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Einleitung
In der vorliegenden Arbeit studieren wir die Anzahl rationaler Punkte auf

Schemata über endlichen Körpern mittels Kohomologie kohärenter Garben.
Wir geben den Beweis einer Spurformel an, die auf Fulton zurückgeht. Die
Idee ist hierbei ähnlich zu dem was Weil vorschlug, nämlich dass die rationalen
Punkte als Fixpunkte des Frobenius Endomorphismus erfasst werden können.
Im Jahr 1978 bewies Fulton einen Fixpunktsatz über Fq, aus dem sich die
folgende Identität ableitet:

∣X(Fq)∣ ≡
d

∑
i=0

(−1)i trace(Frobq ∣H i
(X,OX)) mod p.

Hierbei ist X ein eigentliches Schema über Fq und d ist seine Dimension.
In seinem Beweis konstruiert er eine Grothendieck Gruppe für Schemata über
endlichen Körpern, die den Frobenius mit einbezieht. Diese Gruppen sind
sogar Vektorräume über Fq und verhalten sich somit recht unterschiedlich zu
gewöhnlichen Grothendieck Gruppen von kohärenten Garben oder Vektorbün-
deln. Es stellt sich heraus, dass die Dimension dieses Vektorraums der Anzahl
rationaler Punkte entspricht.
Diese Bachelorarbeit zielt auf eine einfach zugängliche Präsentation der

Methoden ab, die Fulton verwendet. Anschließend diskutieren wir Beispiele
und Anwendungen der Spurformel. Wir werden zunächst verschiedene Begriffe
einführen und die erwähnte Konstruktion im Detail besprechen, bevor wir
durch vorbereitende Resultate in Richtung des Beweises der Formel
manövrieren.

Danksagungen: Ich möchte mich bei all denen bedanken, die mich bei der
Anfertigung dieser Arbeit unterstützt haben. Insbesondere danke ich Daniel
Huybrechts für die Einführung in das Gebiet der algebraischen Geometrie und
seine Bereitschaft, jede meiner Fragen im Detail zu beantworten. Außerdem
danke ich Zhiyuan Li für die vielen Stunden, die er sich für mich genommen
hat, um mir wichtige Ratschläge auf den Weg zu geben.
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1 Introduction
In this thesis, we study the number of rational points on schemes over finite

fields, using cohomology of coherent sheaves. More specifically, we will present
a proof of a trace formula which is due to Fulton. The idea is similar to what
Weil proposed, namely that the rational points can be detected as fixed points
of the Frobenius endomorphism.
In 1978, Fulton proved a fixed point formula, taking place in Fq, from which
the following identity is deduced:

∣X(Fq)∣ ≡
d

∑
i=0

(−1)i trace(Frobq ∣H i
(X,OX)) mod p.

Here, X is a proper scheme over Fq and d denotes its dimension.
In his proof, he constructs a Grothendieck group for schemes over finite fields,
that involves the Frobenius. These groups are actually vector spaces over Fq
and, therefore, behave quite differently to the usual Grothendieck groups of
coherent sheaves or vector bundles. It turns out that the dimension of this
vector space equals the number of rational points.
This thesis aims at a clear presentation of the methods used by Fulton,

followed by examples and applications. We introduce several notions and de-
scribe the construction in detail before we maneuver through some preliminary
results towards the proof of the formula.

Acknowledgements: I would like to express my gratitude to everyone who
supported me in writing this thesis. In particular, I thank Daniel Huybrechts
for introducing me to algebraic geometry and for his willingness to answer all
my questions in detail. Furthermore, I thank Zhiyuan Li for spending many
hours and giving great general advice.

Notations and Conventions: A variety will be an integral, separated
scheme of finite type over a field and a curve is a variety of dimension 1.
By (Sch/Fq) we mean the category of proper schemes X over Fq. Let E ,
F be OX -modules, then we write Hom (E ,F) for the sheaf hom and E∗ =

Hom (E ,OX) for the dual of E . If F is coherent, we denote the dimensions of
the cohomology groups, which are finite-dimensional vector spaces (cf. [21]),
by hi(F) = dimFq H

i(X,F). Furthermore, we let X(Fqm) be the (finite) set
of rational points over Fqm , equipped with the reduced scheme structure. Its
cardinality is ∣X(Fqm)∣.
The subscripts in PnFq

and OPn(l) will frequently be omitted.
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2 F -modules
The notion of an F -module will be introduced and illustrated with some easy
examples. This section follows primarily [18, §5].

2.1 The Frobenius morphism
A scheme of characteristic p always comes with a certain endomorphism, the
absolute Frobenius. We investigate properties of this morphism and then focus
on schemes that are Frobenius split.

Definition 2.1. Let X be a scheme over Fq. The unique endomorphism Frobq
of X which is the identity on topological spaces and raises each regular function
to its qth power, is called the (absolute) Frobenius morphism. On structure
sheaves, it is given by

OX → Frobq*(OX)

a↦ aq.

Remark 2.2. If F is an OX -module, then F and Frobq*(F) are isomorphic as
sheaves of abelian groups and there is a natural isomorphism
H i(X,F) ≃H i(X,Frobq*(F)). We will make use of this implicitly.

Lemma 2.3. Let X be a scheme of finite type over Fq. Then the Frobenius
is a finite morphism of schemes.

Proof. If C is a ring, Frobq*(C) denotes the C-module structure given by the
Frobenius on C.
Now locally, X is the affine variety SpecA with A of finite type over Fq. First,
assume that A = Fq[x1, . . . , xm]. Then Frobq*(A) is obviously a finite module
over A.
For general A, consider a surjection B = Fq[x1, . . . , xm]↠ A. By the first case,
for some N > 0 we obtain a commutative diagram:

B⊕N A⊕N

Frobq*(B) Frobq*(A).

∃

Then the dotted arrow is surjective as well.

Lemma 2.4. Let X be a scheme of finite type over Fq. Then X is regular if
and only if Frobq∶X →X is a flat morphism.

Proof. A proof can be found in [15, Thm. 2.1, p. 773].

Remark 2.5. Since Fq is a perfect field, the previous lemma can also be
stated as ‘X is smooth if and only if Frobq*(OX) is a vector bundle’.

We state the following lemma without a proof.

Lemma 2.6. Let f ∶X → Y be a proper morphism of Noetherian schemes, with
Y reduced and connected, and E a coherent sheaf on X, flat over Y . Then for
all integers p ≥ 0 the following conditions are equivalent:
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(i) y ↦ dimHp(Xy,Ey) is a constant function,

(ii) Rpf∗(E) is a locally free sheaf on Y and, for all y ∈ Y , the natural map

Rpf∗(E)⊗ k(y)→Hp
(Xy,Ey)

is an isomorphism.
Proof. A proof can be found in [17, II §5 Cor. 2, pp. 50–51].

Proposition 2.7. If X is a smooth curve over Fq, then Frobq*(OX) is a
vector bundle of rank q.
Proof. Let K be the function field of X and K1/q the field extension induced
by the Frobenius. If we write k ∶= Fq then K is a finite extension of k(t) and
[k(t)1/q ∶ k(t)] = q. Then by multiplicativity of degrees:

[K1/q
∶K] ⋅ [K ∶ k(t)] = [K1/q

∶ k(t)1/q
] ⋅ [k(t)1/q

∶ k(t)].

Since [K ∶ k(t)] = [K1/q ∶ k(t)1/q], we find that deg(Frobq) = [K1/q ∶ K] = q.
By Lemma 2.4, the Frobenius is a flat morphism. Thus for all y ∈ Y it holds
that (cf. [16, Ex. 1.25, p. 176]):

dimk(y)H
0
(Xy,OXy) = deg(Frobq) = q.

We use Lemma 2.6 the conclude.

Remark 2.8. We briefly mention that the pullback of line bundles under the
Frobenius is easy to compute. If L ∈ Pic(X) for X a scheme over Fq, we use a

cocycle description {ϕi,j} ∈ H1(X,O∗X). The image under H1(X,O∗X)
Frobq
ÐÐÐ→

H1(X,O∗X) is {ϕqi,j}, which is a cocycle description of Lq, i.e. Frob*
q(L) ≃ L

q.

In contrast to that, it is not obvious what the pushforward of sheaves under
the Frobenius yields. Even for line bundles this is a priori not clear.
For the structure sheaf, we treat the case of P1 in the following example,

but refer to the literature (e.g. [20, Ex. 8.10., 8.12.]) for projective spaces of
higher dimensions.

Example 2.9. The following observation is due to Schwede [20, Ex. 3.4].
We compute Frobq*(OP1), using that P1 is smooth and that every locally free
sheaf of finite rank on P1 decomposes as a direct sum of line bundles (see e.g.
[13]).
The rank of Frobq*(OP1) is q, so we can write Frobq*(OP1) = O(l1)⊕. . .⊕O(lq),
with li ∈ Z. Since

1 = h0
(OP1) = h0

(Frobq*(OP1)) =

q

∑
i=1
h0

(O(li)),

we may assume that l1 = 0 and li < 0 for i ≥ 2. Furthermore, by the projection
formula:

q + 1 = h0
(Frobq*(O(q))) = h0

(Frobq*(OP1)(1)) =
q

∑
i=1
h0

(O(li + 1)),

and we deduce that

h0
(O(l2 + 1)) + . . . + h0

(O(lq + 1)) = q − 1.

Then neccessarily h0(O(l2+1)) = . . . = h0(O(lq+1)) = 1 as li < 0 for i ≥ 2. Hence
l2 = . . . = lq = −1 and consequently Frobq*(OP1) = OP1 ⊕O(−1)⊕ . . .⊕O(−1).

8



IfX is a variety, so in particularX is reduced, then the Frobenius is injective
as a morphism of sheaves and one could ask whether this has a split.

Definition 2.10. A scheme X over Fq is called Frobenius split (or simply
split), if the Frobenius OX → Frobq*(OX) splits as a morphism of OX-modules.

Lemma 2.11. Every regular, affine variety SpecA of finite type over Fq is
Frobenius split.

Proof. We follow the proof in [20, Prop. 3.3, p. 3].
Consider the map ev∶Hom(Frobq*(A),A) → A defined by evaluation at 1.

Then the Frobenius onX = SpecA splits if and only if ev is surjective. Observe
that surjectivity of ev is a local property since Frobq*(A) is a finite A-module.
Therefore, it would suffice to prove that for every point x ∈ X the Frobenius
on SpecOX,x splits, so we may assume that A is local.
By Lemma 2.4, Frobq*(A) is flat, hence free over A and projection onto one

component defines a surjective map f ∶Frobq*(A) → A. Let f(a) = 1 for some
a ∈ Frobq*(A). Then g(−) ∶= f(a ⋅ −) is a split of the Frobenius.

It turns out that most of the varieties are not split, but those which are, ad-
mit remarkable geometric and cohomological properties. A nice presentation
for criteria and consequences of Frobenius splitting can be found in [3].

Lemma 2.12. Let X be a smooth projective variety of dimension n over Fq
and ωX its canonical bundle. Then X is Frobenius split if and only if the
natural map Hn(X,ωX) → Hn(X,ωqX) is injective (or equivalently nonzero,
since Hn(X,ωX) is 1-dimensional).

Proof. We follow the proof in [19, Prop. 9].
Let C be the cokernel of the Frobenius OX → Frobq*(OX). Then C is a

locally free sheaf since X is regular and so the Frobenius locally splits by the
previous lemma. Then the exact sequence

0→ OX → Frobq*(OX)→ C → 0

is split if and only if the dual sequence

0→ C∗ → Frobq*(OX)
∗
→ OX → 0

is split. The latter is split if and only if the identity on OX can be lifted
to Frobq*(OX)∗. A morphism OX → Frobq*(OX)∗ is a global section of
Frobq*(OX)∗, so this is equivalent to

H0
(X,Frobq*(OX)

∗
)→H0

(X,OX)

being surjective. By Serre duality, the dual of the last map is

Hn
(X,ωX)→Hn

(X,Frobq*(ω
q
X)) ≃Hn

(X,ωqX),

where we made use of the projection formula and Remark 2.8.
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2.2 The category of F -modules
We define a category CohF(X) of coherent sheaves, equipped with a Frobe-
nius action, which will be the key ingredient of the discussion in the following
sections. It turns out, that this category is in fact abelian.

Definition 2.13. An abelian category is an additive category A such that:

(i) Every morphism in A has a kernel and cokernel,

(ii) every monic in A is the kernel of its cokernel and

(iii) every epi in A is the cokernel of its kernel.

Definition 2.14. Let X be a scheme of finite type over Fq andM a coherent
OX-module. ThenM is called a coherent Frobenius module, or F -module for
short, if M admits a Frobenius action, i.e. a morphism of sheaves of OX-
modules FM∶M→ Frobq*(M).
The set of pairs (M, FM) forms a category CohF(X). A morphism

(M, FM) → (N , FN ) is a morphism M → N that commutes with the Frobe-
nius actions.

Remark 2.15. The pushforward Frobq*(M) admits another OX -structure
than M, namely the one given by OX → Frobq*(OX). With this structure,
one has that FM(am) = aqFM(m) for any local sections a of OX and m of
M.
According to Remark 2.2, there are induced Fq-linear maps on cohomology,

which we will call FM as well. Each rational point x ∈ X(Fq) creates an
Fq-linear endomorphism FM(x) ∈ EndFq(Mx ⊗OX,x

k(x)) of the fibre of M,
whose traces will be of interest later on.

Lemma 2.16. Let X be a scheme of finite type over Fq. Then CohF(X) is
an abelian category.

Proof. Most of the requirements are checked easily, so we will concentrate
on the existence of kernels and cokernels. For a given M → N we use the
forgetful functor CohF(X) → Coh(X) to define K, C as the kernel resp. cok-
ernel in Coh(X), which is an abelian category (see e.g. [11, II Prop. 5.7]). By
commutativity of

M N

Frobq*(M) Frobq*(N )

there are induced Frobenius actions on K and C so we are done.

It is very convenient to make these generalizations, because the trace formula
will eventually follow by considering the F -module (OX ,Frobq).

2.3 F -modules on Pn

In the following subsection we investigate F -modules on the projective space.

10



Example 2.17. An F -module (M, FM) on Pn corresponds to a graded mod-
ule over S = Fq[x0, . . . , xn] (cf. [11, II 5.15]) with a certain endomorphism, that
we will call a graded Frobenius action. Indeed, using the projection formula
and Remark 2.8, for every i there is an induced morphism

M(i)→ Frobq*(M)⊗O(i)→ Frobq*(M(qi)),

which gives rise to an endomorphism ϕ of the graded S-moduleM = Γ∗(M) ∶=

⊕i≥0 Γ(Pn,M(i)), satisfying ϕ(Mi) ⊆ Mqi and ϕ(au) = aqϕ(u) for a ∈ S and
u ∈M .
If converselyM is a graded S-module and ϕ an endomorphism with the above
properties, we define a Frobenius action on M̃ locally via FM̃( u

xN
i

) =
ϕ(u)
xqN

i

for
every u ∈MN .
Given a coherent F -module (M, FM) and M = Γ∗(M), with ϕ as described
above, we have an isomorphism of F -modules M ≃ M̃ . We will make use of
this description in the proof of the Localization Theorem in Section 4.

Lemma 2.18. Let l ∈ Z and O(−l) ∈ Pic(Pn). Then there is a 1:1 correspon-
dence

{ϕ Frobenius action on O(−l)}
1∶1
←→H0

(Pn,O(ql − l)).

If we view the set of Frobenius actions as an Fq-vector space, this is actually
an isomorphism. In particular, if L is an ample line bundle on Pn, it does not
admit any nonzero Frobenius action.

Proof. We make use of Remark 2.8 and the identification Hom (E ,F) ≃ E∗⊗F
for E locally free of finite rank and F a sheaf of modules (cf. [11, II Ex. 5.1.]):

Hom(O(−l),Frobq* O(−l)) ≃ Hom(Frob*
qO(−l),O(−l))

≃ Hom(O(−ql),O(−l))

≃H0
(Pn,O(ql − l)).

Explicitly, fix a homogeneous polynomial h ∈H0(Pn,O(ql−l)). We obtain a
graded Frobenius action ϕ on S(−l) by ϕ(g) = gq ⋅h and an induced Frobenius
action on O(−l), as described above.

Example 2.19. We apply the previous lemma to the polynomials xqi f resp.
xif with f ∈ H0(Pn,O(ql − l − q)) and obtain graded Frobenius actions ϕ on
S(−l) resp. ψ on S(−l + 1). Multiplication with xi defines a morphism of
graded S-modules S(−l) ⋅xi

Ð→ S(−l + 1) and we check that this commutes with
ϕ and ψ:

ϕ(g) ⋅ xi = g
q
⋅ xqi f ⋅ xi = g

q
⋅ xq+1
i f = (gxi)

q
⋅ xif = ψ(g ⋅ xi).

Thus, the associated morphism O(−l)
⋅xi
Ð→ O(−l + 1) of line bundles on Pn is a

morphism of F -modules.

Example 2.20. Note that for any scheme X the induced Frobenius action
on the cotangent sheaf ΩX vanishes. If locally f is a regular function, the
morphism Frob*

q(ΩX) → ΩX maps df to df q = 0, which vanishes due to the
Leibniz rule and the characteristic p dividing q. Thus, the adjoint morphism
is zero as well. Fortunately, on the projective space we can use the Euler
sequence to define a non-trivial Frobenius action on ΩPn .
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We consider the line bundle OPn(−1) together with the Frobenius action given
by xq−1

i . Then the right hand square of the following diagram commutes and
we get an induced action on the kernel ΩPn :

0 ΩPn OPn(−1)⊕n+1 OPn 0

0 Frobq*(ΩPn) Frobq* (OPn(−1)⊕n+1) Frobq*(OPn) 0.

On P1 for instance, this induces the action given by (x0x1)
q−1 on OP1(−2) =

ΩP1 .

3 The Grothendieck group of F -modules
In 1957, Grothendieck introduced the idea of assigning to each vector bundle
over a smooth variety X an invariant, its class in a group. Subject to a
relation for each short exact sequence of vector bundles, the set of all these
classes forms an abelian group K(X). This notion was later generalized to
any exact category. We will make use of this in a slightly adjusted form.

3.1 Modified Grothendieck groups
The prototype of the following construction is described in Example 3.4.

Construction 3.1. Let A be an exact category with F ∈ End(A) an end-
ofunctor. Consider the category AF of all pairs (A,ϕ) with A ∈ ob(A) and
A

ϕ
Ð→ F (A). A morphism (A,ϕ)

f
Ð→ (B,ψ) is a commutative diagram of the

form
A B

F (A) F (B).

f

ϕ ψ

F (f)

Dually, we define AF = category of all pairs (A,ϕ) with F (A)
ϕ
Ð→ A.

Then AF , AF are easily checked to be exact again and one can consider their
Grothendieck groups.
We divide out by the further relation (A,ϕ1 + ϕ2) ∼ (A,ϕ1) + (A,ϕ2) to get

KF (A) ∶=K(AF )/ ∼ and KF
(A) ∶=K(A

F
)/ ∼ .

The class of (A,ϕ) will be denoted by [A,ϕ] or simply [A] if the morphism is
understood. We observe that under some circumstances these constructions
are functorial.

If A and B are exact, with endofunctors F resp. G, and A γ
Ð→ B is exact and

compatible with F and G, i.e. γ ○F ≃ G○γ, then there are induced morphisms

KF (A)
γ
Ð→KG(B) and KF

(A)
γ
Ð→KG

(B).

In fact, for abelian categories A with exact endofunctors, we already get in-
duced morphisms for left exact functors γ whose derived functors are bounded
in the sense that Rjγ(A) = 0 for all A ∈ A and j big enough:

Riγ ○ F ≃ Ri(γ ○ F ) ≃ Ri(G ○ γ) ≃ G ○Riγ.
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So, if (A,ϕ) ∈ AF then Riγ(A) admits an induced morphism Riγ(ϕ) and we
define

γ[A,ϕ] ∶=∑
i≥0

(−1)i[Riγ(A),Riγ(ϕ)].

Of course, we assumed that A has enough injectives. An analogue definition
is possible if γ is only right exact.

Remark 3.2. If A is exact and L is a left adjoint to R, thenKL(A) ≃KR(A).

Remark 3.3. One could, of course, consider usual K-theory of A and try
to relate this to the above construction. For F = id there is an exact functor
A → Aid taking A to (A, id) and a split Aid → A taking (A,ϕ) to A. This
induces

K(A)↪K(Aid)↠Kid(A)

and one could ask whether the composition is still injective. The answer will
be ‘No’ in general, by the following example.

Example 3.4. Let X be a scheme over SpecR and f any endomorphism of
X. Let A = Coh(X) be the category of coherent sheaves and F = f∗. A pair
(M, ϕ) is a morphismM ϕ

Ð→ f∗(M) resp. f∗(M)
ϕ
Ð→M of OX -modules. Then

KF (A) and KF (A) are actually R-modules via r ⋅ [M, ϕ] ∶= [M, r ⋅ ϕ].
If X = Pn is the projective space over a field k of characteristic p, it is a

well known fact that K(Coh(Pn)) ≃ Z⊕n+1 (see e.g. [26, Ex. 6.14]). This is a
free abelian group and contains no p-torsion, while Kid(Coh(Pn)) is a vector
space over k. Consequently, the morphism from the previous example can not
be injective.

3.2 K● and K● of F -modules
We will apply the construction to the category CohF(X) and obtain a certain
Fq-vector space. Its most important property is, that every additive function
(in a sense that will be made precise) CohF(X)→ Fq factors through it.

Definition 3.5. Let X be a scheme of finite type over Fq and F ∶= Frobq the
Frobenius. The abelian group

K●(X) ∶=KF∗(Coh(X))

is called the Grothendieck group of F-modules. In fact, this is an Fq-vector
space by Example 3.4.

Caution: In this thesis, K● denotes the modified Grothendieck group de-
scribed in Construction 3.1. This is not the same as usualK-theory of schemes,
which we will not consider at all.

To be more explicit, K●(X) is the quotient of the free abelian group gener-
ated by all isomorphism classes of F -modules (M, FM) subject to the following
relations:

(A) (M, FM) = (M′, FM′) + (M′′, FM′′) for every short exact sequence

0→ (M
′, FM′)→ (M, FM)→ (M

′′, FM′′)→ 0,
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(B) (M, F1 + F2) = (M, F1) + (M, F2) for all morphisms of OX -modules
F1, F2∶M→ Frobq*(M), whereM is a coherent sheaf on X.

A function l∶CohF(X)→ A with A an abelian group will be called additive, if it
factors through K●(X). The Grothendieck group is universal, as it represents
the functor that takes A to the set of additive functions with values in A.

Remark 3.6. The relation (B) is very important; it implies that the class of
an F -module (M,0) with the zero action is trivial, since [M,0] = [M,0] +
[M,0]. Later on, we will see that the class already vanishes if the Frobenius
action is nilpotent.

We now like to compare the Grothendieck group of F -modules with a very
similar construction, using vector bundles instead of coherent sheaves.

Definition 3.7. Let X be a scheme of finite type over Fq and denote by
Loc(X) the exact category of locally free sheaves of finite rank (cf. [6, p. 270]).
The Frobenius F = Frobq induces an exact endofunctor F ∗ and we can form
the category Loc(X)F

∗. Define

K●
(X) ∶=KF ∗

(Loc(X)).

Due to adjointness of F ∗ and F∗, a morphism F ∗(E) → E with E locally
free, corresponds to a Frobenius action on E .
Furthermore, we observe that K●(X) is actually a commutative ring, using
the tensor product of OX -modules. If E , G are locally free with actions ϕ,ψ
we let

[E , ϕ] ⋅ [G, ψ] ∶= [E ⊗OX
G, ϕ⊗ ψ].

This is well defined, since locally free sheaves are flat. As a consequence,
every morphism f ∶X → Y induces a ringhomomorphism f∗∶K●(Y )→K●(X)

by pulling back locally free sheaves, together with their Frobenius actions.
Again, using the tensor product, this turns K●(X) into a K●(X)-module.
Since every locally free sheaf of finite rank is coherent, there is a morphism

cX ∶K
●
(X)→K●(X)

ofK●(X)-modules, which we will call the ‘Poincaré homomorphism’ (following
Fulton and Lang [8, p. 165]).

3.3 Basic properties of K●

We compute the Grothendieck group of SpecFq and study properties of K●
that follow immediately from the relations (A) and (B).

Lemma 3.8. Let X = SpecFq and x ∈ X the unique point. Then there is an
isomorphism of Fq-vector spaces:

K●(X) ≃ Fq, [M, FM]↦ trace(FM(x)).

Proof. We follow the proof in [18, Lemma 5.5 p. 42].
A coherent sheaf on X is simply a finite-dimensional Fq-vector space. The

Frobenius on X is the identity, so (V, f) ∈ CohF(X) is a vector space together
with a linear endomorphism f . The trace defines an additive function and
induces a morphism K●(X) → Fq. This morphism has a section Fq

s
Ð→ K●(X)
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taking λ ∈ Fq to [Fq, λ ⋅ id], so it suffices to show that s is surjective.
Assume that dim(V ) ≥ 2. If V has a proper, nonzero f -invariant subspace W ,
there is a short exact sequence

0→ (W,f)→ (V, f)→ (V /W, f̄)→ 0

and we reduce to W resp. V /W which have both dimension strictly smaller
than dim(V ). Otherwise pick a basis vi of V and let f(vi) = wi. Let

f1(vi) =

⎧⎪⎪
⎨
⎪⎪⎩

v1 i = 1,
wi − vi i ≥ 2

and f2(vi) =

⎧⎪⎪
⎨
⎪⎪⎩

w1 − v1 i = 1,
vi i ≥ 2

.

Then f = f1 + f2 and f1, f2 have invariant nonzero subspaces, so we can make
use of the crucial relation (B) to reduce to the first case. By induction, we
may assume that dim(V ) = 1. Then the endomorphism is given by λ ∈ Fq.

Lemma 3.9. Let X be a scheme of finite type over Fq and [M, FM] ∈K●(X),
then

(i) [M, FM] = 0 if FmM = 0 for some m > 0.

(ii) [M, FM] =
k

∑
i=1

[M, Fi,i] ifM =M1⊕. . .⊕Mk and Fi,j is the composition

Mi →M
FM
ÐÐ→ Frobq*(M)→ Frobq*(Mj).

(iii)
n

∑
i=0

(−1)i[Fi] =
n

∑
i=0

(−1)i[Hi] if

0→ Fn → . . .→ F0 → 0

is a complex of F-modules and Hi denotes the ith homology sheaf.

(iv) [M] =
N

∑
i=0

(−1)i[Gi] if there is a finite resolution of F-modules:

0→ GN → . . .→ G0 →M→ 0.

Proof. We follow the proof in [18, Lemma 5.11/ 5.12, pp. 44–45].
By FmM we mean the composition

M→ Frobq*(M)→ . . .→ Frobm
q*
(M)

and we say that the action FM is nilpotent if this composition vanishes for
some m > 0.
The class of the kernel (Ker(FM),0) in the Grothendieck group is zero by
Remark 3.6. Furthermore, the induced Frobenius action FM onM/Ker(FM)

is nilpotent, namely Fm−1
M = 0. Using the short exact sequence

0→ (Ker(FM),0)→ (M, FM)→ (M/Ker(FM), FM)→ 0,

the assertion follows by induction on m.
For (ii), let Gi,j be the compositionM→Mi

Fi,j
ÐÐ→ Frobq*(Mj)→ Frobq*(M).

Then FM = ∑
i,j
Gi,j and, therefore, [M, FM] = ∑

i,j
[M,Gi,j]. But G2

i,j = 0 for
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i ≠ j, hence [M, FM] =
k

∑
i=1

[M,Gi,i]. To conclude, we use the short exact
sequence

0→ (Mi, Fi,i)→ (M,Gi,i)→ (⊕
j≠i
Mj ,0)→ 0.

In order to prove (iii), we note that the sheaves Ki = Ker(Fi → Fi−1), Ji =
Im(Fi → Fi−1), Hi = Ki/Ji+1 are F -modules with the induced actions and it
holds that

[Fi] = [Ki] + [Ji] and [Hi] = [Ki] − [Ji+1].

Therefore
n

∑
i=0

(−1)i[Fi] =
n

∑
i=0

(−1)i([Ki] + [Ji]) =
n

∑
i=0

(−1)i([Hi] + [Ji+1] + [Ji])

= (
n

∑
i=0

(−1)i[Hi]) + [J0] + [Jn+1] =
n

∑
i=0

(−1)i[Hi].

Of course, (iii) implies (iv) as all homology sheaves Hi vanish.

3.4 Functorial properties of K●

We observe that K●∶ (Sch/Fq)→ Vect(Fq) is indeed a covariant functor:

Proposition 3.10. For a proper morphism f ∶X → Y we obtain an induced
map f∗ on Grothendieck groups via

f∗([M]) ∶=∑
i≥0

(−1)i[Rif∗(M)] ∈K●(Y ).

If g∶Y → Z is another proper morphism, then we have (g○f)∗ = g∗○f∗∶K●(X)→

K●(Z).

Proof. For a coherent OX -module M and a proper morphism, the higher
direct images are coherent as well (cf. [10, EGA III 3.2.1]). It remains to
show that all Rif∗(M) admit Frobenius actions and that the above formula
is compatible with the relations (A) and (B). We already know that there are
induced actions on all Rif∗(M) as pointed out in Construction 3.1, since the
Frobenius commutes with any morphism of schemes, but let us examine this
in more detail.
If (M, FM) ∈ CohF(X), then restricting to some f−1(U) for U ⊆ Y an

affine open subset, gives a Frobenius action onM∣f−1(U) and thus an induced
morphism on Γ(U,Rif∗(M)) =H i(f−1(U),M). These glue to give the desired
one on Rif∗(M). To see that we have successfully defined an additive function
CohF(X)→K●(Y ) we consider a short exact sequence of F -modules,

0→ (M
′, FM′)→ (M, FM)→ (M

′′, FM′′)→ 0.

The derived functors Rif∗ form a cohomological δ-functor (see e.g. [25, 2.4.6]
for a proof of the dual statement for left derived functors), so there is an
induced long exact sequence. The definition of δ-functors already implies that
this is compatible with the Frobenius actions:

. . .→ Rif∗(M
′
)→ Rif∗(M)→ Rif∗(M

′′
)→ Ri+1f∗(M

′
)→ . . . .
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As cohomology vanishes in large dimensions (see [11, II Thm. 2.7]), we get a
well defined relation for the alternating sums

∑
i≥0

(−1)i[Rif∗(M)] =∑
i≥0

(−1)i[Rif∗(M′
)] +∑

i≥0
(−1)i[Rif∗(M′′

)] ∈K●(Y ).

Each of the functions Rif∗∶CohF(X)→K●(Y ) factors through the type (B)
relations, so this is also true for their alternating sum.
For the second part of the proposition, we make use of a Grothendieck spectral
sequence (see e.g. [25, 5.8.3] or [9, 2.4.1]) for the left exact functors f∗ and g∗:
There exists a cohomological (first quadrant) spectral sequence

Ep,q2 = Rpg∗(R
qf∗(M)) Ô⇒ Hp+q

= Rp+q(g ○ f)∗(M).

Let us temporarily define ∑Ek ∶= ∑
p,q

(−1)p+q[Ep,qk ] ∈ K●(Z), for k ≥ 2. This is

well defined, as our spectral sequence is bounded in the sense that Ep,qk = 0 for
p or q > max{dim(X),dim(Y )}.
By some homological yoga one sees that ∑Ek = ∑Ek+1. Moreover, by conver-
gence of the spectral sequence, for some k big enough there are short exact
sequences of the form

0 F l F l−1 El−1,n−l+1
k 0,

for all 1 ≤ l ≤ n. Here 0 ⊆ Fn ⊆ . . . ⊆ F 0 = Hn is a filtration of Hn. Using
Fn = En,0k we conclude that [Rn(g○f)∗(M)] = ∑

p+q=n
[Ep,qk ]. Then by definition

(g ○ f)∗[M] = ∑
n≥0

(−1)n[Rn(g ○ f)∗(M)] = ∑
n≥0

(−1)n ∑
p+q=n

[Ep,qk ] =∑Ek.

Finally, we compute
g∗(f∗[M]) = g∗(∑

q≥0
(−1)q[Rqf∗(M)])

=∑
q≥0

(−1)q∑
p≥0

(−1)p[Rpg∗(Rqf∗(M))]

=∑
p,q

(−1)p+q[Rpg∗(Rqf∗(M))] =∑E2,

which finishes the proof.

We discuss a remarkable functorial property of K●, which fails for usual
K-theory of schemes.

Lemma 3.11. Let i∶Z → X be a closed immersion. Then the restriction
defines a morphism i∗∶K●(X)→K●(Z) and i∗∶K●(Z)→K●(X) is a split. As
a consequence, K●(Z) is a direct summand of K●(X).

Proof. We follow the proof in [7, Lemma 2 p. 192].
We will implicitly use that i∗ is fully faithful and talk about morphisms

of sheaves on Z but in fact use their pushforwards to X. Now, if I denotes
the ideal sheaf of Z in X, we note that FM(IM) ⊆ IqM and we obtain an
induced action FM on the quotientM/IM = i∗(M). Hence, we have defined
a function CohF(X)→K●(Z).
This fulfills (B), as F1 + F2 = F1 +F2. It remains to prove that this function is
additive with respect to short exact sequences. Let

0→ (M
′, FM′)→ (M, FM)→ (M

′′, FM′′)→ 0
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be exact in CohF(X). Pullback of sheaves is, of course, not an exact functor so
we have to look for some tricks. There is a commutative diagram, compatible
with the Frobenius actions

0 IM ∩M′ IM IM′′ 0

0 M′ M M′′ 0.

Taking quotients, we obtain a short exact sequence (e.g. by snake lemma)

0→M′
/IM ∩M

′
→M/IM→M

′′
/IM

′′
→ 0.

By a similar argument, there is also an exact sequence

0→ IM ∩M
′
/IM

′
→M

′
/IM

′
→M

′
/IM ∩M

′
→ 0.

Now, we are in good shape, because

[M/IM] = [M
′
/IM ∩M

′
] + [M

′′
/IM

′′
]

= [M
′
/IM

′
] − [IM ∩M

′
/IM

′
] + [M

′′
/IM

′′
],

and it would suffice to prove that [IM ∩M′/IM′] = 0.
If we restrict to some affine open, M becomes a module and the filtration
M ⊇ IM ⊇ I2M ⊇ . . . is of course I-stable. By Artin–Rees [5, Lemma 5.1,
p. 146],M′ ⊇ IM ∩M′ ⊇ I2M ∩M′ ⊇ . . . is I-stable as well, i.e. there exists
n ≥ 0 such that Ij+nM ∩M′ = Ij(InM ∩M′) for all j ≥ 0, so in particular
IkM ∩M′ ⊆ IM′ for k ≫ 0. As Z is Noetherian, we can take n big enough,
such that InM∩M′ ⊆ IM′ as sheaves on all of Z. For large m (already m ≥ n
suffices) this yields

FmM′(IM ∩M
′
) ⊆ I

qm

M ∩M
′
⊆ IM

′

and, therefore, FM′ is nilpotent on IM∩M′/IM′. We conclude by Lemma 3.9.
Obviously, i∗ ○ i∗ = id for closed immersions i and so the proof is complete.

Corollary 3.12. If X is a scheme of finite type over Fq and X1, . . . ,Xr are
the connected components of X, then there is an isomorphism

r

⊕
i=1
K●(Xi) ≃K●(X).

Proof. Let fi∶Xi ↪ X be the inclusion. The sum of the pushforwards defines
a morphism

r

⊕
i=1
K●(Xi)→K●(X) with restriction of sheaves as inverse, by the

previous lemma.

Example 3.13. We consider the set of rational points of the projective space
Pn, which is a closed subscheme, equipped with the reduced structure. Using
the decomposition Pn = An∪Pn−1, we find that ∣Pn(Fq)∣ = 1+q+ . . .+qn. Then
the previous result, together with Lemma 3.8 implies:

K●(Pn(Fq)) ≃ F⊕1+q+...+qn

q .

Lemma 3.14. Let X be a scheme of finite type over Fq and i∶Z ↪ X a
closed subscheme. If (M, FM) is an F -module on X with support in Z, then
[M, FM] ∈ i∗(K●(Z)).
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Proof. If I is the ideal sheaf of Z in X, then there is a filtrationM ⊇ IM ⊇

. . . ⊇ IkM = 0 of F -modules, where all successive quotients are sheaves on Z.
Indeed, locallyM is a finite module M over a Noetherian ring A and I is the
restriction of I. By assumption,

SuppM = V(AnnM) ⊆ V(I).

We let k ≫ 0 such that Ik ⊆ AnnM , so IkM = 0. As X is quasi-compact, one
can take k big enough, such that IkM = 0 globally. This yields short exact
sequences, compatible with the Frobenius actions, of the form:

0→ Ij+1
M→ I

j
M→ I

j
M/I

j+1
M→ 0.

Consequently, [M] = [M/IM] ∈ K●(X), since the Frobenius acts trivially
on IjM/Ij+1M for j ≥ 1. Hence, [M, FM] is contained in the image of
K●(Z).

Remark 3.15. For flat morphisms, the pullback of coherent sheaves is exact
and respects sums of Frobenius actions. Therefore, K● is contravariant for
flat morphisms as well, in particular for open immersions. Combined with
Lemma 3.11, we see that every immersion f ∶X → Y , i.e. an isomorphism of X
with an open subscheme of a closed subscheme of Y , induces a morphism:

K●(Y )→K●(X)

[M, FM]↦ [f∗(M), f∗(FM)].

3.5 Computation of K●(Pn)
We compute the Grothendieck group K●(Pn), using the investigation of F -
modules on the projective space from the previous section.

Lemma 3.16. The dimension of K●(Pn) as an Fq-vector space equals 1+ q +
. . . + qn. Moreover, the inclusion i′∶Pn(Fq)↪ Pn induces an isomorphism

i′∗∶K●(Pn(Fq))
≃
Ð→K●(Pn).

The inverse is given by the restriction as described in Lemma 3.11.

In the proof we will also see that this group is generated by line bundles
O(−l) with certain Frobenius actions and we determine an explicit class of
generators.

Proof. We follow the proof in [18, Prop. 5.13, pp. 45–47].
We proceed in several steps:

Step 1: Suppose that M is a coherent sheaf on Pn with a Frobenius ac-
tion FM. From the discussion in Section 2 we know that we can pass to its
associated graded S-module M , together with an endomorphism ϕ.
There exists a graded free resolution of M by the Hilbert Syzygy Theorem

(see e.g. [5, 19.7]),

0→ Fn+1 → . . .→ F1 → F0 →M → 0,

such that Fj =⊕
i
S(−ki,j) with ki,j ∈ Z.

As F0 is projective, the endomorphism ϕ ofM can be lifted to give a graded
Frobenius action ϕ0 on F0. Next, we consider the kernel K of F0 → M and
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observe that F1 surjects onto K. We use that F1 is projective as well to lift ϕ0
and then we continue in this manner. Eventually, we get an exact sequence
that is compatible with the graded Frobenius actions, which yields a relation
(by Lemma 3.9 (iv)) in K●(Pn):

[M̃] =
n+1
∑
i=0

[F̃i].

Now Lemma 3.9 (ii) implies thatK●(Pn) is generated, as an Fq-vector space,
by the set of all [O(−l), xa0

0 ⋅ ⋅ ⋅ xan
n ], where ai ≥ 0 and

n

∑
i=0
ai = ql − l.

Step 2: We detect a crucial relation that holds in K●(Pn) to eliminate some
of the generators that we determined in the first step.
For this, consider the hyperplane H = V (xi) in Pn that comes with a short
exact sequence

0→ O(−1)→ OPn → OH → 0.

We twist by O(−l + 1) and notice that the resulting sequence is compatible
with the Frobenius actions given by xqi f resp. xif with f ∈H0(Pn,O(ql−l−q))
(cf. Example 2.19):

0→ (O(−l), xqi f)→ (O(−l + 1), xif)→ (OH(−l + 1),0)→ 0.

We use that OH = S̃/(xi), so the induced graded Frobenius action by xif on
the quotient is zero and its class in the Grothendieck group is zero as well by
Remark 3.6. We deduce that

[O(−l), xqi f] = [O(−l + 1), xif] ∈K●(Pn).

This allows us to reduce the degree of a monomial that determines a Frobenius
action, whenever there is some exponent greater than q − 1.
Step 3: So far, we have shown that it suffices to consider only those mono-
mials xa0

0 ⋅ ⋅ ⋅ xan
n with ai ≤ q − 1 for all i. In a final step, we will prove that

also [O(−n − 1), xq−1
0 ⋅ ⋅ ⋅ xq−1

n ] can be removed from our set of generators. For
this purpose, we equip S(−1) with the action given by xq−1

i and denote the
associated F -module on Pn by Li. We obtain a complex of graded Frobenius
modules (cf. Example 2.19):

0→ S(−1) ⋅xi
Ð→ S → 0.

The tensor product of all these complexes yields the Koszul complex, associ-
ated to the regular sequence x0, . . . , xn ∈ S:

0→ En+1 → En → . . .→ E1 = S(−1)⊕n+1
→ S → 0.

The cokernel at the right end is C = S/(x0, . . . , xn). But C as a graded S-
module is concentrated in a finite number of degrees (actually just in degree
zero). Hence C̃ = 0 and the sequence becomes exact after passing to the
associated sheaves on Pn:

0→ En+1 → . . .→ E1 = L0 ⊕ . . .⊕Ln → OPn → 0.

Then
Er = ⊕

0≤i1<...<ir≤n
(Li1 ⊗ . . .⊗Lir) ≃ O(−r)⊕(

n+1
r
)
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and the action on O(−r) ≃ Li1⊗. . .⊗Lir is given by xq−1
i1

⋅⋅⋅xq−1
ir

. By Lemma 3.9,
we can express [O(−n− 1), xq−1

0 ⋅ ⋅ ⋅xq−1
n ] in terms of the remaining generators.

Step 4: We put everything together and count how many generators are left.
This number will be called bn.
The condition that the monomial xa0

0 ⋅ ⋅ ⋅ xan
n defines an action on O(−l) for

some l ≥ 0 ensures that
n

∑
i=0
ai = (q − 1)l, thus

n

∑
i=0
ai ≡ 0 mod q − 1. We compute

bn by induction, distinguishing two cases:
Assume we are given a0, . . . , an−1, satisfying 0 ≤ ai ≤ q − 1 with at least

one aj < q − 1, such that
n−1
∑
i=0

ai ≡ 0 mod q − 1. There are bn−1 such tuples
a0, . . . , an−1. Then an can either be 0 or q − 1.

Otherwise, if a0 = . . . = an−1 = q−1 or if
n−1
∑
i=0

ai /≡ 0 mod q−1 and 0 ≤ ai ≤ q−1,
which happens for qn−bn−1 tuples, there is precisely one choice for an to make
xa0

0 ⋅ ⋅ ⋅xan
n a valid monomial in the sense of the discussion above. We conclude

that
bn = 2 ⋅ bn−1 + 1 ⋅ (qn − bn−1) = bn−1 + q

n.

As b0 = 1, it follows that dimFq K●(Pn) ≤ 1 + q + . . . + qn.
The number of rational points of the projective space is ∣Pn(Fq)∣ = 1 + q +

. . . + qn and by Corollary 3.12 this is precisely the dimension of K●(Pn(Fq))
as an Fq-vector space. The inclusion i′∶Pn(Fq) ↪ Pn induces an injection

K●(Pn(Fq))
i′∗
Ð→ K●(Pn) by Lemma 3.11. Comparing dimensions, this has to

be an isomorphism and the proof is complete.

Corollary 3.17. For the projective space, the Poincaré homomorphism

cPn ∶K●
(Pn) ≃

Ð→K●(Pn)

is an isomorphism.

Proof. Surjectivity follows from the proof of the previous lemma, sinceK●(Pn)
is generated by line bundles. We could have done the same discussion just with
locally free sheaves and conclude, that K●(Pn) is generated by the same line
bundles and so the assertion follows.

4 The main theorem
In this section we give a proof of the localization theorem, from which we
deduce Fulton’s trace formula.

Theorem 4.1 (Localization Theorem). Let X be a scheme of finite type over
Fq. Then the inclusion i∶X(Fq)↪X induces an isomorphism

i∗∶K●(X(Fq))
≃
Ð→K●(X).

The inverse is given by the restriction i∗ as described in Lemma 3.11.

Proof. We follow the proof in [7, pp. 193–194].
The proof will consist of several steps. Using the computation of K●(Pn),

we have already seen that the theorem holds true for the projective space.
The case of an arbitrary projective scheme will then be a formal consequence.
Afterwards, we treat the case of a quasi-projective scheme and finally we use
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Chow’s Lemma to prove the assertion for X of finite type over Fq.
Step 1: For a projective scheme X over Fq we fix a closed immersion j∶X ↪
Pn. The restriction of j to the set of rational points is called j′ and we let i
be the inclusion X(Fq)↪X. There is a commutative diagram

X(Fq) Pn(Fq)

X Pn.

j′

i i′

j

We will make use of the fact that i′∗ ○ j∗ = j′∗ ○ i
∗ which follows from the

observation that X ∩ Pn(Fq) = X(Fq) as closed subschemes of Pn. Now, we
apply K● and use Lemma 3.16:

j∗i∗i
∗
= i′∗j

′
∗i
∗
= i′∗i

′∗j∗ = j∗.

Composing with j∗ on the left gives the desired identity i∗ ○ i∗ = idK●(X). By
Lemma 3.11 the assertion follows:

i∗∶K●(X(Fq))
≃
Ð→K●(X),

with inverse i∗.
Step 2: Next, we consider the case when X is quasi-projective.
As the theorem holds true for Pn, we have that [OPn ,Frobq] = [i∗OPn(Fq), id] ∈
K●(Pn), since the Frobenius on Pn(Fq) is the identity. The pushforward
i∗OPn(Fq) is a coherent F -module and we use Step 1 of the proof of Lemma 3.16
to obtain a finite resolution by locally free F -modules:

0→ Fn+1 → . . .→ F0 → i∗OPn(Fq) → 0.

Thus, [OPn] =
n+1
∑
i=0

(−1)i[Fi] ∈K●(Pn) by Lemma 3.9 and this identity holds in

K●(Pn) as well, using the isomorphism from Corollary 3.17.

If f ∶X → Pn is an immersion, we obtain that [OX ,Frobq] =
n+1
∑
i=0

(−1)i[f∗(Fi)] ∈

K●(X). We make use of the module structure of K●(X) over K●(X) and find
that

[M] = [OX ⊗M] =
n+1
∑
i=0

(−1)i[f∗(Fi)⊗M],

for any F -moduleM on X.
By Lemma 3.9, we can express this as an alternating sum of the homology

sheaves of the complex f∗(F●) ⊗M, i.e. [M] =
n+1
∑
i=0

(−1)i[Hi]. Observe that

for each point x ∈ Pn ∖ Pn(Fq) there is a neighbourhood where F● is ex-
act. Therefore, the pullback to X and also tensoring with M stays exact,
since all Fi are locally free. Thus, the homology sheaves are supported on
f−1(Pn(Fq)) = X(Fq). Using Lemma 3.14 we see that K●(X(Fq)) → K●(X)

is indeed surjective.
Step 3: For general X we use Chow’s Lemma ([23, Lemma 29.18.1]) and
obtain a proper morphism f ∶ X̃ →X over Fq with X̃ quasi-projective. In fact,
f can be chosen such that it induces an isomorphism f−1(U) → U for U ⊆ X
open, dense.
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Let (M, FM) be an F -module on X. The unit id → f∗ ○ f
∗ induces an exact

sequence of F -modules (we plugged in the kernel and cokernel):

0→ K →M→ f∗f
∗
(M)→ C → 0.

On U , the pullback and pushforward are inverse to each other, hence C and
K are supported on Y = X ∖ U . By the same argument, the pushforward f∗
is exact on f−1(U) and all higher direct images of OX̃ -modules are supported
on Y. Then the following equality holds in K●(X):

[M] = [K] − [C] + [f∗f
∗
(M)]

= [K] − [C] + f∗[f
∗
(M)] −∑

i≥1
(−1)i[Rif∗f∗(M)].

Consequently, the morphism K●(X̃)⊕K●(Y )→K●(X) is surjective.
By noetherian induction, we may assume that the theorem holds true for
Y . Since X̃ is quasi-projective, we can use Step 2 and obtain the following
commutative diagram:

K●(X̃(Fq))⊕K●(Y (Fq)) K●(X(Fq))

K●(X̃)⊕K●(Y ) K●(X).

≃
i∗

Then it follows that i∗ is surjective as well and we are done.

Corollary 4.2. Let X be a scheme of finite type over Fq and i∶Z ↪ X a
closed subscheme. Denote by U the open subscheme X ∖ Z and j∶U ↪ X the
inclusion. Then there is an exact sequence

0 K●(Z) K●(X) K●(U) 0.i∗ j∗

Proof. We consider the diagram

0 K●(Z(Fq)) K●(X(Fq)) K●(U(Fq)) 0

0 K●(Z) K●(X) K●(U) 0.

i∗

≃

j∗

≃ ≃

i∗ j∗

The upper sequence is exact by Corollary 3.12 and the squares commute,
since the isomorphisms are given by pushforwards. Hence the lower sequence
is exact as well.

Theorem 4.3 (Fixed Point Formula). Let X be a proper scheme of dimension
d over Fq and let (M, FM) be a coherent F -module on X. Then

∑
x∈X(Fq)

trace(FM(x)) =
d

∑
i=0

(−1)i trace(FM∣H i
(X,M)) ∈ Fq. (1)

Proof. Due to Theorem 4.1, there is a commutative diagram:

K●(X(Fq)) K●(X)

K●(SpecFq),

p∗

i∗

π∗
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where p and π are the structure morphisms. Then the higher direct image
Riπ∗ is the same as cohomology H i, therefore

π∗[M, FM] =
d

∑
i=0

(−1)i[H i
(X,M), FM].

Implicitly, we make use of the fact that K●(X(Fq)) ≃ ⊕
x∈X(Fq)

K●(SpecFq) from

Lemma 3.12. Then the pullback of M is the collection of all the fibres over
rational points:

i∗[M, FM] = ([Mx ⊗ k(x), FM(x)])x∈X(Fq).

Again, Rip∗ corresponds to taking the ith cohomology, but as X(Fq) is zero-
dimensional, the pushforward on Grothendieck groups degenerates to:

p∗ ○ i
∗
[M, FM] = ∑

x∈X(Fq)
[Mx ⊗ k(x), FM(x)].

Finally, we use Lemma 3.8 which gives an isomorphism of K●(SpecFq) with
Fq via the trace of the Frobenius action.

Remark 4.4. The assumption that X is proper over Fq is crucial. It ensures
for instance that the cohomology groups are finite-dimensional as Fq- vector
spaces. Already the pushforward K●(X)→K●(SpecFq) does not even exist if
we drop the condition of properness (consider e.g. the affine line).

The trace formula, announced in the introduction, is now a simple conse-
quence.

Theorem 4.5 (Trace Formula). If X is a proper scheme of dimension d over
a finite field Fq, then

∣X(Fq)∣ ≡
d

∑
i=0

(−1)i trace(Frobq ∣H i
(X,OX)) mod p. (2)

Proof. Consider the F -module (OX ,Frobq) and bear in mind that the fibres
over rational points are equal to Fq and so the Frobenius acts as the identity on
all of these. What remains on the left hand side of the fixed point formula (1)
is the number of rational points.

In particular, this implies that the right hand side is actually contained in
Fp, which is a priori not clear at all. The result is interesting, because it is
useful in both directions. Not only that we can calculate ∣X(Fq)∣ modulo p,
but if we already know the number of rational points, say by using a computer,
we get information about cohomology.
Using a base change to a finite extension Fq ↪ Fqm we obtain the following

result:

Corollary 4.6. If X is a proper scheme of dimension d over a finite field Fq,
then

∣X(Fqm)∣ ≡
d

∑
i=0

(−1)i trace(Frobm
q ∣H i

(X,OX)) mod p.
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Proof. Observe that the Frobenius on the base change Xm =X ×Fq Fqm equals
Frobm

q × id and we have a canonical isomorphism

H i
(Xm,OXm) ≃H i

(X,OX)⊗Fq Fqm .

The assertion now follows immediately from the trace formula (2).

Remark 4.7. Passing from X to its reduction Xred does not change the
number of rational points, but it is far from clear that all information, encoded
by the right hand side of the formula, is captured by the reduced scheme
structure of X.

5 Examples and applications
The results of the previous sections will be used to study the number of rational
points on certain schemes. We will focus on the case of Calabi–Yau varieties.

5.1 Chevalley–Warning and p-adic estimates
We obtain the Chevalley–Warning theorem (which can be found in [4], [24])
as a consequence of the trace formula. This classical result can be stated in
two versions that we quickly prove to be equivalent.

Theorem 5.1. Let Fq be a finite field of characteristic p. Then the following
holds:

(i) If F1, . . . , Fr ∈ Fq[x1, . . . , xn] are polynomials of degree deg(Fi) = di with
d1 + . . . + dr < n defining an affine variety X, then:

∣X(Fq)∣ ≡ 0 mod p.

(ii) If F1, . . . , Fr ∈ Fq[x0, . . . , xn] are homogeneous polynomials of degree
deg(Fi) = di with d1 + . . . + dr < n + 1 defining a projective variety X,
then:

∣X(Fq)∣ ≡ 1 mod p.

Remark 5.2. Henceforth we also use the shorthand N(X) = ∣X(Fq)∣.
To show that the two assertions are equivalent, we first assume that (i) holds
true. Denote by C the affine cone of the projective variety X. Then N(C) is
divisible by p and:

N(X) =
N(C) − 1
q − 1

.

This implies that
N(X) − 1 = N(C) − q

q − 1
,

which is divisible by p as well and we get N(X) ≡ 1 mod p.
For the other implication we let X be the affine variety given by F1, . . . , Fr ∈

Fq[x1, . . . , xn] with
r

∑
i=1
di < n. Introducing a variable x0 gives rise to a projec-

tive variety Y ⊆ Pn, such that Y ∩ {x0 = 1} = X. We consider Y ∩ {x0 = 0},
which is a projective variety in Pn−1. The restriction of the polynomials still
satisfies

r

∑
i=1
di < n so we can apply (ii) to Y and Y ∩ {x0 = 0} which yields:

N(X) ≡ N(Y ) −N(Y ∩ {x0 = 0}) ≡ 1 − 1 ≡ 0 mod p.
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Proof of 5.1. We prove the second version of the theorem.
The condition d1 + . . . + dr < n + 1 ensures that the structure sheaf OX

has no higher cohomology (by a standard argument which can be found e.g. in
[22, Prop. 4.3, pp. 58–59]). We treat the case whenX is a complete intersection
given by F1, . . . , Fr.
Consider the locally free sheaf E =⊕

i
O(di) and the global section (F1, . . . , Fr).

The associated Koszul complex is a finite locally free resolution of OX (see e.g.
[8, pp. 75–77] or [5, III §17 pp. 427–436] for a more detailed discussion of Koszul
complexes):

0→ ΛrE∗ → Λr−1
E
∗
→ . . .→ Λ2

E
∗
→ E

∗
→ OPn → OX → 0.

From this, we extract that OX has no higher cohomology since O(l) is acyclic
for l > −n − 1. The Frobenius acts as the identity on global sections so the
assertion follows immediately from the trace formula.

Remark 5.3. In contrast to the above argument, the original proof of the
Chevalley–Warning theorem is very short, using an ingenious polynomial ar-
gument.
That this theorem follows from the trace formula should not be seen as a new
proof but rather as a sign that coherent cohomology is fine enough to detect
congruences modulo p.

We state a generalization which is due to Ax and Katz.

Proposition 5.4. Let X ⊆ Pn be the projective variety given by homogeneous
polynomials F1, . . . , Fr ∈ Fq[x0, . . . , xn] of degree deg(Fi) = di. Assume that
d1 ≥ . . . ≥ dr and

r

∑
i=1
di < n + 1. Then for each positive integer b, satisfying

b <
n+1−(d1+...+dr)

d1
+ 1, it holds that:

∣X(Fq)∣ ≡ ∣Pn(Fq)∣ mod qb.

Proof. A proof can be found in [1] and [14].

By taking b = 1, we obtain a congruence modulo q. A new proof of this
result was later given by Berthelot, Bloch and Esnault, using Witt vector
cohomology (cf. [2]).

5.2 Applications to Calabi–Yau varieties and further examples
We observe that for Calabi–Yau varieties the notion of Frobenius split is closely
related to the existence of a rational point. Later we investigate two classes of
Calabi–Yau hypersurfaces in the projective space and distinguish them, using
the trace formula.

Definition 5.5. Let X be a smooth, proper variety of dimension n and ωX
its canonical bundle. We say that X is a Calabi–Yau variety, if

(i) ωX ≃ OX and

(i) H i(X,OX) = 0 for 0 < i < n.

Proposition 5.6. If X is a Calabi–Yau variety over Fq, then X is Frobenius
split if and only if ∣X(Fq)∣ /≡ 1 mod p.
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Proof. This is immediate from Lemma 2.12, together with the trace formula.

Remark 5.7. The previous lemma in particular implies that a Calabi–Yau
variety has a rational point if it is not split. To check, whether a variety
X is not split can be relatively easy; according to [3, Thm. 1.2.8, p. 16], it
would suffice to find an ample line bundle L ∈ Pic(X) and some i ≥ 1 with
H i(X,L) ≠ 0.

Proposition 5.8. Let f ∈ Fq[x0, . . . , xn] be a homogeneous polynomial of de-
gree n + 1, with n ≥ 2, defining the hypersurface X ⊆ Pn. The following asser-
tions are equivalent:

(i) The action induced by the Frobenius morphism on Hn−1(X,OX) is bi-
jective (equivalently, it is nonzero).

(ii) ∣X(Fq)∣ /≡ 1 mod p.

(iii) The coefficient of (x0 ⋅ ⋅ ⋅ xn)
q−1 in f q−1 is nonzero.

(iv) The coefficient of (x0 ⋅ ⋅ ⋅ xn)
p−1 in fp−1 is nonzero.

Proof. We follow the proof in [18, Prop. 5.15, pp. 47–48].
The ideal sheaf of X in Pn is O(−n−1), so there is the short exact sequence

0→ O(−n − 1)→ OPn → OX → 0.

Thus, OX has cohomology only in degree 0 and n − 1 namely h0(OX) =

hn−1(OX) = 1. The Frobenius on the global sections H0(X,OX) ≃ Fq is the
identity, so the trace formula looks like:

∣X(Fq)∣ ≡ 1 + (−1)n−1 trace(Frobq ∣Hn−1
(X,OX)) mod p.

As hn−1(OX) = 1, the trace vanishes if and only if the action on Hn−1(X,OX)

vanishes and we have proved the equivalence of (i) and (ii).
Let cr be the coefficient of (x0 ⋅ ⋅ ⋅ xn)

pr−1 in fpr−1. By an elementary cal-
culation (cf. [18, p. 48]) we find that cr = c1+p+...+pr−1

1 , which proves that (iii)
and (iv) are equivalent.
The short exact sequence mentioned above gives rise to a short exact se-

quence of Čech complexes with respect to the standard affine open cover of Pn.
We keep in mind thatHn(Pn,O(−n−1)) is generated by 1

x0⋯xn
as an Fq- vector

space (see e.g [11, Thm. 5.1, pp. 225–228]). Computing the boundary opera-
tor δ∶Hn−1(X,OX)

≃
Ð→Hn(Pn,O(−n− 1)) explicitly shows that the Frobenius

on the cohomology of X corresponds to the endomorphism w ↦ f q−1wq of
Hn(Pn,O(−n − 1)). We express f q−1 uniquely as f q−1 = cr(x0 ⋅ ⋅ ⋅ xn)

q−1 + g
with g ∈ (xq0, . . . , x

q
n). Then

1
x0 ⋅ ⋅ ⋅ xn

↦ (cr(x0 ⋅ ⋅ ⋅ xn)
q−1

+ g) (
1

x0 ⋅ ⋅ ⋅ xn
)
q

= cr ⋅
1

x0 ⋅ ⋅ ⋅ xn
,

since all other monomials become zero.

Remark 5.9. If in addition X is smooth and satisfies one (and hence all) of
the above conditions, X is called ‘ordinary’. Otherwise, it is called ‘supersin-
gular’.
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Example 5.10. The proposition proposes a class of examples where the the-
orem of Chevalley–Warning fails, as the degrees of the polynomials are too
big. As an explicit one we consider the Fermat hypersurface X defined by
f = xn+1

0 + . . . + xn+1
n in Pn. Furthermore, we assume that the characteristic of

Fq is p = (n + 1)l + 1 for some l ∈ Z. Then X is smooth as the Jacobian van-
ishes nowhere and using some combinatorics we compute that the coefficient
of (x0 ⋅ ⋅ ⋅ xn)

p−1 in fp−1 is

c1 =
(p − 1)!
l!n+1 .

This is clearly not divisible by p. Thus, by Proposition 5.8, X is ordinary and
the congruence suggested by Chevalley–Warning does not hold.

Example 5.11. We consider an elliptic curve C ⊆ P2 over Fp with p ≥ 5. By
the Hasse bound ([12]), there is always the estimate ∣N(C) − (p + 1)∣ ≤ 2√p. If
we assume that C is supersingular, i.e. N(C) ≡ 1 mod p by Proposition 5.8,
then actually N(C) = p + 1 as 2√p < p. Thus:

C is supersingular⇐⇒ ∣C(Fp)∣ = p + 1.

Example 5.12. We can extend our result to complete intersections X in Pn
of multidegree (d1, . . . , dr) with ∑

i
di = n + 1. For instance, if we consider

the scheme X = X1 ∩ X2 of codimension two, defined by F1 and F2 with
deg(F1)+deg(F2) = n+1 and denote by Y =X1 ∪X2 = V (F1 ⋅F2) the union of
the two hypersurfaces, we find that OXi has no higher cohomology and hence
N(Xi) ≡ 1 mod p by the trace formula.
The number of rational points of Y can be determined as the sum N(X1)+

N(X2) less those points that we counted twice, namely N(X) and we get:

N(X) ≡ N(X1) +N(X2) −N(Y ) ≡ 2 −N(Y ) mod p.

By Proposition 5.8 we conclude that

∣X(Fq)∣ ≡ 1 mod p ⇐⇒ ∣Y (Fq)∣ ≡ 1 mod p
⇐⇒ 0 = cr = coeff. of (x0 ⋅ ⋅ ⋅ xn)

q−1 in (F1 ⋅ F2)
q−1

⇐⇒ 0 = c1 = coeff. of (x0 ⋅ ⋅ ⋅ xn)
p−1 in (F1 ⋅ F2)

p−1.

Proposition 5.13. Let X ⊆ Pn be a complete intersection of codimension r,
defined by homogeneous polynomials F1, . . . , Fr of degree deg(Fi) = di. Fur-
thermore, we assume that d1 + . . . + dr = n + 1. Then the following assertions
are equivalent:

(i) The action induced by the Frobenius morphism on the cohomology group
Hn−r(X,OX) is bijective (equivalently, it is nonzero).

(ii) ∣X(Fq)∣ /≡ 1 mod p.

(iii) The hypersurface defined by (F1 ⋅ ⋅ ⋅ Fr) is ordinary.

Proof. A similar argument as in the proof of Corollary 5.1 shows that OX has
cohomology only in degree 0 and n− r, namely h0(OX) = hn−r(OX) = 1. This
proves the equivalence of (i) and (ii).
We denote by Xi the hypersurface defined by Fi, so that X = X1 ∩ . . . ∩Xr

and let Y =X1 ∪ . . . ∪Xr = V (F1 ⋅ ⋅ ⋅ Fr).
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To show the equivalence with (iii), we use the formula of the previous example
for the number of rational points and find by induction that:

N(X1 ∩ . . . ∩Xr) =∑
i1

N(Xi1) − ∑
i1<i2

N(Xi1 ∪Xi2) (⋆)

+ ∑
i1<i2<i3

N(Xi1 ∪Xi2 ∪Xi3) − . . . + (−1)r+1N(X1 ∪ . . . ∪Xr).

Applying the trace formula we obtain that N(Xi1 ∪ . . . ∪ Xik) ≡ 1 mod p,
whenever 0 ≤ k < r, since then Xi1 ∪ . . . ∪ Xik is a hypersurface defined by
a polynomial of degree at most n and so the structure sheaf has no higher
cohomology. Together with (⋆) this yields:

N(X) ≡ (
r

1
) − (

r

2
) + (

r

3
) − . . . + (−1)r( r

r − 1
) + (−1)r+1N(Y ) mod p

≡ (−1) ⋅ ((
r

∑
i=0

(−1)i(r
i
)) − (

r

0
) − (−1)r(r

r
)) + (−1)r+1N(Y ) mod p

≡ (−1) ⋅ (1 − 1)r + 1 + (−1)r + (−1)r+1N(Y ) mod p
≡ 1 + (−1)r + (−1)r+1N(Y ) mod p.

Then

N(X) ≡

⎧⎪⎪
⎨
⎪⎪⎩

N(Y ) mod p r odd
2 −N(Y ) mod p r even

and we conclude independence of r:

∣X(Fq)∣ ≡ 1 mod p ⇐⇒ ∣Y (Fq)∣ ≡ 1 mod p
⇐⇒ Y is supersingular hypersurface.
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