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1. The classical topology on a complex algebraic variety

The set up is as follows. Let X be an algebraic variety over C, i.e. (the closed points of) a
reduced scheme of finite type over C.

Suppose X is affine. Then there is a closed immersion X ↪→ AN
C = CN . Note that CN carries

the Euclidean topology. By definition, the classical topology on X is the induced subspace
topology. This is well-defined: given two closed embeddings

CN

X

CN ′

i

j

there are polynomial functions CN → CN ′ and CN ′ → CN that make the triangle commute;
since polynomial functions Cm → Cn are continuous with respect to the Euclidean topology,
the two embeddings induce the same topology on X.

To give some more details, the two closed immersions correspond to surjective maps

C[x1, . . . , xN ]

O(X)

C[y1, . . . , yN ]

and we may defined the map C[x1, . . . , xN ] → C[y1, . . . , yN ] (and vice versa) by taking any
lifts from O(X).

Proposition 1.1.

(1) The classical topology on X is finer than the Zariski topology.
(2) If X is affine and Z ↪→ X is a closed subvariety, then in the classical topology on Z

is the subspace topology with respect to the classical topology on X.
(3) The same is holds for an open subvariety U ↪→ X (if U is affine).

Proof. It is enough to check (1) for CN ; there, we use the definition of the Zariski topology
and the fact that polynomial functions are continuous with respect to the Euclidean topology.
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Part (2) follows directly from the definition.

To prove (3), we first note that by covering U by principal affine open subsets, we may
assume that U is principal affine:

U = {x ∈ X | f(x) 6= 0}

for some f ∈ O(X). Indeed, if U = U1 ∪ · · · ∪ Ur and Ui is principal affine with respect to
X (hence also U), then the principal case implies that the topology on Ui is the subspace
topology on Ui with respect to both the classical topologies on U and on X, and hence the
assertion holds for U .

Given a closed immersion X ↪→ CN and f ∈ O(X), choose g ∈ C[x1, . . . , xN ] such that
g|X = f and embed U in CN+1 as {(u, t) | u ∈ X, g(u)t = 1}:

X CN

U CN+1

The two maps:

• CN+1 → CN given by projecting only the first component,
• CN \ V (g)→ CN+1 given by u 7→ (u, 1

g(u)
)

are both continuous with respect to the Euclidean topology. Thus the topology on U as a
subspace of CN and CN+1 coincide. �

We now glue the above construction. Let X be an algebraic variety over C. Take an affine

open cover X =
r⋃
i=1

Ui. Each Ui has the classical topology introduced above.

We know that:

(1) Ui ∩ Uj is open in both Ui and Uj with respect to the classical topology,
(2) by covering Ui∩Uj by affine open subsets, Proposition 1.1 (3) implies that the classical

topology on Ui and Uj induce the same topology on Ui ∩ Uj.

It is now easy to check that in this case there is a unique topology on X such that the
subspace topology on each Ui is the classical topology.

By definition, a subset U ⊆ X is classically open if U ∩ Ui is open for all i in the classical
topology. Note that each Ui is open in X in this topology.

It is easy to see that:

(1) the definition is independent of the choice of cover,
(2) Proposition 1.1 extends to an arbitrary complex variety.

Definition 1.2. We write Xan for the topological space X with the classical topology.

Remarks 1.3.
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(1) If f : X → Y is a morphism of algebraic varieties, then f : Xan → Y an is continuous.
Indeed, by covering X and Y by affines, we reduce to X and Y affine. Given closed
immersions

X Cm

Y Cn

f g

there is a polynomial map g that makes the square above commute. Since polynomial
maps are continuous, this proves the assertion.

In particular, regular functions on X are continuous with respect to the classical
topology.

(2) Every points has a countable basis of open neighborhoods in the classical topology.
(3) If X, Y are complex algebraic variety, then (X×Y )an = Xan×Y an in the category of

topological spaces (i.e. the classical topology of X × Y is the product of the classical
topologies on X and Y ).

Indeed, we reduce again to X, Y affine, and using the definition of classical topol-
ogy, we reduce to X = Cm, Y = Cn — then the claim follows since the Euclidean
topology on Cm+n is the product topology.

Theorem 1.4. If X is an irreducible complex algebraic variety and U ⊆ X is Zariski open,
nonempty, then U is dense in the classical topology.

We will prove this theorem next time.

Corollary 1.5. Let X be a complex algebraic variety and U ⊆ X be Zariski open and dense
in the Zariski topology, then U is dense in the classical topology.

Proof. If X = X1 ∪ · · · ∪ Xr is an irreducible decomposition and U ⊆ X is Zariski dense,
then U ∩Xi 6= ∅ for all i. Theorem 1.4 then implies that U ∩Xi is dense in Xi in the classical
topology, and hence U is dense in X in the classical topology. �

The proof of Theorem 1.4 follows [Mum99].

Proof of Theorem 1.4. Step 1. We may assume that X is affine. Indeed, given an open
affine cover X = U1 ∪ · · · ∪ Ur then U ∩ Ui 6= 0 for all i, and if we know U ∩ Ui is dense in
(Ui)

an, then U is dense in Xan.

Step 2. We apply Noether normalization to get a finite surjective map

π : X → Cn.

We need to show that given and p ∈ Z = X \U , we can fine a sequence ym → p with ym ∈ U .

Let u = π(p). Since π is finite, π(Z) is a closed proper subset of Cn, there exists g 6= 0 in
C[x1, . . . , xn] such that π(Z) ⊆ V (g).

Consider

R ϕ→ C
t 7→ g(tu+ (1− t)w)
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where w ∈ Cn is such that g(w) 6= 0. Since ϕ(0) 6= 0 and ϕ is a polynomial, ϕ only vanishes
at finite many points. Thus there is a sequence um → u, g(um) 6= 0. After passing to a
subsequence, we need to find ym ∈ π−1(um) such that ym → y. Since um 6∈ V (g), ym ∈ U , so
p ∈ U .

Step 3. Finding the ym’s. Recall that we have a map

π : X → Cn 3 um → u

and we want to find elements in fibers over um’s. Write

π−1(u) = {p = p1, p2, . . . , pr}.

Choose g ∈ O(X) such that g(p) = 0 but g(pj) 6= 0 for j ≥ 2. Since π is finite, there exists
F ∈ O(Cn)[t] monic such that F (x, g) = 0.

Write

F = td + a1(x)td−1 + · · ·+ ar(x).

Since O(X) is a domain, we may assume that F is irreducible. The map π factors as

X

Cn+1 ⊇ V (F )

Cn

π

π2

π1

where π2(x) = (π(x), g(x)). Since π is finite, π2 is also finite. Since π is surjective, this shows
that π2 is also surjective (otherwise, π2(X) has dimension less than n, and hence so does
π(X)).

Recall that g(p) = 0 and hence ar(u) = 0. Since |ar(x)| is the absolute value of the product
of the roots of F (x,−) and um → u, we can choose tm such that F (um, tm) = 0 for all m
and tm → 0.

Now choose ym ∈ π−1
2 (um, tm) arbitrarily.

We claim that, after passing to a subsequence, we assume that ym converges to some y. Since
π(ym) = um → u, we see that y ∈ π−1(U). Since g(y) = lim g(ym) = lim tm = 0, we have
that y 6= pj for j ≥ 2. Hence y = p.

We thus just need to prove this claim. Choose generators h1, . . . , hs of O(X) to get a closed
immersion X ↪→ Cs given by (h1, . . . , hs).

We use the fact that each hi satisfies a monic equation:

tdi + ai,1(x)tdi−1 + · · · = 0.

We want to show that each (hi(ym))m≥1 is bounded. Since hi satisfies the monic equation
above, we just need to show that the coefficients (ai,j(π(ym)))m≥1 is bounded. Since π(ym) =
um is convergent, it is bounded, and hence ai,j(π(ym)) is bounded for all i, j. �



6 MIRCEA MUSTAŢĂ

Corollary 1.6. Let X be an algebraic variety over C and W ⊆ X is a constructible1 subset.

Then W
Zar

= W
an

.

Proof. Since the classical topology is finer than the Zariski topology, W
an ⊆ W

Zar
.

Since W is constructible, there exists U ⊆ W such that U is open and dense in W
Zar

.

By Corollary 1.5, U is dense in W
Zar

in the classical topology. This shows that W
Zar ⊆

W
an

. �

Remark 1.7 (Chevalley’s theorem). Let f : X → Y be a finite morphism. The the image
of a constructible set under f is constructible.

Theorem 1.8. Suppose X is a complex algebraic variety. Then

(1) X is separated if and only if Xan is Hausdorff,
(2) X is complete if and only if Xan is compact2,
(3) if f : X → Y is a morphism of separated varieties, then f is proper (in the algebraic

sense) if and only if f : Xan → Y an is proper (i.e. K ⊆ Y an is compact implies that
f−1(K) is compact).

Proof. We first show (1). Recall that, in general, the diagonal map

∆: X → X ×X
is a locally closed immersion. By definition, X is separated if ∆ is a closed immersion, i.e.
∆(X) is closed in X ×X (in the Zariski topology).

By Corollary 1.6, ∆(X) is Zariski closed in X ×X if and only if it is closed in the classical
topology. But ∆(X) is closed in Xan ×Xan if and only if Xan is Hausdorff.

We will now prove (2). Note first that (Pn)an is compact. Indeed, we have a continuous
surjective map from the n-sphere which is compact:z = (z0, z1, . . . , zn) ∈ Cn+1

∣∣∣∣∣∣
n∑
i=0

|zi|2 = 1

→ (Pn)an.

Suppose now that X is complete. In particular, it is separated, so we know that Xan is
Hausdorff by (1). By Chow’s lemma, there is a surjective (birational) morphism

π : X̃ → X

with X̃ projective, X̃ ↪→ Pn Zariski-closed. Then (X̃)an is closed in (Pn)an, hence compact.

Therefore, π(X̃an) = Xan is compact.

Conversely, suppose Xan is compact. In particular, it is Hausdorff and hence X is separated.
We need to show that for every algebraic variety Y , the projection map

X × Y f→ Y

is closed in the Zariski topology, i.e. if Z ⊆ X × Y is Zariski-closed, f(Z) is Zariski-closed.

1Recall that a subset is constructible if it is a finite union of locally closed sets.
2Recall that compact means quasicompact and Hausdorff.
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By Chevalley’s theorem 1.7, f(Z) is constructible. By Corollary 1.6, f(Z) is Zariski closed
if and only if it is closed in the classical topology. Suppose yn ∈ f(Z) is such that lim

n→∞
yn =

b ∈ Y . Then there exists xn ∈ X such that (xn, yn) ∈ Z for all n. Since Xan is compact,
after passing to a subsequence, we may assume that xn → a ∈ X. Since Z is Zariski closed
in X × Y , it is closed in the classical topology. Since (xn, yn) ∈ Z, (a, b) ∈ Z, and hence
b ∈ f(Z). �

Remark 1.9. A related result is that if X is an irreducible variety over C, then Xan is
connected. We will come back to this when we discuss holomorphic function. A challenge
exercise is to prove this statement directly.

Exercise. Show that if f : X → Y is a morphism of separated algebraic varieties, then f is
proper if and only if f an is proper.

Remark 1.10. From now on, all varieties over C will be assumed to be separated.

2. Holomorphic functions

The reference for this section is [GH94].

2.1. Holomorphic functions in one variable. First, we consider the case of 1-variable
functions.

Setup. Consider an open set U ⊆ C = R2. All functions considered will be smooth (C∞).
Coordinate functions on U will be denoted by z = x+ yi, z = x− yi. We have

dz = dx+ idy, dz = dz − idy,
dz ∧ dz = (−2i)dx ∧ dy.

Dually, we have
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(this is dual to the basis of differentials given by dz, dz).

These operators acts on zm by

∂

∂z
(zm) = mzm−1,

∂

∂z
zm = 0

(by product rule, it is enough to check these for m = 1).

If f : U → C is smooth, we write

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z
dz.

Exercise. Check that ∂f
∂z

= ∂f
∂z

.

Proposition 2.1 (Cauchy’s formula). Let ∆ be an open disc in C. If f is a smooth function
on an open neighborhood of ∆, then

f(z) =
1

2πi

∫
∂∆

f(w)

w − z
dw +

1

2πi

∫
∆

∂f

∂w

dw ∧ dw
w − z
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for all z ∈ ∆.

Remark 2.2.

(1) The loop ∂∆ is oriented counterclockwise.
(2) Part of the statement is that the second integral is well-defined.
(3) We will define a holomorphic function to be annihilated by ∂

∂z
. In particular, the

second integral vanishes when f is holomorphic.

Proof. Let ∆ε be a disc of radius 0 < ε� 1 around z.

z

∆ε

∆

We apply Stokes’ formula for

η =
f(w)

w − z
dw

on ∆ \∆ε. Note that

dη = − ∂

∂w

(
f(w)

w − z

)
dw ∧ dw.

By the quotient rule and
∂

∂w

(
1

w − z

)
= 0,

we have that

dη = − ∂f
∂w

dw ∧ dw
w − z

.

Stokes’ theorem then says that

−
∫

∆\∆ε

∂f

∂w

dw ∧ dw
w − z

=

∫
∂∆

f(w)

w − z
dw −

∫
∂∆ε

f(w)

w − z
dw.

We evaluate the last integral. We change variables to w = z + εeiθ for θ ∈ [0, 2π] and
dw = εieiθdθ: ∫

∂∆ε

f(w)

w − z
dw =

∫ 2π

0

f(z + εeiθ)

εeiθ
εieiθdθ = i

∫ 2π

0

f(z + εeiθ)dθ.
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For ε→ 0, this converges (by the dominated convergence theorem, for example) to

i

∫ 2π

0

f(z)dθ = 2πif(z).

Finally, we deal with the integral on the left hand side of Stokes’ theorem. Again, we change
variables to w = reiθ + z for r ≥ 0 and θ ∈ [0, 2π] and

dw = eiθdr + ireiθdθ,

dw = e−iθdr − ire−iθdθ,
dw ∧ dw = −2irdr ∧ dθ.

Then
dw ∧ dw
w − z

= −2ie−iθdr ∧ dθ.

This is integrable on any compact subset of C and∫
∆

∂f

∂w

dw ∧ dw
w − z

= lim
ε→0

∫
∆\∆ε

∂f

∂w

dw ∧ dw
w − z

.

This completes the proof. �

Definition 2.3. A smooth function f : U → C is

• holomorphic if ∂f
∂z

= 0 (if f = u + iv, this is equivalent to the Cauchy–Riemann

equations ∂u
∂x

= ∂v
∂y

, ∂u
∂y

= − ∂v
∂x

),

• analytic if for any a ∈ U , there exists an open disc ∆r(a) centered at a inside U such
that

f(z) =
∑
n≥0

cn(z − a)n

for some cn ∈ C where the convergence is absolute and uniform for z ∈ ∆r(a).

Theorem 2.4. A function f is holomorphic if and only if it is analytic.

Proof. We start with the ‘only if’ implication. Given a ∈ U , let ∆ be a disc centered at a
such that ∆ ⊆ U . Cauchy’s formula 2.1 then shows that

f(z) =
1

2πi

∫
∂∆

f(w)

w − z
dw.

We write
f(w)

w − z
=

f(w)

(w − a)− (z − a)
=

f(w)

(w − a)
(

1− z−a
w−a

) .
If R is the radius of ∆, we fix a disc ∆′ centered at a of radius R′ < R. Then∣∣∣∣ z − aw − a

∣∣∣∣ ≤ R′

R
< 1

for z ∈ ∆′. Then
f(w)

w − z
=
∑
n≥0

f(w)

(w − a)n+1
(z − a)n
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converges absolutely and uniformly for z ∈ ∆′ and w ∈ ∂∆. Therefore,

f(z) =
∑
n≥0

cn(z − a)n

is absolutely and uniformly convergence for z ∈ ∆′, where

cn =
1

2πi

∫
∂∆

f(w)

(w − a)n+1
dw.

Hence f is analytic.

For the ‘if’ implication, suppose f is analytic and choose around a ∈ U a small disc ∆ such
that ∆ ⊆ U and

f(z) =
∑
n≥0

cn(z − a)n

converges absolutely and uniformly for z ∈ ∆.

Since ∂P
∂z

= 0 for any polynomial P , if Pn is the nth partial sum, by Cauchy’s theorem 2.1,

Pn(z) =
1

2πi

∫
∂∆

Pn(w)

w − z
dw,

and hence

f(z) =
1

2πi

∫
∂∆

f(w)

w − z
dw.

Therefore:

∂f

∂z
=

1

2πi

∫
∂∆

∂

∂z

(
f(w)

w − z

)
dw = 0

because the integrand is 0. Hence f is holomorphic. �

Theorem 2.5 (∂-lemma in 1 variable). Let U ⊆ C and g : U → C be a smooth function.
If ∆ is a disc such that ∆ ⊆ U and we define

f(z) =
1

2πi

∫
∆

g(w)
dw ∧ dw
w − z

, for z ∈ ∆,

then f is a smooth function and

∂f

∂z
= g on ∆.

Remark 2.6. This theorem will later be used to compute Dolbeaux cohomology. See Lemma

Proof. Given z0 ∈ ∆, choose discs centered at z0 such that ∆′ ⊆ ∆′′ ⊆ ∆ (and the closure
of the previous is contained in the next).
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z0

∆′
∆′′

∆

We can write g = g1 + g2 with g1, g2 smooth on U such that{
g1 = 0 inside ∆′,

g2 = 0 outside ∆′′.

Consider separately

fi(z) =
1

2πi

∫
∆

gi(w)
dw ∧ dw
w − z

, for i = 1, 2.

For z ∈ ∆′, f1 is clearly smooth and

∂f1

∂z
=

1

2πi

∫
∆

∂

∂z

(
g1(w)

w − z

)
dw ∧ dw = 0.

Now note that

f2(z) =
1

2πi

∫
C

g2(w)
dw ∧ dw
w − z

because g2 = 0 outside ∆′′

=

∫ 2π

0

e−iθ
∫ ∞

0

g2(z + reiθ)drdθ where w = z + reiθ and
dw ∧ dw
w − z

= −2ie−iθdr ∧ dθ

This implies that f2 is smooth on ∆. After going back via the change of variables, we see
that

∂f2

∂z
=

1

2πi

∂g2

∂w
· dw ∧ dw
w − z

.

Cauchy’s formula 2.1 for g2 then shows that

g2(z) =
1

2πi

∫
∂∆

g2(w)

w − z
dw

︸ ︷︷ ︸
=0 since g2=0 on ∂∆

+
1

2πi

∫
∆

∂g2

∂w

dw ∧ dw
w − z

=
∂f2

∂z

on ∆. Since ∂f1
∂z

= 0 = g1 on ∆′, this shows that

∂f

∂z
= g on ∆′.
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This shows that ∂f
∂z

= g for any z ∈ ∆. �

Remark 2.7. The proof also shows that if g is a smooth function of U1× · · · ×Un ⊆ Cn, so
is f . Moreover, if g is holomorphic (separately) in each of z2, . . . , zr, so is f .

2.2. Holomorphic functions in several variables. Let U ⊆ Cn be open with coordinate
functions z1, . . . , zn, zj = xj + iyj.

Definition 2.8. A smooth function f : U → C is

• holomorphic if it is holomorphic in each variable, i.e.

∂f

∂zi
= 0 on U.

• analytic if for every a ∈ U , there is a polydisc B = Br(a) = {z | |zj−aj| < r for all j}
such that

f(z) =
∑
α∈Nn

cα(z − a)α,

where we use the multiindex notation:

(z − a)α =
n∏
i=1

(zi − ai)αi .

Theorem 2.9. If f : U → C is a smooth function, the following are equivalent:

(1) f is holomorphic,
(2) f is analytic,

(3) for every polydisc ∆ =
n∏
i=1

{zi | |zi − ai| < αi} ⊆ U ,

f(z) =

(
1

2πi

)n ∫
|zi−ai|=αi

f(w)

(w1 − z1) . . . (wn − zn)
dw1 ∧ · · · ∧ dwn,

where the integral is over the product of circles with product orientation.

Proof. It is clear that if f is analytic, it is analytic in each variable, hence holomorphic in
each variable, i.e. f is holomorphic. This proves that (2) implies (1). To prove (3) implies
(2), we argue as in the proof of Theorem 2.4. We get

f(z) =
∑
β∈Nn

cβ(z − a)β

where

cβ =

(
1

2πi

)n ∫
|zi−ai|=αi

f(w)

(w − 1− z1)β1+1 . . . (wn − zn)βn+1
dw1 ∧ · · · ∧ dwn.

For (1) implies (3), use Cauchy’s formula 2.1 for holomorphic functions in each variable:

f(z) =
1

2πi

∫
|zn−an|=αn

f(z1, . . . , zn−1, wn)

zn − wn
dwn = · · ·
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and use that f is continuous and Fubini’s theorem. �

For an open subset U ⊆ Cn, we write

O(U) = {f : U → C | f holomorphic}.

Then the following are true.

• The subset O(U) ⊆ C∞(U) is a C-subalgebra. To prove this, use the fact that ∂
∂zj

are linear (so closed under + and scalar multiplication) and derivations (so closed
under product).
• If f ∈ O(U) and f(z) 6= 0 for all z ∈ U , then 1

f
∈ O(U). Indeed, ∂

∂zj
satisfies the

quotient rule.

Definition 2.10. A function f = (f1, . . . , fm) : U → Cm is holomorphic if all fj are holo-
morphic.

We start by checking that the composition of holomorphic functions is holomorphic.

Identifying Cn = R2n with coordinates z1, . . . , zn and Cm = R2m with coordinates z′1, . . . , z
′
m,

and fj = uj + ivj, we have a map

TpR2n dfp→ Tf(p)R2m

which can be written explicitly as

∂

∂xj
(p) 7→

m∑
k=1

∂uk
∂xj

(p)
∂

∂x′k
(f(p)) +

m∑
k=1

∂vk
∂xj

(p)
∂

∂y′k
(f(p))

∂

∂yj
(p) 7→ · · ·

Exercise. Show that after we tensor with C, we have the formulas

∂

∂zj
(p) 7→

m∑
k=1

∂fk
∂zj

(p)
∂

∂z′k
(f(p)) +

m∑
k=1

∂fk
∂zj

(p)
∂

∂z′k
(f(p)),

∂

∂zj
(p) 7→

m∑
k=1

∂fk
∂zj

(p)
∂

∂z′k
(f(p)) +

m∑
k=1

∂fk
∂zj

(p)
∂

∂z′k
(f(p)).

The upshot is that if f is holomorphic, then ∂fk
∂zj

= ∂fk
∂zj

= 0. Therefore

span

(
∂

∂zj

∣∣∣∣∣ j
)
→ span

(
∂

∂z′k

∣∣∣∣∣ k
)

span

(
∂

∂zj

∣∣∣∣∣ j
)
→ span

(
∂

∂z′k

∣∣∣∣∣ k
)
.



14 MIRCEA MUSTAŢĂ

Consider maps U
f→ V

g→ C. The upshot is that if g is also holomorphic, then g ◦ f is also
holomorphic. In fact, for any g, we have that

∂(g ◦ f)

∂zj
(p) =

m∑
k=1

∂fk
∂z′j

(
∂g

∂z′k
◦ g

)
.

This implies that

• if f, g is holomorphic, then g ◦ f is also holomorphic,
• if f is a holomorphic diffeomorphism f : U → V (for U, V ⊆ Cn), g◦f is holomorphic,

and the matrix
(
∂fi
∂zj

)
i,j

is invertible at every point, then g is holomorphic.

Moreover, if both f and g : V → C are holomorphic, then

∂(g ◦ f)

∂zj
=
∑
k

∂fk
∂zj

(
∂gk
∂z′k
◦ g

)
.

Remark 2.11. We only assume that g : V → C to simplify the notation. The above asser-
tions also hold for g : V → Cp in general.

Let U ⊆ Cn and f : U → Cn. The next goal is to prove the inverse function theorem.

We want to compare the real Jacobian of f with det
(
∂fj
∂zj

)
, and deduce it from the inverse

function theorem for smooth functions.

Write f = (f1, . . . , fn) and (z1, . . . , zn) for the variables on U and Cn. One can compute
that:

f ∗(dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn) =

determinant of
real Jacobian

of f

 dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn,

dzj ∧ dzj = (dxj + idyj) ∧ (dxj − idyj) = (−2i)dxj ∧ dyj,

and hence (after tensoring with C):

f ∗(dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn) =

determinant of
real Jacobian

of f

 dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn.

The left hand side is equal to

df1 ∧ df1 ∧ · · · ∧ dfn ∧ dfn.

Recall that

df =
∑
j

(
∂f

∂xj
dxj +

∂f

∂yj
dyj

)
=
∑
j

(
∂f

∂zj
dzj +

∂f

∂zj
dzj.

)
.

In particular, if f is holomorphic, then each fk is holomorphic, and hence

dfk =
n∑
j=1

∂fk
∂zj

dzj,
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dfk =
n∑
j=1

∂fk
∂zj

dzj.

Finally, this shows that

df1 ∧ df1 ∧ · · · ∧ dfn ∧ dfn =

(
det

∂fj
∂zk

)(
det

∂fj
∂zk

)
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

=

∣∣∣∣det
∂fj
∂zk

∣∣∣∣2 dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

The overall conclusion is thatdeterminant of the
real Jacobian
matrix of f

 =

∣∣∣∣∣∣
determinant of the
complex Jacobian

matrix of f

∣∣∣∣∣∣
2

.

In particular:

• the left hand size is ≥ 0,
• the left hand size is = 0 if and only if the right hand side is.

Theorem 2.12 (Holomorphic inverse function theorem). If U ⊆ Cn is open and f : U → Cn

is holomorphic. Then for p ∈ U such that det
(
∂fi
∂zj

(p)
)
6= 0, there are open neighborhoods

U ′ ⊆ U of p and V ′ ⊆ Cn of f(p) such that f gives a bijective map U ′ → V ′ and its inverse
is holomorphic.

Proof. By the previous discussion, the hypothesis implies that the determinant of the real
Jacobian of f is nonzero at p. The inverse function theorem for smooth maps implies that

there are open subsets U ′, V ′ as above such that U ′
f→ V ′ is bijective and its inverse is

smooth. We may assume that det
(
∂fj
∂zk

)
6= 0 on U ′, and hence g is holomorphic on V since f

and g ◦ f are. �

Remark 2.13.

(1) If f : U → C is holomorphic, then
∂|α|f

∂zα
is holomorphic for all α (since

∂

∂zj
and

∂

∂zk
commute).

(2) If a ∈ U is such that
∂|α|

∂zα
(a) = 0 for all α, then f ≡ 0 in a neighborhood of a. Indeed,

if B = {z | |zi − ai| < ε for all i} is such that B ⊆ U , then

f(z) =

(
1

2πi

)n ∫
|zi−ai|=αi

f(w)

(w1 − z1) . . . (wn − zn)
dw1 ∧ · · · ∧ dwn,

and using this we got ∑
α∈Nn

cα(z − a)α
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for z ∈ B, where

cα =

(
1

2πi

)n ∫
|zi−ai|=αi

f(w)

(w − 1− z1)α1+1 . . . (wn − zn)αn+1
dw1 ∧ · · · ∧ dwn

=
1

α!

∂|α|f

∂zα
(a)

= 0.

Proposition 2.14. Suppose f : U → C is holomorphic and U is connected. If f = 0 on
some V ⊆ U open, then f = 0.

Proof. Let U ′ = {z ∈ U | f = 0 on some open neighborhood of z}. This set is non-empty
by hypothesis and clearly open. It is enough to show that it is closed. If zn ∈ U ′ converges
to a, then for every α

∂|α|

∂zα
(zn) = 0

and hence

∂|α|

∂zα
(a) = 0.

This holds for all α, so f = 0 in a neighborhood of a. Thus a ∈ U ′. �

The next goal is to state and prove the maximum modulus principle.

Theorem 2.15 (Maximumu modulus principle). If U ⊆ Cn is open and connected, and
f : U → C is a holomorphic function such that |f | has a local max at a ∈ U , then f is
constant.

Proof. By Proposition 2.14, it is enough to show that there is an open neighborhood U0 of
a such that f is constant on U0.

We first reduce to the case n = 1. Take U0 to be an polydisc containing a,

U0 = {z | |zi − ai| < ε for all i}.

For any z ∈ U0, consider the 1-variable function

C 3 w 7→ f(wa+ (1− w)z) ∈ C for |wai − (1− w)zi − ai| < ε.

This function is defined on an open subset of C containing 0 and 1. It is a holomorphic
function and its has absolute value has a local maximum at w = 1. The 1-variable case then
implies that this is constant, and hence f(z) = f(a).

We now prove the theorem for n = 1. Let ∆ = BR(a) be a disc centered at a such that
∆ ⊆ U . Cauchy’s formula 2.1 implies that

f(a) =
1

2πi

∫
∂∆

f(w)

w − a
dw =

1

2πi

∫ 1

0

f(a+Re2πiθ)

Re2πiθ
Re2πiθ · 2πi dθ =

∫ 1

0

f(a+Re2πiθ) dθ
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where w = a+Re2πiθ. Therefore,

|f(a)| ≤
∫ 1

0

|f(a+Re2πiθ)|︸ ︷︷ ︸
≤|f(a)|

dθ
(∗)
≤ |f(a)|

∫ 1

0

dθ = |f(a)|,

assuming that |f(z) ≤ |f(a)| in a neighborhood of ∆ (this is true for R small enough). There-
fore, the above inequalities are all equalities. Since (∗) is an equality and f is contunuous,
we conclude that |f(z)| = |f(a)| for all z ∈ ∂∆.

The same holds for any 0 < R′ ≤ R, so |f(z)| is constant in an open neighborhood of a. �

Exercise. Show that if f = u+iv is holomorphic on some open connected subset and u2 +v2

is constant, then f is constant. (Apply ∂
∂x

, ∂
∂y

, and Cauchy–Riemann equations.)

3. Complex manifolds

If U ⊆ Cn is an open subset, consider the sheaf OU of C-algebras on U defined by

OU(V ) = {f : V → C | f holomorphic}.
We check that this is indeed a sheaf:

(1) have restriction maps: if V1 ⊆ V2 and f is holomorphic on V2, then f is holomorphic
on V1,

(2) if V =
⋃
Vi and ϕi : Vi → C are holomorphic functions such that ϕi|Vi∩Vj = ϕj|Vi∩Vj ,

then there exists a unique ϕ : V → C such that ϕ|Vi = ϕi for all i; indeed, if ϕ is such
that ϕ|Vi is holomorphic for all i, ϕ is holomorphic.

Definition 3.1. A complex manifold of dimension n is a pair (X,OX) where

(1) X is a topological space, assumed Hausdorff and having a countable basis of open
subsets,

(2) OX ⊆ CX,C is a subsheaf of the sheaf of continuous C-valued functions on X,

such that X can be written as

X =
⋃
i

Ui, Ui ⊆ X open

such that each (Ui,OUi) ∼= (Vi,OVi) for some Vi ⊆ Cn is open with OVi is the sheaf of
holomorphic functions on Vi.

Remark 3.2. Suppose V1, V2 ⊆ Cn are open and f : (V1,OV1)→ (V2,OV2) is an isomorphism,
i.e. a homeomorphism f : V1 → V2 which induces an isomorphism of sheaves: for all U ⊆ V2,

O(V2)
∼=→ O(f−1(V2)),

ϕ 7→ ϕ ◦ f.
This forces f and f−1 to be holomorphic functions. The converse is also true.

Definition 3.3.

(1) If (X,OX) is a complex manifold, the section of OX are the holomorphic functions
on X.
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(2) If (X,OX) and (Y,OY ) are complex manifolds, then a holomorphic map

(X,OX)
f→ (Y,OY )

is a continuous map f : X → Y that induces a map of sheaves, i.e. for any V ⊆ Y
open and ϕ ∈ OY (V ), we have that ϕ ◦ f ∈ O(f−1(V )).

Remark 3.4. If X ⊆ Cn and Y ⊆ Cm are open subsets, this coincides with the previous
definition.

Remark 3.5. If U ⊆ Cn, p ∈ U ,

OCn,p = lim−→
V 3p
OU(V ).

To check that this is a local ring, we note that we have a map

OU,p = lim−→
V 3p
OU(V ) � C

(V, ϕ) 7→ ϕ(p)

whose kernel {(V, ϕ) | ϕ(p) = 0} = m is the unique maximal ideal. Indeed, if (V, ϕ) 6∈ m, we
may assume that ϕ(z) 6= 0 for all z ∈ V , and hence 1

ϕ
∈ O(V ). Hence (OU,p,m) is a local

ring.

Remark 3.6. All such local rings for manifolds of fixed dimension are isomorphic. This is
very different from the algebraic case.

Remark 3.7. One can define complex manifolds using atlases: X is a topological space
with suitable properties and X =

⋃
i

Ui is an open cover together with homeomorphisms

ϕi : Ui
∼=→ Vi ⊆ Cn, where Vi ⊆ Cn are open, such that for all i, j the map

ϕi(Ui ∩ Uj)
ϕj◦ϕ−1

i→ ϕj(Ui ∩ Uj)

is biholomorphic.

We identify two such objects (X,A), (X,A′) if A and A′ are compatible.

Remark 3.8. It is clear from the definition via atlases (Remark 3.7), using that holomorphic
maps Cm ⊇ U → Cn are smooth, that every complex manifold of dimension n has an
underlying real smooth manifold structure of dimension 2n. To avoid confusion, we will
write XR for this real smooth manifold (if necessary). We have an inclusion of sheaves

OX ⊆ C∞X,C.

Next, we will discuss:

• vector bundles in the smooth/holomorphic category,
• submanifolds,
• complex manifold associated to a smooth complex algebraic variety.
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3.1. Vector bundles. If M is a smooth real manifold, a real (or complex) vector bundle of
rank r on M is a smooth manifold E with a smooth map E →M such that for any x ∈M ,
π−1(x) has the structure of a vector space over R (respectively C)of dimension r such that
there is an open cover M =

⋃
i

Ui such that we have isomorphisms

π−1(Ui) Ui × Rr (resp. Ui × Cr)

Ui

∼=

(respectively, Ui × Cr), inducing linear maps on the fibers.

Given such E, we get a sheaf E on M such that

E(U) = {s : U → E smooth | π ◦ s = 1U}.

This gives an equivalence of categories{
real (complex) vector bundles

on M (of rank r)

}
↔
{

locally free sheaves (of rank r)
of C∞M,R-modules (C∞M,C-modules)

}
.

We will consider the corresponding notion in the category of complex manifolds. For complex
vector bundles, we assume that E is a complex manifold, π is holomorphic.

These correspond to locally free sheaves of OM -modules. Note that associated to such E,
we will have: sheaves of smooth sections and sheaves of holomorphic sections.

Definition 3.9. Let X be a complex manifold of dimension n. A closed submanifold of
X of codimension r is a closed subset Y ⊆ X such that for all p ∈ Y , there is a chart

p ∈ U ϕ→∼= V ⊆ Cn such that

ϕ(U ∩ Y ) = {z ∈ V | z1 = · · · = zr = 0}.

It is easy to see that by restricting such charts to Y , we get a holomorphic atlas on Y ,
making it a complex manifold of dimension n− r.

The universal property of submanifolds is: given a holomorphic g : Z → X such that g(Z) ⊆
Y , there is a unique holomorphic map g′ : Z → Y such that incl ◦ g′ = g.

Proposition 3.10. If U ⊆ Cn is open and f1, . . . , fr ∈ O(U) are such that

rank

(
∂fi
∂zj

(p)

)
= r ≤ n

for all p ∈ U , then

Y = {z ∈ U | f1(z) = f2(z) = · · · = fr(z) = 0}

is a closed submanifold of U of codimension r.
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Proof. Given p ∈ Y , we may assume that rank
(
∂fi
∂zj

(p)
)

1≤i,j≤n
6= 0. Define

ϕ : U → Cn,

z 7→ (f1(z), . . . , fr(z), zr+1, . . . , zn).

Then

det

(
∂ϕi
∂zj

(p)

)
6= 0

and we apply the Inverse Function Theorem 2.12 to see that ϕ is biholomorphic in some
neighborhood of p. In the neighborhood, ϕ is the desired chart. �

Basic properties of holomorphic functions we discussed extend to this setting. We recall a
few of them for completeness. Let X be a complex manifold.

(1) If f ∈ O(X) is such that f |U = 0 for some U ⊆ X open, and X is connected, then
f = 0.

(2) (Maximum modulus principle) If f ∈ O(X) is such that |f | has a local max, X is
connected, then f is constant.

Corollary 3.11. If X is a compact connected complex manifold, then Γ(X,OX) = C.

Proof. Since X is compact, for any f ∈ O(X), |f | has a maximum. Then the maximum
modulus principle implies that f is constant. �

3.2. The complex manifold associated to a smooth complex algebraic variety. Let
X be a smooth complex algebraic variety of pure dimension n. Choose an affine open subset
U ⊆ X and let U ↪→ CN be a closed immersion, r = N−n. Since U and CN are smooth, can
cover CN by open subsets Vi (in the Zariski topology) such that if Vi∩U 6= then Vi∩U ↪→ Vi
is cut out by r equations f1, . . . , fr ∈ O(Vi) with

rank

(
∂fi
∂zj

(p)

)
= r

for all p ∈ Vi ∩ U .

Applying Proposition 3.10, each Vi ∩ U ↪→ Vi is a closed complex submanifold of codimen-
sion r.

Exercise. Check that the resulting transition maps are holomorphic, using the fact that
rational maps are holomorphic.

Exercise. Show that if f : X → Y is a morphism between smooth complex algebraic vari-
eties, then the induced map Xan → Y an is holomorphic.

We now discuss an application.

Theorem 3.12. If X is a connected complex algebraic variety, then Xan is connected.

We first prove this theorem when X is a smooth connected projective curve over C.
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Proof when X is a smooth, projective curve. We first prove this when X is a smooth con-
nected projective curve over C. We know that Xan is a 1-dimensional complex manifold,
which is compact since X is complete (by Theorem 1.8).

Suppose that Xan = U ∪ V is a disjoint union with U , V open in Xan and nonempty. Take
P ∈ U . If n � 0 (n ≥ 2 · genus(X)), OX(nP ) is globally generated. Then there exists
s ∈ Γ(X,OX(nP )) which does not vanish at P . Then

nP ∼ Q1 + · · ·+Qn for Qi 6= P

so there exists ϕ ∈ C(X)∗ such that div(ϕ) = (Q1 + · · · + Qn) − nP , so ϕ gives a regular
functionX\{P} → C. Note that it is holomorphic. By restricting to V , we get a holomorphic

map V
g=ϕ|V→ C. Since V is a compact complext manifold, g is constant by Corollary 3.11. In

particular, ϕ takes the same value infinitely many times, so ϕ is constant, and hence ÷ϕ = 0.
This is a contradiction. �

To reduce the general case to dimX = 1, we use the following result.

Proposition 3.13. Let X be an algebraic variety over k = k. For any x1, x2 ∈ X, there is
an irreducible curve C ⊆ X such that x1, x2 ∈ C.

Proof. We may assume that n = dimX ≥ 2.

(1) By Chow’s lemma, there is a surjective morphism π : X̃ → X where X̃ is irreducible
and quasi-projective. If x̃1, x̃2 lie above x1, x2, it is enough to find a curve C̃ on X̃
through x̃1, x̃2 and take C = π(C). We may hence assume X is quasi-projective.

(2) Choose a locally closed immersion X ↪→ PN . It is enough to prove the statement
for X. We may hence assume that X is projective.

Consider the blow up of X at {x1, x2}:

Y = Bl{x1,x2}X Ei = p−1(xi)

X

p

where dimEi = n− 1.

The variety Y is projective since X is, so we may choose an embedding Y ↪→ PN . Cut Y
with n− 1 general hyperplane H1, . . . , Hn−1. Since dimEi = n− 1,

Ei ∩H1 ∩ · · · ∩Hn−1 6= ∅ for i = 1, 2.

If Z = Y ∩H1 ∩ · · · ∩Hn−1, the curve C = p(Z) satisfies the requirements. Using Bertini’s
Theorem: a general hyperplane section of an irreducible projective variety of dimension ≥ 2
is irreducible, and hence Z is irreducible.

We need to assume that dim(Z ∩ Ei) = 0 for i = 1, 2. This is okay since the His are
general. �

We can now finish the proof of Theorem 3.12.
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Proof of Theorem 3.12. We just have to reduce to the smooth, projective curve case from
the general case.

First, we may assume that X is irreducible (since by hypothesis we can go from any irre-
ducible component to any other one via points of intersection).

For an irreducible algebraic variety X over k = k, for any x, y ∈ X, there is an irreducible
curve C such that x, y ∈ C by Proposition 3.13. We may hence assume that X is an
irreducible curve.

If X̃ → X is the normalization, it is enough to show that X̃an is connected. We may hence
assume that X is smooth.

Finally, let X ⊆ X where X is a smooth, projective, connected curve. We showed last time
that X

an
is connected.

We now use that if M is smooth real manifold of dimension ≥ 2, p ∈M , and M is connected,
then M \ {p} is also connected.

Indeed, if M \ {p} = U ∪ V is a disjoint union of open non-empty sets, then p ∈ U ∩ V
because M is connected. Choose a neighborhood W of p such that W is isomorphic to a ball.
Then W \{p} is disconnected. This is a contradiction, since it is clearly path-connected. �

3.3. More examples of complex manifolds. Suppose X is a complex manifold and G is
a group acting on X via holomorphic maps. Suppose

(1) for all x ∈ X, there exists an open neighborhood U 3 x such that U ∩gU 6= ∅ implies
g = e (this is sometimes called a properly discontinuous action),

(2) for all x, y ∈ X such that x, y are not in the same orbit, there exist open neighbor-
hoods U 3 x, V 3 y such that gU ∩ V = ∅ for all g.

Note that (1) implies that the quotient map π : X → X/G is a covering space. Moreover,
since the transition maps are holomorphic, there is a unique complex manifold structure on
X/G such that π is holomorphic. Condition (2) implies that X/G is Hausdorff.

Example 3.14 (Complex tori). Let V be an n-dimensional complex vector space and Λ ⊆ V
be a lattice (i.e. a free abelian group of rank 2n such that Λ⊗Z R ∼= V ). The natural action
of Λ by translations satisfies (1) and (2) above, and hence

V
π→ Z = V/Λ

gives a complex manifold Z. Note that

V/Λ ∼= R2n/Z2n ∼= (S1)2n,

and hence topologically, Z is a 2n-dimensional torus.

When n = 1, the resulting Z is an analytic construction of elliptic curves, which are algebraic.
We will see that for n ≥ 2, most of these do not come from algebraic varieties. However,
they are still Kähler manifold.

Example 3.15 (Hopf surface). Consider the action of Z on C2\{(0, 0)}, where the generator
γ of Z acts by (z1, z2) 7→ (2z1, 2z2).
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This clearly satisfies conditions (1) and (2), so we get a complex manifold structure on the
quotient.

We have a diffeomorphism:

C2 \ {(0, 0)}
∼=→ S3 × R

(z1, z2) 7→

(
1√

|z1|2 + |z2|2
(z1, z2), log

√
|z1|2 + |z2|2

)
under which the action of γ translates to

(u, t) 7→ (u, t+ log 2).

Therefore, the Hopf surface is topologically

C2 \ {(0, 0)}/Z ∼= S3 × S1.

We will later see these manifolds are not even Kähler, and hence do not come from algebraic
surfaces.

3.4. Orientation. If V is a 1-dimensional real vector space, an orientation on V is a choice
of element in V/R∗>0. Note that an orientation of V is the same as an orientation of V ∗.

If V is an n-dimensional vector space, an orientation on V is an orientation on ΛnV .

If X is a smooth real manifold and E is a real vector bundle on X, an orientation on E
is a compatible system of orientations on E(x) for all x ∈ X, i.e. locally have trivializations
π−1(U) ∼= U × Rr where π : E → X, preserving the orietations on the fibers.

Note that an orientation on E corresponds to an orientation on E∗.

Definition 3.16. An orientation on a smooth real manifold X is an orientation on the
tangent bundle TX (or equivalently on the cotangent bundle T ∗X).

Giving an orientation is equivalent to giving a system of charts such that for all transition
maps

f = (f1, . . . , fn) : U → Rn, det
∂fi
∂xj

> 0.

Note that if X is a complex manifold and we consider the smooth manifold structure, we
saw that if we take a system of holomorphic charts, then for the transition maps f =
(f1, . . . , fn) : U → Cn where U ⊆ Cn,

det(real Jacobian) =

∣∣∣∣∣det
∂fi
∂zj

∣∣∣∣∣
2

> 0.

Therefore, we have a canonical orientation on X.

By convention: given chart f : U → Cn, the orrientation on U corresponds to the orientation
on Cn given by the top form dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.
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3.5. The analytic space associated to an algebraic variety. We first discuss the local
model. For U ⊆ Cn open in the classical topology, f1, . . . , fr ∈ O(U), consider

Z = {u ∈ U | f1(u) = · · · = fr(u) = 0}.

Consider on Z the sheaf given by

OZ(V ) = {f : V → C | locally f extends to a holomorphic function on an open subset in Cn}.

If Z
j
↪→ U is the inclusion, we get a map

OU � j∗OZ
and the kernel is IZ/U given by

Γ(V, IZ/U) = {f : V → C | f |V ∩Z = 0}.
Note that (Z,OZ) is a locally ringed space.

Definition 3.17. A (reduced) analytic space is a locally ringed space (X,OX) such that

(1) X is a Hausdorff topological space with a countable basis for the topology,
(2) there is an open cover X =

⋃
i

Wi such that each (Wi,OWi
) is isomorphic as a locally

ringed space to a local model as above.

The sections of OX are called holomorphic functions on X.

Definition 3.18. A holomorphic map between analytic spaces (X,OX) and (Y,OY ) is a
continuous map f : X → Y such that for any V ⊆ Y open and ϕ ∈ OY (V ), we have
ϕ ◦ f ∈ OX(ϕ−1(V )).

Examples 3.19.

(1) Every complex manifold is canonically an analytic space.
(2) If X is a separated algebraic variety, we have a sheaf OXan on Xan that makes it an

analytic space. We do it locally. Choose affine open subsets covering X; each such
open subspace covering U has a closed immersion U ↪→ CN (cut out by finitely many
polynomials), so we have a sheaf OUan on Uan making it an analytic space. It is easy
to check that these sheaves are compatible on intersections, so we get a sheaf OXan

on Xan.

We get in this way a functor

{complex algebraic varieties} → {analytic spaces}.
However, in this class, we deal with smooth varieties, and hence we only have to work with
complex manifolds.

3.6. Comparison results. Let X be a complex algebraic variety. As we saw above, it has
an associated analytic space Xan.

We have a morphism of locally ringed spaces:

(ϕ, ϕ#) : (Xan,OXan)→ (X,OX)
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defined by ϕ(x) = x and

ϕ# : OX → ϕ∗OXan

OX(U)→ OXan(U)

f 7→ f

(since every regular function on U is holomorphic). The corresponding ring homomorphism
OX,x → OXan,x is a local homomorphism.

Given an OX-module F , let

Fan = ϕ∗(F) = ϕ−1(F)⊗ϕ−1(OX) OXan ,

which is an OXan-module.

In particular, for every x ∈ X, we have a canonical isomorphism

(Fan)x ∼= Fx ⊗OX,x OXan,x.

We will see later that OXan,x is a Noetherian ring and the morphism OX,x → OXan,x is flat.
In particular, this will imply that the functor F 7→ Fan is exact.

Note that we have canonical maps:

• HomOX (F ,G)→ HomOXan (Fan,Gan),
• H i(X,F)→ H i(Xan,Fan),
• more generally, ExtiOX (F ,G)→ ExtiOX (Fan,Gan).

Theorem 3.20 (GAGA, part 1). If X is a complete variety, then the functor F 7→ Fan is
fully faithful on coherent sheaves. Moreover, for all F ,G coherent, the map

ExtiOX (F ,G)→ ExtiOX (Fan,Gan)

is an isomorphism.

The theorem is due to Serre when X is projective and due to Grothendieck when X is
complete. There is also a relative version for proper morphisms. We will prove this theorem
only when X is projective.

The category which is the target of this functor (i.e. which Fan belongs to) still have to be
defined.

Definition 3.21. In general, if (X,OX) is a locally ringed space, an OX-module, F is
locally finitely generated if for any x ∈ X, there is an open neighborhood U 3 x and
s1, . . . , sn ∈ F(U) such that

s1,y, . . . , sn,y ∈ Fy
generate Fy over OX,y for all y ∈ U .

Definition 3.22. An OX-module F is coherent if

• it is locally finitely generated,
• for every open subset U ⊆ X, s1, . . . , sr ∈ F(U), the kernel of the induced map

ker(O⊕rU → F)

is locally finitely generated.
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Exercise. Check that on algebraic varieties, this coincides with the definition in Hartshorne
[Har77].

Theorem 3.23 (Oka). If X is an analytic space, then OX is coherent. (In particular, also
locally free OX-modules of finite rank are coherent)

If X is an algebraic variety over C, then any coherent sheaf on F on X has a finite presen-
tation, so Fan is coherent.

Theorem 3.24 (GAGA, part 2). If X is complete, the functor

{coherent OX-modules} → {coherent OXan-modules}
F 7→ Fan

is an equivalence of categories.

Remark 3.25. In particular, in this case we have an equivalence of categories

{locally free OX-modules} → {locally free OXan-modules}.
To show that F is locally free if Fan is, use the fact that OX,x → OXan,x is faithfully flat.

Remark 3.26.

(1) In general, (OX)an = OXan .

(2) If X is a complex algebraic variety and E
π→ X is an algebraic vector bundle with

sheaf of sections E , the holomorphic vector bundle Ean πan

→ Xan has the sheaf of
sections Ean.

(3) Applying the theorem for coherent ideal sheaves, in the setting of the theorem, every
closed analytic subspace of Xan is equal to Y an for some closed subvariety Y ⊆ X.
(When X = PN , this was known as Chow’s Theorem.)

(4) Using (3) and the graph, any morphism f : Xan → Y an comes from a morphism
X → Y . Therefore, the functor

{complete algebraic varieties} → {compact analytic spaces}
X 7→ Xan.

3.7. The ring OCn,0.

Definition 3.27. An element f ∈ CJz1, . . . , znK is convergent if there is an R such that

f =
∑
α∈Nn

aαz
α

converges uniformly and absolutely for |zi| < R for all i. We write

C{z1, . . . , zn} = {f ∈ CJz1, . . . , znK | f is convergent} ⊆ CJz1, . . . , znK.

It is easy to check that f =
∑
aαz

α is convergent if and only if there exists R > 0 such that
{|aα|R|α}α is bounded. This is also equivalent to

lim sup
|α|→∞

|aα|1/|α| <∞

(by the Cauchy-Hadamard Theorem).
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We have a map

OCn,0 → CJz1, . . . , znK

f 7→
∑
α∈Nn

aαz
α where aα =

1

α!

∂|α|f

∂zα
(0).

Here OCn,0 is the ring of germs of holomorphic functions at 0. Recall that if f is holomorphic
at 0, then

f(z) =
∑
α∈Nn

1

α!

∂|α|f

∂zα
(0)zα

converges absolutely and uniformly in a neighborhood of 0. By definition, the image of the
above map is hence

C{z1, . . . , zn}
and it is clear it is injective. Moreover, it is clearly a ring homomorphism.

Conclusion. If p ∈M where M is a complex manifold, then

OM,p
∼= C{z1, . . . , zn}

where n = dimX.

The next goal is to show that C{z1, . . . , zn} is Noetherian. The idea is to proceed by induction
and the key ingredient is the Weierstrass Preparation Theorem.

Definition 3.28. A Weierstrass polynomial with respect to zn is an element of C{z1, . . . , zn}
of the form

zdn + a1(z1, . . . , zn−1)zd−1
n + · · ·+ ad(z1, . . . , zn−1)

such that a0(0) = 0 for 1 ≤ i ≤ d.

Theorem 3.29 (Weierstrass Preparataion Theorem). Given f ∈ C{z1, . . . , zn} such that
f(0, . . . , 0, zn) 6= 0, there exist unique g, h ∈ C{z1, . . . , zn} such that h(0) 6= 0, g is a Weier-
strass polynomial, and

f = g · h.

Remark 3.30.

(1) If n = 1 and f ∈ C{z}, f 6= 0, then

f = zdh

where h(0) 6= 0. Weierstrass Preparation Theorem 3.29 is a generalization of this
statement to more variables.

(2) Note that (1) implies that (still for n = 1) if f ∈ O(U), the zeroes of f do not
accumulate in U .

(3) The condition that f(0, . . . , 0, zn) 6= 0 can always be achieved (if f 6= 0) by a linear
change of variables.

Recall (a special case of) the Residue Theorem. Suppose f ∈ O(U \ {a1, . . . , ar}) and there
is a disc ∆ ⊆ U such that ai ∈ ∆.
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a1

a2

ar

∆ = open disc

Then
1

2πi

∫
∂∆

ϕ(z)dz =
r∑
i=1

Resai(ϕi)

In fact, we will only need this when ϕ is meromorphic at ai with pole of order ≤ 1. Using
d(ϕ(z)dz) = 0 and Stokes’ Theorem, we can reduce the computation of the integral to the
case r = 1 by cutting out small discs around a1, . . . , ar.

a1

a2

ar

∆ = open disc

In this case, we may write ϕ = ψ
z−a and then Resa(ϕ) = ψ(a). Then

1

2πi

∫
|w−a|=r

ψ(w)

w − a
dw = ψ(a)

by Cauchy’s formula 2.1.

In our case, we will take f ∈ O(U), ∆ ⊆ U , and consider

1

2πi

∫
∂∆

zj
f ′(z)

f(z)
dz

where f has no zeroes on ∂∆. Suppose a is a zero of f and write f = (z − a)mh, h(a) 6= 0.
Then

zj
f ′(z)

f(z)
= zj

(
m

z − a
+
h′

h

)



MATH 731: HODGE THEORY 29

which implies that

Resaz
j f
′(z)

f(z)
= maj.

Overall, the conclusion is that:

(1)
1

2πi

∫
∂∆

zj
f ′(z)

f(z)
dz = λj1 + · · ·+ λjm

if λ1, . . . , λm are the roots of f in ∆, listed with multiplicity.

Proof of Weierstrass Preparation Theorem 3.29. Let z′ = (z1, . . . , zn−1) and write

fz′(zn) = f(z′, zn)

where f is a holomorphic function on Cn ⊇ U 3 0. Let εn > 0 be such that

f(0, . . . , 0, zn) 6= 0 for 0 < |zn| ≤ εn.

Choose ε′ > 0 such that if z′ satisfies that if |zi| < ε′ for 1 ≤ i ≤ n − 1 and |zn| = εn, then
f(z′, zn) 6= 0, and

{z | |zi| < ε′ for i ≤ n− 1, |zn| < εn} ⊆ U.

Otherwise, one can choose zi → 0 such that f(z′, zn) = 0 and continuity of f will contradict
the way we chose εn.

Given z′ such that |zi| < ε′ for i ≤ n− 1, let

λ1(z′), . . . , λm(z′)

be the zeroes of fz′ in
{zn | |zn| < εn},

listed with multiplicities. By equation (1),
m∑
i=1

λi(z
′)j =

1

2πi

∫
|w|=εn

wj ·
∂f
∂zn

(z′, w)

f(z′, w)
dw.

Note that the right hand side is a holomorphic function as a function of z′. For j = 0, the
left hand side is an integer, and hence constant. This shows that

m = ordznf(0, . . . , 0, zn)

by taking z′ = 0.

If σ1(z′), . . . , σm(z′) are the symmetric functions of λ1(z′), . . . , λm(z′), then each σi is holo-
morphic for |zj| < ε′, j ≤ n− 1 and σi(0) = 0 for 1 ≤ i ≤ m. Let

g = zmn − σ1(z′)zm−1
n + · · ·+ (−1)mσm(z′)

which is a Weierstrass polynomial.

It is clear that the function
f

g
is well-defined and holomorphic in

{z | |zj| < ε′ for j ≤ n− 1, |zn| < εn} \ {g = 0}.

For every z′,
f(z′,−)

g(z′,−)
extends to a holomorphic function of zn for |zn| < εn.
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Exercise. Check that therefore h =
f

g
is in fact holomorphic in a neighborhood of 0 and

h(0) 6= 0.

This proves existence.

Uniqueness is straightforward. If f = g′ ·h′ as in the theorem and g′ = zd
′
n + · · · , we see that

f(0, . . . , 0, zn) = zd
′
n · h(0, . . . , 0, zn) which implies that d′ = m. For every z′, f(z′,−) has

d roots in |zn| < εn, so g′(z′,−) vanishes on these with the right multiplicities. For degree
reasons, this implies that g′ = g. �

Corollary 3.31. For any n, C{z1, . . . , zn} is Noetherian.

Proof. We proceed by induction on n ≥ 0. When n = 0, this ring is a field, which is
Noetherian. Suppose I ⊆ C{z1, . . . , zn}, I 6= 0 is an ideal. Let (fλ)λ∈Λ be a set of generators
for I. Fix λ0 ∈ Λ such that fλ0 6= 0. Do a linear change of variables to assume that

fλ0(0, . . . , 0, zn) 6= 0.

For λ 6= λ0, if fλ(0, . . . , 0, zn) = 0, replace fλ by fλ + fλ0 . We may hence assume that
fλ(0, . . . , 0, zn) 6= 0 for all λ.

Now, by Weierstrass Preparation Theorem 3.29, we may write for each λ

fλ = (invertible element) · (element of C{z1, . . . , zn−1}[zn]).

This shows that I is generated (as an ideal) by

I ∩ C{z1, . . . , zn−1}[zn]

which is finitely generated by inductive hypothesis and Hilbert’s basis theorem (if R is
Noetherian, R[x] is also Notherian). �

Remark 3.32. The same proof shows that CJz1, . . . , znK is Noetherian. However, it is easier
to see that it is the completion of C{z1, . . . , zn} (as shown in the proof of Proposition 3.33),
and hence Noetherian.

Proposition 3.33. If X is a smooth algebraic variety, then the ring homomorphism

OX,x → OXan,x

is (faithfully) flat for every x ∈ X.

Proof. Step 1. Suppose X = An. Let R = C{z1, . . . , zn} ⊇ m = {f | f(0) = 0}. It is easy
to check that m = (z1, . . . , zn). Moreover,

R/mN ∼= C[z1, . . . , zn]/(z1, . . . , zn)N .

Therefore,

R̂ = lim←−R/m
N ∼= lim←−C[z1, . . . , zn]/(z1, . . . , zn)N ∼= CJz1, . . . , znK.

We have the following commuting square:



MATH 731: HODGE THEORY 31

C[z1, . . . , zn](z1,...,zn) R

̂C[z1, . . . , zn](z1,...,zn) R̂
∼=

Recall that if (S, n) is a local Noetherian ring, the map S → Ŝ is (faithfully) flat. Since
the vertical maps are faithfully flat (as R is Noetherian by 3.31), the top horizontal map is
faithfully flat.

(Since R̂ is a regular ring of dimension n, R is a regular ring of dimension n.)

Step 2. Prove the following fact.

Exercise. If X ⊆ Y are smooth algebraic varieties where X is defined by the coherent
ideal I and we consider Xan ⊆ Y an, the ideal of OY an vanishing on Xan is Ian. (Hint: reduce
to the case (x1, . . . , xr = 0) = X ⊆ Cn = Y .)

In general, if X is a smooth algebraic variety, X ⊆ CN defined by the ideal I, then the
exercise shows that

OCN ,x/IOCN ,x = OX,x OXan,x = O(CN )an,x/IO(CN )an,x

OCN ,x O(CN )an,x

ϕ

ψ

Since we have shown that ψ is flat, this shows that ϕ is also flat. Because this is a local
statement, it was enough to consider the case X ⊆ CN . �

The exercise in the proof of Proposition 3.33 has another consequence. If i : X ↪→ Y is a
closed immersion of smooth algebraic varieties and F is a sheaf on X, then the canonical
map

(i∗(F))an → (ian)∗(Fan)

is an isomorphism.

Exercise. Show that we have such a morphism which gives an isomorphism on stalks. (Hint:
use the other consequence of the exercise)

We can finally prove a part of GAGA, part 1, 3.20.

Theorem 3.34. If X is a smooth projective complex algebraic variety. Then:

(1) the functor F 7→ Fan is exact,
(2) if F ,G are coherent on X, we have an isomorphism

ExtiOX (F ,G)
∼=→ ExtiOXan (Fan,Gan)
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Assume that:

H i((Pn)an,O(Pn)an) =

{
C, i = 0,

0, i > 0.

We will see this later (cf. section 9.3) via Hodge theory when we will compute H∗((Pn)an,C).

Proof of Theorem 3.34. We have a closed immersion X ↪→ Pn. We first treat the case F =
OX . To show that

H i(X,G)→ H i(Xan,Gan),

by pushing forward to PN , we may assume that X = Pn.

Next, suppose G = OPn(m) and argue by induction on n. The case n = 0 is trivial. The key
exact sequence to use is

0 OPn(−1) OPn OPn−1 0

tensored with O(m). Since we know the assertion for OPn−1(m), then 5-Lemma implies that
the assertion holds for OPn(m) if and only if it holds for OPn(m − 1). Since we assume we
know this for m = 0, we know it for all m.

Now, work with general G. We argue by decreasing induction on i that to show that

H i(X,G)→ H i(Xan,Gan)

is an isomorphism. For i � 0, both are 0, so the assertion is true. For the induction step,
given G have a short exact sequence

0 G ′ E G 0

where E is a direct sum of O(m), so we know the assertion for E . The long exact sequence
in cohomology then gives

H i(X,G ′) H i(X, E) H i(X,G) H i+1(X,G ′) H i+1(X, E)

H i(Xan, (G′)an) H i(Xan, Ean) H i(Xan,Gan) H i+1(Xan, (G′)an) H i+1(Xan, Ean)

β ∼= α ∼=

By the 5-Lemma, α is surjective for every G. Hence β is surjective as well (applying this
to G ′ instead of G), which implies by the 5-Lemma that α is injective. This shows that α is
an isomorphism, as required.

Finally, we know that for every X smooth projective, any F , G where F locally free,

H i(X,G ⊗ F∨) ∼= ExtiOX (F ,G)→ ExtiOX (Fan,Gan)

is an isomorphism. For general F , use increasing induction using

0 F ′ E F 0
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for E locally free. The long exact sequence of Ext together with the 5 lemma implies the
result for F in the same way as above. �

4. Dolbeaux cohomology

4.1. The tangent bundle of a complex manifold.

4.1.1. The complexification of a real vector space. Let VR be a finite-dimensional vector space
over R. To give a complex vector space structure on VR is equivalent to giving a linear map
J : VR → VR such that J2 = −Id (where J is multiplication by i).

Given such J , we write V for the corresponding C-vector space. This is called a complexifi-
cation of V . We write

VC = V ⊗R C
for the extension of scalars. Then J induces

JC : VC → VC

v ⊗ λ 7→ J(v)⊗ λ.

Then J2
C = −Id and we have a decomposition

VC = V ′ ⊕ V ′′

where

V ′ = {v ∈ VC | JC(v) = iv},
V ′′ = {v ∈ VC | JC(v) = −iv}

are C-subspaces of VC.

Denote by u 7→ u the conjugate-linear map

VC → VC

v ⊗ λ 7→ v ⊗ λ.

We have an embedding

VR
j
↪→ VC

v 7→ v ⊗ 1

such that VR = Fix(u 7→ u).

We claim that the composition

V
j
↪→ VC

pr1→ V ′ is a complex isomorphism,

V
j
↪→ VC

pr2→ V ′′ is a conjugate-linear isomorphism.

If v ∈ V , write v ⊗ 1 = v′ + v′′ for v′ ∈ V ′, v′′ ∈ V ′′. Then

Jv ⊗ 1 = iv′ − iv′′.
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Hence

v′ =
1

2
(v − iJC(v)),

v′′ =
1

2
(v + iJC(v)).

This implies that v′′ = v′.

Exercise. Check that v 7→ v′ is C-linear and v 7→ v′′ is conjugate-linear.

By the above formulas, the two maps are injective. Hence they are bijective by dimension
considerations. This proves the above claim. Moreover, we note that

V ′′ = V ′.

Let us now describe the decomposition VC = V ′ ⊕ V ′′ in terms of bases. Suppose x1, . . . , xn
give a basis of V over C. This implies that if yj = J(xj), then x1, . . . , xn, y1, . . . , yn give a
basis of VR. Consider these in VC via j : V ↪→ VC. Let ej be the V ′-component of xj:

ej =
1

2
(xj − iyj),

ej =
1

2
(xj + iyj).

Then e1, . . . , en is a basis of V ′ and e1, . . . , en of V ′′.

Consider now U = HomR(V,R). This has a complex structure given by

(λϕ)(v) = ϕ(λv) for λ ∈ C.

By the above, we have a decomposition UC = U ′ ⊕ U ′′. On the other hand

(VC)∗ = HomC(V ⊗R C,C) ∼= HomR(V,C) ∼= U ⊗ C

are isomorphisms of complex vector spaces.

Exercise. Check that via these isomorphisms (JV,C)∗ corresponds to JU,C.

This implies that U ′ = (V ′)∗ and U ′′ = (V ′′)∗.

In the above description of VC = V ′ ⊕ V ′′ using bases, we see that x∗1, . . . , x
∗
n, y

∗
1, . . . , y

∗
n is a

basis of U = HomR(V,R). Moreover, it is a simplex exercise to check that y∗j = −JU,C(x∗j).
The bases are then

basis of U’: x∗j + iy∗j 1 ≤ j ≤ n,

basis of U: x∗j − iy∗j 1 ≤ j ≤ n.

The decomposition UC = U ′ ⊕ U ′′ induces a decomposition(
p∧
U

)
C

=

p∧
(UC) =

p∧
(U ′ ⊕ U ′′) =

⊕
i+j=p

 i∧
U ′ ⊗

j∧
U ′′

 .
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The conjugation on UC, which maps U ′ to U ′′ and U ′′ to U ′, induces a conjugation on
(∧p U

)
C

which maps
i∧
U ′ ⊗

j∧
U ′′ to

j∧
U ′ ⊗

i∧
U ′′.

4.1.2. The complexification of real line bundles. This globalizes as follows. Suppose M is a
smooth real manifold and E is a smooth real vector bundle on M .

Giving a complex structure on E is equivalent to givign a morphism of vector bundles
J : E → E such that J2 = −Id.

In this case, the previous discussion globalizes to a decomposition

EC = E ⊗R C = E ′ ⊕ E ′′

and we have an isomorphism of complex vector bundles E → E ′ and a complex conjugate-
linear isomorphism E → E ′′. We also have a conjugation operator on EC mapping E ′ to E ′′.

The dual E∗ also has a complex structure. We get a corresponding decomposition of(∧pE∗
)
C etc.

4.1.3. The tangent bundle.

Definition 4.1. Let M be a smooth real manifold. An almost complex structure on M is
a complex structure on the tangent bundle TM , i.e. a morphism J : TM → TM of vector
bundles such that J2 = −Id.

Proposition 4.2. If M is a complex manifold, then M carries a canonical almost complex
structure. Moreover, if the corresponding decomposition is

TMC = T1,0M ⊕ T0,1M

then T1,0M is a holomorphic vector bundle.

Proof. It is enough to treat the case of open subsets of Cn and then show that biholomorphic
maps preserve this structure.

If U ⊆ Cn is an open subset with complex coordinates z1, . . . , zn and zj = xj + iyj, then TU
is trivialized by

∂

∂x1

, . . . ,
∂

∂xn
,
∂

∂y1

, . . . ,
∂

∂yn
.

Define a complex structure by

J

(
∂

∂xj

)
=

∂

∂yj
, J

(
∂

∂yj

)
= − ∂

∂xj
.

We have a decomposition TUC = T1,0U ⊕ T0,1U where

T1,0U is trivialized by
∂

∂x1

, . . . ,
∂

∂xn
,

T0,1U is trivialized by
∂

∂y1

, . . . ,
∂

∂yn
.
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The key point is that we showed that if f : U → V is holomorphic, then the canonical map

TUC → f ∗TVC

maps

T1,0U to f ∗T1,0V,

T0,1U to f ∗T0,1V.

In particular, if f is biholomorphic, the isomorphism between TUC and f ∗TVC preserves the
decomposition. Hence any biholomorphic map repsects the two compelx structure. Here,
we use the following fact: if ϕ : V → W is an R-linear isomorphism between complex vector
spaces such that ϕ ⊗ 1: VC → WC mapsto V ′ to W ′ and V ′′ to W ′′, then ϕ is a C-linear
isomorphism. Indeed, we have

V W

V ′ W ′

ϕ

∼= ∼=
ϕ⊗1

and since the map V ′ → W ′ is C-linear, so is ϕ. This proves the first statement.

The second follows, since we saw that if f : V → W is a holomorphic map between open

subsets V ⊆ Cn, W ⊆ Cm, then f ∗T1,0W → T1,0V is given by the matrix
(
∂fi
∂zj

)
i,j

. In

particular, the transition maps of T1,0M are holomorphic. �

4.2. The Dolbeault complex. Last time, we saw that if M is a complex manifold, then
TM has a canonical complex structure such that

TMC ∼= T1,0M ⊕ T0,1M

where T1,0M is a holomorphic vector bundle.

Definition 4.3. The bundle T1,0 is the holomorphic tangent bundle of M .

Remark 4.4.

(1) As in the case of the tangent bundle to a smooth manifold, T1,0M can be described
as the derivations on the local rings OM,x for x ∈M .

(2) If X is a smooth algebraic variety and M = Xan, then

T1,0M ∼= (TX)an.

If f : M →M ′ is a holomorphic map, then we have

TMC f ∗TM ′
C

T1,0M f ∗T1,0M ′

Dually, we have a decomposition

T∗MC = A1,0
M ⊕ A

0,1
M ,
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where Ai,jM is the dual of Ti,jM . Moreover, we also have a corresponding decomposition for

p∧
(T ∗MC).

Let AmM be the sheaf of real smooth m-forms on M . Moreover, let AmM,C = AmM ⊗R C. We
have a decomposition

AmM,C =
⊕
p+q=m

Ap,qM

where Ap,qM is the sheaf of (p, q)-forms on M . Note that

Ap,qM = Aq,pM .

Note that Ap,0M is the sheaf of smooth sections of a holomorphic vector bundle. We have a

subsheaf Ωp ⊆ Ap,0M of holomorphic sections of a holomorphic vector bundle.

For example,

Ω1 = sheaf of holomorphic sections of (T 1,0M)∗.

Locally, in a chart with coordinates z1, . . . , zn,

Ap,q = free C∞M,C-module, with basis dzI ∧ dzJ for |I| = p, |J | = q,

where for I given by i1 < . . . < ip we write

dzI = dzi1 ∧ · · · ∧ dzip , dzI = dzi1 ∧ · · · dzip .

Recall that we have a de Rham differential d : AmM → Am+1
M . Given p, q, consider

Ap+1,q
M,C

Ap,qM Ap+qM,C Ap+q+1
M,C

Ap,q+1
M,C

∂

∂

d

proj

proj

Proposition 4.5. We have that d = ∂ + ∂.

Proof. Let us compute ∂ and ∂ locally. Consider a chart with coordinates z1, . . . , zn. Consider

ω = f dzI ∩ dzJ for |I| = p, |J | = q.

Then

dω = df ∧ dzI ∧ dzJ
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where

df =
n∑
j=1

∂f

∂xj
dxj +

n∑
j=1

∂f

∂yj
dyj

=
n∑
j=1

∂f

∂zj
dzj︸ ︷︷ ︸

∂f

+
n∑
j=1

∂f

∂zj
dzj︸ ︷︷ ︸

∂f

.

This shows that ∂ω = ∂f ∧ dzI ∧ dzJ and ∂ω = ∂f ∧ dzI ∧ dzJ . This shows that dω =
∂ω + ∂ω. �

Corollary 4.6. We have that ∂2 = 0, ∂
2

= 0, and ∂∂ + ∂∂ = 0.

Proof. Use the fact that d2 = 0 and look in the corresponding graded pieces. �

Corollary 4.7. The maps ∂ and ∂ are derivations, i.e.

∂(ω1 ∧ ω2) = ∂ω1 ∧ ω2 + (−1)degω1ω1 ∧ ∂ω2

and similarly for ∂.

Proof. Use that d is a derivation and look in the corresponding graded pieces. �

For every p, we have the following complex:

0 Ap,0M Ap,1M · · · Ap,nM 0∂ ∂ ∂

where n is the dimension of M as a complex manifold.3

Definition 4.8. The global sections Γ(M,Ap,•M ) form the pth Dolbeault complex of M . The
(p, q) Dolbeault cohomology is

Hp,q(M) = Hq(Γ(M,Ap,•M )).

Remark 4.9. Note that

ker(Ap,0 ∂→ Ap,1) = Ωp
M ,

i.e. the sheaf of holomorphic of sections of the the sheaf of (p, 0) forms. Indeed, locally,
ω =

∑
I

fIdzI is in the kernel if and only if ∂fI
∂zj

= 0 for all j and I, which means that fI is

holomorphic for all I.

More generally, suppose E is a holomorphic vector bundle with sheaf of smooth sections E .
We claim that we can define a canonical

∂E : Ap,qM ⊗ E → A
p,q+1
M ⊗ E

where the tensor product is over C∞M,C such that ∂
2

E = 0 and ∂E is a derivation.

3Note that Ap,q
M = 0 whenever p or q is bigger than n.
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We prove this claim now. We first work on a chart U such that E|U has a trivialization by
holomorphic sections s1, . . . , sr. Let ω be a section of Ap,qM ⊗ E and write it as

ω =
r∑
i=1

ωisi.

Define

∂E(ω) =
r∑
i=1

∂(ωi)si.

This is independent of trivialization. Indeed,

∂(fωi) = f∂ωi

if f is holomorphic (so ∂f = 0). Therefore, these local maps ∂E glue to give ∂E on M . It is

clear from the local description that ∂
2

E = 0 and ∂E is a derivation.

Altogether, this gives a twisted Dolbeault complex:

0 Ap,0M ⊗ E Ap,1M ⊗ E · · · Ap,nM ⊗ E 0.
∂E ∂E ∂E

Definition 4.10. The (p, q) Dolbeault cohomology of E is

Hp,q(M ; E) = Hq(Γ(M,Ap,•M ⊗ E)).

There are two things to do:

• Ap,qM is acyclic: Hq(Ap,•M ) = 0 for q ≥ 1,
• can use this complex to compute Hq(M,Ωp

M).

Theorem 2.5 generalizes to functions of several variables.

Proposition 4.11 (∂-lemma). If ω is a (p, q) form on U ⊆ M such that ∂ω = 0, q ≥ 1,
then locally, we can find β ∈ Ap,q−1

M such that ∂β = ω. (Then Ap,•M is acyclic.)

Proof. We work locally, so we may assume that we have a chart with coordinates z1, . . . , zn.

Step 1. Reduce to the case p = 0. Write ω =
∑
I,J

dI,JdzI ∧ dzj and assume that ∂ω = 0. For

every I, consider

ωI =
∑
J

fI,Jdzj.

Since ∂ω = 0, ∂ωI = 0 for all I. If we know the p = 0 case, then locally ωI = ∂βI for some
βI which are (0, q − 1) forms. If we take β =

∑
I

(−1)pdzI ∧ βI , then ∂β = ω.

Step 2. Assume p = 0. Working locally, in a chart with coordinates z1, . . . , zn, we may
write

ω =
∑
|J |=q

fJdzJ .

Let k be the largest index so that dzk shows up in some dzJ with non-zero coefficient. We
proceed by increasing induction on k.
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First, suppose ω 6= 0 and the smallest k is q. Then

ω = fdz1 ∧ · · · ∧ dzq.

Note that ∂ω = 0 if and only if ∂f
∂zi

= 0 for i > q, i.e. f is holomorphic in the variables

zq+1, . . . , zn. By Theorem 2.5 (the one variable ∂-lemma), locally there is a function g which
is smooth and holomorphic with respect to the variables zq+1, . . . , zn, and

∂g

∂z1

= f.

Then

∂(gdz2 ∧ · · · ∧ zq) = ω.

For the induction step, write ω = ω1 +ω2∧dzk where ω1 is a (0, q)-form and ω2 is a (0, q−1)-
for such that ω1 and ω2 only involve dz1, . . . , dzk−1. Since ∂ω = 0, the coefficients of ω1, ω2

are holomorphic in z1, . . . , zk+1. Write

ω2 =
∑
|J |=q−1

aJdzJ .

Applying Theorem 2.5, we can find locally smooth functions bJ , holomorphic in zk+1, . . . , zn
such that

∂bJ
∂zk

= aJ .

Then

∂

 ∑
|J |=q−1

bJdzJ


︸ ︷︷ ︸

β′

=
∑
|J |=q−1

(−1)q−1aJdzJ ∧ dzk + (terms involving only dz1, . . . , dzk−1).

Therefore,

ω − (−1)q−1∂(β′)

only involves dz1, . . . , dzk−1. By inductive hypothesis, this must be equal to ∂(γ) for some
γ, and hence

ω = ∂(γ + (−1)qβ′).

This completes the proof. �

Exercise. Repeat the whole argument when M is a smooth manifold to show that if ω is a
p-form for p ≥ 1 which is closed (dω = 0), then ω is locally exact.

Corollary 4.12. For every p ≥ 0, we have an exact complex of sheaves on M :

0 Ωp
M Ap,0 Ap,1 · · · Ap,n 0.∂ ∂ ∂

More generally, if E is any holomorphic vector bundles, with sheaf of smooth sections E and
sheaf of holomorphic sections Ehol, then we have an exact complex

0 Ωp
M ⊗OM Ehol Ap,0 ⊗C∞M,C E Ap,1 ⊗C∞M,C E · · ·∂E
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Exactness follows since locally the complex is isomorphic to a direct sum of r = rkE copies
of the Dolbeault complex.

In the case of smooth manifolds, we have similar exact complexes. We have the de Rham
complex:

0 R A0
M · · · AnM 0.d d

4.3. Soft sheaves on paracompact spaces. Let X be a topological space and F be a
sheaf of abelian groups on X. If Z is any subset of X and i : Z ↪→ X is the inclusion map,
then we define

F(Z) = Γ(Z,F) = Γ(Z, i−1F).

to be the set of sections s : Z →
∐
x∈Z
Fx such that s(x) ∈ Fx for all x ∈ Z and for all x ∈ Z,

there is an open neighborhood of x in X and t ∈ F(U) such that

s(y) = ty for all y ∈ U ∩ Z.
Remark 4.13. If Z ′ ⊆ Z, we have natural restriction maps F(Z) → F(Z ′) which are
functorial.

Proposition 4.14. If F is as above and Z1, . . . , Zr are closed subsets of X, we have an
exact sequence:

0 F

(⋃
i

Zi

) ∏
i

F(Zi)
∏
i,j

F(Zi ∩ Zj)

induced by restriction maps.

Proof. Suppose (si)1≤i≤r are sections

si : Zi →
∐
x∈Zi

Fx

such that si(x) ∈ Fx which are compatible, i.e. si(x) = sj(x) for all x ∈ Zi ∩ Zj. We want
to show there is a unique s :

⋃
i

Zi →
∐

x∈
⋃
Zi

Fx such that s(x) ∈ Fx for all x, and s|Zi = si.

Fix x ∈ X. We may replace X be an open neighborhood of x. Since Zi’s are closed, we
may assume that x ∈ Z1 ∩ · · · ∩ Zr by making this open neighborhood smaller if necessary.
Moreover, we may assume that for all i, there exists ti ∈ F(X) such that (ti)y = si(y) for
all y ∈ Zi. In particular,

(t1)x = · · · = (tr)x.

Further replacing X, we may assume t1 = · · · = tr = t. Clearly, (t)y = s(y) for all y. �

Definition 4.15. A topological space X is paracompact if

• X is Hausdorff,
• every open cover admits a refinement which is locally finite.

We suppose throughout this section that X is paracompact.
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Examples 4.16.

(1) Topological manifolds are paracompact.
(2) CW complexes are paracompact.

Remark 4.17. If Z is closed in X and X is paracompact, then Z is paracompact.

Remark 4.18. If X =
⋃
i∈I
Ui is a locally finite open cover and X is paracompact, then there

is an open cover X =
⋃
i

Vi such that Vi ⊆ Ui.

Example 4.19. If A,B ⊆ X are closed, A∩B = ∅, there exist U, V open such that A ⊆ U ,
B ⊆ V , U ∩ V = ∅. (In other words, X is a normal space).

Definition 4.20. A sheaf F of abelian groups on X is soft if for any Z ⊆ X closed, the
restriction map F(X)→ F(Z) is surjective.

Compare this to the definition of flasque sheaves. A sheaf F is flasque if for any U ⊆ X
open, the map F(X)→ F(U) is surjective.

Fact 4.21. Flasque sheaves are acyclic, i.e. their higher cohomology vanishes. Therefore,
one can compute cohomology via flasque resolutions.

We will see next time that if X is paracompact, then the same holds for soft sheaves.
Moreover, we will see that there is a large supply of soft sheaves on complex manifolds.

There are some supplementary notes on the course website

http://www-personal.umich.edu/~mmustata/731-2019.html

covering

• soft sheaves,
• comparison between singular cohomology and sheaf cohomology with constant coef-

ficients.

Proposition 4.22. Let F be a sheaf of abelian groups on X. If Z ⊆ X is closed, for any
section s ∈ F(Z), there exists U ⊇ Z open and t ∈ F(U) such that t|Z = s.

Proof. See the notes on soft sheaves on the course website (Lemma 2.3). �

Corollary 4.23. If F is flasque, then F is soft.

Proposition 4.24. If

0 F ′ F F ′′ 0
ϕ ψ

is exact and F ′ is soft, then

0 F ′(X) F(X) F ′′(X) 0

is exact.

http://www-personal.umich.edu/~mmustata/731-2019.html
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Proof. We only need to show that if s ∈ F ′′(X), there exists s̃ ∈ F(X) such that ψ(s̃) = s.
Since ψ is surjective, there is an open cover X =

⋃
i

Ui, s̃i ∈ F(Ui) such that ψ(s̃i) = s|Ui .

By paracompactness of X, after passing to some refinement, we may assume this is a locally
finite cover. Hence there is an open cover X =

⋃
i

Vi such that Vi ⊆ Ui.

For J ⊆ I, ZJ =
⋃
i∈J

Vi is closed in X by local finiteness.

Consider pairs (J, t) with J ⊆ I and t ∈ F(ZJ) such that ψ(t) = s|ZJ . We order the pairs
by declaring (J, t) ≤ (J ′, t′) if J ⊆ J ′ and t′|ZJ = t. By Zorn’s Lemma, we may choose a
maximal (J, t).

If I = J , we are done. Otherwise, there exists i ∈ I \ J , and we will produce a contradiction
with maximality of J . We have t ∈ F(ZJ) and s̃i|Vi ∈ F(Vi). Note that

ψ(t|ZJ∩Vi) = ψ(s̃i|ZJ∩Vi)
and hence

t|zJ∩Vi − s̃i|ZJ∩Vi = ϕ(w)

for some w ∈ F ′(ZJ ∩ Vi). Since F ′ is soft, there exists w̃ ∈ F ′(X) such that w̃|ZJ∩Vi = w.
Replace

s̃i|Ui by s̃i|Ui + ϕ(w̃|Ui)
to assume that t|ZJ∩Vi = s̃i|ZJ∩Vi .

By Proposition 4.14, there exists t′ ∈ F(ZJ∪{i}) such that t′|ZJ = t and t′|Vi = s̃i|Vi . Then
ψ(t′) = s|ZJ∪{i}, contradicting maximality of the pair (J, t). �

Corollary 4.25. If 0 F ′ F F ′′ 0 is exact, and F ′ and F are
soft, then F ′′ is soft.

Proof. Consider Z ⊆ X closed. Then Z is paracompact and F ′|Z is soft. By Proposition 4.24,
the diagram

0 F ′(X) F(X) F ′′(X) 0

0 F ′(Z) F(Z) F ′′(Z) 0

has exact rows, and hence F ′′(X)→ F ′′(Z) is surjective. �

We finally show that we can compute cohomology using soft sheaves.

Theorem 4.26.

(1) If E is a soft sheaf on X, H i(X, E) = 0 for all i > 0.
(2) If F has a resolution

0 F E0 E1 · · ·
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with all E i soft, then

H i(X,F) = Hi(Γ(X, E•)).

Proof. Part (2) follows from part (1) by general reasons. For (1), we argue by induction on
i. Consider the short exact sequence

0 E I G 0

with I flasque. In particular, I is soft by Corollary 4.23. Then, by Corollary 4.25, G is also
soft. The long exact sequence in cohomology then shows that:

• Γ(X, I)→ Γ(X,G)︸ ︷︷ ︸
surjective by Prop. 4.24

→ H1(X, E)→ H1(X, I)︸ ︷︷ ︸
=0

, so H1(X, E) = 0,

• H i+1(X, E) = H i(X,G) = 0 for i ≥ 1 by inductive hypothesis.

This completes the proof. �

Exercise. Suppose f : (X,OX)→ (Y,OY ) is a morphism of ringed spaces with X, Y para-
compact. Let F be a sheaf on Y and G be a sheaf on X so that we have a morphism

f ∗F → G. This induces maps H i(Y,F) H i(X, f ∗F) H i(X,G).

Show that if F → E•, G →M• are soft resolutions and we have induced morphisms

f ∗F f ∗E•

G M•

then we have a commutative diagram

H i(Y,F) Hi(Γ(Y, E•))

H i(X,G) Hi(Γ(X,M•))

∼=

∼=

Proposition 4.27. If M is a smooth real manifold, then any C∞M -module is soft.

Proof. Let F be a C∞M -module and Z ⊆ X be a closed subset. Consider s ∈ F(Z). We want
to extend it to a section on X.

By Proposition 4.22, there is an open subset U ⊇ Z and a section s̃ ∈ F(U) such that
s̃|Z = s.

Considering Z ⊆ U , there is an open subset U1 such that

Z ⊆ U1 ⊆ U1 ⊆ U

and an open subset U2 such that

U1 ⊆ U2 ⊆ U2 ⊆ U.
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Then smooth version of Urysohn’s Lemma say that there exists a smooth function ϕ such
that {

ϕ = 1 on U1,

ϕ = 0 on X \ U2.

Consider ϕ|U · s̃ which is 0 on U \ U2. Then there exists a section s′ ∈ F(X) such that
s′|X\U2

= 0 and s′|U = ϕ|U s̃|U since ϕ = 0 on X \ U2. Note that

s′|U1 = s̃|U1

since ϕ = 1 on U1. Hence s′|Z = s. �

Applications.

(1) If M is a smooth manifold of dimension n, we have a resolution of R given by

0 R A0
M A1

M · · · AnM 0,d d d

so we recover the de Rham Theorem:

Hp(X,R) ∼= Hp
dR(X).

This gives a simple interpretation of the cup product on cohomology (which is messy
to define otherwise) via ∧ of differential forms.

These are also isomorphic to singular cohomology. This is proven in the notes on
the course website.

Fact 4.28. Since M is paracompact and locally contractible,

Hp(M,R)︸ ︷︷ ︸
sing. cohomology

∼= Hp(M,R).

(2) If M is a complex manifold of dimension n, for all p, we have an exact complex

0 Ωp
M Ap,0M Ap,1M · · · Ap,nM 0,∂ ∂ ∂

which shows that

Hp,q(M) = Hq(Γ(M,Ap,•M )) ∼= Hq(M,Ωp
M)

(where the first equality is the definition of Dolbeaux cohomology).
More generally, if E is a holomorphic vector bundle with sheaf of holomorphic

sections E , the sheaf of sections is C∞M⊗OME = Esm. By taking (∗)⊗C∞MEsm = (∗)⊗OME ,
we get a complex

0 Ωp
M ⊗OM E Ap,0E Ap,1E · · · Ap,nM,E 0.

∂E ∂E

Then
Hp,q(M, E) = Hq(Γ(M,Ap,•M,E))

∼= Hq(M,Ωp
M ⊗ E)

(where the first equality is the definition of Dolbeaux cohomology).

5. Hodge theory of compact, oriented, Riemannian manifolds

We are now done with introductory material to the class and we start Hodge theory. During
the next few lectures, we discuss Hodge theory for Riemannian manifolds.
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5.1. Linear algebra background: the ∗ operator. Let V be a finite-dimensional vector
space over R.

Definition 5.1. A scalar product on V is a symmetric bilinear form 〈·, ·〉 on V × V valued
in R which is positive definite, i.e. 〈v, v〉 > 0 for all v 6= 0.

Given a scalar product on V , we get an isomorphism

V
∼=→ V ∗

v 7→ ϕv = 〈v,−〉.
We put a scalar product on V ∗ such that

〈ϕv, ϕw〉 = 〈v, w〉 for all v, w.

Example 5.2. If e1, . . . , en is an orthonormal basis of V (i.e. 〈ei, ej〉 = δi,j for all i, j) and
e∗1, . . . , e

∗
n is the dual basis on V ∗, then ϕei = e∗i and hence e∗1, . . . , e

∗
n is an orthonormal basis

for V ∗.

Exercise. Given a scalar product 〈·, ·〉 on V , we have an induced scalar product on each
p∧
V such that

〈v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp〉 = det(〈vi, wj〉).
(Hint: use this as the definition and show that if e1, . . . , en is an orhonormal basis, then we get

an orthonormal basis for
p∧
V given by {eI = ei1∧· · ·∧eip | I = {i1 < . . . < ip} ⊆ {1, . . . , n}}.)

Suppose now that, in addition, that on V we also have an orientation (i.e. an orientation on
the 1-dimensional top exterior power of V ).

In this case, we get a canonical volume element vol ∈
n∧
V for n = dimV by choosing an

orthonormal basis e1, . . . , en such that e1 ∧ · · · ∧ en is positive and letting

vol = e1 ∧ · · · ∧ en.
This is independent on the choice of basis. If e′1, . . . , e

′
n is another such basis and we write

e′i =
∑

ajai,jej

then for A = (ai,j) we have A · At = In, so det(A)2 = 1. Hence det(A) = ±1 and we have

e′1 ∧ · · · ∧ e′n = (detA)e1 ∧ · · · en
so detA = 1 since e′1 ∧ · · · ∧ e′n and e1 ∧ · · · ∧ en are both positive.

We now define the ∗ operator for (V, 〈·, ·〉, orientation) where n = dimV .

Proposition 5.3. For every p, 0 ≤ p ≤ n, there is a unique isomorphism
p∧
V
∗→

n−p∧
V

such that

v ∧ (∗w) = 〈v, w〉vol in
n∧
V

for all v, w ∈
p∧
V .
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Proof. Recall that there is a canonical nondegenerate bilinear map

(2)

p∧
V ×

n−p∧
V →

n∧
V ∼= R.

given by ∧. Given w ∈
∧p V , we may consider the map

〈−, w〉vol :

p∧
V →

n∧
V ∼= R.

Using the pairing (2), there is an element ∗w ∈
n−p∧

V such that

〈−, w〉vol = − ∧ ∗w.

We get a linear map ∗ :
p∧
V →

n−p∧
V . It is clear this is injective: if ∗w = 0, then for all v,

〈v, w〉 = 0, so w = 0 since 〈−,−〉 is non-degenerate.

By dimension considerations, ∗ is an isomorphism. �

We now describe ∗ via an orthonormal basis. Recall that

eJ ∧ (∗eJ) = 〈eJ , eI〉vol.

This shows that, by taking I = J ,

∗eI = ε(I, I) · eI where I = {1, . . . , n} \ I
where ε(I, I) is the signature of the permutation (I, I). In other words,

eI ∧ eI = ε(I, I)e1 ∧ · · · ∧ en.

Properties of ∗:

(1) ∗(vol) = 1,

(2) ∗∗ :
p∧
V →

p∧
V is equal to (−1)p(n−p) because

(a1 ∧ · · · ∧ ap) ∧ (b1 ∧ . . . ∧ bn−p) = (−1)p(n−p)(b1 ∧ · · · ∧ bn−p) ∧ (a1 ∧ · · · ∧ ap).

5.1.1. The global situation. Let M be a smooth manifold and E be a smooth real vector
bundle on M of rank n. Write E for the sheaf of sections.

Definition 5.4. A metric (or scalar product) on E is a smoothly varying family of scalar
products on the fibers of E. Concretely, for all p ∈M , we have a scalar product 〈·, ·〉 on Ep
such that for sections s, t ∈ E(U), the map

U 3 p 7→ 〈s(p), t(p)〉 ∈ R
is a smooth function. (Note that it is enough to check this for s1, . . . , sn which trivialize E
over open subsets.)

Example 5.5. If E = M × Rn, then the standard scalar product on Rn gives a scalar
product on each fiber, which is a matrix on E.

In particular, we always have such metrics locally on any E locally on M . By using partitions
of unity, get metrics on E. Hence on every E, we have such a metric.
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If, in addition, we have an orientation of E (i.e. a compatible system of orientations of all

fibers), we get an element vol ∈ Γ

(
M,

n∧
E
)

which is everywhere nonzero, belonging to the

(positive) orientation.

We get a global ∗ operator

∗ :

p∧
E →

n−p∧
E

globalizing the one on each fiber.

5.1.2. The tangent bundle.

Definition 5.6. A Riemannian metric on M is a metric on TM .

A Riemannian metrec induces a metric on T∗M and on
p∧

T∗M .

If M is oriented, i.e. we have an orientation on TM (or equivalently on T∗M), we can apply
the previous considerations.

In particular, we have an n-form (where n is the dimension of M) dV called the volume
element which is everywhere nonzero and positively oriented.

We get ∗ : ApM
∼=→ Ap−1

M such that ω ∧ (∗η) = 〈ω, η〉dV .

From now on, let M be a compact manifold with orientation and a Riemannian structure.
Compactness allows us to define a scalar product on Ap(M) by

〈〈ω, η〉〉 =

∫
M

〈ω, η〉 dV.

It is clearly bilinear, symmetric and positive-definite: if ω 6= 0, then 〈〈ω, ω〉〉 > 0.

One caveat is that Ap(M) is not finite-dimensional. Actually, it is not even complete with
respect to the metric induced by 〈〈·, ·〉〉.
Definition 5.7. Let d∗ : ApM → A

p−1
M be given by

d∗ = (−1)n(p−1)+1 ∗ d ∗
= (−1)p ∗−1 d ∗

Proposition 5.8. For every p, d∗ : Ap+1(M)→ Ap(M) is the formal adjoint of d : Ap(M)→
Ap+1(M) with respect to J·, ·K. Explicitly,

〈〈dω, η〉〉 = 〈〈ω, d∗ω〉〉
for all η ∈ Ap+1(M), ω ∈ Ap(M).

This is only a formal adjoint because these are not really Hilbert spaces (they are not
complete).

Remark 5.9. Such a formal adjoint is unique if it exists: if d
∗

is another such operator,
then

〈〈ω, d∗η〉〉 = 〈〈ω, d∗η〉〉,
then for ω = d∗η − d∗η we have 〈〈ω, ω〉〉 = 0, so ω = 0.
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Proof. We compute 〈〈ω, d∗η〉〉 using the definition:

〈〈ω, d∗η〉〉 =

∫
M

〈ω, (−1)p+1 ∗−1 d ∗ η〉 dV

= (−1)p+1

∫
M

ω ∧ d ∗ η︸ ︷︷ ︸
(−1)p(d(ω∧∗η)−dω∧(∗η))

= −
∫
M

d(ω ∧ ∗η)︸ ︷︷ ︸
=0 by Stokes’ Theorem

+

∫
M

dω ∧ ∗η

=

∫
M

〈dω, η〉dV

= 〈〈dω, η〉〉,
where we have used that d is a derivation. �

We define the Laplace–Beltrami operator:

∆ = dd∗ + d∗d : Ap(M)→ Ap(M).

Proposition 5.10. The operator ∆ is formally self-adjoint.

Proof. We have that

〈〈∆ω, η〉〉 = 〈〈dd∗ω + d∗dω, η〉〉
= 〈〈d∗ω, d∗η〉〉+ 〈〈dω, dη〉〉 by Proposition 5.8.

By symmetry, this is also equal to 〈〈ω,∆η〉〉. �

Definition 5.11. A form ω ∈ Ap(M) is harmonic if ∆ω = 0.

Proposition 5.12. A form ω is harmonic if and only if dω = 0 and d∗ω = 0.

Proof. The ‘if’ implication is clear from the definition of ∆. For the ‘only if’ implication,
we use the formula 〈〈∆ω, η〉〉 = 〈〈d∗ω, d∗η〉〉+ 〈〈dω, dη〉〉 from the proof of Proposition 5.10 for
η = ω such that dω = 0 to conclude that

0 = ‖d∗ω‖2 + ‖dω‖2,

so dω = 0 and d∗ω = 0. �

The goal is to prove that every de Rham cohomology class is represented by a unique har-
monic representative. This is the famous Hodge Theorem 5.21. We start with the following
lemma.

Lemma 5.13. For a given de Rham cohomology class, a representative ω is harmonic if and
only if ‖ω‖ is minimal.

Proof. Given a p-form ω such that dω = 0, consider ω + dη for all (p− 1)-forms η. Then

(3) ‖ω + dη‖2 = ‖ω‖2 + ‖dη‖2 + 2 〈〈ω, dη〉〉︸ ︷︷ ︸
〈〈d∗ω,η〉〉

.
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Since dω = 0, ω is harmonic if and only if d∗ω = 0. If this holds, then

‖ω + dη‖2 ≥ ‖ω‖2

for all η by formula (3).

Conversely, if ‖ω‖2 is minimal among all ‖ω + dη‖2, then

d

dt
‖ω + tdη‖2|t=0 = 0.

According to formula (3) derivative is equal to 2〈〈ω, dη〉〉. For η = d∗ω, we get that

0 = 〈〈ω, dd∗ω〉〉 = 〈〈d∗ω, d∗ω〉〉,

so d∗ω = 0. �

Note that if ω and ω′ are harmonic in the same cohomology class, then ‖ω‖2 = ‖ω′‖2. If we
write ω = ω′ + dη, then ‖dη‖2 = 0 by formula (3), so ω = ω′. This shows uniqueness.

Proving existence will be much more difficult. The problem is that the space Ap(M) is
not only infinite-dimensional but also not complete. Therefore, there is no abstract way to
conclude that the desired minimum exists.

Proposition 5.14. The operators ∗ and ∆ commute: ∗∆ = ∆∗.

Corollary 5.15. The form ω is harmonic if and only if ∗ω is harmonic.

Proof of Proposition 5.14. Computing on p-forms:

∗∆ = ∗(dd∗ + d∗d)

= (−1)n(p−1)+1 ∗ d ∗ d ∗+(−1)p+1d ∗ d

and

∆∗ = (dd∗ + d∗d)∗
= (−1)n(n−p−1)+1d ∗ d ∗∗︸︷︷︸

(−1)p(n−p)

+(−1)n(n−p)+1 ∗ d ∗ d ∗

= (−1)p+1d ∗ d+ (−1)n(p−1)+1 ∗ d ∗ d ∗,

which agrees with ∗∆ above. �

Note that if n is even (for example, M is a complex manifold), then the sign becomes simply
d∗ = − ∗ d ∗, which is easier to keep track of.

We have a formally self-adjoint operator

∆: Ap(M)→ Ap(M).

If we have a self-adjoint linear map T : V → V , where V is a finite-dimensional vector space
with a scalar product 〈·, ·〉, then ker(T ) is perpendical to im(T ), because for Tu = 0, we
have

〈u, Tv〉 = 〈Tu, v〉 = 0.
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Moreover, these have complementary dimension and hence 〈·, ·〉 gives an isomorphism

V = ker(T )
⊥
⊕ im(T ).

The same holds if T is an operator on a Hilbert space.

However, the spaces Ap(M) are not Hilbert spaces. We hence have to do more work in other
to prove such a statement for T = ∆, V = Ap(M).

5.2. Differential operators. Let M be a smooth manifold and C∞M be the sheaf of real-
valued smooth functions on M . Consider

DM ⊆ EndR(C∞M )

generated as a sheaf of rings by C∞M (acting by homotheties) and DerR(C∞M ). Note that this
is a sheaf of non-commutative rings.

If U ⊆ M is a chart with coordinates x1, . . . , xn, then Der(C∞M ) is generated over C∞M by
∂1, . . . , ∂n, where ∂i = ∂

∂xi
.

Hence DU is free over C∞M (both as a left and as a right modulo), with basis given by

∂∗ = ∂α1
1 . . . ∂αnn for α = (α1, . . . , αn).

Let FkDM ⊆ DM for k ≥ 0 be the subsheaf of locally generated (in charts as above) by ∂α

with |α| = α1 + · · ·+αn ≤ k. We call these differential operators of order ≤ k. For example:

• F0DM = C∞M ,
• F1DM = C∞M +DerR(C∞M ).

They satisfy the following obvious properties.

(1) We see that

FkDM · F`DM ⊆ Fk+`DM
using [∂k, g] = ∂g

∂xk
. This implies that

grF DM =
⊕
k≥0

FkDM/Fk−1DM

has an induced graded ring structure.
(2) We have that [FkDM ,F`DM ] ⊆ Fk+`−1DM , so grFDX is a sheaf of commutative rings.

Note that

grF DM = C∞M ⊕ TM ⊕ · · · ,
where we write TM for the sheaf of sections of the tangent bundle TM and identify it with
DerR(C∞M ).

By the universal property of the symmetric algebra, we get a morphism of sheaves of graded
commutative C∞M -algebras:

SymC∞M (TM)→ grF DM .
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Using the local description of DX in a chart, we see that this is an isomorphism. Given an
operator, P ∈ Γ(M,DX) of order k (i.e. order ≤ k but not ≤ k − 1), the symbol of P is the
corresponding section

σk(P ) ∈ Γ(M,Symk(TM)).

More generally, suppose E, F are smooth (real) vector bundles on M , with corresponding
sheaves E , F . Then

Diffk(E ,F) =

P ∈ End(E ,F)

∣∣∣∣∣∣∣∣
locally on open subsets U ⊆ X

such that E|U ∼= O⊕rU , F|U ∼= O⊕sU
P is given by (Pi,j) with each

Pi,j a differential operator of order ≤ k

 .

Example 5.16. The map d : ApM → A
p+1
M is a differential operator of order 1.

If P is a differential operator of order ≤ k, we want to define σk(P ), as above. Locally on an
open subset U ⊆ X such that E|U ∼= O⊕rU , F|U ∼= O⊕sU , if P is given by (Pi,j)i,j, we consider
(σk(Pi,j))i,j where

σk(Pi,j) ∈ Γ(U,Sym(TM)).

These glue together to give

σk(P ) ∈ Γ(M,Sym(TM)⊗Hom(E ,F)).

Given x ∈M , we get a map

T ∗xM → HomR(E(x), F(x))

which is a homogeneous polynomial of degree k.

Definition 5.17. A differential operator P ∈ Diffk(E,F ), with rank(E) = rank(F ), is
elliptic if for all x ∈M and any non-zero v ∈ T ∗xM , σk(P )x(v) is an isomorphism.

If P =
∑
|α|≤k

aα(x)∂α, then

σk(P ) =
∑
|α|=k

aα(x)yα.

Therefore, P is elliptic if and only if for all (y1, . . . , yn) 6= 0 and all x,∑
|α|=k

aα(x)yα 6= 0.

Example 5.18 (Main example). The Laplace-Beltrami operator ∆, where

∆ = d∗d+ dd∗ d∗ = ± ∗ d ∗ .

Recall that ∗ has order 0 and d has order 1, so ∆ is a differential operator of order ≤ 2.

Goals.

• Compute ∆ on Rn with the usual metric and orientation.
• Compute σ2(∆) in general and show that ∆ is elliptic.



MATH 731: HODGE THEORY 53

Recall that if M is a smooth manifold, X is a vector field, and ω is a p-form, iXω is the
contraction of ω with respect to X given by: if X1, . . . , Xp−1 are vector fields, then

(iXω)(X1, . . . , Xp−1) = ω(X,X1, . . . , Xp−1).

For example, iX(df) = X(f).

Exercise. The contraction along X, iX , behaves well with respect to ∧:

(4) iX(α ∧ β) = iX(α) ∧ β + (−1)degαα ∧ iX(β).

We write down iX explicitly in local coordinates. If ξ1, . . . , ξn trivialize TM on U and
ξ∗1 , . . . , ξ

∗
n is the dual basis of T ∗M , we set

ξ∗I = ξ∗i1 ∧ · · · ∧ ξ
∗
ip for I : i1 < · · · < ip.

Then

iξj(ξ
∗
I ) =

{
0 if j 6∈ I
(−1)k−1ξ∗I\{j} if j = ik

Lemma 5.19. Let M be an oriented Riemannian manifold and ξ1, . . . , ξn be an orthonormal
positively oriented local basis for TM . Then for all I with |I| = p,

∗(ξ∗j ∧ ∗ξ∗I ) = (−1)n(p−1)iξj(ξ
∗
I ).

Proof. We first make sure that this equality is correct when we ignore the signs. For j 6∈ I,
both sides are clearly 0. Otherwise, if j ∈ I, the left hand side is

± ∗ (ξ∗j ∧ ±ξ∗I ) = ± ∗ ξ∗
I∪{j} = ±ξ∗I\{j}.

Checking that the signs agree is left as an exercise. �

We now compute σ2(∆) in general and ∆ if M = Rn with standard metric and orientation.

Consider a p-form ω which may be written in the local coordinates as ω =
∑
|I|=p

fIξ
∗
I . Then

d∗ω = (−1)n(p−1)+1 ∗ d ∗ (ω)

= (−1)n(p−1)+1 ∗ d

∑
|I|=p

fI ∗ ξ∗I


= (−1)n(p−1)+1 ∗

∑
|I|=p

n∑
k=1

ξk(fI)(ξ
∗
k ∧ ∗ξ∗I )︸ ︷︷ ︸

Term A

+ (−1)n(p−1)+1 ∗
∑
|I|=p

fId(∗ξ∗I )︸ ︷︷ ︸
Term B

.

Term B is

• = 0 in Rn with ξi = ∂
∂xi

,

• in general, can be ignored in the computation of σ2(∆).
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We are hence left with computing Term A. We have that

Term A = (−1)n(p−1)+1
∑
|I|=p

n∑
k=1

ξk(fI) ∗(ξ∗k ∧ ∗ξ∗I )︸ ︷︷ ︸
(−1)n(p−1)iξk ξ

∗
I

= −
∑
I

∑
k

ξk(fI)iξk(ξ
∗
I ).

So far, we have shown that

d∗ω = −
∑
I

∑
k

ξk(fI)iξk(ξ
∗
I ) + (linear operator in ω)

and the linear operator in ω is 0 if U = Rn with the standard metric and basis. Moreover,

dω =
∑
|I|=p

∑
j

ξj(fI)ξ
∗
j ∧ ξ∗I .

Putting these together, we see that

dd∗ = −
∑
I

∑
j,k

ξjξk(fI)ξ
∗
j ∧ iξk(ξ∗I ) + (operator of order ≤ 1 in ω)︸ ︷︷ ︸

=0 in Rn

,

d∗d = −
∑
I

∑
j,k

ξkξj(fI)iξk(ξ
∗
j ∧ ξ∗I ) + (operator of order ≤ 1 in ω)︸ ︷︷ ︸

=0 in Rn

.

and hence

∆ω = (dd∗+d∗d)ω = −
∑
I

∑
j,k

ξkξj(fI)(ξ
∗
j∧iξk(ξ∗I )+iξk(ξ∗j∧ξ∗I ))+(operator of order ≤ 1 in ω)︸ ︷︷ ︸

=0 in Rn

where we use the fact that [ξk, ξj] is an operator of order ≤ 1. Using the formula (4) for
iX(α ∧ β), we see that

∆ω = −
∑
I

∑
j,k

ξkξj(fI)iξk(ξ
∗
j ) ∧ ξ∗I −

∑
k

ξ2
k(fI)ξ

∗
I + (operator of order ≤ 1 in ω)︸ ︷︷ ︸

=0 in Rn

.

Conclusion.

(1) If M = Rn, we get the formula

∆

∑
I

fIdxI

 = −
∑
I

 n∑
k=1

∂2f

∂x2
k

 dxI

which is the standard Laplace operator in Rn.
(2) In general, σ2(∆) ignores the operators of order ≤ 1, so we get the expression

σ2(∆)x

 n∑
k=1

vkξ
∗
k(x)

 = −

 n∑
k=1

v2
k

 · Id
so

σ2(∆)x(v) = −‖v‖2 · Id
which is an isomorphism if v 6= 0. In particular, ∆ is an elliptic operator.
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Suppose P ∈ Diffk(E ,F) where M is compact and oriented. If we have a metric on E and a
volume element dV , we can define a scalar product on E(M) by

〈〈s, t〉〉 =

∫
M

〈s, t〉 dV.

Given P ∈ Diffk(E ,F) such that both E , F carry metrics, there is a formal adjoint

P ∗ ∈ Diffk(F , E)

such that
〈〈Ps, t〉〉 = 〈〈s, P ∗r〉〉 for all s ∈ E(M), t ∈ F(M).

Moreover, for all x ∈M , v ∈ T ∗X(M),

σk(P
∗)x(v) = (σk(P )x(v))∗

where the right hand side is the adjoint with respect to the scalar product on the fibers.

In particular, if rank(E) = rank(F ), then P is elliptic if and only if P ∗ is elliptic.

Theorem 5.20 (Fundamental theorem). Suppose M is compact and oriented, and E, F are
smooth vector bundles of the same rank, with metrics, and we have a volume element dV .
For an elliptic differential operator P ∈ Diffk(E,F ), we have

(1) dimR ker(P ) <∞ (so codimR im(P ) <∞),

(2) E(M) = ker(P )
⊥
⊕ im(P ∗).

In particular, if P is self-adjoint, then

E(M) = ker(P )⊕ im(P ).

Note that ker(P ) ⊥ im(P ∗) by adjointness. The assertion in the theorem is that E(M) is a
direct sum of the two.

The subtle issue is that E(M) and F(M) are not complete with respect to 〈〈·, ·〉〉, so we cannot
apply the usual theory of Hilbert spaces. We have first to enlarge the spaces to suitable spaces
of distributions. The hard part is then showing that, given an elliptic operator P ∗ and a
section s of E with coefficients in a distribution, if P ∗s is smooth, then s is smooth.

What does this say about ∆? Since ∆ is elliptic and self-adjoint, Theorem 5.20 implies that

(5) Ap(M) = ker(∆)
⊥
⊕ im(∆).

We already know that the kernel is the space of harmonic forms:

ker(∆) = Hp(M,R) = {ω ∈ Ap(M) | ∆ω = 0}.

We need to compute the image. We have that

(6) ∆(Ap(M)) ⊆ d(Ap−1(M)) + d∗(Ap+1(M))

because ∆ = dd∗ + d∗d. Note that

(1) d(Ap−1(M)) ⊥ d∗(Ap+1(M)), because

〈〈dω, d∗η〉〉 = 〈〈d2ω, η〉〉 = 0,
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(2) Hp(M,R) is orthogonal to

d(Ap−1) + d∗(Ap+1(M)),

because for harmonic ω, dω = 0 and d∗ω = 0, so

〈〈ω, dη〉〉 = 〈〈d∗ω, η〉〉 = 0

and similarly 〈〈ω, d∗θ〉〉 = 0.

The orthogonal decomposition (5) together with the inclusion (6) shows that

∆(Ap(M)) = d(Ap−1(M))
⊥
⊕ d∗(Ap+1(M)).

What is the kernel ker(d : Ap(M)→ Ap+1(M))? It contains Hp(M,R) and d(Ap−1(M)). We
claim that

ker(d : Ap(M)→ Ap+1(M)) = Hp(M,R)
⊥
⊕ d(Ap−1(M)).

For this, it is enough to show that if d∗η ∈ ker(d), then d∗η = 0 (using the decomposition (5)).
This is clear since dd∗η = 0 implies that

〈〈d∗η, d∗η〉〉 = 〈〈η, dd∗η〉〉 = 0,

so d∗η = 0.

Finally, we deduce from this discussion the fundamental theorem of Hodge theory.

Corollary 5.21 (Hodge theorem). Suppose M is a compact oriented Riemannian manifold.
We have a canonical isomorphism

Hp
dR(M,R) ∼= Hp(M,R).

Corollary 5.22. We have that dimRH
p
dR(M,R) <∞.

Proof. This follows from part (1) of Theorem 5.20. �

One can also prove this theorem using triangulation of manifolds. This is, however, not
much easier than the method we employed.

Elementary application. Let M be a compact, orientable manifold. We then have a
Poincaré duality. Put a metric on M and choose an orientation. Then ∗ gives an isomorphism

Hp(M,R) ∼= Hn−p(M,R).

depending on the choice of metric.

Here is a better statement: the pairing

Hp
dR(M,R)×Hn−p

dR (M,R)→ R

(ω, η) 7→
∫
M

ω ∧ η

is non-degenerate. To see this, it is enough to show that for every p and every α ∈ Hp
dR(M,R),

there is a β ∈ Hn−p
dR (M,R) such that ∫

α ∧ β 6= 0.
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For this, choose a metric, and choose ω ∈ Hp(M,R) such that [ω] = α. Then take β = [∗ω]
where ∗ω is also harmonic to obtain∫

M

ω ∧ ∗ω =

∫
M

〈ω, ω〉 dV = 〈〈ω, ω〉〉 > 0

if ω 6= 0. This implies the non-degeneracy of the Poincaré duality.

6. Hodge theory of complex manifolds

We now discuss Hodge theory for complex manifolds.

6.1. Linear algebra background. Let V be a finite-dimensional complex vector space.
Then VC = V ⊗R C = V ′ ⊕ V ′′ with each V ′, V ′′ isomorphic to V .

Definition 6.1. A Hermitian form on V is a bilinear map

V × V h→ C
such that h(v, w) = h(w, v).

Given such h, we write it as h = S + iA where S,A : V × V → R are bilinear over R and S
is symmetric, A is skew-symmetric. Note that

S(iv, w) + iA(iv, w) = i(S(v, w) + iA(v, w))

so

S(iv, w) = −A(v, w),

A(iv, w) = S(v, w).

It is easy to see that, giving a Hermitian form h on V is equivalent to giving a symmetric
bilinear form S : VR × VR → R such that S(iv, iw) = S(v, w) for all v, w. In this case,
A is defined by A(v, w) = −S(iv, w). It is also equivalent to giving a skew-symmetric
bilinear form A : VR → VR → R such that A(iv, iw) = A(v, w). In this case, S is given by
S(v, w) = A(iv, w).

Definition 6.2. The Hermitian form h is a Hermitian metric such that h(v, v) > 0 for all
v ∈ V non-zero.

In this case, S = Sh given a scalar product on VR. This can be uniquely extended to a
Hermitian form Sh on VC. This is again a metric:

Sh(v + iw, v + iw) = Sh(v, v) + Sh(w,w) + i(Sh(w, v)− Sh(v, w)) = Sh(v, v) + Sh(w,w) > 0

if v + iw 6= 0.

Lemma 6.3. The canonical isomorphism V ∼= V ′ given by

V V ′

V ⊗R C

∼=

proj
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is compatible with the Hermitian forms (up to a constant scalar factor).

Proof. Recall that if J : V → V is multiplication by i, then

V → V ′

v 7→ 1

2
(v − iJv).

We then have

Sh

(
1

2
(v − iJv),

1

2
(w − iJw)

)
=

1

4

(Sh(v, w) + Sh(Jv, Jw)︸ ︷︷ ︸
Sh(v,w)

)− i(Sh(Jv, w)− Sh(v, Jw)︸ ︷︷ ︸
−Sh(Jv,w)

)


=

1

2
(Sh(v, w)− iSh(Jv, w))

=
1

2
h(v, w)

This is what we wanted to prove. �

Remark 6.4.

(1) If h : V × V → C is a Hermitian metric, we get an isomorphism V ∼= V ∗ given by

v 7→ hv = h(−, v).

Also, h : V ×V → C, which gives a Hermitian metric on V . Combining these, we get
a Hermitian metric h∗ on V ∗ such that

h∗(hv, hw) = h(v, w).

(2) Given a Hermitian metric h on V , we get Hermitian metric on all
p∧
V given by

〈v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp〉 = det(h(vi, wj)).

Given a Hermitian metric h on V , consider the Hermitian metric Sh on VC and use it to put

a Hermitian metric on all
p∧

(VC)∗.

Exercise. This is the same as using the scalar product Sh on V to get a scalar product on
p∧
V ∗ and then extending this by linearity to a Hermitian linear form on (

p∧
V ∗)C ∼=

p∧
(V ∗C ).

Lemma 6.5. The decomopsition

p∧
V ∗C
∼=
⊕
i+j=p

 i∧
(V ′)∗ ⊕

j∧
(V ′′)∗


is orthogonal with respect to the Hermitian metric.
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Proof. To show this, it is enough to check that the decomposition VC = V ′⊕V ′′ is orthogonal
with respect to Sh. But:

Sh

(
1

2
(v − iJv),

1

2
(w + iJw)

)
=

1

4

(
(Sh(v, w) + Sh(Jv, Jw)) + i(Sh(v, Jw) + Sh(Jv, w))

)
= 0

as required. �

Suppose (V, h) is as above. We have a scalar product Sh on V . Since V is a complex vector
space, we have a canonical orientation on V . Let n = dimC V . We get a canonical volume

element dV ∈
2n∧
V ∗ ⊆

2n∧
V ∗C .

We hence have the Hodge operator

∗ :

p∧
V ∗

∼=→
2n−p∧

V ∗

which is an isomorphism of R-vector spaces. We extend scalars to C to get

∗ :

p∧
V ∗C

∼=→
2n−p∧

V ∗C

We have the following analog of Proposition 5.3 which defined ∗.

Lemma 6.6. For every ω, η ∈
∧p V ∗C , we have

ω ∧ ∗η = 〈ω, η〉dV.

Exercise. Check this, using the fact that we know this if ω, η ∈
p∧
V ∗.

We write
p,q∧
V ∗C for

p∧
V ′∗ ⊗

q∧
V ′′∗.

Corollary 6.7. The map ∗ maps
p,q∧
V ∗C to

n−q,n−p∧
V ∗C .

Recall that if w :
•∧
V ∗C →

•∧
V ∗C is the de Rham operator acting by muliplication with (−1)m

on
m∧
V ∗C, then

∗∗ = w.

Note that ∗ is defined by scalar extension from R, so it is a real operator, i.e. ∗ω = ∗ω.

6.2. Globalization. Let M be an n-dimensional complex manifold. We can always choose
on M a Hermitian metric. The key point is that a real positive function times a Hermitian
metric is still a Hermitian metric, and a finite sum of Hermitian metrics is still a Hermitian
metric, so we can construct such metrics locally and glue using partitions of unity.

Fix such a metric h. Then S = Re(h) is a Riemannian metric on M with the standard
orientation and we get a volume element dV which is a real (n, n)-form on M . The ∗
operator

∗ : Ap,qM ∼= A
n−q,n−p
M
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is the unique map satisfying
〈ω, η〉dV = ω ∧ ∗η

(as in Lemma 6.6). Note that S also induces Hermitian metrics on all AmM,C such that the
(p, q)-components are orthogonal.

From now on, suppose M is compact. We get Hermitian metrics on each Ap,q(M) by

〈〈ω, η〉〉 =

∫
M

〈ω, η〉 dV =

∫
M

ω ∧ ∗η.

Note that 〈〈ω, ω〉〉 > 0 unless ω = 0.

It is easy to say that the induced Hermitian metric on AmM,C(M) = AmM(M)⊗R C is the one
induced by extending to complexifications of the one we associated before to the Riemannian
structure.

6.3. The operators ∂∗ and ∂
∗
. We have operators

∂ : Ap,qM → A
p+1,q
M

∂ : Ap,q → Ap,q+1
M

such that d = ∂ + ∂. Recall that d∗ = − ∗ d ∗.

Definition 6.8. Define

∂∗ = − ∗ ∂ ∗ : Ap+1,q
M → Ap,qM ,

∂
∗

= − ∗ ∂ ∗ : Ap,q+1
M → Ap,qM .

Clearly, d∗ = ∂∗ + ∂
∗
.

Proposition 6.9. The partial (∂, ∂∗) and (∂, ∂
∗
) are formal adjoint pairs.

Proof. Let u ∈ Ap,q(M), v ∈ Ap+1,q(M). Then

〈〈u, ∂∗v〉〉 =

∫
M

u ∧ ∗∂∗v

= −
∫
M

u ∧ ∗ ∗ ∂ ∗ v

= (−1)p+q+1

∫
M

u ∧ ∂ ∗ v︸ ︷︷ ︸
(−1)p+q(∂(u∧∗v)−∂u∧∗v)

as ∗ ∗ = (−1)p+q

= −
∫
M

∂(u ∧ ∗v)︸ ︷︷ ︸
=d(u∧∂v)

as ∂(··· )=0

+

∫
M

∂u ∧ ∗v

= 0 + 〈〈∂, v〉〉
where the first term is 0 by Stokes theorem. The proof of the second adjointness is similar. �

Definition 6.10. Let ∆′ = ∂∂∗ + ∂∗∂, ∆′′ = ∂∂
∗

+ ∂
∗
∂.
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By Proposition 6.9, both ∆′ and ∆′′ are formally self-adjoint.

Definition 6.11. A form ω is

• ∂-harmonic if ∆′ω = 0,
• ∂-harmonic if ∆′′ω = 0.

We write

H(p,q)
∆′ (M) = {∂-harmonic (p, q)-forms}

H(p,q)
∆′′ (M) = {∂-harmonic (p, q)-forms}

As in the case of usual harmonic forms, one shows the following simple properties.

• A form ω is ∂-harmonic if and only if ∂ω = 0 and ∂∗ω = 0,
• A form ω is ∂-harmonic if and only if ∂ω = 0 and ∂

∗
ω = 0,

• We have that ∂∗ω = − ∗ ∂ ∗ ω = − ∗ ∂ ∗ ω = ∂
∗
ω, so ∆′ω = ∆′′ω, and hence

Hp,q
∆′ (M)

∼=→ Hq,p
∆′′(M)

ω 7→ ω,

• Both ∆′ and ∆′′ commute with ∗: ∗∆′ = ∆′′∗, ∗∆′′ = ∆′∗. We check the first equality
on (p, q)-forms:

∗(∂∂∗ + ∂∗∂) = − ∗ (∂ ∗ ∂ ∗+ ∗ ∂ ∗ ∂)

= − ∗ ∂ ∗ ∂ ∗+(−1)p+q+1∂ ∗ ∂
and

∆′′∗ = (∂∂
∗

+ ∂
∗
∂)∗

= −(∂ ∗ ∂ ∗+ ∗ ∂ ∗ ∂)∗
= (−1)p+q+1∂ ∗ ∂ − ∗∂ ∗ ∂∗,

so the two agree. Altogether, we get isomorphisms

Hp,q
∆′ (M) Hn−q,n−p

∆′′ (M) Hn−p,n−q
∆′ (M).∗

∼=
conj

∼=

The same computation we have done for ∆ implies that

σ2(∆′)x(v) = −1

2
‖v‖2 · Id = σ2(∆′′)x(v).

Hence, like ∆, the operators ∆′ and ∆′′ are elliptic operators. We may hence apply the
Fundamental Theorem of Elliptic Operators 5.20 to ∆′ and ∆′′.

Part (1) implies that
Hp,q

∆′ (M),Hp,q
∆′′(M)

are both finite-dimensional over C. Part (2) for ∆′′ gives an orthogonal decomposition

Ap,q(M) = Hp,q
∆′′(M)

⊥
⊕ Im(∆′′ : Ap,q(M)→ Ap,q(M))

= Hp,q
∆′′(M)

⊥
⊕ ∂(Ap,q−1(M))

⊥
⊕ ∂∗(Ap,q+1(M)).
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Moreover,

ker(∂ : Ap,q(M)→ Ap,q+1(M)) = Hp,q
∆′′(M)

⊥
⊕ ∂(Ap,q−1(M)).

The conclusion is that the Dolbeaux cohomology group

Hp,q(M) = Hq(Ap,•(M), ∂) ∼= Hq(M,Ωp)

is isomorphic to
Hp,q

∆′′(M).

Here is an application of the above theory. We have a pairing

Hq(X,Ωp)×Hn−p(X,Ωn−p)→ C

([α], [β]) 7→
∫
M

α ∧ β

where α is a (p, q)-form such that ∂α = 0, β is an (n− p, n− q)-form such that ∂β = 0. We
claim that this is a non-degenerate pairing. To check this, put a metric h on M . Given a
non-zero element in Hq(X,Ωp), choose a ∂-harmonic representative α. If β = ∗α is harmonic
(so ∂β = 0), and ∫

M

α ∧ β = 〈〈α, α〉〉 > 0.

7. Kähler manifolds

7.1. Linear algebra background:Kähler metrics. Let V be a finite-dimensional vector
space over C. We write J for multiplication by i. We have a decomposition VC = V ′ ⊕ V ′′.

Giving a Hermitian form h on V is equivalent to giving a bilinear alternating form A : VR ×
VR → R such that

A(u, v) = A(Ju, Jv) for allu, v.

Indeed, given h, we may define A = Im(h), and given A, we may define S(u, v) = A(Ju, v)
and h = S + iA.

Given A ∈
2∧
V ∗R , let Ã ∈

2∧
V ∗C be the corresponding alternating bilinear form on VC. By

definition, Ã is real.

We claim that

A(Ju, Jv) = (u, v) if and only if Ã is a (1, 1)-form.

Indeed, Ã is a (1,1) form if and only if Ã(V ′ × V ′) = 0, Ã(V ′′ × V ′′) = 0. Since Ã(u, v) =

Ã(u, v), it is enough to check that Ã(V ′ × V ′) = 0.

Recall that V ′ = {u− iJu | u ∈ V }. We have that

Ã(u− iJu, v − iJv) = (A(u, v)− A(Ju, Jv))− i(A(Ju, v) + A(u, Jv)).

From this, the ‘only if’ implication is clear and the ‘if’ implication follows since A takes real
values.
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Definition 7.1. The fundamental form of the Hermitian metric h is the real (1, 1) form

ωh = −Ã.

We now describe the fundamental form in a basis. Let x1, . . . , xn be a basis of V over C.
Let yj = Jxj so that

x1, . . . , xn, y1, . . . , yn

is a basis of VR.

Then a basis of V ′ is e1, . . . , en and a basis of V ′′ is e1, . . . , en for

ej =
1

2
(xj − iyj).

Given a Hermitian form h, we let hi,j = h(xi, xj) so that for v =
∑
viei, w =

∑
wjej,

h(v, w) =
∑

hi,jviwj.

Write ωh as ∑
j<k

λjke
∗
j ∧ ek∗

for some λjk. We compute it

λjk = ωh(ej, ek)

= −1

4
Ã(xj − iyj, xk + iyk)

= −1

4

(A(xj, xk) + A(yj, yk)︸ ︷︷ ︸
A(xj ,xk)

) + i(A(xj, xk)︸ ︷︷ ︸
−S(xk,xj)

−A(yj, xk)︸ ︷︷ ︸
S(xj ,xk)

)


= −1

4
2 · (A(xj, xk)− iS(xj, xk))

=
i

2
(S(xj, xk) + iA(xj, xk))

=
i

2
hj,k.

Therefore,

ωh =
i

2

∑
j<k

hj,ke
∗
j ∧ ek∗.

Conclusions.

(1) This implies that h is a metric if and only if −iωh(v, v) > 0 for all v 6= 0.
Hence: giving a Hermitian metric on V is equivalent to giving a real (1, 1) form ω

with iω(v, v) > 0 for all v.
(2) Suppose x1, . . . , xn is an orthonormal basis of V . Then hj,k = δjk, so

ωh =
i

2

n∑
k=1

e∗kej
∗.
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Recall that S gives a top form dV . If x1, y1, . . . , xn, yn is a positive orthonormal basis
for S,

dV = x∗1 ∧ y∗1 ∧ · · · ∧ x∗n ∧ y∗n.
On the other hand, the formula above gives

ωnh =

(
i

2

)n
n! e∗1 ∧ e1

∗ ∧ · · · ∧ e∗n ∧ en∗

Moreover,
e∗j ∧ ej∗ = (x∗j + iy∗j ) ∧ (x∗j − iy∗j ) = −2ix∗j ∧ y∗j .

The conclusion is that
ωnh = n! · dV.

Definition 7.2. Let M be a complex manifold. A Hermitian metric h on M is Kähler if
the (real (1, 1) form) ω = ωh is closed, i.e. dω = 0.

Example 7.3 (Trivial example). The manifold Cn with the standard metric is Kähler. With
respect to the standard basis which is orthonormal for h,

ωh =
i

2

n∑
j=1

dzj ∧ dzj

This is clearly closed.

Remark 7.4. The existence of a Kähler metric is a global property. The issue is that we
cannot glue such metrics using partitions of unity any more. Why? If h is a Kähler metric
with form ω and f is a smooth everywhere positive function, then f · h is a metric and
ωfh = f · ωh. However,

d(fωh) = df ∧ ωh︸ ︷︷ ︸
not necessarily 0

+ fdωh︸ ︷︷ ︸
=0

.

Example 7.5 (Important example: the Fubini–Study metric on Pn). Let z0, . . . , zn be ho-
mogeneous coordinates on Pn and Uj = (zj 6= 0). Let

ωj =
i

2
∂∂ log

 n∑
k=0

∣∣∣∣∣zkzj
∣∣∣∣∣
2
 ∈ A1,1(Uj).

These glue to a global (1, 1) form. Indeed, on Uj ∩ U`:∑∣∣∣∣∣zkzj
∣∣∣∣∣
2

=

(∑∣∣∣∣zkz`
∣∣∣∣2
)
·

∣∣∣∣∣z`zj
∣∣∣∣∣
2

so

log

∑∣∣∣∣∣zkzj
∣∣∣∣∣
2
 = log

(∑∣∣∣∣zkz`
∣∣∣∣2
)

+ log

∣∣∣∣∣z`zj
∣∣∣∣∣
2

.

It is enough to note that ∂∂ log |wj|2 = 0 if w1, . . . , wn are coordinates on Cn. This is true
because |wj|2 = wjwj, so

log |wj|2 = logwj + logwj,

so
∂∂ log |wj|2 = 0 on Cn\(wj = 0).
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We have hence shown that

ωj =
i

2
∂∂ log

 n∑
k=0

∣∣∣∣∣zkzj
∣∣∣∣∣
2


glue to
ω ∈ A1,1(Pn).

Since ∂2 = 0, ∂
2

= 0, ∂∂ + ∂∂ = 0, we see that ∂ω = ∂ω = 0, and since d = ∂ + ∂, dω = 0.
Therefore, ω is closed.

We finally need to check that ω defines a Hermitian metric. Note that

ωj = − i
2
∂∂ log

 n∑
k=0

∣∣∣∣∣zkzj
∣∣∣∣∣
2
 =

i

2
∂∂ log

 n∑
k=0

∣∣∣∣∣zkzj
∣∣∣∣∣
2
 .

Let us check that iω(v, v) > 0 if v 6= 0. Work on Uj ∼= Cn, zk
zj

= wk (and reorder coordinates

to assume that j = 0). Then

ωj =
i

2
∂∂ log

1 +
n∑
k=1

|wk|2
 .

Note that

∂ log(1 +
∑
|wk|2) =

n∑
k=1

wkdwk

1 +
n∑̀
=1

|ω`|2

and
∂

∂wj

(
wk

1 +
∑

` |w`|2

)
=

δjk
1 +

∑
|w`|2

− wkwj
(1 +

∑
|wj|2)2

which shows that

ωj =
i

2

∑
k

dwk ∧ dwk
1 +

∑
` |w`|2

−
∑
k,j

wkwjdwj ∧ dwk
(1 +

∑
|w`|2)2

 .

Write
ajk = (1 +

∑
`

|w`|2)δjk − wkwj.

We need to show that if v 6= 0, then v · (ajk)vt > 0. Writing (·, ·) for the standard Hermitian
metric on Cn, we see that

v · (ajk)vt = (1 + (w,w))(v, v)−
∑
j,k

vjwkwjvk︸ ︷︷ ︸
(v,w)(w,v)

= (v, v)︸ ︷︷ ︸
>0

+ ((w,w) · (v, v)− |(v, w)|2)︸ ︷︷ ︸
≥0 by Cauchy–Schwartz inequality

> 0.

Therefore, ω is a Kähler metric on Pn.
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Remark 7.6. If h is a Hermitian metric on M and M ′ ↪→ M is a submanifold, then the
restriction h′ of h to TM ′ is a Hermitian metric on M ′, and ωh′ = ωh|M ′ . In particular, if h
is Kähler, h′ is also Kähler.

Upshot. If X is a smooth quasi-projective complex algebraic variety, we have a locally
closed immersion X ↪→ PN such that Xan is a submanifold of (PN)an. By restriction of the
Fubini–Study metric to Xan, Xan has Kähelr metrics.

Example 7.7 (Complex tori). Let M = V/Λ where V is an n-dimensional complex vector
space and Λ ⊆ V is a lattice (i.e. V ∼= Cn and Λ ∼= Z2n ⊆ Cn).

If h is the standard Hermitian metric on Cn, with the form ω = i
2

n∑
k=1

zk∧zk, and γλ : V → V

is the translation by some λ ∈ Λ, then

γ∗λ(ω) = ω.

Then h induces a metric on the quotient M , which is again Kähler.

Note that we will later see that for Λ general, M is not algebraic. This hence gives an
example of Kähler manifolds which are not algebraic.

The next goal is to show that Kähler metrics are not far from the standard one. Suppose
p ∈ M . Choose coordinates z1, . . . , zn in a chart around P such that zi(P ) = 0 for all i.
Suppose h is a Hermitian metric on M , with fundamental form

ω =
i

2

∑
j,k

hj,kdzj ∧ dzk.

We will say that ω osculates to order 2 to the standard metric at P (in these coordinates) if

hj,k(0) = δjk,

∂hj,k
∂z`

(0) = 0,

∂hj,k
∂z`

(0) = 0.

Proposition 7.8. Given a Hermitian metric h with fundamental form ω, h is Kähler if and
only if for all p ∈ M , there is a chart as above such that ω osculates to order 2 with the
standard metric.

Proof. Write ω =
i

2

∑
j,k

hj,kdzj ∧ dzk. Then

dω =
i

2

∑
j,k,`

∂hj,k
∂z`

dz` ∧ dzj ∧ dzk −
i

2

∑
j,k,`

∂hj,k
∂z`

dzj ∧ dz` ∧ dzk.

It is clear that if
∂hjk
∂z`

(p) = 0 =
∂hj,k
∂z`

(0), this implies that dω(p) = 0. If this holds at every p,
ω is closed.
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Conversely, suppose dω = 0. It is easy to see that there is a linear change of variables such
that hj,k(0) = δjk. We will assume that this holds. Let

ajk` =
∂hj,k
∂z`

(p), a′jk` =
∂hjk
∂z`

(p).

If dω(p) = 0, we must have

(7) ajk` = a`kj, a′jk` = a′j`k.

Moreover, since ω is real, we have that hjk = hkj, so

∂hj,k
∂z`

=
∂hkj
∂z`

,

which shows that

(8) ajk` = a′kj`.

Now, do the change of variables

wj = zj +
1

2

n∑
k,`=1

akj`zkz`.

We want to compare ω with i
2

n∑
j=1

dwj ∧ dwj.

We have that

dwj = dzj +
1

2

n∑
k,`=1

akj`(zkdz` + z`dzk)

= dzj +
n∑

k,`=1

akj`zkdz` by equation (7)

dwj = dzj +
n∑

k,`=1

a′jk`zkdz` by equation (8).

Therefore,

i

2

n∑
j=1

dwj ∧ dwj =
i

2

n∑
j=1

dzj ∧ dzj

+
i

2

∑
k,`,j

a′jk`︸︷︷︸
=
∂hj,`
∂zk

(p)

zkdzj ∧ dz` +
i

2

∑
k,`,j

akj`︸︷︷︸
∂h`j
∂zk

(p)zkdz` ∧ dzj

+ terms vanishis at p with order ≥ 2.

Therefore, ω = i
2

n∑
j=1

dwj ∧ dwj + terms vanishis at p with order ≥ 2. �
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7.2. Operators on Kähler manifolds. We have ∗, d, ∂, ∂ and the adjoints d∗, ∂∗, ∂
∗
.

Given the Kähler metric h, with fundamental form ω, the Lefschetz operator is

L = ω ∧ − : Ap,qM → A
p+1,q+1
M .

We also define Λ = ∗−1L∗ : Ap,qM → A
p−1,q−1
M .

Note that since ω is a real form, L is a real operator (i.e. it commutes with conjugation).
Since ∗ is a real operator, Λ is a real operator.

Lemma 7.9. The operator Λ is the adjoint of L, i.e.

〈Lα, β〉 = 〈α,Λβ〉
for every (p, q)-form α and (p+ 1, q + 1)-form β.

Proof. Recall that α ∧ ∗β = 〈α, β〉dV . Then

〈α,Λβ〉dV = α ∧ ∗(∗−1L∗)β
= α ∧ ω ∧ ∗β
= (α ∧ ω) ∧ ∗β
= Lα ∧ ∗β
= 〈Lα, β〉dV.

�

Theorem 7.10 (Kähler Identities). We have:

(1) [∂
∗
, L] = i∂,

(2) [∂∗, L] = i∂,
(3) [Λ, ∂] = i∂∗,

(4) [Λ, ∂] = −i∂∗.

Proof. We only need to prove (1). The other ones follow from the formulas:

[P,Q]∗ = [Q∗, P ∗], (λP )∗ = λP ∗.

We prove (1). Suppose first that we deal with a (rescaling by 2) of the standard metric on
Cn, i.e.

ω = i
n∑
j=1

dzj ∧ dzj.

A similar computation to that for d∗ gives the expression

∂
∗

∑
I,J

fI,JdzI ∧ dzJ

 = −
∑
I,J
k

∂fI,J
∂zk

· i ∂
∂zk

(dzI ∧ dzJ).

Writing η =
∑
I,J

fI,JdzI ∧ dzJ , we have that

[∂
∗
, L]η = ∂

∗
(ω ∧ η)− ω ∧ ∂∗η.
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Hence

∂
∗
η = −i

∑
I,J
k,j

∂fI,J
∂zk

i ∂
∂zk

(dzj ∧ dzj ∧ dzI ∧ dzJ)

+ i
∑
I,J
j,k

∂fI,J
∂zk

dzj ∧ dzj ∧ i ∂
∂zk

(dzI ∧ dzJ).

Since i ∂
∂zk

is a derivation, this gives

∂
∗
η = −i

∑
I,J
k,j

∂fI,J
∂zk

i ∂
∂zk

(dzj ∧ dzj)︸ ︷︷ ︸
−δjkdzj

∧dzI ∧ dzJ)

= i
∑
I,J
k

∂fI,J
∂zk

dzk ∧ dzI ∧ dzJ

= i∂η.

This gives the result for the standard metric. In the general case, to check that [∂
∗
, L] = i∂

at p ∈ M , choose a chart where ω osculates to order 2 with the standard metric (Proposi-
tion 7.8), i.e.

ω = i
∑
j,k

hj,kdzj ∧ dzk

and

hj,k(P ) = δjk,

∂hj,k
∂z`

(P ) = 0,

∂hj,k
∂z`

(P ) = 0.

Since both ∂
∗

and ∂ are differential operators of order 1, the difference with respect to

the computation for the standard metric will only involve the derivatives
∂hj,k
∂z`

(P ),
∂hj,k
∂z`

(P ).
These vanish, which gives the result. �

Corollary 7.11. If (M,h) is a Kähler manifold, then ∆′ = ∆′′ = 1
2
∆.

Proof. We compute:

∆′′ = ∂∂
∗

+ ∂
∗
∂

= i(∂(∂Λ− Λ∂)) + i(∂Λ− Λ∂)∂

= i∂∂Λ− iΛ∂∂ + i(∂Λ∂ − ∂Λ∂).

Note that i∂∂ is a real operator, since i∂∂ = −i∂∂ = i∂∂. Moreover, L, Λ are both real

operators and so is i(∂Λ∂ − ∂Λ∂). Overall, this shows that ∆′′ is a real operator. Since we
know that ∆′′ = ∆′, this shows that ∆′ = ∆′′.
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Let us now compute ∆:

∆ = dd∗ + d∗d

= (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂)

= (∂∂∗ + ∂∗∂) + (∂∂
∗

+ ∂
∗
∂) + (∂∂

∗
+ ∂∂∗ + ∂∗∂ + ∂

∗
∂).

We now show that ∂∂
∗

+ ∂
∗
∂ = 0. Indeed,

∂∂
∗

+ ∂
∗
∂ = i∂(∂Λ− Λ∂) + i(∂Λ− Λ∂)∂ = −i∂Λ∂ + i∂Λ∂ = 0.

Then the above computation shows that

∆ = ∆′ + ∆′′ + (∂∂
∗

+ ∂
∗
∂) + (∂∂

∗
+ ∂

∗
∂) = ∆′ + ∆′′.

Using ∆′ = ∆′′, this completes the proof. �

7.3. Consequence: the Hodge decomposition. We finally talk about the consequences.
Recall that we have

Hm(M,C) = space of complex m-harmonic forms on M

= Hm(M)⊗R C
= null(∆M).

Since ∆ = 2∆′ = (2∆′′), the decomposition of Am(M) ⊗R C into (p, q)-parts, induces a
decomposition

Hm(M,C) =
⊕
p+q=m

Hp,q(M)

which are harmonic (p, q)-forms.

We saw (Hodge Theorem 5.21) that the inclusion of Hm(M) into closed real m-forms induces
an isomorphism

Hm(M) ∼= Hm
dR(M,R).

Tensoring with C, this gives

Hm(M,C) ∼= Hm
dR(M,C).

If Hp,q(M) is the image of Hp,q(M), then we get the Hodge decomposition

Hm
dR(M,C) =

⊕
p+q=m

Hp,q.

Recall that Hp,q
∆′ = Hq,p

∆′′ . Since ∆′ = ∆′′, this shows that

Hp,q = Hq,p.

We also know that Hp,q
∆′′(M) ∼= Hq(M,Ωp), so

Hp,q ∼= Hq(M,Ωp).

Definition 7.12. The Betti numbers of M are bm = dimCH
m(M,C).

The Hodge numbers of M are hp,q = dimCH
q(M,Ωp).
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Numerically, the above assertions imply that

bm =
∑

p+q=m

hp,q

and the Hodge symmetry:

hp,q = hq,p.

In particular, bm(M) is even for all m odd.

Therefore, computing these numbers for a manifold might show that it is not Kähler.

Example 7.13. Recall the Hopf surface

M =
C2 \ {(0, 0)}

(z1, z2) ∼ (2z1, 2z2)

from Example 3.15. We checked that M is diffeomorphic to S3 × S1 and Künneth formula
then shows that b3(M) = 1, so M is not Kähler.

7.4. Independence of metric. The next goal is to show that the decompositionHm(M,C) =⊕
p+q=m

Hp,q is independent of the choice of metric.

Definition 7.14. The Bott–Chern cohomology of M is

Hp,q
BC(M) =

{(p, q)-forms u | ∂u = 0, ∂u = 0}
∂∂Ap−1,q−1(M)

.

Note that ∂∂v = d(∂v), so we have a canonical map

Hp,q
BC(M)→ Hp+q

dR (M,C).

Theorem 7.15. This map gives an isomorphism of Hp,q
BC(M) and Hp,q(M).

Lemma 7.16 (∂∂-Lemma). Let M be a Kähler manifold and u be a global form on M such
that ∂u = 0 and ∂u = 0. Then the following are equivalent:

(1) u ∈ im(d),
(2) u ∈ im(∂),
(3) u ∈ im(∂),
(4) u ∈ im(∂∂).

Proof. Note that ∂∂v = d(∂v) and ∂∂ = −∂∂, so clearly (4) implies (1), (2), (3).

It suffices to prove that (1), (2), (3) imply (4). First, write u = ∂v for some v. By Hodge
Theorem 5.21 for ∂, we may write

v = v1 + ∂v2 + ∂
∗
v3

for some v1 harmonic and some v2, v3. Then

(9) u = ∂∂v2 + ∂∂
∗
v3.
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By Corollary 7.11, ∆ = ∆′ + ∆′′ so ∂∂
∗

= −∂∗∂. Hence ∂u = 0, equation (9) implies that

0 = ∂∂∂v2︸ ︷︷ ︸
=−∂2∂v2=0

+∂∂∂
∗
v3 = ∂∂∂

∗
v3.

Hence ∂∂
∗
∂v3 = 0. If ∂∂

∗
η = 0,

0 = 〈〈∂∂∗η, η〉〉 = 〈〈∂∗η, ∂∗η〉〉

so ∂
∗
η = 0. This shows that ∂

∗
∂v3 = 0, so

u = ∂∂v2.

If u ∈ im(∂), apply the previous argument for u to shows that u ∈ im(∂∂).

Finally, if u = d(w) = ∂w+ ∂w, we see that ∂u = 0 implies that ∂∂w = 0 and ∂∂w = 0. By
the (3) implies (4) implication for ∂w, we see that ∂w ∈ im(∂∂). Similarly, ∂u = 0 implies
that ∂w ∈ im(∂∂), so u ∈ im(∂∂). �

Recall that Hp,q
BC(M), which was defined as

{global (p, q)-forms u | ∂u = 0, ∂u = 0}
∂∂Ap−1,q−1(M)

.

We hence have a map

ϕ : Hp,q
BC → Hp+q

DR (M,C)

u 7→ [u].

Recall that

Hp,q(M) = {α ∈ Hp+q
dR (M,C) | α = [η], η is a harmonic (p, q)-form}.

We check that Hp,q
BC lands in this piece of de Rham cohomology. Since ∂u = 0, the Hodge

Theorem 5.21 for ∂ implies that

u = v + ∂w

for some harmonic (p, q)-form v. Then 0 = ∂u = ∂∂w and ∂∂w = 0, so the ∂∂-Lemma 7.16
for ∂w shows that ∂w ∈ im(d), so [u] = [v] in Hp+q

dR (M,C).

This shows that im(ϕ) ⊆ Hp,q(M). Moreover, since a harmonic (p, q)-form satisfies ∂η = 0,
∂η = 0, ϕ is surjective by Hodge Theorem 5.21.

Finally,ϕ is injective by the implication (1) implies (4) in ∂∂-Lemma 7.16.

Corollary 7.17. The map ϕ induces an isomorphism Hp,q
BC(M) ∼= Hp,q(M).

Corollary 7.18.

(1) If α ∈ Hp,q(M), β ∈ Hp′,q′(M), α ∪ β ∈ Hp+p′,q+q′(M).
(2) If f : M ′ →M is a holomorphic map of complex manifolds of Kähler type, the pullback

maps on cohomology

f ∗ : Hm
dR(M,C)→ Hm

dR(M ′,C)

map each Hp,q(M) to Hp,q(M ′).
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Proof. For (1), Corollary 7.17 allows us to write

• α = [u] for a (p, q)-form u such that ∂u = 0, ∂u = 0,
• β = [v] for a (p′, q′)-form v such that ∂v = 0, ∂v = 0.

We then have that

∂(u ∧ v) = ∂u ∧ v ± u ∧ ∂v = 0,

∂(u ∧ v) = 0,

and α ∪ β = [u ∧ v] ∈ Hp+p′,q+q′(M) by Corollary 7.17.

In (2), for α ∈ Hp,q(M), use Corollary 7.17 to write α = [u] for a (p, q)-form u such that
∂u = 0, ∂u = 0. Then

f ∗α = [f ∗u]

and

∂(f ∗u) = f ∗(∂u) = 0,

∂(f ∗u) = 0.

Using Corollary 7.17, this shows that f ∗α ∈ Hp,q(M ′). �

We prove one more consequence which will be useful later, when we discuss applications to
the Kodaira Vanishing Theorem.

Corollary 7.19. Suppose M is a compact manifold of Kähler type. Consider he map C→
OM . The induced morphisms in cohomology

Hq(M,C)→ Hq(M,OM)

are surjective.

Proof. Compute the maps in cohomology using soft resolutions (cf. Theorem 4.26). We have

C (A•M ⊗R C, d),

OM (A0,•
M , ∂).

proj

For every α ∈ Hq(M,OM), there is a harmonic (0, q)-form u such that α = [u]. In particular,
du = 0 implies that α ∈ im(Hq(M,C)→ Hq(M,OM)). �

7.5. Hard Lefschetz Theorem.
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7.5.1. Lefschetz decomposition for differential forms. Let M be a compact Kähler manifold
and ω be the fundamental form of the Kähler metric. We have two operators (that play a
role in the Kähler Identities 7.10):

L : A•M,C → A•+2
M,C real and takes (p, q)-forms to (p+ 1, q + 1)-forms,

η 7→ ω ∧ η,
Λ: A•M,C → A•−2

M,C Λ = ∗−1L ∗ is the adjoint of L.

Proposition 7.20. We have [L,Λ] = H where AkM,C
H→ AkM,C is (k − n)Id and n = dimM .

Remarks 7.21. Both L and Λ are linear operators and we only need to check this point-
wise, so it is enough to check it when we have a complex vector space V with a Hermitian
metric h and ω = −Im(h).

Moreover, these are real operators, so it will be enough to consider their effect on
m∧
V ∗. The

ideas is to

(1) check this for dimC V = 1,

(2) show that if V = V ′
⊥
⊕ V ′′ and if we know the assertion for V ′, V ′′, then we get it

for V .

We remark that L,Λ, H give the generators of the Lie algebra of SL2. We might discuss this
later in the class.

The next three classes were typed by David Schwein.

Proof of Proposition 7.20. Both L and Λ are linear operators and to check this we need only
check it pointwise, that is, on a vector space V with Hermitian metric h and ω = −Im(h).

Moreover, since these operators are real, it is enough to consider their effect on
m∧
V ∗. We

induct on n = dimV (= dimX).

When n = 1, take x ∈ V such that h(x, x) = 1, so that x and y = Jx is a basis for the
vector space VR. Let x′, y′ be the dual basis of HomR(V,R) over R. The volume element is
x′ ∧ y′ = ω. The ∗ operator thus acts as

1 7→ ω ω 7→ 1 x′ 7→ y′ y′ 7→ −x′

while Λ : ω 7→ 1. Hence [L,Λ] := LΛ− ΛL acts as follows:

on A0 by 1 7→ 1,

on A1 by x′, y′ 7→ 0,

on A2 by ω 7→ ω.

For the induction step, consider an orthogonal decomposition V = V1⊕V2 with respect to h:

k∧
V ∗ =

⊕
k1+k2=k

( k1∧
V ∗1 ⊗

k2∧
V ∗2

)
.
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Hence the volume element in
2n∧
V ∗ is the tensor product of volume elements in

n1∧
V ∗1

and
n2∧
V ∗2 , where ni = dimVi. Thus the ∗ operator acts as

k1∧
V ∗1 ⊗

k2∧
V ∗2 →

2n1−k1∧
V ∗1 ⊗

2n2−k2∧
V ∗2

η1 ⊗ η2 7→ (−1)k2(2n1−k1) ∗1 (η1)⊗ ∗2(η2).

Writing ω = ω1 + ω2, we see that

L(η1 ⊗ η2) = L1(η1)⊗ η2 + η1 ⊗ L2(η2).

The formula for ∗(η1 ⊗ η2) now shows that

Λ(η1 ⊗ η2) = Λ1(η1)⊗ η2 + η1 ⊗ Λ2(η2).

Hence

[L,Λ](η1 ⊗ η2) = L(Λ1η1 ⊗ η2 + η1 ⊗ Λ2η2)− Λ(L1η1 ⊗ η2 + η1 ⊗ L2η2)

= L1Λ1η1 ⊗ η2 + Λ1η1 ⊗ L2η2 + L1η2 ⊗ Λ2η2 + η1 ⊗ L2Λ2η2

− Λ1L1η1 ⊗ η2 − L1η1 ⊗ Λ2η2 − Λ1η1 ⊗ L2η2 − η1Λ2L2η2

= [L1,Λ1]η1 ⊗ η2 + η1 ⊗ [L2,Λ2]η2.

By induction, this quantity is

(k1 − n1)η1 ⊗ η2 + (k2 − n2)η1 ⊗ η2 = (k − n)η1 ⊗ η2. �

Corollary 7.22. We have that [Lr,Λ] = r(k − n+ r − 1)Lr−1 on AkM,C.

Proof. We induct on r ≥ 1. Proposition 7.20 is the base case r = 1. For the induction step,
write

[Lr,Λ] = LrΛ− ΛLr = L(Lr−1 − ΛLr−1) + (LΛ− ΛL)Lr−1 = L[Lr−1,Λ] + [L,Λ]Lr−1.

By the inductive hypothesis, this expression equals

(r − 1)(k − n+ r − 2)Lr−1 + (k + 2(r − 1)− n)Lr−1

Simplifying this gives the result. �

Proposition 7.23. Let n = dimM and 0 ≤ k ≤ n. The map Ln−k : AkM,C → A2n−k
M,C is an

isomorphism. It induces an isomorphism Ap,qM → A
p+n−k,q+n−k
M,C (where p+ q = k).

Proof. Evidently Ln−k is a morphism of vector bundles of the same rank. (To see this for
the bottom map, check that

(
n
p

)(
n
q

)
=
(

n
p+n−k

)(
n

q+n−k

)
.) Hence it suffices to prove injectivity

on fibers; in particular, the statement on k-forms implies the statement on (p, q)-forms.

To prove it, induct on k ≥ 0. The case k = 0 follows from our earlier calculation that
ωn = n!vol. For the induction step, fix k ≥ 1. We will show by induction on 0 ≤ r ≤ n− k
that if Lrα = 0 for a k-form α then α = 0. The case r = 0 is trivial. For the induction step,
suppose Lrα = 0. Then by Corollary 7.22 above,

LrΛα = [Lr,Λ]α = r(k − n+ r − 1)Lr−1α.

So Lr−1(LΛα− r(k − n+ r − 1)α) = 0 and the induction hypothesis implies that

LΛα− r(k − n+ r − 1)α = 0.
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Returning to the induction on k, our assumptions on r imply that k−n+ r− 1 < 0, so that
α = Lβ for a (k−2)-form β. Hence Ln−kα = 0 and Ln−k+1β = 0. By the induction hypothesis
on k, the operator Ln−(k−2) is injective on (k − 2)-forms. So β = 0 and thus α = 0. �

We will now use this operator to decompose the space of differential forms, as in the title.

Definition 7.24. Let 0 ≤ k ≤ n = dimM . A k-form α is primitive if Ln−k+1α = 0. Write
Prim(AkM,C) for the space of primitive k-forms.

Since L is real, the form α is primitive if and only if α is primitive. Since L has bidegree (1, 1),
the form α is primitive if and only if all of its (p, q)-components are primitive. Evidently Li

is injective on Ak−2i since by the proposition, Ln−(k−2i) is injective and n− k + 2i ≥ i.

Proposition 7.25 (Lefschetz Decomposition for Forms). There is a decomposition

AkM,C =
⊕
i≥0

Li Prim(Ak−2i
M,C ), (0 ≤ k ≤ n).

Proof. We induct on k. When k = 0, the decomposition is clear: all 0-forms are primitive.
For the induction step, given a k-form α, the form α − Lβ is primitive for some (k − 2)-
form β if and only if Ln−k+1(α − Lβ) = 0, or equivalently, Ln−k+1α = Ln−k+2β. Since β
is a (k − 2)-form, Proposition 7.23 implies that there is a unique (k − 2)-form β with this
property, that is, such that α = α0 + Lβ with α0 primitive. To conclude, use the induction
hypothesis for β. �

There is a similar decomposition when k ≥ n, an easy corollary of the decomposition of the
proposition:

AkM,C =
⊕
i≥0

Li+k−n(PrimA2n−k−2i
M,C ).

Note that Li+k−n is injective on A2n−k−2i
M,C since i+ k − n ≤ n− (2n− k − 2i).

7.5.2. Lefschetz Decomposition for Cohomology Classes.

Lemma 7.26. A k-form α is primitive if and only if Λα = 0.

Proof. Note that L is injective on A<nM,C. Hence Λ = ∗−1L∗ is injective on A<nM,C, so we may
assume k ≤ n without loss of generality. Our earlier computation of [Lr,Λ] shows that

Ln−k+1Λα = ΛLn−k+1α.

Since Ln−k+1α is a (2n− k + 2)-form and Λ is injective on A>n, the righthand side vanishes
if and only if α is primitive. Moreover, since Λα is a (k− 2)-form and Ln−k+2 is injective on
(k − 2)-forms, the lefthand side is zero if and only if Λα = 0. �

Consequently, if k ≤ n and α = Liβ with β a primitive (k − 2i)-form then

Λα = ΛLiβ = LiΛβ − [Li,Λ]β = i(k − 2i− n+ i− 1)Li−1β.

Hence
Λ(Liβ) = i(n− k + i+ 1)Li−1β.
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This equation shows how Λ acts on the Lefschetz decomposition. For example, if α is a
k-form with k ≤ n then Λα is primitive if and only if α = α0 +Lα1 with α0 and α1 primitive,
and in this case, Λα = (n− k + 2)α1.

Lemma 7.27. We have that [∆, L] = 0.

Proof. Recall that ∆ = 2∆′′, ∆′′ = ∂̄∂̄∗ + ∂̄∗∂̄, and [∂̄∗, L] = i∂, and that if dω = 0 then
∂ω = 0 and ∂̄ω = 0. In this case

[∂̄, L]η = ∂̄(ω ∧ η)− ω ∧ ∂̄η = ∂̄ω ∧ η = 0.

So
[∆′′, L] = (∂̄∂̄∗ + ∂̄∗∂̄)L− L(∂̄∂̄∗ + ∂̄∗∂̄) = ∂̄[∂̄∗, L] + [∂̄∗, L]∂̄,

using that ∂̄L = L∂̄. Hence [∆′′, L] = ∂̄i∂ + i∂∂̄ = 0 and [∆, L] = 0. �

Consequently, if α is harmonic then Lα is harmonic, and conversely, if k ≤ n and i ≤ n− k
then whenever Liα is harmonic, so is α. Hence for k ≤ n, the isomorphism Ln−k : AkM,C

∼−→
A2n−k
M,C induces an isomorphism

Hk
M,C

∼−→ H2n−k
M,C

between spaces of harmonic forms.

Theorem 7.28 (Hard Lefschetz). For k ≤ n, the map

[ω]k ∪ (−) : Hk
dR(M,C)→ H2n−k

dR (M,C)

is an isomorphism.

The fact that the spaces are isomorphic follows from Poincaré duality as well, but Hard
Lefschetz is a much more useful statement. For example, it implies for k ≤ n − 2 that
bk(M) ≤ bk+2(M). This statement has consequences in combinatorics: one can show a
sequence of numbers to be unimodal by realizing it as the Betti numbers of a Kähler manifold.

Definition 7.29. For k ≤ n, a cohomology class α ∈ Hk
dR(M,C) is primitive if [ω]n−k+1∪α =

0.

If we choose a harmonic k-form η such that α = [η] then

[ω]n−k+1 ∪ α = [Ln−k+1η].

Hence α is primitive if and only if η is primitive.

Lemma 7.30. For k ≤ n and α a k-form with Lefschetz decomposition α =
∑
Liαi (where

αi is primitive), then α is harmonic if and only if all αi are harmonic.

Proof. It is clear that if each αi is harmonic then so is α; we prove the converse by induction
on k, the base case k = 0 being trivial. We saw that [∆, L] = 0, so that [∆,Λ] = 0. Since α
is harmonic, ∆α = 0 and therefore Λα is harmonic. We saw earlier that

Λα =
∑
i≥1

i(n− k + i+ 1)Li−1αi.

Induction now shows that αi is harmonic for all i ≥ 1; so Liαi is harmonic for all i ≥ 1, and
α0 is harmonic. �
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Theorem 7.31 (Lefschetz for Cohomology). For k ≤ n there is a decomposition

Hk
dR(M,C) =

⊕
i≥0

LiHk−2i
prim (M,C)

where L := [ω] ∪ (−) and Hj
prim(M,C) ⊆ Hj

dR(M,C) is the set of primitive cohomology
classes.

Since ω is a real (1, 1)-form, the Lefschetz decomposition is compatible with the real structure
and the decomposition into (p, q)-subspaces.

7.6. The Hodge-Riemann bilinear relations. The primitive part of Hk(M) is the piece
not accounted for by lower degree cohomology:

dimHk
prim(M) = bk(M)− bk−2(M).

In this section, we investigate the sign of some natural bilinear pairings on cohomology. More
specifically, let (M,h) be a compact complex manifold of dimension n with Kähler structure
and fundamental form ω. Given two k-form α and β, we can consider∫

M

ωn−k ∧ α ∧ β;

this defines a pairing on the space of k-forms. Our goal is to understand the positivity
properties of this pairing.

Definition 7.32. For k ≤ n and α, β ∈ Γ(M,AkM,C) define

Hk(α, β) = ik
∫
M

ωn−k ∧ α ∧ β.

We make several observations about this pairing.

(1) The pairing Hk is clearly bilinear in α and Hermitian because

Hk(β, α) = ik
∫
ωn−k ∧ β ∧ α = (−i)k

∫
ωn−k ∧ α ∧ β = Hk(α, β).

(2) The pairing Hk induces a bilinear form on Hk
dR(M,C), denoted also by Hk: if dα = 0,

dβ = 0, and one of α or β is exact then∫
M

ωn−k ∧ α ∧ β = 0,

by Stokes’s Theorem and the fact that dω = 0.
(3) The Lefschetz decomposition of Hk

dR(M,C) is orthogonal with respect to this decom-
position: if α = Liγ and β = Ljδ with γ and δ primitive harmonic representatives
then

Hk(α, β) = 0

because
ωn−k ∧ Liγ ∧ Ljδ = Ln−k+i+jγ ∧ δ,

so that Ln−(k−2i)+1γ = 0 by primitivity of γ.
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(4) The map Lj : Hk−2j
prim (M,C)→ Hk

dR(M,C) is an isometry up to a sign:

Hk(L
jα,Ljβ) = ik

∫
M

ωn−k+2j ∧ α ∧ β, Hk−2j(α, β) = ik−2j

∫
M

ωn−k+2j ∧ α ∧ β.

Therefore, to understand the sign of all Hk on Hk(M,C) it is enough to understand
them on the primitive cohomology.

(5) The Hodge decomposition Hk
dR(M,C) =

⊕
p+q=k

Hp,q(M) is orthgonal with respect

to Hk: for α a (p, q)-form and β a (p′, q′)-form, to have a nonzero integral we need
ωn−k ∧ α ∧ β to have type (n, n), meaning that p = p′ and q = q′.

Theorem 7.33 (Hodge-Riemann Bilinear Relations). For k ≤ n and (p, q) with p + q = k,
the Hermitian form

(−1)k(k−1)/2ip−q−kHk

is positive-definite on Hp,q
prim(M).

The key ingredient of the proof is a formula for ∗α when α is primitive.

Proposition 7.34. Let α be a primitive (p, q)-form with k = p+ q. Then

∗Ljα = (−1)k(k+1)/2ip−q
j!

(n− k − j)!
Ln−k−jα, j ≤ n− k.

In particular, ∗α = (−1)k(k+1)/2ip−qLn−kα. We will return to the proof of the proposition
after using it to prove the theorem.

Proof of Hodge–Riemann Bilinear Relations 7.33. Let 0 6= α be a primitive (p, q)-form. Then

(−1)k(k−1)/2

(n− k)!
ip−q

∫
M

ωn−k ∧ α ∧ α = (−1)k
∫
M

(∗α) ∧ α =

∫
M

α ∧ (∗α)

=

∫
M

〈α, α〉 dvol = 〈〈α, α〉〉 > 0. �

Proof of Proposition 7.34. This is only a sketch since the proof is similar to earlier ones. Like
before, we reduce it to a problem of linear algebra. Consider a complex vector space V of
dimension n with a Hermitian metric. From here, the proof proceeds by induction on n. For
the base case n = 1, one checks by hand the four cases (j, k) = (0, 0), (0, 1), (1, 0), (1, 1). For
the inductive step, suppose V = V1 ⊕ V2 with dimV2 = 1 and x, y as before. (That is, x is
a basis for V with h(x, x) = 1 and y := Jx, so that {x, y} is a basis for VC.) Then( k∧

V ∗
)
C

=
( k∧

V ∗1

)
C
⊕
( k−1∧

V ∗1 ⊗R
∧

V ∗2

)
C
⊕
( k−2∧

V ∗1 ⊗R

2∧
V ∗2

)
C
.

Consider an element

α = αk + α′k−1 ⊗ x′ + α′′k−1 ⊗ y′ + αk−2 ⊗ ω
where {x′, y′} is the basis of V ∗C dual to the basis {x, y}. Applying Λ yields

Λα = Λ1αk + Λ1α
′
k−1 ⊗ x′ + Λ1α

′′
k−1 ⊗ y′ + Λ1αk−2 ⊗ ω + αk−2.
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The form α is primitive if and only if Λα = 0, and by setting the terms of each degree equal
to zero, we see that this condition is equivalent to the simultaneous vanishing of Λ1α

′
k−1 and

Λ1α
′′
k−1, that is, the primitivity of α′k−1 and α′′k−1. Now compute ∗Ljα using induction. �

Remark 7.35. For other geometric objects and cohomology theory, one hopes to have
the same elements of the “Kähler package” as in the classical case we have studied so far:
Poincaré duality, Hard Lefschetz, and the Hodge-Riemann bilinear relations. For exam-
ple, intersection cohomology (for projective singular algebraic varieties) also satisfies these
conditions.

Typing by AH continues.

Theorem 7.36 (Hodge Index Theorem). If dimM = n = 2m and the form on Hn(M,R)

(α, β)
Q7→
∫
M

α ∧ β

has signature
n∑

p,q=0

(−1)php,q.

Note that the signature is a topological invariant, so this alternating sum of the Hodge
numbers is a topological invariant.

Note also that we are considering Hn(M,R), the cohomology with real coefficients. To use
the Lefschetz and Hodge decompositions, we will have to tensor with C and note that spaces
such as Hm,m and Hp,q +Hq,p descend to R.

Proof. We consider the Hodge and Lefschetz decomposition:

Hn(M,R) =
⊕
j≥0

LjHm−j,m−j
prim (M)R ⊕

⊕
p>q

p+q=2m

⊕
j≥0

Lj
(
Hp−j,q−j

prim (M)⊕Hq,p
prim(M)

)
R
.

If α ∈ Hm−j,m−j
prim (M,R), then by the Hodge–Riemann Relations 7.33:

(−1)m−j
∫
M

ωn−j ∧ α ∧ α > 0.

If α ∈ Hp−j,q−j
prim (M,C), then by the Hodge–Riemann Relations:

(−1)m−jip−q︸ ︷︷ ︸
(−1)q−j

∫
M

ωn−jα ∧ α > 0, where p+ q = 2m.

If β ∈ Hq−j,p−j
prim (M,C), then by the Hodge–Riemann Relations 7.33:

(−1)p−j︸ ︷︷ ︸
(−1)q−j

∫
M

ωn−j ∧ β ∧ β ,where p+ q = 2m.
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Note that α + β ∈ (Hp,q
prim +Hq,p

prim)R if and only if α + β = β + α, i.e. β = α. Hence

(−1)q−j
∫
M

(α + β) ∧ (α + β)︸ ︷︷ ︸
α∧α+β∧β+α∧α+β∧β

∧ωn−j = (−1)q−j
∫
α ∧ α ∧ ωn−j + (−1)q−jβ ∧ β ∧ ωn−j

> 0

if α 6= 0. The first equality above follows since ωn−j ∧ α ∧ α and ωn−j ∧ β ∧ β are not
(n, n)-forms, so their integrals are 0.

Therefore, we see that the signature of Q is

signature(Q) =
∑
j≥0

(−1)m−jhm−j,m−jprim + 2
∑
p+q=n
p>q

∑
j≥0

(−1)q−jhp−j,q−jprim

=
∑
p+q=n

∑
j≥0

(−1)q−jhp−j,q−jprim

=
∑
p+q=n

∑
j≥0

(−1)q−j(hp−j,q−j − hp−j−1,q−j−1)

=
∑

a+b=n−(even,≥0)

(−1)bha,b +
∑

a+b=n−2−(even,≥0)

(−1)bha,b

=
∑

a+b=even

(−1)bha,b ha,b = hn−a,n−b

Finally: ∑
a+b=odd

(−1)bha,b = 0

since ha,b = hb,a and (−1)a = −(−1)b if a+ b is odd. �

Example 7.37. Suppose n = 2. The signature of

H2(M,R)×H2(M,R)→ R

(α, β) 7→
∫
M

α ∧ β

is ∑
a+b even

(−1)bha,b = h0,0︸︷︷︸
=1

+h0,2 +−h1,1 + h2,0 + h2,2︸︷︷︸
=1

= 2 + 2h2,0 − h1,1.

One can check that on
(
H2,0(M)⊕H0,2(M)

)
R, the form (α, β) 7→

∫
α∧β is positive-definitive

by the computation in the proof of the Hodge Index Theorem 7.36.

Conclusion. The signature of the intersection form on H1,1(M)R is (1, h1,1 − 1).

Hartshorne: part from ample line bundle –¿ everything else contributes to the negative part.
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8. Chern classes of line bundles

Let M be a complex manifold (more generally, an analytic space). We have the sheaf OM
of holomorphic functions on M . Let

O∗M = sheaf of invertible holomorphic functions on M, a group under multiplication.

We have a map

OM → O∗M
f 7→ exp(f)

of sheaves of abelian groups. Locally on C∗, we have a holomorphic inverse of exp, so the
map OM → O×M is surjective.

What is its kernel? If U ⊆M is open and connected, then f ∈ O(U) is such that exp(f) = 1
if and only if f = 2πik for some k ∈ Z.

We have a short exact sequence:

0 Z OM O×M 0

n 2πin

f exp(f).

The long exact sequence in cohomology gives:

H1(M,Z) H1(M,OM) H1(M,O×M) H2(M,Z) H2(M,OM).

This is an interesting sequence because H1(M,Z) is topological, H1(M,OM) is coherent
cohomology, and H1(M,O×M) is the Picard group of M .

Indeed, by definition,

Pic(M) =

(
{holomorphic line bundles}

∼
,⊗
)

so we have an isomorphism

Pic(M) ∼= Ȟ1(M,O∗M).

On every topological space, for every sheaf of abelian groups F , there is a canonical isomor-
phism

H1(M,F) ∼= Ȟ1(M,F).

(This is an exercise in [Har77].)

We write

c1 : Pic(M)→ H2(M,Z)

L 7→ c1(L)

and call c1(L) the Chern class of L.
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Exercise. Check functoriality of Chern classes: if f : M ′ → M is holomorphic and L ∈
Pic(M), then

c1(f ∗L) = f ∗(c1(L)).

Next , we will check that given L, if we choose a metric on L, we get a closed, real 1-1 form ω
on X such that

c1(L) = [ω].

Moreover, if X is algebraic, L is ample, then ω is positive.

Let M be a complex manifold and L be a line bundle on M . Consider a cover M =
⋃
j

Uj

such that we have an isomorphism

ϕj : L|Uj
∼=→ OUj

Γ(Uj, L) 3 σj ← [ 1

and gjk ∈ O(Uj ∩ UK)∗ is such that ϕk ◦ ϕ−1
j is multiplication by gjk.

To give a global section of L is to give fj ∈ O(Uj) such that fk = fjgjk. Note also that

σj = σk · gjk on Uj ∩ Uk for all j, k.

Recall that a Hermitian metric on L is a smoothly varying family of functions on the fibers
of L. Given cover as above, consider the smooth function hj = h(σj, σj) : Uj → R>0. This
satisfies

hj = |gjk|2hk.
Conversely, a family of such functions with this compatibility property induces a Hermitian
metric on L.

Suppose h is a metric on L and we are given a cover as above. On each Uj, consider

ωj =
1

2πi
∂∂ log hj.

This is a smooth (1, 1)-form on Uj. Note that on Uj ∩ Uk:
log hj = log |gjk|2 + log hk.

Since gjk are holomorphic:

∂∂ log |gjk|2 = ∂∂(log gjk + log gjk) = 0.

This shows that ωj glue together to a global (1, 1) form ω on M . We sometimes write ωh for
this form to indicate the Hermitian metric h it corresponds to.

Note that:

(1) since ωj = ∂∂(· · · ), dωj = 0, so ω is closed,

(2) since i∂∂ is a real operator and hj are real functions, ω is a real form,
(3) hence: ω is Kähler (the fundamental form of a Kähler metric) if and only if−iω(v, v) >

0 for all v 6= 0.

Proposition 8.1. Given a Hermitian metric h on L with corresponding form ωh, the image
of c1(L) in H2(M,R) is [ωh].
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Proof. Since M is a smooth manifold, there is an open cover M =
⋃
j

Uj such that all

intersections Uj0 ∩ · · · ∩Ujk are contractible. Moreover, we can choose this as fine as needed,
so we may assume

L|Uj ∼= OUj for all j.

As in the definition of c1(L), we consider the short exact sequence

0 Z OM O×M 0

n 2πin

f exp(f).

Then [L] ∈ Pic(M) corresponds to (gjk) ∈ H1(M,O×M). Since all Uj are contractible,
Hp(Uj,Z) = 0 for all p > 0. Hence

gjk = exp(g̃jk)

for some holomorphic g̃jk on Uj ∩ Uk. Then

Z 3 njkl =
1

2πi
(g̃k` − g̃j` + g̃jk) on Ujk`,

so

njk` ∈ Ȟ2(U ,Z).

We need to understand the isomorphism

Ȟ2(U ,R) ∼= H2
dR(M).

Consider the double complex C•,• where

Cp,q =
⊕

i0<···<iq

Γ(Ui0 ∩ · · · ∩ Uiq;A
q
M).

If we fix (i0, . . . , iq), the corresponding de Rham complex of Ui0 ∩ · · ·Uiq is acyclic, with
cohomology in degree 0 equal to

Γ(Ui0 ∩ · · · ∩ Uiq ,R).

We get an isomorphism

Ȟp(U ,R) ∼= Hp(Tot(C•,•)).

Similarly, if we fix p, we get the Cech complex with respect to U for Ap. Since Ap is soft,
this is again acyclic, with cohomology in degree 0 equal to

Γ(M,Ap).

We get an isomorphism:

Hp
dR(M) ∼= Hp(Tot(C•,•)).

Consider
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j

Γ(Uj,A0)
⊕
j

Γ(Uj,A1)
⊕
j

Γ(Uj,A2)

⊕
j<k

Γ(Uj ∩ Uk,A0)
⊕
j<k

Γ(Uj ∩ Uk,A1)
⊕
j<k

Γ(Uj ∩ Uk,A2)

For ωj = 1
2πi
∂∂ log hj, we may write ωj = dβj for

βj =
1

2πi
∂ log hj.

We write these elements in the corresponding places of the above diagram

(∗) (βj) (ωj)

(∗) (βk|Uk∩Uj ,−βj|Uk∩Uj) (∗)

We have that

βk − βj =
1

2πi
∂(log hk − log hj)

= − 1

2πi
∂(g̃jk + g̃jk)

= − 1

2πi
∂g̃jk

= ∂
1

2πi
g̃jk

= d

(
1

2πi
g̃jk

)
.

Therefore, [ω] ∈ H2
dR(M) maps in Ȟ2(U ,R) to

1

2πi
(g̃k` − g̃j` + g̃jk) = njk` = njk`.

This completes the proof. �

Recall that on Pn, we have the Fubini–Study metric (Example 7.5) with corresponding form
ωFS given in homogeneous coordinates z0, . . . , zn, on Uj = (zj 6= 0) by

ωFS|Uj =
i

2π
∂∂ log

n∑
k=0

∣∣∣∣∣zkzj
∣∣∣∣∣
2

.
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We claim that there is a metric h on O(1) such that ωh = ωFS. Indeed, this is okay if

hj =

 n∑
k=0

∣∣∣∣∣zkzj
∣∣∣∣∣
2
−1

.

Since gjk =
zj
zk

, we have that

hj = |gjk|2hk.
Therefore, this choice of hj defines a metric h on O(1) whose form ωh gives the Fubini–Study
form ωFS.

Remarks 8.2.

(1) If f : M ′ →M is holomorphic and L is a line bundle on M with Hermitian metric h,
we get a Hermitian metric h′ on L′ = f ∗L such that

ωh′ = f ∗ωh.

(2) If X is a smooth projective variety with ample line bundle L, there is an N > 0

and X
i
↪→ Pm such that LN ∼= i∗O(1). Then the metric we had on OPm(1) induces

a metric on LN such that the corresponding form is Kähler. By replacing (hj) with

(h
1/N
j ), we get a metric on L with positive (1, 1)-form.

The upshot is that we can apply Hard Lefschetz Theorem 7.28 or Lefschetz decomposition
for c1(L) when L is an ample line bundle on a smooth projective algebraic variety.

Theorem 8.3 (Kodaira’s Embedding Theorem). If X is a compact Kähler manifold whose
fundamental class is the Chern class of a line bundle L ∈ Pic(M), then X is algebraic and L
is ample.

Remark 8.4 (Lefschetz Theorem on (1, 1)-classes). Let M be a complex manifold. Recall
the exponential sequence:

0 Z OM O×M 0
exp(2πi−)

whose long exact sequence in cohomology gives the Chern class map

c1 : PicM ∼= H1(M,O∗M)→ H2(M,Z).

If M is compact and Kähler and L ∈ PicM , the image of c1(L) in H2(M,C) lies in H1,1(M).

Conversely, if α ∈ H2(M,Z) whose image in H2(M,C) lies in H1,1, then there exists L ∈
Pic(M) such that α = c1(L).

Indeed, it is enough to show that the image of α in H2(M,OM) is 0. However,

image of α H2(M,C)

0 H2(M,OM) = H0,2(M)

projection with respect to
Hodge decomposition
induced by C→OM
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Example 8.5 (Hodge Decomposition for tori). Let V be a complex vector space of dimension
n and L ⊆ V be a lattice, i.e. L ∼= Z2n and L⊗Z R ∼= V . Then

M = V/L is a compact Kähler manifold of dimension n.

Let π : V →M be the projection map. This is a covering space by a simply connected space,
so

π1(M) ∼= L.

Hence
H1(M,Z) ∼= π1(M)ab ∼= L,

and
H1(M,Z) ∼= L∗ = HomZ(L,Z).

We have a canonical map
∗∧
H1(M,Z)→ H∗(M,Z)

given by the cup product. This is an isomorphism by Küneth since since M is homeomorphic
to (S1)n.

Now,
H1(M,R) = HomZ(L,Z)⊗ R = HomR(V,R) = V ∗R

and hence
H1(M,C) = V ∗R ⊗R C = V ∗ ⊕ V ∗.

The group action on M allows us to trivialize the tangent bundle:

TM = T0M ⊗R C∞M = V ⊗R C∞M .
For the cotangent bundle:

AmM ∼=
m∧
V ∗ ⊗R C∞M

Ap,qM ∼=
p∧
V ∗ ⊗R

q∧
V ∗ ⊗C C∞M,C.

Choosing an isomorphism V ∼= Cn and the standard metric on Cn which is translation
invariant, we get a metric on M .

Let us see the Hodge decomposition for H1. Clearly, V ∗ ⊆ H1,0 ⊆ Γ(M,A1,0
M ). Since the

sheaf of holomorphic forms is also trivial,

dimH1,0 = dimH0(M,ΩM) = dimC V
∗.

This shows that
H1,0 = V ∗,

and
H0,1 = V ∗.

This also implies that the Hodge decomposition for Hm(M,Z) has

Hp,q =

p∧
V ∗ ⊗

q∧
V ∗.

Indeed, the ⊇ inclusion follows from the Hodge decomposition for H1, and since we know
where each of these pieces lies, we must have equality.
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Remark 8.6. If L is general and n ≥ 2, then M is not algebraic.

We present a sketch of the proof for n = 2. Let z1, z2 be coordinates on C2 and ω be the
form on M induced by dz1 ∧ dz2. This is a holomorphic 2-form.

If C is a smooth algebraic curve and f : C → M is a non-constant holomorphic map, then
f ∗(ω) = 0 since dimC = 1.

Equivalently, considering [C] ∈ H2(C,Z), we have that

f∗([C]) ∈ H2(M,Z)

The the assertion that f ∗(ω) = 0 is equivalent to

[ω] ∩ f∗([C]) = 0.

(Here, we can think of [ω] as a homology class via Poincaré duality).

General fact. If M is algebraic, then f∗([C]) 6= 0.4

If we write it in terms of the basis of H2(M,Z) =
∧2 L and if L is described by a matrix(

a1 a2 a3 a4

b1 b2 b3 b4

)
(where the lattice L is generated by the columns of this matrix), using

the fact that

[ω] ∩ (generators of H2(M,Z) ∼=
2∧
L)

is given by the 2×2 minors of the matrix, there is an non-trivial relalation with C-coefficients
between these 6 minors. Indeed, f∗([C]) 6= 0 and [ω] ∪ f∗([C]) = 0 is such a relation.

However, for a1, · · · , an, b1, . . . , bn general in C, these 6 minors are linearly independent.
Therefore, M is not algebraic.

9. Algebraic cycles and some cohomology computations

A detailed exposition of this topic together with complete proofs is on the course website:

http://www-personal.umich.edu/~mmustata/SingularCohomology.pdf

9.1. Two theorems in algebraic topology. Recall that a map π : M1 → M2 islocally
trivial with fiber F if there is an open cover M2 =

⋃
i

Ui such that

π−1(Ui) Ui × F

Ui

homeomorphism

In our setup, the cover will always be finite.

4We will soon discuss such statements in more generality, so we restrict ourselves to this statement for
now.

http://www-personal.umich.edu/~mmustata/SingularCohomology.pdf
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Theorem 9.1 (Leray–Hirsch). Suppose π : X → Y is locally trivial with fiber F . Suppose
all H i(F,Z) are free, finite-generated, and we have α1, . . . , αn ∈ H∗(X,Z) such that for all
y ∈ Y , their restriction to H∗(π−1(y),Z) is a basis, we have an isomorphism

H∗(Y )× Zn → H∗(X),

(β, (m1, . . . ,mn)) 7→ π∗(β) ∪ (m1α1 + · · ·+mn ∪ αn).

Proof. If X = Y × F , this follows from Künneth. If we have a finite trivial cover, we argue
by induction on the number of sets in the cover, using Mayer–Vietoris.

We do not prove this in more generality. �

Next, suppose E → X is oriented, real vector bundle of rank r. Write Ex = π−1(x).

The choice of orientation is equivalent to a choice of a compatible system of generators for
each Hr(Ex, E \ {0},Z) ∼= Z.
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Theorem 9.2.

(1) There is a unique cohomology class ηE ∈ Hr(E,E \ X,Z) (where X ↪→ E is the
0-section) such that for all x ∈ X, the restriction of ηE to Hr(Ex, Ex \ {0},Z) is the
chosen orientation.

(2) For every closed subset W ⊆ X, we have an isomorphism

Hj−r(X,X \W,Z)
∼=→ Hj(E,E \W,Z),

β 7→ π∗(β) ∪ ηE.

Proof. First, treat the case E = M ×Rn using Künneth. Then, proceed by induction on the
number of elements in a trivial cover of E using Mayer–Vietoris.

We do not prove this in more generality. �

Definition 9.3. The unique cohomology class ηE in the theorem is the Thom class of E.
The isomorphism in part (2) of the theorem is the Thom isomorphism.

Suppose Y is a smooth real manifold of dimension n and X is a smooth real closed subman-
ifold of dimension m. Suppose X and Y are both oriented. Since

det(NX/Y ) = det(TY )|X ⊗ det(TX)−1,

NX/Y is oriented of rank n−m.

Theorem 9.4 (Tubular Neighborhood Theorem). There is an open neighborhood of X in
Y and a retraction r : U → X such that

X U X

X NX/Y X,

=

r

' =

π

i.e. NX/Y is homeomorphic to U .

Let r = n−m. For W ⊆ X closed, we have that

Hj(X,X \W,Z) ∼= Hj+r(NX/Y , NX/Y \W,Z) Theorem 9.2 (2)

∼= Hj+r(U,U\W,Z) Theorem 9.4

∼= Hj+r(Y, Y \W,Z) excision.

In particular, for W = X, we get an isomorphism

Hj(X,Z) ∼= Hj+r(Y, Y \X,Z).

Then the long exact sequence in cohomology becomes

Hp−1(Y \X,Z)→ Hp−r(X,Z)→ Hp(Y,Z)→ Hp(Y \X,Z).

The map
Hp−r(X,Z)→ Hp(Y,Z)

is denoted by i∗ if i : X ↪→ Y is the inclusion and called the Gysin homomorphism.



MATH 731: HODGE THEORY 91

Recall that if X is compact, oriented, smooth manifold of dimension n, there is a fundamental
class µx ∈ Hn(X,Z) and the map

Hp(X,Z)→ Hn−p(X,Z)

α 7→ α ∪ µx
is an isomorphism. This is the strongest statement of Poincaré duality.

If f : X → Y is a smooth map between compact oriented smooth manifolds and n = dimY ,
m = dimX, r = n−m, we have:

Hp(X,Z) Hp+r(Y,Z)

Hm−p(X,Z) Hn−p−r(Y,Z)

f∗

∼=PD ∼=PD

f∗

The map on cohomology is also called the Gysin map.

Fact 9.5. If f is the inclusion of a closed submanifold, this agreed with the previous definition
of the Gysin map.

9.2. Special features for algebraic varieties. Before moving on to the computations of
cohomology groups, we make a few general statements about the special features for algebraic
varieties.

(1) If X is a complete complex algebraic variety of dimension n, Xan has a triangular-
ization with simplices of dimension at most 2n. Moreover, if Y ⊆ X is a closed
subvariety, we can find a compatible triangulizations for Xan and Y an.

(2) (Nagata’s Theorem) If W is any complex algebraic variety, there is an open immersion
W ↪→ X to a complete algebraic variety X.

Using (1), one can show that all Hp(W,Z), Hp(W,Z) are finitely-generated.

Given any complete irreducible algebraic variety X, of dimension n, we have a fundamental
class µX ∈ H2n(X,Z).

• If X is smooth, this is clear.
• In general, use resolution of singularities to construct π : Y → X which is proper,

birational, with Y smooth, and take µX = π∗µY .
We claim that this does not depend on π. If we had π : Y → X and π′ : Y ′ → X,

we may construct some Ỹ mapping to both Y and Y ′ (the Hiranaka hat) and show
that µY and µY ′ are both pushforwards of µỸ .

It is hence enough to show that if W → Y is proper, birational, with W , Y smooth
and complete, then f∗µW = µY . Since H2n(Y ) = ZµY , where n = dimY , we certainly
know that f∗µW = d · µY for some d ∈ Z. We just need to show that d = 1.

To check this, tensor with R and use de Rham cohomology. We have that

H2n(Y,R) ∼= H2n
dR(Y )∗

µY 7→
(

[ω] 7→
∫
Y

ω

)
.
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To check that f∗µW = µY , modulo these identification, it is enough to check that if
ω is a 2n-form on Y , then ∫

Y

ω =

∫
W

f ∗(ω).

This is clear since f is a diffeomorphism outside a measure 0 subset.

One can argue similarly to show that: if f : W → X, with W , X are smooth, complete with
f surjective and generically finite, then

f∗µW = deg(f) · µX .

Exercise. Use the projection formula5 to show that

f∗f
∗α = deg(f) · α

on H∗(X).

In particular, f ∗ is injective with Q-coefficients, and f ∗ is injective with Z-coefficients if f is
birationals.

Here is a more general result.

Fact 9.6. If f : X → Y is a surjective holomorphic map of compact complex manifolds, with
X Kähler,

f ∗ : H i(Y,Q)→ H i(X,Q)

is injective.

A proof of this is given in the notes on singular cohomology on the website.

Remark 9.7. If X is a smooth, complete variety, and Y ⊆ X is an irreducible closed
subvariety with

i : Y ↪→ X

with dimX = n, dimY = m, r = n−m, then

i∗µY ∈ H2m(X,Z)
PD∼= H2r(Y,Z).

This is the cohomology class of Y , denoted [Y ].

We can extend this to cycles. If

α =
r∑
i=1

niYi

and codim(Yi) = r, then we define

[α] =
∑

ni[Yi] ∈ H2r(X,Z).

5The projection formula is f∗(f∗(α) ∪ β) = α ∪ f∗(β)
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Example 9.8. Suppose X is a smooth complete variety and D is a smooth divisor on X.
Then

[D] = c1(OX(D)).

This is true even if D is just a prime divisor.

More generally, suppose X is a smooth complete variety and D1, . . . , Dr are smooth divisors,
intersecting transversely. For Y = D1 ∩ · · · ∩Dr, induction on r shows that

[Y ] = c1(O(D1)) ∪ · · · ∪ c1(O(Dr)).

As a special case, take r = n = dimX. Under the isomorphism H2n(X) ∼= Z,

c1(O(D1)) ∪ · · · ∪ c1(O(Dn)) = #Y.

Example 9.9. If X = Pn, h = c1(O(1)),

hr = [Lr]

where Lr ⊆ Pn is a linear subspace of codimension r.

In particular, hn = 1 via H2n(Pn,Z) ∼= Z.

Exercise. Let X be a smooth, complete complex algebraic variety. Let Y ⊆ X be a smooth
irreducible closed subvariety of codimension r. Let j : Y ↪→ X. We then have maps

Hp(X) Hp(Y )

Hp+2r(X)

j∗

j∗

Show that

(1) j∗j
∗α = α ∪ [Y ] for all α ∈ H∗(X),

(2) j∗j∗β = β ∪ j∗[Y ] for all β ∈ H∗(Y ).

Hint. For (1), use the description of j∗ via Poincaré duality and the projection formula. For
(2), use the description of j∗ via the Thom isomorphism.

Remark 9.10. If f : Y → X is a holomorphic map of compact Kähler manifolds, we defined

f∗ : H
p(Y )→ Hp+2r(X)

where r = dimX − dimY via Poincaré duality. Using the behavior of Poincaré duality with
respect to the Hodge composition, after tensoring with C, we get that

f∗(H
i,j(Y )) ⊆ H i+r,j+r.

In particular, if X is a smooth complete algebraic variety and Y ⊆ X is an irreducible closed
subvariety of codimension r, then

[Y ] ∈ H2r(X)

and the image of [Y ] in H2r(X,C) lies in Hr,r(X).

Indeed, if Ỹ → Y is a resolution of singularities and m = dimY , then

µỸ ∈ H2n(Ỹ )
PD∼= H0(Ỹ )



94 MIRCEA MUSTAŢĂ

is of type (0,0).

Definition 9.11. If X is a smooth projective complex algebraic variety, the set of Hodge
classes is defined as

Hdgp(X) = {α ∈ H2p(X,Q) | the image of α in H2p(X,C) lies in Hp,p}.

Let Zp(X)Q be the Q-vector space with basis given by codimension p irreducible subvarieties.

By Remark 9.10, we have a linear map

Zp(X)Q → Hdgp(X)∑
niYi 7→

∑
i

ni[Yi].

Conjecture (Hodge Conjecture). This is a surjective map.

Remark 9.12. The Hodge Conjecture 9.2 holds for p = 1, even with Z-coefficients. Indeed,
we showed that if α ∈ H2(X,Z) has image in H1,1, then α = c1(L) for some L ∈ Pic(X). If
L = O(D) with D =

∑
niDi, α =

∑
ni[Di].

Remark 9.13. However, the Hodge Conjecture 9.2 is not true in general with Z-coefficients.
Atiyah–Hirzebruch constructed a counterexample using a torsion class. Later, Kollar gave a
non-torsion example.

As a parenthesis, we mention the following result.

Theorem 9.14 (Lefschetz Hyperplane Theorem). Let X be a smooth projective complex
algebraic variety and D ⊆ X be a smooth divisor such that L = O(D) is ample. If j : D ↪→ X
is the inclusion, then

j∗ : Hp(X,Z) = Hp(D,Z)

is an isomorphism for p ≤ n− 2 and injective for p ≤ n− 1, where n = dimX.

Sketch of proof. Recall that j∗j
∗α = [D] ∪ α = c1(L) ∪ α. Hard Lefschetz 7.28 implies that

this is injective on Hp(X,Q) for p < n. Hence j∗ is also injective on Hp(X,Q) for p ≤ n− 1.

Proving the isomorphism for p ≤ n − 2 is harder. The key ingredient of the proof (due
to Andreotti-Frankel) is the following result: If Y is an affine complex algebraic variety of
dimension n, Y has the homotopy type of a CW complex of dimension ≤ n. The proof uses
Morse theory. In particular, for p > n:

Hp(Y,Z) = 0,

Hp(Y,Z) = 0.

In our setting, L is ample, so X \ D is affine, hence this result applies. The long exact
sequence in cohomology gives:

Hp−1(X \D,Z) Hp−2(D,Z) Hp(X,Z) Hp(X \D,Z),
j∗
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so j∗ : H
p−2(D)→ Hp(X) is an isomorphism if p− 1 > n and surjective if p > n. Hence

j∗H2n−p(X)→ H2n−p(D)

is an isomorphism if p ≥ n+ 2, i.e. 2n− p ≤ n− 2, and injective if p ≥ n+ 1. �

9.3. Some cohomology computations.

Example 9.15 (The projective space Pn). We show that

H i(Pn,Z) ∼=

{
Z if 0 ≤ i ≤ 2n and i is even,

0 otherwise.

We use induction on n. The case n = 0 is trivial. For the inductive step, consider Pn−1 ∼=
H ⊆ Pn such that

Pn \H ∼= Cn

is contractible. The long exact sequence for i > 0 gives

0 H i−1(Pn \H) H i−2(Pn−1) H i(Pn) H i(Pn \H) = 0.

Hence for i ≥ 2, we have that H i(Pn) ∼= H i−2(Pn−1). Moreover, H1(Pn) = 0 and H0(Pn) =
H0(Pn \H) ∼= Z.

Clearly, the Hodge decomposition is such that

H2k(Pn,C) = Hk,k(Pn)

(by Hodge symmetry). In particular,

Hq((Pn)an,Oan
Pn) = 0

for q > 0. (Recall that we assumed this when proving GAGA 3.34. We finally arrived at a
proof.)

In fact, we have that

H∗(Pn,Z) ∼= Z[h]/(hn+1)

where h = c1(O(Q)). Why? We note that

H2n(Pn,Z)
∼=→ H0(Pn,Z),

hn 7→ 1,

since we have n hyperplanes intersecting transversely in 1 point. Since H2k(Pn,Z) ∼= Z we
have that hk ∈ H2k(Pn,Z) is nonzero. For every α ∈ H2k(Pn,Z), we can write α = u · hk for
some u ∈ Q, whence

α ∪ hn−k 7→ deg(αuhn−k) ∈ Z
uhn 7→ u

and α ∪ hn−k = uhn, showing that u ∈ Z.

We may summarize the example as follows:
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H∗(Pn,Z) Z[x]/(xn+1)

c1(O(q))i xi

∼=

By the Leray–Hirsch Theorem 9.1, if E is a rank r + 1 vector bundle on any X and

π : P(E)→ X

is the associated map, then

H∗(X)⊗Z Z[x]/(xr+1)
∼=→ H∗(P(E))

αxi 7→ π∗(α) ∪ c1(O(1))i.

In particular,

Hp,q(P(E)) ∼=
r⊕
i=0

Hp−i,q−i(X).

Remark 9.16. The isomorphism H∗(X) ⊗Z Z[x]/(xr+1)
∼=→ H∗(P(E)) is a group isomor-

phism, not a ring isomorphism, In general, c1(O(1))r+1 6= 0. By looking at its coefficients
in H∗(X), we get Chern classes of ci(E).

Exercise. Suppose X is compact. Show that for 0 ≤ i ≤ r:

π∗(π
∗(α) ∪ c1(O(1))i) =

{
0 if i < r

α if i = r.

We now compute the cohomology of the blow-up.

Proposition 9.17. Let X be a smooth projective complex variety and Y ⊆ X be a smooth
closed subvariety of codimension r. Let:

X̃ X

E Y

ι

ϕ

be the blow-up along Y , where E is the exceptional divisor. Then, for all p,

Hp(X̃,Z) ∼= Hp(X,Z)⊕
r−1⊕
i=1

Hp−2i(Y,Z)

π∗α0 + ι∗

r−1∑
i=1

c1(OE(1))i−1 ←[ (α0, . . . , αr−1).

Sketch of proof. We have long exact sequences (suppressing the coefficient ring, Z, from
notation):
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Hp−1(X \ Y ) Hp−2r(Y ) Hp(X) Hp(X \ Y )

Hp−1(X \ Y ) Hp−2(E) Hp(X̃) Hp(X̃ \ E)

= ϕp π∗ ∼= π∗

We know that E is a projective bundle over Y of rank r and hence

Hp−2(E) ∼=
r⊕
i=1

Hp−2i(Y ).

Note that the map ϕp is not given explicitly. One can, however, show the following.

Exercise. We have that ϕ∗ ◦ ϕp = IdHp−2r(Y ). Equivalently, using the previous exercise, the
projection onto the last component of ϕp is the identity on Hp−2r(Y ).

The the conclusion follows by a diagram chase. (Check this! For example, for surjectivity,

one sees that any class in Hp(X̃) is a sum of a class in Hp(X) and Hp−2(E), and the result
follows from the exericse.) �

10. Pure Hodge structures

We now discuss an abstract (linear algebra) setting which Hodge theory fits into.

Definition 10.1. A pure (integral) Hodge structure of weight m is given by:

(1) a finitely-generated free abelian group H (also written HZ),
(2) a decomposition HC = H ⊗Z C =

⊕
p+q=m

Hp,q such that Hp,q = Hq,p for any p, q.

There are some variants of this definition. A rational or real pure Hodge structure starts
with a finite-dimensional vector space over Q or over R, respectively.

Example 10.2 (Main example). If X is a compact Kähler manifold, then H i(X,Z)/(torsion)
is endowed with a canonical pure Hodge structure of weight i.

Example 10.3 (Tate Hodge structure). We define the Tate Hodge structures are:

• Z(1) = (2πi)Z ⊆ C, pure of type (−1,−1), (weight −2),
• Z(1) = 1

2πi
Z ⊆ C, pure of type (1, 1), (weight 2).

Proposition 10.4. Giving a pure Hodge structure of weight m is equivalent to giving a free
finitely-generated abelian group H together with a finite, decreasing filtration (F pHC)p∈Z on

HC such that F p ⊕ Fm+1−p
= HC.

While this seems to make things more complicated, it is actually much more convenient
to work with. This will become apparent when we discuss the Hodge–de Rham spectral
sequence (the filtration will be given algebraically while the Hodge decomposition is only
given analytically) and the behavior of Hodge structures in families.
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Proof. Suppose we have a decomposition HC =
⊕

p+q=mH
p,q as in the definition of a Hodge

structure. Then we define

F pHC =
⊕
i+j=p
i≥p

H i,j.

This is clearly a decreasing, finite filtration. Note also that

F
m+1−p

=
⊕
i+j=m

i≥m+1−p

H i,j =
⊕
i+j=m
j≤p−1

Hj,i

and hence the condition F p ⊕ Fm+1−p
= HC also holds. A similar computation shows that

Hp,q = F p ∩ F q
,

which motivates the proof of the converse.

Suppose F •H is a finite, decreasing filtration on H which satisfies F p⊕Fm+1−p
= HC. Define

Hp,q = F p ∩ F q
.

• Suppose
∑

p+q=m

αp,q = 0 for αp,q ∈ Hp,q. If not all αp,q are 0, choose minimal p such

that αp,q 6= 0. Then

αp,q = −
∑
p′>p

αp′,q′ ∈ F p+1 ∩ F q
= 0

by the assumption that F p ⊕ Fm+1−p
= HC.

• Let us show that every 0 6= u ∈ H lies in
∑

p+q=m

Hp,q. Suppose u ∈ F p. We argue

by decreasing induction on p. (If p � 0, u = 0, so there is nothing to prove.) We

know that F p+1 ⊕ Fm−p
= HC, so u = v1 + v2 for v1 ∈ F p+1 and v2 ∈ F

m−p
. By the

inductive hypothesis, v1 ∈
∑
Hp′,q′ . Moreover,

v2 = u− v1 ∈ Fp ∩ Fm−p,

so v2 ∈ Hp,q ⊆
∑

p′+q′=mH
p′,q′ . Hence

u ∈
∑
p′,q′

Hp′,q′ .

In fact, we see that F p ⊆
⊕

p′+q′=m
p′≥p

Hp′,q′ and the reserve inclusion is clear. Hence we recover

the equality

F p =
⊕
p′≥p

Hp′,q′

which shows that these are inverse constructions. �

Definition 10.5. If A and B are pure Hodge structures of weights m and m + 2r, then a
morphism of pure Hodge structures of type (r, r) is a morphism of abelian groups f : A→ B
such that

fC(Ap,q) ⊆ Bp+r,q+r for all p, q
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or, equivalently, using Proposition 10.4,

f(F pA) ⊆ F p+rB for all p.

If r = 0, we simply call f a morphism of pure Hodge structures.

Example 10.6. If f : X → Y is a morphism of compact Kähler manifolds, then

f ∗ : H i(Y,Z)/(torsion)→ H i(X,Z)/(torsion)

is a morphism of Hodge structures for all i.

Operations with pure Hodge structures.

(1) We have finite direct sums of pure Hodge structures of the same weight.
(2) We have kernels and cokernels. If f : A→ B is a morphism between Hodge structures

of weights m and m+ 2r, then

ker(f)⊗Z C =
⊕
p+q=m

ker(Ap+q → Ap+r,q+r),

so ker(f) is a pure Hodge structure of weight m.
Similarly, coker(f)/torsion is a pure Hodge structure of weight m+ 2r:

coker(f)⊗Z C = coker(Ap,q → Bp+r,q+r).

These satisfy the usual universal properties.
One can then check that the category of pure Hodge structures of weight m is an

abelian category.
(3) If A and B are Hodge structures of weights m and n, then AZ ⊗Z BZ is a finitely-

generated free abelian group, and

AC ⊗C BC =

⊕
p+qm

Ap,q

⊗
 ⊕
p′+q′=n

Bp′,q′

 ,

and hence A⊗B is a pure Hodge structure of weight m+ n:

(A⊗B)p,q =
⊕
i+i′=p
j+j′=q

Ai,j ⊗Bi′,j′ .

In particular, the category of pure Hodge structures of weight m does not have a
monoidal structure, while the category of pure Hodge structures does have one. How-
ever, this latter category does not have direct sums so it is not an abelian category.

Example 10.7. Recall the Tate Hodge structure Z(1) = (2πi)Z of type (−1,−1)
(weight −2). Then

Z(m) = (2πi)mZ
is a Hodge structure of type (−m,−m) (weight −2m), and

Z(i)⊗ Z(j) = Z(i+ j).

In general, if A is a pure Hodge structure of weight m, then

A(i) = A⊗ Z(i)

is a pure Hodge structure of weight m− 2i.
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Example 10.8. If X is a compact Kähler manifold, then

H i(X,Z)/(torsion)⊗Hj(X,Z)/(torsion)→ H i+j(X,Z)/(torsion)

is a morphism of pure Hodge structures of weight i+ j.

(4) The dual of a pure Hodge structure A of weight m is

A∗ = HomZ(A,Z)

with the grading

HomC(AC,C) =
⊕
p+q=m

Hom(Ap,q,C)︸ ︷︷ ︸
(A∗)−p,−q

,

which is a pure Hodge structure of weight −m.

Example 10.9. We have that Z(−m) = Z(m)∗.

Example 10.10. Let X be a compact Kähler manifold. Then

Hi(X,Z)/(torsion) ∼= (H i(X,Z)/(torsion))∗

by the Universal Coefficients Theorem, so Hi(X,Z)/(torsion) carries a pure Hodge
structure of weight −i.

Let X be a compact Kähler manifold of dimension n.

(1) We have that:

H2n(X,Z)→ Z(−n)

ω 7→ (2πi)−n

where ω is the element such that ω ∪ µX = 1 ∈ H0(X,Z).
(2) We have that

(Hk(X,Z)/torsion)∗
∼=→ (H2n−k(X,Z)/(torsion))(n)

via Poincaré duality.
(3) Similarly,

Hk(X,Z)/torsion
PD→ (H2n−k(X,Z)/torsion)(−n)

is an isomorphism of pure Hodge structures.
(4) Consider the Gysin maps. Let f : X → Y be a holomorphic map of compact Kähler

manifolds of dimensions n and m, respectively. For d = m − n, we get the Gysin
map:

Hp(X,Z)/(torsion)
f∗→ (Hp+2d(Y,Z)/(torsion))(d)

10.1. Polarized Hodge structures. Suppose A is a pure Hodge structure of weight m.

Definition 10.11. A polarization on A is given by a bilinear form

AZ × AZ
Q→ Z

which is:

• symmetric if m is even,
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• skew-symmetric if m is odd,

(equivalently, (u, v) 7→ imQ(u, v) is a Hermitian form) such that, after tensoring with C,

(1) Q(Ap,q, Ap
′,q′) = 0 unless p = q′, q = p′,

(2) the Hermitian form

(u, v) 7→ ip−q(−1)
m(m−1)

2 Q(u, v)

is positive definite on Ap,q.

The last condition should remind the reader of the Hodge–Riemann bilinear relations 7.33.

In particular, Q is non-degenerate, so it induces an isomorphism A(m)
∼=→ A∗.

Example 10.12 (Main example). Let X be a smooth projective variety and L ∈ Pic(X) be
ample. For k ≤ n = dimX, we define the primitive cohomology

PH
k
(X,Z) = {α ∈ Hk(X,Z)/(torsion) | c1(L)n−k+1 ∪ α = 0 mod (torsion)}

Here H stands for killing the torsion.6 This is a polarized Hodge structure of weight k by
the Hodge–Riemann bilinear relations 7.33.

Moreover, we get a polarization of H
k
(X,Z) by using the Lefschetz decomposition 7.28:

H
k
(X,Z) =

⊕
i≥0

PH
k−2i

(X,Z)(−i).

The advantage of a polarized pure Hodge structures is the following semisimplicity result.

Proposition 10.13. If V is a polarized pure rational Hodge structure of weight m and
W ⊆ V is a pure sub Hodge structure of V , the restriction of Q (a polarization on V ) to W
gives a polarization of W , and there is a polarized pure sub Hodge structure W ′ such that

V ∼= W ⊕W ′.

Proof. Take W ′ = W⊥ with respect to Q. �

11. Algebraic de Rham cohomology

We next discuss algebraic de Rham cohomology. It will related to Hodge cohomology via a
spectral sequence, so we start with a review of spectral sequences.

11.1. Introduction to spectral sequences. Let C be an abelian category and A• be a
complex. Suppose (F pA•)p∈Z is a decreasing filtration such that

(1) there is an m such that FmA• = A•,
(2) for all i, there is a p such that F pAi = 0.

6In fact, we already dealt with primitive cohomology with C-coefficients; the only novelty here is to deal
with the torsion.
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We get an induced filtration on H∗(A•) by

F pH i(A•) = im(H i(F pA•)→ H i(A•)).

The goal is to compute the graded pieces of this filtration:

F pH i(A•)

F p+1H i(A•)
.

This is done by the spectral sequence associated to this filtered complex:

(Ep,q
r , dp,qr )r≥1

where dr : Ep,q
r → Ep+r,q−r+1

r such that d2
r = 0, together with isomorphisms:

Ep,q
r+1
∼= ker(dp,q)/ im(dp−r,q+r−1

r ).

(In other words, for fixed r we have a page of the spectral sequence Ep,q
r and its cohomology

with respect to the maps dp,qr is the next page of the spectral sequence, Ep,q
r+1.)

Example 11.1. We have that

Ep,q
1 = Hp+q(F pA•/F p+1A•)

for all p, q with

dp,q1 : Hp+q(F pA•/F p+1A•)→ Hp+q+1(F p+1A•/F p+2A•)

with the boundary homomorphisms corresponds to the exact sequence of complexes

0 F p+1A•/F p+1A• F pA•/F p+2A• F pA•/F p+1A• 0.

Theorem 11.2 (Main result). We have Ep,q
1 ⇒ H∗(A•), meaning:

(1) for all p, q, Ep,q
r stabilizes for r � 0 to Ep,q

∞ ,
(2) there is a canonical isomorphism F pHp+q(A•)/F p+1Hp+q(A•) ∼= Ep,q

∞ .

11.1.1. Hypercohomology. Let C, D be two abelian categories and assume that C has enough
injectives. Let T : C → D be a left exact functor.

If A• is a complex in C, bounded to the left, there is a complex I•, consisting of injective
objects, bounded to the left, and a morphism of complexes A• → I•, which is a quasi-
isomorphism. Define

RqT (A•) = Hq(T (I•)) ∈ Ob(D).

This can be made functorial.

Suppose now we have a filtration (F pA•)p∈Z on A• as before. One can construct A• → I•, as
before, such that we have a decreasing filtration F pI• of I• with each F pIm/F pIm+1 (hence
also F pTm) injective, and for all p:

F pA• → F pI• is a quasi-isomorphism,

F pA•/F p+qA• → F pI•/F p+1I• is a quasi-isomorphism.

Applying T to I•, we get a filtration on T (I•) by setting

F pT (I•) = (T (F pI•) ↪→ T (I•)).
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Hence we get a spectral sequence with

Ep,q
1 = Hp+q(T (F pI•)/T (F p+1I•)︸ ︷︷ ︸

T (F pI•/F p+1I•)

) = Rp+qT (F pA•/F p+1A•)

and
Ep,q

1 ⇒ Rp+qT (A•).

Example 11.3 (Key example). Consider A• with the näıve filtration7, i.e.

F pA• =
p−1

0 →
p

Ap →
p+1

Ap+1 → · · · .
Then

F pA•/F p+1A• = Ap[−p].
This gives the first hypercohomology spectral sequence:

Ep,q
1 = RqT (Ap)⇒ Rp+qT (A•).

Remark 11.4. We used the notation C•[m] to mean that (C•[m])i = Ci+m.

11.2. De Rham cohomology. Let k = k be a field and X be a smooth algebraic variety
over k. We have the de Rham complex:

0 OX ΩX · · · Ωn
X 0d d d

where n = dimX. Note that Ωp
X is coherent for all i, but d is not OX-linear. Here,

Ωi
X =

i∧
ΩX .

Definition 11.5. The de Rham cohomology of X is

H i
dR(X) = Hi(X,Ω•X) = RiΓ(X,Ω•X).

Theorem 11.6 (Grothendieck). If X is a complete smooth variety over C, there is a canon-
ical isomorphism

H i
dR(X) ∼= H i(Xan,C).

Remark 11.7. This result also holds if X is not complete (this is a result due to Deligne,
which has a different proof).

Proof of Theorem 11.6. Consider the corresponding analytic de Rham complex

0 OXan ΩXan · · · Ωn
Xan 0d d d

obtain via the analytification functor from Ω•X .

The key fact is that this is acyclic with 0-cohomology equal to CXan .

Indeed, recall that we have a double complex (A•,•Xan , ∂, ∂) and the ∂∂-Lemma 7.16 implies
that

(Ap,•Xan , ∂) is an acyclic complex with 0-cohomology Ωp
Xan .

7The näıve filtration is sometimes also called the stupid filtration
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Therefore, the inclusion

Ω•Xan ↪→ Tot(A•,•Xan)

is a quasi-isomorphism, and

Tot(A•,•Xan) = de Rham complex on Xan of smooth C-forms.

It is acyclic with 0-cohomology CXan .

Therefore,

Hi(Xan,Ω•Xan) ∼= H i(X,CXan) = H i(Xan,C).

Hence it is enough to show that the canonical map

Hi(X,Ω•X)→ Hi(Xan,Ω•Xan)

is an isomorphism. GAGA 3.34 would imply this result if the map d was OX-linear (i.e. if it
was a map of coherent sheaves). We just need a small argument to deal with this technical
issue.

The hypercohomology spectral sequence for Ω•X gives

Ep,q
1 = Hq(X,Ωp

X)⇒ Hp+q
dR (X).

We also have a corresponding spectral sequence for Ω•Xan :

Ẽp,q
1 = Hq(Xan,Ωp

Xan)⇒ Hp,q(X,Ω•Xan).

Functoriality of the hypercohomology spectral sequence then gives a morphism of spectral
sequences

Ep,q
r → Ẽp,q

r .

This is an isomorphism for r = 1 by GAGA 3.34, which implies that it is an isomorphism
for all r. By convergence of the spectral sequences, we see that for all p, q

F pHp+q(X,Ω•X)/F p+1Hp+q(X,Ω•X)
∼=→ F pHp+q(Xan,Ω•Xan)/F p+1Hp+q(Xan,Ω•Xan).

Since these are finite filtrations, the induced map

Hi(X,Ω•X)→ Hi(Xan,Ω•Xan)

is an isomorphism. �

Remark 11.8. To prove the more general statement, we first embed the variety in a complete
variety. One then shows that the log-de Rham complex gives a resolution of the constant
sheaf. Then one shows that the log-de Rham complex gives an isomorphism as above.

11.3. Hodge-to-de Rham spectral sequence. Suppose k is an algebraically closed field
and X is a smooth projective variety over k. We have the algebraic de Rham complex Ω•X
on X. Then näıve filtration on Ω•X gives the Hodge-to-de Rham spectral sequence:

Ep,q
1 = Hq(X,Ωp

X)⇒ Hp+q(X,Ω•X).

Theorem 11.9. If char(k) = 0, the spectral sequence collapses on its first page.
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Proof. It is enough to show this when k = C. Theorem 11.6 gave an isomorphism

Hm(X,Ω•X) ∼= Hm(Xan,C).

We want to show that dp,qr = 0 for all p, q and all r ≥ 1. In general, Ep,q
r+1 is a subquotient

of Ep,q
r and Ep,q

r+1 for all p, q if and only if dp,qr = 0 for all p, q. Hence the spectral sequence
collapses on the first page if and only if

dimF pHn/F p+1Hn = dimEp,n−p
1

for all p. This is equivalent to:

dimHn(X,Ω•X) =
∑
p+q=n

dimEp,q
1︸ ︷︷ ︸

hp,q(X)

.

Since dimHn(X,Ω•X) = dimHn(Xan,C), this follows from the Hodge decomposition. �

Remark 11.10. The näıve filtration on Ω•X gives a filtration on H∗(X,Ω•X) which via the
identification H∗(X,Ω•X) ∼= H∗(Xan,C) is the Hodge filtration.

Step 1. It is enough to prove the corresponding statement for Ω•Xan . One checks this by
similar argument to the proof of Theorem 11.6.

Step 2. We saw that the inclusion Ω•Xan ↪→ A•Xan,C is a quasi-isomorphism. Moreover,

F pΩ•Xan ↪→ F pA•Xan,C =
⊕
i+j=•
i≥p

Ai,j

is a quasi-isomorphism again, by the ∂∂-Lemma 7.16. Since these are soft sheaves, we have
that

F pH∗(Xan,Ω•Xan) = Im(H•Γ(F pA•Xan,C)→ H•Γ(A•Xan,C)).

Choose a Kähler metric on Xan so that we have harmonic forms. We have:

HmΓ(F pA•Xan,C) HmΓ(A•Xan,C)

⊕
i+j=m
i≥p

Hi,j(Xan)

natural map isom. onto F p(· · · )
by the Hodge decomposition

Hence it is enough to show that the natural map in the diagonal is an isomorphism.

We argue by decreasing induction on p. We write

Cp = Γ(F pA•Xan,C).

We have a short exact sequence

0 Cp+1 Cp Cp/Cp+1 = Γ(Xan,Ap,•Xan) 0.

The long exact sequence gives
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(∗) Hm(Cp+1) H(Cp) HmΓ(Xan,Ap,•Xan) Hm+1(Cp+1)

0
⊕

i+j=m
i≥p

Hi,j
⊕

i+j=m
i≥p+1

Hi,j Hp,m−p 0

δ δ

ϕp+1 ϕp ∼= Hodge decomposition

Note that δ = 0, since we can lift a harmonic representation by a harmonic form, which is
both ∂ and ∂ closed.

Hence we have a morphism of short exact sequences. Since ϕp+1 is an isomorphism by the
inductive hypothesis, ϕp is also an isomorphism. This completes the proof of the assertion.

Remark 11.11. One can ask whether the degeneration of the Hodge-to-de Rham spectral
sequence also holds in characteristic p > 0. It turns out it is false.

However, Deligne and Illusie give an algebraic proof in characteristic 0 by reducing modulo p.

Alas, this degeneracy of the spectral sequence does not imply the Hodge decomposition,

i.e. that Hm(X,C) = F p ⊕ Fm+1−p
. The Hodge symmetry does not follow from this either.

12. Introduction to Variations of Hodge structures

The motivation for this topic comes from the following result in differential topology.

Theorem 12.1 (Ehresman). If π : X → B is a smooth map between smooth (real) manifolds
which is proper and submersive, then for all b0 ∈ B, there is an open neighborhood U of b0

and a diffeomorphism π−1(U) ∼= U ×Xb0 over U .

Proof. Consider

X0 = Xb0 X

{b0} B

π

Let n = dimX, m = dimB. Since π is a submersion, X0 ↪→ X is a submanifold of dimension
n−m.

The Tubular Neighborhood Theorem implies that there is an open neighborhood W of X0

and a retraction r : W → X0 of the inclusion X0 ↪→ W .

Define ϕ : W → B ×X0 by
ϕ(x) = (π(x), r(x)).

If p ∈ X0, ker(dπ)p = TpX0 and (dr)p|TpX0 = Id.

Hence dϕp is an isomorphism, showing that ϕ is a local diffeomorphism at every point of X0.
Moreover, ϕ|X0 is injective and X0 is compact since π is proper.

Therefore, there is an open neighborhood W ′ of X0 such that ϕ is injective and locally a
diffeomorphism on W ′. Hence ϕ is an open embedding on W ′.
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Hence there is an open neighborhood U ′ of b0 such that π−1(U ′) ⊆ ϕ(W ′).

Replacing B by U ′ an W ′ by W ′ ∩ π−1(U ′), we may assume that ϕ is surjective. Take
U = B \ π(X \W ′). Note that π(X \W ′) is closed because π is proper. Hence U is an open
neighborhood of b0 such that ϕ gives a diffeomorphism π−1(U) ∼= U ×Xb0 . �

Corollary 12.2. Let f : X → B be a smooth projective morphism of complex algebraic
varieties. If B is connected, then maps B 3 t 7→ hp,q(Xt) are constant.

Proof. By Ehresman’s Theorem 12.1, we immediately see that the maps B 3 t 7→ bi(Xt) are
locally constant, hence constant, since B is connected.

Note that if B′ → B is a resolution of singularities, we may replace f by f ′ where

X ′ B′

X B

f ′

f

and thus we may assume that B (and hence also X) is smooth.

Each fiber is smooth and projective, so the Hodge decomposition shows that

bi(Xt) =
∑
p+q=i

hp,q(Xt).

We will apply the Semicontinuity Theorem to Ωp
X/B. These are locally free OX-modules and

f is flat, so they are flat over B. Therefore, the functions

t 7→ hp,q(Xt)

is upper-semicontinuous (can only go up under specialization). Since the sums of hp,q for
p+ q constant are constant, each of these functions is constant. �

Remark 12.3. We get more by using Grauert’s Theorem. If B is reduced, since all
hq(Xt,Ω

p
Xt

) are constant, all Rqf∗Ω
p
X/B are locally free and commute with base change.

In particular, for all t ∈ B, the canonical map

(Rqf∗Ω
p
X/B)(t) → Hq(Xt,Ω

p
Xt

)

is an isomorphism.

Definition 12.4. Let X be a topological space and F be a sheaf of abelian groups on X.
Then F is locally constant if for all x ∈ X, there is an open neighborhood U of x such that
F|U ∼= AU for some abelian group A.

In particular, note that A ∼= Fx for all x.

Definition 12.5. A sheaf F of vector spaces (over Q, R, or C) which is locally constant
with finite-dimensional stalks over a field is a local system.

Corollary 12.6. Let f : X → B be a smooth map between smooth real manifolds. If f is a
proper submersion, then R∗f∗Ax is locally constant for all abelian groups A.
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Proof. For x ∈ B, let U 3 x be an open neighborhood such that π−1(U) ∼= U ×F over U (as
in the conclusion of Ehresman’s Theorem 12.1.) Then Rkf∗Ax|U is isomorphic to the sheaf
associated to the presheaf V 7→ Hk(V × F,A).

By taking V to be a basis of contracting open neighborhoods of x, we see that

Rkf∗Ax|U ∼= Hk(F,A)
U
.

This completes the proof. �

12.1. Overview of Riemann–Hilbert correspondence. Let X be a complex manifold
and E be a locally free sheaf on X.

Definition 12.7. A connection ∇ on E is a C-linear map ∇ : E → ΩX ⊗ E which satisfies
the Leibnitz rule:

∇(fs) = f∇(s) + df ⊗ s
if f is a local section of OX and s is a local section of E .

Given any connection ∇, we get induced C-linear maps

∇ : Ωp
X ⊗ E → Ωp+1

X ⊗ E
by

∇(η ⊗ s) = η ∧∇(s) + dη ⊗ s.

Definition 12.8. A connected ∇ is flat (or integrable) if ∇ ◦∇ = 0 as a map E → Ω2
X ⊗ E .

Equivalently, ∇ ◦∇ = 0 as a map Ωp ⊗ E → Ωp+2 ⊗ E for all p.

The sheaf of flat sections of ∇ is E∇ = ker(∇ : E → Ω1 ⊗ E).

Hence, given such a vector bundle with flat connection (E ,∇), we get the de Rham complex
DRx(E ,∇):

0 E ΩX ⊗ E · · · ΩdimX
X ⊗ E 0.∇ ∇ ∇

Example 12.9 (Basic example). If E = OX and we take d : OX → OX as the flat connection,
the corresponding de Rham complex is the holomorphic de Rham complex of X.

More generally, suppose L is a local system of C-vector spaces on X. Take E = L ⊗C OX

which is locally free and

E ΩX ⊗ E

L ⊗OX L ⊗ ΩX

= =

1⊗d

defines a flat connection on E .

Then corresponding de Rham complex is

0 L ⊗OX L ⊗ ΩX · · · L ⊗ ΩdimX
X 0.

This is quasi-isomorphic to L.

Note that L = E∇ = ker(∇ : E → Ω1 ⊗ E).



MATH 731: HODGE THEORY 109

Theorem 12.10 (The Riemann–Hilbert correspondence). There is an equivalence of cate-
gories {

local systems of
C-vector spaces

}
↔
{

vector bundles with
integrable connection

}
with inverse given by (E ,∇)→ E∇.

Idea of proof. To show that E∇ is a local system, we need to show that for all x ∈ M and
u ∈ E(x), locally there is a unique flat section s of E such that s(x) = u.

This is a local statement, so we may assume that we have section e1, . . . , er which trivialize
E and coordinates x1, . . . , xn on X. Then

∇ : E → Ω⊗ E ,

ej 7→
n∑
i=1

r∑
k=1

Γkij dxi ⊗ ek.

where Γkij are some functions, called Chrstoffel coefficients.

For a section s =
r∑
j=1

sjej,

∇(s) =
r∑
j=1

sj

n∑
i=1

r∑
k=1

Γkij dxi ⊗ ek +
r∑

k=1

n∑
i=1

∂sk
∂xi

dxi ⊗ ek.

Then s is flat if and only if

∂sk
∂xi

= −
r∑
j=1

Γkijsj

for all i, k.

The key point is that ∇ is integrable if and only if this system of linear PDEs is integrable.
In this case, we get (local) existence and uniqueness given an initial condition. �

The next two classes were typed by David Schwein.

Let π : X → B be a smooth projective morphism of smooth complex varieties. We saw that
Rkπ∗C is a local system with stalks at b given by

(Rkπ∗C)b ∼= Hk(Xb,C).

By the Riemann–Hilbert correspondence 12.10, this local system corresponds to an analytic
vector bundle with integrable connection, called the Gauss–Manin connection.

Our first goal is to describe the vector bundle supporting the Gauss–Manin connection. This
requires a relative version of the de Rham complex. On X we have Ω•X , but also Ω•X/B (with

Ωp
X/B

:=
∧p ΩX/B). Neither complex is OX-linear, but the complex Ω•X/B is π−1OB-linear,

that is, each Ωp
X/B is a π−1OB-module. Let

Hk := Rkπ∗(Ω
•
X/B),
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an OB-module. The naive filtration F •Ω•X/B induces a filtration on Hk:

F pHk = Im(Rkπ∗F
pΩ•X/B → Rkπ∗Ω

•
X/B).

This filtration gives rise to a spectral sequence

Ep,q
1 = Rqπ∗Ω

p
X/B =⇒ Hp+q.

We know that each Ep,q
1 is locally free and there is a canonical base-change isomorphism

(Ep,q
1 )(b) ' Hq(Xb,Ω

p
Xb

). (Recall that (ΩX/B)(b) ' ΩXb ; this is a consequence of a general
compatibility between sheaves of differentials and pullbacks.) We know that for every b ∈ B,
the Hodge-to-de-Rham spectral sequence degenerates on the first page (cf. Theorem 11.9);
hence for every b ∈ B, the spectral sequence (E•)(b) degenerates at level one. Hence the
original spectral sequence degenerates on the first page, and the graded pieces are

F pHk/F p+1Hk ' Rk−pπ∗Ω
p
X/B.

We deduce that each F pHk is a subbundle of Hk. Moreover, for every b ∈ B,

F pHk
(b) = F pHk(Ω•Xb) ' F pHk(Xb,C).

Remark 12.11. We can run similar arguments for Rkπ∗Ω
•
Xan/Ban . Since Ω•Xan/Ban = (Ω•X/B)an

there is a canonical map

(Hk)an → Rkπ∗Ω
•
Xan/Ban

and this maps turns out to be an isomorphism. Using the spectral sequence associated to
the second naive filtration, which degenerates on the first page, to prove that this is an
isomorphism it is enough to show that for all p and q, the map

(Rqπ∗Ω
p
X/B)an → Rqπ∗Ω

p
Xan/Ban

is an isomorphism. This is a consequence of a general fact due to Deligne, relative GAGA
Theorem, but in our setting, we can see it by taking fibers at each b and using the isomor-
phism

Hp(Xb,ΩXb)→ Hp(Xan
b ,Ω

an
Xb

)

from usual GAGA Theorem 3.34.

Note now that we have a canonical morphism CX → Ω•Xan/Ban , which gives rise to a morphism

Rkπ∗CX → Rkπ∗(Ω
•
Xan/Ban), and then a morphism

(Rkπ∗CX)⊗C OBan → Rkπ∗(Ω
•
Xan/Ban).

This morphism is an isomorphism because it is an isomorphism on fibers. To conclude, the
analytic vector bundle associated to Rkπ∗CX is (Hk)an.

12.2. The Gauss–Manin Connection. As we will see, the connection on (Hk)an comes
from a connection ∇ : Hk → ΩB ⊗Hk on Hk. Its main property is the following.

Theorem 12.12 (Griffiths Transversality). We have:

∇(F pHk) ⊆ ΩB ⊗ F p−1Hk.
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Therefore ∇ induces a map ∇ : F pHk/F p+1Hk → ΩB ⊗ F p−1Hk/F
pHk. Although ∇ is not

OX-linear, ∇ is OB-linear because

∇(fs) = f∇(s) + df ⊗ s,
so that ∇(fs̄) = f∇(s̄). Our goal is to describe ∇ at the level of fibers. For b ∈ B, we have
a map

∇b : Hq(Xb,Ω
p
Xb

)→ T ∗b B ⊗ Hq+1(Xb,Ω
p−1
Xb

), q = k − p.

Theorem 12.13 (Griffiths). For every b ∈ B and u ∈ TbB, the map Hq(Xb,Ω
p
Xb

) →
Hq+1(Xb,Ω

p−1
Xb

) induced by ∇b and u is the cup product with the Kodaira–Spencer class of u,

a certain element of H1(X,TX).

That is, cupping with the Kodaira–Spencer class gives a map Hq(Ωp
Xb

)→ Hq+1(Ωp
Xb
⊗TXb),

and we then compose this map with the contraction map Hq+1(Ωp
Xb
⊗ TXb)→ Hq+1(Ωp−q

Xb
).

Recall that there is a short exact sequence

0→ TXb → TX |Xb → NXb/X(= TbB ⊗OXb)→ 0

The long exact sequence in cohomology yields a map

TbB = H0(NXb/X)→ H1(Xb,TXb),

called the Kodaira–Spencer map. The significance of the map comes from deformation theory:
for Y a smooth projective variety, the space H1(Y,TY ) parameterizes order-one deformations
of Y , that is, Cartesian diagrams

Y Y

SpecC SpecC[ε]

flat

(Here ε2 = 1.) Given π : X → B and u ∈ TbB, we get a deformation

X̃b X

SpecC[ε] B

π

u

The image of u under the Kodaira–Spencer map corresponds to X̃b.

12.3. Algebraic Description of the Gauss–Manin Connection (Katz–Oda). Let
π : X → B be as in the previous section. Recall the short exact sequence

0→ π∗ΩB → ΩX → ΩX/B → 0.

Consider Ω•X with the filtration

GiΩp
X = Im(π∗Ωi

B ⊗ Ωp−i
X → Ωp

X).

Evidently this filtration is compatible with the de Rham differential. Its graded pieces are

GiΩp
X/G

i+1Ωp
X ' π∗Ωi

B ⊗ Ωp−i
X/B.
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The filtration (GiΩ•X)i≥0 induces a spectral sequence with respect to π∗:

Ep,q
1 = Rp+qπ∗(G

pΩ•X/G
p+1Ω•X︸ ︷︷ ︸

π∗ΩpB⊗Ω•−p
X/B

) = Rqπ∗(π
∗Ωp

B ⊗ Ω•X/B) = Ωp
B ⊗ Rqπ∗Ω

•
X/B.

In particular, we have a map E0,q
1 → E1,q

1 , that is, Hq → ΩB ⊗Hq. This is the Gauss–Manin
connection.

Let’s see how this description implies Griffiths Transversality 12.12. We need to understand
d0,q

1 : it is the boundary map in the long exact sequence associated to the short exact sequence

0→ G1Ω•X/G
2Ω•X → Ω•X/G

2Ω•X → Ω•X/G
1Ω•X → 0,

that is, the sequence

0→ π∗(ΩB)⊗ Ω•−1
X → Ω•X/G

2Ω•X → Ω•X/B → 0.

So d0,q
1 is the connection

Rqπ∗Ω
•
X/B → Rq+1π∗(π

∗ΩB ⊗ Ω•−1
X/B) = ΩB ⊗ Rqπ∗Ω

•
X/B.

Consider now the naive filtration

0→ π∗ΩB ⊗ F p−1Ω•X → F p(Ω•X/G
2Ω•X)→ F p(Ω•X/B)→ 0.

From the resulting morphism of short exact sequences we get a commutative diagram

Rqπ∗F
pΩ•X/B ΩB ⊗ Rqπ∗F

p−1Ω•X/B

Rqπ∗Ω
•
X/B ΩB ⊗ Rqπ∗Ω

•
X/B.

∇

12.4. General Definition of Variation of Hodge Structures.

Definition 12.14. An (analytic) variation of (rational) Hodge structures on a complex
manifold B is given by the following data.

(1) A vector bundle with integrable connection (E ,∇).
(2) (Q-structure) A local system LQ of Q-vector spaces together with an isomorphism

(LQ)⊗Q C ' E∇.
(3) (Hodge filtration) A finite decreasing filtration F •E on E by subbundles that satisfy

Griffiths Transversality 12.12,

∇(F pE) ⊆ Ω⊗ F p−1E ,

and such that for all b ∈ B, the filtration (F pE(b)) gives a Hodge structure on Lb.

The variations of Hodge structure that come from smooth morphisms are called geometric.
These are usually the easiest ones to work with.
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12.5. Period Maps. Let π : X → B be as before. Fix b ∈ B. To understand the behavior
near b, choose a contractible open neighborhood U 3 b such that π−1(U) ' U ×Xb over U .
Given any b ∈ U , we have canonical isomorphisms

Hk(π−1(U),C)

Hk(Xb,C) Hk(Xb0 ,C).

restr restr

∼=

Fix p. For every b ∈ U , we get a linear subspace F pHk(Xb,C) ⊆ Hk(Xb,C) ' Hk(Xb0 ,C).
In this way, we get a period map

Pk,p : U → G(r, V )

where G is a Grassmannian (parameterizing subspaces), V = Hk(Xb0 ,C), and r =
∑
hp
′,q′ ,

the sum taken over those p′ and q′ with p′ + q′ = k and p′ ≥ p.

Proposition 12.15. The map Pk,p is holomorphic.

Proof. We have a subbundle F pHk|U ⊆ Hk|U = V ⊗ OU . This defines a holomorphic map
U → G(r, V ) which is precisely Pk,p. �

To globalize the period map, one must take the quotient of the image in G(r, V ) by a certain
discrete group arising from monodromy. The resulting map is extremely useful in studying
and constructing moduli spaces.

Our final goal is to relate dPk,p : TbB → T[W ]G to the Gauss-Manin connection.

Let [W ] ∈ G(r, V ) =: G. We can think of the tangent space at [W ] as the collection of free
C[ε]-modulesW ⊆ V ⊗CC[ε] of rank r and with free cokernel such thatW/εW = W . Given
such W , for each w ∈ W there is w + εw̃ ∈ W . Defining ϕ : W → V/W by w 7→ w̃ mod W
gives an isomorphism

T[W ]G ' HomC(W,V/W ).

Explicitly, choose a basis e1, . . . , en for V and suppose we are in the chart of G with subspaces
generated by vectors of the form ei +

∑n
j=r+1 ai,jej. The coefficients ai,j are independent

from each other and give an isomorphism of this chart to affine space with coordinates Ai,j.
Suppose that

W =
〈
ei +

n∑
j=r+1

ai,jej

∣∣∣ i〉,
so that a tangent vector has the form

u =
∑
i,j

bi,j
∂

∂Ai,j

∣∣∣∣
[W ]

.

The corresponding map W → V/W maps ei +
n∑

j=r+1

ai,jej to
∑
bi,jej.
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Consider now the sheaf of sections T → V ⊗OG of the universal subbundle. Given [W ] ∈ G,
consider the trivial vector bundle V ⊗ OG with the connection 1 ⊗ d. On our chart, T is
generated by the sections

n∑
j=r+1

ei + Ai,jej.

Then

(1⊗ d)(si) =
n∑

j=r+1

dAi,j ⊗ ej.

Letting u ∈ T[W ]G corresond to ϕ ∈ Hom(W,V/W ), this calculation implies that

∇u(si) = ϕ(si([W ]))

where the bar stands for the image in V/W . Using this, we see the following: given the
period map Pk,p : U → G associated to π : X → B, for every b ∈ U and every u ∈ TbU , if
[W ] = Pk,p(b) then dPk,pb (u) = (∇|F pHk)b,u : W → V/W .
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