Mirror symmetry for K3 surfaces

D. Huybrechts

Garda 5, March 2008

Quartic

\mathbb{R} -planes versus \mathbb{C} -lines

 $W = \mathbb{R}$ -vector space, $\langle \cdot, \cdot \rangle$ definite symmetric bilinear, of $sign = (k, \ell), k > 2, \ell > 0.$

$$egin{aligned} &\operatorname{Gr}_2^{\mathrm{po}}(W) := \{ P \subset W \mid \dim P = 2, & \operatorname{oriented}, & \langle \;, \; \rangle |_P & \operatorname{positive} \} \ &Q_W := \{ \varphi \mid \langle \varphi, \varphi \rangle = 0, & \langle \varphi, \bar{\varphi} \rangle > 0 \} \subset \mathbb{P}(W_{\mathbb{C}}) \end{aligned}$$

Then: $\varphi \mapsto P_{\varphi} := \operatorname{Re}(\varphi) \mathbb{R} \oplus \operatorname{Im}(\varphi) \mathbb{R}$ induces

$$Q_W \xrightarrow{\sim} \operatorname{Gr}_2^{\operatorname{po}}(W).$$

(Inverse: Pick oriented ON basis $\alpha, \beta \in P$ and $P \mapsto \alpha + i\beta$.) Connected for k > 3. Two connected components for k = 2.

$$\langle \varphi_0 + \varphi_2 + \varphi_4, \psi_0 + \psi_2 + \psi_4 \rangle = \varphi_2 \wedge \psi_2 - \varphi_0 \wedge \psi_4 - \varphi_4 \wedge \psi_0.$$

Recall: $\varphi \in \bigwedge^{2*} V_{\mathbb{C}}$ is gen. CY structure if $\varphi \in Q := Q_{\bigwedge^{2*} V_{\mathbb{C}}}$

Corollary: $\varphi \mapsto P_{\omega}$ induces

$$\{\mathbb{C}\varphi\mid \varphi \text{ gen. CY}\}\simeq Q\simeq \mathrm{Gr}_2^{\mathrm{po}}\left(\bigwedge^{2*}V\right).$$

HK pair: $\varphi, \varphi' \in \bigwedge^{2*} V_{\mathbb{C}}$ gen. CY structures such that

$$P_{\varphi} \perp P_{\varphi'}$$
 and $\langle \varphi, \bar{\varphi} \rangle = \langle \varphi', \bar{\varphi}' \rangle$.

Then $\Pi_{\omega.\omega'}:=P_\omega\oplus P_{\omega'}\subset \bigwedge^{2*}V$ oriented positive four-space.

$V = T_{*}^{*}M, M = K3$

HK pair on $M: \varphi, \varphi' \in \mathcal{A}^{2*}(M)_{\mathbb{C}}$ gen. CY structures, which form HK pair in every point $x \in M$.

Examples:

- i) $(\varphi = \sigma, \varphi' = \exp(B + i\omega))$ with σ holomoprhic two-form on $X = (M, I), B \in \mathcal{A}^{1,1}(M)_{cl}$ real, and ω HK-form with $2\omega^2 = \sigma \wedge \bar{\sigma}$
- ii) \exists HK pairs of the form $(\exp(B + i\omega), \exp(B' + i\omega'))$.
- iii) If (φ, φ') HK pair, $B \in \mathcal{A}^2(M)$ closed, then also $(\exp(B) \cdot \varphi, \exp(B) \cdot \varphi')$ HK pair.
- iv) If (φ, φ') HK pair, then $\exists B \in A^2(M)$ closed st. $\Pi_{\varphi,\varphi'} = \exp(B) \cdot \Pi_{\sigma,\exp(i\omega)}$ with $(\sigma,\exp(i\omega))$ as in i).

Moduli and periods

Moduli space: $\mathfrak{M} := \mathfrak{M}_{(2,2)} := \{(\varphi, \varphi') \mid \text{HK pair}\}/ \simeq$, where $(\varphi_1, \varphi_1') \simeq (\varphi_2, \varphi_2')$ if $\exists f \in \text{Diff}_*(M), B \in \mathcal{A}^2(M)_{\text{ex}}$, st. $(\varphi_1, \varphi_1') = \exp(B) \cdot f^*(\varphi_2, \varphi_2').$

Recall: $\mathfrak{N} = \{\mathbb{C}\varphi\}/\simeq$. Thus,

$$\mathfrak{M}/(\mathbb{C}^* \times S^1) \longrightarrow \widetilde{\mathfrak{N}} \times \widetilde{\mathfrak{N}}.$$

Period map: Recall $\varphi \mapsto [\varphi] \mapsto P_{[\varphi]} := [\text{Re}(\varphi)] \mathbb{R} \oplus [\text{Im}(\varphi)] \mathbb{R}$ vields

$$\widetilde{\mathfrak{N}} \longrightarrow \widetilde{Q} \simeq \operatorname{Gr}_2^{\operatorname{po}}(\widetilde{H}(M,\mathbb{R}))$$

which is essentially bijective.

Similarly, $(\varphi, \varphi') \mapsto (P_{[\omega]}, P_{[\omega']})$ defines

$$\mathfrak{M}/(\mathbb{C}^* \times S^1) \longrightarrow \operatorname{Gr}_{2,2}^{\operatorname{po}}(\widetilde{H}(M,\mathbb{R})).$$

Here $\operatorname{Gr}_{2,2}^{\operatorname{po}}(\widetilde{H}(M,\mathbb{R})) = \{(R,R') \mid R \perp R'\} \subset \operatorname{Gr}_{2}^{\operatorname{po}} \times \operatorname{Gr}_{2}^{\operatorname{po}}.$

Example: If $\sigma \in H^{2,0}(X)$ and $\alpha \in \mathcal{C}_X$ orthogonal to (-2)-curve, then $(P_{[\sigma]}, P_{\exp(i\alpha)}) \notin \mathfrak{M}$.

Homological mirror symmetry

Note that \mathfrak{M} contains complement of $\bigcup \delta^{\perp}$ with (-2)-class $\delta \in \widetilde{H}(M,\mathbb{Z})$ and $\delta^{\perp} := \{(R,R') \mid R,R' \subset \delta^{\perp}\}.$

Recall: $\widetilde{O} := O(\widetilde{\Gamma})$ acts on $\widetilde{Q} \subset \mathbb{P}(\widetilde{H}(M,\mathbb{C}))$ but also on $\operatorname{Gr}_{2,2}^{\operatorname{po}}(H(M,\mathbb{R}))$ by

$$(P, P') \longmapsto (gP, gP').$$

Easy: The \widetilde{O} -action on $\operatorname{Gr}_{2,2}^{\operatorname{po}}(\widetilde{H}(M,\mathbb{R}))$ preserves $\mathfrak{M}\setminus\bigcup\delta^{\perp}$.

Why \widetilde{O} ?

Linear Algebra

- i) C.T.C. Wall: \widetilde{O} generated by:
 - $\bullet \ \mathrm{O} := \mathrm{O}(\Gamma) \leftrightsquigarrow \mathsf{isomorphisms} \ \mathsf{of} \ \mathsf{K3} \ \mathsf{surfaces} \ \mathsf{(Global \ Torelli)}$
 - $O(U) = \langle -\mathrm{id}, -T_{\mathcal{O}} : e_1 \leftrightarrow e_2 \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - $\{\exp(B) \mid B \in \Gamma\}$.
- ii) $\widetilde{\mathrm{O}} \subset \mathrm{O}(\widetilde{\Gamma}_{\mathbb{R}})$ maximal.

Mirror symmetry for two HK pairs $(\varphi_j, \varphi_i') \in \mathfrak{M}$ with periods (P_i, P_i') , j = 1, 2 is an isometry $g \in \widetilde{O}$ such that

$$g(P_1, P_1') = (P_2', P_2).$$

 (φ_1, φ_1') and (φ_2, φ_2') are mirror partners.

Classical case: $(\varphi_j = \sigma_j, \varphi_i' = \exp(i\omega_i)), j = 1, 2$:

$$g: \left\{ \begin{array}{ccc} \sigma_1 & \leftrightarrow & exp(i\omega_2) \\ \exp(i\omega_1) & \leftrightarrow & \sigma_2 \end{array} \right.$$

Complex and symplectic structures are interchanged.

$$\widetilde{\mathfrak{N}} \stackrel{\rho_1}{\longleftarrow} \mathfrak{M} \stackrel{\rho_2}{\longrightarrow} \widetilde{\mathfrak{N}}.$$

Remarks:

Linear Algebra

- If (φ_1, φ_1') , (φ_2, φ_2') are mirrors, then so are (φ_1, φ_1') , $(h\varphi_2, h\varphi_2')$ for all $h \in \widetilde{O}$.
- If (φ_1, φ_1') , (φ_2, φ_2') are mirrors, then $\varphi_2' \in \widetilde{O}\varphi_1$ and $\varphi_2 \in \widetilde{O}\varphi_1'$.
- If $\varphi_2' \in \widetilde{O}\varphi_1$, then $\exists \varphi_1', \varphi_2$ st. (φ_1, φ_1') , (φ_2, φ_2') are mirrors.

HMS: Want to associate to $\varphi \in \mathfrak{N}$ a certain category (\mathbb{C} -linear, triangulated, $A_{\infty}, \ldots) D(\varphi)$ st.

$$(\varphi_1, \varphi_1'), (\varphi_2, \varphi_2') \text{ mirrors } \Leftrightarrow D(\varphi_1) \simeq D(\varphi_2'), D(\varphi_1') \simeq D(\varphi_2)$$

In other words: $\varphi \in \widetilde{O}\psi \Leftrightarrow D(\varphi) \simeq D(\psi)$.

Problem: What is $D(\varphi)$?

Naive answers:

- i) $\varphi = \sigma \in H^{2,0}(X)$ with X = (M, I) projective: $D(\varphi) := D^{\mathrm{b}}(X).$
- ii) $\varphi = \exp(B) \cdot \sigma$ with σ as in i), $\alpha_B := \exp(B^{0.2}) \in \operatorname{Br}(X)$: $D(\varphi) := D^{\mathrm{b}}(X, \alpha_R).$
- iii) $\varphi = \exp(i\omega)$: $D(\varphi) := D^{\pi} Fuk(M, i\omega)$.

Warning: If X is not projective or α not torsion, then $D^b(X, \alpha)$ is too small.

GT and HMS

Recall: Derived GT for projective K3s: $\mathrm{D}^{\mathrm{b}}(X) \simeq \mathrm{D}^{\mathrm{b}}(X')$ $\Leftrightarrow \widetilde{H}(X,\mathbb{Z}) \simeq \widetilde{H}(X',\mathbb{Z})$

 $\Leftrightarrow \sigma \in \widetilde{\mathrm{O}}\sigma'$, where $\sigma \in H^{2,0}(X)$, $\sigma' \in H^{2,0}(X')$.

Conclusion: Derived GT confirms HMS. Similarly for derived GT for twisted K3s.

$$\Gamma := H^2, \ \widetilde{\Gamma} := \Gamma \oplus U \simeq \widetilde{H}, \ U := -(H^0 \oplus H^4)$$

Assumption: $N \subset \Gamma$, $N' \subset \Gamma$ st. $N^{\perp} = N' \oplus U'$, $\operatorname{sign}(N) = (1,)$. $(\Rightarrow \Gamma = U'^{\perp} \oplus U' \text{ and } N \oplus N' \subset U'^{\perp} \text{ has finite index.})$

Example: Write $\Gamma = 2(-E_8) \oplus U_1 \oplus U_2 \oplus U'$ and let $\alpha = e_1 + 2e_2 \in U_1$. Then $(\alpha, \alpha) = 4$. Choose $N' = \mathbb{Z}\alpha$ and $N = 2(-E_8) \oplus \mathbb{Z}(e_1 - 2e_2) \oplus U_2$.

Introduce: $\mathfrak{N}_N \subset \mathfrak{N} \subset \widetilde{\mathfrak{N}}$ and $\mathfrak{M}_{N,N'} \subset \mathfrak{M}$.

$$\mathfrak{N}_{N} := \{ \varphi = \sigma \mid \sigma \in (N' \oplus U')_{\mathbb{C}} \} = \{ (X, \eta) \mid N \subset \eta(Pic(X)) \}$$

$$\mathfrak{M}_{N,N'} := \{ (\varphi, \varphi') \mid \varphi \in \mathfrak{N}_N, \varphi' \in (N \oplus U)_{\mathbb{C}} \}.$$

Study projection $p_N : \mathfrak{M}_{N,N'} \longrightarrow \mathfrak{N}_N!$

$$\Gamma = \Gamma \oplus U$$
, $N \oplus N' \oplus U' \subset \Gamma$

Suppose $\sigma = X \in \mathfrak{N}_{M}$. Then

$$\begin{array}{lcl} p_N^{-1}(X) & \simeq & \{\varphi' \in (N \oplus U)_{\mathbb{C}} \cap \sigma^{\perp} \text{ gen. CY}\} \\ & \simeq & \{\lambda \exp(B + i\omega) \in (N \oplus U)_{\mathbb{C}} \cap \sigma^{\perp}, \ \omega = \text{ K\"{a}hler}\} \\ & \simeq & \mathbb{C}^* \times N_{\mathbb{R}} \times i \left(N_{\mathbb{R}} \cap (\mathcal{C}_X \setminus \bigcup_{C \simeq \mathbb{P}^1} [C]^{\perp})\right). \end{array}$$

More natural: $p_N^{-1}(X)_0 := p_N^{-1}(X) \setminus \bigcup_{C \sim \mathbb{P}^1} [C]^{\perp}$.

Recall: If Pic(X) = N (i.e. $X \in \mathfrak{N}_N$ generic), then

$$\mathcal{P}^{+}(X) := \{ \psi \in (N \oplus U)_{\mathbb{C}} \mid \langle \operatorname{Re}(\psi), \operatorname{Im}(\psi) \rangle \text{ positive} \}^{\circ}.$$
Section of the $C^{1+}(\mathbb{R})$ action is given by

Section of the $\mathrm{Gl}_2^+(\mathbb{R})$ -action is given by $Q^+(X) = \{ \exp(B + i\omega) \mid \omega \in N_{\mathbb{R}} \cap C_X, B \in N_{\mathbb{R}} \}.$

Thus, $p_N^{-1}(X)_0 \subset p_N^{-1}(X) \subset \mathbb{C}^* \cdot \mathcal{Q}^+(X) \subset \mathcal{P}^+(X).$ **Recall:** Period domain for distinguished stability conditions

$$\mathcal{P}_0^+(X) := \mathcal{P}^+(X) \setminus \bigcup \delta^{\perp},$$

Homological mirror symmetry

where $\delta \in \mathbb{N} \oplus \mathbb{U}$ runs through all (-2)-classes.

Thus

Linear Algebra

$$\mathcal{P}_0^+(X) = \left(\operatorname{Gl}_2^+(\mathbb{R}) \cdot \rho_N^{-1}(X)_0 \right) \setminus \bigcup_{\delta \notin N} \delta^\perp \subset \operatorname{Gl}_2^+(\mathbb{R}) \cdot \rho_N^{-1}(X)_0.$$

Since $\pi_1(\mathrm{Gl}_2^+(\mathbb{R})) = \pi_1(\mathbb{C}^*) = \mathbb{Z}$ and $\mathbb{C}^* \cdot p_N^{-1}(X)_0 = p_N^{-1}(X)_0$, the map

$$\pi_1(\mathcal{P}_0^+(X)) \longrightarrow \pi_1(p_N^{-1}(X)_0)$$

forgets only the loops around all δ^{\perp} for $\delta \notin N$.

$$(N, N') \leftrightarrow (N', N), g: U \leftrightarrow U'$$

Fix: N, N', U' as before and $g \in \widetilde{O}$ extending $U' \simeq U$ st. $g|_{N \oplus N'} = id.$

Study the particular mirror symmetry map

$$\iota \circ g : \mathfrak{M}_{N,N'} \prec - > \mathfrak{M}_{N',N},$$

where $\iota(\varphi,\varphi')=(\varphi',\varphi)$.

Note $\varphi \in (N' \oplus U')_{\mathbb{C}} \Leftrightarrow g\varphi \in (N' \oplus U)_{\mathbb{C}}$.

Study image of

$$\mathfrak{M}_{N,N'}\supset p_N^{-1}(X)_0 \xrightarrow{\iota\circ g} \mathfrak{M}_{N',N} \xrightarrow{p_{N'}} \mathfrak{N}_{N'}.$$

$$p_N^{-1}(X) \longrightarrow \mathfrak{N}_{N'}$$

Suppressing $\iota \circ g$ in the notation:

$$\mathcal{P}_0^+(X) \xrightarrow{\operatorname{Gl}_2^+(\mathbb{R})} \cdot p_N^{-1}(X)_0 \xrightarrow{\operatorname{C}^*} p_N^{-1}(X)_0$$

Homological mirror symmetry

Image of $\mathcal{P}_0^+(X)$: All $\tau = Y \in \mathfrak{N}_{N'}$ st. there is no (-2)-class in $H^{1,1}(Y,\mathbb{Z})$ which is orthogonal to N'.

Image of $p_N^{-1}(X)_0$: All $\tau = Y \in \mathfrak{N}_{N'}$ st. there is no (-2)-class in $H^{1,1}(Y,\mathbb{Z})$ which is orthogonal to N' and which is contained in N.

$$\pi_1(\mathcal{P}_0^+(X)) \longrightarrow \pi_1(p_N^{-1}(X)_0)$$

$$\downarrow^{\mathbb{Z}}$$

$$\pi_1(q(\mathcal{P}_0^+(X))) \longrightarrow \pi_1(q(p_N^{-1}(X)_0)).$$

Symplectic monodromies

Easiest case: Let $N' = \mathbb{Z}\alpha$ with $(\alpha, \alpha) = 4$. Generic $\tau = Y \in \mathfrak{N}_{N'} =: \mathfrak{N}_{\alpha}$ is quartic $Y \subset \mathbb{P}^3$ with Picard group $\simeq \mathbb{Z}$ generated by $\alpha = c_1(\mathcal{O}(1))$.

The class α represents an ample class as long as $(\alpha, \mathcal{C}) \neq 0$ for all $\mathbb{P}^1 \sim \mathcal{C} \subset \mathcal{Y}$ Thus

$$\mathfrak{N}_4 := \text{moduli space of marked quartics} \simeq q(\mathcal{P}_0^+(X)) \subset \mathfrak{N}_{\alpha}.$$

Consider universal family $\mathcal{Y} \longrightarrow \mathfrak{N}_4$ as a family of symplectic manifolds (use restriction of Fubini-Study Kähler form). Pick special fibre $Y \subset \mathcal{Y}$ and consider monodromy operation.

Seidel: Symplectic monodromy operation yields

$$\pi_1(\mathfrak{N}_4) \longrightarrow \pi_0(\operatorname{Sympl}(Y)) \longrightarrow \operatorname{Aut}(\operatorname{D}^{\pi} \operatorname{Fuk}(Y, \alpha))/[2].$$

Complex mirror

Linear Algebra

Consider: $Z_a \subset \mathbb{P}^3$, x_0, \ldots, x_3 coordinates:

$$\prod x_i + q \sum x_i^4 = 0$$

as family $\mathcal{Z} \longrightarrow \mathbb{A}^1$, smooth over $\mathbb{A}^1 \setminus \{0\}$.

Fibres:

- 1/q = 0: Fermat quartic $\sum x_i^4 = 0$.
- q = 0: maximal degeneration $\bigcup H_i = \text{union of four}$ hyperplanes.
- General fibre Z_K over $K = \mathbb{C}((t))$.

G-action: $G = \{(a_i) \in (\mathbb{Z}/4\mathbb{Z})^4 \mid \sum a_i = 0\}/(\mathbb{Z}/4\mathbb{Z}) \subset PSI(4)$ acts on Z_a and \mathcal{Z} .

Quotient, resolution: Consider quotient $\mathcal{Z}/G \longrightarrow \mathbb{A}^1$ and its general fibre Z_K/G . Let $X \longrightarrow Z_K/G$ be the minimal resolution (over K).

$$\mathrm{D^b}(X)\simeq\mathrm{D}^\pi \mathit{Fuk}(Y)$$

Homological mirror symmetry

as K-linear triangulated categories (Recall: $Y \subset \mathbb{P}^3$ quartic).

Fukaya category: $D^{\pi}Fuk(Y)$ split-closed derived Fukaya category. $(K \leftrightarrow \text{area of pseudo-holomorphic curves}).$

Split generators: Restriction of $\Omega^i_{\mathbb{P}^3_{\mathcal{K}}}(i)$, $i=0,\ldots,3$ to $Z_{\mathcal{K}}\subset\mathbb{P}^3_{\mathcal{K}}$ together with 16 linearizations split generate $\mathrm{D^b}(X) \simeq \mathrm{D^b_G}(Z_K)$ (Kapranov, Vasserot).

Seidel: Find similar generators on Fukaya side.

The two categories are shown to be deformations of one explicit category, which has only one non-trivial deformation. The automorphism of $\mathbb{C}[[t]]$ comes in here.