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Chern and Todd

Chern character: If E ∈ Db(X ), then

ch(E ) :=
∑

(−1)ich(Hi (E )) ∈ H∗,∗(X ) ∩ H∗(X ,Q).

For line bundles Li one has ch(
⊕

Li ) =
∑

ec1(Li ). Use the splitting
principle and locally free resolutions for the general case.Explicitly:

ch = rk + c1 +
1
2
(c2

1 − 2c2) +
1
6
(c3

1 − 3c1c2 + 3c3) + . . .

Todd character: For line bundles td(
⊕

Li ) =
∏ c1(Li )

1−e−c1(Li )
.

td(X ) = 1 +
1
2
c1(X ) +

1
12

(c2
1(X ) + c2(X )) +

1
24

c1(X )c2(X ) + . . .
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HHR and GRR

Hirzebruch–Riemann–Roch: χ(E ) =
∫
X ch(E ) · td(X ).

Grothendieck–Riemann–Roch: For p : X // Y and E ∈ Db(X ):

ch(Rp∗E ).td(Y ) = p∗ (ch(E ).td(X )) .

Example: For X = Y × Z and E ∈ Db(Z ) one has
ch(Rp∗q∗E ).td(Y ) = p∗(ch(q∗E ).td(Y × Z )) and hence
ch(Rp∗q∗E ) = χ(Z ,E )[Y ].
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Mukai vector

Since td = 1 + . . ., the square root
√

td(X ) = 1 + 1
4c1(X ) + ·

exists.
K3 surface: td(X ) = 1 + 0 + 2[x ] and

√
td(X ) = 1 + 0 + [x ].

For any E ∈ Db(X ) one defines the Mukai vector

v(E ) := ch(E ) ·
√

td(X ) ∈ H∗,∗(X ) ∩ H∗(X ,Q).

Note: v(E [1]) = −v(E ).

Let ΦE : Db(X ) // Db(X ′) with FM kernel E ∈ Db(X × X ′). The
induced cohomological FM transform is

ΦH
E : H∗(X ,Q) // H∗(X ′,Q), α � // p∗(q∗α · v(E)).
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How FM acts on H∗

Then:
v(ΦE(E )) = ΦH

E (v(E )) ∈ H∗(X ′,Q) for all E ∈ Db(X ).
(Use GRR.)
If ΦE is an equivalence, then ΦH

E is bijective. (Use ΦH
O∆

= id.)
Hodge structure: Hn =

⊕
p+q=n Hp,q. But

ΦH
E (Hp,q(X )) ⊂

⊕
p−q=r−s

H r ,s(X ′).

Corollary: If Db(X ) ' Db(X ′) and X = K3 surface, then X ′ = K3
surface (and not abelian).
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Mukai pairing

Mukai, Caldararu: For v =
∑

vj ∈ H∗(X ,Q) define
v∨ :=

∑√
−1jvj ∈ H∗(X ,C) and the Mukai pairing:

〈v ,w〉 := −
∫

X
exp(c1(X )/2) · v∨ · w .

HRR again: If χ(E ,F ) :=
∑

(−1)i dim Exti (E ,F ) = χ(E∨ ⊗ F )
for E ,F ∈ Db(X ) and E∨ the derived dual, then

χ(E ,F ) = −〈v(E ), v(F )〉.

Then: For any equivalence ΦE : Db(X )
∼ // Db(X ′)

ΦH
E : H∗(X ,Q)

∼ // H∗(X ′,Q)

is an isomorphism of vector spaces compatible with the Mukai
pairing on X and X ′, resp.
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Special case: K3 surfaces

〈 , 〉 = Mukai pairing seen already for generalized CY structures.

Mukai: Let ΦE : Db(X )
∼ // Db(X ′) with X = K3 surface. Then

ΦH
E is an isometry defined over Z.

ΦH
E respects the natural weight two Hodge structure H̃ on

H∗(X ,Z). (⇔ ΦH
E (H2,0(X )) = H2,0(X ′))

Corollary: For K3 surface X one has representation

ρ : Aut(Db(X )) // O(H̃(X ,Z)).

Here, O(H̃(X ,Z)) denotes the group of Hodge isometries.
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Autoequivalences for K3s: easy ones

Automorphism f : X ∼ // X :
 ΦE := f∗ : Db(X )

∼ // Db(X ), E = OGraph(f )

 ΦH
E = f∗.

Torelli: f∗ = id ⇔ f = id.
Shift: ΦE : F � // F [1], E = O∆[1], ∆ ⊂ X × X diagonal.
 ΦH

E = −id.
ΦH
E

2
= id.

Tensor product with line bundle L ∈ Pic(X ):
 ΦE : F � // F ⊗ L, E = ι∗L, ι : X ' ∆ ⊂ X × X .
 ΦH

E = ch(L) · = exp(c1(L)) · .
Φι∗L = id ⇔ L ' OX .
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Autoequivalences for K3s: interesting ones

Spherical twist: E ∈ Db(X ) with Ext∗(E ,E ) = H∗(S2,C)
 ΦE = TE , E = C(E∨ � E //O∆).
 TH

E = sv(E) = reflection in hyperplane v(E )⊥.
(T 2

E )H = id, but T 2
E 6= id: T 2

E (E ) = E [−2].

Examples: i) P1 ' C ⊂ X , E = OC (i) spherical with
v(OC (i)) = (0, [C ], i + 1) and TH

OC (i) = s[C ] on H2.
ii) TH

O (r , `, s) = (−s, `,−r).

Universal family E ∈ Coh(X ×M) of stable sheaves with
dim M = 2 and M projective. Sometimes X ' M.
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Definitions

Stability: O(1) ∈ Pic(X ) ample. Then E ∈ Coh(X ) is stable if
∀ 0 6= F  E , n � 0:

χ(F (n)) <
rk(F )

rk(E )
· χ(E (n)).

Moduli functor: M(v) : SchC // Set, T � //M(v)(T ) with

M(v)(T ) := {E ∈ Coh(X×T ) | T−flat, Et stable, v(Et) = v}/ ∼ .

E ∼ E ′ if ∃ L ∈ Pic(T ) with E ' E ′ ⊗ p∗TL.

Fine moduli space: M(v) such that M(v) = Mor( ,M(v)).

Warning: Does not always exist. Can be singular and even
non-reduced. Can be empty. Can be non-projective. Can be
reducible and even disconnected.
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Existence:

Then:
{E ∈ Coh(X ) | stable, v(E ) = v} = Mor(Spec(C),M(v)) =
M(v)(C).
id ∈ Mor(M(v),M(v)) corresponds to E ∈ Coh(X ×M(v)),
the universal family, which is unique up to Pic(M(v)).
E|X×[E ] ' E for all [E ] ∈ M(v).

Facts: If ∃ v ′ with 〈v , v ′〉 = 1, then ∃ O(1) ample with
Fine moduli space M(v) exists.
M(v) 6= ∅ if 〈v , v〉 ≥ −2.
dim M(v) = 2 + 〈v , v〉.
M(v) smooth.
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Moduli spaces as FM partners

Corollary: If 〈v , v〉 = 0 and 〈v , v ′〉 = 1, then ∃ O(1) ample such
that M(v) exists and universal family E induces

ΦE : Db(X )
∼ // Db(M(v)).

Moreover, M(v) is a K3 surface.

Bondal, Orlov: Φ−1
E fully faithful:

i) End(E[E ]) = End(E ) = C.
ii) χ(E[E ], E[F ]) = −〈v(E ), v(F )〉 = 0. If [E ] 6= [F ], then
Hom(E ,F ) = Ext2(E ,F ) = 0 and thus Ext1(E ,F ) = 0.
iii) Exti (E[E ], E[F ]) = 0 if i 6= 0, 1, 2.
Since ω = O, also equivalence.
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Derived GT: Db(X ) ' Db(X ′) ⇔ H̃(X ,Z) ' H̃(X ′,Z)

Aim: For any Hodge isometry g : H̃(X ,Z)
∼ // H̃(X ′,Z) there

exists a FM equivalence ΦE : Db(X )
∼ // Db(X ′) with

ΦH
E = g or ΦH

E = g ◦ η,

where η := idH0⊕H4 ⊕ (−id|H2) (cf. [M], [O], [HLOY], [P]).

Rough idea: Write g as composition of ΦH
E of our list of examples.

i) Suppose g(0, 0, 1) = ±(0, 0, 1). Set (r , `, s) := ±g(1, 0, 0).Then
r = 1 and s = (`, `)/2, i.e. g(1, 0, 0) = exp(c1(L)) for some
L ∈ Pic(X ′).
Let Φ := L∗ ⊗ resp. (L∗ ⊗ ) ◦ [1] and

g ′ := ΦH ◦ g .

Then g ′ = idH0 ⊕ g ′2 ⊕ idH4 (graded!).
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Torelli: ∃ P1 ' Ci ⊂ X ′ and f ∈ Aut(X ′) such that∏
s[Ci ] ◦ g ′ = f∗ or

∏
s[Ci ] ◦ g ′ = f∗ ◦ η, but f∗ and s[Ci ] lift.

ii) Suppose g(0, 0, 1) = ±(r , `, s) =: v with r > 0. Then
〈v , v〉 = 0. Let M := M(v) and E universal family on X ′ ×M.
Define

g ′ := ΦH ◦ g

with Φ FM transform with FM kernel E resp. E [1]. Then
g ′(0, 0, 1) = (0, 0, 1)  i).

iii) Suppose g(0, 0, 1) = (0, `, s) with ` 6= 0. Define

g ′ := TH
O ◦ (L⊗ )H ◦ g ,

where L ∈ Pic(X ′) st. s + (c1(L).`) 6= 0. Then g ′ as in ii).
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Positive four-spaces

Know: H̃(X ,Z) ' 2(−E8)⊕ 4U. Bilinear extension yields
symmetric bilinear form on H̃(X ,R) of signature (4, 22).

Positive directions: Write H2,0(X ) = Cσ and pick Kähler (or
ample) class ω ∈ H1,1(X ) ∩ H2(X ,R). Then

Re(σ), Im(σ), 1− ω2/2, ω ∈ H̃(X ,R) span four dimensional
space Pω.
Pω gets natural orientation by choice of basis.
Restriction of 〈 , 〉 to Pω is positive definite.

Remark: Note that ϕ := σ and ψ := exp(iω) are two generalized
CY structures whose real and imaginary parts are orthogonal to
each other.
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Orientation of (the four positive directions in) H̃(M,Z) is: a
subspace P ⊂ H̃(M,R) with an orientation st

i) dim P = 4 ii) 〈 , 〉|P positive.

Two orientations given by two oriented subspaces P,P ′ ⊂ H̃(M,R)
are equal if the orthogonal projection P � � // H̃(M,R) // // P ′ (which
is an isomorphism!) preserves the orientation.

Exercise: For two different Kähler classes ω, ω′ the associated
spaces Pω,Pω′ define the same orientation.

Similarly: An isometry g : H̃(M,R)
∼ // H̃(M,R) is orientation

preserving if for an oriented positive four space P ⊂ H̃(M,R)

P � � // H̃(M,R)
g // H̃(M,R) // // P

preserves the orientation. (This is independent of the choice of P!)
More generally, an isometry g : H̃(X ,R)

∼ // H̃(X ′,R) is orientation
preserving if for Kähler classes ω and ω′ on X resp. X ′ the induced
Pω

∼ // Pω′ is orientation preserving.
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Example: A diffeomorphism f ∈ Diff(M) induces an isometry f∗ of
H̃(M,Z) which is id on H0 ⊕ H4. Then f∗ is orientation preserving
if and only if f∗CM = CM , where CM ⊂ H2(M,R) is one connected
component of {α ∈ H2(M,R) | (α, α) > 0}.

Definition: O+(H̃(X ,Z)) = group of orientation preserving Hodge
isometries.

Easy: f∗ for f ∈ Aut(X ) (use f∗KX = KX ), [1]H , (L⊗ )H , and
TH

E are orientation preserving, i.e. are contained in O+(H̃(X ,Z)).

Check: Also ΦH
E is orientation preserving for E the universal family

of stable sheaves on X ×M. (H., Stellari)

Corollary: O+(H̃(X ,Z)) ⊂ Im(ρ).

H., Macrì, Stellari: η 6∈ Im(ρ) and hence

O+(H̃(X ,Z)) = Im(ρ).
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Let’s twist

Let X = K3 surface, α = {αijk ∈ Γ(Uijk ,O∗)} ∈ H2(X ,O∗
X )tor.

Then an α-twisted sheaf is: (Ei ∈ Coh(Ui ), ϕij : Ei |Uij
∼ // Ej |Uij ) st.

i) ϕij ◦ ϕjk ◦ ϕki = αijk · id, ii) . . . , iii) . . .

This yields the abelian category Coh(X , α).

Derived GT for twisted K3s: Let X ,X ′ be K3 surfaces with
Brauer classes α ∈ Br(X ) and α′ ∈ Br(X ′). Then (H., Stellari):

If Db(X , α) ' Db(X ′, α′), then ∃ Hodge isometry
H̃((X , α),Z) ' H̃((X ′, α′),Z).
Conversely, any orientation preserving Hodge isometry lifts to
a derived equivalence.
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Problems: o) ‘⇒’ more involved in the twisted case.
i) Need Hodge structure H̃((X , α),Z). (Use B-field lift of α.)
ii) Need Chern character and Mukai vector for twisted sheaves.
iii) For α 6= 1: OX 6∈ Coh(X , α). Needed the spherical twist TO for
the proof. Also L 6∈ Coh(X , α), but L⊗ is still defined.
iv) Need moduli spaces of twisted sheaves. Existence and
non-emptiness.
v) One clearly expects that any equivalence induces an orientation
preserving Hodge isometry. The proof of [HMS] does not apply
directly, as η = idH0⊕H4 ⊕ (−idH2) does not define a Hodge
isometry in the general twisted case.
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