FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s

Autoequivalences of K3 surfaces

D. Huybrechts

Garda 3, March 2008

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
Chern and To	dd				

Chern character: If $E \in D^{\mathrm{b}}(X)$, then

$$\operatorname{ch}(\mathsf{E}):=\sum (-1)^i \operatorname{ch}(\mathcal{H}^i(\mathsf{E}))\in H^{*,*}(X)\cap H^*(X,\mathbb{Q}).$$

For line bundles L_i one has $ch(\bigoplus L_i) = \sum e^{c_1(L_i)}$. Use the splitting principle and locally free resolutions for the general case.Explicitly:

$$ch = rk + c_1 + \frac{1}{2}(c_1^2 - 2c_2) + \frac{1}{6}(c_1^3 - 3c_1c_2 + 3c_3) + \dots$$

Todd character: For line bundles $td(\bigoplus L_i) = \prod \frac{c_1(L_i)}{1 - e^{-c_1(L_i)}}$.

$$\operatorname{td}(X) = 1 + \frac{1}{2}\operatorname{c}_1(X) + \frac{1}{12}(\operatorname{c}_1^2(X) + \operatorname{c}_2(X)) + \frac{1}{24}\operatorname{c}_1(X)\operatorname{c}_2(X) + \dots$$

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
HHR and GRI	R				

Hirzebruch–Riemann–Roch: $\chi(E) = \int_X \operatorname{ch}(E) \cdot \operatorname{td}(X)$.

Grothendieck–Riemann–Roch: For $p : X \longrightarrow Y$ and $E \in D^{\mathrm{b}}(X)$:

$$\operatorname{ch}(Rp_*E).\operatorname{td}(Y) = p_*\left(\operatorname{ch}(E).\operatorname{td}(X)\right).$$

Example: For $X = Y \times Z$ and $E \in D^{b}(Z)$ one has $ch(Rp_{*}q^{*}E).td(Y) = p_{*}(ch(q^{*}E).td(Y \times Z))$ and hence $ch(Rp_{*}q^{*}E) = \chi(Z, E)[Y].$

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
Mukai vector					

Since td = 1 + ..., the square root $\sqrt{td(X)} = 1 + \frac{1}{4}c_1(X) + \cdot$ exists.

K3 surface: td(X) = 1 + 0 + 2[x] and $\sqrt{td(X)} = 1 + 0 + [x]$. For any $E \in D^{b}(X)$ one defines the *Mukai vector*

$$v(E) := \operatorname{ch}(E) \cdot \sqrt{\operatorname{td}(X)} \in H^{*,*}(X) \cap H^*(X, \mathbb{Q}).$$

Note: v(E[1]) = -v(E).

Let $\Phi_{\mathcal{E}} : D^{\mathrm{b}}(X) \longrightarrow D^{\mathrm{b}}(X')$ with FM kernel $\mathcal{E} \in D^{\mathrm{b}}(X \times X')$. The induced *cohomological FM transform* is

$$\Phi^{H}_{\mathcal{E}}: H^{*}(X, \mathbb{Q}) \longrightarrow H^{*}(X', \mathbb{Q}), \quad \alpha \longmapsto p_{*}(q^{*}\alpha \cdot v(\mathcal{E})).$$

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
How FM acts	on <i>H</i> *				

Then:

- $v(\Phi_{\mathcal{E}}(E)) = \Phi_{\mathcal{E}}^{H}(v(E)) \in H^{*}(X', \mathbb{Q})$ for all $E \in D^{b}(X)$. (Use GRR.)
- If $\Phi_{\mathcal{E}}$ is an equivalence, then $\Phi_{\mathcal{E}}^{H}$ is bijective. (Use $\Phi_{\mathcal{O}_{\Lambda}}^{H} = \mathrm{id.}$)
- Hodge structure: $H^n = \bigoplus_{p+q=n} H^{p,q}$. But

$$\Phi^{H}_{\mathcal{E}}(H^{p,q}(X)) \subset \bigoplus_{p-q=r-s} H^{r,s}(X').$$

Corollary: If $D^{b}(X) \simeq D^{b}(X')$ and X = K3 surface, then X' = K3 surface (and not abelian).

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
Mukai pairing					

Mukai, Caldararu: For $v = \sum v_j \in H^*(X, \mathbb{Q})$ define $v^{\vee} := \sum \sqrt{-1}^j v_j \in H^*(X, \mathbb{C})$ and the *Mukai pairing*:

$$\langle \mathbf{v}, \mathbf{w} \rangle := -\int_X \exp(\mathrm{c}_1(X)/2) \cdot \mathbf{v}^{\vee} \cdot \mathbf{w}.$$

HRR again: If $\chi(E, F) := \sum (-1)^i \dim \operatorname{Ext}^i(E, F) = \chi(E^{\vee} \otimes F)$ for $E, F \in D^{\mathrm{b}}(X)$ and E^{\vee} the derived dual, then

$$\chi(E,F)=-\langle v(E),v(F)\rangle.$$

Then: For any equivalence $\Phi_{\mathcal{E}} : D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(X')$

$$\Phi^{H}_{\mathcal{E}}: H^{*}(X, \mathbb{Q}) \xrightarrow{\sim} H^{*}(X', \mathbb{Q})$$

is an isomorphism of vector spaces compatible with the Mukai pairing on X and X', resp.

 $\langle \ , \ \rangle =$ Mukai pairing seen already for generalized CY structures.

Mukai: Let $\Phi_{\mathcal{E}} : D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(X')$ with X = K3 surface. Then

- $\Phi_{\mathcal{E}}^{H}$ is an isometry defined over \mathbb{Z} .
- $\Phi_{\mathcal{E}}^{H}$ respects the natural weight two Hodge structure \widetilde{H} on $H^{*}(X, \mathbb{Z})$. ($\Leftrightarrow \Phi_{\mathcal{E}}^{H}(H^{2,0}(X)) = H^{2,0}(X')$)

Corollary: For K3 surface X one has representation

$$\rho: \operatorname{Aut}(\operatorname{D^b}(X)) {\longrightarrow} \operatorname{O}(\widetilde{H}(X, \mathbb{Z})).$$

Here, $O(\widetilde{H}(X,\mathbb{Z}))$ denotes the group of *Hodge isometries*.

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
Autoequival	ences for I	K3s: easy or	nes		

• Automorphism
$$f : X \xrightarrow{\sim} X$$
:
 $\rightsquigarrow \Phi_{\mathcal{E}} := f_* : D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(X), \ \mathcal{E} = \mathcal{O}_{\mathrm{Graph}(f)}$
 $\rightsquigarrow \Phi_{\mathcal{E}}^H = f_*.$
Torelli: $f_* = \mathrm{id} \Leftrightarrow f = \mathrm{id}.$

- Shift: $\Phi_{\mathcal{E}}: F \mapsto F[1], \mathcal{E} = \mathcal{O}_{\Delta}[1], \Delta \subset X \times X$ diagonal. $\rightsquigarrow \Phi_{\mathcal{E}}^{H} = -\mathrm{id.}$ $\Phi_{\mathcal{E}}^{H^{2}} = \mathrm{id.}$
- Tensor product with line bundle $L \in \operatorname{Pic}(X)$: $\rightsquigarrow \Phi_{\mathcal{E}} : F \mapsto F \otimes L, \ \mathcal{E} = \iota_* L, \ \iota : X \simeq \Delta \subset X \times X.$ $\rightsquigarrow \Phi_{\mathcal{E}}^H = \operatorname{ch}(L) \cdot = \exp(\operatorname{c}_1(L)) \cdot .$ $\Phi_{\iota_* L} = \operatorname{id} \Leftrightarrow L \simeq \mathcal{O}_X.$

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
Autoequivale	ences for l	<3s: interes	ting one	es	

• Spherical twist: $E \in D^{b}(X)$ with $Ext^{*}(E, E) = H^{*}(S^{2}, \mathbb{C})$ $\rightsquigarrow \Phi_{\mathcal{E}} = T_{E}, \ \mathcal{E} = C(E^{\vee} \boxtimes E \longrightarrow \mathcal{O}_{\Delta}).$ $\rightsquigarrow T_{E}^{H} = s_{v(E)} = \text{reflection in hyperplane } v(E)^{\perp}.$ $(T_{E}^{2})^{H} = \text{id, but } T_{E}^{2} \neq \text{id: } T_{E}^{2}(E) = E[-2].$

Examples: i) $\mathbb{P}^1 \simeq C \subset X$, $E = \mathcal{O}_C(i)$ spherical with $v(\mathcal{O}_C(i)) = (0, [C], i+1)$ and $T^H_{\mathcal{O}_C(i)} = s_{[C]}$ on H^2 . ii) $T^H_{\mathcal{O}}(r, \ell, s) = (-s, \ell, -r)$.

 Universal family *E* ∈ Coh(*X* × *M*) of stable sheaves with dim *M* = 2 and *M* projective. Sometimes *X* ≃ *M*.

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
Definitions					

Stability: $\mathcal{O}(1) \in \operatorname{Pic}(X)$ ample. Then $E \in \operatorname{Coh}(X)$ is *stable* if $\forall \ 0 \neq F \subsetneq E, \ n \gg 0$:

$$\chi(F(n)) < \frac{\operatorname{rk}(F)}{\operatorname{rk}(E)} \cdot \chi(E(n)).$$

Moduli functor: $\mathcal{M}(v)$: $\operatorname{Sch}_{\mathbb{C}} \longrightarrow \operatorname{Set}$, $T \longmapsto \mathcal{M}(v)(T)$ with $\mathcal{M}(v)(T) := \{ \mathcal{E} \in \operatorname{Coh}(X \times T) \mid T - \operatorname{flat}, \mathcal{E}_t \text{ stable}, v(\mathcal{E}_t) = v \} / \sim .$

 $\mathcal{E} \sim \mathcal{E}'$ if $\exists L \in \operatorname{Pic}(\mathcal{T})$ with $\mathcal{E} \simeq \mathcal{E}' \otimes p_{\mathcal{T}}^* L$.

Fine moduli space: M(v) such that $\mathcal{M}(v) = Mor(, M(v))$.

Warning: Does not always exist. Can be singular and even non-reduced. Can be empty. Can be non-projective. Can be reducible and even disconnected.

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
Existence:					

Then:

- $\{E \in \operatorname{Coh}(X) \mid \text{stable}, v(E) = v\} = \operatorname{Mor}(\operatorname{Spec}(\mathbb{C}), M(v)) = M(v)(\mathbb{C}).$
- id ∈ Mor(M(v), M(v)) corresponds to E ∈ Coh(X × M(v)), the universal family, which is unique up to Pic(M(v)).

•
$$\mathcal{E}|_{X \times [E]} \simeq E$$
 for all $[E] \in M(v)$.

Facts: If $\exists v'$ with $\langle v, v' \rangle = 1$, then $\exists \mathcal{O}(1)$ ample with

- Fine moduli space M(v) exists.
- $M(v) \neq \emptyset$ if $\langle v, v \rangle \geq -2$.
- dim $M(v) = 2 + \langle v, v \rangle$.
- M(v) smooth.

Corollary: If $\langle v, v \rangle = 0$ and $\langle v, v' \rangle = 1$, then $\exists \mathcal{O}(1)$ ample such that M(v) exists and universal family \mathcal{E} induces

$$\Phi_{\mathcal{E}}: \mathrm{D^{b}}(X) \xrightarrow{\sim} \mathrm{D^{b}}(M(v)).$$

Moreover, M(v) is a K3 surface.

Bondal, Orlov: $\Phi_{\mathcal{E}}^{-1}$ fully faithful: i) End($\mathcal{E}_{[E]}$) = End(E) = \mathbb{C} . ii) $\chi(\mathcal{E}_{[E]}, \mathcal{E}_{[F]}) = -\langle v(E), v(F) \rangle = 0$. If $[E] \neq [F]$, then Hom(E, F) = Ext²(E, F) = 0 and thus Ext¹(E, F) = 0. iii) Ext^{*i*}($\mathcal{E}_{[E]}, \mathcal{E}_{[F]}$) = 0 if $i \neq 0, 1, 2$. Since $\omega = \mathcal{O}$, also equivalence.

Aim: For any Hodge isometry $g : \widetilde{H}(X, \mathbb{Z}) \xrightarrow{\sim} \widetilde{H}(X', \mathbb{Z})$ there exists a FM equivalence $\Phi_{\mathcal{E}} : D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(X')$ with

$$\Phi_{\mathcal{E}}^{H} = g \quad \text{or} \quad \Phi_{\mathcal{E}}^{H} = g \circ \eta,$$

where $\eta := \operatorname{id}_{H^0 \oplus H^4} \oplus (-\operatorname{id}|_{H^2})$ (cf. [M], [O], [HLOY], [P]).

Rough idea: Write g as composition of $\Phi_{\mathcal{E}}^{H}$ of our list of examples.

i) Suppose $g(0,0,1) = \pm (0,0,1)$. Set $(r, \ell, s) := \pm g(1,0,0)$. Then r = 1 and $s = (\ell, \ell)/2$, i.e. $g(1,0,0) = \exp(c_1(L))$ for some $L \in \operatorname{Pic}(X')$. Let $\Phi := L^* \otimes \operatorname{resp.} (L^* \otimes) \circ [1]$ and

$$g' := \Phi^H \circ g$$

Then $g' = \operatorname{id}_{H^0} \oplus g'_2 \oplus \operatorname{id}_{H^4}$ (graded!).

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s

Torelli:
$$\exists \mathbb{P}^1 \simeq C_i \subset X'$$
 and $f \in \operatorname{Aut}(X')$ such that
 $\prod s_{[C_i]} \circ g' = f_*$ or $\prod s_{[C_i]} \circ g' = f_* \circ \eta$, but f_* and $s_{[C_i]}$ lift.

ii) Suppose $g(0,0,1) = \pm (r, \ell, s) =: v$ with r > 0. Then $\langle v, v \rangle = 0$. Let M := M(v) and \mathcal{E} universal family on $X' \times M$. Define

 $g' := \Phi^H \circ g$

with Φ FM transform with FM kernel ${\mathcal E}$ resp. ${\mathcal E}[1].$ Then $g'(0,0,1)=(0,0,1)\rightsquigarrow {\sf i}).$

iii) Suppose $g(0,0,1) = (0,\ell,s)$ with $\ell \neq 0$. Define

$$g' := T_{\mathcal{O}}^H \circ (L \otimes)^H \circ g$$

where $L \in \operatorname{Pic}(X')$ st. $s + (c_1(L).\ell) \neq 0$. Then g' as in ii).

Know: $\widetilde{H}(X,\mathbb{Z}) \simeq 2(-E_8) \oplus 4U$. Bilinear extension yields symmetric bilinear form on $\widetilde{H}(X,\mathbb{R})$ of signature (4,22).

Positive directions: Write $H^{2,0}(X) = \mathbb{C}\sigma$ and pick Kähler (or ample) class $\omega \in H^{1,1}(X) \cap H^2(X, \mathbb{R})$. Then

- Re(σ), Im(σ), 1 − ω²/2, ω ∈ H̃(X, ℝ) span four dimensional space P_ω.
- P_{ω} gets natural orientation by choice of basis.
- Restriction of $\langle \ , \ \rangle$ to P_ω is positive definite.

Remark: Note that $\varphi := \sigma$ and $\psi := \exp(i\omega)$ are two generalized CY structures whose real and imaginary parts are orthogonal to each other.

Orientation of (*the four positive directions* in) $\widetilde{H}(M, \mathbb{Z})$ is: a subspace $P \subset \widetilde{H}(M, \mathbb{R})$ with an orientation st

i) dim P = 4 ii) $\langle , \rangle|_P$ positive.

Two orientations given by two oriented subspaces $P, P' \subset \widetilde{H}(M, \mathbb{R})$ are equal if the orthogonal projection $P \longrightarrow \widetilde{H}(M, \mathbb{R}) \longrightarrow P'$ (which is an isomorphism!) preserves the orientation.

Exercise: For two different Kähler classes ω, ω' the associated spaces $P_{\omega}, P_{\omega'}$ define the same orientation.

Similarly: An isometry $g : \widetilde{H}(M, \mathbb{R}) \xrightarrow{\sim} \widetilde{H}(M, \mathbb{R})$ is *orientation preserving* if for an oriented positive four space $P \subset \widetilde{H}(M, \mathbb{R})$

$$P \longrightarrow \widetilde{H}(M,\mathbb{R}) \xrightarrow{g} \widetilde{H}(M,\mathbb{R}) \longrightarrow P$$

preserves the orientation. (This is independent of the choice of P!) More generally, an isometry $g : \widetilde{H}(X, \mathbb{R}) \xrightarrow{\sim} \widetilde{H}(X', \mathbb{R})$ is orientation preserving if for Kähler classes ω and ω' on X resp. X' the induced $P_{\omega} \xrightarrow{\sim} P_{\omega'}$ is orientation preserving. **Example:** A diffeomorphism $f \in \text{Diff}(M)$ induces an isometry f_* of $\widetilde{H}(M, \mathbb{Z})$ which is id on $H^0 \oplus H^4$. Then f_* is orientation preserving if and only if $f_*C_M = C_M$, where $C_M \subset H^2(M, \mathbb{R})$ is one connected component of $\{\alpha \in H^2(M, \mathbb{R}) \mid (\alpha, \alpha) > 0\}$.

Definition: $O_+(\widetilde{H}(X,\mathbb{Z})) =$ group of orientation preserving Hodge isometries.

Easy: f_* for $f \in Aut(X)$ (use $f_*\mathcal{K}_X = \mathcal{K}_X$), $[1]^H$, $(L \otimes \bigcup^H$, and \mathcal{T}_E^H are orientation preserving, i.e. are contained in $O_+(\mathcal{H}(X,\mathbb{Z}))$.

Check: Also $\Phi_{\mathcal{E}}^{H}$ is orientation preserving for \mathcal{E} the universal family of stable sheaves on $X \times M$. (H., Stellari)

Corollary: $O_+(\widetilde{H}(X,\mathbb{Z})) \subset Im(\rho).$

H., Macrì, Stellari: $\eta \notin Im(\rho)$ and hence

 $O_+(\widetilde{H}(X,\mathbb{Z})) = \operatorname{Im}(\rho).$

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s
Let's twist					

Let X = K3 surface, $\alpha = \{\alpha_{ijk} \in \Gamma(U_{ijk}, \mathcal{O}^*)\} \in H^2(X, \mathcal{O}^*_X)_{tor}$. Then an α -twisted sheaf is: $(E_i \in Coh(U_i), \varphi_{ij} : E_i|_{U_{ij}} \xrightarrow{\sim} E_j|_{U_{ij}})$ st.

i)
$$\varphi_{ij} \circ \varphi_{jk} \circ \varphi_{ki} = \alpha_{ijk} \cdot id$$
, ii) ..., iii) ...

This yields the abelian category $Coh(X, \alpha)$.

Derived GT for twisted K3s: Let X, X' be K3 surfaces with Brauer classes $\alpha \in Br(X)$ and $\alpha' \in Br(X')$. Then (H., Stellari):

- If $D^{\mathrm{b}}(X, \alpha) \simeq D^{\mathrm{b}}(X', \alpha')$, then \exists Hodge isometry $\widetilde{H}((X, \alpha), \mathbb{Z}) \simeq \widetilde{H}((X', \alpha'), \mathbb{Z})$.
- Conversely, any orientation preserving Hodge isometry lifts to a derived equivalence.

FM on cohomology	Examples	Moduli spaces	Image	Orientation	Twisted K3s

Problems: o) ' \Rightarrow ' more involved in the twisted case. i) Need Hodge structure $\widetilde{H}((X, \alpha), \mathbb{Z})$. (Use *B*-field lift of α .) ii) Need Chern character and Mukai vector for twisted sheaves. iii) For $\alpha \neq 1$: $\mathcal{O}_X \notin \operatorname{Coh}(X, \alpha)$. Needed the spherical twist $T_{\mathcal{O}}$ for the proof. Also $L \notin \operatorname{Coh}(X, \alpha)$, but $L \otimes$ is still defined. iv) Need moduli spaces of twisted sheaves. Existence and non-emptiness.

v) One clearly expects that any equivalence induces an orientation preserving Hodge isometry. The proof of [HMS] does not apply directly, as $\eta = id_{H^0 \oplus H^4} \oplus (-id_{H^2})$ does not define a Hodge isometry in the general twisted case.