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1. Introduction

We are interested in intersections of Lagrangian submanifolds inside a
holomorphic symplectic manifold. Our particular goal is to understand the
construction of a perverse sheaf P•L,M on such an intersection as de�ned in
[Bu14], [BBDJS] and [KL16]. It is a special case of the construction of a
perverse sheaf on a d-critical locus. Therefore, the paper is divided in two
parts: Part 1 can be viewed as an introduction to the theory of d-critical loci
from [Joy13]. It covers the de�nition of a d-critical locus (X, s), symmetric
obstruction theories as de�ned in [BF05], and the construction of a perverse
sheaf P•X ,s on (X, s) from [BBDJS]. Part 2 applies the theory to Lagrangian
intersections. The starting point is that any such intersection admits the
structure of a d-critical locus.

We will now describe the main results in more detail:
1



2 I. GROSSE-BRAUCKMANN

Part 1. d-critical loci. First of all, the local setting we are interested
in is as follows. Let S be a smooth scheme and f ∈ H0(S,OS). We set
X .. = crit(f) and generally care about the following constructions on X:

(i) Symmetric obstruction theories, i.e. a triple

(E ∈ D(X), φ : E→ LX , θ : E∨[1]
∼−→ E)

such that E is locally isomorphic to a complex [E−1 → E0] of locally
free sheaves, H−1(φ) is surjective and H0(φ) is an isomorphism. Here,
LX denotes the (truncated) cotangent complex of X. For instance, a
symmetric obstruction theory on X is given by

E∂2f

ψ

��

= [TS |X
∂2f

//

df
����

ΩS |X ]

LX = [IXS/I 2
XS

d // ΩS |X ]

(1.1)

(Lemma 3.10).
(ii) The perverse sheaf of vanishing cycles de�ned by

PV•S,f .. = φf CS [dimS − 1] ∈ Perv(X). (1.2)

In general, we deal with schemes that are locally of the form crit(f). These
are d-critical loci.

According to [Joy13, De�nition 2.5], a d-critical locus is either a scheme
or an analytic space X together with a section s of a certain sheaf SX .
This section satis�es the property that for every point x ∈ X there exists
an open neighborhood U ⊂ X, a smooth scheme S together with a closed
embedding U ⊂ S and f ∈ H0(S,OS) such that U = crit(f) and f de�nes
s |U . The triple (U, S, f) is called a chart for (X, s). In Section 2.1 we will give
the precise de�nition of the sheaf SX involving what we call the thickened
cotangent complex MX . This is a non-coherent version of the truncated
cotangent complex LX . More precisely, for any scheme X we construct a
morphism

DX : OX → LX in D(Sh(X))

over the natural di�erential dX : OX → ΩX . The thickened cotangent com-
plex is the cone of DX and we set

SX .. = H−1(MX).

Since the di�erential inMX is not OX -linear, SX is in general not a coherent
sheaf but only a sheaf of C-algebras.

On any d-critical locus (X, s) we can locally de�ne a symmetric obstruction
theory as in (1.1). Unfortunately, these obstruction theories need not glue
to a global obstruction theory on X. We discuss this in Section 3.

Proposition 1.1 ([Joy13]). There exists a line bundle KX,s on Xred such
that

KX,s |Ured

∼−→ detE∂2f |Ured
= ω⊗2

S |Ured

for every critical chart (U, S, f).
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For the precise statement see Proposition 3.12. The line bundle KX,s is
called canonical bundle.

In Section 4 we address the question whether the perverse sheaves of van-
ishing cycles as in (1.2) can be glued to a global perverse sheaf P•X ,s on
(X, s).

Proposition 1.2 ([BBDJS]). Assume that there is a square root K1/2
X,s of the

canonical bundle KX,s. Then there exists a perverse sheaf P•X ,s on X such
that

P•X ,s |U
∼−−→ PV•S,f ⊗ Lor

U,S

for every critical chart (U, S, f). Here, Lor
U,S is a local system on Ured such

that Lor
U,S ⊗C OUred

∼= (K1/2
X,s)
∨ |Ured

⊗ ωS |Ured
.

For the precise statement see Proposition 4.20.

Part 2. Lagrangian intersections. Let (S, σ) be a symplectic manifold
of dimension 2n and let X = L ∩M be the intersection of two Lagrangian
submanifolds. For instance, let M be a complex manifold and S = |ΩM | be
the total space of its cotangent bundle with the canonical symplectic struc-
ture. Then, for any f ∈ H0(M,OM ) we de�ne a Lagrangian submanifold by
L .. = Γdf . Here, Γdf denotes the image of the embedding df : M ↪→ |ΩM |,
which is given by the section df ∈ H0(M,ΩM ). The intersection X = L∩M
is the locus where df vanishes, i.e. X = crit(f) ⊂ M . It turns out that any
Lagrangian intersection is locally of this form.

Proposition 1.3 ([Bu14]). The intersection of two Lagrangian submanifolds
X = L ∩M admits the structure of a d-critical locus with canonical bundle

KX,s ∼= ωL |Xred
⊗ ωM |Xred

.

In particular, we can once again locally de�ne a symmetric obstruction
theory on X. On the other hand, we prove in Lemma 6.1 that X carries a
global symmetric obstruction theory with E given by

ELM .. =

[
ΩS |X

(−resL,resM )−−−−−−−−→ ΩL |X ⊕ ΩM |X
]
.

From here we can conclude (Lemma 6.2) that

ωX ⊗ ωX ∼= ωL |X ⊗ ωM |X

if X is smooth. Moreover, we compare these two obstruction theories in the
above situation.

Proposition 1.4. Let M be a complex manifold considered as Lagrangian
submanifold inside its cotangent bundle S = |ΩM |. Let f ∈ H0(M,OM ) and
L .

. = Γdf ⊂ S. There is an isomorphism of symmetric obstruction theories

Φ: E∂2f
∼−−→ ELM ,

where E∂2f is de�ned as in (1.1) and ELM as above.
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The precise de�nition of Φ can be found in Proposition 6.4.

In the case that a square root of ωL |Xred
⊗ ωM |Xred

exists the d-critical
structure on X also yields the existence of a perverse sheaf P•L,M . In Section
7.2 we will describe P•L,M explicitly in some special situations. For instance,
we have (Lemma 7.6)

Lemma 1.5. Assume that the intersection X = L ∩M is smooth and let
K1/2
X,s = ωX . Then

P•L,M ∼= CX [dimX].

The following Section 8 is dedicated to the study of two concrete exam-
ples of Lagrangian intersections in dimension 4. Here, the Hilbert scheme
Hilb2(Z) of a K3 surface serves as a symplectic manifold.

Finally, in the last Section 9 we aim at setting up a connection between
dimH•(P•L,M ) and dim Ext•(ω1/2

L , ω1/2

M ). More precisely, under the assump-
tion that

Ep,q2 = Hp(X, Extq(ω1/2

L , ω1/2

M ))⇒ Extp+q(ω1/2

L , ω1/2

M )

degenerates, we prove

Proposition 1.6. Assume that X = L ∩M is smooth and compact. Let
ω1/2

L and ω1/2

M be �xed square roots of the canonical bundles of L and M ,
respectively. Then

dim Exti−nOS (ω1/2

L , ω1/2

M ) = dimHi(P•L,M ).

Here, K1/2
X,s = ω1/2

L |X ⊗ ω
1/2

M |X serves for the computation of P•L,M .

Acknowledgements. I want to heartily thank my advisor Daniel Huy-
brechts for all his time and motivation. Many thanks to Johannes Anschütz
for continuously answering all my questions and also to Andrey Soldatenkov
for the computation of Example 2.12.

Notation. All schemes are of �nite type over C. Let X be a scheme. We
abbreviate D(Qcoh(X)) by D(X) and call this the derived category of X.
We use the notation D+(X),D−(X),Db(X) for the derived category of com-
plexes that are bounded from below, from above or from both sides respec-
tivly. Moreover, Db

c(X) is the derived category of bounded complexes of
constructible sheaves. We denote the category of sheaves of C vector spaces
by Sh(X). We do not especially indicate when tensor products are derived
tensor products.

The theory of d-critical loci works in the analytic and in the Zariski topol-
ogy. We will not mention this explicitly. All our perverse sheaves are ele-
ments of Db

c(Sh(X)), where constructibility is understood with respect to the
analytic topology. In Part 2 we are only interested in the analytic topology.

If E• is a complex of sheaves, then E•[1] is the complex with (E•[1])i = E i+1

and di�erential diE•[1] = −di+1
E• . If φ : E• → F• is a morphism of complexes,

then φ[1] is given by φ[1]i = φi+1.
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Let X be a scheme. We write N ilX for the Nilradical of OX . If X ⊂ S is
a closed embedding with ideal sheaf I , then N ilX =

√
I /I , where

√
I is

the radical ideal of I de�ning Xred.

If X is a scheme and E a vector bundle on X, we denote the total space
of E by |E| = SpecX(Sym•(E∨)). For any section s ∈ H0(X, E) let Γs ⊂ |E|
be the image of the embedding s : X ↪→ |E|. If no confusion arises, we
write X ⊂ |E| for the zero section Γ0. For projective bundles, we use the
convention P(E) = ProjX(Sym•(E∨)).

Let M be a scheme and f : M → A1 a morphism, or equivalently, f ∈
Γ(M,OM ). Then crit(f) ⊂ M is the vanishing locus of the section df ∈
Γ(M,ΩM ). We could also write crit(f) = M ∩ Γdf .

Part 1. d-critical loci

2. Definition

In this section we will establish the notion of a d-critical locus (X, s).
This is a scheme or a compelex analytic space X that is locally of the form
crit(f). Any two local reprensentations of the form crit(f) satisfy a certain
compatibility condition, which is encoded by a section s ∈ H0(X,SX). The
sheaf SX is a cohomology sheaf of the thickened cotangent complex that we
de�ne now.

2.1. The thickened cotangent complex. In the following, we let X be
any scheme or complex analytic space. We assume that there is a closed
embedding X ⊂ S with ideal sheaf I into some smooth scheme S. Consider
the natural di�erential dS : OS → ΩS . It induces an OX -linear map

I /I 2 −−→ ΩS |X

whose cokernel is ΩX and whose kernel carries information on the smoothness
of X. The complex

LX .. = [I /I 2 −→ ΩS |X ] (2.1)

concentrated in degrees −1 and 0 is called the truncated cotangent complex of
X (in S). By construction, LX comes with a natural morphism LX → ΩX .
In fact, LX is quasi-isomorphic to the truncation τ≥−1L•X of Illusie's full
cotangent complex and therefore only depends on X. Following [HT10], we
can also give a direct proof that LX does (up to quasi-isomorphism) not
depend on the embedding X ⊂ S. Assume that X ⊂ Si with ideal Ii

for some smooth scheme Si and i ∈ {1, 2}. Then the diagonal embedding
gives an embedding X ⊂ S1 × S2, whose ideal sheaf we denote by I12. The
composition X ⊂ S1 × S2 → S1 induces a short exact sequence of two term
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complexes

[I1/I 2
1

//

��

ΩS1 |X ]

��

[I12/I 2
12

//

��

ΩS1 |X ⊕ ΩS2 |X ]

��

[ΩS2 |X ΩS2 |X ].

This proves that LX de�ned via X ⊂ S1 and X ⊂ S2 are quasi-isomorphic.

Another property of the truncated cotangent complex is that for any open
subset U ⊂ X we have

LU ∼= LX |U in D(U). (2.2)

If we do not insist on dealing exclusively with OX -linear morphisms, we
can also consider the following C-linear map

OS/I 2 −−→ ΩS |X

that is likewise induced by dS. It is well de�ned because dS being a derivation
implies dS(I 2) ⊂ I ΩS . This map will allow us to lift the classical di�eren-
tial dX : OX → ΩX to a morphism DX : OX → LX de�ned in D(Sh(X)) but
not in D(X).

Consider the inclusion i : I /I 2 → OS/I 2, yielding a short exact se-
quence of two-term complexes

[I /I 2 −→ ΩS |X ]
u−−→ [OS/I 2 → ΩS |X ] −→ [OX → 0], (2.3)

which we consider as a distinguished triangle in D(Sh(X)). Therefore, after
rotation, we obtain a morphism

DX : OX −→ LX in D(Sh(X)). (2.4)

More explicitly, (2.3) gives an isomorphism

OX [1] ∼= Cone(u) =

[
I /I 2 (i,−d)−−−−→ OS/I 2 ⊕ ΩS |X

dS+id−−−−→ ΩS |X
]

in D(Sh(X)). Here, OX [1] is the complex with OX in degree −1, so that
the projection to LX [1] de�nes (2.4). Given two embeddings X ⊂ Si for
i = 1, 2 we constructed above a quasi-isomorphism between LX de�ned via
S1 and LX de�ned via S2. The construction of DX is compatible with this
quasi-isomorphism as we can apply the above proof to (2.3). We conclude
that the de�nition of DX is independent of the embedding X ⊂ S.

Finally, for later use, we will consider the composition

N ilX ↪→ OX
DX−−→ LX .

Lemma 2.1 ([Joy13, Proposition 2.3]). The construction of DX is functorial
in the following way: For every morphism Φ: X → Y there is a commutative
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diagram

Φ−1OY
Φ−1DY//

��

Φ−1LY

��

OX
DX // LX .

Proof. This follows essentially from functoriality of LX and exactness of
Φ−1. �

Remark 2.2. Let f ∈ H0(X,OX). We can give a more explicit description
of DX(f) ∈ H0(X,LX) as follows: Consider f as a morphism f : X → A1 =
SpecC[t]. Then functoriality of DX gives the commutative diagram

H0(X, f−1OA1) //

��

H0(X, f−1LA1) ∼= H0(X, f−1OA1〈dt〉)

��

H0(X,OX) // H0(X,LX),

where t ∈ H0(X, f−1OA1) maps to f ∈ H0(X,OX). Hence, DX(f) is the
image of the generator dt under the right-hand vertical arrow

H0(X, f−1LA1) ∼= H0(X, f−1OA1〈dt〉) −→ H0(X,LX).

De�nition 2.3. The thickened cotangent complex is

MX
.. = Cone(OX

DX−−→ LX) ∈ D(Sh(X))

and the reduced thickened contangent complex is

M0
X

.. = Cone(N ilX → LX) ∈ D(Sh(X)).

We de�ne two sheaves of C-vector spaces on X by

SX .. = H−1(MX) and S0
X

.. = H−1(M0
X).

Remark 2.4. This de�nition of SX is suggested in [Joy13, Remark 2.2(b)].

Remark 2.5. It follows from the spectral sequence

Ep,q2 = Hp(X,Hq(MX))⇒ Hp+q(X,MX)

that H0(X,SX) ∼= H−1(X,MX).

Lemma 2.6. With the above notations we have the following �rst properties
of the thickened cotangent complex.

(i) For any closed embedding X ⊂ S into a smooth scheme S with ideal
sheaf I . The thickened cotangent complex can be represented by

MX
∼=
[
OS/I 2 −→ ΩS |X

]
and its reduced version by

M0
X
∼=
[√

I /I 2 −→ ΩS |X
]
∼=
[
OS/I 2 −→ ΩS |X ⊕OXred

]
.

(ii) SX and S0
X are sheaves of C-algebras.
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(iii) Let U ⊂ X be an open subset. Then

MU
∼= MX |U in D(Sh(U)).

In particular, we have SU = SX |U .
(iv) For all morphisms Φ: X → Y there is an induced map Φ−1MY →MX

and thus Φ−1SY → SX .

Proof. (i) follows directly from the de�nition, (ii) from the Leibniz rule, (iii)
from (2.2) and (iv) from the functoriality of DX (cf. Lemma 2.1). �

Lemma 2.7. The connecting homomorphism δ in (2.5) is the di�erential
dX : OX → ΩX . Therefore, we have a commuting diagram in D(Sh(X))

OX
DX // LX

��

OX
dX // ΩX .

Proof. We embed X ⊂ S as above. The Lemma follows from the de�nitions
and the commutative diagram

H−1(LX) //

��

SX //

��

OX

∼

��

0 // I /I 2 //

��

OS/I 2 //

d
��

OS/I //

��

0

0 // ΩS |X

��

ΩS |X // 0 // 0

H0(LX) ∼= ΩX .

�

By de�nition, there is a commutative diagram in D(Sh(X)) with exact
rows and columns

N ilX //

��

LX // M0
X

��

OX //

��

LX

��

// MX

��

OXred
// 0 // OXred

[1].
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This induces a commutative diagram of long exact sequences (cf. [Joy13,
Theorem 2.1(b)])

0 // H−1(LX) // S0
X

//

��

N ilX //

��

ΩX
// H0(M0

X) //

��

0

0 // H−1(LX) // SX // OX
δ // ΩX

// H0(MX) // 0

(2.5)

and a long exact sequence

0 // S0
X

// SX
α // OXred

// H0(M0
X) // H0(MX) // 0. (2.6)

Form these sequences we now deduce several properties of the thickened
cotangent complex.

Corollary 2.8. The zero-th cohomology sheaves of the thickened cotangent
complexes are given by

H0(MX) ∼= ΩX/dX(OX) and H0(M0
X) ∼= ΩX/dX(N ilX).

�

This allows us to give a precise formulation of [Joy13, Corollary 2.14].

Corollary 2.9. We have

H−1(LX) ∼= S0
X ⇐⇒ ker(OX

dX−−→ ΩX) ∩N ilX = 0.

In particular, S0
X is a coherent sheaf on X in this case.

�

Proposition 2.10 (cf. [Joy13, Theorem 2.1(a),(c)]). (i) There is a natu-
ral decomposition

SX = CX ⊕S0
X ,

where the constant sheaf CX is embedded via the isomorphim CX ∼=
(CS +I 2)/I 2.

(ii) The sheaf S0
X is isomorphic to the middle cohomology sheaf of the com-

plex

E .

. =
[
I 2 d−−→ I · ΩS

d−−→ Ω2
S

]
.

Proof. (i) We claim that im(α) = CX = i∗CXred
in (2.6) with i : Xred ↪→ X

being the inclusion. Obviously we have im(α) ⊃ CX . For the converse
inclusion we choose an embedding of X into a smooth scheme S. Then α is
given by the upper row in the following commutative diagram

SX �
�

//

0
##

OS/I 2 //

��

OX //

��

i∗OXred

��

ΩS |X // ΩX
// i∗ΩXred

and thus im(α) ⊂ ker(i∗OXred
→ i∗ΩXred

) = i∗CXred
. Together, this gives

0→ S0
X → SX → CX → 0
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and the inclusion CX ↪→ SX de�nes a split.
(ii) This time, we denote by i the inclusion X ↪→ S. Consider the commu-
tative diagram with short exact columns

I 2 //

��

I ΩS
//

��

Ω2
S

OS //

��

ΩS
//

��

Ω2
S

��

i∗(OS/I 2) // i∗(ΩS |X ) // 0.

We consider the rows as complexes concentrated in the interval [−1, 1]. Tak-
ing cohomology sheaves yields an exact sequence

H−1(E) = j!CS\X → CS → i∗SX → H0(E)→ 0,

where j : X \ S ↪→ S is the inclusion. As H0(E) is actually supported on X,
applying i−1 gives the short exact sequence

0→ CX −→ SX −→ H0(E)→ 0.

By construction, CX → SX is the embedding from part (i), so that applying
part (i) �nishes the proof. �

The following example is central to our application of the thickened cotan-
gent complex.

Example 2.11. Let f ∈ H0(S,OS) and consider crit(f) = Z(df) ⊂ S with

ideal I = im(TS
df−→ OS). Then, by de�nition, df ∈ I ΩS and thus

f̄ ∈ H0(X,SX) ⊂ H0(X,OS/I 2).

Moreover, f̄ ∈ H0(X,S0
X) if and only if f ∈

√
I . In Example 2.12 below,

we see that f is not necessarily locally constant on X as one might expect
thinking of manifolds.

Example 2.12 (cf. [Joy13, Example 2.13]). In general, we can not expect
that H−1(LX) ∼= S0

X . The following example shows that this is not even
true when X = crit(f) for some f ∈ H0(S,OS).

Let S = SpecC[x, y] and f = x5 + x2y2 + y5. Set X = crit(f). Then,
X = V (I) with I = (dxf = 5x4 + 2xy2, dyf = 2x2y + 5y4). In Example
2.11 we already noticed that df |X = 0. Write X as the intersection of two
reducible curves

X = (L1 ∪ C1) ∩ (L2 ∪ C2),

where Li are lines and Ci are cuspidal cubics, i = 1, 2. Hence, the inter-
section number is 16. Looking more closely, we see that X consists of 5
distinct reduced intersection points of C1 and C2 and the point (0, 0) oc-
curing consequently with multiplicity 11. We claim that the local ring at
(0, 0) is given by SpecC[x, y]/J , where J = (dxf, dyf, xy

3, y3x). This fol-
lows, since 2ydxf −5x2dyf = xy3(4−25xy) and 4−25xy is invertible in the
local ring at (0, 0). Similarily for x3y. Note that C[x, y]/J really has a basis
consisting of 11 elements, namely {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x2y2}.
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Now, 5f − x2y2 = dxf + dyf shows that 0 6= f ∈ C[x, y]/J meaning that f

is not locally constant near (0, 0). Moreover, we see f ∈
√
J . Finally, after

altering f by its value on the other points of X we �nd

0 6= f ∈ N ilX ∩ ker(OX → ΩX)

or, put di�erently, f ∈ H0(X,S0
X) but f /∈ H0(X,H−1(LX)).

We also see that, in this example S0
X is not an naturalOX -module. Otherwise

we would have x · x2y2 ∈ H0(X,S0
X). However,

d(x3y2) = xd(x2y2) + x2y2dx = x2y2dx 6= 0 ∈ ΩA2 |X .

2.2. De�nition and �rst examples. We come now to the de�nition of a
d-critical locus from [Joy13]. A d-critical locus is a scheme that is locally of
the form crit(f) with a compatibility condition given by a section of the sheaf
S0
X . Depending on the situation, we apply the theory using the analytic or

the Zariski topology, so we let X be a scheme or a complex analytic space.

De�nition 2.13 ([Joy13, De�nition 2.5]). A structure of a d-critical locus
on X is de�ned by a section s ∈ H0(X,S0

X) satisfying the condition that
for each x ∈ X there is an open neighborhood U ⊂ X of x and a closed
embedding U ⊂ S into a smooth scheme S such that there is f ∈ H0(S,OS)
with the properties

s |U = f̄ ∈ H0(U,OS/I 2) and U = crit(f) ⊂ S.

We call (U, S, f) a critical chart around x for the d-critical locus (X, s).

An embedding of critical charts ι : (U, S, f) ↪→ (V, T, g) is a locally closed
embedding ι : S ↪→ T such that g ◦ ι = f and ι |U : U ↪→ V ⊂ X is the
inclusion in X. A subchart is an open embedding of critical charts. If
(U, S, f) and (V, T, g) are critical charts, then any étale morphism ι : S → T
such that g ◦ ι = f restricts to a morphism ι |U : U → V . If ι |U is the
inclusion in X we write ι : (U, S, f)→ (V, T, g) and call ι an étale morphism
of critical charts.

A morphism of d-critical loci Φ: (X, s)→ (Y, t) is a morphism Φ: X → Y
such that the induced map (cf. Lemma 2.6(iv)) Φ−1SY −→ SX maps t to s.
With this notion, d-critical loci form a category.

Remark 2.14. The theory also works with s ∈ H0(X,SX). However, choosing
s ∈ H0(X,S0

X) has the practical advantage that, with the above notations,
it enforces f |Ured

= 0 ∈ H0(Xred,OXred
).

Example 2.15. Let us apply the de�nition to the zero-dimensional example
X = SpecC[x]/(xn) ⊂ A1. For this, consider the exact sequence of C-vector
spaces

0 −→ SX −→ C[x]/(x2n)
d−−→ C[x]/(xn)〈dx〉

xi 7−→ ixi−1.

We �nd S0
X = (xn+1) ⊂ C[x]/(x2n). Note that this is an example of Corollary

2.9 and indeed LX is given by[
(xn)/(x2n)

d−−→ C[x]/(xn)〈dx〉
]
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hence S0
X
∼= H−1(LX).

Next, we wonder which f ∈ C[x] actually de�ne a d-critical structure on X.
This is the case if and only if there is an open subset U ⊂ A1 such that
X = V (df) ∩ U . Hence, we need that f = an+1x

n+1 + . . . with an+1 6= 0
and this gives s ∈ (xn+1) \ (xn+2).

Example 2.16. Assume that X is smooth. Then M0
X
∼= [0 → ΩX ] and thus

S0
X = 0. Therefore, X has a unique structure of a d-critical locus given by

(X, 0).

2.3. Critical charts. Let (X, s) be a d-critical locus. In [Joy13, 2.3] Joyce
studies how to manipulate critical charts on (X, s). His major results are
that any two critical charts can locally be embedded into a third one and
that any embedding of critical charts can locally be modi�ed into an étale
morphism of a certain standard form.

Proposition 2.17 ([Joy13, Theorem 2.20]). Let (U, S, f) and (V, T, g) be
two critical charts on (X, s). For every x ∈ U ∩ V there exist subcharts
(U ′, S′, f ′) ⊂ (U, S, f) and (V ′, T ′, g′) ⊂ (V, T, g) around x and another crit-
ical chart (W,R, h) together with embeddings of critical charts (U ′, S′, f ′) ↪→
(W,R, h) and (V ′, T ′, g′) ↪→ (W,R, h).

�

Proposition 2.18 ([Joy13, Proposition 2.22]). Let (X, s) be an analytic
critical locus and let (U, S, f) ↪→ (V, T, g) be an embedding of critical charts
on (X, s). For every x ∈ U there exists an open neighborhood T ′ ⊂ T and
holomorphic maps α : T ′ → S, β : T ′ → Cn, where n = dimT − dimS such
that α × β : (V ∩ T ′, T ′, g |V ′) → (U, S × Cn, f � z2

1 + . . . + z2
n) is an étale

morphism of critical charts, i.e. g |T ′ = f◦α+(z2
1 +. . .+z2

n)◦β. Furthermore,
α× β |S′ : S′ .

. = S ∩ T ′ ↪→ S × Cn is the inclusion of S′ × {0}.

�

Remark 2.19. There is an algebraic analogue of this Proposition ([Joy13,
Proposition 2.24]).

These propositions are the key for working with d-critical loci. Roughly
speaking, when constructing a geometric object on (X, s) we only have to
care about

(1) étale morphisms of critical charts and
(2) the embedding (U, S, f) ↪→ (U, S × Cn, f � z2

1 + . . .+ z2
n).

In [KL16] Kiem and Li present another approach to (analytic) d-critical
loci. They make use of the above Propositions in order to �x a well-behaved
set of critical charts from the beginning on. More precisely, they prove the
following equivalent de�nition of d-critical loci.

Lemma 2.20 ([KL16, Proposition 1.44]). Let X be a complex analytic space.
Then X has a d-critical structure if and only if there exists an open covering
X =

⋃
αXα and complex manifolds Vα together with a closed embedding

Xα ⊂ Vα and holomorphic functions fα : Vα → C satisfying
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(1) Xα = crit(fα) ⊂ Vα;
(2) for each pair of indices (α, β) and Xαβ = Xα ∩Xβ there is an open

neighborhood Vαβ (resp. Vβα) of Xαβ in Vα (resp. Vβ) and a biholo-
morphic map ϕαβ : Vαβ → Vβα making the following diagram com-
mute

Xαβ
N n

||

� p

""

Vαβ
ϕαβ

//

fα

∣∣∣Vαβ ""

Vβα

fβ

∣∣∣Vβα||

C;

(3) ϕ−1
αβ = ϕβα and ϕαα = idVα .

In this situation, we �nd for all Xαβγ
.. = Xα ∩Xβ ∩Xγ an open neighbor-

hood Vαβγ in Vα such that

ϕαβγ .. = ϕαβ ◦ ϕγα ◦ ϕβγ : Vαβγ → Vα (2.7)

is biholomorphic onto its image ([KL16, Remark 1.7]). Then ϕαβγ is the
identity onXαβγ , yet in general not on all of Vαβγ . This is the reason why the
gluing of objects (as for example the symmetric obstruction theories from the
consecutive chapter) over the intersection of critical charts is troublesome.

3. Symmetric obstruction theories on d-critical loci

We are going to explain the concept of symmetric obstructions theories
as introduced in [BF05]. We will see that a symmetric obstruction theory
is naturally de�ned in the situation of Lagrangian intersections and locally
de�ned on any d-critical locus. For a discussion of the relation between
the category of d-critical loci and the category of schemes with (symmetric)
obstruction theory we refer to [Joy13, Examples 2.16 and 2.17].

3.1. Symmetric obstruction theories. Let X be a scheme. We denote by
LX the truncated cotangent complex as in (2.1). If E ∈ Db(X) is a bounded
complex, we can de�ne

E∨ .. = RHom(E,OX) ∈ Db(X)

as well as E∨∨ = RHom(E∨,OX) ∈ Db(X). There is a natural map E →
E∨∨. If E is given by a complex [E−1 α−→ E0] of locally free sheaves, then,

following our sign conventions, E∨ = [(E0)∨
−α∨−−−→ (E−1)∨] in degree 0 and 1,

such that we get E∨[1] = [(E0)∨
α∨−−→ (E−1)∨] again in degree −1 and 0. We

start with a technical result.

Lemma 3.1. Let E ∈ D(X) be such that Hi(E) = 0 if i /∈ {0, 1}. Then there
is an isomorphism

H−1(E∨)
∼−−→ H1(E)∨ = Hom(H1(E),OX).
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Proof. We are looking for an isomorphism

H−1(RHom(E,OX)) = Ext−1(E,OX) −→ H1(E)∨ = Ext0(H1(E),OX).

Consider the spectral sequence

Ep,q2 = Extp(H−q(E),OX)⇒ Ep+q = Extp+q(E,OX).

By assumption, we have Ep,q2 = 0 if p < 0 or −q /∈ {0, 1} and hence the
only non-zero entry on the diagonal p + q = −1 occurs when p = 0. Thus
the spectral sequence degenerates at the E2 page and yields the desired
isomorphism

E−1 = Ext−1(E,OX)
∼−−→ E0,−1

2 = Ext0(H−1(E),OX).

�

Corollary 3.2. Let E ∈ D(X) be a perfect complex such that Hi(E) = 0 if
i /∈ {−1, 0}. Then there is an isomorphism

H−1(E)
∼−−→ H1(E∨)∨.

Proof. Since E is perfect the natural map E → E∨∨ is an isomorphism (cf.

[St17, Tag 07VI]) and thus H−1(E)
∼−→ H−1(E∨∨). The corollary follows

after postcomposing with the isomorphism H−1(E∨∨) −→ H1(E∨)∨ from
Lemma 3.1. �

This result applies in particular to the following type of complexes.

De�nition 3.3. We say that E ∈ D(X) is perfect of amplitude in [−1, 0] if
E is locally isomorphic to a complex [E−1 → E0] of locally free sheaves.

De�nition 3.4 ([BF05, Section 1.3]). A perfect obstruction theory for X is
tuple (E, φ), where E is perfect of amplitude in [−1, 0] and φ : E → LX is a
morphism in D(X) such that

(1) H−1(φ) : H−1(E)→ H−1(LX) is surjective and
(2) H0(φ) : H0(E)→ H0(LX) ∼= ΩX is an isomorphism.

A symmetric obstruction theory is a triple (E, φ, θ), where (E, φ) is a perfect
obstruction theory and θ : E∨[1]→ E is a non-degenerate symmetric bilinear
form, i.e. an isomorphism in D(X) such that θ∨[1] = θ.

An isomorphism of perfect obstruction theories Φ: (E1, φ1) → (E2, φ2) is
given by an isomorphism Φ: E1 → E2 over LX in D(X). Moreover, Φ is an
isomorphism of symmetric obstruction theories (E1, φ1, θ1) → (E2, φ2, θ2) if
it is an isometry (E1, θ1)→ (E2, θ2), i.e. if

E∨1 [1]

θ1
��

E∨2 [1]
Φ∨[1]
oo

θ2
��

E1
Φ // E2

commutes.
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Example 3.5. Let S be any scheme containing two smooth and closed sub-
schemes Y,Z with ideal sheaves IY S,IZS. Then the intersection X = Y ∩Z
carries a perfect obstruction theory

E .. =

[
ΩS |X

(−resY ,resZ)−−−−−−−−→ ΩY |X ⊕ ΩZ |X
]

(3.1)

with E φ−−→ LX represented by

E = [ΩS |X
(−res,res)

// ΩY |X ⊕ ΩZ |X ]

F

ϕ1

OO

ϕ2

��

.. = [IY S/I 2
Y S |X //

����

OO

ΩZ |X ]
?�

(0,1)

OO

LX = [IXZ/I 2
XZ

// ΩZ |X ].

Here, the di�erential of F is the composition

IY S/I
2
Y S |X � IXZ/I

2
XZ

d−−→ ΩZ |X .

This can be seen at follows. First of all the exact triangle

F ϕ1−−→ E −→ [ΩY |X = ΩY |X ]

implies that ϕ1 : F → E is a quasi-isomorphism. Moreover, we see immedi-
ately that H0(ϕ2) is an isomorphism and H−1(ϕ2) is surjective.

Let us remark that interchanging the roles of Y and Z yields isomorphic
obstruction theories.

Remark 3.6. In Proposition 6.1 we will see that if S is a symplectic manifold
and Y,Z ⊂ S are Lagrangian submanifolds, then the above Example 3.5 can
be enhanced by an isometry and thus turned into a symmetric obstruction
theory.

Lemma 3.7 ([BF05, Corollary 1.15]). Let (E, φ, θ) be a symmetric obstruc-
tion theory. Then

H−1(E) ∼= HomOX (ΩX ,OX) =: TX

Proof. In Corollary 3.2 we showed that H−1(E) = H1(E∨)∨. However, this
is all we need to show, since

H1(E∨) = H0(E∨[1]) ∼= H0(E) ∼= ΩX

by symmetry of the obstruction theory. �

Remark 3.8. Let E = [E−1 → E0]→ LX be a symmetric obstruction theory
on X. Then, if H−1(E) ∼= Ω∨X and H0(E) ∼= ΩX admit a �nite resolution by
vector bundles their determinants are well-de�ned and we have

detE = (det E−1)∨ ⊗ det E0 ∼= (detH−1(E))∨ ⊗ detH0(E)
3.7
= det(Ω∨X)∨ ⊗ det ΩX .
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In particular, in this case detE is independent of the obstruction theory. For
example, if X is smooth we �nd

detE = ω⊗2
X . (3.2)

The same is true if X is normal and Gorenstein. In this situation ωX is
a line bundle. Moreover, any line bundle on X is uniquely determined by
its restriction to Xreg, i.e. for every line bundle L ∈ Pic(X) the natural
morphism

L −→ j∗j
∗L

is an isomorphism, where j : Xreg ↪→ X is the inclusion. This can be seen
as follows. As X is normal, we have codim(Xsing ⊂ X) ≥ 2 and therefore

the local cohomology sheaves Hk
Xsing

(L) are trivial for k = 0, 1 by [SGA2,

VII, Corollaire 1.4]. Here, we use that any line bundle is a coherent Cohen�
Macauley module. Now, there is an exact sequence

0→ H0
Xsing

(L) −→ L −→ j∗j
∗L −→ H1

Xsing
(L)→ 0

(see [SGA2, I, Corollaire 2.11]), which proves the claim. In particular, we
have ωX ∼= j∗ωXreg and also

detE ∼= j∗j
∗ detE ∼= j∗ det(E

∣∣
Xreg ) ∼= j∗ω

⊗2
Xreg
∼= ω⊗2

X

for every symmetric obstruction theory on E on X. We conclude this dis-
cussion with

Question 3.9. Does detE only depend on X? In other words, if E and E′ are
two symmetric obstruction theories onX. Is there a (canonical) isomorphism

detE ∼= detE′?

3.2. Symmetric obstruction theories on d-critical loci. The reason
why we are interested in symmetric obstruction theories is that every d-
critical locus carries locally a symmetric obstruction theory.

LetM be a smooth scheme and f : M → A1 a regular function with critical
locus X. We consider df ∈ H0(M,ΩM ) as a morphism TM → OM . By
de�nition, its image is the ideal sheaf IXM de�ning X. Therefore, we obtain
df : TM |X � IXM/I 2

XM . A local computation shows that the composition

TM |X
df−→ IXM/I

2
XM

d−→ ΩM |X
is just the Hessian ∂2f .

Lemma 3.10. With the above notations X = crit(f) carries a symmetric
obstruction theory (E∂2f , ψ, θ). It is given by

E∂2f
.

. =

[
TM |X

∂2f−−→ ΩM |X
]
,

the morphism of complexes

E∂2f

ψ

��

= [TM |X
∂2f

//

df
����

ΩM |X ]

LX = [IXM/I 2
XM

d // ΩM |X ]
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and the isometry θ .

. = idE∂2f
: E∨∂2f [1]→ E∂2f .

Proof. Again, we see immediately that (E∂2f , ψ) is a perfect obstruction
theory. Moreover, the symmetry of the Hessian yields (∂2f )∨[1] = ∂2f so
that E∨∂2f [1] ∼= E∂2f and after this identi�cation the identity serves indeed as

a non-degenerate bilinear form. �

It turns out that these local obstruction theories are in general not compati-
ble and thus do not glue to a global symmetric obstruction theory on (X, s).
For instance, in [Joy13, Example 2.17] one �nds an example of a smooth
scheme X admitting two global critical charts (X,X, 0) and (X,U, f). How-
ever, in this example E0 is not isomorphic to E∂2f . Nevertheless, because X

is smooth we have Ext2(ΩU , TU ) = 0 for any a�ne open subscheme U ⊂ X
and therefore, E∂2f |U ∼= E0 |U . We do not know, whether it is in general
(locally) possible to �nd a distinguished symmetric obstruction theory on
(X, s). At least, if we restrict ourselves to a set of charts as in Lemma 2.20
this can not happen.

Remark 3.11. Let (Xα, Vα, fα) as in Lemma 2.20. Then the biholomorphism
ϕαβ : Vαβ → Vβα is an isomorphism. Moreover it induces

dϕαβ
∣∣
Xαβ : ΩVα

∣∣
Xαβ = ΩVαβ

∣∣
Xαβ

∼−−→ ΩVβα

∣∣
Xαβ = ΩVβ

∣∣
Xαβ

so that we can de�ne an isomorphism of symmetric obstruction theories

E∂2fα

��

= [TVα
∣∣
Xαβ

∂2fα
//

��

ΩVα

∣∣
Xαβ ]

��

E∂2fβ = [TVβ
∣∣
Xαβ

∂2fβ
// ΩVβ

∣∣
Xαβ ].

(3.3)

Here, the vertical arrows are given by (dϕ−1
αβ

∣∣
Xαβ )∨ and dϕαβ

∣∣
Xαβ , respec-

tively. Commutativity of (3.3) means

dϕαβ
∣∣
Xαβ ◦ ∂

2fα ◦ (dϕαβ
∣∣
Xαβ )∨ = ∂2fβ

which follows from fα = fβ ◦ ϕαβ . In particular, we see that �xing an atlas
as in Lemma 2.20 provides us with a distinguished symmetric obstruction
theory in the neighborhood of any point x ∈ X.

3.3. Canonical bundle. Let (X, s) be a d-critical locus. For each critical
chart (U, S, f) we consider the line bundle ωS |U . One could hope, that it is
possible to glue these in order to obtain a `canonical bundle' associated to
(X, s). However, this is not the case (see Example 3.18). What is possible
instead, is to glue the square ω⊗2

S |Ured
∼= detE∂2f |Ured

to a line bundle KX,s
on Xred. As discussed in Section 2.3 we have to de�ne gluing isomorphisms
for every étale morphism of critical charts and for the embedding (U, S, f) ↪→
(U, S×Cn, f�z2

1 + . . .+z2
n). In the latter situation we will identify ωS×Cn |U

with ωS |U without mentioning it explicitly.

Let ι : (U, S, f)→ (V, T, g) be an étale morphism of critical charts (De�ni-
tion 2.13). Recall that this signi�es among other things that ι |U : U ↪→ V



18 I. GROSSE-BRAUCKMANN

is just the inclusion in X. The natural morphism dι : ι∗ΩT
∼−→ ΩS induces

an isomorphism

ξ⊗2
ι = det(dι)⊗2 : detE∂2g |U = ω⊗2

T |U −→ detE∂2f |U = ω⊗2
S |U .

This shall be the gluing datum for KX,s.

Proposition 3.12 ([Joy13, Theorem 2.28] or [KL16, Remark 1.18]). There
exists a unique line bundle KX,s on Xred such that for each critical chart
(U, S, f) there is an isomorphism

λ(U,S,f) : KX,s |Ured

∼−−→ detE∂2f |Ured

satisfying for each étale morphism of critical charts ι : (U, S, f) → (V, T, g)
the equality

λ(U,S,f) = ξ⊗2
ι |Ured

◦ λ(V,T,g) |Ured
.

�

We will not give the proof here, but at least point out its most important
step. One has to show that ξ⊗2

ι de�nes a gluing datum. This holds only true
on the reduced critical locus Xred and relies on the following

Lemma 3.13 ([KL16, Lemma 1.16] or [BBDJS, Corollary 3.2]). Let S be
a smooth scheme and f : S → C a regular function. Set X = crit(f) and
assume that there is an étale morphism ι : S → S such that the following
diagram commutes

XO o

~~

� o

  

S
ι //

f   

S

f~~

C.
Then

det(dι) |Xred
: ι∗ωS |Xred

= ωS |Xred
−→ ωS |Xred

is locally constant with values in {±1}.

Proof. Consider the commutative diagram with exact lines

0 // TX // TS |X
∂2f
// ΩS |X //

dι
��

ΩX
// 0

0 // TX // TS |X

(dι)∨

OO

∂2f
// ΩS |X // ΩX

// 0.

(3.4)

If TX and ΩX admit a �nite resolution by locally free sheaves such that
their determinants satisfy det(TX)∨ ∼= det(ΩX), the Lemma will follow from
functoriality of the determinant. For the general proof let x ∈ X. We will
show that (det ι)2(x) = 1 in the residue �eld κ(x). For this aim, we choose
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a decomposition ΩS |X (x) ∼= ΩX(x)⊕W so that the commutative diagram
of vector spaces

TX(x) // TS |X (x)
∂2f (x)

// TS |X (x) //

dι(x)

��

ΩX(x) // 0

TX(x) // ΩS |X (x)

(dι(x))∨

OO

∂2f (x)
// ΩS |X (x) // ΩX(x) // 0

takes the following form

TX(x) // ΩX(x)∨ ⊕W∨

(
0 0
0 H

)
// ΩX(x)⊕W //(

1 ∗
0 A

)
��

ΩX(x) // 0

TX(x) // ΩX(x)∨ ⊕W∨

(
1 0
∗ tA

) OO (
0 0
0 H

)
// ΩX(x)⊕W // ΩX(x) // 0,

where H is some invertible matrix. It follows that H =t AHA and thus
detA ∈ {±1}, which implies the claim. �

Remark 3.14 ([KL16, Proof of Proposition 1.15]). If one �xes charts (Xα, Vα, fα),
appropriate neighborhoods Vαβ and biholomorphisms ϕαβ : Vαβ → Vβα as
in Lemma 2.20, the existence of KX,s follows directly from Lemma 3.13.
Namely, in this case we have to show that the isomorhisms

ξαβ .. = det(dϕαβ)⊗2
∣∣
Xαβ : det(E∂2fα)

∣∣
Xαβ → det(E∂2fβ )

∣∣
Xαβ

from Remark 3.11 satisfy

ξβγ ◦ ξαβ = ξαγ on (Xαβγ)red

which is equivalent to

ξγα ◦ ξβγ ◦ ξαβ = det(dϕγαβ)2 = 1 on (Xαβγ)red,

where ϕγαβ is de�ned as in (2.7). And this follows after applying Lemma
3.13 with S = ϕγαβ(Vγαβ) ∩ Vγαβ, φ = ϕγαβ and f = fγ .

De�nition 3.15. An orientation of (X, s) is the choice of a square root line

bundle L = K1/2
X,s on Xred together with an isomorphism L⊗ L ∼−→ KX,s. We

will suppress the choice of the latter in our notation.

Question 3.16. When is it possible to de�ne KX,s onX and not only onXred?
Of course, this is possible, if we are provided with a global symmetric ob-
struction theory, together with isomorphisms E |U

∼−→ E∂2f for every critical
chart (U, S, f) satisfying the correct functoriality. On the other hand, as men-
tioned in the proof of Lemma 3.13, the question also has a positive answer,
if det(ΩX) and det(TX) are well-de�ned and satisfy det(TX)∨ ∼= det(ΩX). In
this case, we saw in Remark 3.8 that detE = det(ΩX)⊗2 for every symmetric
obstruction theory E on X. Hence, if we apply this to a covering of critical
charts, we �nd KX,s ∼= det(ΩX)⊗2.

Example 3.17. Assume that X is smooth. Then we have

KX,0 ∼= ω⊗2
X .

In particular, the d-critical locus (X, 0) is canonically oriented.
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Example 3.18. An example of a non-orientable d-critical locus X can be
found in [Joy13, Example 2.39] or [KL16, Example 1.19]. In these examples,
X is a projective line with a non-reduced point.

4. Perverse sheaves

We want to explain the existence of a perverse sheaf P•X ,s on any d-critical
locus (X, s). First, let us review some basics about the perverse sheaf of
vanishing cycles following [Di04].

4.1. Perverse sheaves of vanishing cycles. Let X be a topological space
and Db

c(Sh(X)) the essential image of the category of bounded complexes of
constructible sheaves in D(Sh(X)). We denote by Perv(X) the subcategory
of perverse sheaves, i.e. (cf. [BBD, Dé�nition 2.1.2]) for any F• ∈ Db

c(Sh(X))
we have F• ∈ Perv(X) if and only if for each strati�cation {Xα}

(1) Hk(i∗αF•) = 0 for all k > −dimCXα and

(2) Hk(i!αF•) = 0 for all k < −dimCXα

for all α, where iα : Xα ↪→ X denotes the inclusion. By a strati�cation we
mean a �nite partition of X into (non-empty) locally closed subsets, called
strata. We assume that the closure of each stratum is the union of strata.
As an immediate consequence we record

Remark 4.1. Let F• ∈ Perv(X) then Hk(F•) = 0 if k /∈ [−dimX, 0].

Proposition 4.2 ([Di04, Theorem 5.1.20]). Let X be a complex analytic
space of pure dimension n which is locally a complete intersection. Then the
shifted constant sheaf CX [n] is a perverse sheaf.

�

Remark 4.3. Let P• ∈ Perv(X) and L a local system on X. Then also
P• ⊗ L ∈ Perv(X), because tensoring with a local system is exact. In
particular, in the situation of the previous proposition, it follows that L[n]
is a perverse sheaf.

Next, we de�ne the perverse sheaf of vanishing cycles as in [Di04, Section
4.2]. Let S be a complex analytic variety and f : S → C an analytic map. We
set S0

.. = f−1(0) with inclusion i : S0 ↪→ S and consider the commutative
diagram

S̃ .. = S ×ρ C̃∗ //

��

p

''
S \ S0

� � //

��

S

f

��

C̃∗

ρ

77
// C∗ �
�

// C,

(4.1)
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where C̃∗ is the universal cover of C∗. More especially, C̃∗ = C and ρ(z) =
exp(2πiz). The nearby cycle functor ψf : Db

c(S) → Db
c(S0) is de�ned by

sending F• ∈ Db
c(S) to

ψfF• .. = i∗Rp∗p
∗F• ∈ Db

c(S0)

and the vanishing cycle functor φf : Db
c(S) → Db

c(S0) is de�ned such that

there is an exact triangle in Db
c(S0)

i∗F• −→ ψfF• −→ φfF• −→ i∗F•[1],

where the �rst arrow comes from the adjunction map F• → Rp∗p
∗F•. We

denote by ψpf and φpf the shifted functors ψf [−1] and φf [−1], respectively.
We need

Proposition 4.4 ([Di04, Theorem 5.2.21]). The functors ψpf , φ
p
f : Db

c(S) →
Db
c(S0) preserve perversity. In particular, we have induced functors

ψpf , φ
p
f : Perv(S)→ Perv(S0).

�

Proposition 4.5. Let Φ: T → S be a morphism between two analytic spaces
that is smooth of relative dimension d and f : S → C. Write g = f ◦ Φ and
Φ0 = Φ |T0 : T0 → S0. Then we have natural isomorphisms

Φ∗0 ◦ ψf
∼−→ ψg ◦ Φ∗ and Φ∗0 ◦ φf

∼−→ φg ◦ Φ∗.

Proof. It su�ces to prove the statement for the nearby cycle functor. Plug-
ging in the de�nitions, we get

Φ∗0 ◦ ψf = Φ∗0i
∗
SRpS∗p

∗
S = i∗TΦ∗RpS∗p

∗
S
∼−→ i∗TRpT ∗Φ̃

∗p∗S = i∗TRpT ∗p
∗
TΦ∗

= ψg ◦ Φ∗.

Here, we used iS ◦Φ0 = Φ ◦ iT for the �rst, Φ∗ = Φ![2d] and the base change

isomorphism for the second and Φ◦pT = pS ◦ Φ̃ for the third equality, where
Φ̃ = idC̃∗ ×ρ Φ. �

Lemma 4.6. Let S and f : S → C as above. We denote by fn : S → C the
morphism given by fn(s) = f(s)n. Then there is a natural isomorphism

ψfnF• ∼=
n⊕
k=1

ψfF•

for every F• ∈ Db
c(S).

Proof. By de�nition, ψfn is computed by means of the �bre product

S̃ //

��

p

%%
S \ S0

��

// S

fn

��

C
ρ
//// C∗ �
�

// C,

where ρ(z) = exp(2πiz). We de�ne µn, νn : C → C by µn(z) = nz and

νn(z) = zn and replace S̃, p by S̃ ×µn C, µ∗np, respectively. As µn is an
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isomorphism this does not a�ect the vanishing cycle but now, using ρ◦µn =
νn ◦ ρ, we can express S as the double �bre product

S̃

p

%%q
//

��

⊔n
k=1 S

π //

tζkf
��

S

fn

��

C
ρ

// C νn // C,

where π = t id and ζ is a n-th root of unity. Let i : S0 : ↪→ S be the inclusion
and j = ti and π0 = π |tS0 . We �nd

ψfn ∼= i∗Rp∗p
∗ = i∗Rπ∗Rq∗q

∗π∗ ∼= Rπ0∗j
∗Rq∗q

∗π∗

= Rπ0∗ψtζkfπ
∗ ∼=

⊕n
k=1 ψf .

using i∗Rπ∗ ∼= Rπ0∗j
∗ by proper base change. �

We can compute the stalk cohomology of ψf or φf via the Milnor �bre (cf.
[Di04, Proposition 4.2.2 and Example 4.2.6]). Recall that if f vanishes in
s ∈ S, then this is the �bre of the Milnor-Lê �bration (cf. [Mi68, Theorem
4.8]) which is given by MFs = Bδ(s) ∩ f−1(t) for some small t, δ > 0 and
Bδ(s) is an open ball of radius δ around s in S de�ned via embedding the
germ (S, s) in an a�ne space. If S = Cn+1 with n ≥ 1 and f has an isolated
singularity in s, then Milnor proved that MFs has the homotopy type of a
bouqet of n-dimensional spheres (cf. [Mi68, Theorem 6.5]). The number of
these spheres is given by the Milnor number µ = dimCC[x0, . . . , xn]/J(f),

where J(f) =
(
∂f
∂x0

, . . . , ∂f∂xn

)
is the ideal de�ning crit(f). Finally, we have

for all s ∈ S0 a natural isomorphism

Hk(ψf CS)s ∼= Hk(MFs,C) (4.2)

and if S is smooth
Hk(φf CS)s ∼= H̃k(MFs,C), (4.3)

where H̃k(MFs,C) is the reduced cohomology of the Milnor �bre at s.

Now, we let X = crit(f), then f |X is locally constant as a map of topo-
logical spaces f : X → C with �nite image. For simplicity, we assume that
f |X ≡ 0 such that X = Sing(S0) is the singular locus of the �bre S0. We
de�ne the perverse sheaf of vanishing cycles

PV•S,f .. = φpf (CS [dimS]) = φf CS [dimS − 1]. (4.4)

It follows from Propositions 4.2 and 4.4 that PV•S,f ∈ Perv(S0). Moreover,

by (4.3) we have Hk(PV•S,f )s = H̃k+dimS−1(MFs,C) and therefore:

Corollary 4.7. The perverse sheaf of vanishing cycles PV•S,f is supported
on X = crit(f). In particular, we can consider PV•S,f as an element of
Perv(X).

�

Remark 4.8. More precisely, if i : X ↪→ S is a closed subspace, then there is
an equivalence between the category of perverse sheaves on S supported on
X and Perv(X) established by i∗ with inverse Ri∗.
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Remark 4.9 ([Di04, Cor. 6.1.18]). If S is a connected complex manifold and
f non-constant, then supp(φf CS) = Sing(S0).

Remark 4.10. If f has several critical values, we set

PV•S,f .. =
⊕

c∈f(X)

φpf−c(CS [dimS]).

This de�nes a pervese sheaf on X (cf. [Bu14, De�nition 1.7]).

We will now compute some examples.

Example 4.11. Let S be any smooth sheme and f = 0. Applying the de�ni-
tion we �nd ψf = 0 and thus φpf = idDbc(S) yielding

PV•S,f ∼= CS [dimS].

Example 4.12. Let S = SpecC[x] and f = xn+1. Combining Remark 4.1
and Corollary 4.7 we �nd that PV•S,f is a complex concentrated in degree
zero and supported on a point. Therefore, PV•S,f is determined by

H0(PV•S,f )0 = H̃0(MF0,C).

However, MF0 is given by n+ 1 points. Hence,

PV•S,f ∼= Cn0 .

Example 4.13. Let S = SpecC[x1, . . . , xn] and f =
∑n

i=1 x
2
i . This time, we

have to compute H̃n−1(MF0) and MF0 has the homotopy type of a (n− 1)-
sphere. Hence,

PV•S,f ∼= C0 .

Example 4.14. Let S = SpecC[x, y] and f = xnyn. Then

ψf CS ∼=
n⊕
i=1

ψxy CS

by Lemma 4.6. We can compute ψxy CS as follows. Using the same argu-
ments as above we �nd φxy CS ∼= C0[−1] and thus ψxy CS �ts into the exact
triangle

CX0
−→ ψxy CS −→ C0[−1],

whereX0 = Z(xy) ⊂ S. This allows to conclude that ψxy CS ∼= [CX0

d−−→ C0]

in degrees 0 and 1. Moreover, using (4.2), i.e. H1(ψxy CS)s ∼= H1(MFs,C)
we see that d = 0. Hence,

ψxy CS ∼= CX0
⊕C0[−1]

yielding

PV•S,f ∼= Cn−1
X0

[1]⊕ Cn0 .
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4.2. Local system corresponding to a torsion line bundle. Before
stating the construction of the perverse sheaf P•X ,s we need yet another tech-
nical paranthesis.

Let X be a scheme and L a line bundle on X such that α : L⊗L ∼−−→ OX .
Then OX⊕L is an OX -algebra via (a, b)(a′, b′) = (aa′+α(bb′), ab′+a′b) and
we de�ne Y .. = SpecX(OX ⊕ L). The structure map f : Y → X de�nes an
étale covering of degree two such that f∗OY ∼= OX⊕L and, more importantly
for our purposes,

f∗CY ∼= CX ⊕L,
for some rank one local system L on X. This can be seen as follows. First
of all, f∗CY is a local system of rank 2 because f is �nite and �at with 2-
dimensional �bres. Now, we consider the natural morphism γ : CX → f∗CY ,
which is obviously injective. We claim that

L .. = coker(CX
γ−−→ f∗CY )

is a local system and satis�es f∗CY ∼= CX ⊕L. Indeed, a retract of γ is given
explicitly given by mapping a section s ∈ H0(f−1(U),CY ) to the locally
constant map X 3 x 7→ 1

2(s(x1) + s(x2)), where x1 and x2 are the two
preimages of x under f . We call L the local system corresponding to L. If
X is an analytic space Y , can either be constructed by gluing disjoint copies
of X or as a closed subspace of the total space of the line bundle L. By
construction, L satis�es

L⊗ L ∼= CX and L = L⊗CX OX .
To be more precise, we should say that L is the local system corresponding
to (L, α). However, if X is proper and reduced this makes no di�erence.

Lemma 4.15. Let X be proper and reduced. Then the local system L depends
only on L and not on the isomorphism L ⊗ L ∼= OX .

Proof. Consider the short exact sequence of groups

1→ Z/2Z −→ C∗ ν2−−→ C∗ → 1, (4.5)

where ν2 is given by ν2(z) = z2. We denote the two-torsion part ofH1(X,O∗X)
by H1(X,O∗X)[2] and similarly for H1(X,C∗X). Then (4.5) induces a com-
mutative diagram with exact rows

H0(X,C∗X)
ν2 //

��

H0(X,C∗X) //

��

H1(X,Z/2Z) // H1(X,C∗X)[2] //

α
����

0

H0(X,O∗X)
ν2 // H0(X,O∗X) // H1(X,Z/2Z) // H1(X,O∗X)[2] // 0.

Here, α is given by α(L) = L⊗OX . We want to see that α is an isomoprhism.
First of all, we know from the above construction that α is surjective. The
morphism ν2 : H0(X,C∗X)→ H0(X,C∗X) is surjective for any analytic space
so that H1(X,Z/2Z) → H1(X,C∗X)[2] is an isomorphism. This implies
that the surjectivity of ν2 : H0(X,O∗X) → H0(X,O∗X) is equivalent to the
injectivity of α and thus holds true if X is proper and reduced. �

Remark 4.16. The same construction works for line bundles with n-torsion.
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Remark 4.17. The construction is functorial in the following sense. Let L1

and L2 be two line bundles with two-torsion given by the isomorphisms
αi : Li⊗Li

∼−→ OX . Any morphism ϕ : L1 → L2 such that α2 ◦ (ϕ⊗ϕ) = α1

induces a morphism L1 → L2 between the corresponding local systems.

If X is smooth, the Riemann�Hilbert correspondence ([De70, Théorème
2.17]) provides a second description of the local system L. Namely, there
is a unique �at connection ∇ : L → L ⊗ Ω1

X such that L = ker∇. If X is
moreover compact, Lemma 4.15 says that ∇ is the unique �at connection on
L such that ker∇⊗ ker∇ ∼= CX .

Lemma 4.18. Let X be a compact Kähler manifold and L,L as above. Then
there exists a hermitian metric h on X with corresponding Chern connection
∇h = ∇1,0 + ∂̄ such that

L = ker∇1,0.

Proof. By Lemma 4.15 is su�ces to show that there is a hermitian metric h
such that

ker∇1,0 ⊗ ker∇1,0 ∼= CX .
Under the Riemann�Hilbert correspondence, ker∇0,1⊗ker∇0,1 corresponds
to the pair (L ⊗ L,∇0,1 ⊗ 1 + 1 ⊗∇0,1) and ∇h ⊗ 1 + 1 ⊗∇h is the Chern
connection to h ⊗ h on L ⊗ L. Therefore, we have to show that there is a
hermitian metric h on L such that h ⊗ h is the constant metric h0 on OX
via the isomorphism α : L⊗L ∼−→ OX . Let g be any hermitian metric on L.
Then g ⊗ g = efh0 via α for some real function f on X and h .. = e−1/2fg
satis�es h⊗ h = e−fg ⊗ g = h0 as desired. �

4.3. Perverse sheaves on d-critical loci. If X ⊂ S is of the form crit(f)
for some f ∈ H0(S,OS), we de�ned in (4.4) the perverse sheaf of vanishing
cycles PV•S,f on X. Let (X, s) be a d-critical locus. Our goal is to de�ne
a perverse sheaf P•X ,s on (X, s) that is locally isomorphic to PVU,f . The
following example shows that this will be more complicated than naively
gluing the perverse sheaves PVU,f over critical charts.

Example 4.19 ([BBDJS, Example 5.5]). Let X = SpecC[x, x−1]. We will
de�ne two di�erent global critical charts (X,S, f) and (X,V, g) on X such
that PVS,f and PVT,g are not isomorphic.

Let S .. = X with f = 0 and T .. = Spec[x, x−1, y] with g : T → SpecC[t]
given by g 7→ xky2 for some k ≥ 0. Then

crit(g) = SpecC[x, x−1, y]/(kxk−1y2, 2xky) ∼= SpecC[x, x−1] = X.

We �nd PVS,f = CX [1] by Example 4.11. However, we claim that

PVT,g ∼=
{
CX [1] if k ≡ 0 mod 2
LX [1] if k ≡ 1 mod 2.

Here, LX is the unique two-torsion local system on X, i.e. it corresponds to
the representation π1(X) ∼= Z → C∗ that is given by −1. This can be seen
as follows. First of all, let us consider X and T as topological spaces, i.e.
X = C\{0} and T = C\{0}×C. If k = 2n for some n ∈ N, then Φ: T → T
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given by Φ(x, y) = (x, xny) de�nes an isomorphism such that g = Φ ◦ h,
where h(x, y) = y2. Moreover, Φ |X = idX and thus

PVT,g ∼= PVT,h ∼= CX [1].

If k = 2n + 1 we cover T = (U0 × C) ∪ (U1 × C), where U0 = C \ R≥0 and
U1 = C \ R≤0. For i = 0, 1 the isomorphism

Φi : Ui × C
∼−−→ Ui × C

(x, y) 7−→ (x,
√
xk, y)

allows to compute

PVT,g |Ui ∼= CUi [1].

Finally, these constant sheaves will be glued as speci�ed by the chart tran-
sition of the square root. This proves the claim.

In [BBDJS, Theorem 5.4] it is proven that the above example represents
the general situation. For any embedding (U, S, f) ↪→ (V, T, g) of critical
charts the perverse sheaves PVS,f and PVT,g di�er by a two-torsion local

system of rank one. Given the datum of a square root K1/2
X,s of the canonical

bundle KX,s one can control the local systems arising this way and in this case
it is actually possible to glue the perverse sheaves of vanishing cycles. We
will state this result below. First, let us de�ne the gluing maps. In Section
2.3 we discussed that it su�ces to consider étale morphisms of critical charts
and the embedding (U, S, f) ↪→ (U, S × Cn, f � z2

1 + . . .+ z2
n). In the latter

case the Thom-Sebastini Theorem (cf. [BBDJS, Theorem 2.13]) provides a
natural isomoprhism

PVS×Cn,f�z21+...+z2n

∼−→ PVS,f � PVCn,z21+...+z2n

∼= PVS,f . (4.6)

Let ι : (U, S, f) → (V, T, g) be an étale morphism of critical charts. Then
Proposition 4.5 gives an isomorphims of functors

ι∗0 ◦ ψg
∼−−→ ψf ◦ ι∗

and consequently, because dimS = dimT , we obtain an isomorphism

ρι : PVT,g |U
∼−−→ PVS,f (4.7)

in Perv(U) = Perv(Ured). Let ξι : ι
∗ωT → ωS be the natural isomorphism

coming from ι∗ΩT → ΩS . Then

id⊗ ξι : (K1/2
X,s)
∨ |Ured

⊗ ωT |Ured
→ (K1/2

X,s)
∨ |Ured

⊗ ωS |Ured

is per de�nition compatible with the trivializations of the squares and there-
fore induces a morphism

ξ̃ι : L
or
V,T |U → Lor

U,S (4.8)

(cf. Remark 4.17).

Proposition 4.20 ([BBDJS, Theorem 6.9]). Let (X, s) be a d-critical locus
with orientation K1/2

X,s. Then there exists a perverse sheaf P•X ,s in Perv(X)
such that for each critical chart (U, S, f) on (X, s) there is a natural isomor-
phism

κ(U,S,f) : P•X ,s |U
∼−−→ PV•S,f ⊗CU Lor

U,S
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in Perv(U). Here, Lor
U,S is the local system on U that corresponds to

(K1/2
X,s)
∨ |Ured

⊗ ωS |Ured
.

Moreover, P•X ,s is uniquely determined by the conditions

(1) For every étale morphism ι : (U, S, f)→ (V, T, g) of critical charts

κ(U,S,f) = (ρι ⊗ ξ̃ι) ◦ κ(V,T,g) |Ured
,

where ρι is as in (4.7) and ξ̃ι as in (4.8);
(2) After identi�cation via the Thom-Sebastiani isomorphism from (4.6), we

have

κ(U,S,f) = κ(U,S×Cn,f�z21+...+z2n).

�

Remark 4.21. Note that PV•S,f ⊗ Lor
U,S is a perverse sheaf by Remark 4.3.

Remark 4.22. We omit the indication of the reduced structure, when this is
irrelevant, i.e. in the case of local systems and perverse sheaves.

Once again, the key of the proof is to consider the situation from Lemma
3.13. In this case ρι is the identity multiplied with a sign.

Proposition 4.23 ([BBDJS, Theorem 3.1] or [KL16, Theorem 2.12]). Let S
be a smooth scheme, f : S → C a holomorphic function and set X = crit(f).
For every étale morphism ι : (X,S, f)→ (X,S, f) we have

ρι = ± id : PVS,f −→ PVS,f

and the sign is given by det(dι) |Xred
.

�

Recall that we saw in Lemma 3.13 that det(dι) |Xred
is locally constant with

values in {±1} and, with the approporiate choices for S and ι, it de�ned a
gluing datum for K1/2

X,s.

Remark 4.24 (Proof of [KL16, Theorem 2.15]). Again, we can immediately
deduce the existence of P•X ,s in the situation of Lemma 2.20, i.e. after �xing
charts (Xα, Vα, fα), appropriate neighborhoods Vαβ and biholomorphisms
ϕαβ : Vαβ → Vβα. In this situation, we have to show that the isomorphisms

ραβ : PVVαβ ,fα −→ PVVαβ ,fβ

satisfy

ρβγ ◦ ραβ = ραγ on (Xαβγ)red.

Applying Proposition 4.23 in the analogous manner we did in Remark 3.14,
we conclude that this is equivalent to det(ϕαβγ) = 1 for all (α, β, γ), which

in turn was equivalent to the existence of K1/2
X,s.
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Part 2. Lagrangian intersections

5. Basics on Symplectic Geometry

Let S be a smooth C-scheme. A symplectic structure on S is a closed,
non-degenerate two-form σ ∈ H0(S,Ω2

S) this is the same as an alternating
isomorphism, we shall likewise denote by σ,

σ : TS
∼−−→ ΩS .

We call (S, σ) a symplectic manifold. The existence of the symplectic form
σ implies that the dimension of S is even. Let dimS = 2n. Then σn ∈
H0(S, ωS) vanishes nowhere and therefore de�nes a trivialization ωS ∼= OS .

Let (S, σ) be a symplectic manifold of dimension 2n and let L ⊂ S be a
smooth subscheme. We say that L is Lagrangian if dimL = n and the sym-
plectic form vanishes on L. This means that the image of σ |L in H0(L,Ω2

L)
is zero or, equivalenty, that the compostion

TL −→ TS |L
σ−−→ ΩS |L −→ ΩL

is trivial. Thus, the following diagram commutes

0 // TL //

∼

��

TS |L //

∼

��

NLS
//

∼

��

0

0 // ILS/I 2
LS

// ΩS |L // ΩL
// 0.

(5.1)

Here, NLS denotes the normal bundle of L in S.

Given any smooth schemeM , the total space of its cotangent bundle |ΩM |
is naturally endowed with a symplectic structure. If we choose standard
coordinates (x1, . . . , xn, y1, . . . , yn) for |ΩM |, i.e. coordinates (x1, . . . , xn) for
M and yi = dxi, the symplectic form on |ΩM | is given by

σ =
∑

dxi ∧ dyi (5.2)

or, when �xing the �rst variable, we �nd σ : TS
∼−−→ ΩS given by

σ( ∂
∂xi

) = dyi and σ( ∂
∂yi

) = −dxi.

We can also write σ = −dη with η =
∑
yidxi ∈ H0(S,ΩS). For a section

s ∈ H0(M,ΩM ) we denote by Γs the image of the embedding s : M ↪→ |ΩM |.
Then, by de�nition, Γs is Lagrangian if and only if s∗σ = 0 and this is the
case if and only if s is a closed form. This follows from the equality s∗η = s
(cf. [Le03, Proposition 22.12]) and thus

s∗σ = −s∗(dη) = −d(s∗η) = −ds.

If (S, σ) is a symplectic manifold, coordinates such that σ is of the form (5.2)
are called Darboux coordinates.
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6. Symmetric obstruction theories on Lagrangian

intersections

Let (S, σ) be a complex symplectic manifold containing two Lagrangian
submanifolds L,M ⊂ S with intersection X .. = L ∩ M . We de�ne the
two-term complex

ELM .. =

[
ΩS |X

(−resL,resM )−−−−−−−−→ ΩL |X ⊕ ΩM |X
]
. (6.1)

This is the same complex that we encountered in Example 3.5, where we

de�ned a perfect obstruction theory ELM
φ−→ LX . Now, given that S is

symplectic and L,M are Lagrangians it turns out that this can be made into
a symmetric obstruction theory. We set TX .. = Hom(ΩX ,OX), regardless of
X being smooth or not.

Lemma 6.1. The intersection X = L ∩ M carries a symmetric obstruc-

tion theory (ELM , φ, θ) with ELM
φ−−→ LX as de�ned in Example 3.5 and

θ : E∨LM [1]→ ELM given by

TL |X ⊕ TM |X
−inclL+inclM//

1
2

inclL+ 1
2

inclM
��

θ−1
.

.=θ∨0

��

TS |X
σ

��

θ0

��

TS |X
−σ
��

ΩS |X
( 1

2
resL,

1
2

resM )
��

ΩS |X
(−resL,resM )

// ΩL |X ⊕ ΩM |X ,

(6.2)

where the indicated isomorphisms are induced by the symplectic form.

Proof. First of all, the diagram (6.2) commutes and hence θ is well-de�ned.
It follows from (5.1) that the cokernel of the upper row identi�es with the
cokernel of

ILS/I
2
LS |X ⊕IMS/I

2
MS |X

dL+dM−−−−−→ ΩS |X ,
which equals coker

(
IXS/I 2

XS −→ ΩS |X
) ∼= ΩX . Hence, via this identi�ca-

tion, we have H0(θ) = idΩX and after dualizing H−1(θ) = − idTX . Here, the
minus sign occurs since we always identify TX withH−1(ELM) ⊂ ΩS |X using
σ and not σ∨. Therefore, θ is an isomorphism in D(X) and by de�nition it
satis�es θ∨[1] = θ. This proves that (ELM , φ, θ) is a symmetric obstruction
theory. �

Lemma 6.2. Assume that X = L ∩M is smooth. Then

ωX ⊗ ωX ∼= ωL |X ⊗ ωM |X . (6.3)

Proof. As S is symplectic, it follows that ωS ∼= OS and thus

detELM = (det ΩS |X )∨ ⊗ det(ΩL |X ⊕ ΩM |X ) ∼= ωL |X ⊗ ωM |X .

On the other hand, as in (3.2), we have

detELM = (detH−1(ELM))∨ ⊗ detH0(ELM) = ω⊗2
X .

�
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Corollary 6.3. In the situation of Lemma 6.2, we have

detNXL ⊗ detNXM
∼= OX .

Proof. Since X is smooth, the adjunction formula yields

ωX ∼= ωM |X ⊗ detNXM and ωX ∼= ωL |X ⊗ detNXL.

Therefore,

ωM |X ⊗ ωL |X ∼= ω⊗2
X ⊗ detN∨XM ⊗ detN∨XL

and the result follows with Lemma 6.2. �

Now, letM be a smooth scheme and consider its cotangent bundle |ΩM | as
a symplectic manifold. Let L .. = Γdf for f ∈ H0(M,OM ). Recall that this
was the image of the embedding df : M ↪→ |ΩM | and note that the restriction

of the projection |ΩM |
π−→ M to Γdf de�nes an isomorphism α : Γdf

∼−→ M .
Then X = L∩M is the intersection of two Lagrangian submanifolds and at
the same time we have X = crit(f). This gives two symmetric obstruction
theories on X. It is natural to ask, whether these are isomorphic.

Proposition 6.4. There is an isomorphism

Φ: (E2
.

. = E∂2f , ψ, θ2)
∼−−→ (E1

.

. = ELM , φ, θ1)

between the symmetric obstructions theories de�ned in Lemma 6.1 and in
Lemma 3.10. It is given by

E2

Φ

��

= [TM |X
∂2f

//

inclM
��

Φ−1

��

ΩM |X ]

Φ0=(α∗,0)

��

TS |X
−σ
��

E1 = [ΩS |X
(−resL,resM )

// ΩL |X ⊕ ΩM |X ].

(6.4)

Proof. We start by checking that (6.4) commutes. Therefore, choose coordi-
nates x1, . . . , xn on M and x1, . . . , xn, y1, . . . , yn on S. Then

Φ0 ◦ ∂2f ( ∂
∂xi

) = Φ0

(∑n

j=1

∂2f
∂xi∂xj

dxj

)
=
(∑n

j=1

∂2f
∂xi∂xj

dxj , 0
)
.

On the other hand σ ◦ inclM ( ∂
∂xi

) = dyi and thus

(−resL, resM ) ◦ Φ−1( ∂
∂xi

) =
(∑n

j=1

∂2f
∂xi∂xj

dxj , 0
)
.
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Next, we show that Φ is de�ned over LX . For this aim, we factor E2
ψ−→ LX

as follows

E2

τ

��

= [TM |X
∂2f

//

(α−1)∗
��

ΩM |X ]

TL |X

−σ′
��

F

ϕ2

��

= [ILS/I 2
LS |X

����

// ΩM |X ].

LX = [IXM/I 2
XM

// ΩM |X ].

(6.5)

with F and ϕ2 as in Example 3.5 and σ′ : TL |X
∼−→ ILS/I 2

LS |X being the
isomorphism induced by σ as in (5.1). Using that

(α−1)∗(
∂
∂xi

) = dxi +
∑n

j=1

∂2f
∂xi∂xj

dyj

we see that τ is an isomorphism of complexes and since φ was given by

E1
ϕ1←− F ϕ2−→ LX , this means that have to show that

E2

τ
��

Φ // E1

F
ϕ1

??

commutes in D(X). We claim that π∗ : ΩM |X → ΩS |X de�nes a homotopy
between Φ and ϕ1 ◦ τ . This means that

(ϕ1 ◦ τ)−1 − Φ−1 = π∗ ◦ ∂2f (6.6)

and

(ϕ1 ◦ τ)0 − Φ0 = (−resL, resM ) ◦ π∗. (6.7)

Using (5.1) we �nd that (ϕ1 ◦ τ)−1 is given by the composition

TM |X
(α−1)∗−−−−→ TL |X

inclL−−−→ TS |X
−σ−−→ ΩS |X

which allows to see that (6.6) holds. Finally, it follows immediately from the
de�nitions that both sides in (6.7) are given by

(−α∗, id) : ΩM |X −→ ΩL |X ⊕ ΩM |X .

Hence, Φ de�nes an isomorphism of perfect obstruction theories and it is left
to see that it is an isometry. We set η .. = Φ◦θ2 ◦Φ∨[1] then we have to show
that η = θ1 in D(X). Let ε : S → S be induced by the multiplication with
−1 on ΩM and set h .. = −1

2dε ◦ σ : TS |X → ΩS |X . In local coordinates we
have

h( ∂
∂xi

) = 1
2dyi and h( ∂

∂yi
) = 1

2dxi.
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We claim that h de�nes a homotopy between η and θ1. Indeed, we compute

(η − θ1)0 : TS |X −→ ΩL |X ⊕ ΩM |X
∂
∂xi

7−→
(
−1

2

∑n
j=1

∂2f
∂xi∂xj

dxj , 0
)

∂
∂yi

7−→
(
−1

2dxi,
1
2dxi

)
and thus

(η − θ1)0 = (−resL, resM ) ◦ h.
Finally, we conclude using η∨[1] = η as well as h∨ = h that

(η − θ1)−1 = (η − θ1)0
∨ = h ◦ (−inclL + inclM ),

which �nishes the proof. �

7. Lagrangian intersections and perverse sheaves

In this chapter, we explain how Bussi (cf. [Bu14]) de�nes a perverse sheaf
on the oriented intersection of two Lagrangian submanifolds. It is a special
case of the construction of a perverse sheaf P•X ,s on an oriented d-critical
locus (X, s) from [BBDJS] that we explained in Section 4.3.

7.1. Lagrangian intersections are d-critical. From now on, let (S, σ) be
a symplectic manifold containing two Lagrangian submanifolds L,M with
intersection X .. = L ∩M .
In [Bu14, Theorem 3.1] Bussi shows that X has a d-critical structure. Let us
explain the procedure. The Lagrangian neighborhood theorem states that
for any x ∈ M there are open neighborhoods U in S and Ũ in |ΩM∩U |
together with an isomorphism Φ: U → Ũ satisfying the following properties

(1) Φ is compatible with the symplectic structures;
(2) Φ identi�es M ∩ U with the zero section in |ΩM∩U |.

Moreover, we can arrange that

(3) L̃ .. = Φ(L∩U) intersects each �ber F of the projection |ΩM∩U | →M∩U
transversally in exactly one point x, i.e.

TL̃(x)⊕ TF (x) ∼= T|ΩM∩U |(x).

Remark 7.1. In contrast to the real version of this theorem ([We71, Theorem
6.1]), we can in general not assume that M ⊂ U . Unfortunately, we could
not �nd a reference for the complex version.

Now, it follows from property (3) that Φ(L ∩ U) = Γs ∩ Ũ for some section
s ∈ H0(M∩U,ΩM∩U ). On the other hand, Φ(L∩U) is Lagrangian in |ΩM∩U |
by property (1) and therefore, s is a closed form (cf. Section 5) so that after
shrinking U we can assume that s = df for some f ∈ H0(M ∩ U,OM∩U ).
Thus, Φ(X ∩ U) = Γdf ∩ Γ0 or just

X ∩ U = crit(f) ⊂M ∩ U.
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In other words, (X ∩ U,M ∩ U, f) is a d-critical chart. This is what Bussi
calls an M -chart for X. Summing up, it is the datum of (U,Φ, f) �tting in
the commutatives diagrams

U
Φ // Ũ ⊂ |ΩM∩U | U

Φ // Ũ ⊂ |ΩM∩U |

M ∩ U
?�

OO

+ �

0
88

L ∩ U
?�

OO

∼ // Γdf .
?�

OO

Bussi also applies the procedure with the roles of L and M interchanged
yielding so called L-charts and writing X = ∆S ∩ (L ×M) ⊂ S × S she
obtains so called LM -charts. All these charts are compatible, as stated by
the following result.

Proposition 7.2 ([Bu14, Theorem 3.1]). The intersection X = L ∩ M
of two Lagrangians admits a unique structure of a d-critical locus (X, s)
such that all of the above charts, i.e. L-charts, M -charts and LM -charts
are d-critical charts for (X, s). The canonical bundle KX,s is isomorphic to
ωL |Xred

⊗ ωM |Xred
.

�

Remark 7.3. Proposition 7.2 says in particular that the d-critical structure
is independent of the order of L and M .

7.2. Lagrangian intersections and perverse sheaves. The structure of
a d-critical locus together with a square root of KX,s allows one to de�ne a
perverse sheaf on X as done in Section 4.3.

Corollary 7.4. Consider X as a d-critical locus as in Proposition 7.2 and
assume that there exists a square root of ωL |Xred

⊗ ωM |Xred
, i.e. that X is

oriented. Then there exists a perverse sheaf

P•L,M ∼= P•M,L
on X that is uniquely determined by the properties of Proposition 4.20.

�

Remark 7.5. A special case of the above orientation assumption is provided
by the existence of square roots ω1/2

L and ω1/2
M , which we call orientation of the

Lagrangians L and M , respectively. This is the only case that is considered
in [Bu14].

We will compute P•L,M in some special situations.

Lemma 7.6 (Smooth intersection). Assume that X = L∩M is smooth and
�x a square root K1/2

X,s of ωL |X ⊗ ωM |X . Then

P•L,M
∼−−→ Lor[dimX],

where Lor is the local system corresponding to (K1/2
X,s)
∨ ⊗ ωX .
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Remark 7.7. Note that by Lemma 6.2 we have ω⊗2
X
∼= ωL |X ⊗ ωM |X for

smooth X. Therefore, K1/2
X,s always exists and Lor is well de�ned. The per-

verse sheaf is independent of the orientation if X is moreover compact and
Pic(X) has no two-torsion.

Proof. As X is smooth, we have S0
X = 0. Hence, (X, 0) with canonical

bundle ω⊗2
X is the unique structure of a d-critical locus on X. Therefore by

Example 4.11 we have

P•L,M
∼−−→ PV•X ,0 ⊗ Lor = CX [dimX]⊗ Lor = Lor[dimX]

with Lor as stated. �

Remark 7.8 (Self intersection). A special case of the above Lemma 7.6 is the
case that X = L = M . If one chooses the same orientation for L and M ,
then

P•L,L
∼−−→ CL[n].

Remark 7.9 (Transversal intersection). Another special case of Lemma 7.6
is the case that L and M intersect transversally. Then dimX = 0 and any
local system on X is trivial. Hence,

P•L,M
∼−−→ CX .

One can also use the holomorphic Morse Lemma to produce this result, i.e.
locally around a point in X we can assume that X = Z(df) is given by
f = x2

1 + · · ·+ x2
n : Cn → C and thus PV•Cn,f ∼= C0 by Example 4.13.

Example 7.10 (The case of surfaces). We wish to describe P•L,M in the case of
a two-dimensional symplectic manifold S, for example, a K3 surface. In this
situation any smooth curves L,M in S are automatically Lagrangian since
trivially Ω2

L = 0 and Ω2
M = 0.

If X = L = M we saw in Lemma 7.6 that P•L,M ∼= CL[1] modulo a possible
twist by a two-torsion local system of rank one. Therefore assume that L and
M are connected and do not coincide. In this case we have dimX = 0. Let
x ∈ X and choose an analytic neighborhood U such that there is an étale
morphism U → A2 = SpecC[x, y] identifying M with V (y) ⊂ A2 and L
with V (y−h(x)) for some holomorphic function h(x) on M . After changing
coordinates and shrinking U , we can assume that h = xm, where m is the
multiplicity of the intersection of L andM in x and therefore, we are reduced
to X = L∩M = crit(f) ⊂ SpecC[x] with f = xm+1. Finally, we know from
Example 4.12 that

PV•C,xm+1 = Cm0 .

Hence, if X = {x1, . . . , xn} and the multiplicity of the intersection at the
point xi is mi, we �nd

P•L,M ∼= Cm1
x1
⊕ . . .⊕ Cmnxn

.

8. Examples of Lagrangian intersections in dimension 4

In this chapter, we study two examples of two-dimensional Lagrangians
with one-dimensional intersection.
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8.1. Symplectic structure on the Hilbert scheme. Let Z be a compact
complex surface which has trivial canonical bundle ωZ , for example, take a
K3 surface. Then the Hilbert scheme Hilbr(Z) that parametrizes subschemes
of length r in Z is a complex symplectic variety of dimension 2r (see [Be83,
Proposition 5]). In the following, we consider S = Hilb2(Z). A point in S
corresponds to two points in Z or one point in Z together with a tangential
direction and we have the description as in [Be83, Chapter 6]

S ∼= Bl∆(Z × Z/S2) ∼= Bl∆(Z × Z)/S2,

where the S2-action permutes the factors and ∆ denotes the diagonal in
Z × Z and in S2Z = (Z × Z)/S2. We �x the following notation

Bl∆(Z × Z)
η
//

ρ
��

Z × Z

π
��

S = Hilb2 Z
ε // S2Z.

(8.1)

Let pri : Z × Z → Z be the projections and consider

pr∗1ωZ ⊕ pr∗2ωZ ⊂
∧2

(pr∗1ΩZ ⊕ pr∗2ΩZ) = Ω2
Z×Z .

The symplectic form σS ∈ H0(S,Ω2
S) is constructed such that

ρ∗σS = η∗(pr∗1σZ + pr∗2σZ)

for some non-zero σZ ∈ H0(Z, ωZ) = H0(Z,OZ).
If we choose coordinates x1, y1, x2, y2 for Z×Z, we can describe σS as follows.
Set x = x1 − x2, x

′ = x1 + x2, y = y1 − y2 and y′ = y1 + y2 such that
S2Z = SpecC[x2, xy, y2, x′, y′] and since ∆ = V (x, y) the blow up

Bl∆(Z × Z) = V (xt− ys) ⊂ Z × Z × P1

is covered by the two S2-invariants charts {t 6= 0} and {s 6= 0}, both isomor-
phic to A4. This gives two charts for S namely U0 = SpecC[y2, x′, y′, s] and
U1 = SpecC[x2, x′, y′, t]. We claim that the symplectic form on S is given
by 2σS |U0 = ds ∧ d(y2) + 2dx′ ∧ dy′. Indeed, we have

2(dx1 ∧ dy1 + dx2 ∧ dy2) = dx ∧ dy + dx′ ∧ dy′

and

η∗(dx ∧ dy + dx′ ∧ dy′)
∣∣{t6=0} = d(ys) ∧ dy + dx′ ∧ dy′

= yds ∧ dy + dx′ + dy′

= 1
2ρ
∗(ds ∧ d(y2) + 2dx′ ∧ dy′)

∣∣{t6=0}

Analogously, we �nd 2σS |U1 = d(x2) ∧ dt+ 2dx′ ∧ dy′.

8.2. Two examples. We give a smooth and a non-smooth example of La-
grangian intersections in Hilb2(Z) for a K3 surface Z. We use the notations
from the previous section.

Example 8.1. Let Z be a K3 surface containing a smooth rational curve
P1 ∼= C ⊂ Z. For example, the Fermat quartic in P3 de�ned by x4

0 + . . .+x4
3

containing the line V (x0 − ζx1) ∩ V (x2 − ζx3), where ζ4 = −1.
We consider the exceptional divisor E of π : Bl∆(Z × Z) → Z × Z, then
E ∼= P(TZ). Since S2 acts trivially on E, this is also the exceptional divisor
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of Bl∆(Z×Z/S2)→ Z×Z/S2 and therefore we write P(TZ) ⊂ S. We de�ne
two submanifolds in S = Hilb2 Z by

M .. = P(TZ |P1 ) and L .. = Hilb2(P1) ∼= P2.

Both L and M are smooth and their canonical bundles do not have global
sections. This is clear in the case of L and also true for M , since M is a
P1-bundle. Therefore, we have de�ned two Lagrangian submanifolds. Their
intersection X .. = L ∩M ↪→ L arises as the �bre product

X = P(TP1)

∼

��

// L = Bl∆P1
(S2P1)

∼
��

P1 � � ∆ // S2P1.

The isomorphism X ∼= P1 can be understood geometrically. A point in the
intersection corresponds to a point in P1 ⊂ Z and a tangential direction in
P1 at this point, which is unique.

Now, we compute ωL |X and ωM |X , respectively. We consider X as a
divisor in L with corresponding line bundle OL(X) ∼= OS2P1(∆) ∼= OP2(2)
and normal sheaf NXL = OL(X) |X ∼= OP1(4). Thus,

ωL |X ∼= ωX ⊗N∨XL ∼= OP1(−6)

and by Lemma 6.2 it follows that

ωM |X ∼= OP1(2) and NXM
∼= OP1(−4).

In particular, we see that ωL |X � ωX � ωM |X and NXL � OX � NXM .
Moreover, there is a square root of ωM ∼= OM (−2)⊗ (π |M )∗OP1(−2) and of
ωL |X , yet not of ωL ∼= ωP2(−3). However, as there are no non-trivial local
systems on X we always �nd

P•L,M ∼= CX [1],

independent of matters of orientation.

Example 8.2. Let Z be a K3 surface containing three smooth curves C1, C2

and C3 that intersect in one point z ∈ Z. Assume that C1 intersects C2 and
C3 transversally. We now de�ne two submanifolds in Bl∆(Z × Z) by �rst
letting

S12
.. = Bl(z,z)(C1 × C2) and S13

.. = Bl(z,z)(C1 × C3)

and then
M .. = ρ(S12) and L .. = ρ(S13).

Actually, it follows from a local calculation thatM ∼= S12. Here, we need that
the intersection of C1 and C2 is transversal. We conclude that M is smooth.
Alternatively we could write M ∼= Bl{z,z}(π(C1 × C2)) and π(C1 × C2) ∼=
C1 × C2. Analogously, it follows that L is smooth. Moreover,

σS |L = η∗(pr∗1σZ + pr∗2σZ)
∣∣∣Bl(z,z)(C1×C2) = (pr∗1σZ + pr∗2σZ) |C1×C2 = 0.

Hence, L and M are Lagrangian submanifolds. Their set-theoretical inter-
section X = L ∩M is going to be the union of the exceptional divisor E′

of Bl{z,z}(π(C1 × C2)) and the strict transform C̃1 of C1 that intersect in a
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point z̃. In order to understand the non-reduced structure we will describe
X étale locally near z̃. Therefore, choose coordinates x and y on Z and
assume

C1 = V (x), C2 = V (y) and C3 = V (y − xn) for some n ∈ N.

Then, on Z × Z with coordinates x1, y1, x2, y2 or x, y, x′, y′ as introduced
above we have

C1 × C2 = V (x1, y2) ∼= V (x′ + x, y′ − y)

and thus

M ∩ U0 = ρ(V (x′ + ys, y′ − y)) = V (x′ + y′s, y′2 − y2) ⊂ U0.

We note that ds ∧ dy2 + 2dx′ ∧ dy′ = dsdy′2 + 2d(y′s) ∧ dy′ = 0 signifying
that M is Lagrangian. Similarly, M ∩ U1 = V (y′ + x′t, x2 − x′2). On the
other hand, we have

C1 × C3 = V (x1, y2 − (x2)n)
∼= V (x′ + x, 2n−1(y′ − y)− (x′ − x)n) = V (x′ + x, y′ − y − 2x′n)

and this gives

L ∩ U0 = V (x′ + (y′ − 2x′n)s, (y′ − 2x′n)2 − y2).

Finally, using M ∩ U0
∼= SpecC[y′, s] via the identi�cations y2 = y′2 and

x′ = −y′s we �nd

X ∩ U0
∼= V (−y′s+ (y′ − 2(−y′s)n)s, (y′ − 2(−y′s)n)2 − y′2)
= V ((y′s)ns, (y′s)ny′) ⊂ SpecC[y′, s].

In other words, X ∩ U0
∼= crit((y′s)n+1).

The canonical bundle of L is given by

ωL ∼= ε∗ωπ(C1×C2) ⊗O(E′).

Similarly, we compute ωM . Unfortunately, there are no square roots ω1/2

L , ω1/2

M .

We will now specify a situation, in which P•L,M is de�ned and given by

P•L,M ∼= CnX [1]⊕ Cn+1
z̃ .

Assume that there is an étale morphism φ : L → M such that φ |X = idX .

For instance, φ could be induced by an isomorphism C2
∼−→ C3 that �xes the

point z. In this situation, we obtain an isomorphism ωM |X ∼= ωL |X and
therefore K1/2

X,s
.. = ωL |Xred

de�nes a square root of the canonical bundle. As

a consequence, we have K1/2
X,s |Ured

⊗ωS |Ured
∼= OUred

for any L-chart (U, S, f).
Since X is compact, this yields that the corresponding local system Lor

U,S is
trivial and therefore

P•X ,s |U ∼= PVU,f for every L-chart (U, S, f).

Now, around any point x ∈ X such that x 6= z̃ we �nd a neighborhood
U ⊂ X such that U ∼= crit(xn+1) ⊂ D, where D ⊂ C2 is the open unit disk.
This gives

P•X ,s |U ∼= CnU [1].
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As discussed above, around z̃ there is a neighborhood V ⊂ X such that
V ∼= crit((yz)n+1) ⊂ D and thus

P•X ,s |V ∼= CnV [1]⊕ Cn+1
z̃

by Example 4.14. If for instance, π1(C1) = 0 and thus also π1(X) = 0 by
the Seifert-van Kampen Theorem (using that E′ ∼= P1 is simply connected),
these constant sheaves will be trivially glued, i.e.

P•L,M ∼= CnX [1]⊕ Cn+1
z̃ .

Remark 8.3. One could also combine these examples intersecting P(TZ |P1 )
from Example 8.1 and ρ(Bl(z,z)(C1 × C2)) from Example 8.2 with C1 = P1.

Then X = P(TZ(z)) ∼= P1.

9. Comparison with Exti(OL,OM )

In [BF09] Behrend and Fantechi claim to construct a C-linear di�erential

d : ExtiOS (OL,OM )→ Exti+1
OS (OL,OM )

such that d2 = 0 and (E• .. = Ext•OS (OL,OM ), d) is a constructible complex.

Moreover, they conjecture ([BF09, Conjecture 5.8]) that

Hp(X, (E•, d)) = ExtpOS (OL,OM )

and ([BF09, Conjecture 5.16]) that there is a perverse sheaf on X, that is lo-
cally modelled on the perverse sheaf of vanishing cycles and related to (E•, d)
by a spectral sequence. Unfortunately, the construction of the di�erential
turned out to be false, yet Brav et al. claim ([BBDJS, Remark 6.15]) that
this mistake can be �xed by working with ExtiOS (ω1/2

L , ω1/2

M ) instead, where

ω1/2

L and ω1/2

M are square roots of the canonical bundles.

In the following, we will point out a connection between dimHp(X,P•L,M )

and dim ExtpOS (ω1/2

L , ω1/2

M ) under the assumption that X is smooth and that
the spectral sequence

Ep,q2 = Hp(X, Extq(ω1/2

L , ω1/2

M ))⇒ Extp+q(ω1/2

L , ω1/2

M ) (9.1)

degenerates. For instance, this assumption is satis�ed if dimX = 1. We also
elaborate on the question, why one should consider ω1/2

L , ω1/2

M rather than
OL,OM . Let us start by studying the case of a symplectic surface.

Example 9.1. Let S be a symplectic manifold of dimension two. In Example
7.10 we saw that we have to understand the following situation. Assume
that S = A2 = SpecC[x, y], L = V (y) and M = V (y − xn). Then

X = L ∩M = SpecC[x]/(xn) ⊂ L.
We compute Ext•OS (OL,OM ) using the following resolution of OL

0→ C[x, y]
·y−−→ C[x, y] −→ C[x, y]/(y)→ 0.

After applying Hom(−,C[x, y]/(y − xn)) we �nd

ExtiOS (OL,OM ) =

{
0 if i 6= 1
OX if i = 1
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and thus

dim ExtiOS (OL,OM ) =

{
0 if i 6= 1
m if i = 1

}
= dimHi−1(P•L,M )

by Example 7.10. This solves the case of surfaces.

Unfortunately, the example is misleading as we will see later. Before, we
need some technical results in order to compute Ext groups and sheaves.

9.1. Computing Ext sheaves. In the following, we let S be a smooth,
quasi-projective scheme, containing two smooth closed subschemes i : Y ↪→
S and j : Z ↪→ S. We set X = Y ∩ Z

Lemma 9.2. Let E ,F be locally free sheaves on Y,Z, respectively, and M
any coherent sheaf on S. Then we have isomorphisms

(i) ExtpOS (i∗E ,M) ∼= ExtpOS (i∗OY ,M)⊗OY E
∨

(ii) ExtpOS (M, j∗F) ∼= ExtpOS (M, j∗OZ)⊗OZ F .

In particular,

ExtpOS (i∗E , j∗F) ∼= Extp(i∗OY , j∗OZ)⊗OX E
∨ |X ⊗OX F |X .

Remark 9.3. For any two sheaves E ,F on S we have for all p

supp ExtpOS (E ,F) ⊂ supp E ∩ suppF .

Therefore, we suppress respective pullbacks in our notation. In the following,
we will also cease from writing down pushforwards by embeddings.

Proof. (i) For p = 0 composition de�nes a natural map

HomOS (i∗OY ,M) ⊗OY E∨ −→ HomOS (i∗E ,M)
φ ⊗ ψ 7−→ φ ◦ i∗ψ.

We check locally on Y that this is an isomorphism. Therefore, assume that
S = SpecA, Y = SpecB and that E ,F correspond to Bn,M , where M is
any A-module. We �nd

HomA(B,M)⊗B HomB(Bn, B) −→ HomA(Bn,M)⊗B.

This is evidently an isomorpism. Now, both sides are e�aceable δ-functors
inM and we get the required isomorphism for each p > 0.
(ii) Follows analogously. Here, we need the assumption that S is quasi-
projectice andM coherent in order to guarantee e�aceability. �

From now on, we assume that X is smooth.

Proposition 9.4. Let Y, Z ⊂ S smooth such that X = Y ∩ Z is smooth.
Then

ExtpOS (OY ,OZ) ∼=
∧p−c

Ñ ⊗OX detNXZ ,

where c = rkNXZ and Ñ = TS |X /(TY |X + TZ |X ).
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The proof of Proposition 9.4 will be achieved in several steps translating
from [CKS03, Proof of Proposition A.5], where one �nds analogous state-
ments involving T or instead of Ext.

To begin with, we will assume that Y is the zero locus of a regular section
s ∈ H0(S,G) of a locally free sheaf G of rank c. In this situation we have
G |Y ∼= NY S and OY can be resolved by the Koszul complex

0→
∧c
G∨ → . . .→ G∨ s∨−→ OS → OY → 0.

Hence, ExtpOS (OY ,OZ) is given by the cohomology sheaves of

0→ HomOS (OY ,OZ)→ OZ
s|Z−−→ G |Z → . . .→

∧c
G |Z → 0. (9.2)

Lemma 9.5 (cf. [CKS03, Proposition A.3]). Assume that Z ⊂ Y . Then

ExtpOS (OY ,OZ) ∼=
∧q
NZS |Y .

Proof. As Z ⊂ Y all di�erentials in (9.2) are zero, hence the result. �

We say that Y and Z intersect properly if

dimX + dimS = dimY + dimZ.

Lemma 9.6 (cf. [CKS03, Proposition A.4]). Assume that Y and Z intersect
properly. Then

ExtpOS (OY ,OZ) ∼=
{

0 if p 6= c
detNXZ if p = c

,

where c = codim(X ⊂ Z) = codim(Y ⊂ S).

Proof. By assumption, s |Z remains regular (cf. [St17, TAG 00N6]) and we
have X = Z(s |Z ). Thus (9.2) is everywhere exact besides at the right end.
There we �nd

coker(
∧c−1

G |Z
−∧s|Z−−−−→

∧c
G |Z ) ∼=

∧c
G |X

so that the Lemma follows from the isomorphisms

G |X ∼= NY S |X ∼= NXZ .

�

Remark 9.7. Lemmas 9.5 and 9.6 remain true without the assumption Y =
Z(s). We will give the proof in the context of Lemma 9.5 copying the argu-
ment from [Hu06, Proof of Proposition 11.8]. Let E• → OY be any global
locally free resolution. Then ExtpOS (OY ,OZ) = Hp(HomOS (E•,OZ)). Let
x ∈ X and consider the free resolution E•x → OY,x of OS,x-modules. Locally
around x we also have the Koszul resolution

∧•G∨x → OY,x. Using projec-
tivity of free modules, we obtain a morphism of complexes ϕ : E•x →

∧•G∨x
inducing an isomorphism

ExtpOS (OY ,OZ)x ∼= Hp(HomOS,x(E•x,OZ,x))
∼−−→

Hp(HomOS,x(
∧•
G∨x ,OZ,x)) ∼=

∧q
NZS,x.
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The point is that this isomorphism does not depend on any choices and
therefore leads to a global isomorphism

ExtpOS (OY ,OZ) ∼=
∧q
NZS |Y .

This is true because �rst of all any other choice of ϕ is homotopic to the
original one and hence induces the very same map on cohomology. Secondly,
the latter isomorphism is independet of the chosen Koszul resolution. If we
choose a second Koszul resolution, de�ned by a section s̃ ∈ G̃, then any
isomorphism G ∼−→ G̃ mapping s to s̃ induces the identity on NZS |Y . The
general proof of Lemma 9.6 works analogously. We also conclude that the
isomorphism in Lemma 9.6 depends only on the intersection Y ∩ Z and not
on Y itself.

Lemma 9.8. For any x ∈ X there is an open neighborhood U ⊂ S and a
smooth subvariety W ⊂ U with Y ⊂W such that

(1) X ∩ U = W ∩ Z as schemes and
(2) W and Z intersect properly.

Proof. See [CKS03, Proposition A.2]. �

Proof of Proposition 9.4. We prove the result locally on S �rst. Therefore,
using the above Lemma we can assume that there is a smooth subscheme
W ⊂ S such that Y ⊂ W and X = W ∩ Z, where W and Z intersect
properly. We have a spectral sequence

Ep,q2 = ExtpOW (OY , ExtqOS (OW ,OZ))⇒ Extp+qOS (OY ,OZ).

and by Lemma 9.6 the only non-zero entries occur for q 6= c, where c =
codim(X ⊂ Z) and are given by

Ep,c2 = ExtpOW (OY , detNXZ) ∼= ExtpOW (OY ,OX)⊗ detNXZ

∼=
∧pNYW |X ⊗ detNXZ

Here, we used Lemma 9.2 and Lemma 9.5. Next, the natural map

NYW |X ∼= TW |X /TY |X ↪→ TS |X /TY |X � TS |X /(TY |X + TZ |X )

is an isomorphism. Firstly, it is injective because TZ |X ∩TW |X ⊂ TY |X and
secondly, because X is reduced, we can check surjectivity �brewise. Hence it
su�ces to compare dimensions. On the left hand side we �nd dimW−dimY
which is equal to the right-hand side dimS−dimY −dimZ+dimX because
W and Z intersect properly. Putting together, we have proved

ExtpOS (OY ,OZ) ∼=
∧p−c

Ñ ⊗ detNXZ . (9.3)

Actually, this isomorphism does not depend on the choice ofW (cf. [CKS03,
Proof of Proposition A.5]) and along the lines of Remark 9.7 we conclude
that the isomorphism (9.3) exists globally. �
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9.2. Application to Lagrangian intersections. From now on we let (S, σ)
be a symplectic manifold of dimension 2n containing two Lagrangian sub-
manifold L,M with smooth intersection X = L ∩M .

Corollary 9.9. We have

ExtpOS (OL,OM ) ∼=
∧p−c

ΩX ⊗ detNXM ,

where c = n− dimX.

Proof. We saw in Lemma 6.1 that there is an exact sequence

0→ TX → TL |X ⊕ TM |X → TS |X → ΩX → 0.

Hence, Ñ ∼= ΩX . �

Corollary 9.10. Assume that there exist square roots ω1/2

L and ω1/2

M . Then

ExtpOS (ω1/2

L , ω1/2

M ) ∼=
∧p−c

ΩX ⊗ Lor,

where Lor = (ω1/2

L |X ⊗ ω
1/2

M |X )∨ ⊗ ωX and c = n− dimX.

Proof. We have

ExtpOS (ω1/2

L , ω1/2

M ) ∼= ExtpOS (OL,OM )⊗ ω−1/2

L |X ⊗ ω1/2

M |X
∼=

∧p−cΩX ⊗ detNXM ⊗ ω−1/2

L |X ⊗ ω1/2

M |X
=

∧p−cΩX ⊗ Lor,

where we used detNXM
∼= ω∨M |X ⊗ ωX . �

Question 9.11. In particular, it follows from Corollary 9.2 that Exti(ω1/2

L , ω1/2

M )
is already de�ned if there are square roots of ωL |X and ωM |X . On the other
hand, for the de�ntion of the perverse sheaf P•L,M it is even su�cient that a
square root of ωL |X ⊗ ωM |X exists. In this case, we could set

Exti(ω1/2

L , ω1/2

M ) .. = (ωL |X ⊗ ωM |X )−1/2 ⊗ ωX ,
which is well-de�ned if Pic(X) has no two-torsion. We wonder, whether we
can also give a meaning to Exti(ω1/2

L , ω1/2

M ) in these cases?

Corollary 9.12. We have

ExtpOS (OL,OM )⊗ ωM |X ∼= ExtpOS (OM ,OL)⊗ ωL |X
and

ExtpOS (ω1/2

L , ω1/2

M ) ∼= ExtpOS (ω1/2

M , ω1/2

L ).

�

Recall that P•LM ∼= P•ML so it seems that dim ExtpOS (ω1/2

L , ω1/2

M ) is a better

candidate than dim ExtpOS (OL,OM ) for the comparison with dimHp(P•L,M ).

Example 9.13. In Example 8.1 we constructed an intersection X ∼= P1 with
NXM

∼= O(−4) and NXL
∼= O(4). We �nd

ExtpOS (OL,OM ) ∼=

 O(−4)
O(−6)
0

, ExtpOS (OM ,OL) ∼=

 O(4) if p = 1
O(2) if p = 2
0 else.
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Hence, the spectral sequence

Ep,q2 = Hp(X, Extq(OL,OM ))⇒ Extp+q(OL,OM )

degenerates at the E2-page yielding

dim ExtiOS (OL,OM ) ∼=

 0
3
5
, dim ExtiOS (OM ,OL) ∼=

 3 if i = 1
5 if i = 2
0 if i = 3.

In particular, there is no hope to compare this to

dimHi(P•LM) = dimH i−1(P1,C).

Proposition 9.14. Assume that X = L ∩M is smooth and compact. Let
ω1/2

L and ω1/2

M be �xed orientations of L and M . Then, provided that the
spectral sequence

Ep,q2 = Hp(X, Extq(ω1/2

L , ω1/2

M ))⇒ Extp+q(ω1/2

L , ω1/2

M ) (9.4)

degenerates, we have

dim ExtiOS (ω1/2

L , ω1/2

M ) = dimHi−n(P•L,M ).

Here, the orientation Lor = ω−1/2

L |Xred
⊗ω−1/2

M |Xred
⊗ωX |Xred

serves for the
computation of P•L,M .

Proof. We know from Lemma 7.6 that Hi(P•L,M ) = H i+dimX(X,Lor), where
Lor is the local system corresponding to L. Moreover, we saw in Lemma 4.18
that there is a hermitian metric on Lor with corresponding Chern connection

∇ such that Lor = ker(Lor
∇−→

1,0
Ω1
X ⊗ Lor). This yields a Hodge�de Rham

spectral sequence

Ep,q1 = Hq(X,Ωp
X ⊗ Lor)⇒ Hp+q(X,Lor)

degenerating at the E1 page (cf. [Ba06, Theorem 5.32]). Therefore,

dimH i(X,Lor) =
∑
p+q=i

Hq(X,Ωp
X ⊗ Lor).

On the other hand, we have by Corollary 9.10

Exti(ω1/2

L , ω1/2

M ) ∼= Ωi−c
X ⊗ Lor,

where c = n − dimX. Finally, if (9.4) degenerates, putting everything
togehter gives

dim Exti(ω1/2

L , ω1/2

M ) =
∑

p+q=iH
p(X, Extq(ω1/2

L , ω1/2

M ))

=
∑

p+q=iH
p(X,Ωq−c

X ⊗ Lor)

= dimH i−c(X,Lor)
= dimHi−n(P•L,M ).

�

Remark 9.15. Independent of degeneration we have the equalities of the
Euler characteristics∑

i(−1)i Exti(ω1/2

L , ω1/2

M ) =
∑

i,j(−1)i+j dimH i(X, ExtOS (ω1/2

L , ω1/2

M ))

=
∑

i,j(−1)i+j dimH i(X,Ωj−c
X ⊗ Lor)

= (−1)c
∑

i(−1)i dimHi(P•L,M ).
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