Algebraic Topology I Quick Questions

Algebraic Topology I Tutors

December 20, 2023

Below is a list of True/False-questions which the tutors of AlgTop 1 prepared. We recommend you try to answer them first without looking at your notes, in order to check your understanding of the notions discussed in the lecture.

There will be a second such practice sheet closer to the exam.

PROBLEM 0.1. The equivalence $K(A; n) \simeq \Omega K(A; n+1)$ is adjoint to an equivalence $\Sigma K(A; n) \simeq K(A; n+1)$.

□ True

□ False

PROBLEM 0.2. The Steenrod algebra \mathscr{A} of stable cohomology operations in \mathbb{F}_2 -homology is a polynomial algebra over \mathbb{F}_2 .

□ True

□ False

PROBLEM 0.3. If α is an element of degree *i* in the Steenrod algebra $\mathscr{A}, x \in H^n(X; \mathbb{F}_2)$ is a cohomology class of degree *n* for a space *X* and i > n, then $\alpha(x) = 0$

□ True

□ False

PROBLEM 0.4. Let V and W be vector bundles over a space X. Assume that V is isomorphic to the trivial bundle ε^n and W is isomorphic to the trivial bundle ε^m , then $V \oplus W$ is isomorphic to the trivial bundle ε^{n+m} . Here, 'isomorphic' is meant in the sense that the two bundles represent the same element in $\operatorname{Vec}_{\mathbb{R}}^{*}(X)$, with * the respective dimension.

□ True

□ False

PROBLEM 0.5. A subbundle of a trivial vector bundle is always trivializable.

□ True

□ False

PROBLEM 0.6. Let $(F \rightarrow Y \rightarrow X, h)$ be a fibre sequence with Y contractible. Then the associated Serre spectral sequence with integral coefficients collapses on the E_2 -page, i.e., all differentials d_r with $r \ge 2$ are trivial.

□ True

□ False

PROBLEM 0.7. Let *X* be a simply-connected, finite CW-complex (i.e., with finitely many cells) such that $H_i(X; \mathbb{Q}) = 0$ for all i > 0. Then $\pi_i(X, *)$ is finite, for all $i \in \mathbb{N}$ and every basepoint *.

□ True

□ False

PROBLEM 0.8. The homotopy groups $\pi_m(S^n, *)$ are finite for all n and m > n.

□ True

□ False

PROBLEM 0.9. Let $(F \to Y \xrightarrow{p} X, b)$ be a fibre sequence with F path-connected, and assume that $p^* \colon H^i(X, \mathbb{F}_2) \to H^i(Y, \mathbb{F}_2)$ is the zero map in all degrees i > 0. Then no class $x \in E_2^{i,0}$ with i > 0 on the associated Serre spectral sequence is a permanent cycle, i.e., every such x supports a non-trivial differential on some E_r -page.

□ True

□ False

PROBLEM 0.10. Let $(E_r^{p,q})_{r\in\mathbb{N}}$ be a multiplicative spectral sequence with product \cdot , and let x, y be elements on the E_2 -page. If $d_2(x \cdot y) = 0$, then $d_2(x) = 0$ or $d_2(y) = 0$.

□ True

□ False

PROBLEM 0.11. The group $\pi_{2024}(S^{2022}, *)$ is generated by $\Sigma^{2020}(\eta) \circ \Sigma^{2021}(\eta)$.

□ True

□ False

PROBLEM 0.12. Let G be a group. Then the classifying space BG = K(G, 1) is simple if and only if G is abelian.

□ True

□ False

PROBLEM 0.13. If *X* is a connected CW-complex which only admits trivial real vector bundles, then *X* is contractible.

□ True

□ False

PROBLEM 0.14. Let *B* be a CW-complex, *p* a prime, and $E \rightarrow B$ an *n*-dimensional real vector bundle over *B*. Then the Thom isomorphism theorem gives an isomorphism

$$\mathrm{H}^{*}(B;\mathbb{F}_{p})\xrightarrow{\cong}\mathrm{H}^{*+n}(E,E_{0};\mathbb{F}_{p})$$

□ True

□ False

PROBLEM 0.15. Stiefel–Whitney classes are multiplicative in the sense that if ξ , η are vector bundles over a base space *B*, then for all *i*

 $w_i(\xi \oplus \eta) = w_i(\xi) \cdot w_i(\eta)$

□ True

□ False

PROBLEM 0.16. If $x \in H^2(K(\mathbb{F}_2, 2), \mathbb{F}_2)$ is the generator, then $H^6(K(\mathbb{F}_2, 2), \mathbb{F}_2)$ is of rank two generated by x^3 and $Sq^2(x^2)$.

□ True

□ False

PROBLEM 0.17. Let $\xi : E \to B$ be a vector bundle of rank n > 0 over a paracompact base B. If there is a nowhere-vanishing section to ξ , then $w_n(\xi) = 0$.

□ True

□ False

PROBLEM 0.18. The class of all finitely generated abelian groups in which every element is 3-torsion forms a Serre class.

□ True

□ False

PROBLEM 0.19. Let $(F \to E \to B, h)$ be a fibre sequence with F and B path-connected. If $x \in H^{n-1}(F; \mathbb{F}_2)$ transgresses to $y \in H^n(B; \mathbb{F}_2)$, then $Sq^i x$ survives to the E_{n+i} -page and $d_{n+i}(Sq^i x)$ is represented by $Sq^i y$ under the quotient map $H^{n+i}(B, \mathbb{F}_2) \cong E_2^{n+i,0} \to E_{n+i}^{n+i,0}$.

□ True

□ False

PROBLEM 0.20. Let $(F \to Y \to X, h)$ be a fibre sequence with associated Serre spectral sequence and A an abelian group. Then the E_2 -page is isomorphic in degree (p, q) to $H^p(X; A) \otimes H^q(F; A)$.

□ True

□ False