
STABILITY STRUCTURES ON LIE ALGEBRAS, AFTER KONTSEVICH

AND SOIBELMAN

D. HUYBRECHTS

These are notes for a talk on parts of Section 2 in [1]. We follow [1] quite closely but add

some arguments, mostly completely elementary, which may be helpful. Many thanks to Jacopo

Stoppa for his help in preparing this talk.

1. Nilpotent Lie algebras

We will consider the following situation: g ⊂ gl(V ) a sub Lie algebra such that all X ∈ g are

nilpotent endomorphisms of V . The ground �eld is an arbitrary �eld of characteristic zero, but

the vector space V is allowed to be of in�nite dimension.

Recall that for A ∈ gl(V ) with Ak = 0, one has ad(A)2k−1 = 0 in gl(gl(V )). So for all

X ∈ g ⊂ gl(V ) not only X as an endomorphism of V is nilpotent, but also ad(X) as an

endomorphism of g.

Remark 1.1. i) If g is a (�nite dimensional) nilpotent Lie algebra, then the image of the adjoint

representation ad : g // gl(g), i.e. the adjoint Lie algebra ad(g) ⊂ gl(g) satis�es our condition.
Passing from g to ad(g) we only loose the center c(g) ⊂ g of g which is an abelian Lie algebra.

ii) If g ⊂ gl(V ) contains only nilpotent endomorphisms and g is �nite dimensional, then g is

a nilpotent Lie algebra by the theorem of Engel.

Proposition 1.2. Let g ⊂ gl(V ) be a a sub Lie algebra containing only nilpotent endomorphisms

of V . Then G := {exp(X) | X ∈ g} ⊂ Gl(V ) is a subgroup. Moreover,

i) exp : g
∼ //G and

ii) exp(X) · exp(Y ) = exp(X ∗ Y ) with X ∗ Y given by the Campbell�Hausdor� formula.

Proof. First note that exp(X) =
∑∞

0
Xn

n! is actually a �nite sum for any nilpotent X ∈ gl(V ),
so in particular for any X ∈ g. Since exp(X) · exp(−X) = 1 (easy), this �nite sum de�nes an

element in Gl(V ).
The inverse map is given by log(A) =

∑∞
0

(−1)k

k+1 (A − 1)k+1, which is also �nite for every

A = exp(X) with X ∈ gl(V ) nilpotent.
The fact that G is a group follows from the Campbell�Hausdor� formula in ii).

For later use we recall: X ∗Y = X+Y +(1/2)[X,Y ]+ (1/12)[X, [X,Y ]]+ (1/12)[Y, [Y,X]]+
(1/24)[Y, [X, [Y,X]]] + . . . or in closed form

X ∗ Y = X + Y +
∞∑

k=1

(−1)k

k + 1

∑ 1
`1 + . . . `k + 1

(
ad(X)`1

`1!
ad(Y )m1

m1!
. . .

ad(X)`k

`k!
ad(X)mk

mk!

)
(X),

1
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where the second sum runs over all `1,m1, . . . , `k,mk ≥ 0 with `i +mi > 0. One can show that

for X and Y nilpotent, the sum is again �nite. This shows that exp(X) · exp(Y ) is again in the

image of exp : g // Gl(V ). �

The group G is also called the adjoint group Ad(g) of the Lie algebra g.

The proposition holds for any �nite dimensional nilpotent Lie algebra. This can then be

generalized to the in�nite dimensional case if g comes with the structure of a pro Lie algebra.

Since this is, as far as I can see, not assumed in [1], we make the additional assumption that

g ⊂ gl(V ) is as above. By the proposition, the group G does not depend on the choice of V .

In the next step we will deal with Lie algebras which are not nilpotent but can be written

as the inverse limit of nilpotent Lie algebras. So we will consider (in�nite dimensional) Lie

algebras of the form lim gi with gi (possibly in�nite dimensional) Lie algebras satisfying the

assumption of the proposition. If Gi denote the adjoint groups of the gi, then we let G be the

group limGi, which comes with a bijective exponential exp : lim gi
∼ // limGi = G and the limit

of the Campbell�Hausdor� formula.

Let us begin with an arbitrary graded Lie algebra g =
⊕

γ∈Γ gγ , where Γ ' Zd. So in

particular for a(γi) ∈ gγi , one has [a(γ1), a(γ2)] ∈ gγ1+γ2 .

Example 1.3. Let us consider the simplest case d = 1, i.e. g =
⊕∞

−∞ gi. Note that g>0 :=⊕∞
1 gi ⊂ g is a sub Lie algebra (to which we usually restrict) and Jd :=

⊕
i>d gi ⊂ g>0 for d > 0

is an ideal. Moreover, g≤d := g>0/Jd is a Lie algebra with ad(X) nilpotent for all X ∈ g≤d.

Tacitly we will assume that g≤d satis�es the assumption of the proposition or that it is �nite

dimensional. (For the latter case see [2].) In any case, we let G≤d be the adjoint group of g≤d.

The natural Lie algebra homomorphisms g≤d2
// // g≤d1 for d2 ≥ d1 give rise to the limit limd g≤d

and the group G := limG≤d.

A similar construction can be performed for g<0, but note that g0 may destroy the nilpotence

of the truncations.

If Γ ' Zd with d > 1, then a similar construction can be performed once certain cones

and their truncations have been �xed. In the situation we are interested in, they depend on

additional data that will be discussed next.

2. Strict Cones and triangles

We will consider cones in ΓR := Γ ⊗Z R ' Rd and in R2 which will be related via certain

additive maps Z : Γ // C = R2 (or rather their R-linear extensions Z : ΓR // R2).

Cones in Rn need not be open or closed, they can be degenerate (i.e. of strictly smaller

dimension), but we will always assume that the origin is not contained in the cone. Cones in

ΓR are usually denoted by C ⊂ ΓR where as in R2 they are called V ⊂ R2.

In [1] a cone is called strict if no line (without the origin) is contained in it. It seems that

implicitly a slightly stronger notion is used for cones V ⊂ R2 by requiring that the angle is

strictly smaller than π. So the upper half plane would be strict in the general sense, but as a

cone in the target of an additive map Z : Γ // R2 we would want to exclude it. (There may be

a way around this problem, but we leave this for later.) In [1] cones that are strict are called

strict sectors.
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In particular a ray in R2 is a strict cone and those will be denoted ` = R>0z with z ∈ C∗.
If V ⊂ R2 is a strict sector, then by ∆ ⊂ V one denotes a bounded region in V cut by an

a�ne line. For obvious reasons, they are called triangle and V can be seen as a direct limit of

its triangles. (Here we use the stronger version of `strict'.)

In order to associate to a strict cone V ⊂ R2 a strict cone in ΓR we will need an additive map

Z : Γ // R2 and a quadratic form Q on ΓR. (Often, only the R-linear extension Z : ΓR // R2

is really used.)

De�nition 2.1. For a strict cone V ⊂ R2 let

C(V,Z,Q) ⊂ ΓR

be the cone generated by the set {0 6= x ∈ ΓR | Z(x) ∈ V,Q(x) ≥ 0}.

Clearly, Z(C(V,Z,Q)) ⊂ V and the next observation is

Lemma 2.2. C(V,Z,Q) is strict.

Proof. Let us �rst consider the special case V = `.

If Z(ΓR) ∩ ` = ∅, then C(V,Z,Q) = ∅. In the other case, pick x ∈ ΓR with Z(x) ∈ ` and

consider xR ⊕ ker(Z) ⊂ ΓR. Then Z−1(`) = R>0x ⊕ ker(Z). Any element y ∈ C(`, Z,Q) can

be written as y =
∑

(λix+ yi) with λi > 0 and yi ∈ ker(Z). Hence −y cannot be of the same

form.

The same proof works when V is not just a ray but Z(ΓR) is one-dimensional.

If Z(ΓR) = R2, then we pick x1, x2 ∈ ΓR such that V is the sector between R>0Z(x1) and

R>0Z(x2). Then elements y ∈ C(V,Z,Q) are of the form
∑

(λix1 + µix2 + yi) with λi, µi ≥ 0
and λi +µi > 0 and yi ∈ ker(Z). Which excludes the possibility that also −y ∈ C(V,Z,Q). �

Note that so far we have not made any assumption on the restriction of Q to ker(Z).

Remark 2.3. Warning: C(V,Z,Q) may contain elements x ∈ ΓR with Q(x) < 0 and this

can even happen for a ray V = `. As an example consider Γ = Z2 and Z such that Z(e2) =
Z(−2e2 + e1) ∈ R2. If Q(x) = x2

2 − x2
1 and V = R>0Z(e2), then e2,−2e2 + e1 ∈ C(V,Z,Q)

and hence also e1 ∈ C(V,Z,Q) which has negative square. However in this example Q is not

negative de�nite on the ker(Z), which is a requirement later.

But if Q is assumed to be negative de�nite on ker(Z), then any x ∈ C(V,Z,Q) satis�es

Q(x) ≥ 0. Let us prove this for V = `. Then either Z−1(`R) = ker(Z), and then C(`, Z,Q) = ∅,
or there exists a Q-orthogonal decomposition Z−1(`R) = Rx0 ⊕ ker(Z) with Z(x0) ∈ `. In the

latter case, C(`, Z,Q) is either empty (if Q(x0) < 0) or spanned by elements x = λx0 ⊕ y of

positive square with y ∈ ker(Z) and λ > 0. If Q(x0) = 0, then C(`, Z,Q) = R>0x0. Otherwise,

Q on Z−1(`R) is a quadratic form of signature (1, n) and therefore the set of elements of positive

square has two connected components. The condition λ > 0 ensures that C(`, Z,Q) is spanned
by elements x = λx0 ⊕ y all contained in one of the two connected components and hence

C(`, Z,Q) is contained in this component too. In particular Q(x) > 0 for all x ∈ C(`, Z,Q).
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Let us now consider a strict sector V ⊂ R2 and a triangle ∆ ⊂ V . For a given Z and Q

consider

gV,Z,Q :=
∏

γ∈Γ∩C(V,Z,Q)

gγ and J∆ :=
∏

γ∈Γ∩C(V,Z,Q),Z(γ) 6∈∆

gγ ⊂ gV,Z,Q.

Then let

g∆ := gV,Z,Q/J∆.

Lemma 2.4. gV,Z,Q is a Lie algebra and J∆ ⊂ gV,Z,Q is an ideal. The induced Lie algebra

structure on g∆ is nilpotent, i.e. for any X ∈ g∆ the endomorphism ad(X) ∈ gl(g∆) is nilpotent.

Proof. The �rst two assertions follow immediately from the fact that C(V,Z,Q) is strict. (Note
that we really use the boundedness of ∆.)

For g∆ being nilpotent it is crucial that g0 is not contained in gV,Z,Q. The assertion follows

from the observation that for γ ∈ C(V,Z,Q), X ∈ gγ , and k � 0 the endomorphism ad(X)k

sends gV,Z,Q to J∆. �

As in the case Γ ' Z we will tacitly assume that g∆ (which is the analogue of g≤d) is �nite

dimensional or that it satis�es the assumption of Proposition 1.2.

If ∆1 ⊂ ∆2, then J∆2 ⊂ J∆1 and the induced map g∆2
// // g∆1 is a Lie algebra homomorphism.

Clearly lim∆ g∆ ' gV,Z,Q. But viewing gV,Z,Q as the limit of nilpotent Lie algebras allows one

to associate the group GV,Z,Q := limG∆, where G∆ = exp(g∆). Recall that also for the limit

the exponential map exp : gV,Z,Q
∼ //GV,Z,Q is bijective with the inverse given by the logarithm.

3. Stability structures

Let g =
⊕

γ gγ be a graded Lie algebra with Γ ' Zd. We shall write Γ∗C := Hom(Γ,C) for

the set of additive maps Z : Γ // C. We �x a norm ‖ ‖ on ΓR, but the notion of a stability

structure will turn out to be independent of it.

De�nition 3.1. (Stability structure, algebra version) Stab(g) is the set of pairs (Z, a) with

Z ∈ Γ∗C and a = (a(γ)) ∈
∏
γ 6=0

gγ

satisfying the support property (SP):

There exists a constant C > 0 such that for any a(γ) 6= 0, one has

‖γ‖ ≤ C · |Z(γ)|.

Remark 3.2. Here are a few consequences of the support property.

i) If Z(γ) = 0 for γ 6= 0, then a(γ) = 0.
ii) For a strict sector V ⊂ R2 = C and a triangle ∆ ⊂ V the set

{Z(γ) | γ ∈ Γ, Z(γ) ∈ ∆, a(γ) 6= 0}

is �nite. Indeed, since ∆ is bounded, it su�ces to show that this set is discrete. Suppose there

is an accumulation point Z(γi) // z. Then for this sequence the norm |Z(γi)| is bounded from

above, say by D, and the support property shows that ‖γi‖ ≤ C · |Z(γi)| ≤ C ·D and hence the

set {γi} is bounded. But a bounded set in Γ must be �nite.
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Observe that it is easy to construct examples with Z(Γ)∩∆ not �nite. The inequality in the

support property, implied by the additional condition a(γ) 6= 0, is really needed.

iii) For general Z ∈ Γ∗C any strict sector V , which is not just a ray, will contain in�nitely many

rays of the form R>0Z(γ). Even only allowing those with a(γ) 6= 0 for a given (Z, a) ∈ Stab(g)
will not change this. However, due to ii) there are only �nitely many rays in V spanned by

Z(γ) which are contained in a �xed triangle ∆ ⊂ V and such that a(γ) 6= 0.

Lemma 3.3. The support property for (Z, a) is equivalent to the following condition: There

exists a quadratic form Q on ΓR which is negative de�nite on ker(Z) and for which a(γ) 6= 0
implies Q(γ) ≥ 0.

Proof. As a �rst check, one observes that this condition also implies i) in the above remark.

If (Z, a) satis�es the support property, then de�ne Q by Q(γ) := −‖γ‖2+C2 ·|Z(γ)|2. Clearly
with this de�nition Q is negative de�nite on ker(Z) and for a(γ) 6= 0 the support property shows

‖γ‖2 ≤ C2 · |Z(γ)|2, i.e. Q(γ) ≥ 0.
For the converse suppose Q is given. Then write ΓR = ker(Z)⊕W with W := ker(Z)⊥ (use

that Q is non-degenerate on ker(Z)). Next choose a norm ‖ ‖ on ΓR such that Q(γ) = −‖γ‖2

for all γ ∈ ker(Z) (using that Q is negative de�nite on ker(Z)) and such that the direct sum

decomposition is also orthogonal with respect to ‖ ‖. Since Z is injective on W , there exists a

constant C2 such that Q(γ) + ‖γ‖2 ≤ C2 · |Z(γ)|2 for all γ ∈W . If γ = γ1 ⊕ γ2 with Z(γ1) = 0
and γ2 ∈ W , then Q(γ) = −‖γ1‖2 +Q(γ2) ≤ −‖γ1‖2 + C2 · |Z(γ2)|2 − ‖γ2‖2. Thus, a(γ) 6= 0,
which by assumption on Q implies Q(γ) ≥ 0, also yields ‖γ‖ ≤ C · |Z(γ)|. Therefore, the

support property holds. �

Frequently, both descriptions of the SP will be used simultaneously. E.g. the inequality in

the SP then holds for any element γ with Q(γ) ≥ 0.

The subset of all (Z, a) ∈ Stab(g) for which a �xed Q satis�es the condition in the lemma is

denoted StabQ(g). So,
Stab(g) =

⋃
StabQ(g).

Remark 3.4. Let (Z, a) ∈ StabQ(g). Consider another quadratic form Q′ which is negative

de�nite on ker(Z) and satis�es Q ≤ Q′. Then (Z, a) ∈ StabQ′(g).

Remark 3.5. Let us rephrase the �niteness in Remark 3.2, ii) in terms of Q. For (Z, a) ∈
StabQ(g) the set {Z(γ) ∈ ∆ | γ ∈ Γ, Q(γ) ≥ 0} is �nite. (Obvious, since the inequality

Q(γ) ≥ 0 implies the inequality in the support property for well chosen C and ‖ ‖.)

De�nition 3.6. (Stability structure, group version) For a given quadratic form Q on ΓR the

set ŜtabQ(g) consists of all pairs (Z,A) with

Z ∈ Γ∗C and A = (AV ∈ GV,Z,Q))

with V running through all strict sectors in R2 and such that Q is negative de�nite on ker(Z)
and for a disjoint decomposition of a strict sector V = V1

∐
V2 into strict sectors in clockwise

order one has the factorization property (FP):

AV = AV1 ·AV2 .
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The last equation takes place in GV,Z,Q, where we consider the natural inclusions GVi,Z,Q ⊂
GV,Z,Q. If ∆ ⊂ V is a triangle, then we will denote the projection of AV to G∆ by A∆.

Part of the data of (Z,A) ∈ ŜtabQ(g) are the group elements A` ∈ G`,Z,Q for any ray ` ⊂ R2.

As will been shown next, they determine all the others.

Lemma 3.7. Suppose ∆ ⊂ V is such that there is exactly one ray ` = R>0Z(γ) ⊂ V with

a(γ) 6= 0 (or Q(γ) ≥ 0) and Z(γ) ∈ ∆. Then the images of AV and A` in G`∩∆ ⊂ G∆ coincide.

Proof. (Note that we do not exclude that some small multiples of γ may also be mapped to ∆.)

One again applies the factorization property. Decompose V = V1
⊔
`
⊔
V2 clockwise, so V1 and

V2 are the parts of V left respectively right from `. (Draw a picture!) Then AV = AV1 ·A` ·AV2 .

For ∆i := ∆∩ Vi consider A∆i ∈ G∆i . Now G∆i = exp(g∆i) with g∆i =
∏

gδ with the product

over all δ ∈ C(Vi, Z,Q) ∩Z−1(∆i) ∩ Γ, which is empty. Hence A∆i = 1 and hence A∆ = A`∩∆,

which proves the claim. �

Let now V ⊂ R2 be an arbitrary strict sector and let ∆ ⊂ V be a triangle. Suppose

`i = R>0Z(γi), i = 1, . . . , k are the only rays in V with Z(γi) ∈ ∆ and with Q(γi) ≥ 0. See

Remark 3.5 for the �niteness. Then decompose V =
⊔k+1

1 Vi clockwise such that `i ⊂ Vi (e.g.

requiring that the Vi, i = 1, . . . , k, are closed on the right with boundary ray `i).

Then the factorization property yields AV = AV1 · . . . · AVk
· AVk+1

in GV,Z,Q. This implies

A∆ = A∆1 · . . . · A∆k+1
in G∆ for any triangle ∆ ⊂ V , where ∆i := ∆ ∩ Vi. Now apply the

lemma to see that the ∆-truncations of AV and the product A`1 · . . . ·A`k
coincide.

Remark 3.8. The factorization property comes also in an in�nite version. If V =
⊔

i∈I Vi is

an arbitrary union indexed by a totally ordered set I such that Vi < Vj (in clockwise order) if

i < j, then

(3.1) AV =
∏ //

AVi .

Let us explain what this means. For any triangle ∆ ⊂ V let ∆i := ∆ ∩ Vi be the induced

triangle in Vi. Due to Remark 3.5 only �nitely many of the ∆i will contain an element of the

form Z(γ), γ ∈ Γ with Q(γ) ≥ 0. Thus, in the product
∏ //

A∆i , which is taken clockwise,

only �nitely many terms contribute. So (3.1) means that for any ∆ one has

A∆ =
∏ //

A∆i .

Typically this is applied to a decomposition of a strict sector V such that each Vi contains

exactly one ray of the form R>0Z(γ), γ ∈ Γ with Q(γ) ≥ 0. This is then written as

AV =
∏ //

`⊂V
A`,

where of course only those rays ` ⊂ V contribute that are of the form R>0Z(γ), with γ ∈ Γ and

Q(γ) ≥ 0.

The lemma also shows

Corollary 3.9. If (Z,A) ∈ ŜtabQ(g), then the A` determine the AV uniquely. �
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Taking logarithm of the A` yields

log(A`) ∈ g`,Z,Q =
∏

γ∈Γ∩C(`,Z,Q)

gγ ⊂
∏

Z(γ)∈`

gγ

which shall be written as an in�nite sum
∑
a(γ) with γ ∈ Γ∩C(`, Z,Q). Since for �xed Z each

γ determines the ray Z(γ), this de�nes a = (a(γ)) ∈
∏

γ 6=0 gγ .

Lemma 3.10. If (Z,A) ∈ ŜtabQ(g), then (Z, a) ∈ StabQ(g).

Proof. We have to verify the support property or, equivalently (see Lemma 3.3), that a(γ) 6= 0
implies Q(γ) ≥ 0. If a(γ) 6= 0, then the γ-component of log(A`) is non-trivial which by

construction of log(A`) as an element in g`,Z,Q implies γ ∈ C(`, Z,Q). Thus Q(γ) ≥ 0 (see

Remark 2.3). �

Proposition 3.11. Associating (Z, a) to (Z,A) ∈ ŜtabQ(g) as described above yields a natural

bijection

ŜtabQ(g) ∼ // StabQ(g).

Proof. We have seen that (Z,A) � // (Z, a) de�nes a map ŜtabQ(g) // StabQ(g). Since A` =

exp
(∑

γ∈C(`,Z,Q) a(γ)
)
, the image determines the A` and hence, by Corollary 3.9, also A itself.

This proves the injectivity.

For the inverse of this map recall that for (Z, a) ∈ StabQ(g) the inequality a(γ) 6= 0 implies

Z(γ) 6= 0 and Q(γ) ≥ 0 (see Lemma 3.3). In particular, if a(γ) 6= 0, then γ ∈ C(R>0Z(γ), Z,Q).
Hence for any ray ` the in�nite sum

∑
Z(γ)∈` a(γ) is contained in g`,Z,Q and we let A` ∈ G`,Z,Q

be its exponential. Now use Lemma 3.7 and its generalization to conclude. Explicitly, any

AV is determined by its truncations A∆. Each ∆ can be decomposed into �nitely many ∆i,

i = 1, . . . , k, each meeting only one ray of the form R>0Z(γi) with Z(γi) ∈ ∆ and a(γi) 6= 0 (or

Q(γi) ≥ 0). Then one sets A∆ :=
∏k

1 A`i∩∆, where `i = R>0Z(γi). Clearly, the A∆ form an

inverse system and thus really determine an element AV . The factorization property of the AV

follows from the construction. �

The bijections ŜtabQ(g) ∼ // StabQ(g) yield a bijection

Ŝtab(g) ∼ // Stab(g),

where Ŝtab(g) is obtained by gluing the ŜtabQ(g) via an equivalence relation ∼, that is de�ned
as follows. One says (Z,A) ∈ ŜtabQ(g) and (Z ′, A′) ∈ ŜtabQ′(g) are equivalent if Z = Z ′ and

there exists a quadratic form Q0 negative de�nite on ker(Z) = ker(Z ′) such that Q,Q′ ≤ Q0

and for all strict sectors V one has AV = A′V in GV,Z,Q0 . (For the latter one uses the natural

inclusion GV,Z,Q ⊂ GV,Z,Q0 .) It is easy to see that with this de�nition (Z,A) ∼ (Z ′, A′) if and
only if (Z, a) = (Z ′, a′) in Stab(g).

4. Topology on Stab

Proposition 4.1. There is a natural topology on Stab(g) such that a map

ϕ : X // Stab(g), x � //ϕ(x) = (Zx, ax) = (Zx, Ax)



8 D. HUYBRECHTS

from a topological space X is continuous if and only if the following conditions are satis�ed:

i) The composition X // Stab(g) // Γ∗C is continuous.

ii) ϕ−1(StabQ(g)) ⊂ X is open for all Q.

iii) If for a closed strict sector V ⊂ R2 and a point x0 ∈ X one has Zx0{γ | ax0(γ) 6= 0}∩∂V = ∅,
then x � // log(AxV ) ∈

∏
gγ is continuous in x0.

Here
∏

gγ is endowed with the product of the discrete topologies on the gγ.

Remark 4.2. The �rst condition says that Stab(g) // Γ∗C is continuous and the second that

the sets StabQ(g) ⊂ Stab(g) are open.
A map ψ : X //

∏
gγ is continuous in x0 if the composition with each of the projections

pγ :
∏

gγ
// gγ is locally constant. It does not mean that ψ itself is locally constant. In other

words, the open neighbourhood of x0 on which pγ ◦ ψ is constant will in general depend on γ.

In particular this shows that we cannot hope to phrase condition iii) as a continuity condition

for Ax, we need to pass to log(Ax). On the other hand, iii) can neither be phrased purely in

terms of the ax(γ). Indeed, we do have log(Ax`) =
∑

Z(γ)∈` ax(γ), but V = ` = R>0Z(γ) is

not even considered in iii). For those strict sectors V ⊂ R2 that are considered in iii) we know

that log(AxV ) can also be expressed in terms of the ax(γ) with Z(γ) ∈ V , but the expression

involves the Campbell�Hausdor� formula and condition iii) says that the part of the Campbell�

Hausdor� formula in all ax(γi) contributing to the gγ-component is locally constant in x0. See

also the comment at the end of Example 4.4, ii).

The proof of the proposition is omitted. In fact any given class of maps from topological

spaces into a given set de�nes a topology on the latter. Usually, the class of continuous maps

gets larger in the process, but it is not di�cult to check that this does not happen here. Actually,

the assertion that a topology can be de�ned in this way is of no practical interest. What really

matters is which maps from topological spaces into Stab(g) one wants to allow and this is stated

explicitly in the proposition. Later only continuous maps from intervals in R or from open sets

in Rn will be needed.

Remark 4.3. It is not di�cult to check that Stab(g) is Hausdor�. For this, consider a sequence
(Zn, an) = (Zn, An) ∈ Stab(g) converging to two distinct points (Z, a) = (Z,A), (Z ′, a′) =
(Z ′, A′) ∈ Stab(g). Since Stab(g) // Γ∗C is continuous and Γ∗C is Hausdor�, one has Z = Z ′.

If (Z, a) ∈ StabQ(g) and (Z ′, a′) = (Z, a′) ∈ StabQ′(g), then there exists a quadratic form Q0

such that Q0 is negative de�nite on ker(Z) = ker(Z ′) and Q,Q′ ≤ Q0. (Take the maximum of

Q and Q′ on ker(Z) and add a very positive form on its complement.) Then by Remark 3.4

(Z, a), (Z ′, a′) ∈ StabQ0(g).
For any given γ ∈ Γ we have to show that a(γ) = a′(γ). Fix a strict sector V and a triangle

∆ ⊂ V such that rays of the form R>0Z(δ), with Z(δ) ∈ ∆, δ ∈ Γ, and a(γ) 6= 0, all coincide
with ` := R>0Z(γ). Moreover, we assume Z(γ) ∈ ∆. Then the ∆-truncations of AV and A`

coincide (cf. Lemma 3.7). Similarly for A′V and A′`. By assumption, log(AV ) and log(A′V ) are
both limits of log(AnV ) and hence their γ-components coincide, for gγ is Hausdor�. Therefore,

also the γ-components of log(A`) and log(A′`) are equal, i.e. a(γ) = a′(γ).

Example 4.4. To make the comments in Remark 4.2 more transparent, let us study particular

cases.
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i) First, consider the case that `x := R>0Zx(Γ) is a ray for x close to x0. If V is a closed

sector with `x in its interior, then iii) in Proposition 4.1 says ax(γ) for all γ is locally constant

in x0.

ii) Now consider the case Γ ' Z2 = γ1Z⊕ γ2Z and a continuous path of stability structures

(Zt, at) = (Zt, At), t ∈ [0, ε). Let γ = γ1 + γ2 and assume Zt(γ) 6= 0 for all t, i.e. `t = R>0Zt(γ)
is a ray.

Suppose Z0(γi) ∈ `0, but R>0Zt(γ1) < R>0Zt(γ2) (in the clockwise order) for t 6= 0. It should
be helpful to write down explicitly how the at(γ) changes.

So let V be a small strict sector with `0 in its interior. Moreover, �x a triangle ∆ ⊂ V such

that the only elements in Γ with image under Zt (for small t) contained in ∆ are γ1, γ2, γ =
γ1 + γ2. (This is not quite realistic, as it seems that certain small multiplies of γ1 or γ2 may

also be mapped into ∆, but as one will see this does not a�ect the calculation.)

Then the truncation At∆ of AtV is constant for small 0 ≤ t. Moreover, for t = 0 one has

A0∆ = A0`0∩∆ whose logarithm in g`∩∆ is a0(γ1) + a0(γ2) + a0(γ1 + γ2).
On the other hand, one can decompose V clockwise as V = V1t

⊔
`t

⊔
V2t and consider the

induced triangles ∆it := ∆ ∩ Vit. Then

A0∆ = At∆ = At∆1t ·At`t∩∆ ·At∆2t .

For t > 0, At∆it is the truncation of At`it
, where `it = R>0Z(γi), and, moreover, At∆1t =

exp(at(γi)). The remaining factor At`t∩∆ for t > 0 is exp(at(γ)).
The Campbell�Hausdor� formula then shows

a0(γ1) + a0(γ2) + a0(γ) = at(γ1) + at(γ2) + at(γ) + (1/2)[at(γ1), at(γ2)].

In other words, for t > 0 one has a0(γi) = at(γi) and

(4.1) a0(γ) = at(γ) + (1/2)[at(γ1), at(γ2)] = at(γ) + (1/2)[a0(γ1), a0(γ2)].

In particular, the at(γi) are locally constant in t = 0, but at(γ) is not. Its jump is expressed by

the Lie bracket [a0(γ1), a0(γ2)].
If one follows the path for t < 0 and assumes that then R>0Z(γ2) < R>0Z(γ1), then a0(γ1)

and a0(γ2) get interchanged in (4.1). This then yields

a>0(γ) = a<0(γ) + [a0(γ1), a0(γ2)],

where a<0(γi) = a>0(γi) = a0(γ).
(The Campbell�Hausdor� formula a priori also produces terms of the form [at(γ1), at(γ)] ∈

gγ1+γ but those are trivial in the truncation g∆ and in any case do not contribute to the

γ-component.)

The last example shows that the at(γ) may not be locally constant in a given point t = 0,
at least if the map Zt : Γ // C changes its behavior, e.g. if its rank drops. This is made more

precise by the concepts of walls. In the following a quadratic form Q is �xed and only linear

functions Z are considered for which Q is negative de�nite on ker(Z).
For two linearly independent γ1, γ2 ∈ Γ with Q(γi) ≥ 0 one considers the wall

Wγ1,γ2 := {Z ∈ Γ∗C | R>0Z(γ1) = R>0Z(γ2)},
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which is of real codimension one. Sometimes it is convenient to think of walls as associated

to sublattices Γ0 ⊂ Γ with rk(Γ0) = 2. Then the wall would be the set of those Z such that

rkZ(Γ0) = 1.

Proposition 4.5. Suppose (Zt, at) ∈ Stab(g), t ∈ [0, 1], is a continuous path. Consider γ ∈ Γ
and assume that Zt 6∈

⋃
γ1+γ2=γ Wγ1,γ2 for all t. Then at(γ) is constant.

Note that in Example 4.4, iii) the assumption does not hold, as Z0 ∈Wγ1,γ2 .

Proof. A wall Wγ1,γ2 with γ1 + γ2 = γ will be called a γ-wall. So the assumption says that Zt

are not contained in any γ-wall.

We prove that at(γ) is locally constant in t = 0.
First �x Q such that (Zt, at) ∈ StabQ(g) for all t close to 0. If Q(γ) < 0, then at(γ) = 0 and

there is nothing to prove. So assume Q(γ) ≥ 0.
Then choose a generic small triangle ∆ such that all Z0(δ) ∈ ∆ with Q(δ) ≥ 0 are contained

in the ray `0 through Z0(γ) ∈ ∆. For t close to 0 we may assume that M := {δ ∈ Γ | Q(δ) ≥
0, Zt(δ) ∈ ∆} is independent of t. The set of rays It := {R>0Zt(δ) | δ ∈ M} may depend on

t, but it will always be �nite. For t = 0 it reduces to `0 or, in other words, Z0(δ) ∈ `0 for all

δ ∈M .

By continuity, the γ-component log(At∆)γ of log(At∆) will be constant. For t = 0 it is a0(γ).

For t 6= 0 one writes At∆ =
∏ //

`∈It
At`∩∆. Then At`∩∆ = exp (

∑
at(δ)), where the sum runs

over all δ ∈ M with Zt(δ) ∈ `. Applying the Campbell�Hausdor� formula to the product∏ //

`∈It
exp (

∑
at(δ)), one computes its γ-component as a sum of Lie expressions [. . . [. . . [ , ] . . .]

in the at(δ) with δ ∈M .

i) Consider �rst the case that to all Lie expressions entering the formula for log(At∆)γ only

one of the rays in It contributes. Whenever a Lie expression in the formula for log(At∆)γ

involves only one ray, say ` ∈ It, then Zt(γ) ∈ `. Since Zt(γ) can only be contained in one of

the rays in It, all Lie expressions contributing to log(At∆)γ involve the same single ray. In the

Campbell�Hausdor� formula for X ∗ Y there is no monomial of degree > 1 involving only X

(or Y ). Thus, at(γ) appears in log(At`∩∆) =
∑
at(δ) and there can be no other contribution of

higher degree to log(At∆)γ involving only `. Thus, at(γ) = log(At∆)γ which is locally constant.

ii) Now consider the case that one of the Lie expressions in the Campbell�Hausdor� formula

for log(At∆)γ involves more than one ray. Then γ = δ1 + . . .+ δk, k > 1, with Zt(δi) spanning
di�erent rays. If the Zt(δi) are written in clockwise order, then for γ1 := δ1 and γ2 := δ2 +
. . . + δk the images Zt(γ1) and Zt(γ2) are linearly independent in R2. Hence γ1 and γ2 are

linearly independent in ΓR. On the other hand, Z0(γi) ∈ R>0Z0(γ) which then contradicts the

assumption that Z0 is not contained in any γ-wall. �

Consider a path (Zt, at) = (Zt, At) ∈ StabQ(g), t ∈ [0, 1], such that each wall Wγ1,γ2 is

intersected only �nitely often. A value t ∈ [0, 1] is a discontinuity point for γ ∈ Γ if γ = γ1 + γ2

with Q(γi) ≥ 0 and Zt ∈Wγ1,γ2 .

Lemma 4.6. A �xed γ has only �nitely many discontinuity points.
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Proof. First note that Zt(γ) is bounded for t ∈ [0, 1]. Then if Zt is contained in a γ-wall

Wγ1,γ2 , one has |Zt(γi)| ≤ |Zt(γ)|, because Zt(γ1) and Zt(γ2) are both contained in R>0Zt(γ).
Since Q(γi) ≥ 0, the inequality in the support property holds and hence the |γi| are bounded

universally by C ·max{|Zt(γ) | t ∈ [0, 1]}. Thus the set of potential (γ1, γ2) for which Zt ∈Wγ1,γ2

with γ1 + γ2 = γ is bounded and discrete and hence �nite. (See the arguments in the proof

of Lemma 3.3 and Remark 3.4. One may have to decompose [0, 1] in �nitely many intervals

and so to work with �nitely many constants C and norms ‖ ‖, but this does not a�ect the

argument.) �

So for �xed γ and any t ∈ [0, 1] the value of at(γ) will be constant for t+ ε and for t− ε for

small ε > 0. They are denoted a+
t (γ) respectively a−t (γ). Of course, if t is not a discontinuity

point for γ then a±t (γ) = at(γ). In general the relation between a±t (γ) and at(γ) is described

by the following

Proposition 4.7. Wall-crossing formula: Let ` = R>0Zt(γ). Then the following formula holds

in G`,Zt,Q:

(4.2)
∏ //

µ
exp

∑
n≥1

a±t (nµ)

 = exp

 ∑
µ,n≥1

at(nµ)

 ,

where on both sides µ runs through all primitive elements in Γ with Zt(µ) ∈ ` := R>0Zt(γ).
The product is taken in clockwise order with respect to Zt±ε(µ).

Proof. As we will see, the proof actually uses that Zt±ε is not contained in any wall Wδ1,δ2

(where δ1 + δ2 may or may not be γ). In fact, it is enough to exclude walls Wδ1,δ2 with

Zt(δi) ∈ R>0Zt(γ). But it does not matter on how many walls Wγ1,γ2 (with γ1 + γ2 = γ or not)

Zt happens to lie.

First observe that the right hand side of the equation is just At,`. Next, consider a sequence

of triangles ∆i satisfying the following conditions:

i) ∆i ∩ ` = (0, i] · Zt(γ),
ii) The sector corresponding to ∆i is generic (in the sense of Proposition 4.1, iii))

iii) If ε is small and δ ∈ Γ with Q(δ) ≥ 0 and Zt−ε(δ) ∈ ∆i, then Zt(δ) ∈ `.
Then At,`∩∆i

= At,∆i and log(At,∆i) = log(At±ε,∆i) for small ε. (Use continuity and condition

ii).) Now At±ε,∆i can be written as the �nite clockwise product
∏
At±ε,∆i∩`j

, where the `j run

through the rays spanned by Zt±ε(δj) ∈ ∆i and Q(δj) ≥ 0 (see Remark 3.8).

Use At±ε,∆i∩`j
= exp (

∑
at±ε(nµ))∆i

with the sum over all primitive µ ∈ Γ with Zt±ε(µ) ∈ `j
and all n ≥ 1.

As Zt±ε is not contained in any wall (of typeWδ1,δ2 with Zt(δi) ∈ `), there is at most one prim-

itive µ for each `j actually contributing. HenceAt±ε,∆i =
∏
At±ε,∆i∩`j

=
∏

µ exp (
∑

n at±ε(nµ))∆i

with the product over all primitive µ with Zt±ε(µ) ∈ ∆i.

Therefore At,`∩∆i
= At,∆i = At±ε,∆i =

∏
µ exp (

∑
n at±ε(nµ))∆i

with µ ∈ Γ primitive. In

other words, the ∆i-truncations of the two sides of the asserted equation coincide. �

Example 4.8. Suppose Γ = Z2 and Q(x, y) = xy. We shall write a(γ) = a(m,n) for γ =
(m,n). Consider a path in StabQ(g) with Zt(Γ) of rank one and such that Zt−ε is injective and
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orientation preserving and Zt+ε is injective and orientation reversing. Then the wall crossing

formula says:

∏ //

(m,n)=1
exp

∑
k≥1

a−(m,n)

 =
∏ oo

(m,n)=1
exp

∑
k≥1

a+(m,n)

 .

So only the ordering of the product with respect to the natural ordering ofm/n ∈ Q has changed

while crossing the wall.

Proposition 4.7 can in particular be used to express for �xed γ the value at+ε(γ) after going
through a discontinuity points for γ in terms of at−ε(γ) and a �nite collection of at−ε(γi). Since
there are only �nitely many discontinuity points t ∈ [0, 1] for a �xed γ, one would hope that

this eventually leads to expressing a1(γ) in terms of a0(γ) and �nitely many a0(γi). As after

each wall crossing, there are more elements one has to keep track of, the �niteness needs to be

proved carefully.

Proposition 4.9. Suppose (Zt, at) ∈ StabQ(g), t ∈ [0, 1], is a continuous path. Then a1(γ) can
be expressed (using the Lie algebra structure of g) in terms of �nitely many a0(γi).

Proof. TBC �

The arguments used to prove the Proposition 4.7 also show that any continuous path Zt ∈ Γ∗C,
t ∈ [0, 1], with Q negative de�nite on all ker(Zt) can be lifted to a unique continuous path

in StabQ(g) once (Z0, a0) ∈ StabQ(g) is chosen. If a path connecting Z0 and Z1 is chosen

generically in the sense that only one wall at a time is crossed, then the small perturbations

of the path will not change the lift (Z1, a1). So if it can be shown that the monodromy of a

loop around an intersection point of two or more walls will have trivial monodromy, then the

lift (Z1, a1) will only depend on (Z0, a0) and not on the path connecting Z0 and Z1.

This is the rough idea for the following

Proposition 4.10. (Theorem 3) Fix (Z0, a0) ∈ StabQ(g). Then over the connected com-

ponent of U of the open set {Z ∈ Γ∗C | Q|ker(Z) < 0} that contains Z0 the natural projec-

tion StabQ(g) // Γ∗C, (Z, a) � //Z admits a unique continuous section U // StabQ(g) through

(Z0, a0).

Proof. 1. Let us �rst look at the `global monodromy' of the connected component U of the open

set {Z ∈ Γ∗C | Q|ker(Z) < 0}. Claim: π1(U) ' Z with a generator given by e2πit · Z, t ∈ [0, 1].
Indeed, TBC

If Z is not contained in any of the walls, then neither is any of the Zt := e2πit ·Z. Hence, the
wall crossing formula in this case says that the constant path at ≡ a0 yields the unique lift of

the path Zt.

2. The di�cult part is to show that going from Z0 to Z1 does not depend on the choice of

the path connecting Z0 and Z1. The path can be chosen generic, i.e. crossing walls for at most

�nitely many t ∈ [0, 1]. (In principle a path could also spend time within a wall, but it would

jump only when meeting another wall.)

First observe, that the collection of walls is locally �nite. Indeed, TBC
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3. Suppose (Zt, at) ∈ StabQ(g), t ∈ [0, 1) is a continuous path with Zt not contained in any

wall for t < 1 and such that Zt, t ∈ [0, 1), can be extended to a continuous path Zt, t ∈ [0, 1] in
Γ∗C with Q still negative de�nite on ker(Z1). The wall crossing formula determines a1 uniquely.

With this choice, (Z1, a1) is a stability condition and (Zt, at), t ∈ [0, 1], is a continuous path in

StabQ(g).
If Z1 is contained in exactly one wall, then the path can be perturbed a little without changing

a1. If, however, Z1 is contained in two walls W = Wγ1,γ2 and W ′ = Wγ′
1,γ′

2
, then the value of a1

will in general change. So, in this case one has to show that crossing both walls is independent

of the chosen path. Or, in other words, one has to show that also for Z ∈ W ∩W ′ the lift

locally around Z is unique.

In [1] only the case of the intersection of two walls (and not more) is sketched and we will

follow them. Set Λ := 〈γ1, γ2〉 and Λ′ := 〈γ′1, γ′2〉. Then L1 := RZ(Λ) and L2 := RZ(Λ′) are

both of dimension one.

There are two cases, L1 6= L2 or L1 = L2. In the �rst case, the wall crossing formula

related to Λ1 and Λ2 happen in di�erent slices of the Lie algebra and therefore commute. Thus

only the case L1 = L2 needs to be discussed. Then Γ′ := Λ + Λ′ is of rank at least 3 and

RZ(Γ′) = L1 = L2 =: L.
One may assume Γ′ = Γ, as only for elements γ in Γ′ crossing the walls W and W ′ will a�ect

a(γ). Now pick a decomposition in strict sectors R2 \ {0} = V1
⊔
V2

⊔
V3

⊔
V4 with L \ {0}

contained in the interior of V1
⊔
V3. Then condition iii) of Proposition 4.1 holds for all four

sectors Vi and therefore AVi is locally constant around Z.

Thus for all Z ′ close to Z any lift contained in a small neighbourhood of (Z,A) will have

constant AVi and will, in particular, be unique. Now use Remark 4.11. �

Remark 4.11. Suppose a decomposition R2 \
⊔
Vi into strict sectors is given. Then for a

given Z a stability condition (Z,A) uniquely determined by the AVi . One has to show that

the a(γ) are determined. Consider the sector V = Vi that contains Z(γ). Then choose a

decreasing sequence of triangles ∆1 ⊂ ∆2 ⊂ . . . in V such that ∆i+1 \ ∆i contains exactly

one Z(γ) with a(γ) 6= 0 (or Q(γ) ≥ 0), it shall be called γi+1. Clearly, A∆1 determines a(γ1).
In fact, exp(a(γ1)) = A∆1 . Then proceed by induction. Suppose a(γ1), . . . a(γi) are already

determined. Use FP to write A∆i+1 as a product of A`k∩∆i+1
, where the rays `k are spanned

by Z(γ1), . . . , Z(γi). Then a(γi+1) will occur in the logarithm of one of the factors. All the

other ones will involve only a(γ1), . . . , a(γi). The Campbell�Hausdor� formula then allows one

to express a(γi+1) in terms of log(A∆i+1 and a(γ1), . . . , a(γi). This proves the claim.

Clearly, one consequence of the theorem is that Stab(g) // Γ∗C is a local (in Stab(g)!) home-

omorphism, which is reminiscent of Bridgeland's result.
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