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Zusammenfassung

Maxim Kontsevich hat 1995 während eines Vortrages in Orsay die Theorie der motivischen
Integration eingeführt. Diese Theorie wurde dann hauptsächlich von Denef, Loeser [9],
Batyrev [2], und Looijenga [18] ausgearbeitet. Die zentralen Objekte sind zum einen der
Raum der formalen Schleifen einer Varietät X über einem Körper k. Dies ist ein Schema,
dessen k-rationale Punkte den k[[t]]-wertigen Punkten von X entsprechen. Zum anderen
wird ein Maß definiert, welches nicht reellwertig ist, sondern Werte in einer Erweiterung
des Grothendieck-Ringes der Varietäten annimmt. Dies ist einer der Gründe, warum diese
Theorie auch häufig geometrische, motivische Integration genannt wird, da das Volumen der
messbaren Mengen eine geometrische Interpretation besitzt.
Die motivische Integration hat sich seit ihrer Einführung als sehr nützlich erwiesen. Eines

der Hauptresultate, das mit dieser Theorie bewiesen wurde, ist, dass zwei glatte, birational
äquivalente Calabi–Yau Varietäten die gleichen Hodge-Zahlen besitzen. Diese Fragestellung
hat Anwendungen in der Stringtheorie. Zuvor hatte Batyrev bereits mithilfe p-adischer
Integration gezeigt, dass zwei solche Varietäten die gleichen Bettizahlen besitzen [3]. Kont-
sevich hat dann unter Verwendung der Transformationsformel der motivischen Integration
das stärkere Resultat über die Hodge-Zahlen bewiesen [16].
Das Ziel dieser Arbeit ist es eine einfach zugängliche Einführung in die Theorie der motivis-

chen Integration zu geben. Deshalb konzentrieren wir uns auf glatte, komplexe Varietäten.
Das erste Kapitel dient dem Verständnis des Raumes der formalen Schleifen eines Schemas
vom endlichem Typ über einem Körper. Dazu werden die so genannten Jet-Schemata un-
tersucht, welche endlichdimensionale Approximationen der Schleifenräume sind. Das zweite
Kapitel ist der Hauptteil der Arbeit. Zuerst werden die benötigten Bestandteile der Theorie
eingeführt. Anschließend wird das motivische Integral definiert und der Spezialfall eines
Divisors mit einfachen, normalen Überkreuzungen diskutiert. Danach wird die Transfor-
mationsformel, welche der Hauptbestandteil der Theorie ist, erläutert und bewiesen. Zum
Schluss werden wir Anwendungen der Theorie erörtern.
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Introduction

In 1995, Kontsevich introduced the theory of motivic integration during a lecture in Orsay.
The foundations then have been worked out by Denef, Loeser [9], Batyrev [2], and Looijenga
[18]. The main ingredients of this theory are, on the one hand, the space of arcs of a k-variety
X. This is a scheme, whose k-rational points are the k[[t]]-valued points of X. On the other
hand, one introduces a measure, which does not take values in the real numbers, but in an
extension of the Grothendieck ring of varieties. This is one of the reasons why the theory is
also often called geometric motivic integration, as the values are geometric in nature.
Since its introduction, motivic integration has proven to be very fruitful. One of its main

results is that two smooth birational equivalent Calabi–Yau varieties X and Y have the same
Hodge numbers, hp,q(X) = hp,q(Y ). The motivation behind this problem came from string
theory. Using methods of p-adic integration, Batyrev had already proven that two such
varieties have the same Betti numbers, that is dimH i(X,C) = dimH i(Y,C) [3]. Kontsevich
then used the transformation rule of motivic integration to prove the stronger result about
the Hodge numbers [16].
This thesis aims to give an easily accessible introduction to the theory of motivic inte-

gration. Therefore we focus on smooth complex varieties. The first chapter is dedicated
to understanding the arc space L(X) for a finite type k-scheme X. For this we will study
the so called jet schemes associated to X. The second chapter is the principal part of this
thesis. At first, the necessary ingredients for the theory will be introduced. Afterwards we
define the motivic integral and discuss the special case of simple normal crossings divisors.
Subsequently, we turn our attention to the transformation rule, which is the main tool of
the theory. At last, we will draw some consequences of this theorem.
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1 Jet schemes and arc spaces

In this section we define the jet schemes for a scheme X of finite type over an algebraically
closed field k of characteristic zero and we prove their existence as well as some of their
basic properties. The jet schemes are finite-dimensional approximations of the space of arcs,
which is the space on which we integrate in the next chapter. These spaces are not only used
for the purpose of motivic integration but also their geometry yields several new invariants.
This chapter closely follows [20].

1.1 Jet schemes

Definition 1.1. Let k be an algebraically closed field, X a scheme of finite type over k and
m ∈ Z≥0. A scheme of finite type over k is called the m-th jet scheme Lm(X) if for every
k-algebra A we have a functorial bijection

Hom
(
Spec(A),Lm(X)

)
' Hom

(
Spec(A[t]/(tm+1)), X

)
.

In other words, the functor taking a scheme X to its m-th jet scheme Lm(X) is right adjoint
to the base extension operation Spec(A) 7→ Spec(A)×k Spec(k[t]/(tm+1)).

As Lm(X) is required to be of finite type over k, it is completely described by the restriction
of its functor of points to affine schemes over k, cf. [11, Prop. VI-2]. Hence Lm(X) is unique
up to unique isomorphism if it exists.
For m > n we have the truncation morphism A[t]/(tm+1) � A[t]/(tn+1) which induces

a closed immersion Spec(A[t]/(tn+1)) ↪→ Spec(A[t]/(tm+1)). Hence, if Lm(X) and Ln(X)
exist, we get a projection πm,n : Lm(X) → Ln(X). As for m > n > k the truncation
morphisms commute, one has πn,k ◦ πm,n = πm,k.

Next we will show the existence of the m-th jet scheme in two steps.

Lemma 1.2. [20, Lem. 1.3] Let X be a scheme of finite type over k and suppose that the
m-th jet scheme Lm(X) exists. Then for an open U ⊂ X we have Lm(U) = π−1

m,0(U).

Proof. Observe that as topological spaces we have Spec(A) = Spec(A[t]/(tm+1)). For a
morphism Y → X to factor through U ⊂ X is a set-theoretic issue. Let Spec(A) →
Spec(A[t]/(tm+1)) be induced by the truncation morphism, which is a homeomorphism on the
underlying topological spaces. Thus we know that Spec(A[t]/(tm+1)) → X factors through
U if and only if Spec(A)→ Spec(A[t]/(tm+1))→ X factors through U .

Now giving a morphism Spec(A) → π−1
m,0(U) is equivalent to giving a morphism

Spec(A[t]/(tm+1)) → X such that the composition Spec(A) → Spec(A[t]/(tm+1)) → X
factors through U . By the previous discussion this is equivalent to Spec(A[t]/(tm+1)) → X
factoring through U which shows that π−1

m,0(U) = Lm(U).
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1.1. Jet schemes

Proposition 1.3. [20, Prop. 1.2] For every scheme X of finite type over k and every
m ∈ Z≥0 the m-th jet scheme Lm(X) exists.

Proof. Suppose first that X is affine. Thus we can write X = Spec(k[x1, . . . , xn]/I) for an
ideal I = (f1, . . . , fr). Subsequently giving a morphism Spec(A[t]/(tm+1))→ X is equivalent
to giving a morphism φ : k[x1, . . . , xn]/I → A[t]/(tm+1). By the universal property of the
polynomial ring this is equivalent to giving elements gi = φ(xi) =

∑m
j=0 ai,jt

j fulfilling
fl(g1, . . . , gn) = 0 for l ∈ {1, . . . , r}. This last condition can be rewritten as

fl(g1, . . . , gn) =
m∑
s=0

hl,s((ai,j)i,j)ts

for suitable polynomials hl,s. This can be achieved by ordering with respect to ts. We
now define Lm(X) as the spectrum of the ring k[x1,0, . . . , xn,m]/((hl,s)l,s). By construc-
tion this scheme fulfills the conditions of Definition 1.1 and we have a natural projection
πm,p : Lm(X) → Lp(X), which is given on the level of rings by the homomorphism sending
xi,j to xi,j .

Consider now an arbitrary scheme X of finite type over k and cover it by finitely many
open affines U1, . . . , Un. We know that for every i the m-th jet scheme Lm(Ui) exists and
it comes with the projection πim,0 : Lm(Ui)→ Ui. To glue these schemes we use Lemma 1.2
to see that (πim,0)−1(Ui ∩ Uj) and (πjm,0)−1(Ui ∩ Uj) are both isomorphic to Lm(Ui ∩ Uj)
over X. Due to the functorial description they are canonically isomorphic and we can glue
the schemes Lm(Ui) together with the projections πim,0 to obtain Lm(X) and πm,0. The
condition for Lm(X) to be an m-th jet schemes now follows directly from the affine case.

This proof shows that if X is affine then Lm(X) is also affine. On top of that, the
projections πm,n are all affine morphisms.
There are familiar descriptions for the first two jet schemes. It follows directly from the

definitions that L0(X) = X for every scheme X. The first jet scheme L1(X) is isomorphic to
the total tangent bundle TX = Spec(Sym(ΩX)), where ΩX = ΩX/k is the cotangent sheaf.
The proof of Proposition 1.3 shows that it is enough to prove this in the case X = Spec(R).
For a k-algebra A giving a morphism f : Spec(A)→ Spec(Sym(ΩR)) is the same as giving a
k-algebra homomorphism ϕ : R→ A and a k-derivation d : R→ A viewing A as an R-module
via ϕ. This is equivalent to giving a morphism g : R→ A[t]/(t2), where g(r) = ϕ(r) + td(r).

Note that taking X to Lm(X) gives a functor from the category of schemes of finite type
over k to itself. Namely if we have a morphism f : X → Y we get a corresponding map
fm : Lm(X) → Lm(Y ). At the level of functors of points, this takes an A[t]/(tm+1)-valued
point γ of X to f ◦ γ. These morphisms are compatible with the projections such that

Lm(X) Lm(Y )

Lm−1(X) Lm−1(Y )

fm

πm,m−1 πm,m−1

fm−1

commutes.
Our next goal is to describe the maps πm,m−1 in the case that X is nonsingular. This is

our general setting in the next chapter. We will see that they are all locally An-bundles. In
order to prove this, we will need the notion of an étale morphism.
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1.1. Jet schemes

Definition 1.4. A morphism f : X → Y is called formally étale if for any affine Y -scheme
Z and nilpotent ideal sheaf I ⊂ OZ the corresponding closed immersion i : V ↪→ Z has the
following property:
Every Y -morphism g : V → X extends uniquely to a Y -morphism g̃ : Z → X such that the
diagram

Z X

V

g̃

i g

commutes. The morphism f is called étale if it is finitely presented and formally étale.

For a morphism f : X → Y being étale is equivalent to being flat and unramified which is
also equivalent to f being smooth of relative dimension zero [12, Cor. 17.6.2].

Lemma 1.5. [20, Lem. 1.8] If f : X → Y is an étale morphism, then for every nonnegative
integer m the commutative diagram

Lm(X) Lm(Y )

X Y

fm

πm,0 πm,0

f

is Cartesian.

Proof. We show that Lm(X) has the universal property of the fiber product. It suffices to
prove that for all k-algebras A and morphisms g : Spec(A) → X and h : Spec(A) → Lm(Y )
with f ◦ g = πm,0 ◦ h there exists a unique morphism φ : Spec(A) → Lm(X) commuting
with fm and πm,0 respectively. By the functorial description of Lm(Y ) this corresponds to
a commutative diagram of the form

Spec(A) X

Spec(A[t]/(tm+1)) Y.

It remains for us to show that there exists a unique morphism Spec(A[t]/(tm+1)) → X
making both triangles commutative. However, as Spec(A) → Spec(A[t]/(tm+1)) is a closed
immersion associated to the nilpotent ideal (t) ⊂ A[t]/(tm+1), this follows immediately from
the fact that f is formally étale.

Recall that a morphism of schemes f : X → Y is called a Zariski locally trivial fibration
with fiber F , if there exists an open cover Y =

⋃
Ui with f−1(Ui) ' Ui × F such that the

restriction of f corresponds to the projection onto the first component.

Corollary 1.6. [20, Cor. 1.9] For a nonsingular variety X of dimension n all projections
πm,m−1 : Lm(X)→ Lm−1(X) are locally trivial An-bundles (i.e. locally trivial fibrations with
fiber An). In particular, Lm(X) is a nonsingular variety of dimension (m+ 1)n.
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1.2. Arc spaces

Proof. Since X is nonsingular, we can take an affine open U = Spec(A) ⊂ X and elements
a1, . . . , an ∈ A such that da1, . . . , dan form a basis of ΩA, as ΩX is locally free of rank
n. These elements yield a morphism U → An which is étale [17, 6.2 Prop. 2.10]. Now
we use Lemma 1.5 and the fact that Lm(An) = A(m+1)n to conclude Lm(U) ' U × Amn.
Note that under these isomorphisms the projections πm,m−1 correspond to the projections
U × Amn → U × A(m−1)n that forget the last n components. This concludes the proof.

1.2 Arc spaces
For X of finite type over k we have an inverse system,

· · · → Lm(X)→ Lm−1(X)→ · · · → L0(X) = X.

As all the occuring morphisms are affine, the inverse limit is again a scheme over k [21, Tag
01YV]. Hence we obtain a scheme

L(X) := L∞(X) = lim←−Lm(X),

which is called the space of arcs of X. The corresponding affine projections L(X)→ Lm(X)
will be denoted by πm.
If X is an affine scheme of finite type over k we observe that

Hom
(
Spec(A),L(X)

)
' lim←−Hom

(
Spec(A),Lm(X)

)
' lim←−Hom

(
Spec(A[t]/(tm+1)), X

)
' lim←−Hom

(
Γ(X,OX), A[t]/(tm+1)

)
' Hom

(
Γ(X,OX), A[[t]]

)
' Hom

(
Spec(A[[t]]), X

)
.

For X not necessarily affine it still holds that

Hom
(
Spec(k),L(X)

)
' Hom

(
Spec(k[[t]]), X

)
as

lim←−Hom
(
Spec(k[t]/(tm+1)), X

)
' Hom

(
lim−→Spec(k[t]/(tm+1)), X

)
and lim−→Spec(k[t]/(tm+1)) ' Spec(k[[t]]). In an analogous manner, for any field K containing
k, we obtain that

Hom
(
Spec(K),L(X)

)
' Hom

(
Spec(K[[t]]), X

)
.

Thus for an element γ ∈ L(X) we have a morphism Spec(K(γ))→ L(X) which corresponds
to a unique morphism Spec(K(γ)[[t]])→ X. The latter morphism is called an arc of X. We
use the notion of point in L(X) and the associated arc interchangeably.

If we have a morphism f : X → Y , we get an induced map f∞ : L(X) → L(Y ) via the
maps fm and the definition of the arc space as a projective limit. Observe that for an étale
morphism f : X → Y we can use Lemma 1.5 to conclude that
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1.2. Arc spaces

L(X) L(Y )

X Y

f∞

π0 π0

f

is also Cartesian. This implies for nonsingular varieties X that locally L(X) ' X × A∞
and the projections πm are all surjective. Moreover, we can conclude that f∞ is an open
immersion if f is an open immersion. This is the corresponding version of Lemma 1.2 for the
arc space. If the morphism f is a closed immersion, the induced morphism f∞ again inherits
the same property. This can be checked locally. If Y is an affine scheme, then it is defined
by elements g1, . . . , gr in some affine space. The closed immersion f then corresponds to
elements g1, . . . , gs in the same affine space with s ≥ r. Proceeding in an analogous manner
as in the proof of Proposition 1.3, these elements determine equations for the arc spaces
L(Y ) and L(X) respectively. Hence, L(X) is a closed subscheme of the arc space L(Y ).

Now we prove a lemma for the induced map f∞, which we will need in Chapter 2 for the
proof of the transformation rule. The statement can be interpreted as saying that for nice
maps between two varieties the induced map on the arc spaces is also nice away from a small
subset.

Lemma 1.7. [20, Prop. 2.1] Let f : X → Y be a proper birational morphism of varieties
over k. If Z is a proper closed subset of Y such that f is an isomorphism over Y \ Z, then
the induced map

L(X) \ L(f−1(Z))→ L(Y ) \ L(Z)

is bijective as a map of sets.

Proof. Let U = Y \ Z. An arc in Y corresponds to a morphism γ : Spec(K[[t]])→ Y . Since
f is proper, we can use the valuative criterion to see that this arc lies in the image of f∞
if and only if the induced map Spec(K((t))) → Y can be lifted to X. We show that the
generic point η ∈ Spec(K((t))) is mapped to U if and only if γ is not in L(Z). This proves
the lemma, as f |f−1(U) is an isomorphism. Thus we get a unique lift Spec(K((t))) → X
which in return yields a unique lift γ̃ : Spec(K[[t]])→ X by the valuative criterion

Spec(K((t))) X

Spec(K[[t]]) Y.

f

γ

γ̃

Hence every arc of Y that is not contained in L(Z) has a unique lift to an arc in X.
It remains to prove that the image of η lies in U if and only if γ is not in L(Z). Therefore,

we take an affine open neighborhood V = Spec(B) of the image of the closed point under
γ. If B = k[x1, . . . , xm]/(f1, . . . , fr) then Z ∩ V ⊂ V is isomorphic to Spec(A) for a ring
A = k[x1, . . . , xm]/(f1, . . . , fr, g1, . . . , gl). Now γ corresponds to a map of rings α : B → K[[t]]
whose kernel is the image of the generic point. This map is equivalent to power series
h1, . . . hm fulfilling fi(h1, . . . , hm) = 0. Furthermore, γ lies in L(Z ∩ V ) if and only if
also gj(h1, . . . , hm) = 0 for all j. The latter is equivalent to (g1, . . . , gl) ⊂ Ker(α) which
corresponds to γ(η) ∈ Z ∩ V , concluding the proof.
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1.2. Arc spaces

Although the map g : L(X) \ L(f−1(Z))→ L(Y ) \ L(Z) from the lemma is bijective, it is
not always an isomorphism of schemes. For example, if X and Y are smooth varieties, the
map g is an isomorphism if and only if the map f is an isomorphism. Smoothness implies
that the projections π0 are faithfully flat morphisms. The restrictions of these projections to
the open sets L(X) \ L(f−1(Z)) and L(Y ) \ L(Z) respectively are still faithfully flat, as the
morphisms remain surjective. Thus, if g is an isomorphism, the proper birational morphism
f between the smooth varieties is also flat. Hence, f is an isomorphism.

The lemma also shows that for a proper birational morphism f , the induced morphisms
fm : Lm(X)→ Lm(Y ) are all surjective. Namely, if we take γm ∈ Lm(Y ), the set π−1

m (γm) is
not contained in L(Z), where Y \Z is the biggest open set over which f is an isomorphism.
Hence we can find γ′ ∈ L(X) mapping to γ ∈ π−1

m (γm) by the lemma and πm(γ′) maps to
γm.
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2 Motivic integration
In this chapter we concentrate on smooth complex varieties X of dimension n. We consider
effective divisors on X without using linear equivalence. As X is smooth, all its local rings
OX,x are regular and hence factorial. Therefore, the group of Cartier divisors and the
group of Weil divisors are isomorphic and we use both of these notions. The theory of
motivic integration can be generalized to algebraic varieties of pure dimension over a field
of characteristic zero as done in [9].

2.1 Preparations
We associate to every effective divisor D a function FD which is measurable with respect
to a measure µ on the space of arcs. Our goal is be to integrate FD over the space of arcs
L(X).

Definition 2.1. Let D be an effective divisor on X and f a local equation for D on an open
U ⊂ X. For an arc γ ∈ L(X), for which we have π0(γ) ∈ U , define a function

FD : L(X)→ Z≥0 ∪ {∞},

where γ is mapped to the order of vanishing of the formal power series f(γ(z)) at z = 0.

If we write D =
∑r
i=1 aiDi for prime divisors Di, we can consider for each Di a local

equation fi. In this case f decomposes into f =
∏r
i=1 f

ai
i . Thus, we can write FD =∑r

i=1 aiFDi .

Definition 2.2. A set C ⊂ L(X) is called a cylinder set if there is an m ∈ Z≥0 and a
constructible subset Bm ⊂ Lm(X) such that C = π−1

m (Bm).

Recall that a subset is called constructible if it is a finite disjoint union of locally closed
subsets. If the topological space is Noetherian, we can drop the condition that the union has
to be disjoint. Cylinder sets form a Boolean algebra, which means that they are closed under
finite union and taking complements. We can think of the cylinder sets as nice subspaces of
the arc space obtained by lifting a nice subspace of m-jets. We will later see, that these sets
are measurable.
To be able to integrate we need to understand the function FD. Let therefore D =∑r
i=1 aiDi be an effective divisor and J ⊆ {1, . . . , r} an arbitrary subset. We define

DJ :=
{
∩j∈JDJ J 6= ∅
Y J = ∅

D◦J := DJ \
⋃

i∈{1,...,r}\J
Di.

It follows that

X =
⊔

J⊆{1,...,r}
D◦J and L(X) =

⊔
J⊆{1,...,r}

π−1
0 (D◦J).
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2.1. Preparations

Hence we can divide the space of arcs into disjoint cylinder sets. Using the above, we define
a partition of the set F−1

D (s). For any s ∈ Z≥0 and J ⊆ {1, . . . , r} consider

NJ,s :=
{

(n1, . . . , nr) ∈ Zr≥0 |
∑

aini = s such that nj > 0 if and only if j ∈ J
}
.

As FDi(γ) = 0 if and only if π0(γ) /∈ Di, we conclude that

γ ∈ π−1
0 (D◦J) ∩ F−1

D (s) if and only if (FD1(γ), . . . , FDr (γ)) ∈ NJ,s.

As a result, we produce a finite partition of the level set

F−1
D (s) =

⊔
J⊆{1,...,r}

⊔
(n1,...,nr)∈NJ,s

(
r⋂
i=1

F−1
Di

(ni)
)
. (2.1)

With these preparations we are able to prove an important property of the sets F−1
D (s).

Proposition 2.3. If D is an effective divisor then F−1
D (s) is a cylinder set for every s ∈ Z≥0.

Proof. As the collection of cylinder sets forms a Boolean algebra, it suffices to prove by (2.1)
that F−1

Di
(ni) is a cylinder set for arbitrary J ⊆ {1, . . . , r} and (n1, . . . , nr) ∈ NJ,s. We cover

X by finitely many open affines U such that Di can be described by one equation on U . By
the same argument as above we only need to prove that F−1

Di
(ni)∩ π−1

0 (U) is cylinder. Thus
we can set D = Di, m = ni and assume without loss of generality that D is a hypersurface
given by a polynomial f on an affine variety X.

For an arc γ ∈ L(X) consider its truncation to Lm(X). In the proof of Proposition 1.3
we showed that Lm(X) = Spec(k[x1,0, . . . , xn,m]/(hl,s)l,s) by establishing a correspondence
between the functorial description and elements gi =

∑
ai,jt

j fulfilling certain equations.
The subset of Lm(X) defined by the image of F−1

D (m) ⊂ L(X) corresponds to additional
requirements for the elements ai,j . Namely, we require that

f(g1, . . . , gn) =
m∑
k=0

hk((ai,j)i,j)tk ∈ A[t]/(tm+1)

is a polynomial, whose terms of degree smaller than m vanish and the m-th term does
not vanish. Hence, if we set Bm = V (h0, . . . , hm−1) ∩ D(hm) ⊂ Lm(X), we obtain that
π−1
m (Bm) = F−1

D (m). This proves the assertion, as Bm is the intersection of an open and a
closed subset.

Note however that F−1
D (∞) is not a cylinder set. Locally an arc γ ∈ F−1

D (∞) can be
viewed as an n-tuple of power series. For a constructible set Bm ⊂ Lm(X), arcs in π−1

m (Bm)
can be viewed as n-tuples of power series for which the terms in degree higher than m can
take any value. However, membership in F−1

D (∞) requires conditions on the terms in every
degree.
Our next aim is to define a measure µ on the space of arcs. As it is not real-valued, we

begin by introducing the ring in which µ takes values.

Definition 2.4. Let VC denote the category of complex algebraic varieties. Consider the
quotient of the free abelian group of isomorphism classes [X] of complex algebraic varieties
by the relation [X] = [Y ] + [X \ Y ] for Y ⊂ X a closed subset. This group has the structure
of a ring by defining the product of two elements [X] and [Y ] to be [X × Y ]. The resulting
ring is called the Grothendieck ring of complex algebraic varieties and is denoted by K0(VC).
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2.1. Preparations

We obtain a map VC → K0(VC) by sending X to [X]. It is universal with respect to maps
which are additive on disjoint unions of constructible subsets and which respect products.
This means for example that [X] = [Y ] implies χ(X) = χ(Y ), where χ is the topological
Euler characteristic. Moreover, if X → Y is a Zariski locally trivial fibration with fiber F ,
we have [X] = [Y ] · [F ].

We will write L for [A1] and 1 for [point], which is the identity element in the ring. We
denote by M := K0(VC)[L−1] the localization of K0(VC) with respect to the multiplicative
system {1,L,L2, . . . }. It is yet unknown whetherM is a domain or not [22, 2.11].

Definition 2.5. Let X be a variety of dimension n. We define a function

µ̃ : {C ⊂ L(X) cylinder} →M

which sends C = π−1
m (Bm) 7→ [Bm] · L−n(m+1).

Observe that this definition is independent of the choice ofm. If r > m, then the projection
πr,m : Lr(X)→ Lm(X) is a locally trivial fibration with fiber An(r−m) and thus [π−1

r,m(Bm)] =
[Bm] · Ln(r−m). The function µ̃ assigns to every cylinder set a "volume" inM. As the map
VC → K0(VC) is additive on disjoint unions of constructible sets, we have

µ̃

(
k⊔
i=1

Bi

)
=

k∑
i=1

µ̃(Bi)

for cylinder sets B1, . . . , Bk. For this reason we call µ̃ a finitely additive measure. Note
that there are different conventions in the definition of the measure among different authors.
Craw [6] and Denef, Loeser [9] for example use the same definition as given above. Veys
[22] and Looijenga [18] define the measure of the cylinder set π−1

m (Bm) as [Bm] ·L−nm. It is
essentially a matter of taste which definition one decides to use.
By Proposition 2.3 the set F−1

D (s) is µ̃-measurable for all s ∈ Z≥0. As F−1
D (∞) is not

cylinder, we have to extend µ̃ to a measure µ such that F−1
D (∞) is µ-measurable.

Definition 2.6. Let FmM⊂M be the subgroup generated by elements of the form [V ]/Li
for i− dim V ≥ m. Consider the decreasing filtration

· · · ⊃ F−1M⊃ F 0M⊃ F 1M⊃ · · ·

and denote by M̂ = lim←−M/FmM the completion ofM with respect to this filtration.

By composing with the natural completion map φ : M→ M̂ we obtain a measure µ̃ with
values in M̂.

Definition 2.7. Denote by C the collection of all countable disjoint unions of cylinder sets
ti∈NCi for which µ̃(Ci)→ 0 as i→∞, together with their complements. Define the measure
µ : C → M̂ by ⊔

i∈N
Ci 7→

∑
i∈N

µ̃(Ci).

This definition is independent of the choice of Ci, for details see [9, Def.-Prop. 3.2]. The
key observation is that a cylinder set, which is contained in a countable union of disjoint
cylinder sets, is already contained in a finite union of these sets, cf. [2, Thm. 6.6].
This extension µ of µ̃ is the measure we were looking for. We now show that the function

FD is µ-measurable. With that knowledge we are able to define the motivic integral.
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2.1. Preparations

Lemma 2.8. For an effective divisor D we have µ̃(π−1
k (πk(F−1

D (∞))))→ 0 ∈ M̂ as k →∞.

Proof. We only prove the assertion in the case that D is smooth. First note that the set
πk(F−1

D (∞)) ⊂ Lk(X) is constructible. This can be proven locally by using the proof of
Proposition 2.3 for F−1

D (k + 1) where we have to make the small adaptation that also hk
has to vanish. Hence we obtain that πk(F−1

D (k+ 1)) = V (h0, . . . , hk) = Lk(D) ⊂ Lk(X) is a
closed subset. The claim subsequently follows by the fact that πk(F−1

D (∞)) = πk(F−1
D (k+1)).

We have to study the sets Lk(D) ⊂ Lk(X). Since D in nonsingular, we have by Corollary
1.6 that πk : Lk(D) → D is a locally trivial fibration with fiber An−1. Thereby it follows
that dim(Lk(D)) = dim(D) + k(n− 1) = (n− 1)(k + 1). This yields

µ̃(π−1
k (πk(F−1

D (∞)))) = [Lk(D)] · L−n(k+1)

which lies in F k+1M, as n(k + 1) − (n − 1)(k + 1) = k + 1. Thus, by the definition of the
topology on M̂, µ̃

(
π−1
k (πk(F−1

D (∞)))
)
tends to zero as k tends to infinity. This proves the

assertion for smooth D.

For the general case one needs statements about arc spaces of possibly singular varieties,
cf. [9, Lem. 4.3, 4.4]. These imply that the dimension going from Lk(D) to Lk+1(D) grows
eventually by n−1 such that one can use a similar argument as above. However, this theory
goes beyond the extent of this thesis. For a proof of the lemma in the general case we refer
to [4, Prop. 4.5].

Proposition 2.9. [6, Prop. 2.12] For every effective divisor D, the set F−1
D (∞) lies in C.

Thus, FD is µ-measurable and moreover µ(F−1
D (∞)) = 0.

Proof. First observe that F−1
D (∞) =

⋂
k∈Z≥0

π−1
k

(
πk(F−1

D (∞))
)
. This equality can be checked

locally where it corresponds to the fact that a power series vanishes if and only if all its
truncations vanish. Note that the sets πk(F−1

D (∞)) ⊂ Lk(X) are all constructible (see the
proof of the lemma above). Hence by taking complements we can write

L(X)\F−1
D (∞) = L(X)\π−1

0
(
π0(F−1

D (∞))
)
t
⊔

k∈Z≥0

π−1
k

(
πk(F−1

D (∞))
)
\π−1

k+1
(
πk+1(F−1

D (∞))
)

(2.2)
where the right hand side is a countable disjoint union of cylinder sets.
Now F−1

D (∞) lies in C if and only if its complement lies in C. Thus it suffices to show that
µ̃
(
π−1
k (πk(F−1

D (∞)))
)
→ 0 as k approaches infinity, which is true by Lemma 2.8. This shows

that FD is µ-measurable.
For the second part of the proposition we use again (2.2) to compute

µ(L(X) \ F−1
D (∞)) = µ̃

(
L(X) \ π−1

0 (π0(F−1
D (∞)))

)
+

∑
k∈Z≥0

µ̃
(
π−1
k (πk(F−1

D (∞))) \ π−1
k+1(πk+1(F−1

D (∞)))
)
.

As this is a telescoping series, it equals µ(L(X)) − limk→∞ µ̃
(
π−1
k (πk(F−1

D (∞)))
)
. By the

above lemma, this equals µ(L(X)) implying µ(F−1
D (∞)) = 0.

18



2.2. The motivic integral

2.2 The motivic integral
In this section we define the motivic integral for the function FD associated to an effective
divisor D. In the special case of D having only simple normal crossings we show that the
integral can be computed by using only a finite sum.

Definition 2.10. Let X be a nonsingular complex variety and D an effective divisor on X.
Then the motivic integral is given by∫

L(X)
FD dµ :=

∑
s∈Z≥0∪{∞}

µ(F−1
D (s)) · L−s ∈ M̂.

Note that in the definition it would be sufficient to sum over all s ∈ Z≥0, as F−1
D (∞) ⊂

L(X) has measure zero.

Example 2.11. We now compute an easy example to acquire a better understanding of
the definition. Suppose Y ⊂ X is a smooth subvariety of codimension 1 and consider it
as a divisor D. Then the cylinder set F−1

D (s) is the same as π−1
s−1(Ls−1(Y )) \ π−1

s (Ls(Y )),
where Lm(Y ) ⊂ Lm(X) is the corresponding closed subvariety. Corollary 1.6 tells us that
Ls(Y )→ Y is a locally trivial An−1-bundle. This implies

µ(F−1
D (s)) = µ(π−1

s−1(Ls−1(Y )))− µ(π−1
s (Ls(Y )))

= [Ls−1(Y )] · L−ns − [Ls(Y )] · L−n(s+1) = [Y ] · (L− 1) · L−n−s.

Now we can compute the motivic integral∫
L(X)

FD dµ = [X \ Y ] · L−n +
∞∑
s=1

[Y ] · (L− 1) · L−n−s · L−s

= [X \ Y ] · L−n + [Y ] · (L− 1) · L−n−2 ·
∞∑
s=0

L−2s

= [X \ Y ] · L−n + [Y ] · L− 1
L2 · (1− L−2) · L

−n

= [X \ Y ] · L−n + [Y ] · L− 1
L2 − 1 · L

−n.

We now show that one can compute the motivic integral by using only a finite sum if
the divisor D has only simple normal crossing. The above example is a special case of the
following theorem.

Definition 2.12. An effective divisor D =
∑r
i=1 aiDi on X is said to have simple normal

crossings if for every point x ∈ X there exists an affine neighborhood x ∈ U ⊂ X with
elements z1, . . . , zn ∈ OX(U) such that dz1, . . . , dzn form a basis of ΩU and a local defining
equation for D is given by

f = za1
1 · · · z

ajx
jx

for some jx ≤ n.

Divisors with simple normal crossings are an important and particularly nice class of
divisors. They often appear in the study of resolutions of singularities. An example is the
union of several coordinate hyperplanes in the affine n-space An.
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2.2. The motivic integral

Theorem 2.13. [6, Thm. 2.15] Let X be a nonsingular complex variety and D =
∑r
i=1 aiDi

an effective divisor on X with simple normal crossings. Then

∫
L(X)

FD dµ =
∑

J⊆{1,...,r}
[D◦J ] ·

∏
j∈J

L− 1
Laj+1 − 1

 · L−n
=

∑
J⊆{1,...,r}

[D◦J ] ·

∏
j∈J

1
[Paj ]

 · L−n.
Proof. Recall that in Chapter 2.1 we introduced a partition of the set F−1

D (s). By the lemma
below we can conclude for a subset J ⊆ {1, . . . , r} that

µ

( ⋂
i=1,...,r

F−1
Di

(ni)
)

= [D◦J ] · L−
∑

j∈J
nj · (L− 1)|J | · L−n

for (n1, . . . , nr) ∈ NJ,s and s ∈ Z≥0. Using this we compute∫
L(X)

FD dµ =
∑
s∈Z≥0

µ
(
F−1
D (s)

)
· L−s

=
∑
s∈Z≥0

∑
J⊆{1,...,r}

∑
(n1,...,nr)∈NJ,s

µ

 ⋂
i=1,...r

F−1
Di

(ni)

 · L−∑j∈J
ajnj

=
∑
s∈Z≥0

∑
J⊆{1,...,r}

∑
(n1,...,nr)∈NJ,s

[D◦J ] · (L− 1)|J | · L−n ·
∏
j∈J

L−(aj+1)nj

=
∑

J⊆{1,...,r}
[D◦J ] ·

 ∑
s∈Z≥0

∑
(n1,...,nr)∈NJ,s

∏
j∈J

(L− 1) · L−(aj+1)nj

 · L−n
=

∑
J⊆{1,...,r}

[D◦J ] ·

∏
j∈J

(L− 1) ·
∑
nj>0

L−(aj+1)nj

 · L−n
=

∑
J⊆{1,...,r}

[D◦J ] ·

∏
j∈J

(L− 1) ·
( 1

1− L−(aj+1) − 1
) · L−n

=
∑

J⊆{1,...,r}
[D◦J ] ·

∏
j∈J

L− 1
Laj+1 − 1

 · L−n
=

∑
J⊆{1,...,r}

[D◦J ] ·

∏
j∈J

1
[Paj ]

 · L−n.

Lemma 2.14. Let D =
∑r
i=1 aiDi be an effective divisor with simple normal crossings and

J ⊆ {1, . . . , r} an arbitrary subset. Assume n1, . . . , nr are nonnegative integers with ni 6= 0
if and only if i ∈ J . Then ⋂

i=1,...,r
F−1
Di

(ni) = π−1
m (Bm),
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2.3. Transformation rule

where m = maxi{ni} and Bm ⊂ Lm(X) is a constructible set with

[Bm] = [D◦J ] · Lnm−
∑

j∈J
nj · (L− 1)|J | ∈ M̂.

Proof. Let J ⊆ {1, . . . , r} be a subset and n1, . . . , nr arbitrary nonnegative integers such
that ni 6= 0 if and only if i ∈ J . We cover X by finitely many open affines x ∈ U ⊂ X such
that D is given on U by f = za1

1 · · · z
ajx
jx

as in Definition 2.12 and we consider

Un1,...,nr
:=

⋂
i=1,...,r

F−1
Di

(ni) ∩ π−1
0 (U).

If J * {1, . . . , jx}, then D◦J ∩ U = ∅, as there exist a j ∈ J with j /∈ {1, . . . , jx} which
forces Dj ∩ U = ∅ by looking at the local equation f of D on U . Since Un1,...,nr is a
subset of π−1

0 (D◦J ∩ U) it has to be empty. Hence we only have to consider the case where
J ⊆ {1, . . . , jx}, which implies |J | ≤ n by the definition of simple normal crossings.

Let m = maxi{ni} and consider the truncation πm(Un1,...,nr ) ⊂ Lm(X). Recall that for a
nonsingular variety X, the projection πm,0 : Lm(X) → X is a locally trivial fibration with
fiber Anm. Thus, we can assume that πm(Un1,...,nr ) ⊂ Lm(U) ' U × Anm. Consider for
an arc γ ∈ L(X) the condition FDi(γ) = ni, where Di is given by zi = 0. Using the
above isomorphism this is equivalent to its truncation πm(γ) lying in the locally closed
set V (zi, xi,1, . . . , xi,ni−1) ∩ D(xi,ni), where we use the same notation as in the proof of
Proposition 1.3. Hence we obtain that F−1

Di
(ni) ∩ π−1

0 (U) = π−1
m (Ci) for a constructible set

Ci ⊂ Lm(U) being isomorphic to (U ∩ Di) × Am−ni × (A1 \ {0}) × Am(n−1). It follows by
considering all conditions FDj (γ) = nj for all j ∈ {1, . . . , r} that Un1,...,nr = π−1

m (B′m), where

B′m ' (U ∩D◦J)× Am|J |−
∑

j∈J
nj ×

(
A1 \ {0}

)|J |
× Am(n−|J |).

If we take the union over the finite cover {U} of X, we see that
⋂
i=1,...,r F

−1
Di

(ni) = π−1
m (Bm)

with

[Bm] = [D◦J × Am|J |−
∑

j∈J
nj ×

(
A1 \ {0}

)|J |
× Am(n−|J |)] = [D◦J ] · Lmn−

∑
j∈J

nj · (L− 1)|J |,

as the map sending a variety on its class in M̂ is additive on disjoint unions of constructible
subsets.

Corollary 2.15. For an effective divisor D on X with simple normal crossings the motivic
integral of the associated function FD is an element of the subring

φ(M)
[{ 1

Li − 1

}
i∈N

]
of M̂.

2.3 Transformation rule
The goal of this section is to prove the transformation rule for the motivic integral. It
establishes a connection between the motivic integrals of a divisor D on Y and its pullback
f∗D on X for a proper birational morphism f : X → Y .
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2.3. Transformation rule

Before we state the theorem we need some preparations. Consider a proper birational
morphism f : X → Y between smooth varieties. This morphism gives rise to an exact
sequence

f∗ΩY → ΩX → ΩX/Y → 0,

cf. [13, II, Prop. 8.11]. Note that the cotangent sheaves are locally free of the same rank as
the varieties are smooth. In our situation this sequence is also left exact. To see this localize
the sequence at the generic point η of X. As f is birational, we have K(X) ' K(Y ) which
implies ΩX/Y η

' ΩK(X)/K(Y ) = 0. Thus the map α : f∗ΩY → ΩX localized at the generic
point is a surjection between finite-dimensional K(X)-vector spaces of the same dimension.
Hence it is also injective at the generic point. Since X is integral this implies injectivity of
the sequence, as the cotangent sheaves are locally free.
By taking the n-th exterior power we get an injection f∗ωY ↪→ ωX . Tensoring with

(f∗ωY )∗ yields OX ↪→ ωX ⊗ (f∗ωY )∗. Thus the divisor associated to the section of the line
bundle ωX ⊗ (f∗ωY )∗ is an effective divisor supported on Z = X \U where U is the biggest
open subset such that f |U is an isomorphism. Using Zariski’s Main Theorem one can even
show that its support is actually equal to Z, cf. [7, Lem. B.2.3]. Note that locally this
divisor is given by the determinant of the morphism α between the free modules of rank n.
We call it the relative canonical divisor and denote it by KX/Y .
The next lemma is important for the transformation rule. It states that the associated

map f∞ sends under certain conditions cylinder sets to cylinder sets. This will allow us to
connect partitions of the arc spaces of the domain and the target.

Lemma 2.16. Let f : X → Y be a proper birational morphism, C ⊂ L(X) a cylinder set
and denote by C ′ its image f∞(C). Assume that there is a nonnegative integer e such that
for m ≥ 2e every element in the fiber f−1

m (γ′m) over a jet γ′m ∈ πm(C ′) maps under the
projection πm,m−e to the same jet γm−e ∈ πm−e(C). Then the set C ′ is again a cylinder set.

Proof. Since C is a cylinder set, there is a constructible set Bk ⊂ Lk(X) such that C =
π−1
k (Bk). We can assume without loss of generality that k ≥ e. By Chevalley’s Theorem, the

image B′ = fk+e(B) of the constructible set B := πk+e(C) ⊂ Lk+e(X) is again constructible
[19, p. 72, Cor. 2]. Hence, to prove this lemma it suffices to show the equality C ′ = π−1

k+e(B′).
Obviously C ′ is contained in π−1

k+e(B′) so we only have to prove the other inclusion.
For an arc γ′ ∈ π−1

k+e(B′), consider its truncation γ′m = πm(γ′) ∈ Lm(Y ) for an integer
m ≥ k + e. We claim that γ′m even lies in πm(C ′). From the definition of B′ we know that
after further truncation γ′k+e = πk+e(γ′) ∈ fk+e(πk+e(C)). By the assumptions on e and k,
the fiber over γ′k+e under fk+e, which is nonempty by the conclusion of Lemma 1.7, lies in
πk+e(C). Again by the choice of k, the preimage of πk+e(C) under πm,k+e is exactly πm(C).
This implies that the fiber over γ′m under the morphism fm is nonempty and lies in πm(C).
Thus, we have proven that γ′m is an element of fm(πm(C)) = πm(C ′).

Now, take an arbitrary arc γ′ ∈ π−1
k+e(B′) and denote by γ′k+e its truncation in B′. Take

a preimage γ̃k+e ∈ f−1
k+e(γ′k+e) and define for i ≤ k the jets γi = πk+e,i(γ̃k+e). We repeat

this procedure. Consider πk+2e(γ′) ∈ Lk+2e(Y ) and take a preimage γ̃k+2e of the jet under
fk+2e. Define once more γi as the truncation of γ̃k+2e for k < i ≤ k+ e. We have shown that
γ′m ∈ πm(C ′) for m ≥ k+ e. This implies by the assumption of the lemma that πi,j(γi) = γj
for i > k ≥ j, as fk+e(πk+2e,k+e(γ̃k+2e)) = fk+e(γ̃k+e) = γ′k+e. Inductively, we obtain a
sequence of jets γm satisfying πm,m−1(γm) = γm−1 and fm(γm) = πm(γ′) by construction.
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2.3. Transformation rule

These elements determine an arc γ ∈ L(X) with f∞(γ) = γ′. As πk+e(γ) = γk+e ∈ πk+e(C)
we conclude that γ lies in the cylinder C, which proves the assertion.

Let us now proceed with the main result of this thesis. The transformation rule states how
the motivic integral changes under a proper birational morphism. It is the key ingredient
when proving results using motivic integration. As the relative canonical divisor KX/Y is
locally given by the Jacobian determinant, one can perceive an analogy to the change of
variables formula in multivariable calculus. Its proof will keep us occupied for the next
pages.

Theorem 2.17 (Transformation rule [6, Thm. 2.18]). Let f : X → Y be a proper birational
morphism and KX/Y the relative canonical divisor. Then we have the following transforma-
tion rule for an effective divisor D on Y∫

L(Y )
FD dµ =

∫
L(X)

Ff∗D+KX/Y
dµ.

Proof. Let U ⊂ Y be the biggest open subset over which f is an isomorphism and denote
by Z its complement. Recall that we proved in Lemma 1.7 that the associated map f∞
is bijective away from the set L(f−1(Z)) ⊂ L(X). This subset has measure zero, since
L(f−1(Z)) = F−1

E (∞) where E is the exceptional divisor of the birational morphism f .
Consider the cylinder sets Ck,s := F−1

KX/Y
(k) ∩ F−1

f∗D(s) ⊂ L(X) for k, s ∈ Z≥0. These sets
form a partition of L(X) modulo a subset of measure zero. So by Lemma 1.7 we obtain the
equality

F−1
D (s) =

⊔
k∈Z≥0

f∞(Ck,s)

modulo a subset of measure zero, as Ff∗D(γ) = FD(f∞(γ)). Part (i) of the proposition below
allows us to apply Lemma 2.16 to the sets Ck,s. Hence, the above subdivision of F−1

D (s)
consists of cylinder sets. By using again the proposition below, we see that µ(Ck,s) =
µ(f∞(Ck,s)) · Lk. Next, we use these facts to compute∫

L(Y )
FD dµ =

∑
s∈Z≥0

µ(F−1
D (s)) · L−s

=
∑

k,s∈Z≥0

µ(f∞(Ck,s)) · L−s

=
∑

k,s∈Z≥0

µ(Ck,s) · L−(s+k)

=
∑

0≤k≤s′
µ(Ck,s′−k) · L−s

′

=
∑

s′∈Z≥0

µ(F−1
f∗D+KX/Y

(s′)) · L−s′

=
∫
L(X)

Ff∗D+KX/Y
dµ,

where we set s′ = s+k and used in the penultimate line that t0≤k≤s′Ck,s′−k forms a partition
of F−1

f∗D+KX/Y
(s′). This finishes the proof of the theorem.
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2.3. Transformation rule

Proposition 2.18. Let f : X → Y be a proper birational morphism and KX/Y the relative
canonical divisor. Set Ce = F−1

KX/Y
(e) and C ′e = f∞(Ce). Then, for m ≥ 2e

(i) For a jet γ′m ∈ πm(C ′e) the fiber f−1
m (γ′m) lies inside a fiber of the projection

πm,m−e : πm(Ce)→ πm−e(Ce).

(ii) The set πm(C ′e) can be covered by finitely many disjoint constructible subsets Bi such
that the preimage f−1

m (Bi) ⊂ πm(Ce) is isomorphic to Bi × Ae.

The proof of the transformation rule shows, why this proposition is so important. The
first part implies that the image of the cylinder sets Ce will again be cylinder sets using
Lemma 2.16. The second part explains the relationship between the motivic volume of Ce
and its image.
This is a modification of Lemma 3.4 in [9] where one also finds a proof of these two

assertions. In this thesis, we take a different approach and follow [4]. Namely, we prove the
proposition in the case of a blowup f : X ′ = BlYX → X along a smooth subvariety Y ⊂ X
and we show how one can deduce from this the transformation rule for a general proper
birational morphism.

Proof. Using Lemma 2.19 below we only have to concentrate on a point γ′m ∈ πm(C ′e) to
show the assertions.
Let f : X ′ = BlYX → X be the blowup along a smooth subvariety Y ⊂ X. The assertions

of the lemma can be checked locally. Hence, as in the proof of Corollary 1.6, we can assume
that there is an étale morphism ϕ : X → An such that ϕ(Y ) ⊂ An is given by the vanishing
of the first n − c coordinates and ϕ−1(ϕ(Y )) = Y . Now we want to reduce to the case
Y = An−c ⊂ An = X. We therefore use that BlYX ' X ×An Blϕ(Y )An as blowing-up
commutes with flat base change [21, Tag 0805]. As being étale is stable under base change,
this in particular implies that BlYX is étale over Blϕ(Y )An. Hence, by using Lemma 1.5, we
obtain isomorphisms

Lm(BlYX) ' BlYX ×Blϕ(Y )An Lm(Blϕ(Y )An) ' X ×An Lm(Blϕ(Y )An).

Note that under these isomorphisms the projection πm,m−e : Lm(BlYX) → Lm−e(BlYX)
corresponds to

idX × πm,m−e : X ×An Lm(Blϕ(Y )An)→ X ×An Lm−e(Blϕ(Y )An).

Analogously, fm : Lm(BlYX)→ Lm(X) corresponds to

idX × fm : X ×An Lm(Blϕ(Y )An)→ X ×An Lm(An).

Thus it suffices to show the affine case described above.
Purely to simplify the notation we assume that n = 3 and c = 3. Thus f is the blow-

up of the origin in A3. The other cases are all similar computations. Hence we consider
f : X ′ → X = A3 where X ′ = Bl0A3 ⊂ A3 × P2 is given by the relations xiyj − xjyi
with (x1, x2, x3) and (y1, y2, y3) being the coordinates of A3 respectively the homogeneous
coordinates of P2. It suffices to consider an affine open U ⊂ X ′ due to the local nature of
our question. So let U be the affine patch where y1 = 1. Then the relations above simplify
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2.3. Transformation rule

to x2 = y2x1 and x3 = y3x1. Hence, U ' Spec(k[x1, y2, y3]) = A3 and f is given on the level
of rings by

k[z1, z2, z3]→ k[x1, y2, y3]

sending z1 to x1 and zi to x1yi for i = 2, 3. The exceptional divisor E of this birational map
is given by the vanishing of x1. Recall that the relative canonical divisor KX′/X is locally
given by the determinant of the associated cotangent map. This implies that KX′/X = 2E,
since

det

1 y2 y3
0 x1 0
0 0 x1

 = x2
1.

Take an arc γ ∈ Ce and consider its truncation γm = πm(γ). In our local situation γm is
given by the three polynomials

γm(x1) = te/2
m−e/2∑
i=0

ait
i,

γm(y2) =
m∑
i=0

bit
i,

γm(y3) =
m∑
i=0

cit
i,

where we require a0 6= 0 such that FKX′/X
(γ) is equal to e. If e is not divisible by 2,

the cylinder Ce is empty (or in the general case e being divisible by c − 1). The image
γ′m = fm(γm) is determined by the three truncated power series

γ′m(z1) = γm(x1) = te/2
m−e/2∑
i=0

ait
i,

γ′m(z2) = γm(x1)γm(y2) = te/2
m−e/2∑
i=0

ait
i
m∑
i=0

bit
i mod tm+1,

γ′m(z3) = γm(x1)γm(y3) = te/2
m−e/2∑
i=0

ait
i
m∑
i=0

cit
i mod tm+1.

Due to the occurrence of te/2 in the last two equations, the coefficients bm−e/2+1, . . . , bm do
not occur if one expands the equation for γ′m(z2). In an analogous manner, γ′m(z3) does not
depend on cm−e/2+1, . . . , cm. Conversely, if we are given the three truncated power series of
the image γ′m of a jet γm ∈ πm(Ce) we can recover all other coefficients. Namely, given the
truncated power series

γ′m(z2) = te/2
m−e/2∑
i=0

βit
i

and knowing all ai’s, we can use the fact that a0 6= 0 to see inductively
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2.3. Transformation rule

b0 = β0/a0

b1 = (β1 − a1b0)/a0
...
bs = (βs − (asb0 + · · ·+ a1bs−1))/a0.

This can be done as long as s ≤ m − e/2, since as is known for these s. Naturally we can
use the same argument to recover c0, . . . , cm−e/2.
Summing up all these observations, we see that the fiber over a point γ′m ∈ fm(πm(Ce))

under fm is isomorphic to an affine space of dimension e = 2 · e/2. The isomorphism is given
via the coefficients bi and ci for i ≥ m − e/2 + 1. Applying Lemma 2.19 yields assertion
(ii). Moreover we have shown that two jets γm and γ̃m, which are both mapped to γ′m by
the morphism fm, can only differ in these last e/2 coefficients. Thus their image in Lm−e
under the projection πm,m−e is the same. Note that in our case it is sufficient to consider the
projection πm,m−e/2. For a blowup along a smooth subvariety of codimension c, the same
computation shows that γm and γ̃m become equal in Lm−e/(c−1). Hence, in all cases they
are equal after projecting to Lm−e. This proves (i) and finishes the proof of the proposition
in the case of blowups along smooth subvarieties.

Lemma 2.19. [4, Lem. 3.5] Let f : X → Y be a morphism of reduced schemes of finite type
over k. If for all points y ∈ Y the fiber satisfies Spec(k(y)) ×Y X ' Spec(k(y)) × An, then
there exists a finite partition Y = tBi into constructible sets with f−1(Bi) ' Bi × An.

Proof. This is a local assertion so we can assume Y to be irreducible. By assumption the
fiber over the generic point η ∈ Y is isomorphic to An. The isomorphismX×Y Spec(OY,η)

'−→
AnY ×Y Spec(OY,η) over Y can be extended to an open set η ∈ U ⊂ Y , cf. [17, Exc. 3.2.5].
Since X×Y U ' f−1(U), we have that f is an An-bundle over U . Observe that the morphism
f restricted to the preimage of Y \ U is a morphism with smaller dimensional base which
still has the property that all its fibers are affine spaces. Hence the assertion of the lemma
follows by induction.

So far, we have proven the transformation rule for blowups of smooth varieties along
smooth subvarieties. We will now use a decomposition for proper birational morphisms to
deduce the result for all such morphisms.

Theorem 2.20 (Weak Factorization, [1]). Let ϕ : X 99K Y be a birational map between
smooth complete varieties over an algebraically closed field k of characteristic zero. Then
there exists a factorization of ϕ

Z1 Z3 . . . Zn−2 Zn

X Z2 Z4 . . . Zn−3 Zn−1 Y

such that all occurring maps are blowups along a smooth irreducible center. On top of that,
this factorization can be chosen in such a way that there is an index i such that for j ≤ i the
rational maps X L99 Zj to the left and for j ≥ i the rational maps Zj 99K Y to the right are
in fact projective morphisms.
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This is a famous result in birational geometry. As in our case the occurring varieties are
not assumed to be complete, we use the generalization that such a factorization also exists
for proper birational morphisms between smooth varieties over an algebraically closed field
of characteristic zero [5, 1.2].

Proof of Theorem 2.17. Let f : X → Y be a proper birational morphism between smooth
varieties. Then we can factor it into a chain as in the theorem above. Let i be as in the
second part of the theorem. For i ≥ 2 we use that we have proven the transformation rule
for blowups along a smooth subvariety together with part (ii) of the lemma below. Hence
we conclude that the transformation rule holds for Z2 → X. Applying part (i) of the lemma
below yields the assertion for the morphism Z3 → X. This can be done inductively until one
reaches Zi → X. In an analogous manner, we conclude that the transformation rule holds
for the morphism Zi → Y . Using the fact that f is a proper birational morphism and again
part (ii) of the lemma finishes the proof.

Lemma 2.21. Let

X

Y Z

f g

h

be a commutative diagram of proper birational morphisms.

(i) If the transformation rule holds for f and h, then it also holds for g.

(ii) If the transformation rule holds for f and g, then it also holds for h.

Proof. Note that we have KX/Z = KX/Y + f∗KY/Z . This is even true without using linear
equivalence, as locally this boils down to the determinant being a homomorphism. Hence,
we can compute for an effective divisor D on Z∫

L(Z)
FD dµ =

∫
L(Y )

Fh∗D+KY/Z
dµ

=
∫
L(X)

Ff∗(h∗D)+f∗KY/Z+KX/Y
dµ =

∫
L(X)

Fg∗D+KX/Z
dµ.

This proves (i). The proof of (ii) is done similarly.

2.4 Applications

We want to draw some consequences of the transformation rule. Therefore we start by
introducing the notion of K-equivalent varieties.

Definition 2.22. Two nonsingular projective varieties are calledK-equivalent, if there exists
a nonsingular projective variety Z and birational morphisms f : Z → X and g : Z → Y such
that f∗ωX ' g∗ωY .
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It is obvious that two K-equivalent varieties are also birationally equivalent. Observe that
for a variety Z with morphisms f and g as in the definition above, one has an equality of the
relative canonical divisors KZ/X = KZ/Y . To see this consider the differences KZ/X −KZ/Y

and KZ/Y −KZ/X . They are both numerically trivial, as the relative canonical divisors are
linearly equivalent. We now use a statement for a proper birational morphism α : S → T
between normal varieties which is sometimes called Negativity Lemma. It says that a divisor
D on S is effective if and only if α∗D is effective, if the divisor −D is α-nef, cf. [15, Lem.
3.39]. We apply the lemma to the divisor D = KZ/X−KZ/Y and the morphism g. Hence we
can conclude that D is an effective divisor, as KZ/X is effective and g∗KZ/Y = 0, since KZ/Y

is supported on the exceptional locus of g. The same argument shows that KZ/Y −KZ/X is
an effective divisor. This implies the equality KZ/X = KZ/Y .

Corollary 2.23. [22, 4.1] Let X and Y be K-equivalent varieties. Then [X] = [Y ] in M̂.

Proof. Let Z, f, g be as in Definition 2.22, D the trivial divisor on X and KZ/X the relative
canonical divisor. The transformation rule yields

[X] · L−n = µ(L(X)) =
∫
L(X)

FD dµ =
∫
L(Z)

Ff∗D+KZ/X
dµ.

As X and Y are K-equivalent, the same computation for Y yields the same right hand
side.

We will now loosely touch on Hodge numbers to conclude the result stated in the intro-
duction of this thesis. These are important birational invariants of a variety.
Let X be a smooth complex projective variety. Then one defines the Hodge numbers

hp,q(X) of X as the C-dimension of Hq(X,Ωp
X). These numbers can be put together to form

the Hodge polynomial of X

n∑
p,q=0

(−1)p+qhp,q(X)upvq ∈ Z[u, v].

Deligne [8] has proven that one can extend this construction to all complex varieties by using
the mixed Hodge structure on the cohomology with compact support. More precisely, he
showed that there is a function

E : VC → Z[u, v]

satisfying the following conditions:

(i) If X is smooth and projective, the polynomial E(X) is the Hodge polynomial defined
above.

(ii) If Z ⊂ X is a closed subvariety, then E(X) = E(Z) + E(X \ Z).

(iii) For two varieties X and Y , one has E(X × Y ) = E(X) · E(Y ).

The polynomial E(X) is called the Hodge–Deligne polynomial of X. The properties (ii) and
(iii) imply that the function E factors through the Grothendieck ring K0(VC). It is easy to
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2.4. Applications

compute that E(P1) = 1 + uv. This implies that E(A1) = 1 + uv − 1 = uv. Thus, if we
localize the ring Z[u, v] in uv, we obtain a map

α : M→ Z[u, v]uv

extending E. The completion map φ : M→ M̂ has as its kernel
⋂
m∈Z F

mM. The degree of
the polynomial associated to [V ] ·L−i ∈ FmM is bounded by 2 dim(V )− 2i ≤ −2m. Hence,
every element in the kernel of φ is mapped to the zero polynomial and the map α factors
through the image φ(M) ⊂ M̂.

We can now draw a direct consequence of Corollary 2.23.

Theorem 2.24. [16] Two K-equivalent varieties have the same Hodge numbers.

A nonsingular complex projective variety is called a Calabi–Yau variety if its canonical
bundle is linear equivalent to the structure sheaf. Sometimes it is also required, that the
i-th cohomology for 0 < i < dimX vanishes. It is immediate from the definitions that two
birational Calabi–Yau varieties are K-equivalent. We can take a birational map between the
varieties and use a resolution of indeterminacies. The theorem then implies that they have
the same Hodge numbers. This result was one of the reasons for Kontsevich to invent motivic
integration. It has been conjectured by Batyrev, who used p-adic integration to prove that
two such varieties have the same Betti numbers [3]. Nowadays, there exists a proof of the
theorem using p-adic integration [14].
Another application of the corollary is used in the study of resolutions of singularities.

A resolution ϕ : X → Y with X a smooth complex projective variety is called crepant, if
ϕ∗ωY ' ωX . One directly sees that two different choices of crepant resolutions are K-
equivalent. We can again conclude that the Hodge numbers do not depend on the chosen
resolution.
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