencil. Define V ⊂ D to be the inverse image of

Ũ under φ. We pull back K along φ to get a family of abelian varieties over V ,

which we again call K. By lemmas 2.2 and 2.5, there exists an endomorphism ψ

of Kµ′ with A as its image. Then by spreading ψ and defining A to be the image,

we get a family of abelian varieties over some open subset of V . After possibly

shrinking V further, we can assume that A → V and K → V are smooth. Then

f : K → V and g : A → V are abelian schemes, so in particular proper.

Let x ∈ V be a closed point and consider the étale local systems R1f∗Zl and

R1g∗Zl. By theorem 8.6, π1(V, v) acts on H1
ét(Kx,Zl) and H1

ét(Ax,Zl). Con-

sider the surjective homomorphism ψx : Kx → Ax. This induces a surjection

TlKx → TlAx of Tate modules, which by theorem 8.4 corresponds to an injection

H1
ét(Ax,Zl) → H1

ét(Kx,Zl). Furthermore, as this is induced by a morphism over

V , the map is one of π1-modules. Using the injection of Tate modules given by

i : Kx ↪→ Jx, we get a surjection i∗ : H1
ét(Cx,Ql) ' H1

ét(Jx,Ql) � H1
ét(Kx,Ql). On

the other hand, looking at the map of Tate modules induced by ψ : Jx → Alb(S),

we see that H1
ét(Alb(S),Ql) � H1

ét(im(ψ),Ql) ↪→ H1
ét(Jx,Ql). There is a commu-

tative diagram

https://stacks.math.columbia.edu/tag/0BXN
https://stacks.math.columbia.edu/tag/0BY1
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H1
ét(S,Ql) H1(Cx,Ql)

H1
ét(Alb(S),Ql) H1

ét(Jx,Ql).

j∗

∼ ∼

ψ∗

Thus, H1
ét(Kx,Ql) ∼= H1

ét(Jx,Ql)/H
1
ét(im(ψ),Ql) ∼= H1

ét(Cx,Ql)/H
1
ét(im(j∗),Ql).

As all these isomorphisms are induced by maps of étale local systems, this is

an isomorphism of π1-modules. After possibly shrinking V again, we can as-

sume that φ(V ) is open in P1. Every automorphism of a pointed covering space

(Y, y) of (Ũ , φ(x)) will induce an automorphism of the pullback (Yφ(V ), y) over

(φ(V ), φ(x)), hence π1(φ(V ), φ(x)) → π1(Ũ , φ(x)) is surjective. As the tame fun-

damental group is a factor group of the étale fundamental group, we see that

in fact, πt1(φ(V ), φ(x)) → πt1(Ũ , φ(x)) is surjective. Furthermore, H1
ét(Kx,Ql) ∼=

H1
ét(Cx,Ql)/H

1
ét(im(j∗),Ql) ∼= Ev(Cx) as π1-modules by [7, Corollaire 4.3.9]. Then

corollary 8.12 implies that the monodromy action of πt1(φ(V ), φ(x)) onH1
ét(Kφ(x),Ql)

= H1
ét(Kx,Ql) is irreducible.

Consider φ′ : πt1(V, x)→ πt1(φ(V ), φ(x)). Since φ is finite, im(φ′) is a finite index

subgroup of πt1(φ(V ), φ(x)). By what we did above, we see that σ(H1
ét(Ax,Ql)) ⊂

H1
ét(Ax,Ql) for all σ ∈ im(φ′). Let σ ∈ πt1(φ(V ), φ(x)) be arbitrary and assume

there exists t ∈ H1
ét(Ax,Ql) such that σ(t) /∈ H1

ét(Ax,Ql). Then by proposition

8.10 and theorem 8.11, there exists s ∈ P1 \ Ũ such that 〈t, δs〉 6= 0 and δs /∈
H1
ét(Ax,Ql). Using theorem 8.11 again, this implies ρ(γs(u))(t) = t + ũ〈t, δs〉δs /∈

H1
ét(Ax,Ql) for all u 6= 0. However, as im(φ′) is a finite index subgroup that leaves

H1
ét(Ax,Ql) stable, this cannot be the case. Thus, H1

ét(Ax,Ql) is πt1(φ(V ), φ(x))-

stable, which is a contradiction, as the monodromy action of πt1(φ(V ), φ(x)) on

H1
ét(Kx,Ql) is irreducible. Hence, Kη must be absolutely simple and we are done.

�

9. The case of Q

As we pointed out above, other than the Jacobian of the generic curve being

simple, Banerjee’s paper and theorem 8.17 unfortunately tell us very little about

the case of countable fields. In fact, for a countable field k, there might not be

a single curve in |L| defined over k whose Jacobian is simple. We want to show

that at least in the case of k being Q, this does not happen. Questions of this

type, i.e. finding objects over Q with properties that hold for very general objects

over C, have been studied before by Terasoma. In [15], he proved the existence of

a complete intersection with middle Picard number one over Q. Using the same
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techniques, we want to prove the existence of a curve with simple Jacobian in |L|
defined over Q.

9.1. Paths in étale cohomology. To prove theorem 1.6, we need to introduce

the notion of paths between geometric points.

Definition 9.1. Let Y be a scheme and s and t two geometric points of Y . Then

s and t induce functors from the category of covering spaces of Y to (Sets) by

taking the respective fibres and a path from s to t is defined to be an isomorphism

of these functors.

Remark 9.2. (i) Let X be a covering space of Y . For a geometric point s of Y ,

there exists a natural continuous π1(Y, s) action on Xs and the functor X 7→ Xs

establishes an equivalence between the category of covering spaces of Y and finite

continuous π1(Y, s)-sets (See [8, Proposition A I.5]). Thus, a path between two

geometric points s and t induces an isomorphism from π1(Y, s) to π1(Y, t).

(ii) Every locally constant étale sheaf G on Y is representable by a covering space

X of Y . The monodromy action on the stalks of G is by definition just given by

the action on the geometric fibres of X and thus a path from s to t induces a

commutative diagram

π1(Y, s) π1(Y, t)

Aut(Gs) Aut(Gt)

∼

∼

(9.1)

9.2. Hilbert’s irreducibility theorem. The key idea in the proof of theorem

1.6 is to use Hilbert’s irreducibility theorem, which allows us to prove the following

statement. Let K be a number field and A a subring of K(T ) that is generated

by T and f(T )−1 for some polynomial f(T ) ∈ K[T ]. Let η be a fixed geometric

generic point of Spec(A). Let t ∈ Spec(A) be a closed point and t a geometric point

over t. Let γ be a path from η to t and γ∗ the induced isomorphism of fundamental

groups. Consider the étale fundamental group π1(Spec(k(t)), t) = Gal(k(t)/k(t)).

The closed point t : Spec(k)→ A induces a map

αt : Gal(k(t)/k(t)) = π1(Spec(k(t)), t) −→ π1(Spec(A), t).

Given an l-adic continuous representation of π1(Spec(A), η)

φ : π1(Spec(A), η) � G ⊂ GL(n,Ql),

we get the composite homomorphism β(t, γ, φ) = φ ◦ γ∗ ◦ αt.
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Theorem 9.3. Let A, η and φ be as above. Then there exists a sequence of distinct

K-rational points (ti)i∈N and for each i a path γi connecting a geometric point ti

over ti and η, such that the homomorphism

β(ti, γi, φ) : Gal(k(ti)/k(ti)) −→ G

is surjective.

Proof. The proof for general number fields is analogous to the one for the case of

K = Q, given by Terasoma in [15, Theorem 2]. �

9.3. Jacobians over number fields. Let K again be a number field, we want

to prove the following theorem.

Theorem 9.4. Let S be a smooth projective surface over K and L a very ample

line bundle on S. Then there exists a smooth curve C ∈ |L|, defined over K, such

that K(C, S) is absolutely simple.

Proof. Let x ∈ S be a general point and U, C and K as in 8.6. We again want

to use the étale monodromy of Lefschetz pencils to derive our conclusion. So, let

C̃ → P1 be a Lefschetz pencil in |L|x, η ∈ P1 be the generic point and let V ⊂ P1

be the open set of smooth curves of the pencil. After possibly shrinking V , we

can assume that K is defined and smooth over V . Let u ∈ V be a closed point

and consider the base change

Ku K

u V.

f ′

i′

f

i

Then R1f ′∗Ql
∼= R1f ′∗i

′∗Ql
∼= i∗R1f∗Ql by the proper base change theorem. Let

u be a geometric point lying over u. As the map π1(Spec(k(u)), u) → π1(V, u) is

induced by pulling back covering spaces of V , we get a commutative diagram

π1(Spec(k(u)), u) π1(V, u)

Aut(H1(Ku,Ql)) Aut(H1(Ku,Ql))
∼

(9.2)

Let η be a geometric generic point of V and assume there is a path from u to η.

Combining the diagrams 9.1 and 9.2, we get a commutative diagram

π1(Spec(k(u)), u) π1(V, u) π1(V, η)

Aut(H1
ét(Ku,Ql)) Aut(H1

ét(Ku,Ql)) Aut(H1
ét(Kη,Ql)).

∼

∼ ∼

(9.3)
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By theorem 9.3, we find a sequence of K-rational points (ti)i∈N in V together with

paths from geometric points ti over the ti to η, such that the maps

π1(Spec(k(ti)), ti) −→ im(π1(V, η) −→ Aut(H1
ét(Kη,Ql)))

are surjective. Let V be the base change of V to Q. We get a map π1(V , ti) →
π1(V, ti) which again commutes with the monodromy action. Thus, arguing just

as in the proof of theorem 8.17, we can use corollary 8.12 to conclude that the

monodromy action of π1(Spec(k(ti)), ti) on H1
ét(Kti ,Ql) is irreducible.

Now let A be an abelian subvariety of Kti , defined over some finite field exten-

sion L of K. Then π1(Spec(L), ti) = Gal(k(ti)/L) is a finite index subgroup of

π1(Spec(k(ti)), ti). Arguing again just like in the proof of theorem 8.17, we see

that the Picard–Lefschetz formula implies that A must already be trivial. Hence,

the Kti are absolutely simple and we are done. �

This theorem immediately implies the following result over Q, which we men-

tioned in the introduction.

Corollary 9.5. Let S be a smooth projective surface over Q and L a very ample

line bundle on S. Then there exists a smooth curve C ∈ |L|, defined over Q, such

that K(C, S) is absolutely simple.
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Theory: Volume 1. Société Mathématique de France, 2009, pp. 187–236 (cit.

on p. 10).

[10] N. M. Katz. Pinceaux de Lefschetz: Theoreme d’existence. In: SGA 7 II:

Groupes de Monodromie en Geometrie Algebrique. Springer-Verlag Berlin

Heidelberg, 1973, pp. 212–253 (cit. on p. 26).

[11] S. Kleiman. Bertini and his two fundamental theorems. In: Rend. Circ. Mat.

Palermo (2) Suppl. 55 (1998), pp. 9–37 (cit. on p. 8).

[12] J. S. Milne. Abelian Varieties. In: Arithmetic Geometry. Springer-Verlag New

York, 1986, pp. 103–150 (cit. on pp. 6, 7, 23).

[13] J. S. Milne. Jacobian Varieties. In: Arithmetic Geometry. Springer-Verlag

New York, 1986, pp. 167–212 (cit. on p. 19).

[14] N. Nitsure. Construction of Hilbert and Quot Schemes. In: Fundamental

Algebraic Geometry: Grothendieck’s FGA Explained. Mathematical Surveys

and Monographs Volume 123. AMS, 2005, pp. 105–138 (cit. on pp. 11, 15,

19).

[15] T. Terasoma. Complete intersections with middle picard number 1 defined

over Q. In: Mathematische Zeitschrift 189 (1985), pp. 289–296 (cit. on pp. 5,

28, 30).

[16] E. A. Tevelev. Projective Duality and Homogeneous Spaces. Encyclopedia of

Mathematical Sciences Volume 133. Springer-Verlag Berlin Heidelberg, 2005

(cit. on p. 8).

[17] C. Voisin. Hodge Theorey and Complex Algebraic Geometry 2. Cambridge

Studies in Advanced Mathematics. Cambridge University Press, 2002 (cit.

on pp. 8, 19, 21).

[18] J. A. Wisniewski. On topological properties of some coverings. An addendum

to a paper of Lanteri and Struppa. In: Can. J. Math 44.1 (1992), pp. 206–214

(cit. on p. 22).


	1. Introduction
	2. Preliminaries
	3. Reduction to the generic fibre
	4. Simplicity of the generic fibre I
	5. Simplicity of the generic fibre II
	6. The non-regular case
	7. Counterexample
	8. Generalization to other fields
	9. The case of Q
	References

