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Hyperkähler manifolds and sheaves

Daniel Huybrechts

Abstract. Moduli spaces of hyperkähler manifolds or of sheaves on them are often non-
separated. We will discuss results where this phenomenon reflects interesting geometric
aspects, e.g. deformation equivalence of birational hyperkähler manifolds or cohomological
properties of derived autoequivalences. In these considerations the Ricci-flat structure
often plays a crucial role via the associated twistor space providing global deformations
of manifolds and bundles.
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K3 surfaces and over the last ten years or so also their higher dimensional ana-
logues, compact hyperkähler manifolds, have been studied intensively from various
angles. As for abelian varieties, the interplay between algebraic, arithmetic, and
complex geometric techniques makes the study of this particular class of varieties
interesting and rewarding. In many respects, K3 surfaces and hyperkähler mani-
folds behave very much like abelian varieties, one can even pass from one to the
other via the Kuga–Satake construction. There are however two features that are
new: Non-separation (of various moduli spaces) and twistor spaces (associated to
Ricci-flat metrics).

In a way, it is the group structure that prevents both issues from playing any
role for abelian varieties. E.g. Ricci-flat metrics on complex tori are actually flat
and hence without much geometric significance. As for the non-separation, we will
discuss birational hyperkähler manifolds giving rise to non-separated points in the
moduli space of varieties, whereas the group structure allows one to extend any
birational correspondence between abelian varieties to an isomorphism right away.

The first is the more intriguing of the two features. Usually, non-Hausdorff
phenomena, e.g. for an algebraic geometer non-separated schemes, are considered
unpleasant and better avoided. As it turns out, the occurrence of non-separated
points, e.g. in the moduli space of manifolds or of (complexes of) sheaves, can be
turned into a useful technique applicable to various problems. This general idea
seems to work best when combined with the existence of twistor spaces. The latter
also allows one to go back and forth between algebraic and non-algebraic complex
geometry. For purists this technique might be a weakness of the theory, but we
shall try to convince the reader that it is indeed very powerful.
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The aim of this note is to review a few scattered results for which non-separation
phenomena and twistor spaces play a decisive role. We will touch upon questions
concerning the birational geometry of hyperkähler manifolds, derived categories
of coherent sheaves on K3 surfaces and their autoequivalences, Brauer classes,
hyperholomorphic bundles, Chow groups, etc. There is no attempt at completeness
and I apologize for not covering the material in a more concise form. I believe
that some of the techniques can be pushed further to treat other interesting open
problems in the area, some of which will be mentioned at the end.

Acknowledgement I wish to thank Emanuele Macr̀ı, Paolo Stellari, and Richard
Thomas for the pleasant and stimulating collaboration over the years.

1. Introduction

To get an idea what kind of non-Hausdorff phenomena we have in mind let us
recall the following two classical examples.

– The bundles Et on the projective line P1 (say over a field k) parametrized by
classes t ∈ Ext1(O(1),O(−1)) ∼= H1(P1,O(−2)) ∼= k are isomorphic to O ⊕O for
t 6= 0 and to O(1)⊕O(−1) for t = 0. In other words, there exists a vector bundle E
on P1×A1 such that on all fibres of the projection P1×A1 → A1 with the exception
of the fibre over the origin the bundle is the trivial bundle of rank two. Equivalently,
there exist two bundles E and E′ on P1 × A1 → A1 which are isomorphic on
the open set P1 × A1 \ {0} but with different restrictions E0

∼= O(1) ⊕ O(−1)
respectively E′0

∼= O ⊕O to the special fibre. This classical observation can easily
be translated into a more geometric non-separation phenomenon for Hirzebruch
surfaces: F2 = P(O ⊕O(2)) and F0 = P1 × P1 define non-separated points in the
moduli space of varieties

– The Atiyah flop describes two crepant resolutions Z → Z0 ← Z ′ of the three-
dimensional rational double point Z : xy − zw = 0 both replacing the singular
point by a P1. Equivalently, the blow-up Z̃ → Z0 of the singular point admits two
projections Z ← Z̃ → Z ′ extending the two projections of the exceptional divisor
P1 × P1. Put in a more global context this observation can be used to construct
two non-isomorphic families of K3 surfaces X → D ← X ′ over a disk D isomorphic
over the punctured disk D∗, i.e. X|D∗ ∼= X ′|D∗ . In particular, all fibres Xt,X ′t ,
t 6= 0, are isomorphic in a way compatible with the projection to D, but these
isomorphisms do not converge to an isomorphism of the special fibres X0 and X ′0.
In fact, the graph Γt of the fibrewise isomorphism for t 6= 0 degenerates to a cycle
Γ0 + P1 × P1 ⊂ X0 × X ′0 with Γ0 itself being, somewhat accidentally due to the
small dimension, the graph of an isomorphism.

A compact hyperkähler manifold or irreducible holomorphic symplectic mani-
fold is, by the definition we adopt here, a simply-connected compact complex
Kähler manifold X such that H0(X,Ω2

X) is spanned by a nowhere degenerate two-
form σ. Since all our manifolds will be compact, we simply call them hyperkähler.
The definition can be adapted to projective varieties over other fields, but most
of the existing theory is concerned with complex manifolds. K3 surfaces are the



Hyperkähler manifolds and sheaves 3

two-dimensional hyperkähler manifolds and for them there is also a rich theory
over number fields and in finite characteristic.

What makes the complex case special is the Calabi–Yau theorem proving the
existence of a unique Ricci-flat Kähler metric in each Kähler class on X. In fact,
Ricci-flat Kähler metrics exist on the larger class of Calabi–Yau manifolds, but
for hyperkähler manifolds they lead to a global complex geometric structure, the
twistor space.

To be more precise, let KX ⊂ H2(X,R) ∩ H1,1(X) denote the open cone of
Kähler classes (among them all ample classes if X is projective). With any α ∈
KX there is associated a complex manifold X (α) together with a smooth proper
holomorphic map π : X (α)→ P1. One of the fibres, say X0 is actually isomorphic
to X, but most of the other fibres are not.

Note that by construction the twistor space as a differentiable manifold is sim-
ply X×P1 and π is the second projection. Moreover, the natural (twistor) sections
{x} × P1 of π are holomorphic with normal bundle O(1)⊕ . . .⊕O(1).

2. Non-separation for hyperkähler manifolds

Birational K3 surfaces are always isomorphic, e.g. because the minimal model of
a surface of non-negative Kodaira dimension is unique. In fact, any birational
correspondence extends to an isomorphism. (Note that by abuse of language we
will speak about birational maps etc. even when the manifolds are not algebraic
and one should more accurately say bimeromorphic.)

In higher dimension the situation changes. The easiest example of a non-trivial
birational correspondence between, in general non-isomorphic, hyperkähler mani-
folds has been constructed already in [20] and is called the Mukai flop. Any hy-
perkähler manifold containing a half-dimensional projective space can be flopped
replacing the projective space P by its dual P∗. The new manifold is holomorphic
symplectic, but not always Kähler and hence not hyperkähler (see [28] for an ex-
ample that starts with a projective moduli space of sheaves). In general and in
particular in dim > 4, birational correspondences between hyperkähler manifolds
will be more complicated than simple Mukai flops. But as it turns out, any bira-
tional correspondence between hyperkähler manifolds can be obtained as the limit
of isomorphisms (see [9, 10]):

2.1. Any two birational hyperkähler manifolds X and X ′ define non-separated
points in the moduli space of varieties. Equivalently, there exist two smooth proper
families X → D ← X ′ over a disk D with central fibres X0

∼= X respectively
X ′0 ∼= X ′ and such that the two families are isomorphic over the punctured disk
D∗, i.e. X|D∗ ∼= X ′|D∗ .

This result had first been proved for projective hyperkähler manifolds and under
an additional assumption on the codimension of the exceptional locus by projective
techniques which are valid over arbitrary fields. Later, twistor spaces have been
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used instead to prove the result in the above form. Note that even for X and X ′

projective, the nearby fibres in the families in (2.1) are usually non-projective.

The result is intimately related to the description of the Kähler cone and its
birational variant. For K3 surfaces the Kähler cone is determined by smooth ratio-
nal curves and a less explicit version of this holds true also in higher dimensions.
In particular, for generic hyperkähler manifolds, which do not admit any curves,
the Kähler cone is maximal, i.e. coincides with the positive cone. For the general
theory see the survey [6] and references therein. A detailed investigation of the
shape of the ample cone in the known examples has been initiated by Hassett and
Tschinkel, see e.g. [7].

Let us state explicitly the following immediate consequence of (2.1):

2.2. Two birational hyperkähler manifolds are deformation equivalent. In particular,
their Hodge, Betti, and Chern numbers coincide.

The result was used to show that most of the known examples, with the excep-
tion of O’Grady’s exceptional examples in dimension six and ten, are deformations
of the two standard series provided by Hilbert schemes of points on K3 surfaces
and generalized Kummer varieties.

Note that deformation equivalence does not hold for birational Calabi–Yau
manifolds in general, which need not even be homeomorphic and might even have
different Chern numbers (see [2, 25]). For general Calabi–Yau manifolds the result
that comes close to (2.1) is due to Batyrev and Kontsevich and proves equality of
Hogde and Betti numbers. Motivic integration originated by Kontsevich for this
purpose has been developed to a beautiful general theory by Denef and Loeser
(see [19]). Applied to birational Calabi–Yau manifolds X and X ′ it shows that
the (infinite-dimensional) spaces of formal arcs J(X) respectively J(X ′) differ only
by insignificant bits. For birational hyperkähler manifolds and the non-separating
families X ,X ′ as in (2.1) one can consider the spaces J0(X ) and J0(X ′) of formal
arcs with support in the central fibre. The twistor sections provide a canonical
section of the projection J0(X )→ X which should lead to a stratified isomorphism
of X and X ′ (non-holomorphic on the exceptional locus). It would be interesting
to incorporate the Ricci-flat metric in a stronger way into birational geometry
of hyperkähler manifolds and also to extend some of it to general Calabi–Yau
manifolds.

The graph Γt of the isomorphism of the general fibres Xt
∼= X ′t in (2.1) degen-

erates to a cycle Z +
∑
Yi ⊂ X ×X ′ where Z is the original birational correspon-

dence. This is reminiscent of the Atiyah flop. The additional components Yi do
not dominate the factors but are in general difficult to describe explicitly. E.g. in
the case of a Mukai flop there is only one additional component which is simply
P× P∗. So, more in the spirit of our philosophy here, (2.1) says that up to adding
non-dominating components any birational correspondence X ← Z → X ′ between
hyperkähler manifolds can be deformed to an isomorphism of generic deformations
of X respectively X ′. Derived versions will be discussed later, see (4.2) and (5.1).
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3. Twistor spaces

Deformation theory is a technical but well developed subject. The standard tech-
niques deal with finite order or formal deformations. Convergence or algebraicity
is usually more difficult. Global deformations of a variety X, i.e. a flat family
X → B with X0

∼= X over a proper base B of positive dimension are hardly ever
constructed explicitly. This makes twistor spaces stand apart. The twistor space
X = X (α) → P1 associated with a Kähler class α on a hyperkähler manifold X
connects X with other, possibly far away, hyperkähler manifolds Xt. The price
one has to pay is the loss of algebraicity. In fact, the total space X is not even
Kähler and only countable many fibres Xt are projective. Nevertheless, it seems
that essential information about the geometry of a projective hyperkähler manifold
X is preserved along the twistor space deformation to other projective fibres.

Twistor spaces or almost equivalently hyperkähler metrics play a central role
already in the standard theory of K3 surfaces and, partially due to the absence of a
proper analogue of the Global Torelli theorem, even more so in higher dimensions
(see [6, 10]). We will not go into the details of the general theory of hyperkähler
manifolds, but let us mention that twistor spaces are crucial e.g. for the proof of
the surjectivity of the period map and the description of the (birational) Kähler
cone.

To underpin the global nature of twistor spaces let us just mention that for any
polarized K3 surface (X,L), e.g. X ⊂ P3 a quartic and L the restriction of O(1),
and any Kähler class on X, e.g. the one given by c1(L), the associated twistor space
will also parametrize polarized K3 surfaces (X ′, L′) of other degrees, e.g. a double
cover of the plane. In dimension four the twistor space can be used to connect e.g.
the Hilbert scheme Hilb2(S) of a K3 surface S with the Fano variety of lines on a
cubic fourfold. The reason behind this observation is that the base of the twistor
space yields a curve in the moduli space of marked hyperkähler manifolds whereas
the other loci are of codimension one, which therefore are expected to intersect.

By construction, twistor spaces are associated to hyperkähler metrics. A similar
relation exists, due to the work of Donaldson, Hitchin and others, between stable
vector bundles and Hermite–Einstein metrics. A combination of both leads to the
following result of Verbitsky [26] which applies to stable vector bundles with trivial
first Chern class on K3 surfaces.

3.1. Let X be a hyperkähler manifold and E a holomorphic bundle on X which
is stable with respect to a Kähler class α. If the first and second Chern classes
of E stay algebraic (i.e. of type (1, 1) resp. (2, 2)) on the fibres of the associated
twistor space X (α)→ P1, then E is hyperholomorphic, i.e. extends naturally to a
holomorphic vector bundle on X (α).

The idea of the proof is to show that the curvature of the Hermite–Einstein
connection on E is of type (1, 1) with respect to all complex structures associated
to the Ricci-flat structure given by α. That this is controlled by the first two
Chern classes is reminiscent of Simpson’s observation that the vanishing of the
second Chern character of a stable bundle implies its (projective) flatness. Then
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on each fibre Xt the (0, 1)-part of the natural Hermite–Einstein connection defines
the ∂̄-operator for E on this fibre.

The result can be applied to cases where the first Chern class is not trivial or
not even orthogonal to the Kähler class α, but then it is only P(E) that deforms
and not the bundle E itself. In [11] this was used to prove that cohomological and
geometric Brauer group coincide for K3 surfaces, a result well known for algebraic
surfaces. Roughly, the idea is to follow a given cohomological Brauer class along
a twistor space and show that it becomes trivial somewhere. (Picard and hence
Brauer group jump in a countable and dense subset.) When the class is trivial
one represents it by a stable vector bundle which deforms back to the original K3
surface as a projective bundle that represents the chosen Brauer class.

Verbitsky used his result to deduce that very general (and hence non-projective)
K3 surfaces have equivalent abelian categories Coh(X). This is in contrast to
Gabriel’s result that the abelian category Coh(X) of an algebraic variety, or more
generally any scheme, determinesX, but confirms the believe that for non-algebraic
manifolds the abelian category of coherent sheaves is too small. Note however that
Coh(X) even for very general K3 surfaces is a very rich category due to the many
stable bundles that continue to exist.

Another point of view on Verbitsky’s result, already studied by Itoh and others,
is that the moduli space of stable vector bundles on a K3 surface inherits a natural
hyperkähler structure. Equivalently, the relative moduli space of stable bundles
on the fibres of X (α) → P1 is nothing but the twistor space of the moduli space
on one fibre. Note however that this does not extend to the boundary, i.e. to the
moduli space of (semi-)stable sheaves and hence does not allow one to construct
the hyperkähler structure on the Hilbert scheme or on the moduli space of stable
sheaves.

4. Non-separation for sheaves and complexes

That there are bundles that define, like O(1) ⊕ O(−1) and O ⊕ O on P1, non-
separated points in the moduli space of bundles is a common feature and not special
to P1. Also the existence of non-trivial homomorphisms between the bundles (in
both directions) is frequently observed even for simple bundles (see [23]). The
moduli space of simple bundles on a variety, an algebraic space, is in general not
expected to be separated. Only stability prevents sheaves of the same slope (or
normalized Hilbert polynomial, or phase, etc.) to have non-trivial homomorphisms
between each other and this leads to separated and in fact quasi-projective moduli
spaces.

The situation seems easier for simple sheaves not allowing any deformation,
they do define isolated and hence separated points in their moduli space. Recall
that a sheaf F has no infinitesimal deformations if and only if Ext1(F, F ) = 0.
Simple sheaves with this property on a K3 surface X are called spherical, i.e. they
satisfy Ext∗(F, F ) = H∗(S2, k). So in particular, two spherical sheaves F and F ′

on X will always define separated points in the moduli space of sheaves on X, but
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this changes if also deformations of X are allowed. For the rest of this section X
will be a projective K3 surface.

4.1. Suppose F and F ′ are spherical sheaves with the same numerical invariants
on a K3 surface X. Then there exists a deformation X → D of X over a disk D
and two D-flat sheaves F and F ′ on X with isomorphic restrictions to X ∗ := X|D∗

and special fibres F respectively F ′.

In fact, X can be deformed together with F and F ′ such that simple implies
stable with respect to any Kähler class or polarization. A beautiful observation
going back to Mukai says that moduli spaces of stable sheaves with fixed numerical
invariants are irreducible (see e.g. [8] or the original [21]). This allows one to
conclude that in particular the generic deformations of F and F ′ are isomorphic.

A rather straightforward consequence of this is that numerically equivalent
spherical bundles can also not be distinguished by any other continuous invariants,
e.g. they are also rationally equivalent, i.e. their Chern characters in CH∗(X)
coincide. The result also holds for spherical objects in the derived category, see
below.

The result can be generalized to sheaves on products of K3 surfaces. This is
central for the proof of a conjecture of Szendrői [24] as we shall explain shortly.

Let X be an algebraic K3 surface and let Φ := ΦE0 : Db(X)
∼ // Db(X) be a linear

exact autoequivalence of the derived category Db(X) := Db(Coh(X)) given as
a Fourier–Mukai transform F 7→ pr2∗(E0 ⊗ pr∗1F ) with E0 ∈ Db(X × X). Then
E0 is rigid, i.e. Ext1(E0, E0) = 0, but Ext2(E0, E0) is of dimension 22. In [14]
it was proved that X and Φ (or rather E0) can be deformed together to a very
general K3 surface and an equivalence that can be written as a product of explicitly
described autoequivalences (shifts and spherical twists TO) whenever the action of
Φ on the cohomology of X allows it. Informally, it can be rephrased by saying
that any autoequivalence acting trivially on cohomology is a degeneration of the
identity. This should be compared to (2.1). As we will mention later, the group of
cohomologically trivial autoequivalences is a very rich group. More in the spirit of
this review we state the result as (see [14]):

4.2. If Φ,Φ′ : Db(X)
∼ // Db(X) are two linear exact autoequivalences inducing the

same action on H∗(X,Z), then there exist formal deformations X → Spf(C[[t]])
of X and (Φ̃, Φ̃′) of (Φ,Φ′) whose restrictions to the generic fibre XK of X over
K := C((t)) are isomorphic Fourier–Mukai transforms up to shift and a power of
the simple spherical twist TO.

The assumption in (4.1) that the two sheaves have the same Chern characters
in H∗(X) is here replaced by Φ,Φ′ inducing the same action on H∗(X). In fact,
any spherical sheaf F induces an autoequivalence TF , the spherical twist, which
on cohomology acts by reflection. In this sense, (4.2) is a generalization of (4.1),
but due to the deformation theory involved its proof is rather more technical.

Note also that the deformation X → Spf(C[[t]]) used in [13] is the formal
neighbourhood of a very generic twistor space X (α) → P1 and thus highly non-
algebraic. In particular, the generic fibre XK does not exist as a projective variety.
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Instead of working with rigid analytic varieties, [13] makes only use of Coh(XK)
and its derived category which can both be constructed directly as quotients of
Coh(X ) respectively Db(X ) without ever defining XK .

The result (4.2) has interesting consequences. Firstly, in [14] it was proved that
autoequivalences of K3 surfaces, thought of as mirrors of symplectomorphisms,
behave as predicted by mirror symmetry (see [24]):

4.3. If Φ : Db(X) → Db(X) is a linear exact autoequivalence, then the induced
action on H∗(X,Z) preserves the natural orientation of any positive four-space.

The orthogonal group O(H∗(X,R)) has four connected components and the
result says that derived autoequivalences avoid two of them. The result completes
earlier work of Mukai, Orlov, and others and allows one to describe the image
of Aut(Db(X)) → O(H∗(X,Z)) explicitly as the group of orientation preserving
Hodge isometries. This can be seen as a derived version of the Global Torelli
theorem for automorphisms of K3 surfaces.

Secondly, since the Fourier–Mukai kernels E0 and E ′0 of Φ respectively Φ′ as in
(4.2) cannot be separated in the larger moduli space of complexes on deformations
of X×X ′, all their usual invariants will be the same. E.g. the action on cohomology
determines the action on the much larger (at least over C) Chow groups CH∗(X).
Combined with Lazarsfeld’s result that indecomposable curves on K3 surfaces are
Brill–Noether general this leads to (see [15]):

4.4. For ρ(X) ≥ 2 all spherical complexes F ∈ Db(X) take Chern classes in the
Beauville–Voisin ring R(X) ⊂ CH∗(X) .

Recall that the Beauville–Voisin ring naturally splits the cycle map CH∗(X)→
H∗(X,Z) (see [1]) and for X defined over Q̄ it is conjectured (Bloch–Beilinson) to
be the Chow ring of X over Q̄ (see [15]). The assumption on the Picard number
ρ(X) in (4.4) should be superfluous.

5. Open problems

5.1. It is generally believed that birational Calabi–Yau varieties are derived equi-
valent. The conjecture seems more accessible for hyperkähler manifolds. One
approach could be to use (2.1) and put the two birational hyperkähler manifolds
X and X ′ as special fibres of the same family and then construct the Fourier–
Mukai kernel as a degeneration of the diagonal. How to degenerate the diagonal
explicitly is not clear. This has been worked out in a few cases (e.g. [16, 22]) and
progress in the non-compact situation has been made in [5]. One could wonder
whether the autoequivalence can be produced without actually explicitly giving
the Fourier–Mukai kernel E . Again, the degeneration argument could be helpful,
but since not a single Fourier–Mukai equivalence has ever been described without
also giving its Fourier–Mukai kernel, this seems not obvious.
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5.2. As explained, all equivalences in the kernel of the natural representation

ρ : Aut(Db(X))→ O(H∗(X,Z))

can be obtained as degenerations of the diagonal on deformations of X (up to shift
and twist TO). Conjecturally, ker(ρ) is described by Bridgeland [3] as the funda-
mental group of a certain period domain depending only on the Hodge structure
of H2(X,Z). In particular, ker(ρ) is usually a non-residually finite group. Also,
it should be viewed as the group of deck-transformations of the space of stabil-
ity conditions on Db(X). How exactly the spaces of stability conditions Stab(Xt)
on the generic deformation Xt of X = X0, which has been shown to be simply
connected in [12], fit together and ‘degenerate’ to Stab(X) is unclear.

5.3. Can non-separation be avoided for hyperkähler manifolds? I believe it cannot
and this should be seen as a good thing. E.g. hyperkähler manifolds giving rise to
non-separated points are birational and non-isomorphic birational correspondences
produce rational curves. The existence and the counting of rational curves on K3
surfaces is a highly interesting subject, see e.g. [4] and [17]. Clearly, if a hyperkähler
manifold contains a rational curve, it cannot be hyperbolic as predicted by the
Kobayashi conjecture. In fact, non-separated points should be dense in the moduli
space of hyperkähler manifolds which could eventually prove non-hyperbolicity
for all hyperkähler manifolds. Note that non-separation would also imply topo-
logical restrictions, e.g. b2 > 3 which is widely expected but proved only in small
dimensions.

5.4. Another interesting subject concerns the arithmetic of hyperkähler manifolds
and whether certain arithmetic properties, e.g. to be defined over particular fields
or to admit (many) rational points, is transferred along the twistor space from one
algebraic fibre to another. (Compare the work of Hausel and Rodriguez-Villegas
on moduli spaces of bundles on curves and the character variety.)

5.5. In analogy to (3.1) it would be interesting to define hyperholomorphic com-
plexes, i.e. complexes of sheaves that naturally deform to the whole twistor space.
The stability condition should be phrased in terms of Bridgeland stability. How-
ever, since (3.1) works only for bundles, one would also need to find a derived
version for locally freeness. How exactly the Hermite–Einstein metric should come
in seems unclear.

5.6. The general fibre of a twistor space is a rigid analytic variety. In [13] its
category of sheaves was studied, and somehow identified with the variety. As a
geometric object or as a category, it should be viewed as naturally associated to
the Ricci-flat metric. However, in the construction only the formal neighbourhod
of one twistor fibre was used and it would be interesting to see whether this leads
to equivalent notions for all fibres. For an algebraic family it would just be the
fibre over the generic point.
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