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1. INTRODUCTION

We are interested in intersections of Lagrangian submanifolds inside a
holomorphic symplectic manifold. Our particular goal is to understand the
construction of a perverse sheaf P}, on such an intersection as defined in
[Bul4], [BBDJS| and [KL16]. It is a special case of the construction of a
perverse sheaf on a d-critical locus. Therefore, the paper is divided in two
parts: Part 1 can be viewed as an introduction to the theory of d-critical loci
from [Joyl3|. It covers the definition of a d-critical locus (X, s), symmetric
obstruction theories as defined in [BF05|, and the construction of a perverse
sheaf P%, | on (X, s) from [BBDJS|. Part 2 applies the theory to Lagrangian
intersections. The starting point is that any such intersection admits the
structure of a d-critical locus.

We will now describe the main results in more detail:
1



2 I. GROSSE-BRAUCKMANN

Part 1. d-critical loci. First of all, the local setting we are interested
in is as follows. Let S be a smooth scheme and f € HY(S,0g). We set
X : = crit(f) and generally care about the following constructions on X:

(i) Symmetric obstruction theories, i.e. a triple
(EeD(X), ¢: E— Ly, 6: EV[1] = E)

such that E is locally isomorphic to a complex [£7! — £9] of locally
free sheaves, H~!(¢) is surjective and H°(¢) is an isomorphism. Here,
Lx denotes the (truncated) cotangent complex of X. For instance, a
symmetric obstruction theory on X is given by

32
Eoey - Ts lx —L Qg |x] (1.1)
J* |
Lx = [Fxs/ I L Qs x]

(Lemma 3.10).
(ii) The perverse sheaf of vanishing cycles defined by

PVs ;i = ¢y Cg[dim S — 1] € Perv(X). (1.2)

In general, we deal with schemes that are locally of the form crit(f). These
are d-critical loci.

According to [Joy13, Definition 2.5], a d-critical locus is either a scheme
or an analytic space X together with a section s of a certain sheaf Sx.
This section satisfies the property that for every point & € X there exists
an open neighborhood U C X, a smooth scheme S together with a closed
embedding U C S and f € H°(S,Og) such that U = crit(f) and f defines
s|y . Thetriple (U, S, f) is called a chart for (X, s). In Section 2.1 we will give
the precise definition of the sheaf Sx involving what we call the thickened
cotangent compler Mx. This is a non-coherent version of the truncated
cotangent complex LLx. More precisely, for any scheme X we construct a
morphism

Dxi OX — LX in D(Sh(X))
over the natural differential dx: Ox — Qx. The thickened cotangent com-
plex is the cone of Dx and we set
Sx:= 'H_I(Mx).

Since the differential in My is not Ox-linear, Sx is in general not a coherent
sheaf but only a sheaf of C-algebras.

On any d-critical locus (X, s) we can locally define a symmetric obstruction
theory as in (1.1). Unfortunately, these obstruction theories need not glue
to a global obstruction theory on X. We discuss this in Section 3.

Proposition 1.1 ([Joyl3]). There exists a line bundle Kx . on Xyeq such
that

ICX~,S |Urcd 1> det E82f |Urcd = W?Q |Urcd
for every critical chart (U, S, f).
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For the precise statement see Proposition 3.12. The line bundle Ky , is
called canonical bundle.

In Section 4 we address the question whether the perverse sheaves of van-
ishing cycles as in (1.2) can be glued to a global perverse sheaf Py, on
(X, s).

Proposition 1.2 ([BBDJS|). Assume that there is a square root IC;{QS of the
canonical bundle Kx .. Then there evists a perverse sheaf P5  on X such
that

Py lv — PVs, @ LY

for every critical chart (U, S, f). Here, £'s is a local system on Ueq such

that £ ®c Ov,oy = (K2 Vg @ WS |Upen -

For the precise statement see Proposition 4.20.

Part 2. Lagrangian intersections. Let (S,0) be a symplectic manifold
of dimension 2n and let X = L N M be the intersection of two Lagrangian
submanifolds. For instance, let M be a complex manifold and S = [Qy/] be
the total space of its cotangent bundle with the canonical symplectic struc-
ture. Then, for any f € H°(M, Oys) we define a Lagrangian submanifold by
L :=Tg. Here, I'yy denotes the image of the embedding df: M — |Q],
which is given by the section df € H°(M, ). The intersection X = LN M
is the locus where df vanishes, i.e. X = crit(f) C M. It turns out that any
Lagrangian intersection is locally of this form.

Proposition 1.3 (|[Bul4]). The intersection of two Lagrangian submanifolds
X = LN M admits the structure of a d-critical locus with canonical bundle

ICX,S = UL)L |Xred ® WM |Xred °
In particular, we can once again locally define a symmetric obstruction

theory on X. On the other hand, we prove in Lemma 6.1 that X carries a
global symmetric obstruction theory with [E given by

—resy,,resps

Epy:=|Qs|x ( ) Qrlx & x| -

From here we can conclude (Lemma 6.2) that
wx ®wx Fwr |x @wwm|x

if X is smooth. Moreover, we compare these two obstruction theories in the
above situation.

Proposition 1.4. Let M be a compler manifold considered as Lagrangian
submanifold inside its cotangent bundle S = Q|- Let f € HY(M,Oyy) and
L:=Tg CS. There is an isomorphism of symmetric obstruction theories

@: Ean ; ELIW)

where Egop is defined as in (1.1) and Epy as above.
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The precise definition of ® can be found in Proposition 6.4.

In the case that a square root of wr, |x,., ® wi |x,., exists the d-critical
structure on X also yields the existence of a perverse sheaf P} ;. In Section
7.2 we will describe P}, explicitly in some special situations. For instance,
we have (Lemma 7.6)

Lemma 1.5. Assume that the intersection X = L N M is smooth and let
KY? =wx. Then
Py = Cx[dim X].

The following Section 8 is dedicated to the study of two concrete exam-
ples of Lagrangian intersections in dimension 4. Here, the Hilbert scheme
Hilb?(Z) of a K3 surface serves as a symplectic manifold.

Finally, in the last Section 9 we aim at setting up a connection between
dim H*(P; ,,) and dim Ext®(w;/*, w};’). More precisely, under the assump-
tion that

, /2 1/2 12 1/2
EY? = HP(X, Sxtq(wL/ ,w]\f[ ) = Extp+q(wL/ ,w]é )
degenerates, we prove

Proposition 1.6. Assume that X = L N M is smooth and compact. Let
wlL/Q and w]l\//f be fized square roots of the canonical bundles of L and M,

respectively. Then
dim Extgsn (wy/?,wy)) = dim Hi(PZ’ o)

Here, Ky = wi/z |lx ® w]l\//f |x serves for the computation of P; ;.

Acknowledgements. I want to heartily thank my advisor Daniel Huy-
brechts for all his time and motivation. Many thanks to Johannes Anschiitz
for continuously answering all my questions and also to Andrey Soldatenkov
for the computation of Example 2.12.

Notation. All schemes are of finite type over C. Let X be a scheme. We
abbreviate D(Qcoh(X)) by D(X) and call this the derived category of X.
We use the notation D(X), D™ (X), D?(X) for the derived category of com-
plexes that are bounded from below, from above or from both sides respec-
tivly. Moreover, D%(X) is the derived category of bounded complexes of
constructible sheaves. We denote the category of sheaves of C vector spaces
by Sh(X). We do not especially indicate when tensor products are derived
tensor products.

The theory of d-critical loci works in the analytic and in the Zariski topol-
ogy. We will not mention this explicitly. All our perverse sheaves are ele-
ments of D2(Sh(X)), where constructibility is understood with respect to the
analytic topology. In Part 2 we are only interested in the analytic topology.

If £* is a complex of sheaves, then £*[1] is the complex with (£°[1])" = £
and differential dfi'[l] = fdlgflj If ¢: £* — F* is a morphism of complexes,
then ¢[1] is given by ¢[1]* = ¢*+L.
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Let X be a scheme. We write Nilx for the Nilradical of Ox. If X C S is
a closed embedding with ideal sheaf .7, then Nilx = V. /.7, where V.% is
the radical ideal of .# defining X eq.

If X is a scheme and £ a vector bundle on X, we denote the total space
of £ by |€| = Specy (Sym*(£Y)). For any section s € HY(X, &) let T'y C |€]
be the image of the embedding s: X < |£|. If no confusion arises, we
write X C |€] for the zero section I'g. For projective bundles, we use the
convention P(€) = Projy (Sym*(€Y)).

Let M be a scheme and f: M — A! a morphism, or equivalently, f €
I'(M,Opr). Then crit(f) € M is the vanishing locus of the section df €
I'(M, Q). We could also write crit(f) = M NTg.

Part 1. d-critical loci
2. DEFINITION

In this section we will establish the notion of a d-critical locus (X, s).
This is a scheme or a compelex analytic space X that is locally of the form
crit(f). Any two local reprensentations of the form crit(f) satisfy a certain
compatibility condition, which is encoded by a section s € H%(X,Sx). The
sheaf Sx is a cohomology sheaf of the thickened cotangent complex that we
define now.

2.1. The thickened cotangent complex. In the following, we let X be
any scheme or complex analytic space. We assume that there is a closed
embedding X C S with ideal sheaf .# into some smooth scheme S. Consider
the natural differential dg: Og — Qg. It induces an Ox-linear map

I I* — Qg x

whose cokernel is 2y and whose kernel carries information on the smoothness
of X. The complex

LXZZ[f/f2—>Q5|X} (2.1)

concentrated in degrees —1 and 0 is called the truncated cotangent complex of
X (in S). By construction, Lx comes with a natural morphism Lx — Qx.
In fact, Lx is quasi-isomorphic to the truncation TZ_1L3< of Ilusie’s full
cotangent complex and therefore only depends on X. Following |[HT10|, we
can also give a direct proof that Ly does (up to quasi-isomorphism) not
depend on the embedding X C S. Assume that X C 5; with ideal .#;
for some smooth scheme S; and i € {1,2}. Then the diagonal embedding
gives an embedding X C S7 x Sa, whose ideal sheaf we denote by #15. The
composition X C 57 x S — S7 induces a short exact sequence of two term
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complexes

BZVE4 Qs, |x]

| |

[(F12/ I ——— Qs |x @ Qs, |x]

| |

[Qs, [ x Qs, |x]-

This proves that Lx defined via X C S; and X C S are quasi-isomorphic.

Another property of the truncated cotangent complex is that for any open
subset U C X we have

LU = LX |U in D(U) (22)

If we do not insist on dealing exclusively with Ox-linear morphisms, we
can also consider the following C-linear map

Og/f2 —>QS |X

that is likewise induced by dg. It is well defined because dg being a derivation
implies dg(.#?) C #Qg. This map will allow us to lift the classical differen-
tial dx: Ox — Qx to a morphism Dy: Ox — Lx defined in D(Sh(X)) but
not in D(X).

Consider the inclusion i: .# /.2 — Og/.#?, yielding a short exact se-
quence of two-term complexes

[(7].9% = Qs |x] —= [0s/I?% = Qs |x] — [Ox — 0], (2.3)

which we consider as a distinguished triangle in D(Sh(X)). Therefore, after
rotation, we obtain a morphism

x: Ox — Lx in D(Sh(X)). (2.4)
More explicitly, (2.3) gives an isomorphism

Ox[1] 2 Cone(u) = |.7/72 U= 04/.72 ¢ Qg |x % Qg|x

in D(Sh(X)). Here, Ox|[1] is the complex with Ox in degree —1, so that
the projection to Lx[1] defines (2.4). Given two embeddings X C S; for
i = 1,2 we constructed above a quasi-isomorphism between Lx defined via
S1 and Ly defined via S3. The construction of Dx is compatible with this
quasi-isomorphism as we can apply the above proof to (2.3). We conclude
that the definition of Dy is independent of the embedding X C S.

Finally, for later use, we will consider the composition
N’ilX — OX D—X> LX.

Lemma 2.1 ([Joy13, Proposition 2.3]). The construction of Dx is functorial
in the following way: For every morphism ®: X — Y there is a commutative
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diagram

-1
o 10y oL,

|, |

OX —X>]Lx.

Proof. This follows essentially from functoriality of Lx and exactness of
oL O

Remark 2.2. Let f € HY(X,Ox). We can give a more explicit description
of Dx(f) € HY(X,Lx) as follows: Consider f as a morphism f: X — Al =
Spec C[t]. Then functoriality of Dy gives the commutative diagram

HO(X7 f_IOAl) E— HO(X7 f_l]LAl) = HO(X7 f_loAl <dt>)

| |

H°(X,0x) H°(X,Lx),

where t € HY(X, f~1O41) maps to f € HY(X,Ox). Hence, Dx(f) is the
image of the generator dt under the right-hand vertical arrow

HY(X, f L) =2 HY(X, f 1O, (dt)) — H°(X,Lx).

Definition 2.3. The thickened cotangent complex is

My : = Cone(Ox 2% Ly) € D(Sh(X))
and the reduced thickened contangent complex is

MY : = Cone(Nilxy — Ly) € D(Sh(X)).
We define two sheaves of C-vector spaces on X by

Sy :=H 'Myx) and S%:=HI(M%).

Remark 2.4. This definition of Sx is suggested in [Joy13, Remark 2.2(b)].
Remark 2.5. Tt follows from the spectral sequence

EPY = HP(X,H!(My)) = HPT9(X,Mx)
that H(X,Sx) = H ! (X, My).

Lemma 2.6. With the above notations we have the following first properties
of the thickened cotangent complex.

(i) For any closed embedding X C S into a smooth scheme S with ideal
sheaf Z. The thickened cotangent complex can be represented by

My = [0g/5% — Qs |x ]
and its reduced version by

M% = V.77 — Qs !X} = [05/ 5% — Qs|x © Ox,..] -

(ii) Sx and 8% are sheaves of C-algebras.
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111 et U C e an open subset. en
() LetUC X b D b Th

In particular, we have Sy = Sx |v .
(iv) For all morphisms ®: X — Y there is an induced map ®~ My — My
and thus 'Sy — Sx.

Proof. (i) follows directly from the definition, (ii) from the Leibniz rule, (iii)
from (2.2) and (iv) from the functoriality of Dx (cf. Lemma 2.1). O

Lemma 2.7. The connecting homomorphism & in (2.5) is the differential
dx: Ox — Qx. Therefore, we have a commuting diagram in D(Sh(X))

Ox —5 1Ly

|

D
dx
Ox — Ox.

Proof. We embed X C S as above. The Lemma follows from the definitions
and the commutative diagram

H_I(Lx) SX OX

00— I I 04/ 92— 05/ ——0

0— Qg

HO(Lx) = Qx.
O

By definition, there is a commutative diagram in D(Sh(X)) with exact
rows and columns

Nilx Lx MY
OX ]LX I\\/JIX

L

OXred — O B OXred [1]
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This induces a commutative diagram of long exact sequences (cf. [Joy13,
Theorem 2.1(b)])

0—H Y (Lx) — 8% — Nilx — Qx — HOM%) — 0 (2.5)

| | | | !

0—H Y(Ly) — Sx Ox —2 Qx — HO(My) — 0

and a long exact sequence

0 S% Sx —— 0x,., — H'ME) — HO(Mx) — 0. (2.6)

red

Form these sequences we now deduce several properties of the thickened
cotangent complex.

Corollary 2.8. The zero-th cohomology sheaves of the thickened cotangent
complezes are given by

HO(My) = Qx /dx(Ox) and HOMY) = Qx /dy(Nilx).

O
This allows us to give a precise formulation of [Joy13, Corollary 2.14].
Corollary 2.9. We have
H N Ly) 2 S <= ker(Oy 25 Qx)NNily = 0.
In particular, 89( 15 a coherent sheaf on X in this case.
O

Proposition 2.10 (cf. [Joyl3, Theorem 2.1(a),(c)|). (i) There is a natu-
ral decomposition
Sx = Cy ®SY%,
where the constant sheaf Cx is embedded via the isomorphim Cy =
(Cs+52%)).72.
(ii) The sheaf Sg( 1s isomorphic to the middle cohomology sheaf of the com-
plex

E:= |24 7. 0¢-% 02,

Proof. (i) We claim that im(a) = Cx = i.Cx  in (2.6) with i: X,q — X
being the inclusion. Obviously we have im(a) D Cyx. For the converse
inclusion we choose an embedding of X into a smooth scheme S. Then « is
given by the upper row in the following commutative diagram

SX(—> Os/fz —_— OX Hi*OX

~NEob

Qs |x Qx i 8x

red

red
and thus im(a) C ker(ixOx, 4 — i:Qx,.,4) = i« Cx . Together, this gives

0-58% —+Sx =>Cyx =0
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and the inclusion Cy < Sx defines a split.
(ii) This time, we denote by 4 the inclusion X < S. Consider the commu-
tative diagram with short exact columns

%[ jJQS Q%
Os Qg 02

I 1]

i*(OS/fQ) ——i(Qs|x) ——0.

We consider the rows as complexes concentrated in the interval [—1, 1]. Tak-
ing cohomology sheaves yields an exact sequence

HHE) = jiCo\x = Cgs = ixSx — H(E) = 0,

where j: X\ S < S is the inclusion. As H°(E) is actually supported on X,
applying i~! gives the short exact sequence

0—Cy — Sx — HE) — 0.

By construction, Cx — Sx is the embedding from part (i), so that applying
part (i) finishes the proof. O

The following example is central to our application of the thickened cotan-
gent complex.

Ezample 2.11. Let f € H(S,Og) and consider crit(f) = Z(df) C S with
ideal 7 = im(Ts L5 Og). Then, by definition, df € Qs and thus
fe H'(X,S8x) C H(X,05/.57).

Moreover, f € H°(X,8%) if and only if f € V.. In Example 2.12 below,
we see that f is not necessarily locally constant on X as one might expect
thinking of manifolds.

Ezample 2.12 (cf. [Joyl13, Example 2.13]). In general, we can not expect
that H~!1(Lx) = S%. The following example shows that this is not even
true when X = crit(f) for some f € H°(S, Og).

Let S = SpecC[z,y] and f = 2° + 2%y? + 5. Set X = crit(f). Then,
X = V() with I = (dyf = bzt + 22y?,dy f = 22%y + 5y*). In Example
2.11 we already noticed that df |x = 0. Write X as the intersection of two
reducible curves

X = (Ll U Cl) N (LQ U CQ),
where L; are lines and C; are cuspidal cubics, ¢ = 1,2. Hence, the inter-
section number is 16. Looking more closely, we see that X consists of 5
distinct reduced intersection points of C7 and C and the point (0,0) oc-
curing consequently with multiplicity 11. We claim that the local ring at
(0,0) is given by SpecClz,y]/J, where J = (d.f,d, f,zy3,y*z). This fol-
lows, since 2yd, f — 5z%d, f = xy3(4 — 25zy) and 4 — 252y is invertible in the
local ring at (0,0). Similarily for #3y. Note that C[x,y]/J really has a basis
congisting of 11 elements, namely {l,x,y,xQ,xy,y2,x3,x2y,xy2,y3,x2y2}.
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Now, 5f — 2%y? = dy f + d, f shows that 0 # f € Clz,y]/J meaning that f
is not locally constant near (0,0). Moreover, we see f € v/J. Finally, after
altering f by its value on the other points of X we find

0#f ENilXﬂker(OX — Qx)

or, put differently, f € H°(X,8%) but f ¢ HY(X,H ! (Lx)).
We also see that, in this example 89( is not an natural O x-module. Otherwise
we would have z - 2%y € H°(X,S%). However,

d(z3y?) = zd(x®y?) + 22y%dz = 2%y dr # 0 € Qe |x .

2.2. Definition and first examples. We come now to the definition of a
d-critical locus from [Joy13]. A d-critical locus is a scheme that is locally of
the form crit(f) with a compatibility condition given by a section of the sheaf
89(. Depending on the situation, we apply the theory using the analytic or
the Zariski topology, so we let X be a scheme or a complex analytic space.

Definition 2.13 ([Joyl3, Definition 2.5]). A structure of a d-critical locus
on X is defined by a section s € H(X,S%) satisfying the condition that
for each z € X there is an open neighborhood U C X of z and a closed
embedding U C S into a smooth scheme S such that there is f € H°(S, Og)
with the properties

sly =f€ HY(U,Og/#%) and U =crit(f) C S.
We call (U, S, f) a critical chart around z for the d-critical locus (X, s).

An embedding of critical charts v: (U, S, f) — (V,T,g) is a locally closed
embedding ¢: S < T such that gor = f and ¢|y : U — V C X is the
inclusion in X. A subchart is an open embedding of critical charts. If
(U, S, f) and (V, T, g) are critical charts, then any étale morphism ¢: S — T
such that g ot = f restricts to a morphism ¢|y : U — V. If ¢|y is the
inclusion in X we write ¢: (U, S, f) — (V, T, g) and call ¢ an étale morphism
of critical charts.

A morphism of d-critical loci ®: (X, s) — (Y, t) is a morphism ®: X — Y
such that the induced map (cf. Lemma 2.6(iv)) ® 1Sy — Sx maps t to s.
With this notion, d-critical loci form a category.

Remark 2.14. The theory also works with s € H%(X, Sx). However, choosing
s € HY(X,8%) has the practical advantage that, with the above notations,
it enforces f|y,., =0 € H(Xyed, Ox,.,)-

Ezxample 2.15. Let us apply the definition to the zero-dimensional example
X = SpecClz]/(z™) C Al. For this, consider the exact sequence of C-vector

spaces
0— Sy — Clal/(@™) -5 Clz]/(a™)(da)
zt — izt
We find 8§ = (2"*!) C C[x]/(2*"). Note that this is an example of Corollary
2.9 and indeed Ly is given by

[(@™)/@*) 5 Cla)/(a"){da)|
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hence 8% = H~H(Lx).

Next, we wonder which f € C[z] actually define a d-critical structure on X.
This is the case if and only if there is an open subset U C A! such that
X = V(df)NU. Hence, we need that f = a, 12" + ... with a,41 # 0
and this gives s € (z"*1)\ (z"2).

Ezample 2.16. Assume that X is smooth. Then M% = [0 — Q] and thus
S% = 0. Therefore, X has a unique structure of a d-critical locus given by
(X, 0).

2.3. Critical charts. Let (X, s) be a d-critical locus. In [Joy13, 2.3] Joyce
studies how to manipulate critical charts on (X,s). His major results are
that any two critical charts can locally be embedded into a third one and
that any embedding of critical charts can locally be modified into an étale
morphism of a certain standard form.

Proposition 2.17 ([Joyl13, Theorem 2.20|). Let (U, S, f) and (V,T,g) be
two critical charts on (X,s). For every x € U NV there exist subcharts
', s, )y c(U,S, f) and (V',T',¢") C (V,T,g) around x and another crit-
ical chart (W, R, h) together with embeddings of critical charts (U',S’, f') —
(W,R,h) and (V',T",¢') — (W, R, h).

g

Proposition 2.18 ([Joyl3, Proposition 2.22|). Let (X,s) be an analytic
critical locus and let (U, S, f) = (V,T,g) be an embedding of critical charts
on (X,s). For every x € U there exists an open neighborhood T' C T and
holomorphic maps a: T' — S,3: T' — C", where n = dimT — dim S such
that a x B: (VN T, T glv) — (U, S x C", fB 2} + ...+ 22) is an étale
morphism of critical charts, i.e. g|pr = foa+(22+...+22)oB. Furthermore,
axfBlg 8 :=85SNT < S xC" is the inclusion of S’ x {0}.

g

Remark 2.19. There is an algebraic analogue of this Proposition ([Joyl3,
Proposition 2.24]).

These propositions are the key for working with d-critical loci. Roughly
speaking, when constructing a geometric object on (X, s) we only have to
care about

(1) étale morphisms of critical charts and
(2) the embedding (U, S, f) < (U,S x C", f B 22 + ...+ 22).

In [KL16] Kiem and Li present another approach to (analytic) d-critical
loci. They make use of the above Propositions in order to fix a well-behaved
set of critical charts from the beginning on. More precisely, they prove the
following equivalent definition of d-critical loci.

Lemma 2.20 ([KL16, Proposition 1.44]). Let X be a complezx analytic space.
Then X has a d-critical structure if and only if there exists an open covering
X = U, Xa and complex manifolds V,, together with a closed embedding
Xo C Vy and holomorphic functions fo: Vo — C satisfying
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(1) Xo = crit(fo) C Va;

(2) for each pair of indices (o, B) and X5 = Xo N Xp there is an open
neighborhood Vog (resp. Vo) of Xap in Vi (resp. Vg) and a biholo-
morphic map pag: Vag — Vga making the following diagram com-
mute

[0}

X
/%ﬁ \V
N

Vaﬂ Ba
f fs

’/‘Vﬁa

I

(8) $os = PBa and oo = idy, .

In this situation, we find for all X, : = X, N XgN X, an open neighbor-
hood Vg, in V, such that

Papy i = PaB © Pya © Pyt Vapy = Va (2.7)
is biholomorphic onto its image ([KL16, Remark 1.7]). Then .3, is the
identity on X3, yet in general not on all of V,,5,. This is the reason why the
gluing of objects (as for example the symmetric obstruction theories from the
consecutive chapter) over the intersection of critical charts is troublesome.

3. SYMMETRIC OBSTRUCTION THEORIES ON d-CRITICAL LOCI

We are going to explain the concept of symmetric obstructions theories
as introduced in [BF05]. We will see that a symmetric obstruction theory
is naturally defined in the situation of Lagrangian intersections and locally
defined on any d-critical locus. For a discussion of the relation between
the category of d-critical loci and the category of schemes with (symmetric)
obstruction theory we refer to [Joyl3, Examples 2.16 and 2.17].

3.1. Symmetric obstruction theories. Let X be a scheme. We denote by
Lx the truncated cotangent complex as in (2.1). If E € D®(X) is a bounded
complex, we can define

EY: = RHom(E,Ox) € D(X)
as well as EVY = RHom(EY,Ox) € D’(X). There is a natural map E —
EVV. If E is given by a complex [~ % £9] of locally free sheaves, then,
following our sign conventions, EV = [(£°)Y — (€71)V] in degree 0 and 1,
such that we get EV[1] = [(£°)V LA (E71)V] again in degree —1 and 0. We

start with a technical result.

Lemma 3.1. Let E € D(X) be such that H'(E) = 0 ifi ¢ {0,1}. Then there
18 an isomorphism

~

HYEY) = HYE)Y = Hom(HY(E), Ox).
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Proof. We are looking for an isomorphism
H Y RHom(E, Ox)) = Ext (B, Ox) — HY(E)Y = Ext*(H(E), Ox).
Consider the spectral sequence
EPY = ExtP(H™Y(E), Ox) = EPT? = ExtPTI(E, Ox).

By assumption, we have E5? = 0if p < 0 or —¢ ¢ {0,1} and hence the
only non-zero entry on the diagonal p + ¢ = —1 occurs when p = 0. Thus
the spectral sequence degenerates at the Fo page and yields the desired
isomorphism

E7' = Ext™(B,0x) = ES 7! = Ext®(HY(E), Ox).

O

Corollary 3.2. Let E € D(X) be a perfect complex such that H'(E) = 0 if
i ¢ {—1,0}. Then there is an isomorphism

HE) = HYEY)Y.

Proof. Since E is perfect the natural map E — EYV is an isomorphism (cf.
[St17, Tag 07VI]) and thus H~'(E) = H~Y(EYV). The corollary follows
after postcomposing with the isomorphism H~Y(EYY) — H(EV)Y from
Lemma 3.1. U

This result applies in particular to the following type of complexes.

Definition 3.3. We say that E € D(X) is perfect of amplitude in [—1,0] if
E is locally isomorphic to a complex [£7! — £9] of locally free sheaves.

Definition 3.4 ([BF05, Section 1.3]). A perfect obstruction theory for X is
tuple (E, ¢), where E is perfect of amplitude in [—1,0] and ¢: E — Ly is a
morphism in D(X) such that

(1) H Y (¢): HYE) — H Y (Lx) is surjective and
(2) HO(¢p): HU(E) — HO(Lx) = Qx is an isomorphism.

A symmetric obstruction theory is a triple (E, ¢,0), where (E, ¢) is a perfect
obstruction theory and 6: EY[1] — E is a non-degenerate symmetric bilinear
form, i.e. an isomorphism in D(X) such that 6V[1] = 6.

An isomorphism of perfect obstruction theories ®: (E1,¢1) — (Ea, ¢2) is
given by an isomorphism ®: E; — Ey over Lx in D(X). Moreover, ® is an
isomorphism of symmetric obstruction theories (E1, ¢1,61) — (Eg, ¢2,02) if
it is an isometry (Eq,61) — (Eg, 62), i.e. if

EY[1] & EY[1]

ell ) lez

Ei —Eg

commutes.
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FErample 3.5. Let S be any scheme containing two smooth and closed sub-
schemes Y, Z with ideal sheaves %, 4, ;5. Then the intersection X =Y NZ
carries a perfect obstruction theory

—resy,resy

E2—|:95|X ( ) Qy‘X @QZ’X:| (31)

with E & Lx represented by

(—res,res)
= [Qs|x — Qv |x & Qz|x]

] s

E
y

F P = [Fvs/ Fis|x ——— Qz]x]
|

Lx

l

= [Ixz/ IR, ——— Qz]x].
Here, the differential of F is the composition

Ivs| Fes|x = Ixal Py = Quzx .
This can be seen at follows. First of all the exact triangle
F&E—)[Qy’x :Qy|X}
implies that ¢1: F — E is a quasi-isomorphism. Moreover, we see immedi-
ately that H%(¢2) is an isomorphism and H~!(ys2) is surjective.
Let us remark that interchanging the roles of Y and Z yields isomorphic

obstruction theories.

Remark 3.6. In Proposition 6.1 we will see that if S is a symplectic manifold
and Y, Z C S are Lagrangian submanifolds, then the above Example 3.5 can
be enhanced by an isometry and thus turned into a symmetric obstruction
theory.

Lemma 3.7 (|[BF05, Corollary 1.15]). Let (E, ¢,0) be a symmetric obstruc-
tion theory. Then

7‘[_1(E) = Homo, (Nx,0x) =: Tx

Proof. In Corollary 3.2 we showed that H~'(E) = H'(EY)Y. However, this
is all we need to show, since

HIEY) = HOEY[1]) 2 HOE) = Qx
by symmetry of the obstruction theory. U
Remark 3.8. Let E = [€7! — £Y] — Ly be a symmetric obstruction theory

on X. Then, if HHE) 2 QY% and H°(E) = Qx admit a finite resolution by
vector bundles their determinants are well-defined and we have

detE = (detE 1) @detE® = (detH Y(E))' @ det H'(E)
= det(QY)" ® det Qx.
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In particular, in this case det E is independent of the obstruction theory. For
example, if X is smooth we find

detE = w2, (3.2)

The same is true if X is normal and Gorenstein. In this situation wx is
a line bundle. Moreover, any line bundle on X is uniquely determined by
its restriction to Xieg, i.e. for every line bundle £ € Pic(X) the natural
morphism
L — 5.3%°L

is an isomorphism, where j: X,¢ < X is the inclusion. This can be seen
as follows. As X is normal, we have codim(Xgns C X) > 2 and therefore
the local cohomology sheaves H ])“(Smg (L) are trivial for £ = 0,1 by [SGA2,
VII, Corollaire 1.4|. Here, we use that any line bundle is a coherent Cohen—
Macauley module. Now, there is an exact sequence

0= HY (L) — L — juj*L — HY

sing

(L)—0

(see [SGA2, I, Corollaire 2.11]), which proves the claim. In particular, we
have wx = j.wx,,, and also

detE = j,j" det E = j, det(E

sing

~ ®2 ®2
Xreg ) j*ereg - wX

for every symmetric obstruction theory on E on X. We conclude this dis-
cussion with

Question 3.9. Does det E only depend on X7 In other words, if E and E’ are
two symmetric obstruction theories on X. Is there a (canonical) isomorphism

detE = det E'?

3.2. Symmetric obstruction theories on d-critical loci. The reason
why we are interested in symmetric obstruction theories is that every d-
critical locus carries locally a symmetric obstruction theory.

Let M be a smooth scheme and f: M — A! a regular function with critical
locus X. We consider df € H°(M,€y;) as a morphism Ty — Oy By
definition, its image is the ideal sheaf .7y ,, defining X. Therefore, we obtain
df: Tar |x — Ixm/ I, A local computation shows that the composition

d d
Torlx L ) 7200 S Qurx
is just the Hessian 0°f.

Lemma 3.10. With the above notations X = crit(f) carries a symmetric
obstruction theory (Ey2,,v,0). It is given by

02f
Ep2, : = [77»1 Ix — Qum ’X:| ,

the morphism of complexes

f
Ean = [TM ‘X —>QM |X

I L

Lx = [fXM/jXML)QMb(
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and the isometry 0 : = idg, : Egs[1] = Ege;.

Proof. Again, we see immediately that (Eg2p,¢) is a perfect obstruction
theory. Moreover, the symmetry of the Hessian yields (02f)V[1] = 9*f so
that E, f[l] = Ep2; and after this identification the identity serves indeed as
a non-degenerate bilinear form. OJ

It turns out that these local obstruction theories are in general not compati-
ble and thus do not glue to a global symmetric obstruction theory on (X, s).
For instance, in [Joyl3, Example 2.17| one finds an example of a smooth
scheme X admitting two global critical charts (X, X,0) and (X, U, f). How-
ever, in this example Eg is not isomorphic to Eg2¢. Nevertheless, because X
is smooth we have Ext?(Qp, Tiy) = 0 for any affine open subscheme U € X
and therefore, Egof [ = Eo |- We do not know, whether it is in general
(locally) possible to find a distinguished symmetric obstruction theory on
(X,s). At least, if we restrict ourselves to a set of charts as in Lemma 2.20
this can not happen.

Remark 3.11. Let (Xa, Va, fo) as in Lemma 2.20. Then the biholomorphism
©YaB: Vag — Vaq is an isomorphism. Moreover it induces

dpap ‘Xoaﬁ : Qy, |Xa@ = Qv,, ‘Xaﬁ — Qvg, ‘XaB = Oy, ’Xa,@

so that we can define an isomorphism of symmetric obstruction theories

9 fa
E62fa = [TVa ’Xa,B E— Qvoc ‘Xaﬁ] (33)
J L,
Ea2 g5 - [TVs [ X » Qv |xas]-

Y

Here, the vertical arrows are given by (dapgﬁl ‘ Xap )" and dpag ‘ Xo5 Tespec-

tively. Commutativity of (3.3) means

das | X0y © 0O fa o (doas |x.,)" = 0°f3

which follows from f, = fg o pag. In particular, we see that fixing an atlas
as in Lemma 2.20 provides us with a distinguished symmetric obstruction
theory in the neighborhood of any point x € X.

3.3. Canonical bundle. Let (X,s) be a d-critical locus. For each critical
chart (U, S, f) we consider the line bundle wg |;7. One could hope, that it is
possible to glue these in order to obtain a ‘canonical bundle’ associated to
(X,s). However, this is not the case (see Example 3.18). What is possible
instead, is to glue the square w?Q Upeq = det Egag |u,., to a line bundle Ky,
on Xpeq. As discussed in Section 2.3 we have to define gluing isomorphisms
for every étale morphism of critical charts and for the embedding (U, S, f) —
(U,SxC", fB22+...+22). In the latter situation we will identify wgxcn |1
with wg |y without mentioning it explicitly.

Let ¢: (U, S, f) = (V,T,g) be an étale morphism of critical charts (Defini-
tion 2.13). Recall that this signifies among other things that ¢ |y : U — V
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is just the inclusion in X. The natural morphism de: *Qp = Qg induces
an isomorphism

L®2 = det(dL)®22 det Eazg v = w%ﬂ |y — det E32f lu = w?Q lU -
This shall be the gluing datum for Ky ,.

Proposition 3.12 (|Joy13, Theorem 2.28| or [KL16, Remark 1.18]). There
exists a unique line bundle Kx s on X,eq such that for each critical chart
(U, S, f) there is an isomorphism

)\(U,S,f): ’CXvS |Ured det E82f |Ured

satisfying for each étale morphism of critical charts v: (U, S, f) — (V,T,g)
the equality

w2
Aw.s. ) =& Ued © Avirg) |Ureq -

g

We will not give the proof here, but at least point out its most important
step. One has to show that £¥2 defines a gluing datum. This holds only true
on the reduced critical locus X;¢q and relies on the following

Lemma 3.13 ([KL16, Lemma 1.16] or [BBDJS, Corollary 3.2]). Let S be
a smooth scheme and f: S — C a regular function. Set X = crit(f) and
assume that there is an étale morphism 1: S — S such that the following

diagram commutes
/ X\
§— s S
N
C.

det(db) ‘chd : L*UJS |chd = U.)S |chd — U.)S chd

Then

is locally constant with values in {£1}.

Proof. Consider the commutative diagram with exact lines

2

o°f
0 Tx Ts |x Qg |x Qx 0 (3.4)

(dL)VT J/dL

0 Tx Ts |x Qs|x — Qx —— 0.

92f

If Tx and Qx admit a finite resolution by locally free sheaves such that
their determinants satisfy det(7x)" = det(Qx), the Lemma will follow from
functoriality of the determinant. For the general proof let x € X. We will
show that (det:)?(x) = 1 in the residue field x(x). For this aim, we choose
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a decomposition Qg |x () = Qx(x) @ W so that the commutative diagram
of vector spaces

92 f(x
() — Tsx () 229 Ty |y (2) —— Qx(z) —— 0

(dL(z))VT ldb(x)
%f (x)
z) — Qg [x () — Qs |x () — Qx(2) — 0

0 0
H

4>Q () @W\ﬁﬁﬁx(l‘)@W%QX —0
(

] gy 169

) —— Qx(z)V e WY —2Qx(2) W —— Qx(z) —— 0,

takes the following form

where H is some invertible matrix. It follows that H =! AHA and thus
det A € {£1}, which implies the claim. 4

Remark 3.14 ([KL16, Proof of Proposition 1.15]). If one fixes charts (Xq, Va, fa),
appropriate neighborhoods V,,5 and biholomorphisms p.g: Vog — Vi as

in Lemma 2.20, the existence of Kx , follows directly from Lemma 3.13.
Namely, in this case we have to show that the isomorhisms

Ea,@ D= det(dg@aﬁ)®2 ’Xaﬁ : det(EBZfa) ‘Xaﬁ — det(EBQfﬂ) ’onﬁ
from Remark 3.11 satisfy
gﬁv © gocﬁ = fa’y on (Xoaﬁv)red

which is equivalent to

§ya © €3y © Cap = det(d#’wﬁ)Q =1 on (Xapy)red,

where ¢pqp is defined as in (2.7). And this follows after applying Lemma
3.13 with S = %a[g(vmﬁ) NViag @ = ©yap and f=r-

Definition 3.15. An orientation of (X, s) is the choice of a square root line
bundle £ = lCﬁ(/i on X,eq together with an isomorphism £® £ = Ky.,. We
will suppress the choice of the latter in our notation.

Question 3.16. When is it possible to define Kx s on X and not only on X;cq7
Of course, this is possible, if we are provided with a global symmetric ob-
struction theory, together with isomorphisms E |y — Eg2 ¢ for every critical
chart (U, S, f) satisfying the correct functoriality. On the other hand, as men-
tioned in the proof of Lemma 3.13, the question also has a positive answer,
if det(Qx) and det(Tyx) are well-defined and satisfy det(7x )" = det(2x). In
this case, we saw in Remark 3.8 that det E = det(Qx)®? for every symmetric
obstruction theory E on X. Hence, if we apply this to a covering of critical
charts, we find Ky, = det(Qx)®2.

FErample 3.17. Assume that X is smooth. Then we have

]CX,O = CL)X .

In particular, the d-critical locus (X, 0) is canonically oriented.
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FErample 3.18. An example of a non-orientable d-critical locus X can be
found in [Joy13, Example 2.39] or [KL16, Example 1.19]. In these examples,
X is a projective line with a non-reduced point.

4. PERVERSE SHEAVES

We want to explain the existence of a perverse sheaf Pg | on any d-critical
locus (X,s). First, let us review some basics about the perverse sheaf of
vanishing cycles following [Di04].

4.1. Perverse sheaves of vanishing cycles. Let X be a topological space
and D%(Sh(X)) the essential image of the category of bounded complexes of
constructible sheaves in D(Sh(X)). We denote by Perv(X) the subcategory
of perverse sheaves, i.e. (cf. [BBD, Définition 2.1.2]) for any F* € D%(Sh(X))
we have F* € Perv(X) if and only if for each stratification {X,}

(1) H*(izF*) = 0 for all k > — dime X, and

(2) HE(LF*) =0 for all k < —dim¢ Xq

for all a, where i, : X, < X denotes the inclusion. By a stratification we
mean a finite partition of X into (non-empty) locally closed subsets, called
strata. We assume that the closure of each stratum is the union of strata.
As an immediate consequence we record

Remark 4.1. Let F* € Perv(X) then H¥(F*) =0 if k ¢ [~ dim X, 0].

Proposition 4.2 (|Di04, Theorem 5.1.20]). Let X be a complex analytic
space of pure dimension n which is locally a complete intersection. Then the
shifted constant sheaf Cx[n| is a perverse sheaf.

0

Remark 4.3. Let P* € Perv(X) and £ a local system on X. Then also
P ® £ € Perv(X), because tensoring with a local system is exact. In
particular, in the situation of the previous proposition, it follows that £[n]
is a perverse sheaf.

Next, we define the perverse sheaf of vanishing cycles as in [Di04, Section
4.2]. Let S be a complex analytic variety and f: S — C an analytic map. We
set So : = f71(0) with inclusion i: Sy < S and consider the commutative
diagram

P

S::SxpmS (4.1)
[

C* C*c C,
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where C* is the universal cover of C*. More especially, C* = C and p(z) =
exp(2miz). The nearby cycle functor v;: DY(S) — DP(Sp) is defined by
sending F* € D2(S) to
WpF* = i*Rpp*F* € DL(So)

and the vanishing cycle functor ¢;: D2(S) — DY(Sp) is defined such that
there is an exact triangle in D%(Sp)

VF — Y F — o F — i [,
where the first arrow comes from the adjunction map F* — Rp.p*F*. We
denote by ¢? and qﬁzf’ the shifted functors ¢ ¢[—1] and ¢f[—1], respectively.
We need
Proposition 4.4 ([Di04, Theorem 5.2.21|). The functors zﬁp,d)?: D2(S) —

Dg(S’o) preserve perversity. In particular, we have induced functors
% ¢ Perv(S) — Perv(So).

g

Proposition 4.5. Let &: T — S be a morphism between two analytic spaces
that is smooth of relative dimension d and f: S — C. Write g = f o ® and
Dy =@ |p, : To — So. Then we have natural isomorphisms

@301/}fl>¢go(1)* and q)z‘)oqﬁfl)gbgoq)*.

Proof. 1t suffices to prove the statement for the nearby cycle functor. Plug-
ging in the definitions, we get
Ojo1py = OjisRps.ps = i79* Rps.ps = iy Rpr, *pl = i Rpr,pp®*
=1pg 0 D*.
Here, we used igo ®o = ®oir for the first, ®* = ®'[2d] and the base change
isomorphism for the second and ® o py = pg o ® for the third equality, where
® =idg x, P O
Lemma 4.6. Let S and f: S — C as above. We denote by f*: S — C the
", Then there is a natural tsomorphism

morphism given by f™(s) = f(s)™.
b F* 2 P Fe
k=1
for every F* € D3(S).

Proof. By definition, ¢ is computed by means of the fibre product

p
S‘/S\_SO\S
[
C —2 C,

where p(z) = exp(2miz). We define py,,vn: C — C by pn(z) = nz and
vn(z) = 2™ and replace S,p by S x,, C,pu:p, respectively. As p, is an
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isomorphism this does not affect the vanishing cycle but now, using po u, =
Vp © p, we can express S as the double fibre product

p

N/‘\

STLIp s 38
| e b
c—2 sc—2 .,

where m = Uid and ( is a n-th root of unity. Let i: Sy: < S be the inclusion
and j = L and mp = 7 |ug, . We find

Y = P Rpyp* = i RmRe.q*m* = R, j* Rgsq* 7™
= RWO*W—'CWW* = Dj V-
using i* Rmy, = Rmg,j* by proper base change. O

We can compute the stalk cohomology of ¥¢ or ¢ via the Milnor fibre (cf.
[Di04, Proposition 4.2.2 and Example 4.2.6]). Recall that if f vanishes in
s € S, then this is the fibre of the Milnor-Lé fibration (cf. [Mi68, Theorem
4.8]) which is given by M F, = Bs(s) N f~1(t) for some small ¢, > 0 and
Bs(s) is an open ball of radius ¢ around s in S defined via embedding the
germ (S, s) in an affine space. If S = C"™! with n > 1 and f has an isolated
singularity in s, then Milnor proved that M Fs has the homotopy type of a
bouget of n-dimensional spheres (cf. [Mi68, Theorem 6.5]). The number of
these spheres is given by the Milnor number p = dimc Clzo, ..., z,]/J(f),

where J(f) = (867];, e %) is the ideal defining crit(f). Finally, we have
for all s € Sy a natural isomorphism
H* (¢ Cg)s = HY(MFy,C) (4.2)

and if S is smooth .
H* (67 Cs)s = HY(MF,C), (4.3)
where H ¥(MF,,C) is the reduced cohomology of the Milnor fibre at s.

Now, we let X = crit(f), then f|x is locally constant as a map of topo-
logical spaces f: X — C with finite image. For simplicity, we assume that
f1x = 0 such that X = Sing(Sp) is the singular locus of the fibre Sy. We
define the perverse sheaf of vanishing cycles

PV:, : = ¢H(Cgldim S]) = ¢5 Cg[dim S — 1]. (4.4)
It follows from Propositions 4.2 and 4.4 that PVg , € Perv(Sp). Moreover,
by (4.3) we have H¥(PVz,)s = H¥+mS=1(A/F, C) and therefore:
Corollary 4.7. The perverse sheaf of vanishing cycles PVs , is supported

on X = crit(f). In particular, we can consider PV3, as an element of
Perv(X).

O

Remark 4.8. More precisely, if i: X < S is a closed subspace, then there is
an equivalence between the category of perverse sheaves on S supported on
X and Perv(X) established by ¢* with inverse Ri,.
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Remark 4.9 ([Di04, Cor. 6.1.18]). If S is a connected complex manifold and
f non-constant, then supp(¢s Cg) = Sing(Sp).

Remark 4.10. If f has several critical values, we set
PV = @ ¢ _.(CsldimS)).
cef(X)

This defines a pervese sheaf on X (cf. [Bul4, Definition 1.7]).

We will now compute some examples.

Example 4.11. Let S be any smooth sheme and f = 0. Applying the defini-
tion we find ¢y = 0 and thus <Z>§’p = idps(g) yielding

PV;, = Cg[dim S].

Ezample 4.12. Let S = SpecC[z] and f = 2"!. Combining Remark 4.1
and Corollary 4.7 we find that PVg; is a complex concentrated in degree
zero and supported on a point. Therefore, PV¢ | is determined by

HO(PV3,)o = HY(MF,,C).
However, M Fy is given by n + 1 points. Hence,
PV;, =Ch.

Ezample 4.13. Let S = SpecC[x1,...,x,) and f =Y, 2?. This time, we
have to compute H" (M Fy) and M Fy has the homotopy type of a (n —1)-
sphere. Hence,

PVe, =Cy.
Ezample 4.14. Let S = SpecClz,y] and f = 2"y"™. Then

I/JfQS = @I/nygs

i=1

by Lemma 4.6. We can compute 1),, Cg as follows. Using the same argu-
ments as above we find ¢, Cg = Cy[—1] and thus 1., Cg fits into the exact
triangle

QXO — ¢93y QS — QO[_IL
where Xo = Z(xy) C S. This allows to conclude that 9,,, Cg = [Cx, LN Gyl

in degrees 0 and 1. Moreover, using (4.2), i.e. H!(14y Cg)s = H' (M F;, C)
we see that d = 0. Hence,

Yay Cg =2 Cx, ®Cy[—1]

yielding
PVs, = CY 1@ Ch.
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4.2. Local system corresponding to a torsion line bundle. Before
stating the construction of the perverse sheaf P§ | we need yet another tech-
nical paranthesis.

Let X be a scheme and £ a line bundle on X such that a: L& £ — Ox.
Then Ox & L is an Ox-algebra via (a,b)(a’, V) = (ad’ + a(bb'), ab’ +a’'b) and
we define Y : = Specy (Ox @ £). The structure map f: Y — X defines an
étale covering of degree two such that f,Oy =2 Ox ®L and, more importantly
for our purposes,

[+ Gy =C L,
for some rank one local system £ on X. This can be seen as follows. First
of all, f, Cy is a local system of rank 2 because f is finite and flat with 2-
dimensional fibres. Now, we consider the natural morphism v: Cyx — f. Cy,
which is obviously injective. We claim that

£: = coker(Cy - f, Cy)

is a local system and satisfies f, C, = C, &£. Indeed, a retract of « is given
explicitly given by mapping a section s € H(f~1(U),Cy) to the locally
constant map X > z — 3(s(z1) + s(z2)), where 1 and x, are the two
preimages of x under f. We call £ the local system corresponding to L. If
X is an analytic space Y, can either be constructed by gluing disjoint copies
of X or as a closed subspace of the total space of the line bundle £. By
construction, £ satisfies

L@L=2Cx and L=L& Ox.

To be more precise, we should say that £ is the local system corresponding
to (£, «). However, if X is proper and reduced this makes no difference.

Lemma 4.15. Let X be proper and reduced. Then the local system £ depends
only on L and not on the isomorphism L ® L = Ox.
Proof. Consider the short exact sequence of groups

1—-2/2Z — C* 25 C* - 1, (4.5)

where v5 is given by v2(2) = 2%. We denote the two-torsion part of H(X, O%)
by H1(X,0%)[2] and similarly for H*(X,C%). Then (4.5) induces a com-

mutative diagram with exact rows

H°(X,Cy) — HY(X,Ck) — HY(X,Z/2Z) — H(X,CX)[2] — 0

J J L

HO(X,0%) 25 HY(X,0%) — HY(X,7Z/27) — H'(X, 0%)[2] — 0.

Here, a is given by a(£) = L& 0Ox. We want to see that « is an isomoprhism.
First of all, we know from the above construction that « is surjective. The
morphism vy: H(X,C%) — H°(X,C%) is surjective for any analytic space
so that HY(X,Z/2Z) — H'(X,C%)[2] is an isomorphism. This implies
that the surjectivity of vo: HY(X,0%) — H°(X,0%) is equivalent to the
injectivity of o and thus holds true if X is proper and reduced. g

Remark 4.16. The same construction works for line bundles with n-torsion.



LAGRANGIAN INTERSECTIONS 25

Remark 4.17. The construction is functorial in the following sense. Let £
and Lo be two line bundles with two-torsion given by the isomorphisms
a;: L;®L; = Ox. Any morphism p: £ — Lo such that aso (¢ ®¢) = o
induces a morphism £; — £ between the corresponding local systems.

If X is smooth, the Riemann—Hilbert correspondence ([De70, Théoréme
2.17]) provides a second description of the local system £. Namely, there
is a unique flat connection V: L — L ® Qk such that £ = ker V. If X is
moreover compact, Lemma 4.15 says that V is the unique flat connection on
L such that ker V ® ker V = Cy.

Lemma 4.18. Let X be a compact Kihler manifold and L, £ as above. Then
there exists a hermitian metric h on X with corresponding Chern connection
Vi = VY0 4+ 0 such that

£ = ker V10,

Proof. By Lemma 4.15 is suffices to show that there is a hermitian metric h
such that

ker VI @ ker VIV = Cy .

Under the Riemann—Hilbert correspondence, ker V%! @ ker V%! corresponds
to the pair (L® £, V' @1+ 1® V%) and V;, ® 1 + 1 ® V}, is the Chern
connection to h ® h on L ® L. Therefore, we have to show that there is a
hermitian metric h on £ such that A ® h is the constant metric hg on Ox
via the isomorphism a: £ ® £ = Ox. Let g be any hermitian metric on L.
Then ¢ ® g = el hg via a for some real function f on X and h: = e~ Y/2fg
satisfies h @ h = e g ® g = hg as desired. O

4.3. Perverse sheaves on d-critical loci. If X C S is of the form crit(f)
for some f € HY(S, Og), we defined in (4.4) the perverse sheaf of vanishing
cycles PV, on X. Let (X,s) be a d-critical locus. Our goal is to define
a perverse sheaf Py on (X,s) that is locally isomorphic to PVy ;. The
following example shows that this will be more complicated than naively
gluing the perverse sheaves PV, ; over critical charts.

Ezample 4.19 ([BBDJS, Example 5.5]). Let X = SpecClz,z71]. We will
define two different global critical charts (X, S, f) and (X,V,g) on X such
that PVs r and PVr 4 are not isomorphic.
Let S := X with f =0 and T : = Spec[z,z~ !, y] with g: T — Spec C|t]
given by g — x¥y? for some k > 0. Then
crit(g) = Spec Clz, z 71, y]/(ka* 192, 22%y) = Spec Cz, 27! = X.
We find PVs ; = Cx[1] by Example 4.11. However, we claim that
Y. o Cx[1] if k=0 mod 2
797 £x[1] if k=1 mod 2.
Here, £x is the unique two-torsion local system on X i.e. it corresponds to
the representation m(X) = Z — C* that is given by —1. This can be seen

as follows. First of all, let us consider X and T as topological spaces, i.e.
X =C\{0}and T'=C\{0} xC. If k = 2n for some n € N, then &: ' —» T
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given by ®(z,y) = (z,2"y) defines an isomorphism such that g = ® o h,
where h(z,y) = y*. Moreover, ® |x = idx and thus

PVr, = PVr, = Cx[1].

If k =2n+1 we cover T = (Up x C) U (U; x C), where Uy = C\ R>¢ and
U = C\ R<g. For i =0, 1 the isomorphism

‘I%': UiX(C L> UZ'X(C
(z,y) — (z,Vak,y)

allows to compute

PVT,Q |U7; = gUi[l]'
Finally, these constant sheaves will be glued as specified by the chart tran-
sition of the square root. This proves the claim.

In [BBDJS, Theorem 5.4] it is proven that the above example represents
the general situation. For any embedding (U, S, f) — (V,T,g) of critical
charts the perverse sheaves PVg y and PV, , differ by a two-torsion local
system of rank one. Given the datum of a square root l@(/i of the canonical
bundle K . one can control the local systems arising this way and in this case
it is actually possible to glue the perverse sheaves of vanishing cycles. We
will state this result below. First, let us define the gluing maps. In Section
2.3 we discussed that it suffices to consider étale morphisms of critical charts
and the embedding (U, S, f) < (U, S x C*, f B 22 + ...+ 22). In the latter
case the Thom-Sebastini Theorem (cf. [BBDJS, Theorem 2.13]) provides a
natural isomoprhism

PVSXC”,fEEz%+A.A+z,,21 l) ,PVS’f XI Pvcn 721 = va’f. (46)

,z%+m+z

Let ¢: (U, S, f) = (V,T,g) be an étale morphism of critical charts. Then
Proposition 4.5 gives an isomorphims of functors

Loty — fFolt
and consequently, because dim .S = dim 7', we obtain an isomorphism
P ,PVT’g |U ; PVS’f (47)

in Perv(U) = Perv(Uyeq). Let &, : t*wr — wg be the natural isomorphism
coming from *Qr — Qg. Then

Zd®£’» (IC;/QS)V ‘Ured ®wT ‘Ured — (’C;(/i)v

is per definition compatible with the trivializations of the squares and there-
fore induces a morphism

Urea ® Ws ‘Ured

£ Sl - 25 439
(cf. Remark 4.17).

Proposition 4.20 ([BBDJS, Theorem 6.9]). Let (X, s) be a d-critical locus
with orientation KX>. Then there exists a perverse sheaf Ps . in Perv(X)
such that for each critical chart (U, S, f) on (X, s) there is a natural isomor-
phism

Kw,s,pn* P;(,s 1% — PV;,f ¢y, ngs
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in Perv(U). Here, £ is the local system on U that corresponds to

(IC;/,-QS)V |Urcd ® Ws ‘Urcd :

Moreover, P5, | is uniquely determined by the conditions
(1) For every étale morphism v: (U, S, f) = (V,T,g) of critical charts

Kws.p = (P ®E&) © Brg) [Ured >

where p, is as in (4.7) and €, as in (4.8);
(2) After identification via the Thom-Sebastiani isomorphism from (4.6), we
have

Kw.s.f) = Bw,sxcn, @2+, +22)"

Remark 4.21. Note that PVg  ® £77¢ is a perverse sheaf by Remark 4.3.

Remark 4.22. We omit the indication of the reduced structure, when this is
irrelevant, i.e. in the case of local systems and perverse sheaves.

Once again, the key of the proof is to consider the situation from Lemma
3.13. In this case p, is the identity multiplied with a sign.

Proposition 4.23 (|[BBDJS, Theorem 3.1] or [KL16, Theorem 2.12]). Let S
be a smooth scheme, f: S — C a holomorphic function and set X = crit(f).
For every étale morphism v: (X, S, f) = (X, S, f) we have

p. = xid: PVg; — PVs
and the sign is given by det(d) |x,., -

O

Recall that we saw in Lemma 3.13 that det(d:) |x,., islocally constant with
values in {#+1} and, with the approporiate choices for S and ¢, it defined a

1/2

gluing datum for Y.

Remark 4.24 (Proof of [KL16, Theorem 2.15]). Again, we can immediately
deduce the existence of P§ | in the situation of Lemma 2.20, i.e. after fixing
charts (Xq, Va, fa), appropriate neighborhoods V,3 and biholomorphisms
YaB: Vag — Vaa. In this situation, we have to show that the isomorphisms

PaB: PWos fou = PWVos 15
satisfy

PBy © Pap = Pay ON (Xapy)red-

Applying Proposition 4.23 in the analogous manner we did in Remark 3.14,
we conclude that this is equivalent to det(pqgy) = 1 for all (o, 3,7), which
in turn was equivalent to the existence of IC;{QS
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Part 2. Lagrangian intersections
5. BASICS ON SYMPLECTIC GEOMETRY

Let S be a smooth C-scheme. A symplectic structure on S is a closed,
non-degenerate two-form o € H°(S, Q%) this is the same as an alternating
isomorphism, we shall likewise denote by o,

o: Tg — Qg.

We call (S,0) a symplectic manifold. The existence of the symplectic form
o implies that the dimension of S is even. Let dim S = 2n. Then ¢" €
H(S,ws) vanishes nowhere and therefore defines a trivialization wg = Og.

Let (S,0) be a symplectic manifold of dimension 2n and let L C S be a
smooth subscheme. We say that L is Lagrangian if dim L = n and the sym-
plectic form vanishes on L. This means that the image of o |, in H%(L, Q%)
is zero or, equivalenty, that the compostion

To — Tslr -2 Qs — Qr

is trivial. Thus, the following diagram commutes

0 TL Ts L Nis 0 (5.1)
JZ J]Z J{Z

Here, N, s denotes the normal bundle of L in S.

Given any smooth scheme M, the total space of its cotangent bundle |Q,/]
is naturally endowed with a symplectic structure. If we choose standard
coordinates (x1,...,Zn, Y1,...,yn) for |Qas|, i.e. coordinates (z1,...,x,) for
M and y; = dz;, the symplectic form on |,/ is given by

o= Z dx; N\ dy; (5.2)

or, when fixing the first variable, we find o: Tg — Qg given by

o(3%) = dy; and o(%) = —dz;.

We can also write 0 = —dn with n = > ydz; € H(S,Qg). For a section
s € H%(M, ;) we denote by T’y the image of the embedding s: M < |[Q].
Then, by definition, I'g is Lagrangian if and only if s*¢ = 0 and this is the
case if and only if s is a closed form. This follows from the equality s*n = s
(cf. [Le03, Proposition 22.12]) and thus

s*o = —s*(dn) = —d(s*n) = —ds.

If (S, o) is a symplectic manifold, coordinates such that o is of the form (5.2)
are called Darboux coordinates.
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6. SYMMETRIC OBSTRUCTION THEORIES ON LAGRANGIAN
INTERSECTIONS

Let (S,0) be a complex symplectic manifold containing two Lagrangian
submanifolds L, M C S with intersection X : = L N M. We define the
two-term complex

—resy,resys

]ELJVI:: QS|X ( ) QL’X EBQM|X . (6.1)

This is the same complex that we encountered in Example 3.5, where we

defined a perfect obstruction theory Ep,, ﬂ Lx. Now, given that S is
symplectic and L, M are Lagrangians it turns out that this can be made into
a symmetric obstruction theory. We set Tx : = Hom(Qx, Ox), regardless of
X being smooth or not.

Lemma 6.1. The intersection X = LN M carries a symmetric obstruc-
tion theory (Epy, ¢,60) with Epy, N Lx as defined in Example 3.5 and
0: EY,,[1] = ELy given by

—incly,+inclys
_—

Tolx & Tar|x Ts |x (6.2)

J;inclL—o—;inclM O’J/

0_1:=0y Ts ‘X Qg ’X )

J—a (;resL,;resM)J
(

—resy,resyy)
Qslx ——Qp|x & Qylx ,

where the indicated isomorphisms are induced by the symplectic form.

Proof. First of all, the diagram (6.2) commutes and hence 6 is well-defined.
It follows from (5.1) that the cokernel of the upper row identifies with the
cokernel of

Fus] I |x © s Ihslx S Qg x,
which equals coker (st/f}gs — Qg |X) = Qx. Hence, via this identifica-
tion, we have H°(0) = idg, and after dualizing H~1(0) = —idr,. Here, the
minus sign occurs since we always identify Tx with H~Y(E,/) C Qg |x using
o and not o¥. Therefore, 6 is an isomorphism in D(X) and by definition it
satisfies §V[1] = 6. This proves that (E.,, ¢,0) is a symmetric obstruction
theory. O

Lemma 6.2. Assume that X = LN M is smooth. Then

wx @wx Zwr|x ®wwm|x - (6.3)

Proof. As S is symplectic, it follows that wg = Og and thus
det Bpy = (det Qg |x )Y @ det(Q |x © Qv lx) Zwrlx @war|x -
On the other hand, as in (3.2), we have
detE,, = (det H H(Epy))Y @ det HO(Epy) = w2
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Corollary 6.3. In the situation of Lemma 6.2, we have

detNXL X detNX]V[ = OX

Proof. Since X is smooth, the adjunction formula yields
WXgWMLX ®detNX}\,{ and WXgWL ’X ®detNXL.

Therefore,
Wnp ‘X @ wr, |X = W%?'Z ® detN)\(/M ® detN)\(/L

and the result follows with Lemma 6.2. O

Now, let M be a smooth scheme and consider its cotangent bundle |Q/| as
a symplectic manifold. Let L : = Iy for f € HO(M, Oxr). Recall that this
was the image of the embedding df : M < Q)| and note that the restriction
of the projection [Q| = M to Ty defines an isomorphism a: T'gp = M.
Then X = L N M is the intersection of two Lagrangian submanifolds and at
the same time we have X = crit(f). This gives two symmetric obstruction
theories on X. It is natural to ask, whether these are isomorphic.

Proposition 6.4. There is an isomorphism
®: (Eg: = Egey,¢,00) — (By : =Epas, ¢,061)

between the symmetric obstructions theories defined in Lemma 6.1 and in
Lemma 3.10. It is given by

02f
Es = [TM ’X QM‘X] (6.4)
J{inclM
® 1| Tg ‘X Qo=(a*,0)

(—resp,respr

)
E, = Qg |x Qrlx @ Qv x]-

Proof. We start by checking that (6.4) commutes. Therefore, choose coordi-
nates x1,...,T, on M and x1,...,Zn,Y1,...,Yn on S. Then

9\ no g2y _ no_0%f
@000 f(5) = 00 (X a2y dns) = (3, o2k das0).

On the other hand o o inclM(a%i) = dy; and thus

n 82

o)
(—resp,resyr) o P_i1(z5-) = (ijlwaijdxjﬁ) .
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Next, we show that ® is defined over Lx. For this aim, we factor Eq £> Lx
as follows

o2f
E = [Ty |x —————— Qu|x] (6.5)
(0471)*
T T | x
F = [Frs/IEs | x —— Qurlx].
2
Lx = [jXAM/‘ﬂ)gJVI — Qu[x]

with F and ¢9 as in Example 3.5 and o’: T |x — S1s/%2 |x being the
isomorphism induced by o as in (5.1). Using that

( ) dwl—i—z 161 (9:133

we see that 7 is an isomorphism of complexes and since ¢ was given by
E, < LAY L EN Ly, this means that have to show that

Eg\—/l&

commutes in D(X). We claim that 7*: Qp; |x — Qg |x defines a homotopy
between ® and ¢1 o 7. This means that

(pro7)o1 — P =70 0*f (6.6)
and
(p107)g — D9 = (—resg,resyr) o ™. (6.7)
Using (5.1) we find that (¢; o 7)_1 is given by the composition

incly,

a_l*
7'M|X¥>7'L\X —5 Ts1x =5 Qslx

which allows to see that (6.6) holds. Finally, it follows immediately from the
definitions that both sides in (6.7) are given by

(—a*,id): Qurlx — Qrnlx ® Ulx -

Hence, ® defines an isomorphism of perfect obstruction theories and it is left
to see that it is an isometry. We set n: = ®0fy0®"[1] then we have to show
that n = 01 in D(X). Let e: S — S be induced by the multiplication with
—1 on Q7 and set h: = —%de oo: Ts|x — Qg |x. Inlocal coordinates we
have

h(z%) = 3dyi and  h(2-) = dx;.
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We claim that h defines a homotopy between 1 and 1. Indeed, we compute

m—~01)o: Tslx — Qrlx ®Qu|x
d 1 9% f
oz 7 (_5 2 =1 Bwde; A 0)

and thus
(n—61)0 = (—resp,respr) o h.

Finally, we conclude using n"[1] = n as well as h = h that
(77 - 91)_1 = (77 — 91)0\/ =ho (—inclL + inclM),
which finishes the proof. O

7. LAGRANGIAN INTERSECTIONS AND PERVERSE SHEAVES

In this chapter, we explain how Bussi (cf. [Bul4|) defines a perverse sheaf
on the oriented intersection of two Lagrangian submanifolds. It is a special
case of the construction of a perverse sheaf P, on an oriented d-critical
locus (X, s) from [BBDJS| that we explained in Section 4.3.

7.1. Lagrangian intersections are d-critical. From now on, let (S, o) be
a symplectic manifold containing two Lagrangian submanifolds L, M with
intersection X : = LN M.

In [Bul4, Theorem 3.1| Bussi shows that X has a d-critical structure. Let us
explain the procedure. The Lagrangian neighborhood theorem states that
for any € M there are open neighborhoods U in S and U in |Quny]
together with an isomorphism ®: U — U satisfying the following properties

(1) ® is compatible with the symplectic structures;
(2) @ identifies M N U with the zero section in |Qpner].

Moreover, we can arrange that

(3) L:= ®(LNU) intersects each fiber F' of the projection |Qyny| = MNU
transversally in exactly one point z, i.e.

Tf,(m) & Tr(z) = 7TQMMU|(:U)'

Remark 7.1. In contrast to the real version of this theorem (|[We71, Theorem
6.1]), we can in general not assume that M C U. Unfortunately, we could
not find a reference for the complex version.

Now, it follows from property (3) that ®(LNU) = 'y N U for some section
s € HY(MNU,Qpnv). On the other hand, ®(LNU) is Lagrangian in [Qqv|
by property (1) and therefore, s is a closed form (cf. Section 5) so that after
shrinking U we can assume that s = df for some f € HO(M N U, Opnv).
Thus, (X NU) = I'gs NI or just

XNU = cit(f) c MNU.
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In other words, (X NU, M NU, f) is a d-critical chart. This is what Bussi
calls an M-chart for X. Summing up, it is the datum of (U, @, f) fitting in
the commutatives diagrams

UL) U C ‘QM{]U‘ L U C |Q]WHU’

|~ T

MNU U—" Ty

Bussi also applies the procedure with the roles of L and M interchanged
yielding so called L-charts and writing X = AgN (L x M) C S x S she
obtains so called LM-charts. All these charts are compatible, as stated by
the following result.

Proposition 7.2 (|Bul4, Theorem 3.1|). The intersection X = L N M
of two Lagrangians admits a unique structure of a d-critical locus (X, s)
such that all of the above charts, i.e. L-charts, M-charts and LM -charts
are d-critical charts for (X,s). The canonical bundle Kx s is isomorphic to
WL [ Xyea © WM | Xpea -

O

Remark 7.3. Proposition 7.2 says in particular that the d-critical structure
is independent of the order of L and M.

7.2. Lagrangian intersections and perverse sheaves. The structure of
a d-critical locus together with a square root of Ky, allows one to define a
perverse sheaf on X as done in Section 4.3.

Corollary 7.4. Consider X as a d-critical locus as in Proposition 7.2 and
assume that there ezists a square root of wr, |x,.; ® WM |X,0q, €. that X is
oriented. Then there exists a perverse sheaf

Prar =P
on X that is uniquely determined by the properties of Proposition 4.20.
a

Remark 7.5. A special case of the above orientation assumption is provided
by the existence of square roots w’> and w;,”, which we call orientation of the
Lagrangians L and M, respectively. This is the only case that is considered
in [Bul4].

We will compute P; ,, in some special situations.

Lemma 7.6 (Smooth intersection). Assume that X = LN M is smooth and
fiz a square root K> of wr |x @ war |x . Then

P — Lor[dim X7,

where Lor 15 the local system corresponding to (l@(/i)v R wx.
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Remark 7.7. Note that by Lemma 6.2 we have w?f > w|x @wyl|x for
smooth X. Therefore, IC;/ZS always exists and £, is well defined. The per-
verse sheaf is independent of the orientation if X is moreover compact and
Pic(X) has no two-torsion.

Proof. As X is smooth, we have 8§ = 0. Hence, (X,0) with canonical
bundle w%? is the unique structure of a d-critical locus on X. Therefore by
Example 4.11 we have

Phy — PVi, @ Lo = Cy[dim X] ® £o; = Lop[dim X]
with £, as stated. O

Remark 7.8 (Self intersection). A special case of the above Lemma 7.6 is the
case that X = L = M. If one chooses the same orientation for L and M,
then

PZ,L — @L [n]

Remark 7.9 (Transversal intersection). Another special case of Lemma 7.6
is the case that L and M intersect transversally. Then dim X = 0 and any
local system on X is trivial. Hence,

Piw — Cx.

One can also use the holomorphic Morse Lemma to produce this result, i.e.
locally around a point in X we can assume that X = Z(df) is given by
f=ax1+-+22: C" — C and thus PV2. , = C, by Example 4.13.

Ezample 7.10 (The case of surfaces). We wish to describe P; , in the case of
a two-dimensional symplectic manifold S, for example, a K3 surface. In this
situation any smooth curves L, M in S are automatically Lagrangian since
trivially Q7 =0 and Q3, = 0.

If X = L =M we saw in Lemma 7.6 that P; ,, = C[1] modulo a possible
twist by a two-torsion local system of rank one. Therefore assume that L and
M are connected and do not coincide. In this case we have dim X = 0. Let
x € X and choose an analytic neighborhood U such that there is an étale
morphism U — A? = SpecClz,y] identifying M with V(y) € A? and L
with V(y — h(z)) for some holomorphic function h(x) on M. After changing
coordinates and shrinking U, we can assume that h = 2™, where m is the
multiplicity of the intersection of L and M in x and therefore, we are reduced
to X = LN M = crit(f) C SpecC[z] with f = 2™+, Finally, we know from
Example 4.12 that

PVgﬂmmH - le .

Hence, if X = {z1,...,z,} and the multiplicity of the intersection at the
point x; is m;, we find

. ~ m1 o
7)L,M _Qzl @@an N
8. EXAMPLES OF LAGRANGIAN INTERSECTIONS IN DIMENSION 4

In this chapter, we study two examples of two-dimensional Lagrangians
with one-dimensional intersection.
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8.1. Symplectic structure on the Hilbert scheme. Let Z be a compact
complex surface which has trivial canonical bundle wy, for example, take a
K3 surface. Then the Hilbert scheme Hilb"(Z) that parametrizes subschemes
of length r in Z is a complex symplectic variety of dimension 2r (see [Be83,
Proposition 5]). In the following, we consider S = Hilb?(Z). A point in S
corresponds to two points in Z or one point in Z together with a tangential
direction and we have the description as in [Be83, Chapter 6]

S = BIA(Z x Z/S2) 2 Bla(Z x Z)/Sa,

where the Sy-action permutes the factors and A denotes the diagonal in
Z x Z and in S?Z = (Z x Z)/Ss. We fix the following notation

Bla(Z x Z) —15Zx Z (8.1)

| |
S =Hilb*Z —— 5?Z.
Let pr;: Z x Z — Z be the projections and consider
2
priwz @ priwz C [\ (priQz @ priQz) = 05, 4.
The symplectic form og € HY(S, Q%) is constructed such that
plos =n"(prioz + pryoz)
for some non-zero o7 € HY(Z,wy) = H*(Z,0y).
If we choose coordinates x1, y1, x2, yo for Z x Z, we can describe og as follows.

Set x = w1 — w9, 2’ = x1 + 29,y = y1 — yo and y' = y; + yo such that
S27 = SpecC[z?, 2y, y?, 2',y'] and since A = V(z,y) the blow up

BIA(Z x Z) =V (at —ys) C Z x Z x P!
is covered by the two Sa-invariants charts {¢ # 0} and {s # 0}, both isomor-
phic to A*. This gives two charts for S namely Uy = Spec C[y?,z’,%/, s] and

Uy = SpecC[z?,2’,y/,t]. We claim that the symplectic form on S is given
by 205 v, = ds A d(y?) + 2dx’ A dy’. Indeed, we have

2(dz1 A dyy + dxs A dys) = dx A dy + dz’ A dy’
and
n*(dx AN dy + dx’ A dy') ]{#0} = d(ys) N dy + dz’ A dy
=yds Ndy + dx’ + dy
= 50" (ds A d(y?) + 2dz’ A dy') | (201

Analogously, we find 20g |y, = d(2?) Adt + 2dz’ A dy'.

8.2. Two examples. We give a smooth and a non-smooth example of La-
grangian intersections in Hilb?(Z) for a K3 surface Z. We use the notations
from the previous section.

FErample 8.1. Let Z be a K3 surface containing a smooth rational curve
P! =~ C C Z. For example, the Fermat quartic in P? defined by xg +..td
containing the line V(zg — (x1) N V(29 — (x3), where ¢4 = —1.

We consider the exceptional divisor E of m: BIa(Z x Z) — Z x Z, then
E = P(Tz). Since Sy acts trivially on E, this is also the exceptional divisor
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of BIA(Z x Z/S2) — Z x Z/S3 and therefore we write P(7z) C S. We define
two submanifolds in S = Hilb? Z by

M:=P(Tz|p1) and L:=Hilb*(P!)= P2

Both L and M are smooth and their canonical bundles do not have global
sections. This is clear in the case of L and also true for M, since M is a
P!'-bundle. Therefore, we have defined two Lagrangian submanifolds. Their
intersection X : = L N M < L arises as the fibre product

X =P(Tp1) —— L = Bl , (S*P")
| |
Plc = S2P1,
The isomorphism X = P! can be understood geometrically. A point in the

intersection corresponds to a point in P! C Z and a tangential direction in
P! at this point, which is unique.

Now, we compute wy |x and wyy|x, respectively. We consider X as a
divisor in L with corresponding line bundle Or(X) = Og2p1(A) = Op2(2)
and normal sheaf Ny, = Or(X) |x = Opi(4). Thus,

Wi, |X 2wy ®N)\(/L = Opl(—G)
and by Lemma 6.2 it follows that
Wp ‘X = OP1(2) and NXIM = O]P)l(—4)
In particular, we see that wr |x 2 wx % wy |x and Ny, 2 Ox 2 Nxu-
Moreover, there is a square root of wyr = Op(—2) @ (7 a7 )*Op1 (—2) and of

wr |x, yet not of wy = wp2(—3). However, as there are no non-trivial local
systems on X we always find

P;,M = QX[l]v
independent of matters of orientation.

Erample 8.2. Let Z be a K3 surface containing three smooth curves C1, Cs
and C'3 that intersect in one point z € Z. Assume that C; intersects Cy and
(35 transversally. We now define two submanifolds in BIa(Z x Z) by first
letting

S12: =Bl .)(C1 x C2) and Si3: =Bl .)(Cy x C3)
and then
M : = p(S12) and L:=p(Si3).
Actually, it follows from a local calculation that M =2 S15. Here, we need that
the intersection of C1 and C5 is transversal. We conclude that M is smooth.

Alternatively we could write M = Bly, ., (m(Cy x C2)) and 7(Cy x Ca) =
C1 x Cs. Analogously, it follows that L is smooth. Moreover,

os|y =n*(prioz + pryoz) Bl(, .y (C1xC2) = (prioz + pryoz) lcixc, = 0.

Hence, L and M are Lagrangian submanifolds. Their set-theoretical inter-
section X = L N M is going to be the union of the exceptional divisor E'
of Bly, .1 (m(C1 x C2)) and the strict transform Cy of Cy that intersect in a
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point Z. In order to understand the non-reduced structure we will describe
X étale locally near Z. Therefore, choose coordinates x and y on Z and
assume

Cy =V(x),Co =V (y) and C3 =V (y — 2") for some n € N.
Then, on Z x Z with coordinates x1,y1, 22,92 or z,y,2’,y" as introduced
above we have
C1x Cy=V(r1,y2) V(2 + 1,9/ —v)
and thus
MUy =p(V(&' +ys,y —y) = V(' +¢'s,y> —y*) C Up.

We note that ds A dy? + 2dx’ A dy' = dsdy + 2d(y's) A dy' = 0 signifying
that M is Lagrangian. Similarly, M N Uy = V(v + 2't,2? — 2?). On the
other hand, we have
C1 x C3 =V(z1,y2 — (x2)")
2V(a + 2,2 (Y —y) — (' —2)") = V(@' +z,y —y— 22"

and this gives

LNUy=V (@ + (y —22™)s, (i —22™)? —3?).
Finally, using M N Uy = SpecC[y/, s] via the identifications 3? = ¢y and
' = —y's we find

XnUy = V( s+ (y —2(=y's)")s, (¥ —2(—y's)")? — y'?)
V((y's)"s, (y's)"y’) C SpecC[y', s].

In other words, X N Uy = crit((y's)" ).

The canonical bundle of L is given by

WEL = € W0y xoy) @ O(E').

Similarly, we compute wjys. Unfortunately, there are no square roots w}f % w}\f.

We will now specify a situation, in which P}, is defined and given by
Plu=CkJoCs.

Assume that there is an étale morphism ¢: L — M such that ¢ |x = idx.
For instance, ¢ could be induced by an isomorphism Cy = C3 that fixes the
point z. In this situation, we obtain an isomorphism wys |x = wr |x and
therefore IC;{QQ : =wr, |x,., defines a square root of the canonical bundle. As
a consequence, we have KXY |, ®ws |v,., = Ou,,, for any L-chart (U, S, f).
Since X is compact, this yields that the corresponding local system £ is
trivial and therefore '

P |lv = PVyy for every L-chart (U, S, f).

Now, around any point x € X such that x # Z we find a neighborhood
U C X such that U = crit(z"*') € D, where D C C? is the open unit disk.
This gives

Pk« lv = Cp[1].
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As discussed above, around Z there is a neighborhood V' C X such that
V = crit((yz)"*!) € D and thus

Py lv 2Cpl]eCit!

by Example 4.14. If for instance, m1(C7) = 0 and thus also m;(X) = 0 by
the Seifert-van Kampen Theorem (using that £’ = P! is simply connected),
these constant sheaves will be trivially glued, i.e.

Py 2 Cx1]eCott.

Remark 8.3. One could also combine these examples intersecting P(7z |p1)
from Example 8.1 and p(Bl, .)(C1 x C3)) from Example 8.2 with Cy = P'.
Then X = P(Tz(2)) = P

9. COMPARISON WITH Ext* (O, Oypr)

In [BF09] Behrend and Fantechi claim to construct a C-linear differential
d: Exty, (O, Onr) = Extd (O, Onr)

such that d? =0 and (£*: = Exty (Or, O ), d) is a constructible complex.
Moreover, they conjecture (|[BF09, Conjecture 5.8]) that

HP(X, (€°,d)) = Ext}, (O, Onr)

and (|[BF09, Conjecture 5.16]) that there is a perverse sheaf on X, that is lo-
cally modelled on the perverse sheaf of vanishing cycles and related to (€°,d)
by a spectral sequence. Unfortunately, the construction of the differential
turned out to be false, yet Brav et al. claim (|[BBDJS, Remark 6.15]) that

this mistake can be fixed by working with é’:vt’bs (wy/?,wy}) instead, where

wlL/ * and leV/IQ are square roots of the canonical bundles.

In the following, we will point out a connection between dim HP(X,P; )
and dim Ext%s (wy/?,wy;’) under the assumption that X is smooth and that

the spectral sequence

EP? = HP(X, Extl(w?,wy))) = ExtPT(w;/?, wy)) (9.1)
degenerates. For instance, this assumption is satisfied if dim X = 1. We also
172 1/2

elaborate on the question, why one should consider w; ", w,;, rather than
Or,Opr. Let us start by studying the case of a symplectic surface.

FErample 9.1. Let S be a symplectic manifold of dimension two. In Example
7.10 we saw that we have to understand the following situation. Assume
that S = A% = SpecC[z,y],L = V(y) and M = V(y — 2™). Then

X = LN M = SpecClz]/(z") C L.

We compute Exty, (O, On) using the following resolution of Of,

0 = Clz,y] = Clz,y] — Cla,y]/(y) = 0.
After applying Hom(_, Clz,y]/(y — ™)) we find

i 0 ifi#l
Extog(Or, Om) :{ Ox ifz'il
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and thus
0 ifi#1

dim Ext{ (O, Onr) = { m ifi=1

} = dimH"(P; )
by Example 7.10. This solves the case of surfaces.

Unfortunately, the example is misleading as we will see later. Before, we
need some technical results in order to compute Ext groups and sheaves.

9.1. Computing Ext sheaves. In the following, we let S be a smooth,
quasi-projective scheme, containing two smooth closed subschemes ¢ : ¥ «—
Sand j: Z—=S. Weset X =Y NZ

Lemma 9.2. Let £, F be locally free sheaves on Y, Z, respectively, and M
any coherent sheaf on S. Then we have tsomorphisms

(i) 5xt%s(i*5,/\/l) = E:Btgs(i*Oy, M) ®o, EY
(ii) Exty (M, juF) = Exty (M, . 0z) @0, F.
In particular,
51’?5%5(1*5,]*;) = ExtP(1.0y, j.Oz) ®oy &gV |x o, Flx -
Remark 9.3. For any two sheaves £, F on S we have for all p
supp Extgs (€,F) C supp & Nsupp F.

Therefore, we suppress respective pullbacks in our notation. In the following,
we will also cease from writing down pushforwards by embeddings.

Proof. (i) For p = 0 composition defines a natural map
Homog(i.0y, M) ®p, EY — Homog(is€, M)
¢ @Y > ¢ o).

We check locally on Y that this is an isomorphism. Therefore, assume that
S = Spec A,Y = Spec B and that £, F correspond to B"™, M, where M is
any A-module. We find

Homu (B, M) ®p Homp(B", B) — Homy(B", M) ® B.

This is evidently an isomorpism. Now, both sides are effaceable J-functors
in M and we get the required isomorphism for each p > 0.

(ii) Follows analogously. Here, we need the assumption that S is quasi-
projectice and M coherent in order to guarantee effaceability. O

From now on, we assume that X is smooth.

Proposition 9.4. Let Y, Z C S smooth such that X =Y N Z is smooth.
Then

Exth (Oy,02)= NN @0, det Nz,
where ¢ =tk N'xz and N' = Tg |x /(Tv |x +Tz|x).
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The proof of Proposition 9.4 will be achieved in several steps translating
from [CKS03, Proof of Proposition A.5], where one finds analogous state-
ments involving T or instead of Ext.

To begin with, we will assume that Y is the zero locus of a regular section
s € HY(S,G) of a locally free sheaf G of rank c. In this situation we have
Gly = Nys and Oy can be resolved by the Koszul complex

0—>/\Cgv—>...—>gvi>(’)s—>0y—>0.

Hence, Sxt%S(Oy, Oyz) is given by the cohomology sheaves of

O—>'H0m(95(0y,02)—>028|—z>g|z—>...—>/\cg|Z — 0. (9.2)
Lemma 9.5 (cf. [CKS03, Proposition A.3|). Assume that Z CY. Then
gxt%s (Oy,@z) = /\qNZS |y .

Proof. As Z C Y all differentials in (9.2) are zero, hence the result. O

We say that Y and Z intersect properly if
dim X +dim S = dimY + dim Z.

Lemma 9.6 (cf. [CKS03, Proposition A.4|). Assume thatY and Z intersect
properly. Then

p ~ 0 /pr#c
gl‘tOS(OYaOZ) = { detNxz ,pr —c

where ¢ = codim(X C Z) = codim(Y C 5).

Proof. By assumption, s|z remains regular (cf. [St17, TAG 00NG|) and we
have X = Z(s|z). Thus (9.2) is everywhere exact besides at the right end.
There we find

coker(/\cjlg |z Mlz, /\cg |7) = /\Cg |x
so that the Lemma follows from the isomorphisms
g ’X = Nys |X = NXZ-
O

Remark 9.7. Lemmas 9.5 and 9.6 remain true without the assumption Y =
Z(s). We will give the proof in the context of Lemma 9.5 copying the argu-
ment from [Hu06, Proof of Proposition 11.8|. Let £&* — Oy be any global
locally free resolution. Then Exty, (Oy,Oz) = HP(Homog (€%, O0z)). Let
x € X and consider the free resolution &£ — Oy, of Og-modules. Locally
around z we also have the Koszul resolution A\°GY — Oy . Using projec-
tivity of free modules, we obtain a morphism of complexes p: €5 — A°GY
inducing an isomorphism

gxt}(’?s (Oy, OZ):E = Hp(/HomOs,w (5;7 OZ,QJ)) —
Hp(HomOs,z (/\.gg\c/v OZ,J:)) = /\qNZS,I'
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The point is that this isomorphism does not depend on any choices and
therefore leads to a global isomorphism

gxt%s (Oy,0z) = /\qus ly -

This is true because first of all any other choice of ¢ is homotopic to the
original one and hence induces the very same map on cohomology. Secondly,
the latter isomorphism is independet of the chosen Koszul resolution. If we
choose a second Koszul resolution, defined by a section § € G, then any
isomorphism ¢ = G mapping s to § induces the identity on N,g|y. The
general proof of Lemma 9.6 works analogously. We also conclude that the
isomorphism in Lemma 9.6 depends only on the intersection Y N Z and not
on Y itself.

Lemma 9.8. For any x € X there is an open neighborhood U C S and a
smooth subvariety W C U with Y C W such that

(1) XNU =WnNZ as schemes and
(2) W and Z intersect properly.

Proof. See [CKS03, Proposition A.2]. O

Proof of Proposition 9.4. We prove the result locally on S first. Therefore,
using the above Lemma we can assume that there is a smooth subscheme
W C S such that Y ¢ W and X = W N Z, where W and Z intersect
properly. We have a spectral sequence

EY =ty (O, Extlh (Ow,0z)) = Extly(Oy, Oy).

and by Lemma 9.6 the only non-zero entries occur for g # ¢, where ¢ =
codim(X C Z) and are given by

EPe Eathy (Oy,detNyz) = Eath (Oy,Ox) @ det Ny

/\pNYW ‘X & detNxz

e 1l

Here, we used Lemma 9.2 and Lemma 9.5. Next, the natural map

Mwlx ETwix /Ty ix = Tslx /Ty |x = Tslx /Ty |x +Tz|x)

is an isomorphism. Firstly, it is injective because Tz |x NTw |x C Ty |x and
secondly, because X is reduced, we can check surjectivity fibrewise. Hence it
suffices to compare dimensions. On the left hand side we find dim W —dim Y
which is equal to the right-hand side dim S —dim Y —dim Z +dim X because
W and Z intersect properly. Putting together, we have proved

Exty (Oy,0z) = /\pch@) det Nx . (9.3)

Actually, this isomorphism does not depend on the choice of W (cf. [CKS03,
Proof of Proposition A.5]) and along the lines of Remark 9.7 we conclude
that the isomorphism (9.3) exists globally. O
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9.2. Application to Lagrangian intersections. From now on we let (S, o)
be a symplectic manifold of dimension 2n containing two Lagrangian sub-
manifold L, M with smooth intersection X = L N M.

Corollary 9.9. We have
p—c
Exth (O, 0m) = /" Qx @ det Ny,

where ¢c = n — dim X .

Proof. We saw in Lemma 6.1 that there is an exact sequence
0=-Tx—=>Tolx @Tu|x = Ts|x = Qx — 0.
Hence, N = Q. O

Corollary 9.10. Assume that there exist square roots wlL/2 and w]lv/f. Then

Eath (W% wi) = N Ox ® Lo,

where Lop = (w}f |x ®w11\//[2\x)v®wx and ¢c =n — dim X.

Proof. We have
1/2

Sa:tgs(wlL/Q,wjl\f) = 5$t%S(OL,OM) ®wi1/2 x @y |x
~ 1/2

/\p_CQX & detNxM ® W£1/2 ‘X & War ‘X
/\piCQX b2y ['orv

where we used det Ny = wy, |x @ wx. O

Question 9.11. In particular, it follows from Corollary 9.2 that Ext? (wi/z, w]l\ff)

is already defined if there are square roots of wy, |x and wys |x . On the other
hand, for the defintion of the perverse sheaf P} , it is even sufficient that a
square root of wy, |x ® wys |x exists. In this case, we could set

Ext'(wy?,wif) = (wr |x ®wi |x)

which is well-defined if Pic(X) has no two-torsion. We wonder, whether we

can also give a meaning to Ext’(w;/?,w});’) in these cases?

Corollary 9.12. We have
gxtzéS(OL, On) @ wiy ’X = gxt%S(OM, Op) @wr |x

—1/2 ® wy,

and
D /2 1/2\ ~u P 12 1/2
&L‘tos(wL Wy ) = Extos(wM s wi').

0

Recall that P;,, = Py, so it seems that dim Ext%s (wy/?,w)f) is a better

candidate than dim Extg, (Op,Op) for the comparison with dimHP(P; ).

Ezample 9.13. In Example 8.1 we constructed an intersection X = P! with
NXM = O(—4) and NXL = 0(4) We ﬁnd
O(—-4) OH4) ifp=1
Eatey (Or,0m) = O(=6) , Eaty (On,0p) = O(2) ifp=2
0 0 else.



LAGRANGIAN INTERSECTIONS 43

Hence, the spectral sequence
Eg,q = HP(X,ExtY(Or,0pn)) = Eti+q(OL, On)
degenerates at the Es-page yielding

0 3 ifi=1
dimExt{, (Or,0n) = 3, dimExty, (Oy,0p) =4 5 ifi=2
5 0 ifi=3.

In particular, there is no hope to compare this to
dim H'(P;,,) = dim H'~'(P*, C).

Proposition 9.14. Assume that X = L N M 1is smooth and compact. Let
wlL/2 and w1/2 be fized orientations of L and M. Then, provided that the
spectral sequence

ERT = HP(X, Ext?(w)/*,wif)) = ExtP 9 (w)®, wif) (9.4)
degenerates, we have
dim EXtOS (wy/?,wy)) = dim HF"(P;M).

—1/2 —1/2

Here, the orientation Lop = w, |Xoq OWxX |X,0q servEs for the

computation of P;

‘Xred ®w

Proof. We know from Lemma 7.6 that H'(P; ) = H'T4mX (X £,.), where
Lor 1s the local system corresponding to £. Moreover, we saw in Lemma 4.18
that there is a hermitian metric on L, with corresponding Chern connection

1,0
V such that £, = ker(Lo; Y, Q}( ® Lor). This yields a Hodge—de Rham
spectral sequence
EP? = HY (X, 05 @ Lo) = HPT(X, Lor)
degenerating at the E; page (cf. [Ba06, Theorem 5.32|). Therefore,
dim H' (X, L) = Y HU(X, 0% & Loy).
pt+q=i
On the other hand, we have by Corollary 9.10
Ext'(wy? wif) 2 QL@ Loy,
where ¢ = n — dim X. Finally, if (9.4) degenerates, putting everything
togehter gives
dim Ext? (wi/Q,w}\f) => HP(X, 5$tq(wi/27wjlv/12))
= Ep-i-q:@ ( Qg( ‘ ® Eor)
=dim H" (X, L)
= dimH""(P; ,,).-
O

Remark 9.15. Independent of degeneration we have the equalities of the
Euler characteristics

S (1) Extt(w)/*, wif) 1)i7 dim Hi(X,Sa?t@S (wy?, i)
) dim HY(X, % “ @ Loy)

- Z _](
=22, ,
= (=1)°32;(=1)" dimHY(P; ).
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