Algebraic Topology I Quick Questions 2

Algebraic Topology I Tutors
January I8, 2024

Below is another list of questions which the tutors of AlgTop i prepared. We recommend you try to answer them first without looking at your notes, in order to check your understanding of the notions discussed in the lecture.

Problem o.I. Let $\pi: S^{\infty} \rightarrow \mathbb{R} P^{\infty}$ be the familiar covering map. Then the map $E(\pi): \mathbb{R} \times{ }_{C_{2}} S^{\infty} \rightarrow \mathbb{R} P^{\infty}$, applying π to the S^{∞}-component of a representative, is the universal line bundle over paracompact spaces.TrueFalse
Problem 0.2. Spot the error in this argument: Let $\iota \in H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right), \iota_{n} \in H^{1}\left(\mathbb{R} P^{n} ; \mathbb{F}_{2}\right)$ be the respective nontrivial elements. The total Stiefel-Whitney classes are $w\left(\gamma_{\mathbb{R}}^{1}\right)=1+\iota$ and $w\left(\gamma_{\mathbb{R}}^{1, n+1}\right)=1+\iota_{n}$, the inverse power series being given by $1+\iota+\iota^{2}+\cdots \in H^{\Pi}\left(\mathbb{R} P^{\infty}, \mathbb{F}_{2}\right)$ in the case of $\mathbb{R} P^{\infty}$, and analogously for $\mathbb{R} P^{n}$. From this we conclude that both $\gamma_{\mathbb{R}}^{1}$ and $\gamma_{\mathbb{R}}^{1, n+1}$ are not embeddable into trivial bundles.

Problem 0.3. Recall the proof that $\mathbb{R} P^{2^{j}}$ cannot be immersed into $\mathbb{R}^{2^{j+1}-2}$. Where do you use the immersion property?
Problem o.4. The tangent bundle $\tau_{S^{n}}$ of S^{n} is trivial for $n \geq 1$.TrueFalse
Problem 0.5. Two real vector bundles over a paracompact base are isomorphic if and only if their Stiefel-Whitney classes agree.TrueFalse
Problem o.6. Let $\gamma_{\mathbb{R}}^{1, n+1}$ denote the tautological bundle over $\mathbb{R} P^{n}$. Compute $\omega\left(\gamma_{\mathbb{R}}^{1, n+1}\right)$ for n a power of 2 .
Problem o.7. The Grassmanian $\mathrm{Gr}_{n}^{\mathbb{R}}$ can be given the structure of a smooth manifold.TrueFalse
Problem o.8. Let $\gamma_{\mathbb{C}}^{n}$ denote the tautological n-dimensional complex vector bundle over the infinite $\operatorname{Grassmanian} \operatorname{Gr}_{n}^{\mathbb{C}}$, equipped with a Euclidean metric. Then the associated sphere bundle $S\left(\gamma_{\mathbb{C}}^{n}\right) \rightarrow \mathrm{Gr}_{n}^{\mathbb{C}}$ induces a surjection on cohomology $H^{*}(-, A)$ for every coefficient group A.TrueFalse
Problem 0.9. Let M be a smooth submanifold of \mathbb{R}^{n}. Then the tangent bundle τ_{M} of M is trivializable if and only if the normal bundle $\nu_{M, \mathbb{R}^{n}}$ is trivializable.
\square False
Problem o.io. The smooth manifold $\mathbb{R} P^{4}$ does not allow an immersion into \mathbb{R}^{6}.TrueFalse
Problem o.iI. Let $\left(r_{1}, \ldots, r_{6}\right)$ be a sequence of non-negative numbers such that $r_{1}+2 r_{2}+3 r_{3}+4 r_{4}+5 r_{5}+6 r_{6}=6$. Then the Stiefel-Whitney number $w_{1}^{r_{1}} \cdots w_{6}^{r_{6}}\left[\mathbb{R} P^{6}\right]$ is non-zero.TrueFalse
Problem o.I2. If all the Stiefel-Whitney numbers of a compact smooth manifold M are zero, then the total Stiefel-Whitney class of the tangent bundle τ_{M} is equal to 1 .TrueFalse
Problem o.i3. $\mathbb{R P}^{3} \times \mathbb{R}^{3}$ is cobordant to $\mathbb{R} \mathbb{P}^{6}$.TrueFalse
Problem o.i4. Euler characteristic modulo 2 is a bordism-invariant.TrueFalse
Problem 0.15. Let $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ be a sequence with associated element $S q^{I}=S q^{i_{1}} \cdots S q^{i_{n}}$ in the Steenrod algebra. Then, if I is not admissible, we have $S q^{I}=0$.TrueFalse
Problem 0.16. The integral homology of the homotopy fibre F of the inclusion $\mathbb{C} P^{1} \rightarrow \mathbb{C} P^{\infty}$ is zero in odd degrees and isomorphic to \mathbb{Z} / n in degree $2 n$, for all $n \in \mathbb{N}$.TrueFalse
Problem 0.17. Let X be a simply-connected space. If there exists an $n>1$ such that $\pi_{n}(X, *)$ is infinite, then there also exists an $m>1$ such that $H_{m}(X, \mathbb{Z})$ is infinite.TrueFalse
Problem 0.18. The tangent and normal bundle of the 2 -torus $S^{1} \times S^{1}$, viewed as a submanifold of $\mathbb{R}^{2} \times \mathbb{R}^{2}$, are each trivializable.

TrueFalse
Problem o.19. Assume that ξ is a real vector bundle with paracompact base space X, satisfying $w_{3}(\xi) \neq 0$ and $H^{2}\left(X, \mathbb{F}_{2}\right)=$ 0 . Then ξ does not have a 1 -dimensional subbundle.TrueFalse
Problem 0.20. Let $(F \rightarrow Y \rightarrow X, h)$ be a fibre sequence, such that three of F, Y and X are compact. Then so is the third.TrueFalse

