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Preface

During the years 1980-2000 I gave various advanced courses on number theory,
algebraic geometry and on Cohomology of Arithmetic Groups at the university
of Bonn. I prepared some very informal notes for my students, I wanted the
necessary prerequisites to be available for them at one place.

At some point I had the feeling that these notes could as a basis for a book.
on the subject Cohomology of arithmetic groups.

The cohomology groups of arithmetic groups are sheaf cohomology groups.
Hence we should provide some basic material on sheaves and homological algebra
and cohomology of sheaves. On the other hand the theory of sheaves and sheaf
cohomology are ubiquitous in algebraic geometry and some other branches of
mathematics. I also gave lectures on algebraic geometry and turned my notes-
into the two volumes [39], [40]..

The present volume is now part 1 of volume III. If I need a well known
theorem, whose proof is given in one of these two volumes, then I take the
freedom to refer to these volumes.

The subject has applications to number theory - actually it is part of num-
ber theory. The central theme is the relationship between special values of
L-functions and the integral structure of the cohomology as module under the
Hecke algebra. We can prove rationality results for special values of L-functions
(Manin, Shimura and many others). On the other hand these special values
tell us something about the denominators of the Eisenstein classes, and in some
cases from here we get information about the structure of the Galois group.
This relationship has been already discussed in the original notes, for the spe-
cial case of Sl2(Z) we have the culminating theorem 5.1.2. In the probably
removed section I discuss - for a specific example - an application concerning to
the structure of the Galois group. In theorem 5.1.5 I construct a normal exten-
sion K/Q of degree 690 · 6913, which is unramified outside 691 and we have a
partial decomposition law. This is really number theory.

The theorem 5.1.2 can be stated in elementary terms, we do not need any
analysis (thanks to Euler, who taught us that the the equality numerator of
ζ(−11) = 691 is an elementary statement) and can be verified by an algorithm.
To prove it we need some analysis. We need some tools from representation
theory Lie groups and from the theory of automorphic forms.
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I am convinced -and there is a lot of evidence for it - that theorem 5.1.2 is
a special case of a much larger class of (conjectural) assertions about L-values
and denominator of Eisenstein classes.

In section (3.3.9) we will see that denominators imply congruences between
eigenvalues of Hecke operators acting the cohomology of arithmetic different
groups. It was extremely important for me that these conjectures on congru-
ences could be verified in some finite number of cases by experimental calcula-
tions [19]. The experimental support for these congruences had great influence
on the content of this book. But these experimental verifications confirmed only
the congruences for a finite number of Hecke operators, but not the denomina-
tors.

On the other hand it seems that our analytic method to prove 5.1.2 only
works in a few other cases. In Chapter III I describe a toy model of an algorithm ,
which in a given simple case computes the cohomology and the action of a Hecke
operator. Hence we can check our conjecture (theorem 5.1.2) experimentally for
some small cases.

But to the best of my knowledge there are only very few other cases, where
we have such an algorithm, which works in practice. It is outlined in Chapter
III that we can write an algorithm which works in principle. But on the other
hand there are abundantly many situations, where we can raise the denominator
issue, some will be discussed in volume III part 2 .
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0.1 Introduction

An arithmetic group Γ is a discrete subgroups of a Lie group G(R) ⊂ Gln(R)
whose matrix entries satisfy certain rationality and integrality condition. The
most basic example of such a group is the group Sln(Z) ⊂ Sln(R). More gen-
erally we can start from an algebraic subgroup G/Q ⊂ Gln/Q, for instance
the orthogonal group of a quadratic form. Then we get arithmetic groups
Γ ⊂ G(Q) ⊂ G(R) if we impose certain integrality conditions on the matrix
coefficients of the elements of Γ.

For any Γ- module M we can define the cohomology groups H•(Γ,M) =⊕
qH

q(Γ,M). These cohomology groups are abelian groups, which are defined
in terms of homological algebra, they are the derived functors of the functor
M→MΓ(= invariants under Γ. .

We are mainly interested in the cohomology of a very special class of Γ-
modules. We consider rational representations ρ : G/Q → MQ, where MQ
is a finite dimensional Q-vector space. Then we can find finitely generated Z
modules M such that MQ = M ⊗Z Q which are Γ-invariant and hence Γ-
modules.

Let K∞ ⊂ G(R) be a maximal compact subgroup, for example SO(n) ⊂
Sln(R). The quotient X = G(R)/K∞ is a symmetric space, it carries a Rieman-
nian metric which is G(R)− invariant under the left action, it may have finitely
many connected components, each connected component is diffeomorphic to Rd,
hence contractible.

Our arithmetic group Γ acts properly discontinuously on X, we can form the
quotient Γ\X, this quotient is an orbifold. We can pass to a suitable subgroup
of finite index Γ′ ⊂ Γ such that Γ′ has no non trivial elements of finite order
(i.e. is torsion free). Then Γ′\X is a Riemannian manifold, it is a so called
locally symmetric space. The map Γ′\X → Γ\X is a finite covering with some
ramifications. If Γ has elements of finite order then Γ\X is only a Riemannian
orbifold. These spaces Γ\X provide a very interesting class of spaces, which
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are of interest for differential geometers, mathematicians interested in analysis
on manifolds and topologists. But they are in a sense of arithmetic origin and
therefore they are of interest for number theorists.

Our Γ module M endows the space Γ\X with a sheaf M̃ with values in
finitely generated abelian groups. If Γ is torsion free then M̃ is a locally constant
sheaf, or in other words a local system.

We introduce the sheaf- cohomology groups

H•(Γ\X,M̃) =
⊕
q

Hq(Γ\X,M̃)

these cohomology groups are ”essentially” the same as the above group cohomol-
ogy groups, these two versions of cohomology become equal, if X is connected
and Γ is torsion free. We will see that these cohomology groups are finitely
generated Z− modules.

We have some additional structure on these cohomology groups. In general
the quotient space Γ\X is not compact. We have the Borel-Serre compacti-
fication i : Γ\X ↪→ Γ\X̄, where i is a homotopy equivalence and Γ\X̄ is a
manifold (orbifold) with corners. The difference set ∂(Γ\X) := Γ\X̄ ∖ Γ\X is
the boundary of the Borel-Serre compactification. Moreover we will construct a

”tubular” neighbourhood
•
N (Γ\X) ⊂ Γ\X of ”infinity” (see (1.2.8)). We may

also consider the cohomology with compact supports H•c (Γ\X,M̃). and we get
the fundamental long exact sequence

· · · → Hq
c (Γ\X,M̃)

ic−→ Hq(Γ\X,M̃)
r−→ Hq(

•
N (Γ\X),M̃)

δ−→ Hq+1
c (Γ\X,M̃)→ . . .

(1)

We also introduce the ”inner cohomology”

Hq
! (Γ\X,M̃) := ker(r) = Im(ic).

A second structural ingredient is the Hecke algebra. We have an action of a
big algebra of operators acting on all these cohomology groups and the action
commutes with arrows in the fundamental exact sequence.

This is the so called Hecke algebraH( or HΓ), it originates from the structure
of the arithmetic group Γ. The group Γ has many subgroups Γ′ of finite index,
for which we can construct two arrows

Γ′\X
p1
→→
p2

Γ\X. (2)

Such a pair of arrows is also called a correspondence between on Γ\X. A cor-
respondence, together with a suitable map u : p∗1(M̃) → p∗2(M̃), induces an
endomorphism in the cohomology. These endomorphisms act on all the mod-
ules in the exact sequence above and are compatible with the arrows.

The basic objects of interest in this book are the various cohomology groups,
which appear in the fundamental exact sequence, together with the action of the
Hecke algebra H on them.
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The central theme of this book is the understanding of the integral cohomol-
ogy H•(Γ\X,M̃) as a module under the Hecke algebra, for instance we want
to understand the denominators of the Eisenstein classes.

In Chapter 9 we formulate the general principle that under suitable con-
ditions this denominator should be related ( divisible?, equal ?) to a certain
special value of an L-function, which occurs in the constant term of the Eisen-
stein series. The prototype of such a relationship occurs in [42], (actually the
”abelian” case is discussed in chapter 5).

This principle ( or conjecture ) can be verified (or falsified) experimentally,
on the other hand there is a strategy to prove assuming certain finiteness for
mixed Grothendieck motives.

It is my intention is to keep the exposition as elementary as possible, the
text should be readable by graduate students. We will need some background
material from algebraic topology and from homological algebra ( cohomology
and homology of groups, spectral sequences, sheaf cohomology). This material
is expounded in the first four chapters in [39], of course it can be found in many
other textbooks.

In the later chapters (starting from chapter 6) we also need results and
concepts from the theory of algebraic groups, the theory of symmetric spaces,
arithmetic groups, and reduction theory for arithmetic groups. Furthermore we
need results from the theory of representations of real semi-simple groups.

This material is somewhat more advanced, but in the in the first five chapters
all these concepts and results are explained in terms in terms of special examples.
Especially the sections on the general reduction theory and the Borel-Serre
compactification (section (1.2.8)) could be skipped in a first reading.

For the Lie groups Sl2(R) and Sl2(C) and their arithmetic subgroups Sl2(Z)
and Sl2(Z[

√
−1]) these prerequisite concepts are easy to explain and we will

do so in this book. For instance if Γ = Sl2(Z) or more generally a congruence
subgroup of finite index the symmetric space Sl2(R)/K∞ is the upper half plane
H = {z ∈ C | ℑ(z) = y > 0} = Sl2(R)/SO(2). The quotient space Γ\H is
punctured Riemann surface. In this special case we have the Γ moduleMn =
{
∑
aνX

νY n−ν | aν ∈ Z}. We will study the cohomology groups H1(Γ\H,M̃n)
and their module structure under the Hecke algebra in detail. We will prove
some very specific results for these cohomology groups.

In Chapter four we discuss results from the theory of representations of the
Lie- groups Sl2(R) and Sl2(C), and we explain the impact of these results on
the cohomology. With these results at hand we formulate the famous Eichler-
Shimura isomorphism, and we can sketch its proof. This Eichler-Shimura iso-
morphism also establishes the connection between H1(Γ\H,M̃n) ⊗ C and the
space of modular forms of weight n+2. In the second half of this book in Chap-
ter 8 we discuss what is called ”Representation theoretic Hodge theory” and
the Eichler-Shimura theorem becomes a special case of a much more general
theorem.

On the other hand we will show that the results for the special groups
Sl2(Z),Sl2(Z[

√
d]), or suitable subgroups of finite index of them, have deep and

interesting consequences. We will discuss the Eisenstein cohomology for these
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special groups and explain the interaction between special values of L-functions
and the structure of the cohomology. A prototype of such a result is the formula
for the denominator of the Eisenstein class (Theorem 5.1.2). It is clear that this
result should be a special case of a much more general theorem. At this moment
it is not clear how far these generalisations reach (See section 3.3.9).

In Chapter 5 we discuss some applications of these results to number theory,
and we have to accept some even more advanced topics. We concentrate on the
case that Γ ⊂ Sl2(Z) and we will use the fact that- with a grain of salt - the
quotient Γ\H is the set of C-valued points the moduli space of elliptic curves
(with some additional structure). This is also explained in [39],[40].

Then for any prime ℓ the cohomology groupsH1(Γ\H,M̃n)⊗Zℓ) are actually
ℓ-adic etale cohomology groups, especially we get an action of the Galois-group
Gal(Q̄/Q) on these ℓ− adic cohomology groups. This action commutes with the
action of the Hecke algebra. The insights into the structure of the cohomology
groups as Hecke modules provides insights into the structure of the Galois group
Gal(Q̄/Q), for instance we discuss the theorem of Herbrand-Ribet ([25], [74])

In Chapter 6 we develop the analytic tools for the computation of the co-
homology. Here we do not use the language of adeles. We assume that the
Γ-moduleM is a C-vector space and it is obtained from a rational representa-
tion of the underlying algebraic group. In this case one may interpret the sheaf
M̃ as the sheaf of locally constant sections in a flat bundle, and this implies
that the cohomology is computable from the de-Rham-complex associated to
this flat bundle. We could even go one step further and introduce a Laplace
operator so that we get some kind of Hodge-theory and we can express the
cohomology in terms of harmonic forms. Here we encounter serious difficulties
since the quotient space Γ\X is not compact. But we will proceed in a slightly
different way. Instead of doing analysis on Γ\X we work on C∞(Γ\G(R)). This
space is a module under the group G(R), which acts by right translations, but
we rather consider it as a module under the Lie algebra g of G(R) on which also
the group K∞ acts, it is a (g,K)-module.

Since our moduleM comes from a rational representation of the underlying
group G, we may replace the de-Rham-complex by another complex

H•(g,K∞, C∞(Γ\G(R))⊗ M̃),

this complex computes the so called (g,K)-cohomology. The general principle
will be to ”decompose” the (g,K)-module C∞(Γ\G(R) into irreducible submod-
ules and therefore to compute the cohomology as the sum of the contributions
of the individual submodules. This is a group theoretic version of the clas-
sical approach by Hodge-theory. Again we have to overcome two difficulties.
The first one is that the quotient Γ\G(R) is not compact and hence the above
decomposition does not make sense.

The second problem is that we have to understand the irreducible (g,K)-
modules and their cohomology.

The first problem is of analytical nature, we will give some indication how
this can be solved by passing to certain subspaces of the cohomology the so called
cuspidal or better the inner cohomology. The central result is the Theorem 6.1.1.
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This result is a partial generalisation of the theorem of Eichler-Shimura, it
describes the cuspidal part of the cohomology in terms of irreducible represen-
tations occurring in the space of cusp forms and contains some information on
the discrete cohomology, which is slightly weaker. (See proposition ??) We shall
also give some indications how it can be proved.

We shall shall also state some general results concerning the second problem,
we briefly recall the construction of the irreducible modules with non trivial
(g,K∞) cohomology.

We discuss some consequences of Theorem 6.1.1. It implies some vanishing
theorems in cohomology, it implies that the inner cohomology is a semi simple
module for the Hecke-algebra, and it helps to understand the K−-theory of
algebraic number fields.

In the next section we use reduction theory-or better the description of
•
N

(Γ\X),M̃)- to discuss some growth conditions for cohomology classes, basically
we show that cohomology classes which given by a weight can be represented
by differential forms which have essentially the same weight.

In the second half of this chapter we will resume the discussion of modular
symbols.
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Chapter 1

Basic Notions and
Definitions

Affgr

1.1 Affine algebraic groups over Q.

A linear algebraic group G/Q is a subgroup G ⊂ Gln, which is defined as the
set of common zeroes of a set of polynomials in the matrix coefficients, where in
addition these polynomials have coefficients in Q . Of course we cannot take just
any set of polynomials, the set has to be somewhat special before its common
zeroes form a group. The following examples will clarify what I mean:

1.) The group GLn is an algebraic group itself, the set of equations is empty.
It has the subgroup Sln ⊂ Gln, which is defined by the polynomial equation

Sln = {x ∈ GLn | det(x) = 1}

2.) Another example is given by the orthogonal group of a quadratic form

f(x1, . . . , xn) =

n∑
i=

aix
2
i

where ai ∈ Q and all ai ̸= 0 (this is actually not necessary for the following).
We look at all matrices

α =

 a11 . . . a1n
...

...
an1 . . . ann


which leave this form invariant, i.e.

f(αx) = f(x)

for all vectors x = (x1, . . . , xn). This defines a set of polynomial equations for
the coefficient aij of α. These α form a group, this is the linear algebraic group
SO(f).

1



2 CHAPTER 1. BASIC NOTIONS AND DEFINITIONS

3.) Instead of taking a quadratic form — which is the same as taking a
symmetric bilinear form — we could take an alternating bilinear form

⟨x, y⟩ =⟨x1, . . . , x2n, y1, . . . y2n⟩ =
n∑
i=1

(x1yi+n − xi+nyi⟩ = f⟨x, y⟩.

This form defines the symplectic group:

Spn =
{
α ∈ GL2n | ⟨αx, αy⟩ = ⟨x, y⟩

}
.

An Important remark: The reader may have observed tha we did not specify
a field (or a ring) from which we take the entries of the matrices. This is done
intentionally, because we may take the entries from any commutative ring R
which contains the rational numbers Q and for which 1 ∈ Q is the identity
element (this means that R is a Q− algebra). In other words: for any algebraic
group G/Q ⊂ GLn and any Q algebra R we may define

G(R) ⊂ Gln(R)

as the group of those matrices whose coefficients satisfy the required polynomial
equations. Adopting this point of view we can say that

A linear algebraic group G/Q defines a functor from the category of Q-
algebras (i.e. commutative rings containing Q) into the category of groups.

4.) Another example is obtained by the so-called ırestriction of scalars. Let
us assume we have a finite extensionK/Q, we consider the vector space V = Kn.
This vector space may also be considered as a Q-vector space V0 of dimension
n[K : Q] = N . We consider the group

GLN/Q.

Our original structure as a K-vector space may be considered as a map

Θ : K −→ EndQ(V0),

and the group GLn(K) is then the subgroup of elements in GLN (Q) which
commute with all the elements of Θ(x), x ∈ K. Hence we define the subgroup

G/Q = RK/Q(Gln) = {α ∈ GlN | α commutes with Θ(K)} . (1.1)

Then G(Q) = Gln(K). For any Q-algebra R we get

G(R) = Gln(K ⊗Q R).

This can also be applied to an algebraic subgroup H/K ↪→ Gln/K, i.e. a sub-
group that is defined by polynomial equations with coefficients in K.

Our definition of a linear algebraic group is a little bit provisorial. If we
consider for instance the two linear algebraic groups

G1/Q =

{(
1 x
0 1

)}
⊂ Gl2

G2/Q =


 1 0 x

0 1 0
0 0 1

 ⊂ GL3
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then we would like to say, that these two groups are isomorphic. They are
two different “realizations” of the additive group Ga/Q. We see that the same
linear algebraic group may be realized in different ways as a subgroup of different
GlN ’s.

Of course there is a concept of linear algebraic group which does not rely
on embeddings. The understanding of this concept requires a little bit of affine
algebraic geometry. The drawback of our definition here is that we cannot define
morphism between linear algebraic group. Especially we do not know when they
are isomorphic.

We assert the reader that the general theory implies that a morphism be-
tween two algebraic groups is the same thing as a morphism between the two
functors form Q-algebras to groups. In some sense it is enough to give this
functor. For instance, we have the multiplicative group Gm/Q given by the
functor

R −→ R×

and the additive group Ga/Q given by R→ R+.
We can realise (represent is the right term) thegroup Gm/Q as

Gm/Q =

{(
t 0
0 t−1

)}
⊂ Gl2

AGS

1.1.1 Affine group schemes

We say just a few words concerning the systematic development of the theory
of linear algebraic groups. This is not directly used in the next few chapters but
it will be useful later.

For any field k an affine k-algebra is a finitely generated algebra A/k, i.e.
it is a commutative ring with identity, containing k, the identity of k is equal
to the identity of A, which is finitely generated over k as an algebra. In other
words

A = k[x1, x2, . . . , xn] = k[X1, X2, . . . , Xn]/I,

where they Xi are independent variables and where I is a finitely generated
ideal of polynomials in k[X1, . . . , Xn].

Such an affine k-algebra defines a functor from the category of k− algebras
to the category of sets, namely B 7→ Homk(A,B).

A structure of an affine group scheme scheme on A/k consists of the fol-
lowing data:

a) A k homomorphism m : A→ A⊗k A (the comultiplication)
b) A k-valued point e : A→ k (the identity element)
c) An inverse inv : A→ A,

which satisfy the following requirement: For any k-algebra B our homomor-
phism m induces a map

tm : Homk(A⊗k A,B) = Homk(A,B)× Homk(A,B)→ Homk(A,B)

and we require that this induces a group structure on Homk(A,B). We also
require that the k valued point e is the identity and that inv yields the inverse.
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We leave it to the reader to figure out what this means form, e, inv, especially
what does associativity mean (Hint: Choose B = A).

An affine k-algebra A together with such a collection m, e, inv is called
an affine group scheme G/k = (A,m, e, inv). The k-algebra A is the coordi-
nate ring, or the ring of regular functions of the group scheme. We will de-
note it by A(G). The group of B/k valued points will be denoted by G(B) =
Homk(A(G), B). For g ∈ G(B) and f ∈ A(G) ⊗ B we write g(f) = f(g), we
evaluate the regular function at the point g ∈ G(B).

The group Gm has the coordinate ring A(Gm) = k[t, t−1],m(t) = t⊗t, e(t) =
1, inv(t) = t−1 and the coordinate ring of the additive group Ga is A(Ga) = k[x]
and m(x) = x⊗ 1 + 1⊗ x, e(x) = 0, inv(x) = −x.

The group scheme Gln/k has the coordinate ring

A = k[. . . , xi,j , . . . , y]/(det(xi,j)y − 1); 1 ≤ i, j,≤ n

and the comultiplication is given by

m(xi,j) =

n∑
ν=1

xi,ν ⊗ xν,j (1.2)

Now we know what a homomorphism between affine group schemes is. This
is a homomorphism tϕ between the affine algebras A(H) and A(G) which is
compatible with the respective maps in a),b),c). A homomorphism ϕ : G→ H is
surjective (resp. injective) if the homomorphism tϕ : A(H)→ A(G) is injective
(resp.) surjective.

A rational representation of G/k is a homomorphism of group schemes ρ :
G/k → Gln/k.

If for instance V/k is a vector space of dimension n then we can define
the group scheme Gl(V ), if we choose a k-basis on V , then we can identify
Gl(V )/k = Gln/k. If G/k is any affine group scheme, we say that V/k is a G-
module if we have a homomorphism ρ : G/k → Gl(V ). Hence we know that for
any k -algebra B/k we have a homomorphism ρ(B) : G(B) → Gl(V ⊗k B). Of
course this is functorial in B/k, i.e. a homomorphism ψ : B/k → B′/k induces
a homomorphism G(B)→ G(B′).

We may also consider actions of G/k on vector spaces W/k which are not
of finite dimension, here we require a certain finiteness condition. As before we
have an action

ρB : G(B)× (W ⊗B)→W ⊗B (1.3)

which is functorial in B/k. But now we assume in addition that for any w ∈W
there is a finite set of elements w1, w2, . . . , wd such that for any B/k and any
g ∈ G(B)

ρB(g)w =

d∑
i=1

wi ⊗ bi(g) with bi ∈ A(G).
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It suffices to check this for the ”universal” element Id ∈ Homk(A(G), A(G)) =
G(A(G)), this means we have to find w1, w2, . . . , wd ∈W such that

ρA(G)(Id)w =

d∑
i=1

hi ⊗ wi with hi ∈ A(G).

This implies of course that the k-subspace W ′ =
∑
kwi which is generated by

these wi is invariant under the action ρ and it contains w. Hence we see that our
k-vector space W is a union of finite dimensional subspaces which are invariant
under the action of G/k.

Therefore we say that a vector space W/k with an action of G/k is a G-
module if it satisfies the above finiteness condition. The category of these mod-
ules will be called ModG..

The ring of regular functions A(G) is a G ×k G module: For (g1, g2) ∈
G ×k G(B) = G(B) × G(B) the action and f ∈ A(G), x ∈ G(B) the action is
defined by

ρ(g1, g2)f(x) = f(g−11 xg2).

We have to verify the finiteness condition. To do this we write a formula for
ρ(g1, g2)f ∈ A(G)⊗B.We have the comultiplicationm : A(G)→ A(G)⊗kA(G),
we apply it to the first factor on the right hand side and get m1,2 ◦m : A(G)→
A(G)⊗k A(G)⊗k A(G). Then

m1,2 ◦m(f) =
∑
µ

h′µ ⊗ hµ ⊗ h′′µ

Then by definition

ρ(g1, g2)f =
∑
µ

hµ ⊗ inv(h′µ)(g1)h
′′
µ(g2)

and this says that ρ(g1, g2)f lies in the submodule generated by the hµ.
Of course we may restrict the action to each the two factors, we simply

choose g1 = e,-we get the action by right translations- or we choose g2 = e, this
gives the action by left translations.

It is not difficult to show that for an affine group scheme we can find a
collection of elements e0, e1, . . . , er ∈ A(G) such that e2i = ei ∀i, eiej = 0 ∀i ̸= j
such that 1A =

∑
i ei and such that the subalgebras A(G)ei are integral. Then

there is exactly one element (say e0) such that e(e0) = 1. Then A(G)e0 is a
subgroup scheme, it is called the connected component of the identity (See for
instance [40], Chap. 7 , 7.2)

A group scheme G/k is connected, if its affine algebra A(G) = A(G)e0 is
integral, i.e. it does not have zero divisors.

Base change

If we have a field L ⊃ k and a linear group G/k then the group G/L = G×k L
is the group over L where we forget that the coefficients of the equations are
contained in k. The group G×k L is the base extension from G/k to L.

Charmod
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1.1.2 Tori, their character module,..

A special class of algebraic groups is given by the tori. We briefly recall the
results of T. Ono [69].

An algebraic group T/k over a field k is called a split torus if it is isomorphic
to a product of Gm/k-s,

T/k
∼−→ Gdm.

The algebraic group T/k is called a torus if it becomes a split torus after a
suitable finite extension of the ground field, i.e we have T ×k L

∼−→ Grm/L.
If we take an arbitrary separable finite field extension L/k we may consider

the functor

R→ (L⊗k R)×.

It is not hard to see that this functor can be represented by an algebraic
group over k, which is denoted by RL/k(Gm/L) and called the Weil restriction
of Gm/L. We propose the notation

RL/k(Gm/L) = GL/km (1.4)

The reader should try to prove that for a finite extension L̃/L which is normal
over Q we have

GL/km ×k L̃
∼−→ (Gm/L̃)[L:k]

and this shows that GL/km is a torus .

A torus T/k is called anisotropic if is does not contain a non trivial split torus.
Any torus C/k contains a maximal split torus S/k and a maximal anisotropic
torus C1/k. The multiplication induces a map

m : S × C1 → C

this is a surjective (in the sense of algebraic groups) homomorphism whose
kernel is a finite algebraic group. We call such map an isogeny and we write
that C = S · C1, we say that C is the product of S and C1 up to isogeny.

We give an example. Our torus RL/Q(Gm/L) contains Gm/k as a subtorus:
For any ring R containing k we have R× = Gm(R) ⊂ (R ⊗ L)×. On the other
and we have the norm map NL/k : (R ⊗ L)× → R× and the kernel defines a
subgroup

R
(1)
L/k(Gm/L) ⊂ RL/k(Gm/L)

and it is clear that

m : Gm ×R(1)
L/k(Gm/L)→ RL/k(Gm/L)

has a finite kernel which is the finite algebraic group of [L : k]-th roots of unity.

For any torus T we define the character module as the group of homomor-
phisms

X∗(T ) = Hom(T,Gm).. (1.5)



1.1. AFFINE ALGEBRAIC GROUPS OVER Q. 7

If the torus is split, i.e. T = Grm then X∗(T ) = Zr and the identification is
given by (n1, n2, . . . , nr) 7→ {(x1, x2, . . . , xr) 7→ xn1

1 xn2
2 . . . xnr

r }. We write the
group structure on X∗(T ) additively, this means that (γ1 + γ2)(x) = γ(x)γ2(x).

It is a theorem that for any torus T/k we can find a finite, separable, normal
extension L/k such that T ×k L splits. Then it is easy to see that we have an
action of the Galois group Gal(L/k) on X∗(T ×k L) = Zr. If we have two tori
T1/K, T2/K which split over L

Homk(T1, T2)
∼−→ Hom Gal(L/k)(X

∗(T2 ×k L), X∗(T1 ×k L)) (1.6)

To any Gal(L/k)− action on Zn we can find a torus T/k which splits over L
and which realises this action.

A homomorphism ϕ : T1/k → T2/k is called an isogeny if dim(T1) = dim(T2)
and if tϕ : X∗(T2) → X∗(T1) is injective. Then the kernel ker(ψ) is a finite
group scheme of multiplicative type. If Y ⊂ X∗(T1) is a submodule of finite
index the Y = X∗(T2) and the inclusion provides an isogeny ψ : T1 → T2. The
quotient X∗(T1)/Y is a finite constant group scheme and ker(ψ) thedual of his
quotient.

)We also define the cocharacter module Hom(Gm, T ). If the torus /k = Grm
then every cocharacter is the form x 7→ (xn1 , xn2 , . . . , xnr ) It is clear that we
have a pairing

< , >: X∗(T )×X∗(T )→ Z which is defined by γ(χ(t)) = t<χ,γ> (1.7)

A very prominent torus is the torus S1/R, this the one dimensional torus
whose character module X∗(S1 × C) = Z and the complex conjugation acts by
−1.

1.1.3 Semi-simple groups, reductive groups,.

An important class of linear algebraic groups is formed by the semisimple and
the reductive groups. (For a general reference [84].) We do not want to give the
precise definition here. Roughly, a linear group is reductive if it is connected
and if it does not contain a non trivial normal subgroup which is isomorphic to
a product of groups of type Ga. A group is called semisimple, if it is reductive
and does not contain a non trivial torus in its centre.

A semi-simple group G/k is simple, if it does not contain any normal sub-
group of dimension> 0. Any semi-simple group is up to isogeny a product of sim-
ple groups. Any semi simple group G/Q contains a maximal torus T/Q ⊂ G/Q
such a maximal torus is equal to its own centraliser. A semi simple group is
split if it contains a split maximal torus T0/k, i.e. a maximal torus which is
split. If T/k ⊂ G/k is any (maximal) torus, then there is a finite extension L/Q
such that T ×Q L is split, and hence G×Q L is also split.

For example the groups Sln, Spn are (split) semi simple, the groups SO(f)
are semi-simple provided n ≥ 3. (See next subsection 1.1.5 ). The groups
Gln and especially the multiplicative group Gl1/Q = Gm/Q are reductive. Any
reductive group G/Q (or over any field of characteristic zero) has a central torus
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C/Q and this central torus contains a maximal split torus S. The derived group
G(1)/Q is semi simple and we get an isogeny

m : G(1) × C1 × S → G

or briefly G = G(1) · C1 · S.
If for instance G = RL/Q(Gln/L) then G(1) = RL/Q(Sln/L) and C =

RL/Q(Gm/L) and this yields the product decomposition up to isogeny

G = G(1) ·R(1)
L/Q(Gm/L) ·Gm. (1.8)

For Gln/Q the central torus is the group Gm/Q. The center of Sln/Q is the
finite group group scheme µn of of n-th roots of unity. The coordinate ring of
µn is the finite algebra A(µn) = Q[t]/(tn − 1). Of course we may replace Q by
any ring commutative ring R.

We can form the quotient group scheme

PGln/Q = (Gln/Gm)/Q ∼−→ (Sln/Q)/µn (1.9)

this is also the adjoint group of Gln/Q and Sln/Q, i.e.

Ad(Gln) = PGln = Gln/Gm = Sln/µn. (1.10)

We could certainly drop the assumption that a reductive group should be
connected, we could simple say that G/Q is reductive ( semi-simple...) if its
connected component of the identity is reductive (semi-simple...).

Another important class of semi simple groups is given by the quasisplit
groups (see also section 1.1.7. A group G/Q is called quasisplit if it contains
a Borel subgroup B/Q ⊂ G/Q. A Borel subgroup B/Q is a maximal solvable
subgroup, it contains a maximal torus T/Q ⊂ B/Q, this torus is also a maximal
torus in G/Q. Then B = U ⋊ T is the semidirect product of this torus and the
unipotent radical U/Q. We discuss a special example which is of great relevance
for our subject.

Let L/Q be a quadratic extension, let us denote the non trivial automor-
phism by a 7→ ā. Let V/L be a finite dimensional vector space together with a
hermitian form h : V ×L V → L, i.e.

h(v, w) = h(w, v); h(λu+ µv,w) = λh(u,w) + µh(v, w) ∀u, v, w ∈ V, λ, µ ∈ L.

Furthermore we assume that h is non degenerate, i.e. for any v ∈ V, v ̸= 0
we find a w ∈ V such that h(v, w) ̸= 0. Then we can define the group SU(h)/Q :
For any commutative Q -algebra R we define

SU(h)(R) = {g ∈ Sl(V ⊗Q R | h(gv, gw) = h(v, w) and det(g) = 1}. (1.11)

Then SU(h)/Q is a semi simple group over Q. We can also define the unitary
group U(h)/Q where we drop the condition that the determinant is one and the
group of hermitian similitudes GU(h) where

GU(h)(R) = {g ∈ Gl(V ⊗Q R | h(gv, gw) = d(g)h(v, w) ∀v, w ∈ V ⊗Q R},
(1.12)
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here d : GU(h) → RL/Q(Gm) is a homomorphism, the kernel of d is the group
U(h).

We consider the special case where

V = Le1 ⊕ · · · ⊕ Len ⊕ (Le0)⊕ Lfn ⊕ · · · ⊕ Lf1

the summand Le0 is left out if dimL V is even. The hermitian scalar product is
given by

h1(ei, fi) = h1(fi, ei) = 1 ∀i = 1, . . . , n, (h1(e0, e0) = 1)

and all other scalar products equal to zero. Then SU(h1) is a quasi split semi
simple group over Q: The elements t ∈ Gl(V ) for which

t = {t : ei 7→ tiei; t : fi 7→ t̄i
−1

; (t : e0 7→ t0e0 with t0t̄0 = 1)}

are the Q-valued points of a maximal torus T1/Q ⊂ SU(h1). The vector space
V/L comes with a natural flag

F := {0} ⊂ Le1 ⊂ · · · ⊂ ⊕Le1 ⊕ · · · ⊕ Len ⊂ (Le1 ⊕ . . . Len + Le0) ⊂
(Le1 ⊕ . . . Len ⊕ Le0 ⊕ Lfn) ⊂ . . . (Le1 ⊕ · · · ⊕ Len ⊕ Le0 ⊕ Lfn ⊕ · · · ⊕ Lf2) ⊂ V.

(1.13)

Now the subgroup B1/Q ⊂ SU(h1)/Q which fixes F is a maximal solvable
subgroup in SU(h1).

1.1.4 The Lie-algebra

We need some basic facts about the Lie-algebras of algebraic groups.
For any algebraic group G/k we can consider its group of points with values

in k[ϵ] = k[X]/(X2). We have the homomorphism k[ϵ] → k sending ϵ to zero
and hence we get an exact sequence

0→ g→ G(k[ϵ])→ G(k)→ 1.

The kernel g is a k-vector space, if the characteristic of k is zero, then its
dimension is equal to the dimension of G/k. It is denoted by g = Lie(G).

Let us consider the example of the group G = SO(f), where f : V × V → k
is a non degenerate symmetric bilinear form. In this case an element in G(k[ϵ])
is of the form Id + ϵA,A ∈ End(V ) for which

f((Id + ϵA)v, (Id + ϵA)w) = f(v, w)

for all v, w ∈ V. Taking into account that ϵ2 = 0 we get

ϵ(f(Av,w) + f(v,Aw)) = 0,

i.e. A is skew with respect to the form, and g is the k-vector space of skew
endomorphisms. If we give V a basis and if f =

∑
x2i with respect to this basis

then this means thematrix of A is skew symmetric.
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If we consider G = Gln/k then g =Mn(k), the Lie-bracket is given by

(A,B) 7→ AB −BA (1.14)

We have some kind of a standard basis for our Lie algebra

g =

n⊕
i=1

kHi ⊕
⊕
i,j,i ̸=j

kEi,j (1.15)

where Hi (resp.Ei,j) are the matrices

Hi =



0 0 . . . 0 0 0
0 0 . . . 0 0 0

0 0
. . . 0 0

0 0 0 1 0 0

0 0 0 . . .
. . . 0

0 0 0 0 0 0


resp. Ei,j =



0 0 . . . 0 0 0
0 0 . . . 0 0 0

0 0
. . . 1 0

0 0 0 0 0 0

0 0 0 . . .
. . . 0

0 0 0 0 0 0


and the only non zero entries (=1) is at (i, i) on the diagonal (resp. and (i, j)
off the diagonal.)

For the group Sln/k the Lie-algebra is g(0) = {A ∈ Mn(k)| tr(A) = 0} and
again we have a standard basis

g(0) =

n−1⊕
i=1

k(Hi −Hi+1)⊕
⊕
i,j,i ̸=j

kEi,j (1.16)

If ρ : G→ Gl(V ) is a rational representation of our group G/k then it is clear
from our considerations above that we have a ”derivative” of this representation

drho

dρ : g = Lie(G/k)→ Lie(Gl(V )) = End(V ) (1.17)

this is k-linear.
Every group scheme G/k has a very special representation, this is theAdjoint

representation. We observe that the group acts on itself by conjugation, this is
the morphism

Inn : G×k G→ G

which on R valued points is given by

Inn(g1, g2) 7→ g1g2(g1)
−1.

This action clearly induces a representation

Ad : G/k → Gl(g)

and this is the adjoint representation. This adjoint representation has a deriva-
tive and this is a homomorphism of k vector spaces

DAd = ad : g→ End(g).
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We introduce the notation: For T1, T2 ∈ g we put

[T1, T2] := ad(T1)(T2).

Now we can state the famous and fundamental result

Theorem 1.1.1. The map (T1, T2) 7→ [T1, T2] is bilinear and antisymmetric. It
induces the structure of a Lie-algebra on g, i.e. we have the Jacobi identity

[T1, [T2, T3]] + [T2, [T3, T1]] + [T3, [T1, T2]] = 0.

We do not prove this here. In the caseG/k = Gl(V ) and T1, T2 ∈ Lie(Gl(V )) =
End(V ) we have [T1, T2] = T1T2 − T2T1 and in this case the Jacobi Identity is
a well known identity.

On any Lie algebra we have a symmetric bilinear form (the Killing form )

B : g× g→ k (1.18)

which is defined by the rule

B(T1, T2) = trace(ad(T1) ◦ ad(T2))

A simple computation shows that for the examples g = Lie(Gln) and g(0) =
Lie(Sln) we have

B(T1, T2) = 2n tr(T1T2)− 2 tr(T1) tr(T2) (1.19)

we observe that in case that one of the Ti is central, i.e.= uId we haveB(T1, T2) =
0. In the case of g(0) the second term is zero.

It is well known that a linear algebraic group is semi-simple if and only if
the Killing form B on its Lie algebra is non degenerate. [18]

class

1.1.5 The classical groups and their realisation as split
semi-simple group schemes over Spec(Z)

We will not discuss the general notion of a semi-simple group scheme over a
base S, instead we will discuss the examples of classical groups and explain the
main structure theorems in examples.

The group scheme Sln/ Spec(Z)

We consider a free module M of rang n over Spec(Z). We define the group
scheme Sl(M)/ Spec(Z): for any Z algebra R we have Sl(M)(R) = Sl(M ⊗ZR).

This is clearly a semi simple group scheme over Spec(Z) because :

a) The group scheme is smooth over Spec(Z)
b) For any field k -which is of course a Z-algebra we have

Sl(M)× Spec(Z) Spec(k) = Sl(M ⊗Z k)/ Spec(k)
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and for any k this group scheme does not contain a normal subgroup scheme,
which is isomorphic to Gra/ Spec(k) (hence it is reductive) and its center is a
finite group scheme.

If we fix a basis e1, e2, . . . , en then we get a split maximal torus T/ Spec(Z)
this is the sub group scheme which fixes the lines Zei, with respect to this basis
we have

T (R) = {


t1 0 . . . 0
0 t2 . . . 0

0 0
. . . 0

0 0 0 tn

 | ti ∈ R×,
∏
i

ti = 1 (1.20)

With respect to this torus T/ Spec(Z) we define root subgroups. This are
smooth subgroup schemes U ⊂ G which are isomorphic to the additive group
scheme Ga/ Spec(Z) and which are normalized by T . It is clear that these root
subgroups are given by

τij : Ga → Sl(M) (1.21)

τij : x→



1 0 . . . 0 0
0 1 . . . 0 0

0 0
. . . x 0

0 0 0
. . . 0

0 0 0 0 1

 (1.22)

where the entry x is placed in the i-th row and j-th collumn. Let us denote
the image by Uαij

.
Then we get the relation

tτij(x)t
−1 = τij((ti/tj)x)

(If I write such a relation then I always mean that t, x.. are elements in
T (R), Ga(R)... for some unspecified Z− algebra R.)

The root system

The characters

αij : T → Gm

αij :


t1 0 . . . 0
0 t2 . . . 0

0 0
. . . 0

0 0 0 tn

→ ti/tj
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are form the set ∆ of roots in the character module of the torus. We may select
a subset of positive roots

∆+ = {αij | i < j}.

Then the torus T and the Uαij
with αij ⊂ ∆+ stabilize the flag

F = (0) ⊂ Ze1 ⊂ Ze1 ⊕ Ze2 ⊂ · · · ⊂M.

The stabilizer of the flag is a smooth sub group scheme B/ Spec(Z). It is so-but
not entirely obvious- that B is a maximal solvable sub group scheme. These
maximal subgroup schemes are called Borel subgroups.

It is clear that the morphism

T ×
∏

αij ,i<j

Uαij → B,

which is induced by the multiplication is an isomorphism of schemes.
The set ∆+ of positive roots contains the subset π ⊂ ∆ of simple roots

αi := ti/ti+1. Every positive root can be written as a sum of simple roots with
positive coefficients.

We consider the normaliser N(T ) ⊂ Sln, it acts by permutations on the set
of submodules Zei. The quotient N(T )/T = W is the Weyl group, in this case
it is isomorphic to the symmetric group Sn. It is easy to see that we have a
positive definite, symmetric, W invariant bilinear form on X∗(T ) which is given
by

< αi, αi >= 2;< αi, αi+1 > −1, and < αi, αj >= 0 if |i− j| > 1 (1.23)

All these data about the set of roots and simple roots are encoded in the
Dynkin diagram

An−1 := α1 − α2 − · · ·− αn−1 (1.24)

The flag variety

It is not so difficult to see that the flags form a projective scheme Gr/ Spec(Z).
From this it follows: For any Dedekind ring A and its quotient field K we have

Gr(K) = Gr(A).

If A is even a discrete valuation ring then we can show easily that the group
Sln(A) acts transitively on Gr(A).

The whole point is, that results of this type are true for arbitrary split semi
simple groups G/ Spec(Z). This is not so easy to explain and also much more
difficult to prove. But we have the series of so called classical groups and for
those these results are again easy to see. ( The main problem in the general
approach is that we have to start from an abstract definition of a semi simple
group and not from a group which is given to us in a rather explicit way like
Sln or the classical groups)
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The group scheme Spg/ Spec(Z)

Now we choose again a free Z module M but we assume that we have a non
degenerate alternating pairing

< , >:M ×M → Z
where non degenerate means: If x ∈ M and < x,M >⊂ aZ with some integer
a > 1, then x = ay with y ∈ M . It is well known and also very easy to prove
that M is of even rank 2g and that we can find a basis

{e1, . . . , eg, fg, . . . , f1}
such that < ei, fi >= − < fi, ei >= 1 and all other values of the pairing on
basis elements are zero.

The automorphism group scheme of G = Aut((M,< . >)) is the symplectic
group Spg/ Spec(Z). Again it is easy to find out how a maximal torus must
look like. With respect to our basis we can take

T = {



t1 0 . . . 0

0
. . . . . . 0

0 0 tg 0
0 0 0 t−1g . . .

0
. . . 0

0 t−11


} (1.25)

We can say that the torus is the stabilser of the ordered collection of rank 2
submodules Zei,Zfi.We can define a Borel subgroup B/Z which is the stabilizer
of the flag

F = (0) ⊂ Ze1 ⊂ · · · ⊂ Ze1 · · · ⊕ . . .Zeg ⊂ Ze1 · · · ⊕ . . .Zeg ⊕ Zfg ⊂ · · · ⊂M

(A flag starts with isotropic subspaces until we reach half the rank of the
module. But then this lower part of the flag determines the upper half, because
it is given by the orthogonal complements of the members in the lower half).

Again we can define the root subgroups (with respect to T )

rootsubgroupτα : Ga
∼−→ Uα ⊂ G (1.26)

which are normalized by T . As before we have the relation

τ(x)t−1 = τ(α(t)x), (1.27)

where α ∈ ∆ ⊂ X∗(T ).
Now it is not quite so easy to write down what these root subgroups are, we

write down the simple positive roots in the thecase g = 2: We have the maximal
torus

T = {


t1 0 0 0
0 t2 0 0
0 0 t−12 0
0 0 0 t−11

}
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and we want to find one-parameter subgroups Uα ⊂ G which stabilize the flag.
The one parameter subgroups corresponding to the simple roots are

τα1 : x 7→ {e1 7→ e1, e2 7→ e2 + xe1, f2 7→ f2, f1 7→ f1 − xf2}

τα2
: y 7→ {e1 7→ e1, e2 7→ e2, f2 7→ f2 + ye2, f1 7→ f1}

where α1(t) = t1/t2, α2(t) = t22. The unipotent radical is then

{


1 x v u
0 1 y v − xy
0 0 1 −x
0 0 0 1

}
From here it is not difficult to see that for all values of g the simple roots

are αi(t) = ti/ti+1 with 1 ≤ i < g and ag(t) = t2g. Again we define the Weyl
group W as above, We have a W invariant positive definite, symmetric bilinear
form on X∗(T ) and for this form we have

< αi, αi >= 2 for i < g and < αg, αg >= 4,
< αi, αi+1 >= −1 if i < g − 1 and < αg−1, αg >= −2

(1.28)

and all other values of the pairing between simple roots are zero.
Agin these data are encoded in the Dynkin diagram

Cn := α1 − α2 − · · ·− <= αg

See [18]. We will see this Dynkin diagram for g = 3 at the end of this book.

As before it is not so difficult to show that the flags form a smooth projec-
tive scheme X/ Spec(Z) (see also [book], V.2.4.3). Show that for any discrete
valuation ring A the group G(A) acts transitively on X (A) = X (K). It is also
easy to verify the statements in 1.1.

The group scheme SO(n, n)/ Spec(Z)

We can play the same game with symmetric forms. Let M together with its
basis as above, we replace g by n. But now we take the quadratic form F

F :M → Z

which is defined by

F (x1e1 · · ·+ xnen + ynfn + · · ·+ y1f1) =
∑

xiyi

and all other values of the pairing on basis elements are zero. We define the
group scheme of isomorphisms but in addition we require thedeterminant is one.
Hence

SO(n, n)/ Spec(Z) = Aut(M,F,det = 1).

The maximal torus and the flags look pretty much the same as in the previous
case. But the set of roots looks different. For n = 2 the torus and the unipotent
radical are given by

T = {


t1 0 0 0
0 t2 0 0
0 0 t−12 0
0 0 0 t−11

}, U = {


1 x y −xy
0 1 0 −y
0 0 1 −x
0 0 0 1

}.
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The system of positive roots consists of two roots α1(t) = t1/t2, α2(t) =
t1t2. This is the Dynkin diagram A1 × A1 hence there exists a homomorphism
(isogeny) between group schemes over Spec(Z) :

Sl2 × Sl2 → SO(2, 2).

It is an amusing exercise to write down this isogeny.
Another even more interesting excercise is the computation of the roots for

the torus (here n = 3)

T = {


t1 0 0 0 0 0
0 t2 0 0 0 0
0 0 t3 0 0 0
0 0 0 t−13 0 0
0 0 0 0 t−12 0
0 0 0 0 0 t−11

}. (1.29)

In this case we have the root subgroups

τα1
: x 7→


1 x 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −x
0 0 0 0 0 1

 , τα2
: x 7→


1 0 0 0 0 0
0 1 x 0 0 0
0 0 1 0 0 0
0 0 0 1 −x 0
0 0 0 0 1 0
0 0 0 0 0 1


and

τα3
: x 7→


1 0 0 0 0 0
0 1 0 x 0 0
0 0 1 0 −x 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


where

α1(t) = t1/t2, α2(t) = t2/t3, α3(t) = t2t3

Use the result of this computation to show that we have an isogeny

Sl4 → SO(3, 3).

How can we give a linear algebra interpretation of this isogenies?
If we now consider the maximal torus (1.25) and put (1.29) into the middle

then we see that the simple roots are

αi(t) = ti/ti+1 for i = 1, . . . n− 1, and αn(t) = tn−1tn (1.30)

which gives us the Dynkin diagram (wird noch korrigiert!)

Dn :=
αn−1

α1 − α2 − · · · − αn−2
αn

(1.31)
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The group scheme SO(n+ 1, n)/ Spec(Z)

Of course we can also consider quadratic forms in an odd number of variables.
We take a free Z-module of rank 2n+ 1 with a basis

{e1, . . . , en, h, fn, . . . , f1}.

On this module we consider the quadratic form

F :M → Z

F (
∑

xiei + zh+
∑

yifi) =
∑

xiyi + z2.

From this quadratic fom we get the bilinear form

B(u, v) = F (u+ v)− F (u)− F (v).

We have the relation

F (u) = 2B(u, u),

hence we can reconstruct the quadratic form from the bilinear form if we extend
Z to a larger ring where 2 is invertible.

We consider the automorphism scheme

G/ Spec(Z) = SO(n+ 1, n)/ Spec(Z) = Aut(M,F, det = 1)/ Spec(Z)

and I claim that this is indeed a semi simple group scheme over Spec(Z). To
see this I strongly recommend to discuss the case n = 1.

We have of course the maximal torus

T = {

t 0 0
0 1 0
0 0 t−1

}.
It is also the stabiliser of the collection of three subspaces Ze,Zh,Zf , here we
use the determinant condition.

Now one has to discuss the root subgroups with respect to this torus.
From this we can derive that we have an isogeny

Sl2 → SO(2, 1)

It is also interesting to look at the case n = 2. In this case we can com-
pare the root systems of Sp2 and SO(3, 2) they are isomorphic. Now it is a
general theorem in the theory of split semi simple group schemes that the root
system determines the group scheme up to isogeny. Hence we should be able to
construct an isogeny between Sp2 and SO(3, 2). Who ctan do it?

For an arbitrary value of n we get the Dynkin diagram

Bn := α1 − α2 − · · ·− => αn (1.32)



18 CHAPTER 1. BASIC NOTIONS AND DEFINITIONS

The element w0.

Finally we have a short look at the automorphism groups of the Dynkin dia-
grams.

For the Dynkin diagram of type A the group of automorphisms is trivial
if n = 1 and for n > 1 the group of automorphism is Z/2Z , the non trivial
element ϵ exchanges the roots αi and αn−1−i.

For the diagrams Bn, Cn the automorphism group is trivial,

For the Dynkin diagram Dn and n > 4 the group of automorphisms is Z/2Z
and the non trivial automorphism ϵ fixes the simple roots αi with 1 ≤ i ≤ n− 2
and interchanges αn−1, αn.

For n = 4 the automorphism group is the symmetric group S3 and it acts
by permutations on the three simple roots α1, α3, α4.

The Weyl group W = N(T )/T acts simply transitively on the set of Borel
subgroups B′ ⊃ T. Hence there is a unique element w0 ∈ W which sends our
Borel subgroup B into its opposite B− this is the group whose simple roots are
the roots −αi.

If the automorphism group of the Dynkin diagram is trivial we have w0 = −1,
i.e. it acts by multiplication by −1 on X∗(T ).

For the diagram An and n > 1 the element w0 = −ϵ and therefore not equal
to −1.

For the diagram Dn the element w0 = −1 if n is even and equal to −ϵ if n
is odd.

The element w0 will play an important role later in this book.

The fundamental and the dominant weights

The Weyl group W = N(T )/T acts by conjugation on the character module
X∗(T ) and there a positive definite symmetric bilinear form < , >: X∗(T ) ×
X∗(T )→ Q which is invariant invariant under this action.. The Weyl group is
generated by the reflections

sαi
: γ 7→ γ − 2 < γ, αi >

< αi, αi >
αi (1.33)

and this implies that 2<γ,αi>
<αi,αi>

∈ Z. Of course we have αi ∈ X∗(T ) for all simple

roots, the sublattice
⊕

Zαi it is of finite index in X∗(T ). To this sublattice
belongs a torus T ad and an isogeny ψ : T → T (ad). The kernel ker(ψ) = µ is
the centre of our group scheme G/Z and the quotient G/µ = G(ad) is the adjoint
group.

In X∗(T )⊗Q we have the elements γi which are defined by

2 < γi, αi >

< αj , αj >
= δi,j (1.34)

these elements are the fundamental weights . The lattice
⊕

Zγi contains X∗(T )
as a sublattice of finite index. It provides a torus T (sc) and an isogeny ψ1 :
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T (sc) → T. This torus is the maximal torus in a semi simple group scheme
G((sc))/Z which admits an isogeny

ψ1 : G(sc) → G (1.35)

whose kernel is ker(ψ1) ⊂ T (sc). The group G(sc)/Z is the simply connected
cover of G/ Spec(Z).

The dominant weights are the weights λ =
∑
n <i γi with all ni ≥ 0. They

parametrise the irreducible representation of G. We come to this in chapter 6.

The abstract group G(sc)(k)

We want to show that the abstract group G(sc)(k) is generated by the groups
Uα(k).

For any root α we can consider the two root subgroups Uα, U−α. It is easy
to see -at least in our examples above - that these root subgroups generate a
subgroup Hα ⊂ G, this is the smallest subgroup which contains Uα, U−α. This
subgroup is either PSl2 or Sl2. Then T

(α) = Hα ∩ T is a maximal torus in Hα.
If our group G = G((sc) is simply connected then Hα = Sl2 and we define

define the coroot α∨ ∈ X∗(T (sc)) by α∨ : Gm → T (α) and < α∨, α >= 2. We
have the relation < α∨, γj >= δi,j and this implies that the α∨i form a basis of
X∗(T

(sc)). This in turn implies that the map given by multiplication

m :
∏
i

α∨i (Gm)
∼−→ T (sc). (1.36)

is an isomorphism.
Now it is easy to see that for any field k the abstract group Sl2(k) is generated

by the two root subgroups Uα(k), U−α(k). Combined with the observation above
this implies that T (sc)(k) is contained in the subgroup which is generated by
the subgroups Uαi

(k), U−αi
(k). Now we recall the Bruhat decomposition. The

unipotent radical U+ of B is equal to the product U+ =
∏
α∈∆+ Uα and the

same holds for U− =
∏
α∈∆− Uα. The Bruhat decomposition tells us that the

multiplication m : U− × T (sc) × U+ → G provides an isomorphism of the left
hand side with an Zariski-open V ⊂ G, ( this is the Big Cell). This means that
we get a bijection

U−(k)× T (sc)(k)× U+(k)
∼−→ V(k). (1.37)

Our previous arguments imply that V(k) lies in the subgroup generated by the
Uα(k). But then it is clear that G(sc)(k) is generated by the Uα(k).

1.1.6 k-forms of algebraic groups

For the following concepts and results on Galois cohomology we also refer to
[70] and [81].

Exercise: 1) Consider the following two quadratic forms over Q:

f(x, y, z) = x2 + y2 − z2 , f1(x, y, z) = x2 + y2 − 3z2.
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Prove that the first form is isotropic. This means there exists a vector (a, b, c) ∈ Q3 \{0}
with

f(a, b, c) = 0.

Show that the second form is anisotropic, i.e. it has no such vector.

2) Prove that the two linear algebraic group G/Q = SO(f)/Q and G1/Q =
SO(f1)/Q cannot be isomorphic. (Hint: This is not so easy since we did not define

when two groups are isomorphic.)

Here is some advice: In general we call an element e ̸= u ∈ G(Q) unipotent if it is
unipotent in Gln(Q) where we consider G/Q ↪→ Gln/Q. It turns out that this notion

of unipotence does not depend on the embedding.

Now it is possible to show that our first group G(Q) = SO(f)(Q) has unipotent

elements, and G1(Q) does not. Hence these two groups cannot be isomorphic.

3) Prove that the two algebraic groups G ×Q R and G1 ×Q R are isomorphic, and

therefore the two groups G(R) and G1(R) are isomorphic.

In this example we see, that we may have two groups G/k,G1/k which are
not isomorphic but which become isomorphic over some extension L/k. Then
we say that the groups are k-forms of each other. To determine the different
forms of a given group G/k is sometimes difficult one has to use the concepts of
Galois cohomology. For a separable normal extension L/k we have the almost
tautological description

G(k) = {g ∈ G(L)|σ(g) = g for all elements in the Galois group Gal(L/k)}.

Now let we can consider the functor Aut(G) : It attaches to any field exten-
sion L/k the group of automorphisms Aut(G)(L) of the algebraic group G×kL.
We denote this action by g 7→ σ(g) = gσ. Note that this notation gives us the
rule g(στ) = (gτ )σ. A 1-cocycle of Gal(L/k) with values in Aut(G) is a map
c : σ 7→ cσ ∈ Aut(G)(L) which satisfies the cocycle rule

cστ = cσc
σ
τ (1.38)

Now we define a new action of Gal(L/k) on G(L): An element σ acts by

g 7→ cσg
σc−1σ

We define a new algebraic group G1/k: For any extension E/k we have an
action of Gal(L/k) on E ⊗k L and we put

G1(E) = {g ∈ G(E ⊗k L)|g = cσg
σc−1σ } (1.39)

For the trivial cocycle σ 7→ 1 this gives us back the original group.
It is plausible and in fact not very difficult to show that E → G1(E) is in

fact represented by an algebraic group G1/k. This group is clearly a k-form of
G/k.

We can define an equivalence relation on the set of cocycles, we say that

{σ 7→ cσ} ∼ {σ 7→ c′σ}

if and only if we can find a a ∈ G(L) such that

c′σ = a−1cσa
σ for all σ ∈ Gal(L/k)
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We define H1(L/k,Aut(G)) as the set of 1-cocycles modulo this equivalence
relation. If we have a larger normal separable extension L′ ⊃ L ⊃ k then we get
an inclusion H1(L/k,Aut(G)) ↪→ H1(L′/k,Aut(G)). If k̄s is a separable closure
of k we can form the limit over all finite extensions k ⊂ L ⊂ k̄s and put

H1(k̄s/k,Aut(G)) = lim
→
H1(L/k, Aut(G))

This set is isomorphic to the set of isomorphism classes of k-forms of G/k.
If L/k is a cyclic extension and if σ ∈ Gal(/k) is a generator, then a cocycle

c : Gal(L/k) → Aut(G)(L) is determined by its value g = c(σ) ∈ Aut(G)(L).
But we have to satisfy the cocycle relation. We have a useful little

Lemma 1.1.1. The assigment σ 7→ c(σ) = g provides a 1-cocycle if and only
iff

Norm(g) = ggσ . . . gσ
n−1

= Id

and

H1( Gal(L/k,Aut(G)(L)) = {g ∈ Aut(G)(L)| Norm(g) = Id}/hgh−σ ∼ g}.

Proof. Straightforward calculation

We may apply the same concepts in a slightly different situation. A k−
algebra D over the field k is called a central simple algebra, if it has a unit
element ̸= 0, if it is finite dimensional over k, if its centre is k (embedded via
the unit element) and if it has no non trivial two sided ideals. It is a classical
theorem, that such an algebra over a separably closed field ks is isomorphic to
a full matrix algebra Mn(ks). Hence we can say that over an arbitrary field k
any central simple algebra of dimension n2 is a k-forms of Mn(k).

For any algebraic group G/k we may consider the adjoint group Ad(G), this
is the quotient of G/k by its center. It can be shown, that this is again an
algebraic group over k. It is clear that we have an embedding

Ad(G)→ Aut(G)

which for any g ∈ Ad(G)(L) is given by

g 7→ {x 7→ g−1xg}.

A k-form G1/k of a group G/k is called an inner k-form, if it is in the image of

H1(k̄s/k,Ad(G))→ H1(k̄s/k,Aut(G)).

We call a semi simple group G/k anisotropic , if it does not contain a non
trivial split torus (See exercise in (1.1.6)) In our example below the group of
elements of norm 1 is always semi simple and anisotropic if and only if D(a, b)
is a field.

I want to give an example, we consider the algebraic group Gl2/Q we con-
sider two integers a, b ̸= 0, for simplicity we assume that b is not a square. Then
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we have the quadratic extension L = Q(
√
b), let σ be its non trivial automor-

phism. The element

(
0 a
1 0

)
defines the inner automorphism

Ad(

(
0 a
1 0

)
) : g 7→

(
0 a
1 0

)
g

(
0 a
1 0

)−1

of the group Gl2, Then σ 7→ Ad(

(
0 a
1 0

)
) and IdGal(L/k) 7→ IdAut( Gl2)(L) is a

1-cocycle and we get a Q form of our group.
Hence we get a Q form G1 = G(a, b)/Q of our group Gl2. It is an inner

form.

Now we can see easily that group of rational points of our above group
G(a, b)(Q) is the multiplicative group of a central simple algebra D(a, b)/Q. To
get this algebra we consider the algebra M2(L) of (2,2)-matrices over L. We
define

D(a, b) = {x ∈M2(L)|x = Ad(

(
0 a
1 0

)
)xσAd(

(
0 a
1 0

)
)−1}. (1.40)

We have an embedding of the field L into this algebra, which is given by

u 7→
(
u 0
0 uσ

)
Let ub the image of

√
b under this map. We also have the element ua =

(
0 a
1 0

)
in this algebra.

Now I leave it as an exercise to the reader that as a Q vector space

D(a, b) = Q⊕Qub ⊕Qua ⊕Quaub
We have the relation u2a = a, u2b = b, uaub = −ubua.

Of course we should ask ourselves: When is D(a, b) split, this means isomor-
phic to M2(Q)? To answer this question we consider the norm homomorphism,
which is defined by

x+yub+zua+waaub 7→ (x+yub+zua+waaub)(x−yub−zua−waaub) = x2−y2b−z2a+w2ab.

It is easy to see that D(a, b) splits if and only if we can find a non zero element
whose norm is zero.

If we do this over R as base field and if we take a = −1, b = −1 then we get
the Hamiltonian quaternions, which is non split.

We may also look at the p-adic completions Qp of our field. Then it is not
difficult to see that D(a, b) splits over Qp if p ̸= 2 and p /| ab. Hence it is clear
that there is only a finite number of primes p for which D(a, b) does not split.

If we consider R as completion at the infinite place, and the Qp as the com-
pletions at the finite places, then we have
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The algebra D(a, b) splits if and only if it splits at all places. The number of
places where it does not split is always even.

The first assertion is the so called Hasse-Minkowski principle, the second
assertion is essentially equivalent to the quadratic reciprocity law.

Construction of division algebras and anisotropic groups

We give some indication how to construct anisotropic groups over Q ( or even
overn any number field). We choose a cyclic extension L/Q of degree n and we
pick a number a ∈ Q×, let A(a) ∈ Gln(Q) be the following matrix

A(a) =


0 1 0 . . . 0
0 0 1 . . . 0

...
. . .

0 0 . . . 0 1
a 0 0 0 0

 (1.41)

Let σ ∈ Gal(L/Q) be a generator then σν 7→ A(a)ν mod Gm is a homomor-
phism from Gal(L/Q) to PGln(Q) and since A(a) ∈ Gln(Q) this is also a
1-cocycle c : Gal(L/K)→ PGln(Q) := {σν 7→ A(a)ν}. It defines a cohomology
class [A(a)] ∈ H1(L/Q,Ad(Gln) and hence an inner Q-form G/Q of Gln/Q. In
Galois cohomology we have the boundary map

δ : H1(L/Q,Ad(Gln)→ H2(L/Q,Gm) = Q×/NL/Q(L×)

and it is clear that
δ([A(a)]) = a ∈ Q×/NL/Q(L×)

Now it is well known that the Q -form G/Q of Gln/Q is anisotropic if and only
if the class a ∈ Q×/NL/Q(L×) is an element of order n.We know from algebraic
number theory that there are infinitely many primes p which are inert, i.e. p is
unramified in L and the prime ideal (p) stays prime in the ring of integers OL.
Then it easy to see that the order of p ∈ Q×/NL/Q(L×) is n. Hence we see that
the set of isomorphism classes of anisotropic Q forms of Gln/Q is abundant.

Obviously the group Mn(Q)× = Gln((Q) and we also know that any auto-
morphism of Mn((Q)× is inner, hence Aut(Mn(Q)) = PGln(Q) Therefore the
isomorphism classes of (Q-forms of Mn(Q) are equal to the set H1(Q,PGln).
Such a Q-form D/Q is a central simple algebra over Q. The central simple
algebra D defined by the class [A(a)] can be described explicitly:

It contains the field L/Q as a maximal commutative subalgebra and it is
generated by L and another element aσ ∈ D which satisfies the following rela-
tions

∀x ∈ L we have aσxα
−1
σ = σ(x) ; anσ = a

If we modify aσ and put a′σ = aσy with y ∈ L× then the first relation still holds
and the second relation becomes (a′σ)

n = aNL/Q(y). Hence the isomorphism
class of D is determined by the class a ∈ Q×/NL/Q(L×). It is easy to see that
for a = 1 the central simple algebra is equal to the endomorphism ring of the
Q vector space L/Q. (This is the linear independence of the elements σν in
End(L/Q).)
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1.1.7 Quasisplit Q-forms

We recall that a semi-simple group G/Q is quasisplit, if contains a Borel sub-
group B/Q. This Borel subgroup contains its unipotent radical U/Q and a max-
imal torus T/Q. Two such maximal tori T/Q, T1/Q are conjugate by an element
u ∈ U(Q). Let G0/Q by a split group which is a Q-form of G/Q.We pick a max-
imal split torus T0/Q and a Borel B0/Q ⊃ T0/Q. Then we see that the triple
(G,B, T )/Q is a Q-form of (G0, B0, T0)/Q. Hence it can by constructed from a
1-cocycle representing a cohomology class ξ ∈ H1(Q,Aut(((G0, B0, T0))), where
of course Aut(((G0, B0, T0)) is the subgroup of Aut(G0) which fixes T0, B0. Ob-
viously we have an exact sequence

1→ T
(ad)
0 → Aut(((G0, B0, T0))→ Autext((G0, B0, T0))→ 1, (1.42)

here Autext((G0, B0, T0)) is the very ”small” group of automorphisms of the
Dynkin diagram Φ. This is also the subgroup of Aut(X∗(T0)) which leaves
the set ∆+ of positive roots invariant. We could say Autext((G0, B0, T0)) =
Aut(X∗(T0),∆

+))

It is well known- and easy to see in the examples of classical groups- that
this sequence has a section s0 : Autext((G0, B0, T0)) → Aut((G0, B0, T0)) and
this gives us a map in Galois cohomology

s•0 : H1(Q,Autext((G0, B0, T0)) = Hom( Gal(Q̄/Q),Autext((G0, B0, T0))

→ H1(Q,Autext((G0))

(1.43)

Hence we see that the isomorphism classes of quasisplit Q -forms of G0/Q are
given homomorphisms ψ : Gal(Q̄/Q) → Autext((G0). The maximal torus
T/Q ⊂ B/Q is not split (unless G/Q is split. Hence there is a finite nor-
mal extension F0/Q such that T ×Q F0 splits, we assume that F0/Q is min-
imal. i.e. Gal(F0Q) ⊂ Aut(X∗(T ×Q F0),∆

+). We see that a quasisplit
form of G0/Q is given by a finite normal extension F0/Q and a injection
ψ : Gal(F0/Q) ↪→ Aut(X∗(T0),∆

+).

In the special case G0/Q = Sln/Q with T0/Q, B0/Q being the standard
diagonal torus and the standard Borel subgroup of upper triangular matrices
this looks as follows: We have the element

w0 =


0 0 0 . . . 1
0 0 . . . 1 0

...
. . .

0 1 . . . 0 0
±1 0 0 0 0

 ∈ Sln(Q) (1.44)

this element w0 conjugates B0 into its opposite B−0 the group of lower triangular
matrices. The standard Cartan involution Θ : g →t g−1 does the same and
therefore the composition Ad(w0) ◦Θ is an automorphism of G0/Q which fixes
B0, T0. It is an outer automorphism if n ≥ 3 and gives us the non trivial element
of Autext(G0). Hence we get a 1-cocycle if choose a quadratic extension L/Q
and send the non trivial element in Gal(L/Q) to Ad(w0) ◦Θ.
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We leave it an exercise to the reader to show theQ form obtained from this
cocycle (cohomology class) is isomorphic to the above group SU(h1)/Q.

An important class of quasi split groups is given by the groups G/Q =
RF0/Q(G0) where F0/Q is a finite extension of Q and G0/F0 is a split group. If
B0/F0 ⊂ G0 is a Borel subgroup then B = RF0/Q(B0) is a Borel subgroup in
G/Q. Let F ⊃ F0 be a normal closure of F0 then

G×Q F =
∏

ι:F0→F
G0 ×F0,ι F (1.45)

where ι runs over the set Σ of maps from F0 to F. The Galois group acts on the
product via the action on Σ.

1.1.8 Structure of semisimple groups over R and the sym-
metric spaces

We need some information concerning the structure of the group G∞ = G(R)
for semisimple groups over G/R. We will provide this information simply by
discussing a series of examples.

Of course the group G(R) is a topological group, actually it is even a Lie
group. This means it has a natural structure of a C∞ -manifold with respect to
this structure. Instead of G(R) we will very often write G∞. Let G0

∞ be the
connected component of the identity in G∞. It is an open subgroup of finite
index. We will discuss the

Theorem of E. Cartan: The group G0
∞ always contains a maximal com-

pact subgroup K∞ ⊂ G0
∞ and all maximal compact subgroups are conjugate

under G0
∞. The quotient space X = G0

∞/K∞ is again a C∞-manifold. It is dif-
feomorphic to an RN and carries a Riemannian metric which is invariant under
the operation of G0

∞ from the left. It has sectional curvature ≤ 0 and there-
fore any two points can be joined by a unique geodesic. The maximal compact
subgroup K ⊂ G0

∞ is connected and equal to its own normalizer. Therefore the
space X can be viewed as the space maximal compact subgroups in G0

∞. See
for instance [51].

For any maximal compact subgroup Kx ⊂ G∞ exists an unique automor-
phism Θx with Θ2

x = e such that Kx = {g ∈ G0
∞ |Θ(g) = g}, this is the

Cartan involution corresponding to Kx. The Cartan involutions are in one-to
one correspondence with the maximal compact subgroups.

A Cartan involution Θx induces an involution also called Θx on the Lie
algebra gR of G∞ and we get a decomposition into ± eigenspaces

g = kx ⊕ px; kx = {U ∈ g|Θx(U) = U} ; px = {V ∈ g|Θx(V ) = −V }

where of course kx is the Lie algebra of Kx. The differential of the action of
G∞ on G(R)/Kx provides an isomorphism Dx : px

∼−→ TXx (then tangent space
at x). For V1, V2 ∈ px we have [V1, V2] ∈ kx the map R : px × px → kx is the
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curvature tensor. The R-vector space gc := kx +
√
−1px ⊂ g ⊗R C is a Lie

algebra, for U1 +
√
−1V1, U2 +

√
−1V2 ∈ gc we get for the Lie-bracket

[U1 +
√
−1V1, U2 +

√
−1V2] = [U1, U2]− [V1, V2] +

√
−1([U1, V2] + [U2, V1]) ∈ gc

To this Lie algebra gc corresponds an algebraic group Gc/R which is a R-form
of G/R, the group Gc(R) is compact. The group Gc/R is called the compact
dual of G/R. On Gc/R we have only one Cartan involution Θ = Id.

This theorem is fundamental. To illustrate this theorem we consider a series
of examples:

The groups Sln(R) and Gln(R):

The group Sld(R) is connected. If K ⊂ Sld(R) is a closed compact subgroup, I
claim that we can find a positive definite quadratic form f : Rn → R, such that
K ⊂ SO(f,R) Snce the group SO(f,R) itself is compact, it is maximal compact.
Two such forms f1, f2 define the same maximal compact K∞ subgroup if there
is a λ > 0 in R such that λf1 = f2. We say that f1 and f2 are conformally
equivalent.

This is rather clear, if we believe the first assertion about the existence of f .
The existence of f is also easy to see if one believes in the theory of integration
on K. This theory provides a positive invariant integral

Cc(K) −→ R

φ −→
∫
K

φ(k)dk

with
∫
φ > 0 if φ ≥ 0 and not identically zero (positivity),

∫
φ(kk0)dk =∫

φ(k0k)dk =
∫
φ(k)dk (invariance). To get our form f we start from any

positive definite form f0 on Rn and put

f(x) =

∫
K

f0(kx)dk.

A positive definite quadratic form on Rn is the same as a symmetric positive
definite bilinear form. Hence the space of positive definite forms is the same as
the space of positive definite symmetric matrices

X̃ =
{
A = (aij) | A =t A,A > 0

}
.

Hence we can say that the space of maximal compact subgroups in Sln(R) is
given by

X = X̃/R∗>0.

It is easy to see that a maximal compact subgroup K∞ ⊂ Sld(R) is equal
to its own normalizer (why?). If we view X as the space of positive definite
symmetric matrices with determinant equal to one, then the action of Sld(R)
on X = Sld(R)/K is given by

(g,A) −→ g A tg,
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and if we view it as the space of maximal compact subgroups, then the action
is conjugation.

There is still another interpretation of the points x ∈ X. In our above inter-
pretation a point was a symmetric, positive definite bilinear form < , >x on Rn
up to a homothety. From this we get a transposition g 7→ txg, which is defined
by the rule < gv, u >x=< v, txgu >x and from this we get the involution

Θx : g 7→ (txg)−1 (1.46)

Then the corresponding maximal compact subgroup is

Kx = {g ∈ Sln(R)|Θx(g) = g} (1.47)

This involution Θx is a Cartan involution, it also induces an involution also
called Θx on the Lie-algebra and it has the property that (See 1.18)

(u, v) 7→ B(u,Θx(v)) = BΘx(u, v) (1.48)

is negative definite. This bilinear form is Kx invariant. All these Cartan invo-
lutions are conjugate.

If we work with Gln(R) instead then we have some freedom to define the
symmetric space. In this case we have the non trivial center R× and it is
sometimes useful to define

X = Gln(R)/SO(R) · R×>0, (1.49)

then our symmetric space has two components, a point is pair (Θx, ϵ) where ϵ
is an orientation. If we do not divide by R×>0 then we multiply the Riemannian

manifold X by a flat space and we get the above space X̃.
A Cartan involution on Gln(R) is an involution which induces a Cartan

involution on Sln(R) and which is trivial on the center.

Proposition 1.1.1. The Cartan involutions on Gln(R) are in one to one cor-
respondence to the euclidian metrics on Rn up to conformal equivalence.

Finally we recall the Iwasawa decomposition. Inside Gln(R) we have the
standard Borel- subgroup B(R) of upper triangular matrices and it is well known
that

Gln(R) = B(R) · SO(R) · R×>0 (1.50)

and hence we see that B(R) acts transitively on X.

The compact dual of Sln(R)

If G/R is a semi simple group, then Gc/R is a R-form of G/R. Therefore we find
a cohomology class ξc ∈ H1C/(R,Aut(G)) corresponding to Gc. It is clear from
the Theorem of Cartan how we get a cocycle representing this class: We choose
a Cartan involution Θ ∈ Aut(G), the Galois group Gal(C/R) is cyclic of order
SO( 2 let c be the generator (the complex conjugation). Then c 7→ c ◦Θ yields
a 1-cocycle in C1( Gal(C/R),Aut(G)(C)). (Lemma 1.1.1 ) and this 1-cocycle
represents the class ξc.
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This means for the group Sln/R that

Gc(R) = {g ∈ Sln(C)|c(tg−1) = g}

and if we go back to the usual notion and write c(g) = ḡ then we get

Gc(R) = {g ∈ Sln(C)|tḡg = Id} = SU(n)

Here of course SU(n) = SU(hc) where hc(z1, z2, . . . , zn) =
∑n
i=1 ziz̄i is the

standard positive definite hermitian form on Cn.
We know that for G/R = Sln/R and n > 2 the Cartan involution Θ is the

generator of Aut(G)/Ad(G) and hence it is clear that ξc is not in the image of
H1(C/R,Ad(G)) → H1(C/(R,Aut(G)). This means that in this case Gc/R =
SU(n)/R is not an inner R -form of Sln/R, in turn this also means that Sln/R
is not an inner R -form of SU(n)/R.

In this context the following general proposition is of importance

Proposition 1.1.2. A semi simple group scheme G/R is an inner R form of
its compact dual Gc/R if an only if

a) The Cartan involution Θ of G/R is an inner automorphism of G/R.
b) The group G/R has a compact maximal torus Tc/R ⊂ G/R.

Give a name to this class of groups ? Examples?

The Arakelow- Chevalley scheme (Gln/Z,Θ0)

We start from the free lattice L = Ze1⊕Ze2⊕ · · ·⊕Zen and we think of Gln/Z
as the scheme of automorphism of this lattice. If we choose an euclidian metric
< , > on L ⊗ R, then we call the pair (L,< , >) an Arakelow vector bundle.
From the (conformal class of) metric we get a Cartan involution Θ. on Gln(R),
and the pair (Gln/Z,Θ) is an Arakelow group scheme

We may choose the standard euclidian metric with respect to the given
basis, i.e. < ei, ej >= δi,j . theresulting Cartan involution is the standard one:
Θ0 : g 7→ (tg)−1. This pair (Gln/Z,Θ0) is called an Arakelow- Chevalley scheme.
(In a certain sense the integral structure of Gln/Z and the choice of the Cartan
involution are ”optimally adapted”)

In this case we find for our basis elements in (1.15)

BΘ0(Hi, Hj) = −2nδi,j + 2;BΘ0(Ei,j , Ek,l) = −2nδi,kδj,l (1.51)

hence the Ei,j are part of an orthonormal basis.
We propose to call a pair (L,< , >x) an Arakelow vector bundle over

Spec(Z)∪{∞} and (Gln,Θx) an Arakelow group scheme. The Arakelow vector
bundles modulo conformal equivalence are in one-to one correspondence with
the Arakelow group schemes of type Gln.

The group Sld(C)

We now consider the group G/R whose group of real points is G(R) = Sld(C)
(see 1.1 example 4)).

A completely analogous argument as before shows that the maximal compact
subgroups are in one to one correspondence to the positive definite hermitian
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forms on Cn (up to multiplication by a scalar). Hence we can identify the
space of maximal compact subgroups to the space of positive definite hermitian
matrices

X =
{
A | A =t A , A > 0 , detA = 1

}
.

The action of Sld(C) by conjugation on the maximal compact subgroups becomes

A −→ g A tg

on the space of matrices.

The orthogonal group:

The next example we want to discuss is the orthogonal group of a non degenerate
quadratic form

f(x1, . . . , xn) = x21 + . . .+ x2m − x2m+1 − . . .− x2n,

since at this moment we consider only groups over the real numbers, we may
assume that our form is of this type. In this case one has the usual notation

SO(f,R) = SO(m,n−m).

Of course we can use the same argument as before and see that for any maximal
compact subgroup K ⊂ SO(f,R) we may find a positive definite form ψ

ψ : Rn −→ R

such that K = SO(f,R) ∩ SO(ψ,R). But now we cannot take all forms ψ, i.e.
only special forms ψ provide maximal compact subgroup.

We leave it to the reader to verify that any compact subgroup K fixes an
orthogonal decomposition Rn = V+ ⊕ V− where our original form f is positive
definite on V+ and negative definite on V−. Then we can take a ψ which is equal
to f on V+ and equal to −f on V−.

Exercise 3 a) Let V/R be a finite dimensional vector space and let f be a symmetric

non degenerate form on V. Let K ⊂ SO(f) be a compact subgroup. If f is not definite

then the action of K on V is not irreducible.

b) We can find a K invariant decomposition V = V− ⊕ V+ such that f is negative

definite on V− and positive definite on V+
In this case the structure of the quotient space G(R)/K is not so easy to

understand. We consider the special case of the form

x21 + . . .+ x2n − x2n+1 = f(x1, . . . , xn+1).

We consider in Rn+1 the open subset

X− = {v = (x1 . . . xn+1) | f(v) < 0} .

It is clear that this set has two connected components, one of them is

X+
− = {v ∈ X− | xn+1 > 0}
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Since it is known that SO(n, 1) acts transitively on the vectors of a given length,
we find that SO(n, 1) cannot be connected. Let G0

∞ ⊂ SO(n, 1) be the subgroup
leaving X+

− invariant.
Now it is not to difficult to show that for any maximal compact subgroup

K∞ ⊂ G0
∞ we can find a ray R∗>0 · v ⊂ X

(+)
− which is fixed by K∞.

(Start from v0 ∈ X(+)
− and show that R∗>0K∞v0 is a closed convex cone in

X
(+)
− . It is K∞ invariant and has a ray which has a “centre of gravity” and this

is fixed under K∞.)

For a vector v = (x1, . . . , xn+1) ∈ X
(+)
− we may normalise the coordinate

xn+1 to be equal to one; then the rays R+
>0v are in one to one correspondence

with the points of the ball disc

◦
Dn=

{
(x1, . . . , xn) | x21 + . . .+ x2n < 1

}
⊂ X(+)

− . (1.52)

This tells us that we can identify the set of maximal compact subgroups K∞ ⊂
G0
∞ with the points of this ball. The first conclusion is that G0

∞/K∞ ≃ Dn is
topologically a cell (diffeomorphic to Rn). Secondly we see that for a v ∈ X+

−
we have an orthogonal decompositon with respect to f

Rn+1 = ⟨v⟩+ ⟨v⟩⊥,

and the corresponding maximal compact subgroup is the orthogonal group on
⟨v⟩⊥.

The space X+
− is often called the n-dimensional hyperbolic space Hn.

Give Cartan Involutions?

1.1.9 Special low dimensional cases

1) We consider the ( semi-simple ) group Sl2(R). It acts on the upper half plane

H = {z | z ∈ C,ℑ(z) > 0}

by

(g, z) −→ az + b

cz + b
, g =

(
a b
c d

)
∈ Sl2(R).

It is clear that the stabiliser of the point i ∈ H is the standard maximal compact
subgroup

K∞ = SO(2) =

{(
cosφ sinφ
− sinφ cosφ

)}
.

Hence we have H = Sl2(R)/K∞. But this quotient has also been realized as the
space of symmetric positive definite 2 × 2-matrices with determinant equal to
one

z =

{(
y1 x1
x1 y2

) ∣∣ y1y2 − x21 = 1, y1 > 0

}
.

It is clear how to find an isomorphism between these two explicit realizations.
The map (

y1 x1
x1 y2

)
−→ i+ x1

y2
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is compatible with the action of Sl2(R) on both sides and sends the identity(
1 0
0 1

)
to the point i.

If we start from a point z ∈ H the corresponding metric is as follows: We
identify the lattices ⟨1, z⟩ = {a + bz | a, b ∈ Z} = Ω to the lattice Z2 ⊂ R2

by sending 1 →
(
1
0

)
and z →

(
0
1

)
. The standard euclidian metric on C =

R2 induces a metric on Ω ⊂ C, and this metric is transported to R2 by the

identification Ω⊗ R→ R2. Hence the symmetric matrix will be

(
1 x
x zz̄

)
.

We may also start from the (reductive) group Gl2(R), it has the centre

C(R) = {
(
t 0
0 t

)
}. Let C(R)(0) be the connected component of the identity of

C(R). In this case we define K∞ = SO(2)× C(R)(0). Then the quotient

Gl2(R)/K∞ = H ∪H−

where H− is the lower half plane.

2) The two groups Sl2(R) and PSl2(R)(0) = Sl2(R)/{±Id} give rise to the
same symmetric space. The group PSl2(R) acts on the space M2(R) of 2 × 2-
matrices by conjugation (the group Gl2(R) acts by conjugation and the centre
acts trivially) and leaves invariant the space

{A ∈M2(R) | trace(A) = 0} =M0
2 (R).

On this three-dimensional space we have a symmetric quadratic form

B : M0
2 (R) −→ R

B : A 7→ 1

2
trace (A2)

and with respect to the basis

H =

(
1 0
0 −1

)
, V =

(
0 1
1 0

)
, Y =

(
0 1
−1 0

)
, (1.53)

this form is x21 + x22 − x23.

Hence we see that SO(M0
2 (R), B) = SO(2, 1), and hence we have an isomor-

phism between PSl2(R) and the connected component of the identity G0
∞ ⊂

SO(2, 1). Hence we see that our symmetric spaceH = Sl2(R)/K∞ = PSl2(R)/K∞
can also be realised as disc

D = {(x1, x2) | x21 + x22 < 1}

where we normalized x3 = 1 on X
(+)
− as in 1.52) .
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The group Sl2(C).

Recall that in this case the symmetric space is given by the positive definite
hermitian matrices

A =

{(
y1 z
z y2

) ∣∣ det(A) = 1, y1 > 0

}
.

In this case we have also a realization of the symmetric space as an upper half
space. We send (

y1 w
w y2

)
7−→

(
w

y2
,
1

y2

)
= (z, ζ) ∈ C× R>0

The inverse of this isomorphism is given by

(z, ζ) 7→
(
ζ + zz̄/ζ z/ζ
z/ζ 1/ζ

)
As explained earlier, the action of Gl2(C) on the maximal compact subgroup
given by conjugation yields the action

G(R)×X −→ X,

(g,A) −→ gAtg,

on the hermitian matrices. Translating this into the realization as an upper half
space yield the slightly scaring formula

G× (C× R>0) −→ C× R>0,

(g, (z, ζ)) −→

(
(az + b) (cz + d) + ac ζ2

(cz + d) (cz + d) + cc ζ2
,

ζ

(cz + d) (cz + d) + cc ζ2

)

. Here X is the three dimensional hyperbolic space H3.

1.3.4. The Riemannian metric: It was already mentioned in the state-
ment of the theorem of Cartan that we always have a G0

∞ invariant Riemannian
metric on X. It is not to difficult to construct such a metric, which in many
cases is rather canonical.

In the general case we observe that the maximal compact subgroup is the
stabilizer of the point x0 = e · K∞ ∈ G0

∞/K∞ = X. Hence it acts on the
tangent space of x0, and we can construct a K∞-invariant positive definite
quadratic form on this tangent sapce. Then we use the action of G0

∞ on X to
transport this metric to an arbitrary point in X: If x ∈ X we find a g so that
x = gx0, it defines an isomorphism between the tangent space at x0 and the
tangent space at x. Hence we get a quadratic form on the tangent space at x,
which will not depend on the choice of g ∈ G0

∞. In our examples this metric is
always unique up to scalars.

a) In the case of the group Sln(R) we may take as a base point x0 ∈ X
the identity Id ∈ Sln(R). The corresponding maximal compact subgroup is the
orthogonal group SO(n). The tangent space at Id is given by the space

Sym0
n(R) = TXId
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of symmetric matrices with trace zero. On this space we have the form

Z −→ trace(Z2),

which is positive definite (a symmetric matrix has real eigenvalues). It is easy to
see that the orthogonal group acts on this tangent space by conjugation, hence
the form is invariant.

b) A similar argument applies to the group G∞ = Sld(C). Again the identity
Id is a nice positive definite hermitian matrix. The tangent space consists of
the hermitian matrices

TXId =
{
A | A =t A and tr(A) = 0

}
,

and the invariant form is given by

A −→ tr(AA).

c) In the case of the group G0
∞ ⊂ SO(f)(R) where f is the quadratic form

f(x1, . . . , xn+1) = x21 + . . .+ x2n − x2n+1.

We realized the symmetric space as the open ball

◦
Dn= {(x1, . . . , xn) | x21 + . . .+ x2n < 1}.

The orthogonal group SO(n, 1) is the stabilizer of 0 ∈
◦
Dn, and hence it is clear

that the Riemannian metric has to be of the form

h(x21 + . . .+ x2n)(dx
2
1 + . . . dx2n)

(in the usual notation). A closer look shows that the metrics has to be

dx21 + . . .+ dx2n√
1− x21 − . . .− x2n

.

In our two low dimensional spacial examples the metric is easy to determine.
For the action of the group Sl2(R) on the upper half plane H we observe that
for any point z0 = x + iy ∈ H the tangent vectors ∂

∂x |z0 ,
∂
∂y |z0 form a basis of

the tangent spaces at z0.
If we take z0 = i then the stabilizer is the group SO(2) and for

e(φ) =

(
cosφ sinφ
− sinφ cosφ

)
.

We have

e(φ) ·
(
∂

∂x
|i
)

= cos 2φ · ∂
∂x
|i + sin 2φ · ∂

∂y
|i

e(φ)

(
∂

∂y
|i
)

= sin 2φ · ∂
∂x
|i + cos 2φ · ∂

∂y
|i.

Hence we find that ∂
∂x |i and

∂
∂y |i have to be orthogonal and of the same length.
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Now the matrix (
y x
0 1

)
sends i into the point z = x + iy. It sends ∂

∂x |i and
∂
∂y |i into y ·

∂
∂x |z and

y · ∂∂y |z, and hence we must have for our invariant metric

⟨ ∂
∂x
|z,

∂

∂y
|z⟩ = 0 ; ⟨ ∂

∂x
|z,

∂

∂x
|z⟩ =

1

y2
; ⟨ ∂
∂y
|z,

∂

∂y
|z⟩ =

1

y2
,

and this is in the usual notation the metric

ds2 =
1

y2
(dx2 + dy2). (1.54)

A completely analogous argument yields the metric

ds2 =
1

ζ2
(dζ2 + dx2 + dy2) (1.55)

for the space H3.

1.2 Arithmetic groups

If we have a linear algebraic group G/Q ↪→ GLn we may consider the group
Γ = G(Q) ∩ GLn(Z). This is the first example of an arithmetic group. It has
the following fundamental property:

Proposition: The group Γ is a discrete subgroup of the topological group
G(R).

This is rather easily reduced to the fact that Z is discrete in R. Actually our
construction provides a big family of arithmetic groups. For any integer m > 0
we have the homomorphism of reduction mod m, namely

GLn(Z) −→ GLn(Z/mZ).

The kernel GLn(Z)(m) of this homomorphism has finite index in GLn(Z)
and hence the intersection Γ′ = GLn(Z)(m) ∩ Γ has finite index in Γ.

Definition 2.1.: A subgroup Γ′′ of Γ is called a congruence subgroup, if we
can find an integer m such that

GLn(Z)(m) ∩ Γ ⊂ Γ′′ ⊂ Γ.

At this point a remark is in order. We explained already that a linear
algebraic group G/Q may be embedded in different ways into different groups
GLn, i.e.

↪→ GLn1

G

↪→ GLn2
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In this case we may get two different congruence subgroups

Γ1 = G(Q) ∩GLn1(Z),Γ2 = G(Q) ∩GLn2(Z).

It is not hard to show that in such a case we can find an m > 0 such that

Γ1 ⊃ Γ2 ∩GLn2
(Z)(m)

Γ2 ⊃ Γ1 ∩GLn1
(Z)(m) .

From this we conclude that the notion of congruence subgroup does not
depend on the way we realized the group G/Q as a subgroup in the general
linear group.

Now we may also define the notion of an arithmetic subgroup. A subgroup
Γ′ ⊂ G(Q) is called arithmetic if for any congruence subgroup Γ ⊂ G(Q) the
group Γ′ ∩ Γ is of finite index in Γ′ and Γ. (We say that Γ′ and Γ are commen-
surable.) By definition all congruence subgroups are arithmetic subgroups.

The most prominent example of an arithmetic group is the group

Γ = Sl2(Z).

Another example is obtained as follows. We defined for any number field K/Q
the group

G/Q = RK/Q(Sld)

for which G(Q) = Sld(K). If OK is the ring of integers in K, then Γ = Sld(OK)
(and also Γ̃ = GLn(OK)) is a congruence (and hence arithmetic) subgroup of
G(Q).

It is very interesting that the groups Γ = Sl2(Z) and Sl2(OK) for imaginary
quadratic K/Q always contain arithmetic subgroups Γ′ ⊂ Γ which are not con-
gruence subgroups. This means that in general the class of arithmetic subgroups
is larger than the class of congruence subgroups. We will prove this assertion in
Non Congruence subgroups).

If only the group G(R) is given (as the group of real points of a group G/R
or perhaps only as a Lie group, then the notion of arithmetic group Γ ⊂ G(R)
is not defined. The notion of an arithmetic subgroup Γ ⊂ G(R) requires the
choice of a group scheme G/Q such that the group G(R) is the group of real
points of this group over Q. The exercise in 1.1.2. shows that different Q- forms
provide different arithmetic groups.

Exercise 2 If γ ∈ Gln(Z) is a nontrivial torsion element and if γ ≡ Id mod m
then m = 1 or m = 2. In the latter case the element γ is of order 2.

This implies that for m ≥ 3 the congruence subgroup Gln(Z)(m) of Gln(Z) is

torsion free.

This implies of course that any arithmetic group has a subgroup of finite
index, which is torsion free.

Affgroup
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1.2.1 Affine group schemes over Z
There is a slightly more sophisticated view of arithmetic groups. In our book
[40] section 7.5.6 and on p. 50,51 we discuss briefly the general notion of a
group scheme over an arbitrary base scheme S. An affine group scheme over
G/Z is a finitely generated Z-algebra A(G) together with a comultiplication
m : A(G) → A(G) ⊗ A(G). For any Z -algebra B (commutative and with
identity) the comultiplicationm induces a multiplication on the B-valued points

tm : Homalg(A,B)× Homalg(A,B)→ Homalg(A,B)

and the requirement is that this multiplication defines a group structure on
G(B) = Homalg(A,B). In educated language : G/Z is a functor from the
category of affine schemes into the category of groups.

For instance we can define the group scheme Gln/Z. The affine algebra is

A(Gln) = Z[X11, X12, . . . , X1n, X21, . . . , Xnn, Y ]/(Y det(Xij − 1)

Then the group Gln(Z) of Z-valued points of Gln/Z is our group Gln(Z).
IfG/Q ⊂ Gln/Q is a subgroup, then the affine algebra A(G) = A(Gln)⊗Q/I,

where I is an ideal in A(Gln)⊗Q. Since G/Q is a subgroup this ideal must satisfy

mGln(I) ⊂ A(Gln)⊗Q⊗ I + I ⊗A(Gln)⊗Q.

Let J = A(Gln)∩ I, then it is easy to check that the comultiplication of A(Gln)
satisfies

mGln(J) ⊂ A(Gln)⊗ J + J ⊗A(Gln)

and this tells us that mGln induces a comultiplication

m : A(Gln)/J → A(Gln)/J ⊗A(Gln)/J

which provides a group scheme structure. This means that we have extended
the group scheme G/Q to a group scheme over G/Z. The affine algebra A(G) =
A(Gln)/J. This extension depends on the choice of the embedding into Gln/Q
and it is called the flat extension. Then the base extension G ×Z Q = G/Q, this
base extension is called the generic fiber of G/Z.

We now may understand our arithmetic group Γ = G(Q) ∩ Gln(Z) as the
group G(Z) of Z valued points of a group scheme over Z. Since we know what
G(Z/mZ) is we can define congruence subgroups ΓH as inverse images of sub-
groups H ⊂ G(Z/mZ) under the projection G(Z)→ G(Z/mZ).

There is the special class of semi-simple or reductive group schemes. Roughly
speaking an affine group scheme G/Z is semi-simple (resp. reductive) , if its
generic fiber G ×Z Q is semi-simple (resp. reductive) and if for all primes p
the group scheme G ×Z Fp ( the reduction mod p) is a semi-simple ((resp.
reductive)) group scheme over Fp.

Of course the simplest example of a semi-simple (resp. reductive) group
(scheme) over Z is the group Sln/Z (resp. Gn/Z).

We can also construct semi-simple group-schemes by taking flat extensions
of orthogonal (resp. symplectic ) groups over Q, (see section1.2.1, example 2)
and 3). Here the symmetric (resp. alternating) form has to satisfy certain
arithmetic conditions (See chap4.pdf).

lattices
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1.2.2 Γ -modules

We consider modulesM (i.e. abelian groups) with an action of Γ, we want to
discuss briefly discuss some special classes of such Γ-modules.

The most important classes of Γ-modules are the modules of arithmetic
origin . To construct such modules we realise our arithmetic group as Γ =
G(Q) ∩ Gln(Z). Then we take any rational representation ρ : G/Q → Gl(V ),
where V is a finite dimensional Q− vector space. Now we look for finitely
generated submodulesM⊂ V such thatM⊗Q = V which are invariant under
the action of Γ. Such a module is a Γ-module of arithmetic origin.

It is not to difficult to show that given any finitely generated module M′
which is a full sublattice, i.e. M′ ⊗Q = V, we can find a congruence subgroup
Γ1 ⊂ Γ such that Γ1M′ =M′. Then

M =
⋂

γ∈Γ/Γ1

γM′

is a Γ− module of arithmetic origin..

A second class of Γ modules are those of congruence origin. To get such a
module we simply pick a congruence subgroup Γ(N) ⊂ Γ and then we simply
look at finitely generated abelian groups V with an action of Γ/Γ(N) on V .

We get some important examples of Γ modules of congruence origin if we
start from a Γ-module M of arithmetic origin. Then we choose an integer N
and consider the Γ module M⊗ Z/NZ. On this module Γ(N) acts trivially,
hence this module is a Γ/Γ(N) module of congruence origin.

We go back to the more sophisticated point of view above, our arithmetic
group is the group Γ = G(Z) of Z valued points of the flat extension G/Z.

Now we pick a torsion free finitely generated module M, we know what it
means thatM is a G/Z module: It simply means that for any commutative ring
B with identity we have a B-linear action of G(B) on the B-moduleM⊗B, or
in other words we have a homomorphism G(B)→ GlB(M⊗Z B). Of course we
require that this action is functorial in B.

For this book -especially for the first half- the group scheme Gl2/Z plays
a dominant role. In this case the irreducible representations of Gl2 ×Z Q are
well known. We consider the Q vector space of homogenous polynomials in two
variables and of degree n

Mn,Q := {P (X,Y ) =

n∑
ν=0

aνX
νY n−ν |aν ∈ Q}. (1.56)

We choose an integer m define an action of Gl2(Q):(
a b
c d

)
P (X,Y ) = P (aX + cY, bX + dY ) det(

(
a b
c d

)
)m, (1.57)

this gives us the Gl2/Q-moduleMn,Q[m].
But now it is easy to get Gl2/Z-modules, we simply define

Mn := {P (X,Y ) =

n∑
ν=0

aνX
νY n−ν |aν ∈ Z} (1.58)
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and then we define the Gl2/Z modules Mn[m] by the same formula as above.
If n is even we will sometimes work with the module M[−n2 , . because in this
case the center acts trivially.

At this point a small remark is in order. If look atMn[m] only as Gl2(Z)-
module then the module ”knows” what n is, clearly n = rank(Mn) − 1. But
this Gl2(Z)- module does not ”know” what m is. The only information we get
is (

−1 0
0 −1

)
P = (−1)mP

and from this we only get the value of m mod 2. But if we considerMn[m] as
module for the group scheme Gl2/Z then the module also knows the value of m
because then we know (

α 0
0 α

)
P = αmP

for any α ∈ R× in any commutative ring R with identity. If n is even we may
consider the moduleMn[−n2 ], this is a module for PGl2/Z = Gl2/Gm.

In section 4.1.1 we discuss the corresponding situation for groups Gl2(Z[
√
−d]).

1.2.3 The locally symmetric spaces

We start from a semisimple group G/Q. To this group we attached the group
of real points G(R) = G∞. In G∞ we have the connected component G0

∞ of the
identity and in this group we choose a maximal compact subgroup K∞. The
quotient space X = G∞/K∞ is a symmetric space which now may have several
connected components. On this space we have the action of an arithmetic group
Γ.

We have a fundamental fact:
The action of Γ on X is properly discontinuous, i.e. for any point x ∈ X

there exists an open neighbourhood Ux such that for all γ ∈ Γ we have

γUx ∩ Ux = ∅ or γx = x.

Moreover for all x ∈ X the stabilizer

Γx = {γ | γx = x}

is finite.
This is easy to see: If we consider the projection p : G(R)→ G(R)/K∞ = X,

then the inverse image p−1(Ux) of a relatively compact neighbourhood Ux of x =
g0K∞ is of the form Vg0 ·K∞, where Vg0 is a relatively compact neighbourhood
of g0. Hence we look for the solutions of the equation

γvk = v′k′, γ ∈ Γ, v, v′ ∈ Vg0 , k, k′ ∈ K∞.

Since Γ is discrete in G(R) there are only finitely many possibilities for γ and
they can be ruled out by shrinking Ux with the exception of those γ for which
γx = x. If γx = x this means that γg0K∞ = g0K∞ and hence γ ∈ Γ∩g0K∞g−10

this intersection is a compact discrete set, hence finite.
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If Γ has no torsion then the projection

π : X −→ Γ\X

is locally a C∞-diffeomorphism. To any point x ∈ Γ\X and any point x̃ ∈ π−1(x)
we find a neighbourhood Ux̃ such that

π : Ux̃−̃→Ux.

Hence the space Γ\X inherits the Riemannian metric and the quotient space
is a locally symmetric space . In the following we will denote the dimension of
Γ\X by d, i.e. d = dim(Γ\X).

If our group Γ has torsion, then a point x̃ ∈ X may have a nontrivial
stabilizer Γx̃. Then it is not difficult to prove that x̃ has a neighbourhood Ux̃
which is invariant under Γx̃ and that for all ỹ ∈ Ux̃ the stabilizer Γỹ ⊂ Γx̃. This
gives us a diagram

Ux̃ −−−−−−→ Γx̃\Ux̃ = Uxy y
X

π−−−−−−→ Γ\X

i.e. the point x ∈ Γ\X has a neighbourhood which is the quotient of a neigh-
bourhood Ux̃ by a finite group.

In this case the quotient space Γ\X may have singularities. Such spaces are
called orbifolds. They have a natural stratification. Any point x defines a Γ
conjugacy class [Γx̃] of finite subgroups Γx̃ ⊂ Γ. On the other hand a conjugacy
class [c] of finite subgroups H ⊂ Γ defines the (non empty ) subset (stratum)
Γ\X([c]) of those points x ∈ Γ\X for which Γx̃ ∈ [c].

These strata are easy to describe. We observe that for any finite H ⊂ Γ the
fixed point set XH intersected with a connected component of X is contractible.
Let x0 ∈ XH be a point with Γx0

= H. Then any other point x ∈ XH is of the
form x = gx0 with g ∈ G(R). This implies that g ∈ N(H)(R), where N(H) is
the normaliser of H, it is an algebraic subgroup. Then N(H)(R) ∩K∞ = KH

∞
is compact subgroup, put ΓH = Γ ∩N(H)(R), and we get an embedding

ΓH\XH ↪→ Γ\X.

This space contains the open subset (ΓH\XH)(0) of those x where H ∈ [Γx̃]
and this is in fact the stratum attached to the conjugacy class of H.

We have an ordering on the set of conjugacy classes, we have [c1] ≤ [c2] if
for any H1 ∈ [c1] there exists a subgroup H2 ∈ [c2] such that H1 ⊂ H2. These
strata are not closed, the closure Γ\X([c]) is the union of lower dimensional
strata.

If we start investigating the stratification above we immediately hit upon
number theoretic problems. Let us pick a prime p and we consider the group
Γ = Slp−1[Z] and the ring of p-th roots of unity Z[ζp] as a Z-module is free of
rank p− 1 and hence we get an element



40 CHAPTER 1. BASIC NOTIONS AND DEFINITIONS

ζp ∈ Sl(Z[ζp]) = Slp−1(Z)

and hence a cyclic subgroup of order p. But clearly we have many conjugacy
classes of elements of order p in Γ because any ideal a is a free Z-module. If we
want to understand the conjugacy classes of elements of order p or the conjugacy
classes of cyclic subgroups of order p in Slp−1(Z) we need to understand the ideal
class group. In the next section we will discuss some simple examples.

These quotient spaces Γ\X attract the attention of various different kinds of
mathematicians. They provide interesting examples of Riemannian manifolds
and they are intensively studied from that point of view. On the other hand
number theoretic data enter into their construction. Hence any insight into the
structure of these spaces contains number theoretic information. This is the
main theme of this book.

It is not difficult to see that any arithmetic group Γ contains a normal
congruence subgroup Γ′ which does not have torsion. This can be deduced
easily from the exercise .... at the end of this section. Hence we see that Γ′\X
is a Riemannian manifold which is a finite cover of Γ\X with covering group
Γ/Γ′.

We discuss special examples below.

1.2.4 Low dimensional examples

We consider the action of the group Γ = Sl2(Z) ⊂ Sl2(R) on the upper half
plane

X = H = {z | ℑ(z) = y > 0} = Sl2(R)/SO(2).

We want to describe the quotient Γ\H, for this purpose we construct further
down the fundamental domain F

As we explained in .section 1.1.9 we may consider the point z = x+ iy as a
positive definite euclidian metric on R2 up to a positive scalar. We saw already
that this metric can be interpreted as the metric on C induced on the lattice
Ω = ⟨1, z⟩. The action of Sl2(Z) on the upper half plane corresponds to changing
the basis 1, z of Ω into another basis and then normalising the first vector of the
new basis to length equal one. This means that under the action of Sl2(Z) we
may achieve that the first vector 1 in the lattice is of shortest length. In other
words Ω = ⟨1, z⟩ where now |z| ≥ 1.

Since we can change the basis by 1 → 1 and z → z + n. We still have
|z + n| ≥ 1. Hence see that this condition implies that we can move z by these
translation into the strip −1/2 ≤ ℜ(z) ≤ 1/2 and since 1 is still the shortest
vector we end up in the classical fundamental domain:

F = {z| − 1/2 ≤ ℜ(z) ≤ 1/2, |z| ≥ 1} (1.59)

Two points z1, z2 ∈ F are inequivalent under the action of Sl2(Z) unless they
differ by a translation. i.e.

z1 = −1

2
+ it , z2 = z1 + 1 =

1

2
+ it, (1.60)
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or we have |z1| = 1 and z2 = − 1
z1
. Hence the quotient Sl2(Z)\H is given by the

following picture

......................................................................................................................................................................................................................................
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The circles are actually the images of horizontal lines iy + x where x ∈ R or
x ∈ [9, 1] in the quotient. The picture is a little bit misleading because it does
not reflect the Riemannian metric: The circumference of the circle at level iy is
1
y .

It turns out that this quotient is actually a Riemann surface, i.e. the finite
stabilisers at i and ρ do not produce singularities. As a Riemann surface the
quotient is the complex plane or better the projective line P1(C) minus the point
at infinity.

It is clear that the points i and ρ = + 1
2 +

1
2

√
−3 in the upper half plane are

-up to conjugation by an element γ ∈ Sl2(Z)- the only points with non-trivial
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stabiliser . Actually the stabilisers are given by

Γi =

{(
0 1
−1 0

)}
, Γρ =

{(
−1 1
−1 0

)}
.

The second example is given by the group Γ = Sl2(Z[i]) ⊂ Sl2(C) = G∞ =
RC/R(Gl2/C)(R) (See(1.1) . Here we should remember that the choice of G∞
allows a whole series of arithmetic groups. For any imaginary quadratic exten-
sion K = Q(

√
−d) with OK as its ring of integers we may embed K into C and

get
Sl2(OK) = Γ ⊂ G∞.

If the number d becomes larger then the structure of the group Γ becomes
more and more complicated. We only discuss the simplest case OK = Z[i]. We
will construct a fundamental domain for the action of Γ on the three-dimensional
hyperbolic space H3 = C× R>0.

We identify H3 with the space of positive definite hermitian matrices

X = {A ∈M2(C) | A =t A,A > 0,det(A) = 1}.

We consider the lattice

Ω = Z[i] ·
(
1

0

)
+ Z[i] ·

(
0

1

)
in C2 and view A as a hermitian metric on C2 where C/Ω has volume 1. Let
e′1 = (αβ ) be a vector of shortest length. We can find a second vector e′2 =

(
γ
δ

)
so that det

(
α β
γ δ

)
= 1. This argument is only valid because Z[i] is a principal

ideal domain. We consider the vectors e′2 + νe′1 where ν ∈ Z[i]. We have

⟨e′2 + νe′1, e
′
2 + νe′1⟩A = ⟨e′2 + νe : 1′⟩A + ν⟨e′1, e′2⟩A + ν⟨e′2, e′1⟩a + νν⟨e′1, e′1⟩A.

Since we have the euclidean algorithm in Z[i] we can choose ν such that

−1

2
⟨e′1, e′1⟩ ≤ Re⟨e′1, e′2⟩A,ℑ⟨e′1, e′2⟩A ≤

1

2
⟨e′1, e′1⟩A.

If we translate this to the action of Sl2(Z[i]) on H3 then we find that every point
x = (z; ζ) ∈ H3 is equivalent to a point in the domain

F̃ = {(z, ζ) | −1

2
≤ Re(z),ℑ(z) ≤ 1

2
; zz + ζ2 ≥ 1}.

Since we have still the action of the matrix

(
i 0
0 −i

)
we even find a smaller

fundamental domain

F = {(z, ζ) | −1

2
≤ Re(z),ℑ(z) ≤ 1

2
; zz + ζ2 ≥ 1 and Re(z) + ℑ(z) ≥ 0}.

I also want to discuss the extension of our considerations to the case of the
reductive group Gl2(C). In such a case we have to enlarge the maximal compact
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Figure 1.1: Fundamental Domain

subgroup. In this case the group K̃ = Sl1(2) · C∗ = K · C∗ is a good choice
where C∗ is the centre of Gl2(C). Then we get

H3 = Sl2(C)/K = Gl2(C)/K̃

i.e. we have still the same symmetric space. But the group Γ̃ = Gl2(Z[i]) is still
larger. We have an exact sequence

1→ Γ→ Γ̃→ {iν} → 1.

The centre ZΓ̃ of Γ̃ is given by the matrices

{(
iv 0
0 iv

)}
. The centre ZΓ has

index 2 in ZΓ̃. Since the centre acts trivially on the symmetric space, hence the

above fundamental domain will be “cut into two halfes” by the action of Γ̃. the

matrices

(
iv 0
0 1

)
induce rotation of ν · 90◦ around the axis z = 0 and therefore

it becomes clear that the region

F0 = {(z, ζ) | 0 ≤ ℑ(z),Re(z) ≤ 1

2
, zz + ζ2 ≥ 1}

is a fundamental domain for Γ̃.
The translations z → z + 1 and z → z + i identify the opposite faces of F .

This induces an identification on F0, namely(
1

2
+ iy, ζ

)
−→

(
−1

2
+ iy, ζ

)
−→

(
y +

i

2
, ζ

)
.

On the bottom of the domain F0, namely

F0(1) = {(z, ζ) ∈ F0 | zz + ζ2 = 1}

we have the further identification

(z, ζ) −→ (iz, ζ).

Hence we see that the quotient space Γ̃\H3 is given by the following figure.
I want to discuss the fixed points and the stabilizers of the fixed points of Γ̃.

Before I can do that, I need some simple facts concerning the structure of Gl2.
The group Gl2(K) acts upon the projective line P1(K) = (K2 \ {0})/K∗.

We write
P1(K) = (K) ∪ {∞} ; K(xe1 + e2) = x,Ke1 =∞.

It is quite clear that the action of g =

(
α β
γ δ

)
∈ Gl2(K) is given by

gx =
αx+ β

γx+ δ
.

The action of Gl2(K) on P1(K) is transitive. For a point x ∈ P1(K) the stabilizer
Bx is clearly a linear subgroup of Gl2/K. If x = ∞, then this stabilizer is the
subgroup

B∞ =

{(
a u
0 b

)}
,
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and for x = 0 we get

B0 =

{(
a 0
u b

)}
.

It is clear that these subgroups Bx are conjugate under the action of Gl2(K).
They are in fact maximal solbable subgroups of Gl2.

If we have two different points x1, x2 ∈ P1(K), then this corresponds to a
choice of a basis where the basis vectors are only determined up to scalars. Then
the intersection of the two groups Bx1

∩Bx2
is a so-called maximal torus. If we

choose x1 = Ke1, x2 = Ke2, then

Bx1
∩Bx2

=

{(
a 0
0 b

)}
.

Any other maximal torus of the form Bx1 , B2 is conjugate to T0 under Gl2(K).
Now we assume K = C. We compactify the three dimensional hyperbolic

space by adding P1(C) at infinity, i.e.

H3 ↪→ H3 = H3 ∪ P1(C) = C× R≥0 ∪ {∞}.

(The reader should verify that there is a natural topology on H3 for which the
space is compact and for which Gl2(C) acts continuously.)

Now let us assume that a ∈ Gl2(C) is an element which has a fixed point on
H3 and which is not central. Since it lies in a maximal compact subgroup times
Cx we see that this element a can be diagonalized

a −→ g0 a g
−1
0 =

(
α 0
0 β

)
= a′

with α ̸= β and |α/β| = 1.
Then it is clear that the fixed point set for a′ is the line

Fix (a′) = {(0, ζ) | ζ ∈ R>0},

i.e. we do not get an isolated fixed point but a full fixed line.
The element a′ has the two fixed points ∞, 0 in P1(C), and hence ist defines

the torus T0(C). Then it is clear that

Fix(a′) = {(0, ζ) | ζ > 0} = T0(C) · (0, 1)

i.e. the fixed point set is an orbit under the action of T0(C).

1.2.5 Fixed point sets and stabilizers for Gl2(Z[i]) = Γ̃

If we want to describe the stabilizers up to conjugation, we can focus our atten-
tion on F0.

If we have an element γ ∈ Γ̃, γ not central and if we assume that γ has fixed
points on H3, then we know that γ defines a torus Tγ = centralizerGl2(γ) =
stabilizer of xγ , xγ′ ∈ P1(C). This torus is defined over Q(i), but it is not
necessarily diagonalizable over Q(i), it may be that the coordinates of xγ , xγ′

lie in a quadratic extension of F/Q(i). This is the quadratic extension defined
by the eigenvalues of γ.
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We look at the edges of the fundamental domain F0. We saw that they
consist of connected pieces of the straight lines

G1 = {(z, ζ) | z = 0}, G2 = {(z, ζ) | z = 1

2
}, G3 = {(z, ζ) | z = 1 + i

2
},

and the circles (these circles are euclidean circles and geodesics for the hyperbolic
metric)

D1 = {(z, ζ) | zz+ ζ2 = 1,ℑ(z) = Re(z)}, D2 = {(z, ζ) | zz+ ζ2 = 1,ℑ(z) = 0},

D3 = {(z, ζ) | zz + ζ2 = 1,Re(z) =
1

2
}.

The pair of points (∞, (z0, 0)) ∈ P1(C)× P1(C) has as its stabilizer

Tz0(C) =
(
1 z0
0 1

)(
α 0
0 β

)(
1 −z0
0 1

)
=

(
α z0(β − α)
0 β

)
,

the straight line {(z0, ζ) | ζ > 0} is an orbit u nder Tz0(C) and it consists of
fixed points for

Tz0(C)(1) =
{(

α z0(β − α)
0 β

) ∣∣∣∣ α/β ∈ S1

}
.

We can easily compute the pointwise stabilizer of G1, G2, G3 in Γ̃. They are

Γ̃G1
=

{(
iν 0
0 iµ

)}
=

{(
iν 0
0 i

)}
· zΓ̃

ΓG̃2
=

{(
iν 1−iν

2
0 1

) ∣∣∣∣1− iν2
∈ Z[i]

}
· ZΓ̃ =

{(
±1 1±1

2
0 1

)}
· ZΓ̃

ΓG̃3
=

{(
iν (1−iν)(1+i)

2
0 1

)}
· ZΓ̃,

where in the last case we have to take into account that (1−iν)(1+i)
2 ∈ Z[i] for

all ν.
Hence modulo the centre ZΓ̃ these stabilizers are cyclic groups of order 4, 2, 4.

The arcs Di are also pointwise fixed under the action of certain cyclic groups,
namely

D1 =Fix

((
0 i
1 0

))
D2 =Fix

((
0 1
1 0

))
D3 =Fix

((
1 −1
1 0

))
,

and we check easily that these arcs are geodesics joining the following points in
the boundary

D1 runs from
√
i to −

√
i

D2 runs from i to − i

D3 runs from e = e
1πi
6 = e

πi
3 to ρ.
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The corresponding tori are

T1 =Stab(−1, 1) =
{(

α iβ
β α

)}
T2 =Stab(−

√
i,
√
i) =

{(
α β
β α

)}
T3 =Stab(ρ, ρ) =

{(
δ − β β
−β δ

)}
.

The torus T2 splits over Q(i), the other two tori split over an quadratic extension
of Q(i).

Now it is not difficult anymore to describe the finite stabilizers and the
corresponding fixed point sets. If x ∈ H3 for which the stabilizer is bigger than
ZΓ̃, then we can conjugate x into F0. It is very easy to see that x cannot lie
in the interior of F0 because then we would get an identification of two points
nearby x and hence still in F0 under Γ̃.

If x is on one of the lines D1, D2, D3 or on one of the arcs G1, G2, G3 but not
on the intersection of two of them, then the stabilizer Γx is equal to ZΓ̃ times
the cyclic group we attached to the line or the arc earlier. Finally we are left
with the three special points

x12 =D1 ∩D2 ∩G1 = {(0, 1)}

x13 =D1 ∩D3 ∩G3 =

{(
1 + i

2
,

√
2

2

)}

x23 =D2 ∩D3 ∩G2 =

{(
1

2
,

√
3

2

)}
.

In this case it is clear that the stabilizers are given by

Γ̃x12 =⟨
(
0 i
1 0

)
,

(
i 0
0 1

)
⟩ = D4

Γ̃x13
=⟨
(
0 i
1 0

)
,

(
1 −1
1 0

)
,

(
i 1
0 1

)
⟩ = S4

Γ̃x23
=⟨
(
0 1
1 0

)
,

(
1 −1
1 0

)
⟩ = S3.

1.2.6 Compactification of Γ\X
Our two special low dimensional examples show clearly that the quotient spaces
Γ\X are not compact in general. There exist various constructions to compactify
them.

If, for instance, Γ ⊂ Sl2(Z) is a subgroup of finite index, then the quotient
Γ\H is a Riemann surface. It can be embedded into a compact Riemann sur-
face by adding a finite number of points. this is a special case of a more general
theorem of Satake and Baily-Borel: If the symmetric space X is actually her-
mitian symmetric (this means it has a complex structure) then we have the
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structure of a quasi-projective variety on Γ\X. This is the so-called Baily-Borel
compactification. It exists only under special circumstances.

I will discuss the process of compactification in some more detail for our
special low dimensional examples.

Compactification of Sl2(Z)\H by adding points

Let Γ ⊂ Sl2(Z) be any subgroup of finite index. The group Γ acts on the rational
projective line P1(Q). We add it to the upper half plane and form

H = H ∪ P1(Q),

and we extend the action of Γ to this space. Since the full group Sl2(Z) acts
transitively on P1(Q) we find that Γ has only finitely many orbits on P1(Q).

Now we introduce a topology on H. We defined a system of neighbourhoods

of points p
q = r ∈ P1(Q). We define the Farey circles S

(
c, pq

)
which touch the

real axis in the point r = p/q (p, q) = 1 and have the radius c
2q2 . For c = 1 we

get the picture
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Let us denote byD
(
c, pq

)
= ∪c′:0<c′≤cS

(
c′, pq

)
the Farey disks. For c→ 0 these

Farey disks D
(
c, pq

)
define a system of neighbourhoods of the point r = p/q.

The Farey disks at ∞ ∈ P1(Q) are given by the regions

D(T,∞) = {z | ℑ(z) ≥ T}.

It is easy to check that an element γ ∈ Sl2(Z) which sends ∞ ∈ P1(Q) into the

point r = p
q sends D(T,∞) to D

(
1
T ,

p
q

)
. These Farey disks D(c, r) do not meet

provided we take c < 1. The considerations in 1.6.1 imply that the complement
of the union of Farey disks is relatively compact modulo Γ, and since Γ has
finitely many orbits on P1(Q), we see easily that

YΓ = Γ\H

is compact (which means of course also Hausdorff).
It is essential that the set of Farey circles D(c, r) and D

(
1
c ,∞

)
is invariant

under the action of Γ on the one hand and decomposes into several connected
components (which are labeled by the point r ∈ P1(Q)) on the other hand.
Hence

Γ\
⋃
r

D(c, r) =
⋃

Γri\D(c, ri)
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where ri is a set of representatives for the action of Γ on P1(Q) and where Γri
is the stabilizer of ri in Γ.

It is now clear that Γri\D(c, ri) is holomorphically equivalent to a punctured
disc and hence the above compactification is obtained by filling the point into
this punctured disc and this makes it clear that YΓ is a Riemann surface.

BSC

1.2.7 The Borel-Serre compactification of Sl2(Z)\H
There is another construction of a compactification. We look at the disksD(c, r)
and divide them by the action of Γr. For any point y ∈ S(c′, r) − {r} there
exists a unique geodesic joining r and y, passing orthogonally through S(c′, r)
and hitting the projective line in another point y∞ ( = −1/4 in the picture
below)
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If r =∞, then this system of geodesics is given by the vertical lines {y · i+ x |
x ∈ R}.. This allows us to write the set

D(c, r)− {r} = X∞,r × [c, 0)

where X∞,r = P1(R)−{r}. The stabilizer Γr acts D(c, r) and on the right hand
side of the identification it acts on the first factor, the quotient Γr\X∞,r is a
circle. Hence we can compactify the quotient

Γr\D(c, r)− {r} ↪→ Γr\X∞,r × [c, 0] (1.61)

This gives us a second way to compactify Γ\H, we apply this process to a finite
set of representatives of P1(Q) mod Γ.

There is a slightly different way of looking at this. We may form the union

H ∪
⋃
r

X∞,r = H̃

and topologize it in such a way that

D(c, r) = X∞,r × [c, 0) ⊂ X∞,r × [c, 0] (1.62)

is a local homeomorphism. Then we see that the compactification above is just
the quotient Γ\H̃ and the boundary is simply
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∂(Γ\H̄) = Γ\
⋃

r∈P1(Q

X∞,r. (1.63)

This compactification is called the Borel-Serre compactification. Its relation
to the Baily-Borel is such that the latter is obtained by the former by collapsing
the circles at infinity to a point.

It is quite clear that a similar construction applies to the action of a group
Γ ⊂ Sl2(Z[i]) on the three-dimensional hyperbolic space. The Farey circles will
be substituted by spheres S(c, α) which touch the complex plane {(z, 0) | z ∈
C} ⊂ H3 in the point (α, 0), α ∈ P1(Q(i)) and for α = ∞ the Farey sphere is
the horizontal plane S(∞, ζ0) = {(z, ζ0) | z ∈ C). An element γ ∈ Γ which maps
(0,∞) to α maps S(∞, ζ0) to S(c, α), where c = 1/ζ0. For a given α we may
identify the different spheres if we vary c and for any point α ∈ P1(Q(i)) we
define X∞,α = P1(C) \ {α}. Again we can identify

D(c, α) \ {α} = X∞,α × (0, c] ⊂ D(c, α) \ {α} = ∂(Γ\H) = X∞,α × [0, c]

The stabiliser Γα acts on D(c, α) \ {α} and again this yields an action on the
first factor. If we choose α =∞ then

ainfty

Γ∞ = {
(
ζ a
0 ζ−1

)
|ζ root of unity,a ∈ a∞} (1.64)

where a∞ is a free rank 2 module in Z[i]. If ζ does not assume the value i then
Γ∞\X∞,∞ is a two-dimensional torus, a product of two circles. If ζ assumes
the value i then Γ∞\X∞,∞ is a two dimensional sphere. If Γ = Sl2(Z[i]) then
a∞ = Z[i]. If course we get the same result for an arbitrary α.

Then we get an action of the group Γ on H̃3 = H3 ∪
⋃

α∈P1(K)

D(c, α) \ {α}

and the quotient is compact, the set of orbits of Γ on P1(Q(i)) is finite, these
orbits are called the cusps.

BSC0

1.2.8 The Borel-Serre compactification, reduction theory
of arithmetic groups

This section could be skipped in a first reading. For the particular groups Sl2/Q
or Sl2(Z[

√
−d) this compactification has been discussed in detail in the previous

sections. A reader who is interested in the specific applications to number theory
which will be discussed in the following chapters 2-5 only needs the results from
section 1.2.7.

The Borel-Serre compactification works in complete generality for any semi-
simple or reductive group G/Q. To explain it, we need the notion of a parabolic
subgroup of G/Q.

A subgroup P/Q ↪→ G/Q is parabolic if the quotient variety in the sense of
algebraic geometry is a projective variety. We mentioned already earlier that
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for the group Gl2/Q we have an action of Gl2 on the projective line P1 and
the stabilizers Bx of the points x ∈ P1(Q) are the so-called Borel subgroups of
Gl2/Q. They are maximal solvable subgroups and

Gl2/Bx = P1,

hence they are also parabolic.
More generally we get parabolic subgroups of Gln/Q, if we choose a flag on

the vector space V = Qn = Qe1 ⊕ · · · ⊕Qen. This is an increasing sequence of
subspaces

F : (0) = {(0)} = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vk = V.

The stabilizer P of such a flag is always a parabolic subgroup; the quotient
space

G/P = Variety of all flags of the given type,

where the type of the flag is the sequence of the dimensions ni = dimVi.
These flag varieties (the Grassmannians ) are smooth projective schemes

over Spec(Z) and this implies that any flag F is induced by a flag

FZ : (0) = {(0)} = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk = L = Zn (1.65)

where Li = Vi∩L, and of course Li⊗Q = Vi. This is the elementary fact which
will be used later.

If our group G/Q is the orthogonal group of a quadratic form

f(x1, . . . , xn) =

n∑
i=1

aix
2
i

with ai ∈ Q∗. Then we have to replace the flags by sequences of subspaces

F : 0 ⊂W1 ⊂W2 . . . ⊂W⊥2 ⊂W⊥1 ⊂ V,

where the Wi are isotropic spaces for the form f , i.e. f |Wi ≡ 0, and where the
W⊥i are the orthogonal complements of the subspaces. Again the stabilizers of
these flags are the parabolic subgroups defined over Q.

Especially, if the form f is anisotropic over Q, i.e. there is no non-zero
vector x ∈ Kn with f(x) = 0, then the group G/Q does not have any parabolic
subgroup over Q. This equivalent to the fact that G(Q) does not have unipotent
elements.

These parabolic subgroups always have a unipotent radical UP which is
always the subgroup which acts trivially on the successive quotients of the flag.
The unipotent radical is a normal subgroup, the quotient P/UP = M is a
reductive group again, it is called the Levi-quotient of P .

We go back to the group Gln/Q. It contains the standard maximal torus
whose R valued points are

T0(R) = {t =


t1 0 . . . 0
0 t2 . . . 0

0 0
. . . 0

0 0 0 tn

 | ti ∈ R×} (1.66)
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It is a subgroup of the Borel subgroup (maximal solvable subgroup or minimal
parabolic subgroup) whose R-valued points are

B0(R) = {b =


t1 u1,2 . . . u1,n
0 t2 . . . u2,n

0 0
. . . un−1,n

0 0 0 tn

 | ti ∈ R×} (1.67)

and its unipotent radical U0 consists of those b ∈ B0 where all the ti = 1. This
unipotent radical contains the one dimensional root subgroups

Ui,j = {



1 0 . . . 0 0
0 1 . . . 0 0

0 0
. . . x 0

0 0 0
. . . 0

0 0 0 0 1

}, x ∈ R (1.68)

where i < j, these one dimensional subgroups are isomorphic to the one di-
mensional additive group Ga. They are normalized by the torus, for an element
t ∈ T (R) and xi,j ∈ Ui,j(R) = R we have

txi,jt
−1 = ti/tjxi,j . (1.69)

For i = 1, . . . , n, j = 1, . . . , n, i ̸= j (resp. i < J ) the characters αi,j(t) =
ti/tj are called the roots (resp. positive roots) of T0 in Gln. We denote these

systems of roots by ∆Gln (resp)∆Gln
+ . The one dimensional subgroups Ui,j , i ̸= j

are called the root subgroups.
Inside the set of positive roots we have the set of simple roots

π = πGln = {α1,2, . . . , αi,i+1, . . . , αn−1,n} (1.70)

If we pass to the semi-simple subgroup Sln/Q then the torus and the Borel-

subgroup has to be replaced by T
(1)
0 , B

(1)
0 , where we have

∏
i ti = 1. The system

of roots does not change, we have π = πGln = πSln .
We change the notation slightly, for i = 1, . . . , n − 1 we define αi := αi,i+1

then for i < j we get αi,j = αi + . . . αj−1, and π = {α1, α2, . . . , αn−1}
The Borel subgroup B0 is the stabilizer of the ”complete” flag

{0} ⊂ Qe1 ⊂ Qe1 ⊕Qe2 ⊂ · · · ⊂ Qe1 ⊕Qe2 ⊕ · · · ⊕Qen, (1.71)

the parabolic subgroups P0 ⊃ B0 are the stabilizers of ”partial” flags

{0} ⊂ Qe1 ⊕ · · · ⊕Qen1
⊂ Qe1 ⊕ · · · ⊕Qen1

⊕Qen1+1 ⊕ · · · ⊕Qen1+n2
⊂ · · · ⊂ Qn.
(1.72)

The parabolic subgroup P0 also acts on the direct sum of the successive quotients

(Qe1 ⊕ · · · ⊕Qen1)
⊕

(Qen1+1 ⊕ · · · ⊕Qen1+n2)
⊕

. . . (1.73)

and this yields a homomorphism RP

rP0 : P0 →M0 = Gln1 ×Gln2 × . . . (1.74)
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hence M0 is the Levi quotient of P0. By definition the unipotent radical UP0
of

P0 is the kernel of r0. The semi-simple component will beM
(1)
0 = Sln1

×Sln2
×. . .

A parabolic subgroups P0 ⊃ B0 defines a subset

∆P0 = {αi,j ∈ ∆Gln | Ui,j ⊂ P0}

and the set decomposes int two sets

∆M0 = {αi,j | Ui,j and Uj,i ⊂ ∆P0}; ∆UP0 = ∆P0 \∆M0 . (1.75)

Intersecting this decomposition with the set πGln yields a disjoint decomposition

πGln = πM0 ∪ πU (1.76)

where πU = {αn1
, αn1+n2

, . . . , }. In turn any such decomposition of πGln yields
a well defined parabolic P0 ⊃ B0.

We define the index of a parabolic subgroup this is the number

d(P ) = #πU (1.77)

The proper maximal parabolic subgroups are the ones with d(P ) = 1.

If we choose another maximal split torus T1 and a Borel subgroup B1 ⊃ T1
then this amounts to the choice of a second ordered basis v1, v2, . . . , vn the vi
are given up to a non zero scalar factor. We can find a g ∈ Gln(Q) which maps
e1, e2, . . . , en to v1, v2, . . . , vn, and hence we can conjugate the pair (B0, T0) to
(B1, T1) and hence the parabolic subgroups containing B0 into the parabolic
subgroups containing B1. The conjugating element g also identifies

iT0,B0,T1,B1
: X∗(T0)

∼−→ X∗(T1)

and this identification does not depend on the choice of the conjugating element
g. This allows us to identify the two set of positive simple roots πGln ⊂ X∗(T0)
and π ⊂ X∗(T1). Eventually we can speak of the set π of simple roots of Gln.
Hence we have the fundamental fact

The Gln(Q) conjugacy classes of parabolic subgroups P/Q are in one to one
correspondence with the subsets πM ⊂ π. Then number of elements in π∖πM =
πU is called the rank of P, the set πU is called the type of P.

We will denote the unipotent radical of P by UP and the reductive quotient
of P by UP will be denoted byMP = P/UP . Later we will also use a slightly dif-
ferent notation: If we discuss a given P then we put U(= UP ) for the unipotent
radical and M = P/U for the reductive quotient. Then we also put π′ = πU .

We formulated this result for Gln/Q but we can replace Q by any field k
and Gln by any reductive group G/k. We have to define the system of relative
simple positive roots πG for any G/k (See [B-T]). We also refer to section 1.1.5.

The group G/k itself is also a parabolic subgroup it corresponds to π′ = π.
We decide that we do not like it and hence we consider only proper parabolic

subgroups P ̸= G, i.e. π′ ̸= ∅. We can define the Grassmann variety Gr[π
′] of

parabolic subgroups of type π′ This is a smooth projective variety and Gr[π
′](Q)

is the set of parabolic subgroups of type π′.
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There is always a unique minimal conjugacy class it corresponds to π′ = ∅.
(In our examples this minimal class is given by the maximal flags, i.e. those
flags where the dimension of the subspaces increases by one at each step (until
we reach a maximal isotropic space in the case of an orthogonal group)). The
(proper) maximal parabolic subgroups are those for which π′ = π \ {αi}, i.e.
πUPi = {αi}

For any parabolic subgroup P/Q ⊂ G/Q we consider the character module
X∗(P ) := Hom(P/Q,Gm). Since we do not have any non trivial homomor-
phisms from the unipotent UP toGm we have Hom(P/Q,Gm) = Hom(MP ,Gm).

The reductive quotient MP = M
(1)
P · CP where CP is the central torus und

M
(1)
P the semi-simple part ( the derived group). The quotient MP /M

(1)
P = C ′P

is a torus and CP → C ′P is an isogeny. Hence we have

Hom(P/Q,Gm)⊗Q = Hom(MP ,Gm)⊗Q = Hom(CP ,Gm)⊗Q = Hom(C ′P ,Gm)⊗Q
(1.78)

For a maximal parabolic subgroup P of type π′ = {αi} we consider the mod-
ule Hom(P,Gm)⊗Q ⊂ X∗(T )⊗Q. Of course it always contains the determinant
and

Hom(P,Gm)⊗Q = Qγi ⊕Qdet

where γi is

γi(t) = (

ν=i∏
ν=1

tν) det(t)
−i/n. (1.79)

These γi are called the dominant fundamental weights.
If our maximal parabolic subgroup is P/Q is defined as the stabilizer of a

flag 0 ⊂ W ⊂ V = Qn, then the unipotent radical is U = Hom(V/W,W ).
An element y ∈ P (Q) induces linear maps yW , yV/W and hence Ad(y) on U =
Hom(V/W,W ). We get a character γP (y) = det(Ad(y)) ∈ Hom(P,Gm) which
is called the sum of the positive roots. An easy computation shows that

nγi = γP (1.80)

We add points at infinity to our symmetric space: We consider the disjoint

union ∪π ̸=πG
Gr[π

′](Q) and form the space

X = X ∪
⋃
π′ ̸=∅

Gr[π
′](Q).

This is the analogue of or H ∪ P1(Q) in our first example, it is now more
complicated because we have several Grassmannians, and we also have maps

rπ1,π2
Gr[π1](Q)→ Gr[π2](Q) if π2 ⊂ π1.

Our first aim is to put a topology on this space such that Γ\X becomes a
compact Hausdorff space.

In our first example we interpreted the Farey circle D
(
c, pq

)
with 0 < c < 1

as an open subset of points in H, which are close to the point p
q , but far away

from any other point in P1(Q).
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The point of reduction theory is that for any parabolic P ∈ Gr[π
′](Q) (here

we also allow P = G) we will define open sets

XP (cπ′ , r(cπ′)) ⊂ X (1.81)

which depend on certain parameters cπ′ , r(c)π′ The points in XP (cπ′ , r(cπ′))
should be viewed as the points, which are ”very close” to the parabolic subgroup
P (controlled by cπ′) but ”keep a certain distance” (controlled by r(cπ′)) to the
parabolic subgroups Q ̸⊃ P. They are the analogues of the Farey circles. We
will see:

a)This system of open sets is invariant under the action Gln(Z)

b) For P = G the set XG(∅, r0) is relatively compact modulo the action of
Gln(Z).

c) Any subgroup Γ ⊂ Gln(Z) has only finitely many orbits on any Gr[π
′](Q)

d) For a suitable choice of the parameters cπ′ , and r(cπ′) we have :

X =
⋃
P

XP (cπ′ , r(cπ′)) = XG(∅, r0) ∪
⋃

P :Pproper

XP (cπ′ , r(cπ′))

and if P and P1 are conjugate and P ̸= P1 thenX
P (cπ′ , r(cπ′))∩XP1(cπ′ , r(cπ′)) =

∅.

Let us assume that we have constructed such a system of open sets, then c)
and d) impliy that for a given type π′ we have

Γ\
⋃

P :type(π′)=π

XP (cπ′ , r(cπ′)) =
⋃

ΓPi\XPi(cπ′ , r(cπ′))

where {. . . , Pi, . . . } = Σ(π,Γ) is a set of representatives of Gr[π
′](Q) modulo the

action of Γ and ΓPi
= Γ ∩ Pi(Q).

This tells us that we have a covering

Γ\X = Γ\XG(∅, r0) ∪
⋃
π′ ̸=∅

⋃
P∈Σ(π′,Γ)

ΓP \XP (cπ′ , r(cπ′)) (1.82)

The philosophy of reduction theory is that Γ\XG(∅, r0) is relatively compact
and that we have an explicit description of the sets ΓP \XP (cπ′ , r(cπ′)) as fiber
bundles with nil manifolds as fiber over the locally symmetric spaces ΓM\XM .

We give the definition of the sets XP (cπ′ , r(cπ′)). We stick to the case that
G = Gln/Q and Γ ⊂ Γ0 = Gln(Z) is a (congruence) subgroup of finite index.
We defined the positive definite bilinear form (See 1.48)

B̃Θx
= − 1

2n
BΘx : gR × gR → R
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and we have the identification gR
∼−→ T

G(R)
e , and hence we get a euclidian metric

on the tangent space T
G(R)
e at the identity e. This extends to a left invariant

Riemannian metric on G(R), we denote it by dΘx
s2. Hence we get a volume

form dΘx

volH
on any closed subgroup H(R) ⊂ G(R).

For any point x ∈ X and any parabolic subgroup P/Q with unipotent radical
U/Q) we define

pP (P, x) = volU
Θx(Γ0 ∩ U(R))\U(R)) (1.83)

For the Arakelow-Chevalley scheme (Gln/Z,Θ0) See(1.1.8) we have that
B̃Θ0

(Ei,j) = 1. We have by construction

Ui,j(Z)\Ui,j(R) = R/Z (1.84)

and under this identification Ei,j maps to ∂
∂x . Hence we get

dΘ0

volUi,j
(Ui,j(Z)\Ui,j(R)) = 1

and from this we get immediately

Proposition 1.2.1. For any parabolic subgroup P0 containing the torus T0 we
have

pP (P0,Θ0) = 1.

Let (L,< , >x) be an Arakelow vector bundle and (Gln,Θx) the correspond-
ing Arakelow group scheme (of type Gln ) let

FZ : (0) = {(0)} = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk = L = Zn

be a flag and P/Z the corresponding parabolic subgroup. Then we have the
homomorphism

rP : P/ Spec(Z)→M/Z =

i=k∏
i=1

Gl(Li/Li−1) (1.85)

with kernel UP /Z. The metric < , >x on L⊗R yields an orthogonal decompo-
sition

L⊗ R =

i=k⊕
i=1

Li/Li−1 ⊗ R

and hence an Arakelow bundle structure (Li/Li−1, (Θx)i) for all i, and therefore
an Arakelow group scheme structure on M/Z.

Hence we get

Proposition 1.2.2. If (Gln,Θ) is an Arakelow group scheme then Θ induces
an Arakelow group scheme structure ΘM on any reductive quotient M = P/U.

Definition : A pair (Gln/Z,Θ) is called stable (resp. semi stable) if for
any proper parabolic subgroup P/Q ⊂ Gln/Q we have

pP (P,Θ) > 1 resp.pP (P,Θ) ≥ 1 (1.86)
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In our example in (1.2.6) the stable points are those outside the union of the
closed Farey circles.

To get a better understanding of these numbers we have to do some com-
putations with roots and weights. Let us start from an Arakelow vector bundle
(L = Zd, < , >) and let us assume that L is equipped with a complete flag

F0 = {)} = L0 ⊂ L1 ⊂ · · · ⊂ Ld−1 ⊂ Ld (1.87)

which defines a Borel subgroup B/Z. The quotients (Li/Li−1, < , >i) are
Arakelow line bundles over Z or in a less sophisticated language they are free
modules of rank one and the generating vector ēi has a length

√
< ēi, ēi >i. This

length is of course also the volume of (Li/Li−1 ⊗ R)/(Li/Li−1).
The unipotent radical U/Z ⊂ B/Z has a filtration {(0)} ⊂ V1 ⊂ . . . , Vn(n−1)/2−1 ⊂

Vn(n−1)/2 = U by normal subgroups, the successive quotients are isomorphic to
Ga and the torus T = B/U acts by a positive root αi,j and this is a one to
one correspondence between the subquotients and the positive roots. Then it is
clear: If ν corresponds to (i, j) then

(Vν/Vν+1,Θν) = (Li/Li−1, < , >i)⊗ (Lj/Lj−1, < , >j)
−1. (1.88)

Moreover the quotients (Vν/Vν+1,Θν) depend only on the conformal class
of < , > and hence only on the resulting Cartan involution Θ.

The unipotent subgroup U/Z contains the one parameter subgroup Ui,j/Z
and this one parameter subgroup maps isomorphically to (Vν/Vν+1). Hence our
construction defines the Arakelow line bundle (Ui,j ,Θi,j).

If we now define nαi,j (B, x) = volΘi,j (Ui,j(R)/Ui,j(Z)) then it is clear that

pB(B, x) =
∏
i<j

nαi,j (B, x) (1.89)

If P ⊃ B then its unipotent radical UP ⊂ U and we defined the set ∆UP as
the set of positive roots for which Ui,j ⊂ UP . Then we have

pP (B, x) =
∏

(i,j)∈∆UP

nαi,j (B, x) (1.90)

Here it is important to notice the right hand side does not depend on the choice
of B ⊂ P.

We follow a convention and put 2ρP =
∑

(i,j)∈∆UP αi,j so that ρP is the half

sum of positive roots in in the unipotent radical. Formula (1.80) tells us that

for any maximal parabolic subgroup Pi0 rhoP

2ρPi0
=

∑
i≤i0,j≥i0+1

αi,j = nγi0 . (1.91)

For any γ =
∑
αi,i+1 ⊗ zi ∈ X∗(T )⊗ C we define the homomorphism

|γ| : T (R)→ C× : |γ| : t→
∏
i

|αi,i+1(t)|zi (1.92)
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Since the numbers nαi,j
(B, x) are positive real numbers we define for any

nγ(B, x) =

n−1∏
i=1

nαi,j
(B, x). (1.93)

Here we see that the second argument is a Borel-subgroup B. But if the above
character γ : B(R)→ R×>0 extends to a character γ : P (R)→ R×>0 then we can
define

nγ(P, x) := nγ(B, x)

and this number only depends on P and not on the Borel subgroup B ⊂ P.
The characters in γ ∈ X∗(T ) for which |γ| extend to P (R)are exactly the lin-
ear combinations (See (1.95) below) γ =

∑
αi∈πU xiγi. The characters γP =∑

αi∈πU riγi where the ri > 0 are rational numbers. Let Pi be the maximal
parabolic subgroup of type π \ {αi} containing P then the above formula im-
plies that

pP (P, x) =
∏

αi∈πU

nγi(Pi, x)
ri =

∏
αi∈πU

pPi
(Pi, x)

ri
n (1.94)

This tells us
The Arakelow scheme (Gln/Z,Θ) is stable if for all maximal parabolic sub-

groups pPi(Pi,Θ) = nγi(Pi,Θ)n > 1.

We need a few more formulas relating roots and weights. For any parabolic
subgroup we have the division of the set of simple roots into two parts

π = πM ∪ πUP .

This induces a splitting of the character module split

X∗(T )⊗Q =
⊕

αi∈πM

Qαi ⊕
⊕

αi∈πUP

Qγi (1.95)

where γi is the dominant fundamental weight attached to αi (See (1.79)).
If now αi ∈ πUP then we can project αi to the second component, this

projection

αPi = αi +
∑

αν∈πM

ci,ναν (1.96)

Here an elementary - but not completely trivial - computation shows that

ci,ν ≥ 0 (1.97)

Since αPi ∈ ⊕
⊕

αi∈πUP Qγi these characters extend to P (R) and hence nαP
i
(P, x)

is defined.

We state the two fundamental theorems of reduction theory
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Theorem 1.2.1. For any Arakelow group scheme (Gln,Θx) we can find a Borel
subgroup B ⊂ Gln for which

nαi
(B,Θx) = nαi

(B, x) <
2√
3
for all i = 1, . . . , n− 1

Theorem 1.2.2. For any Arakelow group scheme (Gln,Θ) we can find a a
unique parabolic subgroup P such that for all αi ∈ πUP we have

nαP
i
(P,Θ) < 1 and the reductive quotient (M,ΘM ) is semi stable.

The first theorem is due to Minkowski, the second theorem is proved in [Stu],
[Gray].

This parabolic subgroup is called the canonical destabilizing group. We
denote it by P (x), if (G, x) is semi stable then P (x) = G. This gives us a
dissection of X into the subsets

X =
⋃

P : parabolic subgroups of G/Q

X [P ] = {x ∈ X | P (x) = P} (1.98)

Clearly γX [P ] = X [γPγ−1], if we divide by the group Γ the we get

Γ\X =
⋃

P∈Par(Γ)

ΓP \X [P ] (1.99)

where Par (Γ) is a set of representatives of Γ conjugacy classes of parabolic
subgroups of Gln/Q. This is a decomposition of Γ\X into a disjoint union of
subsets. The subset Γ\X [Gln] is compact, it is the set of semi stable pairs
(x,Gln), the subsets ΓP \X [P ] for P ̸= G are in a certain sense ”open in some
directions” and ”closed in some other direction”. Therefore this decomposition
is not so useful for the study of cohomology groups.

To remedy this we introduce larger subsets. For a real number r, 0 < r < 1

we define Gstable

XGln(r) = {x ∈ X| nγα(P (x), x) > r, for all α ∈ πUP (x)). (1.100)

It contains the set of semi-stable (Gln, x) If we choose r < 1 but close to one
then some of the elements in XGln(r) may be unstable but only a ”little bit ”.

Together with the first theorem this has a consequence

Proposition 1.2.3. The quotient XGln(r) = Γ\XGln(r) is relatively compact
open subset of Γ\X. It contains the set of semi-stable (Gln, x).

Now we start from a parabolic subgroup P and let M = P/UP be its Levi-
quotient. Our considerations above also apply to M/Q. The group P (R) acts
transitively on X and we put (See (1.85))

XM = UP (R)\X and let qM : X → XM be the projection .

Here XM = M(R)/KM
∞ where KM

∞ is the image of P (R) ∩K∞ in M(R). Let
Z ⊂ M be the center of M, it is a (split) torus and as usual M (1) the semi
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simple component. Then we define XM(1)

= M (1)(R)/KM
∞ and if ΓM is the

image of P (R) ∩ Γ in M(R) then symM

ΓM\XM := ΓM\M
(1)

× Z(0)(R) (1.101)

where of course Z(0)(R) is the connected component of the identity of Z(R),
We change the notation and put

Z(0)(R) = Aπ′ = {(. . . , aα, . . . )α∈π′=πM∖πM |aα ∈ R×>0} (1.102)

For a simple roots α ∈ πM , and a Borel subgroup B̄ ⊂ M/Q and a point
xM = qM (x) we can define the numbers nα(B̄, xM ) essentially in the same way
as before and clearly

nα(B̄, xM ) = nα(B, x)

if B is the inverse image of B̄.

We have to be a little bit careful with the numbers pQ̄(Q̄, x
M ) because the

for the inverse image Q the unipotent radical UQ is larger than UQ̄. Therefore

we have to look at the dominant fundamental weights γMα ∈
⊕

αi∈πM Qαi, and
formulate the stability condition for xM in terms of these γMα :

The point xM is stable, if for all αi ∈ πM the inequality nγM
αi
(P̄αi

, xM , ) > 1

holds. Again we denote the destabilizing group by P (xM ).

Hence we see that for a number rM < 1 we can define regions

XM (rM ) = {xM |nγM
αi
(P̄αi , x

M ) > rM whenever P̄αi ⊃ P̄ (xM )} (1.103)

We choose numbers 0 < cP < 1, furthermore we choose a number r(cP ) < 1
and define

∗XP (cP , r(cP )) = {x| nαP (P, x) < cP for all α ∈ πUP ;xM ∈ XM (r(cP ))}
(1.104)

Proposition 1.2.4. For a given r(cP ) < 1 we can find numbers cP such that
for any x ∈ ∗XP (cP , r(cP )) the destabilising parabolic subgroup P (x) ⊂ P. The
same is true in the other direction: For a given 0 < cP < 1 we can find r < 1
such that for x ∈ ∗XP (cP , r)) the destabilising parabolic subgroup P (x) ⊂ P.

To see this we have to look at the destabilising subgroup Q̄ ⊂ (M,xM ). Its
inverse image Q ⊂ P is a parabolic subgroup of Gln. The reductive quotient
(M̄, xM̄ ) of Q is semi- stable. We want to show that Q is the destabilising
parabolic of (Gln, x). We have to show that

nαQ(Q, x) < 1 ∀ α ∈ πUQ = πUP ∪ πUQ̄ .

For α ∈ πUQ̄ this is true by definition. For α ∈ πUP we have

αP = α+
∑
β∈πM

aα,ββ and αQ = α+
∑

β′∈πM̄

a′α,β′β,
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where aα,β ≥ 0. The roots β ∈ πUQ̄ can be expressed in terms of the βQ̄ = βQ :

βQ = β +
∑

β′∈πM̄

a∗β,β′β′ (1.105)

and hence

αQ = αP −
∑

β∈πUQ̄

aα,ββ
Q +

∑
β′∈πM̄

cαβ′β′. (1.106)

The last sum is zero because αQ, αP , βQ are orthogonal to the module ⊕β′Zβ′.
We get the relation

nαQ(Q, x) = nαP (P, x, ) ·
∏

β∈πUQ̄

nβQ(Q, x)−aα,β . (1.107)

Now it comes down to show that wc

nαP (P, x) < cα, ∀ α ∈ πUP and nβQ(Q, x) > r, ∀β ∈ πUQ̄

=⇒ nαQ(P, x) < 1 ;∀ α ∈ πUP

(1.108)

This is certainly true if either the cα are small enough or if r is sufficiently close
to one. In this case we say that (P, c, r) is well chosen

Therefore we define

XP (cP , r(cP )) = {x ∈ ∗XP (cP , r(cP ))|P (x) ⊂ P} (1.109)

we have XP (cP , r(cP )) =
∗XP (cP , r(cP )), if (cP , r(cP )) is well chosen.

We claim that we can find a family of parameters

(. . . , (cP , r(cP )), . . . )P : parabolic over Q

where (cP , r(cP )) only depend on the type of P, such that we get a covering

COV

X =
⋃
P

XP (cP , r(cP ))) (1.110)

and hence
UD

Γ\X = Γ\
⋃
P

XP (cP , r(cP )) =
⋃

P∈Par(Γ)

ΓP \XP (cP , r(cP )) (1.111)

We change the notation slightly, since these numbers only depend on the type
π′ = πM = t(P ) we replace cP by cπ′ and r(cP ) by r(cπ′). We even go one step
further and denote a well chosen pair (cπ′ , r(cπ′)) simply by (cπ′).

To prove the claim we choose a number 0 < c∅ < 1. In this case r0 = r(c∅)
can be any number. Then we choose a number 0 < r1 < c∅. For any πi = {αi}
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we choose a cπi
< 1 such that (cπi

, r1) is well chosen. We continue and chose
0 < r2 < cπi

for all i and for any two element subset J ⊂ π we choose numbers
0 < cJ < 1 such that (cJ , r2) is well chosen. This goes until we reach top
parabolic.

Now we get a covering of X by the open sets XP (cπ, r(π)). To see this we
pick a point x ∈ X, we have to show that it lies in at least one of the sets
XP (cP , r(cP )). If it is not in X

Gln(rn−1) then we find a maximal parabolic Pi
such that nαi

(Pi, x) < cπ\{αi}. We project x to the point xMi ∈ XMi . If this
point is in XMi(rn−2) then x ∈ XPi(cπ\{αi}, rn−2) and we are done. If not we
apply our argument above to xMi and π′ = π \ {αi}. We continue the same
reasoning and at latest it stops for π′ = ∅.

It is clear that we can choose c+π , r(cπ′)+ a tiny bit larger and these numbers

are still well chosen. Then the closure Γ\
⋃
P X

P (cπ′ , r(cπ′)) ⊂ Γ\
⋃
P X

P (c+π′ , r(c
+
π′)).

We get a second covering by slightly larger open sets. This can be used to pro-
duce a partition of unity

Proposition 1.2.5. We can find a family of C∞ functions hP ≥ 0 which satis-
fies

a) hP restricted to ΓP \XP (cπ′ , r(cπ′) is identically equal to one
b)
∑
P hP = 1 and hP is zero outside of ΓP \XP (c+π′ , r(c

+
π′))

Proof. Well known

We have a very explicit description of these sets ΓP \XP (cπ′ , r(cπ′)). We
consider the evaluation map

nπ
′
: ΓP \XP (cπ′ , r(cπ′))→

∏
α∈π′(0, cα)

x 7→ (. . . , nαP (P, x), . . . )α∈π′

(1.112)

Of course we also have the homomorphism

|απ
′
| : P (R)→ {. . . , |αP |, . . . }α∈π′ (1.113)

and the multiplication by an element y ∈ P (R) induces an isomorphisms of
the fibers

(nπ
′
)−1(c1)

∼−→ (nπ
′
)−1(c2) if |απ

′
|(y) · c1 = c2

where the multiplication is taken componentwise. This identification depends
on the choice of y.

Delete up to signum
To get a canonical identification we use the geodesic action which is intro-

duced in the paper by Borel and Serre. We define an action ofA = (
∏
α∈π\π′ R×>0)

on X. This action depends on P and we denote it by

(a, x) 7→ a • x (1.114)

A point x ∈ X defines a Cartan involution Θx and then the parabolic sub-
group PΘx of G × R is opposite to P × R and P × R ∩ PΘx = Mx is a Levi
factor, the projection P →M induces an isomorphism
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ϕx :M × R ∼−→Mx. (1.115)

The character απ
′
induces an isomorphism

sx : A
∼−→ Sx(R)(0)

where Sx is the maximal Hence we Sx(R)(0) is the connected component of the
identity of the center Mx(R) ∩ Sln(R) and we put

a • x = sx(a)x

We have to verify that this is indeed an action. This is clear because for the
Cartan-involution Θa•x we obviously have

PΘx = PΘa•x .

It is also clear that this action commutes with the action of P (R) on X
because

ysx(a)x = syx(a)yx for all y ∈ P (R), x ∈ X.

It follows from the construction that the semigroup A− = {. . . , aν , . . . }- where
0 < aν ≤ 1 - acts via the geodesic action on XP (cπ, r(cπ′)) and that for a ∈ A−
we get an isomorphism

(nπ
UP

)−1(c1)
∼−→ (nπ

′
)−1(ac1).

This yields a decomposition

XP (cπ′ , r(cπ′)) = (nπ
UP

)−1(c0)×
∏
α∈π′

(0, cα]

where c0 is an arbitrary point in the product.
Since we know that |απ′ | is trivial on ΓP and since the action of P commutes

with the geodesic action we conclude

ΓP \XP (cπ′ , r(cπ′)) = ΓP \(nπ
′
)−1(c0)×

∏
α∈π′

(0, cα] (1.116)

signum
The roots α ∈ π′ factor over the reductive quotient M = P/UP and hence

we get a surjective homomorphism

|απ
′
| :M(R)→ Aπ′ :=

∏
α∈π′

R×>0.

Let M1(R) be the kernel of this homomorphism. This homomorphism also
yields an isomorphism between Z(R)(0) and Aπ′ and therefore we get a canonical
identification

M(R) =M1(R)×Aπ′ (1.117)

We put KM
∞ = P (R) ∩K∞ we identify it with its image in M1(R) and we get

again our symmetric space attached to M
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XM =M(R)/K∞
We have the projection map pP,M : X → XM where XM is the space of Cartan
involutions on the reductive quotient M. Hence we get a map

p∗P,M = pP,M × nπUP : X → XM ×Aπ′ (1.118)

The group UP (R) acts simply transitively on the fibers of this projection,

qP,M : ΓP \XP (cπ′ , r(cπ′))→ ΓM\XM (r(cP ))×
∏
α∈π′

(0, cα] (1.119)

is a fiber bundle with fiber isomorphic ΓU\U(R). If we pick a point x ∈ ΓM\XM (r(cP ))×∏
α∈π′(0, cα] then the identification of q−1P,M () with ΓU\U(R) depends on the

choice of a point x̃ ∈ XP (cπ′ , r(cπ′)) which maps to x.
This can now be compactified partially in the A direction we define the

closure

ΓP \XP (cπ′), r(cP ) := ΓP \(nπ
UP

)−1(c0)×
∏
α∈π′

[0, cπ′ ], (1.120)

and

∂ΓP \XP (cπ′ ,Ωπ) = ΓP \XP (cπ′ , r(cπ′)) \ ΓP \XP (cπ,Ωπ) (1.121)

this is equal to

∂ΓP \XP (cπ′ , r(cπ′) = ΓP \(nπ
UP

)−1(c0)× ∂(
∏

ν∈πG\π

[0, cπ])

where of course ∂(
∏
απ′ [0, cπ]) ⊂

∏
α∈π′ [0, cπ] is the subset where at least one

of the coordinates xα is equal to zero.
We form the disjoint union of of these boundaries over the π and set of

representatives of Γ conjugacy classes, this is a compact space. Now there is
still a minor technical point. If we have two parabolic subgroups Q ⊂ P then
the intersection XP (cP , r(cπ′) ∩XQ(cQ, r(cQ)) ̸= ∅. If we now have points

x ∈ ∂ΓP \XP (cπ, r(cπ′), y ∈ ∂ΓQ\XQ(cπ′ , r(cP ′)

then we identify these two points if we have a sequence of points {xn}n∈N which
lies in the intersection XP (cπ, r(cπ′))∩XQ(cπ′ , r(cP ′)) and which converges to x

in ΓP \XP (cπ, r(cπ′) and to y in ΓQ\XQ(cπ′ , r(cP ′). A careful inspection shows
that this provides an equivalence relation ∼, and we define

∂(Γ\X) =
⋃

π′,P∈Par(Γ)

∂ΓP \XP (cπ, r(cπ′)/ ∼ (1.122)

and the Borel-Serre compactification will be the manifold with corners

Γ\X = Γ\(X ∪
⋃

P :Pproper

XP (cπ′ , r(cπ′)). (1.123)
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We define a ”tubular” neighbourhood of the boundary we put

N (Γ\X)(c) = Γ\
⋃

P :Pproper

XP (cπ′ , r(cπ′)) (1.124)

where c stands for the collection of parameters cπ′ , r(cπ′). Then we define the
punctured tubular neighbourhood as

ptub

•
N (Γ\X)(c) = Γ\

⋃
P :Pproper

XP (cπ′ , r(cπ′)) = Γ\X ∩N (Γ\X) (1.125)

We also define the Borel-Serre stratification of the Borel-Serre boundary

∂(Γ\X̄) =
⋃
P

∂P (Γ\X̄) (1.126)

where ∂P (Γ\X̄)(r(cπ′)) is the the subset of ΓP \XP (cπ′ , r(cπ′) where aα = 0
for all α ∈ π′ and where we take the union over all l r(cπ′) > 0.

The projection qP,M extends to a fibration on the closure and restriction to
the boundary yields the fibration with fibre ΓU\U(R).

fibPM

qP,M (0) : ∂P (Γ\X̄)→ ΓM XM × {(0)} (1.127)

Eventually we want to use the above covering as a tool to understand co-
homology (See section ??) ) For this it is also necessary to understand the
intersections

XP1(cπ1
, r(cπ1

)) ∩ · · · ∩XPν (cπk
, r(cπk

)) (1.128)

Our proposition 1.2.4 implies that for any point x in the intersection the desta-
bilizing parabolic subgroup P (x) ⊂ P1 ∩ · · · ∩ Pk. Hence we see that the above
intersection can only be non empty if Q = P1∩ · · ·∩Pk is a parabolic subgroup.
Then πUQ = ∪kν=1π

UPν . Let M be the reductive quotient of Q.

Now we look at the product
∏
α∈πUQ R×>0, here it seems to be helpful to

identify it - using the logarithm - with RdQ :

log :
∏

α∈πUQ

R×>0
∼−→ RdQ (1.129)

We consider the map

NQ : XP1(cπ1
, r(cπ1

)) ∩ · · · ∩XPk(cπk
, r(cπk

))→ RdQ

NQ : x 7→ (. . . ,− log(nαQ(Q, x)), . . . )αQ∈πUQ

(1.130)

Consider a point x ∈ XPν (cπν
, r(cπν

)), for α ∈ πUPν we have

− log(nαPν (Pν , x)) ≥ − log(cπν
)
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We can express− log(nαPν (Pν , x)) as a linear combination of the− log(nαQ(Q, x),
with α ∈ πUQ . This means that the root α ∈ πUPν defines a half space H+

ν (α)
in RdQ and NQ(x) ⊂ H+

ν (α) in RdQ .
Now we assume that x is in the intersection (1.128). For the roots α ∈

π \πUPν we have the condition (1.103). For the roots α ∈ πUQ \πUPν this yields

− log(nγMν
α

(Pν , x)) ≤ − log(r(πν)).

Therefore we see that the image of NQ is contained in the intersection of a
finite number of half spaces, which are obtained from a finite family of hyper-
planes. These hyperplanes depend on the parameters cπν

, r(πν), let us call this
intersection C(c, r), it is a convex -possibly empty- subset of RdQ .

We investigate the restriction

NQ : XP1(cπ1
, r(cπ1

)) ∩ · · · ∩XPν (cπk
, r(cπk

))→ C(c, r)

We observe that the unipotent radical UQ(R) acts by left translations on the
intersection, we get a diagram

XP1(cπ1
, r(cπ1

)) ∩ · · · ∩XPν (cπk
, r(cπk

)) → C(c, r)

↓ pM

XM × RdQ → RdQ

(1.131)

Now it is clear from the definitions that the image of pM is a set

Im(pM ) = ΩM (c, r)× C(c, r)

where ΩM (c, r) ⊂ XM is a subset containing the set XM,st of semi stable points
and is described by certain inequalities as in (1.100). This subset is ΓM invariant
and ΓM\ΩM (c, r) is relatively compact.

Hence we see that we have essentially the same situation as in (1.119). The
map

qM : XP1(cπ1
, r(cπ1

)) ∩ · · · ∩XPν (cπk
, r(cπk

))→ ΓM\ΩM (c, r)× C(c, r)
(1.132)

is a fiber bundle with fiber isomorphic to ΓUQ
\UQ(R).

In the following we refer to the book of S. Helgason [51].
We mention an important property of the sets XP (cπ′ , r(cP )). We assume

that our symmetric space X is connected, then it is well known that it is convex,
any two points p, q ∈ X can be joined by a unique geodesic [p, q]. We say that a
subset U ⊂ X is convex if for any two points p, q ∈ U also the geodesic [p, q] ⊂ U.

Proposition 1.2.6. Let Ω ⊂ ΩM (c, r) be a convex subset. Then the inverse im-
age p−1M (Ω×C(c, r)) is a convex subset of XP1(cπ1

, r(cπ1
))∩· · ·∩XPν (cπk

, r(cπk
))

Proof. The assertion is easily reduced to the following:
Let P be a maximal parabolic subgroup, let M be its reductive quotient, let

α be the simple root not in πM and Ω ⊂ XM(1)

. Then the set for any choice
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of We choose a cα > 0 and claim that XP (cα,Ω) = {x ∈ X | nαP (P, x) ≤
cα ; qM (x) ∈ Ω} is convex .

To see this we pick a point x ∈ XP (cα,Ω), let T
X
x be the tangent space at

x. The action of G(R) on X gives us a surjective map Dx : gR → TXx0
and this

induces an isomorphism Dx : gR/kx
∼−→ TXx , here of course kx is the Lie-algebra

of Kx. We get the well known Cartan decomposition of the Lie-algebra

gR = kx ⊕ px where px = {V ∈ gR | Θx(V ) = −V } (1.133)

and we get the isomorphism Dx : px
∼−→ TXx . Starting from our parabolic

subgroup P we get a finer decomposition of px.
LetPR be theLie algebra of P×R. The intersection P×R ∩ Θx(P×R) =Mx

and we get for the Lie algebras mx = m(0)⊕a and this gives the finer decoposition
mx = kxM

⊕ p(Mx ⊕ a and then

px = p(Mx) ⊕ a⊕ {V −Θx(V )}V ∈u (1.134)

where V ∈ uR and a = RYA. We normalise YA such that dαP (YA) = 1.Then we
can write a tangent vector TXx as image of

Y = YM + aYA + (V − θ(V ));

We know that there is a unique geodesic c : R→ X starting at x with c′(t) = Y
The theorem 3.3 in Chapter IV in [51] says that this geodesic is c(t) = exp(tY ) ·
x. A tedious computation using the Iwasawa decomposition and the Campell-
Hausdorff formula shows that

− log(nαP (exp(tY ) · x) = − log(nαP (x)) + at− a2q(YA, V )t2 (1.135)

where q(YA, , V ) is a positive definite form in V.
If now x1 ∈ XP (cα,Ω) is a second point, We find a tangent vector Y =

YM + aYA + (V − θ(V )) such that t 7→ exp(tY ) · x is the geodesic joining x

and x1 = exp(Y ) · x. If we project these two points to XM(1)

then the images

x̄, x̄1 ∈ Ω and exp(t(YM )x̄ is the geodesic in XM(1)

. and hence for t ∈ [0, 1] we
have exp(t(YM )x̄. But now

− log(nαP (x)) ≥ − log(cα); − log(nαP (exp(Y )·x) = − log((nαP (x1) ≥ − log(cα).

Since the second derivative is always> 0 (see(1.135) it follows that− log(nαP (exp(tY )·
x) ≥ − log(cα) ∀ t ∈ [0, 1].

We formulated the main theorems of reduction theory only for Gln/Z because
we did not want to use to much from the theory of reductive groups ( for instance
[15] ). But for any ring of algebraic integers O and for any Chevalley scheme
G/O we can define the notion of Arakelow group scheme (G,Θx) and we can
define the numbers nαi(B,Θx). Then we can prove the two theorems 1.2.1,1.2.2.
For the first theorem we just copy the classical approach. For the second one
we refer to the paper [2] of Kai Behrends.

For any semi simple group G/K over a number field K/Q we can find a
normal extension F/K such that G×KF splits. Then we can extend G×KF to a
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split i simple group scheme (i.e. a Chevalley scheme) GF /OF . Then we also can a
group scheme GK/OK such that GK(OK) = G(K)∩G(OF ). Now any arithmetic
group Γ ⊂ G(K) is commensurable to G(OF ).With these preparations it is easy
to show

Theorem 1.2.3. (Borel-Harish-Chandra): If G/K is a reductive group and
Γ ⊂ G(Q) is an arithmetic subgroup then

Γ\X = Γ\G(R)/K∞

is compact if and only if G/K is anisotropic.

Let Γ̃ be a Gal(F/K) invariant arithmetic subgroup of G(OF ) and let us
assume that Γ = Γ̃ ∩G(K) is torsion free. Then an easy argument shows that

j : Γ\X → Γ̃\X̃

is injective. Then we have for x ∈ X the numbers and for any σ ∈ Gal(F/K)

nαi(j(x), B,G(OF ) ∼ nαi(j(x), B,G(OF )σ)

i.e. the ratio is bounded away from zero. And this implies that the destabilising
parabolic for G(OF ) equals the destabilising parabolic is invariant under the
Galois group, i.e. defined over K, provided it is very unstable. Hence it is clear:
If the image of j is not compact, then G/K is not anisotropic, and the theorem
follows.
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Chapter 2

The Cohomology groups

SHCOH

2.1 Cohomology of arithmetic groups as coho-
mology of sheaves on Γ\X.

We are now in the position to unify — at least for the special case of arithmetic
groups — the two cohomology theories from our chapter II and chapter IV in
[39].

We start from a semi simple group G/Q and we choose an arithmetic con-
gruence subgroup Γ ⊂ G(Q). Let X = G(R)/K∞ as before. A second datum
will be a Γ- moduleM, in principle this can be any Γ- module.

To such a Γ− module we attach a sheaf M̃ on Γ\X. This sheaf has values in
the category of abelian groups. For any open subset U ⊂ X we have to define
the group of sections M̃(U). We start from the projection

π : X −→ Γ\X (2.1)

and define sheaf

M̃(U) = {f : π−1(U)→M | f is locally constant f(γu) = γf(u)}. (2.2)

This is clearly a sheaf. For any point x ∈ Γ\X we can find a neighbourhood
Vx with the following property: We choose a point x̃ ∈ π−1(x), then x̃ has a
convex Γx̃-invariant neighbourhood Ux̃, for which γUx̃ ∩ Ux̃ ̸= ∅ ⇐⇒ γ ̸∈ Γx̃.
Then we put Vx = Γx̃\Ux̃. We call such a neighbourhood Vx an orbiconvex
neighbourhood. It is clear that

M̃(Vx) =MΓx̃ .

Since x has a cofinal system of neighbourhoods of this kind, we see that we get
an isomorphism

jx̃ : M̃(Vx) = M̃x−̃→MΓx̃ .

69
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If we are in the special case that Γ has no fixed points then we can cover Γ\X
by open sets U so that M̃/U is isomorphic to a constant sheaf MU . These
sheaves are called local systems If we have fixed points we call them orbilocal
systems

Sometimes we will denote the functor, which sendsM to M̃ by

shΓ : ModΓ → SΓ\X ,

this may be useful if we are dealing with varying subgroups Γ.

The motivations for these constructions are

1) The spaces Γ\X are interesting examples of so-called locally symmetric
spaces (provided Γ has no torsion). Hence they are of interest for differential
geometers and analysts.

2) If we have some understanding of the geometry of the quotient space Γ\X
we gain some insight into the structure of Γ. This will become clear when we
discuss the examples in (2.1.4)

3) The cohomology groups H•(Γ,M) are closely related - and in many cases
even isomorphic - to the sheaf cohomology groups H•(Γ\X,M̃). Again the
geometry provides tools to compute these cohomology groups in some cases
(again 2.1.4).

4) If the Γ-module M is a C-vector space and obtained from a rational
representation of G/Q, then we can apply analytic tools to get insight (de Rham
cohomology, Hodge theory See Chapter 8).

2.1.1 The relation between H•(Γ,M) and H•(Γ\X,M)

For the following we refer to [39] Chapter 2. In this section we assume that X
is connected. The functor

M→ H0(Γ\X,M̃) =MΓ.

is a functor from the category of Γ− modules to the category Ab of abelian
groups. We can write our functorM→MΓ as a composition of

shΓ :M−→ M̃ and H0 : M̃ → H0(Γ\X,M̃).

We want to apply the composition rule from [39] 4.6.4.
In a first step we have to convince ourselves that shΓ sends injective Γ-

modules to acyclic sheaves.

In [39], 2.2.4. we constructed the induced Γ -module IndΓ{1}M, for any Γ
moduleM. This is the module of all functions f : Γ→M and γ1 ∈ Γ acts on
this module by (γ1f)(γ) = f(γγ1). The map

m 7→ fm = {γ 7→ γm} (2.3)

is an injective Γ− module homomorphism.
In a first step we prove that for any such induced module the sheaf shΓ( Ind

Γ
{1}M).

is acyclic. We have a little
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Lemma 2.1.1. Let us consider the projection π : X → Γ\X and the constant
sheafMX on X. Then we have a canonical isomorphism of sheaves

π∗(MX)−̃→ ĨndΓ{1}M.

Proof. This is rather obvious. Let us consider a small neighbourhood Ux of a
point x, such that π−1(Ux) is the disjoint union of small contractible neigh-
bourhoods Ux̃ for x̃ ∈ π−1(x). Then for all points x̃ we have MX(Ux̃) = M
and

π∗(MX)(Ux) =
∏

x̃∈π−1(x)

M.

On the other hand

ĨndΓ{1}M(Ux) =
{
h : π−1(Ux)→ IndΓ{1}M | h is locally constant h(γu) = γh(u)

}
For u ∈ π−1(Ux) the element h(u) itself is a map

h(u) : Γ −→M,

and (γh(u))(γ1) = h(u)(γ1γ) (here γ1 ∈ Γ is the variable.) Hence we know the
function u→ h(u) from π−1(Ux) to IndΓ{1}M if we know its value h(u)(1) and

this value can be prescribed on the connected components of π−1(Ux). On these
connected components it is constant, we may take its value at x̃ and hence

h −→ ( . . . , h(x̃)(1), . . . )x̃∈π−1(x)

yields the desired isomorphism.
Now acyclicity is clear.. We apply example d) in [39], 4.6.3 to this situation.

The fibre of π is a discrete space and hence

π∗(MX) = ĨndΓ{1}M

and Rq(π∗)(MX) = 0 for q > 0. Therefore the spectral sequence yields

Hq(X,MX) = Hq(Γ\X,π∗(MX)) = Hq

(
Γ\X, ˜IndΓ{1}M

)
,

and since X is a cell, we see that this is zero for q ≥ 1.

We apply this to the case thatM = I is an injective Γ-module. Clearly we
can always embed I −→ IndΓ{1}I. But this is now a direct summand; hence it

follows from the acyclicity of ĨndΓ{1}I that also Ĩ must be acyclic.

Hence we can apply the composition rule and get spectral sequence with E2

term

Hp(Γ\X,Rq(shΓ)(M))⇒ Hn(Γ,M).

The edge homomorphism yields a homomorphism

Hn(Γ\X, shΓ(M))→ Hn(Γ,M) (2.4)
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which in general is neither injective nor surjective.

We have seen in section (1.2.2) that -under our assumption that G/Q is
semisimple- the stabilisers Γx are finite. This implies hat the stalksRq(shΓ)(M)x =
Hq(Γx̃,M) for q > 0 are torsion groups actually they are annihilated by #Γx.
This implies that the edge homomorphism has finite kernel and kokernel.

In this book we are mainly interested in the cohomology groupsHn(Γ\X, shΓ(M))
and not so much in the group cohomology H•(Γ,M).

2.1.2 Functorial properties of cohomology

We investigate the functorial properties of the cohomology with respect to the
change of Γ. If Γ′ ⊂ Γ is a subgroup of finite index, then we have, the functor

ModΓ −→ModΓ′ ,

which is obtained by restricting the Γ-module structure to Γ′. Since for any
Γ-moduleM we haveMΓ −→MΓ′

, we obtain a homomorphism

res : Hi(Γ,M) −→ Hi(Γ′,M).

We give an interpretation of this homomorphism in terms of sheaf cohomology.
We have the diagram

X

πΓ′ ↙ ↘ πΓ

π = πΓ,Γ′ : Γ′\X −→ Γ\X

and a Γ-moduleM produces sheaves shΓ(M) = M̃ and shΓ′(M)=̃M′ on Γ′\X
and Γ\X respectively. It is clear that we have a homomorphism

π∗(M̃) −→ M̃′.

To get this homomorphism we observe that for y1 ∈ Γ′\X we have π∗1(M̃)y1 =

M̃π1(y1), and this is

{f : π−1(π1(y))→M | f(γỹ) = γf(ỹ) for all γ ∈ Γ, ỹ ∈ π−1(π(y1))}

and

M̃′y1 = {fg : (π′)−1(y1)→M | f(γ′ỹ) = γ′f(ỹ) for all γ ∈ Γ′, ỹ ∈ (π′)−1(y1)},

and if we pick a point ỹ ∈ (π′)−1(y1) ⊂ π−1(π1(y1)) then

π∗(M)y1 ≃MΓỹ1 ⊂ M̃′y1 =MΓ′
ỹ1 .

Hence we get (or define) our restriction homomorphism as

Hi(Γ\X, shΓ(M)) −→ Hi(Γ′\X,π∗1(shΓ(M)) −→ Hi(Γ′\X, shΓ′(M)). (2.5)
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There is also a map in the opposite direction.
Since the fibres of π are discrete we have

Hi(Γ′\X,M̃)−̃→Hi(Γ\X,π∗(M̃)).

But the same reasoning as in the previous section yields an isomorphism

π1,∗(M̃)−̃→ ĨndΓΓ′M.

Hence we get an isomorphism

Hi(Γ′\X,M̃)−̃→Hi(Γ\X, ĨndΓΓ′M) (2.6)

which is well known as Shapiro’s lemma. But we have a Γ-module homomor-
phism

e : IndΓΓ′M−→M

which sends an f : Γ→M, in f ∈ IndΓΓ′M to the sum

tr(f) =
∑

γ−1i f(γi)

where the γi are representatives for the classes of Γ′\Γ. This homomorphism
induces a map in the cohomology. We get a composition

π1,• : H
i(Γ′\X,M̃) −→ Hi(Γ\X,M̃). (2.7)

It is not difficult to check that

π• ◦ π• = [Γ : Γ′]Id (2.8)

2.1.3 How to compute the cohomology groups H i(Γ\X,M̃)?

The Čech complex of an orbiconvex Covering

We consider a point x̃ ∈ X and an open neighbourhood Ũx̃ ⊂ X. We say that
Ũx̃ is an orbiconvex neighbourhood of x̃ if

a) The set Ũx̃ is convex, i.e. for any two points in x̃1, x̃2 ∈ Ũx̃ the geodesic
joining x̃1 and x̃2 lies in Ũx̃.

irgendwo früher was zu Geodäten sagen, )

b) We have γŨx̃ ∩ Ũx̃ = ∅ unless γx̃ = x̃ and in this case we even have
γŨx̃ = Ũx̃.

A family of orbiconvex neighbourhoods {Ũx̃i
}i=1,...,r ( x̃1, . . . , x̃r set of points)

will be called an orbiconvex covering, if

r⋃
i=1

⋃
γ∈Γ

γŨx̃i
= X. (2.9)

We will show later that we can always find a finite orbiconvex covering of X.
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If now {Ũx̃i
}i=1,...,r is an orbiconvex covering we put Uxi

= π(Ũx̃i
), and then

we get finite covering by open sets⋃
xi

Uxi
= Γ\X.

We abbreviate and use the usual notation U = {Uxi
} for this orbiconvex covering

of Γ\X.
We will see further down that the intersections Ui = Uxi1

∩Uxi2
∩ · · · ∩Uxiq

are acyclic, more precisely

Hq(Ui) =

{
MΓi q = 0

0 q > 0
(2.10)

This implies that the Čzech complex (See [39], Chap. 4)

C•(U,M̃) := 0→
⊕
i∈I
M̃(Uxi

)
d0−→
⊕
i<j

M̃(Uxi
∩ Uxj

)→ (2.11)

computes the cohomology, i.e. the cohomology groups H•(Γ\X,M̃). are the
cohomology groups of the Čzech complex.

For the implementation on a computer we need to resolve the definition of
the spaces of sections and the definition of the boundary maps. (By this I mean
that we have to write explicitly

M̃(Ui) =
⊕
η

Mη

where η runs through an index set and theMη are explicit subspaces ofM and
then we have to write down certain explicit linear mapsMη →Mη′ .)

We have to be aware that the intersections Ui are not necessarily connected.
We write Ui = ∪Uη as the union of its connected components, we have to choose

a connected component Ũη in π−1(Uη) for each value of η. Then the evaluation

of a section m ∈ M̃(Ui) on these Ũη yields an isomorphism⊕
η

evŨη
:
⊕
η

M̃(Uη)(=M(Ui)
∼−→
⊕
η

MΓη .

If we replace Ũη by γŨη then we get for m ∈ M̃(π(Ũη)) the equality

γevŨη
(m) = evγŨη

(2.12)

In degree zero the Uxi
are connected and this gives for the first term of the

complex

evUxi
: M̃(Uxi)

∼−→MΓx̃i . (2.13)

The computation the second term is a little bit more delicate. We have to
understand the connected components of Uxi ∩ Uxj . To get these connected
components we have to find the elements γ ∈ Γ for which

Ũx̃i ∩ γ(Ũx̃j ) ̸= ∅ (2.14)

It is clear that this gives us a finite set Gi,j of elements γ ∈ Γ/Γxj
. We have a

little lemma
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Lemma 2.1.2. The images π(Ũx̃i
∩ γ(Ũx̃j

)) are the connected components of
Uxi
∩ Uxj

, two elements γ, γ1 give the same connected component if and only if
γ1 ∈ Γxi

γΓxj
.

Let Fi,j ⊂ Gi,j be a set of representatives for the action of Γx1
on Gi,j

this set can be identified to the set of connected components. Of course the
set Ũx̃i ∩ γ(Ũx̃j ) may have a non trivial stabilizer Γi,j,γ and then we get an
identification

⊕γ∈Fi,j
evŨxi

∩γŨxj
: M̃(Uxi

∩ Uxj
)
∼−→

⊕
γ∈Fi,j

MΓi,j,γ (2.15)

This is now an explicit (i.e. digestible for a computer) description of the second
term in our complex above. We still need to give the explicit formula for d0 in
the complex

0→
⊕
i∈I
MΓx̃i

d0−→
⊕
i<j

⊕
γ∈Fi,j

MΓi,j,γ (2.16)

Looking at the definition it is clear that this map is given by

(. . . ,mi, . . . ,mj , . . . ) 7→ (. . . ,mi − γmj , . . . ) (2.17)

Here we have to observe that γ ∈ Γ/Γxj but this does not matter since mj ∈
MΓx̃j . So we have an explicit description of the beginning of the Čech complex.
A little reasoning shows of course that a different choice F ′i,j of the representa-
tives provides an isomorphic complex.

Now it is clear, how to proceed. At first we have to understand the combi-
natorics of the covering U = {Uxi}i∈I . We consider sets

Gi = {γ = (e, γ1, . . . , γq)|γi ∈ Γ/Γxi ; Ũx̃0 ∩ · · · ∩ γiŨx̃i ∩ γqŨx̃q ̸= ∅}

on these sets we have an action of Γx0 by multiplication from the left. Again
let Fi be a system of representatives modulo the action of Γx0

.
We abbreviate

Ũi,γ = Ũx̃0
∩ · · · ∩ γiŨx̃i

∩ γqŨx̃q
,

let Γi,γ be the stabiliser of Ũi,γ .

The images π(Ũi,γ) under the projection map π are the connected compo-

nents π(Ũi,γ) = Ui,γ ⊂ Ui = Uxi0
∩ · · · ∩Uxiν

∩ . . . Uxiq
. On the other hand each

set Ũi,γ is a connected component in π−1(Ui,γ). We get an isomorphism⊕
γ∈Fi

evŨi,γ
: M̃(Ui) = M̃(Uxi0

∩ · · · ∩ Uxiν
∩ . . . Uxiq

)
∼−→

⊕
γ∈Fi

MΓi,γ . (2.18)

We need to give explicit formulas for the boundary maps⊕
i∈Iq
M̃(Ui)

dq−→
⊕
i∈Iq+1

M̃(Ui).
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Abstractly this boundary operator is defined as follows: We look at pairs i ∈
Iq+1, i(ν) ∈ Iq where i(ν) is obtained from i by deleting the ν-th entry. Then we
have Ui ⊂ Ui(ν) and from this we get the resulting restriction homomorphism

Ri(ν),i : M̃(Ui(ν))→ M̃(Ui). Then

dq =
∑
i

q∑
ν=0

(−1)νRi(ν),i (2.19)

and hence we have to give an explicit description of Ri(ν),i with respect to the
isomorphism in the diagram (2.18).

We pick two connected components π(Ũi,γ) ⊂ Ui) and π(Ũi(ν),γ′ ⊂ Ui(ν),

then we know that

Ũi,γ ⊂ Ũi(ν),γ′ ⇐⇒ ∃ ηγ,γ′ ∈ Γ such that ηγ,γ′γ′µ = γµ for all µ ̸= ν

and then the restriction of Ri(ν),i to these two components is given by

M̃(π(Ũi(ν),γ′))

evŨ
i(ν),γ′
−→ MΓ

i(ν),γ′

↓ Ri(ν),i ↓ ηγ,γ′

M̃(π(Ũi,γ))
evŨi,γ

−→ MΓi,γ

(2.20)

Here the two horizontal maps are isomorphisms, we observe that ηγ,γ′ is unique
up to an element in Γi(ν),γ′ and hence the vertical arrow ηγ,γ′ is well defined.

Hence we conclude:

Once we have found a a finite orbiconvex covering of Γ\X, we can write
down an explicit complex, which computes the cohomology groups H•(Γ\X,M̃).

We may also look at this situation from a different point of view: If x ∈ X
is any point and Γx ⊂ Γ its stabilizer, then we define the induced Γ module

IndΓΓx
Z := {f : Γ→ Z | f has finite support and f(aγ) = f(γ), ∀a ∈ Γx, γ ∈ Γ}

(2.21)

If Vx is an open neighbourhood of x which satisfies b) an c) then we have
π−1(π(Vx)) =

⋃
γ∈Γ/Γx

γVx and

π∗(M̃)(
⋃

γ∈Γ/Γx

γVx) = Hom( IndΓΓx
Z,M).

We have the covering

Ũ =
⋃

i,γ∈Γ/Γx̃i

γŨx̃i
= X

of the symmetric space. The Čzech-complex C•(Ũ, π∗(M̃)) computes the coho-
mology groups Hq(X,π∗(M̃)) which are trivial for q > 0. Our considerations
above yield

C•(Ũ, π∗(M̃)) = 0→
r⊕
i=1

Hom( IndΓΓxi
Z,M)

d1−→
⊕

i<j,x̃i,j

Hom( IndΓΓx̃i,j
Z,M)

d2−→ . . .
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Now it is easy see that the boundary maps are induced by maps between the
induced modules

δ2−→
⊕

i<j,x̃i,j

IndΓΓx̃i,j
Z δ1−→

r⊕
i=1

IndΓΓx̃i
Z→ 0,

where for f ∈
⊕

IndΓΓx̃J
Z, in degree ν and ω ∈ Cν−1(Ũ, π∗(M̃)) the relation

ω(δν(f)) = dν−1(ω)(f) defines δν . We get an augmented complex

P • :=→
⊕
x̃J

IndΓΓx̃J
Z→ · · · →

⊕
x̃i,j

IndΓΓx̃i,j
Z→

r⊕
i=1

IndΓΓx̃i
Z→ Z→ 0

(2.22)

and since C•(Ũ, π∗(M̃)) is acyclic in degree > 0, we get that P • is an acyclic
resolution of the trivial module Z.

Let N =
∏
i#Γx̃i and R := Z[ 1N ] then the R[Γ] module IndΓΓx

⊗ R is a
direct summand in R[Γ] and hence a projective R[Γ] module. This implies of
course that

P • ⊗R =→
⊕
x̃J

IndΓΓx̃J
R→ · · · →

⊕
x̃i,j

IndΓΓx̃i,j
R→

r⊕
i=1

IndΓΓx̃i
R→ R→ 0

(2.23)

is indeed a projective resolution of the trivial Γ -module R. Therefore we know
that

H•(Γ,MR) = H•(0→ HomΓ(

r⊕
i=1

IndΓΓx̃i
R,MR)→

⊕
i<j,x̃i,j

HomΓ( Ind
Γ
Γx̃i,j

R,MR)→)

(2.24)

where now on the left hand side we have the group cohomology.
If we do not tensor by R then the Čzech-complex

0→
r⊕
i=1

HomΓ( Ind
Γ
Γxi

Z,M)→
⊕
i<j,i,j

HomΓ( Ind
Γ
Γx̃i,j

Z,M)→ . . . (2.25)

is isomorphic to the Čzech complex (2.11) and it computes the sheaf cohomology
H•(Γ\X,M̃).

It follows from reduction theory that

Theorem 2.1.1. We can construct a finite covering Γ\X =
⋃
i∈E Uxi

= U by
orbiconvex sets.

Proof. This is rather clear. We start from the covering by the setsXP (cπ′ , r(cπ′)).)
The set of ”almost stable” points XG(r) ⊂ X is relatively compact modulo Γ.
For any point x̃ ∈ X we look at the minimum distance

d(x̃) := min
γ∈Γ\Γx̃

d(x̃, γx̃).
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since the action of Γ is properly discontinuous this minimum distance d(x̃) > 0.
Let D(x̃, d(x̃)/2) := {ỹ|d(ỹ, x̃) < d(x̃)/2}, (-the Dirichlet-ball around x̃- ) then
D(x̃, d(x̃)/2) is an orbiconvex neighbourhood of x̃. Then we can find finitely
many points x̃1, . . . , x̃r such that

r⋃
i=1

⋃
γ∈Γ

γD(x̃i, d(x̃i)/2)) ⊃ XG(r).

We have to find a covering for the XP (cP , r(cP ))). We recall the fibration
(See (1.118))

p∗P,M : XP (cπ′ , r(cπ′))→ XM (r(cπ′))×
∏
α∈π′

(0, cα].

We apply our previous argument and find a finite covering

s⋃
i=1

⋃
γ∈ΓM

γD(ỹi, d(ỹi)/2)) ⊃ XM (r(cπ′)).

We pick a point c0 ∈
∏
α∈π′(0, cα] then the inverse image (p∗P,M )−1(D(ỹi, d(ỹi)/2))×

c0 is relatively compact and we can find an orbiconvex covering {V{Vx̃µ
} of this

set. Then the products Vx̃µ
×
∏
α∈π′(0, cα] provide an orbiconvex covering of

XP (cπ′ , r(cπ′)). Of course these sets are not (relatively) compact anymore.

I think that it is a very important problem to write algorithms which com-
pute the cohomology effectively. The main goal would be to collect experimental
data which may suggest conjectures or give support for conjectures which come
from different sources. We come back to this aspect in the following chapter 3
and also in the final chapter 9.

I do not claim that my proposal using orbiconvex coverings provides an ac-
ceptable solution to this problem. It solves the problem in principle but it not
clear how far it reaches in practice. We see that the fixed points create some
problems if we want to write down the explicit complexes. But it is certainly
no solution to avoid these problems by passing to a congruence subgroup. Then
the number of members in the covering growth rapidly and the complexes be-
come much bigger. For the groups Sln(Z) ( for some small values of n and for
some congruence subgroups ) various authors have computed the cohomology
(Ash, Stevens, Gunnels) using the Voronoi decomposition of the cone of positive
definite symmetric matrices.

A first step would be to find effectively an optimal orbiconvex covering {Ux̃ν
}

of the set XG(r) of almost stable points. The covering sets must not necessar-
ily be Dirichlet balls. We could proceed and apply this also to the different
XM (r(cπ′)) and find orbiconvex covers {VMỹµ } for them. Then we may con-

sider the inverse images (p∗P,M )−1(VMỹµ ×
∏
α∈π′(0, cα]) = ṼMỹµ . This family of

sets {{γUx̃ν
}, . . . , ˜γ1V

M

ỹµ , . . . } provide a covering of X by open sets, hence the
images under the projection provide a covering

W = {Wi}i∈I = {{Uxν
}, . . . , {ṼMyµ }, . . . }
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of Γ\X, here the index set I is the union of the x]x̃ν , . . . ,
M yỹµ .

Of course we have a problem: The sets ṼMỹµ are not acyclic anymore, so

we can not use the Čzech complex of this covering for the computation of the
cohomology. But we know that

ṼMỹµ → VMỹµ ×
∏
α∈π′

(0, cα]

is a fiber bundle with fiber U(Z)\U(R), Since the base VMỹµ ×
∏
α∈π′(0, cα] is

acyclic we know that

H•(ṼMỹµ )
∼−→ H•(U(Z)\U(R),M̃) (2.26)

and we have a good understanding of the cohomology on the right. If for instance
we tensor by the rationals the Theorem of Kostant (See section ??) gives us a
complete description of the cohomology H•(U(Z)\U(R),M̃ ⊗Q).

For i ∈ Ip+1 we put Wi =Wi0 ∩Wi1 ∩ · · · ∩ Wip Now we follow [39], 4.6.6,

for any q ≥ 0 write the Čzech complexe

C•(W,Hq) :=→
∏

i∈Ip+1

Hq(Wi)→
∏

i∈Ip+2

HqWi) (2.27)

and then we know that we get a spectral sequence

Hp(C•(W,Hq)) = Ep,q1 =⇒ Hp+q(Γ\X,M̃) (2.28)

Lowdim

2.1.4 Special examples in low dimensions.

We consider the group Γ = Sl2(Z)/{±Id} and its action on the upper half plane
H. We want to investigate the cohomology groups Hi(Γ\H,M̃) for any module
Γ-module M. Let p : H → Γ\H be the projection. We have the two special
points i and ρ in H. They are - up to conjugation by Γ - the only points which
have a non trivial stabilizer. We construct two nice orbiconvex neighbourhoods
of these two points. The stabilizers Γi, resp. Γρ are cyclic and generated by the
two elements

S =

(
0 1
−1 0

)
, R =

(
1 −1
1 0

)
respectively.

We begin with i. We consider the strip Vi = {z| − 1/2 < ℜ(z) < 1/2}, the
element S maps the two vertical boundary lines ℜ(z) = ± 1

2 into geodesic circles

starting from 0 and ending in ±2. Then the intersection Ũi = Vi ∩ S(Vi) is an
orbiconvex neighbourhood of i.

Let us look at ρ. We consider the strip Vρ = {z | − 0 < ℜ(z) < 1} and now

we define Ũρ = Vρ ∩ R(Vρ) ∩ R2(Vρ). This is a nice orbiconvex neighbourhood
of ρ.
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Now it is clear that these two sets provide an orbiconvex covering of H, if
Ui = p(Ũi), Uρ = p(Ũρ) then

Γ\H = Ui ∪ Uρ. (2.29)

We have M̃(Ui) = shΓ(M)(Ui) =MΓi ,M̃(Uρ) =MΓρ and hence the cohomol-
ogy groups are given by the cohomology of the complex

0→MΓi ⊕MΓρ →M→ 0 (2.30)

Then H0(Γ\H,M̃) =MΓ =MΓi∩MΓρ . Since this is true for any Γ module
we easily conclude that Γ is generated by Γi,Γρ. And we get

H1

H1(Sl2(Z)\H,M̃Z) =M/(M(<S> ⊕M<R>), (2.31)

and the cohomology vanishes in higher degrees.

Exercise 1: Let Γ′ ⊂ Γ = Sl2(Z)/±Id be a subgroup of finite index. Prove

ii) We have (Shapiros lemma)

H1(Γ′\H,Z) = H1(Γ\H, ĨndΓΓ′Z).

These cohomology groups are free of rank

[Γ : Γ′]− ni − nρ + 1

where ni (resp. nρ) is the number of orbits of Γi (resp. Γρ) on Γ′\Γ. If Γ′ is torsion

free then

rank(H1Γ\H, ĨndΓΓ′Z) =
1

6
[Γ : Γ′] + 1

The Euler-characteristic of Γ′\H is 1
6 [Γ : Γ′].

Exercise 2: LetMn be the Sl2(Z)-module of homogenous polynomials in the two

variables X,Y and coefficients in Z. (See 1.2.2). We have the usual action of Sl2(Z) on
this module by (

a b
c d

)
P (X,Y ) = P (aX + cY, bX + dY ).

these modules define a sheaf M̃n on Γ\H., We compute the cohomology groupsH•(.(Γ\H,M̃n).

Prove:

i) If n is odd, then M̃n = 0.
Hence we assume n ≥ 2 and n even from now on.

ii) For n > 0 we have H0(Γ\H,M̃n) = 0.
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iii) If we tensorize by Q , then H1(Γ\H,M̃n ⊗ Q) is a vector space of rank

n− 1− 2
[
n
4

]
− 2

[
n
6

]
.

Hint: Diagonalise the action of Γi and Γρ onMn ⊗ Q separately and look at the

eigenspaces. To say it differently: Over Q̄ we can conjugate the matrices

(
0 −1
1 0

)
,(

1 1
−1 0

)
into the diagonal maximal torus

(
t 0
0 t−1

)
, and then look at the decompo-

sition ofMn into eigenspaces.

iv) Investigate the torsion in H1(Γ\H,Mn). (Start from the sequence 0→Mn →
Mn →Mn/ℓMn → 0.)

v) Now we consider Γ = Sl2(Z). The two matrices S =

(
0 −1
1 0

)
and R =(

−1 1
−1 0

)
are generators of the stabilisers of i and ρ respectively.

We take for our moduleM the cyclic group Z/12Z, consider the spectral sequence

Hp(Γ\H, Rq(shΓ)(Z/12Z)).

Show that H0(Γ\H, R1(shΓ)(Z/12Z) = Z/12Z. Show that the differential

H0(Γ\H, R1(shΓ)(Z/12Z))→ H2(Γ\H, shΓ(Z/12Z))

vanishes and conclude

H1(Γ,Z/12Z) = Z/12Z.

The group Γ = Gl2(Z[i])

A similar computation can be made up to compute the cohomology in the case
of Γ̃ = Gl2(Z[i])). We have the three special points x12, x13 and x23 (See(1.2.5),
and we choose closed sets Aij containing these points which just leave out a

small open strip containing the opposite face. If Ãij is a connected component
of the inverse image of Aij in H3, then

Aij = Γij\Ãij .

The intersections Aij ∩Ai′j′ = Aν are closed sets. They are of the form

Aν = Γν\Ãν

where Γν is the stabilizer of the arc joining xij and xi′j′ . The restrictions of

our sheaves M̃ to the Aij and Aν and to A = A12 ∩ A23 ∩ A13 are acyclic and
hence we get a complex

0 −→ M̃ −→
⊕
(i,j)

M̃Aij
−→

⊕
M̃Aν

−→ M̃A −→ 0 (2.32)

where the M̃? are the restrictions of M̃ to ? and then extended to the space
again.
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Hence we find that our cohomology groups are equal to the cohomology
groups of the complex

0 −→
⊕
(i,j)

MΓij
d1−→
⊕
ν

MΓν
d2−→M −→ 0 (2.33)

with boundary maps

d1 :(m12,m13,m23) 7−→ (m12 −m13,m23 −m12,m13 −m23)

d2 :(m1,m2,m3) 7−→ m1 +m2 +m3.

If we take for instance M̃ = Z then we getH0(Γ̃\H3,Z) = Z andHi(Γ̃\H3,Z) =
0 for i > 0 as it should be.

We do not get a satisfying answer to our question. We consider the special
case Γ = Sl2(Z[i]) and the coefficient systemMn1

⊗Z[i]Mn2
where

Mn1 := {P (X,Y ) =

n1∑
ν=0

aνX
νY n1−ν |aν ∈ Z[i]}, (2.34)

Mn2
:= {P (X,Y ) =

n2∑
ν=0

aνX̄
ν Ȳ n2−ν |aν ∈ Z[i]}, (2.35)

and where a matrix γ ∈ Γ acts by

γP (X,Y )⊗Q(X̄, Ȳ ) = P (aX + cY, bX + dY )⊗Q(āX̄ + c̄Ȳ , b̄X̄ + d̄Ȳ )
(2.36)

If we now choose for our moduleM in (2.33) the moduleM =Mn1
⊗Z[i]Mn2

then it i clear that for any given (not too large) values n1, n2 we can compute the
cohomology explicitly. But we do not get any theoretical insight, for instance we
do not get a formula for the dimensions of the cohomology groups (tensorised
by Q),

Poindual

2.1.5 Homology, Cohomology with compact support and
Poincaré duality.

Here we have to use the theory of compactifications. For any locally symmetric
space we can embed Γ\X into its Borel-Serre compactification

i : Γ\X −→ Γ\XBS ,

and this process was explained in detail for our low dimensional examples.
Especially we give an explicit description of a neighbourhood of a point x ∈
∂(Γ\XBS). If we have a sheaf M̃ on Γ\X, we can extend it to the compactifi-
cation by using the functor i∗. We get a sheaf

i∗(M̃) on Γ\XBS ,
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it is clear from the description of a neighbourhood of a point in the boundary,
that i∗ is exact. ( This is not true for the Baily-Borel compactification.)

Our constructionM→ M̃ can be extended to the action of Γ on XBS and
clearly

i∗(M̃) = result of the constructionM→ M̃ on Γ\XBS .

Hence we get from our general results in Chapter I, ..... that

H•(Γ\X,M̃) = H•(Γ\XBS , i∗(M̃)).

But we have another construction of extending the sheaf M̃ from Γ\X to
Γ\XBS . This is the so called extension by zero. We define the sheaf i!(M̃)
on Γ\XBS by giving the stalks. For x ∈ Γ\XBS we put

i!(M̃)x =

{
M̃x if x ∈ Γ\X
0 if x ̸∈ Γ\X

.

It is clear that i! is an exact functor sending sheaves on Γ\X to sheaves on
Γ\XBS , and we have for an arbitrary sheaf

H0(Γ\XBS , i!(F)) = H0
c (Γ\X,F)

where H0
c (Γ\X,F) is the abelian group of those sections s ∈ H0(Γ\X,F) for

which the support

supp (s) = {x | sx ̸= 0}

is compact.
Hence we define the cohomology with compact supports as

Hq
c (Γ\X,F) = Hq(Γ\XBS , i!F)).

If M̃ is a sheaf on Γ\X which is obtained from a Γ-moduleM, then it is quite
clear that

H0
c (Γ\X,M̃) = 0,

provided our quotient Γ\X is not compact.

The cohomology with compact supports is actually related to the homology
of the group: I want to indicate that we have a natural isomorphism

Hi(Γ,M) ≃ Hd−i
c (Γ\X,M̃)

under the assumption that X is connected and the orders of the stabilizers are
invertible in R.

This is the analogous statement to the theorem .... which we discussed when
we introduced cohomology.

Our starting point is the fact that the projective Γ-modules have analogous
vanishing properties as the induced modules.
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Lemma 2.1.3. Let us assume that Γ acts on the connected symmetric space
X. If P if a projective module then

Hi
c(Γ\X, P̃ ) =


0 if i ̸= dimX

PΓ if i = dimX.

Let us believe this lemma. Then it is quite clear that

Hi(Γ,M) ≃ Hd−i
c (Γ\X, P̃ ),

because both sides can be computed from a projective resolution.

2.1.6 The homology as singular homology

We have still another description of the homology. We form the singular chain
complex

→ Ci(X)→ Ci−1(X)→ . . .→ C0(X)→ 0.

This is a complex of Γ-modules, and we can form the tensor product withM.
We get a complex of Γ-modules

di+1−→ Ci(X)⊗M di−→ Ci−1(X)⊗M −→ . . . .

We define the chain complex

C•(Γ\X,M),

simply as the resulting complex of Γ-coinvariants. The homology groups are
defined as

Hi(Γ\X,M) = ker(di)/Im(di+1) (2.37)

The cosheaves

The symbolM should be interpreted as the cosheaf attached to our Γ-module,
this is an object which is dual to the sheaf M̃. For a point x̄ ∈ Γ\X costalkMx̄

is given as follows: As in (2.2) we consider the projection πΓ : X → Γ\X and
maps with finite support

C(x̄,M) := {f : π−1Γ (x̄)→M}. (2.38)

On this module we have an action of Γ which is given by act

(γf)(x) = γ(f(γ−1x). (2.39)

Then our costalk is given by the coinvariants

Mx̄ = C(x̄,M)Γ = C(x̄,M)/{f − γf, γ ∈ Γ, f ∈ C(x̄,M)} (2.40)
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We have the homomorphism
∫
:Mx̄ →M which is given by summation f 7→∑

x∈π−1
Γ (x̄) f(x) and this induces an isomorphism invint∫

: C(x̄,M)Γ
∼−→Mx̄ (2.41)

We pick a point x ∈ π−1Γ (x̄) and an open neighbourhood Ux of x such that
γUx ∩ Ux ̸= ∅ implies γ ∈ Γx. We consider the space C(x̄, x,M) of those maps,
which are supported in in the point x. This space is of course equal toM and
the composition

δx : C(x̄, x,M)→ C(x̄,M)→Mx̄

induces an isomorphism

δx :MΓx

∼−→Mx̄ (2.42)

If we pick a second point ȳ ∈ πΓ(Ux) and a y ∈ π−1Γ (ȳ) ∩ Ux then clearly
Γy ⊂ Γx and therefore we get a specialization map

rȳ,x̄ :Mȳ →Mx̄. (2.43)

Now it becomes clear why these objects are called cosheaves. For the sheaf M̃
we get in the corresponding situation a map in the opposite direction

M̃x̄ → M̃ȳ (2.44)

as a specialization map between the stalks of M̃. An element f∗ ∈ Mx̄ can be

represented as an array refcos

f∗ = {. . . , f(x), . . . }x∈π−1(x̄) (2.45)

where f(x) ∈ (Mx̄)Γx and f(γx) = γf(x).

Now we can give a different description of the group of i-chains Ci(Γ\X,M) :
An i-chain with values in the cosheafM is of the form σ⊗f where σ : ∆i → Γ\X
is a continuous (differentiable) map from the i dimensional simplex ∆i to Γ\X
and where f is a section in the cosheaf, i.e. fx ∈ Mσ(x) and where fx varies
continuously. (This means: If σ(y) specializes to σ(x) then rσ(y),σ(x)(fy) = fx.)

Then Ci(Γ\X,M) is the free abelian group generated by these i chains with
values inM). Then the boundary maps di are defined in the usual way and we
get a slightly different description of the homology groups Hi(Γ\X,M).

But we may choose for our moduleM simply the group ring. Then

(C•(X)⊗ Z[Γ])Γ ≃ C•(X),

and hence we have, since X is a cell, that

Hi(Γ\X,Z[Γ]) = 0 for i > 0.

On the other hand we have

H0(Γ\X,M) =MΓ.
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This follows directly from looking at the complex

(C1(X)⊗M)Γ −→ (C0(X)⊗M)Γ.

First of all we observe that 0-cycles

x1 ⊗m− x0 ⊗m

are boundaries since X is pathwise connected. On the other hand we have that

x0 ⊗m− γx0 ⊗ γm ∈ C0(X)⊗M

becomes zero if we go to the coinvatiants and this implies the assertion.
If we have in addition that the orders of the stabilizers are invertible in R

than it is clear that a short exact sequence of R-Γ-modules

0 −→M′ −→M −→M′′ −→ 0

leads to an exact sequence of complexes

0 −→ C•(Γ\X,M′) −→ C•(Γ\X,M) −→ C•(Γ\X,M′′) −→ 0,

and hence to a long exact cohomology sequence

Hi(Γ\X,M′) −→ Hi(Γ\X,M) −→ Hi(Γ\X,M′′) −→ Hi−1(Γ\X,M′).

Now it is clear that

Hi(Γ,M) ≃ Hi(Γ\X,M) ≃ Hd−i
c (Γ\X,M̃).

fundex

2.1.7 The fundamental exact sequence

By construction we have the exact sequence

0→ i!(M̃)→ i∗(M̃)→ i∗(M̃)/i!(M̃)→ 0

of sheaves and clearly i∗(M)/i!(M) is simply the restriction of i∗(M̃) to the
boundary extended by zero to the entire space. This yields the fundamental
exact sequence

→ Hq−1(∂(Γ\X),M̃)→ Hq
c (Γ\X,M̃)→ Hq(Γ\X̄,M̃)

r−→ Hq(∂(Γ\X),M̃)→ . . .
(2.46)

We define the “inner cohomology” inncoh

Hq
! (Γ\X,M̃) := Im(Hq

c (Γ\X,M̃)→ Hq(Γ\X̄,M̃)) = kerHq(Γ\X̄,M̃)
r−→ Hq(∂(Γ\X),M̃)
(2.47)

( This a little bit misleading because these groups are not honest cohomology
groups, they are not the cohomology groups of a space with coefficients in a
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sheaf. An exact sequence of sheaves 0 → M′ → M → M′′ → 0 does not
provide an exact sequence for these H! groups. )

In the special case that the underlying group G/Q is anisotropic the funda-
mental exact sequence becomes trivial, in this case the quotient Γ\X is compact
and we have

H•(Γ\X,M̃) = H•c (Γ\X,M̃) = H•! (Γ\X,M̃).

Many authors prefer to consider the case of a compact quotient Γ\X, but I think
we loose some very interesting phenomena if we concentrate on this case. On
the other hand we do not need to read the next subsection. Also readers who
are more interested in the low dimensional cases and the more specific results
in these cases may well skip reading the next subsection.

The cohomology of the boundary

We want to have a slightly different look at this sequence. We recall the covering
(See 1.124,1.125)

Γ\X = Γ\X(r)∪
•
N (Γ\X) = Γ\X(r) ∪

⋃
P :Pproper

ΓP \XP (cπ′ , r(cπ′)) (2.48)

where the union runs over Γ conjugacy classes of parabolic subgroups over Q
and

•
N (Γ\X) is a punctured tubular neighbourhood of ∞, i.e. the boundary of

the Borel-Serre compactification.

It is well known (See for instance [book] vol I , 4.5 ) that from a covering
Γ\X =

⋃
i Vi we get a Čzech complex and a spectral sequence with Ep,q1 - term∏

i={i0,i1...,ip}

Hq(Vi,M̃) (2.49)

where Vi = Vi0 ∩ · · · ∩ Vip . The boundary in the Čzech complex gives us the
differential

dp,q1 :
∏

i={i0,i1...,ip}

Hq(Vi,M̃)→
∏

j={j0,j1...,jp+1}

Hq(Vj ,M̃) (2.50)

Here we work with the alternating Čzech complex, we also assume that we have
an ordering on the set of simple positive roots. If such a Vi is non empty then
it of the form ΓQ\XQ(C(c̃)).

We return to the diagram (1.132), on the left hand side we can divide by ΓQ.
We have the map which maps a Cartan involution on X to a Cartan-involution
on M . Then we get a diagram

f† : XQ(C(c̃)) → XM (r)× CUQ
(c̃)

↓ pQ ↓ pM
f : ΓQ\XQ(C(c̃)) → ΓM\XM (r)× CUQ

(c̃))
(2.51)
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where the bottom line is a fibration. To describe the fiber in a point x̃ we
pick a point x ∈ (pm ◦ f†)−1. Then UQ(R) acts simply transitively on the fiber
(f†)−1(f†(x)) hence UQ(R) = (f†)−1(f†(x)). Then pQ : UQ(R) → ΓUQ

\UQ(R)
yields the identification ix : ΓUQ

\UQ(R)
∼−→ f−1(x̃). If we replace x by γx = x1

with γ ∈ ΓUQ
then we get ix1

= Ad(γ)◦ix where for u ∈ UUQ
Ad(γ)(u) = γuγ−1

where for u ∈ UQ(R), under this action of ΓQ.
We have the spectral sequence

Hp(ΓM\XM (r), Rqf∗(M̃))⇒ Hp+q(ΓQ\XQ(C(cπ1
, . . . , cπν )),M̃)

and clearly Rqf∗(M̃) is a locally constant sheaf. This sheaf is easy to determine.
Under the above identification we get an isomorphism

i•x : H•(ΓUQ
\UQ(R),M̃))

∼−→ R•(M̃)x̃.

The adjoint action Ad : ΓQ → Aut(ΓUQ
\UQ(R)) induces an action of ΓQ

on the cohomology H•((ΓUQ
\UQ(R)),M̃). Since the functor cohomology is the

derived functor of taking ΓUQ
invariants it follows that the restriction of Ad to

ΓUQ
acts trivially on H•(ΓUQ

\UQ(R),M̃). Consequently H•((ΓUQ
\UQ(R)),M̃)

is a ΓM− module. We get

R•f∗(M̃)
∼−→ ˜H•(ΓUQ

\UQ(R),M̃)

and hence our spectral sequence becomes

vEst

Hp(ΓM\XM (r), ˜H•(ΓUQ
\UQ(R),M̃))⇒ Hp+q(ΓQ\XQ(C(c̃)),M̃) (2.52)

We can take the composition rQ ◦ f. Then it is obvious that for any point
c0 ∈ CUQ

(c̃)) the restriction map

H•(XQ(C(c̃)),M̃)→ H•(XQ((rQ ◦ f)−1(c0),M̃) (2.53)

is an isomorphism. On the other hand it is clear that we may vary our parameter
c̃ we may assume that the CUQ

(c̃) go to infinity. Then we may enlarge the
parameter r without violating the assumptions in proposition 1.2.3. Hence
we get that the inclusion ΓQ\XQ(C(c̃)) ⊂ ΓQ\XQ induces an isomorphism in
cohomology

H•(ΓQ\XQ(C(c̃),M̃)
∼−→ H•(ΓQ\X,M̃) (2.54)

We choose a total ordering on the set of Γ conjugacy classes of parabolic
subgroups, i.e. we enumerate them by a finite interval of integers [1, N ].We also
enumerate the set of simple roots {α1, . . . , αd) in our special case αi = αi,i+1.
For any conjugacy class [P ] we define the type of P to be t(P ) = πUP the
subset of unipotent simple roots and d(P ) = #πUP the cardinality of this set.
If Pi1 , . . . , Pir are maximal, i1 < i2 · · · < ir and if Pi1∩, · · · ∩ Pir = Q is a
parabolic subgroup then we require that t(Pi1) < · · · < t(Pir ).

The indexing set Par(Γ) of our covering is the Γ conjugacy classes of parabolic
subgroups over Q. If we have a finite set [Pi0 ], [Pi1 ], . . . , [Pip ] of conjugacy classes
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then we say [Q] ∈ [Pi0 ], [Pi1 ], . . . , [Pip ] if we can find representatives P ′iν ∈ [Piν ]
and Q′ ∈ [Q] such that Q′ = P ′i0 ∩ · · · ∩ P

′
ip
.

Hence we see that the E•,q1 complex in our spectral sequence (2.50) is given
by ∏

i

Hq(ΓQi
\XQi(C(c̃)),M̃)→

∏
i<j

∏
[R]∈[Qi]∩[Qj ]

Hq(ΓR\XR(C(c̃)),M̃)→

(2.55)

this obtained from our covering (1.125). Now we replace our covering by a
simplicial space, i.e. we consider the diagram of maps between spaces

Par :=
∏
i

ΓQi\X
p1←−
p2←−

∏
i<j

∏
[R]∈[Qi]∩Qj ]

ΓR\X
←−
←−
←−

(2.56)

this yields a spectral sequence with E•,q1 term∏
i

Hq(ΓQi\X,M̃)
d(0)−→

∏
i<j

∏
[R]∈[Pi]∩[Pj ]

Hq(ΓR\XR,M̃)
d(1)−→ (2.57)

Our covering also yields a simplicial space which is a subspace of ( 2.56) we get
a map from (2.50) to (2.57 ) and this map is an isomorphism of complexes.

We replace Par by another simplicial complex

Parmax :=
∏

[P ]:d(P )=1

ΓP \X
p1←−
p2←−

∏
[Q]:d(Q)=2

ΓQ\X
←−
←−
←−

(2.58)

We have an obvious projection Π : Par → Parmax which induces a homo-
morphism

∏
iH

q(ΓQi
\X,M̃)

d(0)−→
∏
i<j

∏
[R]∈[Pi]∩[Pj ]

Hq(ΓR\XR,M̃)
d(1)−→

↑ ↑∏
[P ]:d(P )=1H

q(ΓP \X,M̃)
d(0)−→

∏
[R]:d(R)=2H

q(ΓR\XR,M̃)
d(1)−→
(2.59)

and an easy argument in homological algebra shows that this induces an iso-
morphism in cohomology or in other words an isomorphism of the Ep,q2 terms
of the two spectral sequences.

We had the covering

•
N (Γ\X) =

⋃
P :Pproper

ΓP \XP (cπ′ , r(cπ′)) (2.60)

which gives us the spectral sequence converging to H•(
•
N (Γ\X),M̃) with

Ep,q1 =
⊕

i0<i1<···<ip

⊕
[Q]∈[Pi0

]∩[Pi1
]∩···∩[Pip ]

Hq(ΓQ\XQ(cπ′ , r(cπ′),M̃)) (2.61)
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Our covering of
•
N (Γ\X) gives us a simplicial space Cov(

•
N )Γ\X) and we

have maps

Cov(
•
N (Γ\X)) ↪→ Par→ Parmax. (2.62)

We saw that the resulting maps induced an isomorphism in the Ep,q2 terms of
the spectral sequences. Hence we see that Parmax yields a spectral sequence

Ep,q1 =
⊕

[P ]:d(P )=p+1

Hq(ΓP \X,M̃)⇒ Hp+q(
•
N (Γ\X),M̃)) (2.63)

the differentials dp,q1 : Ep,q1 → Ep+1,q
1 are simply obtained from the restriction

maps.
This is of course the ”same” spectral sequence as the one above (2.57) and

we may also restrict to the cohomology of the Borel-Serre boundary and get

Ep,q1 =
⊕

[P ]:d(P )=p+1

Hq(∂P (Γ\X̄),M̃)⇒ Hp+q(∂((Γ\X̄,M̃)) (2.64)

At this point we want to raise an interesting question

Does this spectral sequence degenerate at Ep,q2 level?

The author of this book is hoping that the answer to this question is no!
And this is so for interesting reasons! We come back to this question when we
discuss the Eisenstein cohomology.

The complement of
•
N (Γ\X) is a relatively compact open set V ⊂ Γ\X,

this set contains the stable points. We define M̃!
V = iV,!(M̃) then we get an

exact sequence

0→ M̃!
V → M̃ → M̃/M̃!

V → 0 (2.65)

and M̃/M̃!
V is obviously the extension of the restriction of M̃ to

•
N (Γ\X) and

the extended by zero to Γ\X. We claim (easy proof later) that

H•c (Γ\X,M̃) = H•(Γ\X,M̃!
V ) (2.66)

and this gives us again the fundamental exact sequence fux

Hq−1(
•
N (Γ\X),M̃)→ Hq(Γ\X,M̃!

V )→ Hq(Γ\X,M̃)→ Hq(
•
N (Γ\X),M̃)→

(2.67)

2.1.8 How to compute the cohomology groups Hq
c (Γ\X,M̃)

We apply the considerations in 4.8 from [39] Again we cover Γ\X by orbiconvex
open neighbourhoods Uxi

, and now we define

M̃!
x = (ix)!i

∗
x(M̃).
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These sheaves have properties, which are dual to those of the sheaves M̃x.
If x = (x1, . . . , xs) and if we add another point x′ = (x1, . . . , xs, xs+1) then
we have the restriction M̃x → M̃x′ , which were used to construct the Čech
resolution.

Now let d = dim(X). For the ! sheaves we get (See [39] , loc. cit.) get a
morphism M̃!

x′ → M̃!
x. For x = (x1, . . . , xs) we define the degree d(x) = d+1−s.

Then we construct the Čech-coresolution (See [39] , 4.8.3)

→
∏

x:d(x)=q

M̃!
x → · · · →

∏
(xi,xj)

M̃!
xi,xj

→
∏
xi

M̃!
xi
→ i!(M̃)→ 0. (2.68)

Now we have a dual statement to (2.10)
Proposition: If d = dim(X) then

Hq(Ux̃,M̃!
x) =

{
MΓx q = d

0 q ̸= d
(2.69)

Hence the above complex of sheaves provides a complex of modules

C•! (U,M̃) :=

→
∏
x:d(x)=qH

d(Ux,M̃!
x)→ · · · →

∏
(xi,xj)

Hd(Uxi,xj
,M̃!

xi,xj
)→

∏
xi
H̃d(Uxi

,M̃!
xi
)→ 0.

(2.70)

and then

Hq(Γ\X, i!(M̃)) = Hq
c (Γ\X,M̃) = Hq(C•! (U,M̃)). (2.71)

Now let us assume thatM is a finitely generated module over some commutative
noetherian ring R with identity. Then clearly all our cohomology groups will be
R-modules.

Our Theorem A above implies
Theorem (Raghunathan) Under our general assumptions all the coho-

mology groups Hq
c (Γ\X,M̃), Hq(Γ\X,M̃), Hq

! (Γ\X,M̃), Hq(∂(Γ\X),M̃) are
finitely generated R modules.

MC

2.1.9 Modified cohomology groups

Most of the time our module M will be a finitely generated Z module and
the theorem of Raghunathan says that the cohomology groups are also finitely
generated Z modules. Sometimes we replace Z ring of integers OF of a finite
extension F/Q and then we will even invert some finite numbers of primes.
Hence we our coefficient modules will be finitely generated R-modules where
OF ⊂ R ⊂ F. In any case these rings R will be Dedekind rings.
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Starting from the fundamental exact sequence we have introduced the mod-
ified cohomology groups Hq

! ( ). There is a second process of modification: If
H•( ) is any of these cohomology groups then

Hint

H•( ) int := H•( )/Tors = Im(H•( )→ H•( )⊗Q) (2.72)

We have to discuss a minor problem: These two processes of modification
do not quite commute. This is due to the fact that the resulting sequence

→ Hq−1(∂(Γ\X),M̃R) int → Hq
c (Γ\X,M̃R) int

j−→ Hq(Γ\X̄,M̃R) int
r−→ Hq(∂(Γ\X),M̃R) int

is not necessarily exact anymore. Clearly we have Hq
! (Γ\X,M̃R) int = Im(j)

and if we now define HqΓ\X,M̃R) int,! := ker(r) then we have

Hq
! (Γ\X,M̃R) int ⊂ Hq(Γ\X,M̃R) int,! (2.73)

but this inclusion may be proper. The following proposition is an elementary

exercise in homological algebra. supqbd

Proposition 2.1.1. The quotient Hq(Γ\X,M̃R) int,!/H
q
! (Γ\X,M̃R) int is fi-

nite and isomorphic to a subquotient of Hq(∂(Γ\X),M̃R).

We will discuss an example in section 3.3.1
This may be a good place to introduce some terminology. If V is a torsion

free, finitely generated R -module and we have a direct sum of submodules
V ⊃ ⊕νVν then we say that this direct sum is decomposition up to isogeny if
the quotient V/⊕ν Vν is a torsion module and if for any ν the quotient V/Vν is
torsion free. Sometimes we also call this a saturated decomposition (see section
2.1.9).

PDgen

2.1.10 Poincare duality in general

Let us assume that the symmetric space X = G(R)/K∞ is connected and let us
also assume that Γ operates orientation preserving, this means that any finite
stabiliser Γx acts trivially on Λd(TX,x). Then we know that Hd

c (Γ\X,Z)
∼−→ Z,

the isomorphism depends on the choice of an orientation.
Assume thatM is a finitely generated torsion free Z module with an action

of Γ on it and let M∨ = Hom(M,Z) be the dual module. Then we have an
obvious pairing between the two complexes C•! (U,M̃) : and C•(U,M̃) (See (

2.70 ),(2.11) which induced by the obvious pairing H0(Ux,M̃) ×Hd
c (Ux,M̃∨)

and summation over the components. This pairing induces a pairing on the
cohomology groups which are computed by these complexes (See [39],4.8.4.)

Hq
c (Γ\X,M̃)⊗Hd−q(Γ\X,M̃)

<,>PD−→ Hq
c (Γ\X,M̃ ⊗ M̃∨)→ Hd

c (Γ\X,Z) = Z
(2.74)

Of course < x, y >PD= 0 if one of the entries is a torsion element and hence we
get a pairing between the modified cohomology groups
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PDZcp

Hq
c (Γ\X,M̃) int ⊗Hd−q(Γ\X,M̃∨) int

<,>−→PD Z (2.75)

If Γ is torsion free this is a non degenerate pairing (see for instance ([39], Thm.
4.8.4). If Γ has non trivial torsion the same is true if we replace Z by R = Z[1/N ]
where N is the product of the orders of the finite stabilisers.

If we analyse the fundamental exact sequence we also find a non degenerate
pairing

PDaus

Hq
! (Γ\X,M̃) int ⊗Hd−q(Γ\X,M̃∨) int,!

<,>PD−→ Z (2.76)

Eventually we can pass to rational coefficient systems we get a non degen-
erate pairing

PDQ

Hq
! (Γ\X,M̃Q)⊗Hd−q

! (Γ\X,M̃∨Q)
<,>PD−→ → Q (2.77)

If we look again at the fundamental exact sequence we see the two homo-
morphisms

δHq−1(∂(Γ\X),M̃Q)→ Hq
c (Γ\X,M̃Q) and r : H

d−q(Γ\X,M̃∨Q)→ Hd−q(∂(Γ\X),M̃∨Q)
(2.78)

The Borel-Serre boundary has the homotopy type of a d − 1 dimensional

manifold hence we we also have a non degenerate pairing PDbound

< , >∂ : H
q−1(∂(Γ\X),M̃Q)×Hd−q(Γ\X,M̃∨Q)→ Q. (2.79)

Now an easy computation shows that for x ∈ Hq−1(∂(Γ\X),M̃Q), y ∈
Hd−q(Γ\X,M̃∨Q) we have the formula

< x, r(y) >∂=< δ(x), y >! (2.80)

and this has the following important consequence

Proposition 2.1.2. The spaces Im(r(Hq−1(Γ\X,M̃Q)) and Im(r(Hd−q(Γ\X,M̃∨Q))
are mutual orhogonal complements of each other, i.e.

Im(r(Hd−q(Γ\X,M̃∨Q)) = {y | < y, Im(r(Hq−1(Γ\X,M̃Q)) >∂= 0

2.1.11 The case Γ = Sl2(Z)
We return to the case Γ = Sl2(Z). (See section 2.1.4). We will see that for
this seemingly very easy case we can formulate and prove some deep results, for
instance we understand the denominators of the Eisenstein classes (Theorem
3.89).

In the following M can be any Γ-module. We investigate the fundamental
exact sequence for this special group. We computed already the cohomology
groups H•(Γ\H,M̃) in (2.1.4).
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We compute the cohomology with compact supports. Of course we start
again from our covering Γ\H = Ui∪Uρ. The cohomology with compact supports
is the cohomology of the complex (see 2.70)

0→ H2(Ui ∩ Uρ,M̃!
i,ρ)→ H2(Ui ,M̃!

i)⊕H2(Uρ,M̃!
ρ)→ 0.

Now we have H2(Ui ∩ Uρ, ˜̃M!
i,ρ) = M, H2(Ui ,

˜̃M!
i) = MΓi = M/(Id −

S)M, H2(Uρ ,
˜̃M!
ρ) =MΓρ

=M/(Id−R)M̃ and hence we get the complex

0→M→MΓi ⊕MΓρ → 0

and from this we obtain

H1(Γ\H, i!(M)) = ker(M→ (M/(Id− S)M⊕M/(Id−R)M))

and
H0(Γ\H, i!(M)) = 0, H2(Γ\H, i!(M)) =MΓ.

Now we consider the cohomology of the boundary H•(∂(Γ\H), M̃). We dis-
cussed the Borel-Serre compactification and saw that in this case we get this
compactification if we add a circle at infinity to our picture of the quotient. But
we may as well cut the cylinder at any level c > 1, i.e. we consider the level
line H(c) = {z = x + ic|z ∈ H} and divide this level line by the action of the
translation group

ΓU = {
(
1 n
0 1

)
|n ∈ Z} = {

(
ϵ n
0 ϵ

)
|n ∈ Z, ϵ = ±1}/{±Id}.

But this quotient is homotopy equivalent to the cylinder

ΓU\H ≃ ΓU\H(c).

We apply our general consideration on cohomology of arithmetic groups to
this situation and find

H•(∂(Γ\H),M̃) = H•(ΓU\H, shΓU
(M)) = H•(ΓU\H(c), shΓU

(M)).

This cohomology is easy to compute. The group ΓU is generated by the

element T =

(
1 1
0 1

)
. It is rather clear that

H0(ΓU\H, shΓU
(M)) =MΓU , H1(ΓU\H, shΓU

(M)) =MΓU
=M/(Id− T )M.

Then our fundamental exact sequence becomes (See( 2.31))

fundexsq

0→MΓ →MΓU → ker(M→ (M/(Id− S)M⊕M/(Id−R)M))
j−→

M/(MΓi ⊕MΓρ)
r−→M/(Id− T )M→MΓ → 0

(2.81)
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Now it may come as a little surprise to the readers, that we can formulate a
little exercise which is not entirely trivial

Exercise: Write down explicitly all the arrows in the above fundamental sequence

We give the answer without proof. I change notation slightly and work with
the matrices

S =

(
0 −1
1 0

)
, R =

(
1 −1
1 0

)
and we have the relation

RS = T =

(
1 1
0 1

)
Then Γi =< S >,Γρ =< R > . The map

M/(M<S> ⊕M<R>)→M/(Id− T )M

is given by

m 7→ m− Sm

We have to show that this map is well defined: If m ∈ M<S> then m 7→ 0. If
m ∈M<R> then

m− Sm = m− SR−1m = m− Tm

and this is zero inM/(Id− T )M.
The map

ker(M→ (M/(Id− S)M⊕M/(Id−R)M))→M/(M<S> ⊕M<R>)

is a little bit delicate. We pick an element m in the kernel, hence we can write
it as

m = m1 − Sm1 = m2 −R−1m2

and send m 7→ m1 −m2 (Here we have to use the orientation). If we modify
m1,m2 to m′1 = m1 + n1,m

′
2 = m2 + n2 then m′1 −m′2 gives the same element

inM/(M<S> ⊕M<R>).
This answer can only be right if m1 −m2 goes to zero under the map r, i.e.

we have to show that

m1 −m2 − S(m1 −m2) ∈ (Id− T )M

We compute

m1−m2−S(m1−m2) = m−m2+Sm2 = m−m2+R
−1m2−R−1m2+Sm2 =

−R−1m2 + Sm2 = −T−1Sm2 + Sm2 ∈ (Id− T )M.

Finally we claim that the mapM<T> → ker(M→ (M/(Id−S)M⊕M/(Id−
R)M)) is given by m 7→ m− Sm = m−R−1T−1m = m−R−1m.

There is still another element of structure. The map c : z 7→ −z̄ induces an

(differentiable) involution of H. We put S1 =

(
−1 0
0 1

)
then γcz = cS1γS

−1
1 z
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and therefore c induces an involution on Γ\H. We get an isomorphism of coho-
mology groups

c(1) : H1(Γ\H,M̃)
∼−→ H1(Γ\H, c∗(M̃)) (2.82)

The direct image sheaf c∗(M̃) is by definition the sheaf attached to the Γ module
M[S1] : This is the module which equal to M as an abstract module, but the
action is twisted by a conjugation by the above matrix S1, i.e.

γ ∗m = S1γS
−1
1 m (2.83)

Now we assume thatM is actually a Gl2(Z) module. Then the map m→ S1m
provides an isomorphismM(S1) ∼−→ M and hence we get in involution on the
cohomology groups

cc

c• : H•(Γ\H,M̃)→ H•(Γ\H,M̃) (2.84)

We have the explicit description of the cohomology groups H1(Γ\H,M̃) and
we can compute this involution in terms of this description.The map m 7→ S1m
induces an isomorphism

S•1M/(MΓi +MΓρ)→M/(MΓi +MΓρ2 ), (2.85)

both sides are equal to the cohomology H1(Γ\H,M̃). Hence c• is the map

induced by S
|
1•

The cohomology has a + and a − eigen submodule under this involution,
and

H1(Γ\H,M̃) ⊃ H1(Γ\H,M̃)+ ⊕H1(Γ\H,M̃)−, (2.86)

the sum of the two eigen modules has finite index which is a power of 2.

Poincare’ duality

We assume that our Γ moduleM is a finitely generated and locally free module
over R , where R is a Dedekind ring or a field. We assume 1

2 ∈ R. In section
2.1.10 we discuss Poincare duality in greater generality, here we consider the
pairing (see 2.76)

H1
! (Γ\H,M̃) int ×H1(Γ\H,M̃∨) int,! → H2

! (Γ\H, R) = R (2.87)

It is clear that the involution c induces multiplication by −1 on H2
! (Γ\H, R).

On the other hand we have the decompositions of the above cohomology groups
into ± eigen modules. The pairings of the +,+ parts and the −,− give zero
and then we get pairings

H1
! (Γ\H,M̃) int,+ ×H1(Γ\H,M̃∨) int,!,− → R

H1(Γ\H,M̃) int,!,+ ×H1
! (Γ\H,M̃∨) int,− → R

(2.88)

both of them are partially non degenerate.



2.1. COHOMOLOGYOF ARITHMETIC GROUPS AS COHOMOLOGYOF SHEAVES ON Γ\X.97

If we haveM =M∨ then we get eqrank

rank(H1
! (Γ\H,M̃) int,+) = rank(H1

! (Γ\H,M̃) int,−) (2.89)

Final remark: The reader may get the impression that - at least in the
case Γ = Sl2(Z)-it is easy to compute the cohomology, but the contrary is true.
In the case Γ = Sl2(Z)/±Id we found formulae for the rank of the cohomology
groups, this seems to be a satisfactory answer, but it is not. The point is
that there is an additional structure. In the next section we will introduce the
Hecke operators, these Hecke operators form an algebra of endomorphisms of
the cohomology groups.

It is a fundamental question (see further down) to understand the cohomology
as a module under the action of this Hecke algebra.

It is not so easy to write down the effect of a Hecke operator on a module
likeM/(MΓi +MΓρ). We will discuss an explicit example in section 3.3.

We mentioned already that the situation is even less satisfying if we consider
the case Γ = Sl2(Z[i]). In this case we considered the coefficient system M =
Mn1 ⊗Mn2 . (see 2.36). Then it turns out that the complex (??) does not tell
us very much about the cohomology.

We may for instance employ the complex (2.33). and the resulting complex
for the cohomology with compact supports, then we can compute -for a given
pair n1, n2- the modules (Q[i] -vector spaces) in the exact sequence

0→ H1
! )Γ\H3,M̃ ⊗Q)→ H1(Γ\H3,M̃ ⊗Q)

r−→ H1(∂(Γ\H3),M̃ ⊗Q).

An easy computation (see later) shows that

H1(∂(Γ\H3),M̃ ⊗Q) = Q[i]e0,1 ⊕Q[i]e1,0

where the eii,j are some naturally given generators. Another simple argument
using Poincare’ duality shows that the image under the restriction map r will
be a one dimensional subspace

Im(r)(H1(Γ\H3,M̃ ⊗Q)) = Q[i](L(n1, n2)e0,1 + L(n2, n1)e1,0)

This far we get with our topological methods.

In chapter 4 we will use tools from analysis and prove a vanishing theorem

H•! (Γ\H3,M̃ ⊗Q) = 0 if n1 ̸= n2 (2.90)

(See 4.1.7) I do not see how such a result can not be obtained from studying
the complex (2.33).

At this point we ask a natural question: Can we compute the position of the
one dimensional subspace Im(r) the cohomology of the boundary, i.e. can we
compute the point (L(n1, n2),L(n2, n1)) ∈ P1(Z[i])?

Here the answer is yes, but we have to use transcendental tools The ratio
L(n1,n2)
L(n2,n1)

(or its inverse) is the quotient of a Hecke L function function evaluated
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at two consecutive critical integer arguments arguments (depending on n1, n2 we
come back to this later) So the complex can not give an elementary expression
for it.

On the other hand our purely combinatorial considerations imply that the

ratios L(n1,n2)
L(n2,n1)

∈ Q[i] (or =∞) this implies a non trivial rationality relation

between special values of the Hecke L function..

The rationality relation are easy consequences the results of Hurwitz on the
special values of his Zeta-function.

The complex computes the Z[i]− modules Hi
! (Γ\H3,M̃λ) and therefore it

also computes the torsion. Again it seems to be difficult to derive general
theorems, except the obvious finiteness assertions.



Chapter 3

Hecke Operators

3.1 The construction of Hecke operators

We mentioned already that the cohomology and homology groups of an arith-
metic group have an additional structure: They are modules for the Hecke
algebra. The following description of the Hecke algebra is somewhat proviso-
rial, we get a richer Hecke algebra, if we work in the adelic context (See Chapter
6 ). The description here is more intuitive.

We start from the arithmetic group Γ ⊂ G(Q) and an arbitrary Γ-module
M. The module M is also a module over a ring R which in the beginning
may be simply Z. More generally is R may the ring of integers in an algebraic
number field, where we also inverted a finite number of primes. At this point it
is better to have a notation for this action

Γ×M→M, (γ,m) 7→ r(γ)(m)

where now r : Γ→ AutR(M). We abbreviate r(γ)m = γm.

If we have a subgroup Γ′ ⊂ Γ of finite index, then we constructed maps

π•
Γ′,Γ :H•(Γ\X,M̃) −→ H•(Γ′\X,M̃)

πΓ′,Γ,• :H
•(Γ′\X,M̃) −→ H•(Γ\X,M̃)

(see section 2.1.2).
We pick an element α ∈ G(Q). The group

Γ(α−1) = α−1Γα ∩ Γ

is a subgroup of finite index in Γ and the conjugation by α induces an isomor-
phism

inn(α) : Γ(α−1) −→ Γ(α).

We get an isomorphism

j(α) : Γ(α−1)\X −→ Γ(α)\X

which is induced by the map x −→ αx on the space X. This yields an isomor-
phism of cohomology groups

j(α)• : H•(Γ(α−1)\X,M̃) −→ H•(Γ(α)\X, j(α)∗(M̃)).

99
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We compute the sheaf j(α)∗(M̃). For a point x ∈ Γ(α)\X we have j(α)∗(M̃)x =
M̃x′ where j(α)(x′) = x. We have the projection πΓ(α−1) : X → Γ(α−1)\X,
and the definition yields

M̃x′ =
{
s : π−1Γ(α−1)(x

′)→M | s(γm) = γs(m) for all γ ∈ Γ(α−1)
}

(3.1)

The map z −→ αz provides an identification π−1Γ(α−1)(x
′)

∼−→ π−1Γ(α)(x) in

terms of this fibre we can describe the stalk at x as

(α)∗(M̃)x =
{
s : π−1Γ(α)(x)→M | s(γv) = α−1γαs(v) for all γ ∈ Γ(α)

}
. (3.2)

Hence we see: We may use α to define a new Γ(α)-module M(α): The
underlying abelian group ofM(α) isM but the operation of Γ(α) is given by

(γ,m) −→ (α−1γα)m = γ ∗α m.

Then the sheaf j(α)∗(M̃) is equal to M̃(α). Now every element

uα ∈ HomΓ(α)(M(α),M)

defines a map ũα : j(α)∗(M̃)→ M̃, and we get a commuting diagram

H•(Γ(α−1)\X,M̃)
j(α)•−→ H•(Γ(α)\X, j(α)∗(M̃))

ũ•
α−→ H•(Γ(α)\X,M)xπ•

yπ•

H•(Γ\X,M̃)
T (α,uα)−−−−−−−−−−−−−−−−−−−−−−−−→ H•(Γ\X,M̃)

,

(3.3)

and now the operator the bottom line is the Hecke operator.

The Hecke operator depends on two data:

a) the element α ∈ G(Q),

b) the choice of uα ∈ HomΓ(α)(M(α),M).

It is not difficult to show that the operator T (α, uα) only depends on the
double coset Γ α Γ, provided we adapt the choice of uα. To be more precise if

α1 = γ1αγ2 γ1, γ2 ∈ Γ,

then we have an obvious bijection

Φγ1,γ2 : HomΓ(α)(M(α),M) −→ HomΓ(α1)(M
α1),M)

which is given by
Φγ1,γ2(uα) = uα1

= γ1uαγ2.

The reader will verify without difficulties that

T (α, uα) = T (α1, uα1
).
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(Verify this for H0 and then use some kind of resolution (See next section) )

The choice of uα may be delicate in some situations. There are cases where
we also have a canonical choice of uα. The first case is that our Γ-module M
is of arithmetic origin. In this case G(Q) acts upon MQ =M⊗ Q. Then the
canonical choice of an

uα,Q :M(α)
Q −→MQ,

is given by uα : m 7→ αm. Hence we can speak of the Hecke-opertor T (α) :
H•(Γ\X,MQ)→ H•(Γ\X,MQ).

But if we return to the R-module sheaf M this morphism uα,Q will not
necessarily map the latticeM(α) intoM. Clearly we can find a rational number
d(α) > 0 for which

d(α) · uα,Q :M(α) −→M and d(α) · uα,Q(M(α)) ̸⊂ bM for any integer b > 1.

Then uα = d(α) · uα,Q is called the normalised choice, and then T (α, uα) will
be the normalised Hecke operator.

The canonical choice defines endomorphisms on the rational cohomology, i.e.
the cohomology with coefficients in M̃Q whereas the normalised Hecke operators
induce endomorphism of the integral cohomology. The normalised choice and
the canonical choice differ only by a scalar factor.

In the second case we assume that Γ0 = G(Z), let Γ(N) ⊂ Γ0 be the full
congruence subgroup mod N . Then Γ0/Γ(N) ⊂ G(Z/NZ) Now we assume
that V is a G(Z/NZ) module, in section 1.2.2 we called this a module of con-
gruence origin. Then we have some constraints on the choice of elements α.
We introduce the semi local ring Z(N) where we invert all primes not dividing
N. Now we pick our elements α ∈ G(Z(N)) Since we have the homomorphism
Z[(N)→ Z/NZ our module V is also a G(Z(N))) module. Therefore we can
simply choose uα := m 7→ αm.

We see that we can construct many endomorphisms T (α, uα) : H
•(Γ\X, Ṽ)→

H•(Γ\X, Ṽ). These endomorphisms will generate an algebra

HN,Ṽ ⊂ End(H•(Γ\X, Ṽ)). (3.4)

This is now the so-called Hecke algebra..
We can also define endomorphisms T (α, uα) on the cohomology with com-

pact supports, on the inner cohomology and the cohomology of the boundary.
Since the operators are compatible with all the arrows in the fundamental exact
sequence we denote them by the same symbol.

The Hecke algebra also acts on the inner cohomologyHq
! (Γ\X,M̃).Of course

we may tensorize our coefficient system with any number field L ⊃ Q , then we
writeML =M⊗ L..

We state without proof the following fundamental theorem :

He-ss
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Theorem 3.1.1. Let M be a module of arithmetic origin. For any extension
L/Q the HΓ ⊗ L module Hq

! (Γ\X,M̃L) is semi simple, i.e. a direct sum of
irreducible HΓ modules.

The proof of this theorem will be discussed in Chapter 6 ( section 6.1.8) it
requires some input from analysis. We give a brief sketch. We tensorize our
coefficient system by C, i.e. we considerML⊗LC =MC. Let us assume that Γ
is torsion free. First of all start from the well known fact, that the cohomology
H•(Γ\X,M̃C) can be computed from the de-Rham-complex

H•(Γ\X,M̃C) = H•(Ω•(Γ\X)⊗ M̃C. (3.5)

We introduces some specific positive definite hermitian form onMC and this
allows us to define a hermitian scalar product between two M̃C -valued p-forms

< ω1, ω2 >=

∫
Γ\X

ω1 ∧ ∗ω2,

provided one of the forms is compactly supported.
This will allow us a positive definite scalar product on Hp

! (Γ\H,M̃n,C), We
apply theorem 6.1.1 , this theorem tells us that we can find representatives
ωh1 , ω

h
2 which are harmonic (they satisfy certain differential equations) and then

< [ω1], [ω2] >:=

∫
Γ\X

ωh1 ∧ ∗ωh2 , (3.6)

defines a positive definite hermitian scalar product on Hq
! (Γ\X,M̃C). Finally

we show that HΓ is self adjoint with respect to this scalar product,(see 6.1 and
then semi-simplicity follows from the standard argument.

For the groups Γ ⊂ Sl2(Z) and the cohomology groups H1
! (Γ\H,Mn ⊗ C)

these harmonic representatives are given linear combinations of holomorphic
and antiholomorphic cusp forms of weight n+2 (See 4.1.7). The scalar product
on this space of modular forms is given by the by the Peterson scalar product
(see section 4.1.8.)

3.1.1 Commuting relations

We want to say some words concerning the structure of the Hecke algebra.
To begin we discuss the action of the Hecke-algebra on H0(Γ\X,M̃). We do

this since we defined the cohomology in terms of injective (or acyclic) resolutions
and therefore the general results concerning the structure of the Hecke algebra
can be reduced to this special case.

If we have a Γ-moduleM and if we look at the diagram defining the Hecke
operators, then we see that we get in degree 0

MΓ(α−1) −→ (M(α))Γ(α)
uα−→ MΓ(α)x y

MΓ T (α,uα)−−−−−−−−−−−−−−→ MΓ
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where the first arrow on the top line is induced by the identity map M →
M(α) = M and the second by a map uα ∈ HomAb(M,M) which satisfies
uα((αγα

−1)m) = γuα(m). Recalling the definition of the vertical arrow on the
right, we find

T (α, uα)(v) =
∑

γ∈Γ/Γ(α)

γ · uα(v).

We are interested to get formulae for the product of Hecke operators, for in-
stance, we would like to show that under certian assumptions on α, β and certain
adjustment of uα, uβ and uαβ we can show

T (α, uα) · T (β, uβ) = T (β, uβ) · T (α, uα) = T (αβ, uαβ).

It is easy to see what the conditions are if we want such a formula to be
true. We look at what happens in H0. For v ∈MΓ we get

T (α, uα) · T (β, uβ)(v) =
∑

γ∈Γ/Γ(α)

γuα(
∑

η∈Γ/Γ(β)

ηuβ(v))

We assume that the following three conditions hold

(i) for each η we can find an η′ ∈ Γ such that

η′ ◦ uα = uα ◦ η,

(ii) The elements γη′ form a system of representatives for Γ/Γ(αβ)

(iii) uαuβ(v) = uβuα(v) = uαβ(v).

Then we get

T (α, uα) · T (β, uβ)(v) =
∑

γ∈Γ/Γ(α)

∑
η′∈Γ/Γ(β)

γη′uαuβ(v) =
∑

ξ∈Γ/Γ(αβ)

ξuαβ(v) =

T (αβ, uαβ)(v)

We want to explain in a special case that we may have relations like the one
above.

Let S be a finite set of primes, let |S| be the product of these primes. Then we
define ΓS = G(Z[ 1

|S| ]). We say that α ∈ G(Q) has support in S if α ∈ G(Z[ 1
|S| ]).

We take the group Γ = Sld(Z), and we take two disjoint sets of primes S1,
S2. For the group Γ one can prove the so-called strong approximation theorem
(see [57]) which asserts that for any natural number m the map

Sld(Z) −→ Sld(Z/mZ)

is surjective. (This special case is actually not so difficult. The theorem holds
for many other arithmetic groups, for instance for simply connected Chevalley
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schemes over Spec(Z). )
We consider the case

α =


a1

a2
. . .

ad

 ∈ ΓS1 , β =


b1

b2
. . .

bd

 ∈ ΓS2 ,

where ad|ad−1 . . . |a1 and bd|bd−1| . . . |b1. It is clear that we can find integers n1
and n2 which are only divisible by the primes in S1 and S2 respectively, so that

Γ(ni) ⊂ Γ(α−1),Γ(n2) ⊂ Γ(β−1),

where the Γ(ni) are the full congruence subgroups mod ni. Since we have

Sld(Z/nZ) = Sld(Z/n1Z)× Sld(Z/n2Z)

we get
Γ/Γ(α−1β−1)

∼−→ Γ/Γ(α−1)× Γ/Γ(β−1).

On the right hand side we can chose representatives γ for Γ/Γ(α−1) which satisfy
γ ≡ Id mod n2 and η for Γ/Γ(β−1) which satisfy η ≡ Id mod n1. Then the
products γη will form a system of representatives for Γ/Γ(α−1β−1). But then
we clearly have uαη = ηuα and we see that (i) and (ii) above are true. Then we
can put uαβ = uαuβ .

We consider the case that our moduleM is a R-lattice inMQ, whereMQ
is a rational G(Q)-module. Then we saw that we can write

uα = d(α) · α

where d(α) will be a product of powers of the primes p dividing n1 and an
analogous statement can be obtained for β and n2.

Since we have αβ = βα and since clearly d(α)d(β) = d(αβ) we also get the
commutation relation.

So far we only proved this relation only for the action on H0(Γ\X,M̃). If
we want to prove it for cohomology in higher degrees, we have to choose an
acyclic resolution

0 −→M −→ A0 −→ A1 −→ . . . = 0 −→M −→ A•

and compute the cohomology from this resolution. We have to extend the maps
uα, uβ to this complex

0 −→ M(α) −→ (A•)(α)yuα yu(•)α
0 −→ M −→ A•,

and we have to prove that the relation

uαηuβ = η′uαuβ = η′uαβ
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also holds on the complex. Once we can prove this, it becomes clear that the
commutation rule also holds in higher degrees.

We choose the special resolution

0→M→ Ind•(M) =

0 −→M −→ IndΓ{1}M−→ IndΓ{1}( Ind
Γ
{1}M/M) −→

(3.7)

It is clear that if suffices to show: If we selected the uα, uβ in such a way that
we have the condition (i), (ii) and (iii) above satisfied, then we can choose
extensions uα, uβ , uαβ to IndΓ{1}M so that (i), (ii) and (iii) are also satisfied.
Once we have done this we can proceed by induction.

In other words we have the diagram of Γ(α)-modules

0 −→ M(α) −→ ( IndΓ{1}M)(α)yuα y?
0 −→ M −→ IndΓ{1}M,

and we are searching for a suitable vertical arrow ?. The horizontal arrows are
given by (as before see (2.3)) by i : m −→ fm : {γ −→ γm}.

We make another assumption concerning our α, β. We assume that there
exists an automorphism Θ of G/Q such that Θ(α) = α−1,Θ(β) = β−1 and
ΘΓ = Γ. This assumption is certainly fulfilled in the case above, we simply take
Θ(g) =t g−1, i.e. transpose inverse.

We choose representatives ξ1, . . . , ξr for Γ/Γ(α−1), then Θξ1, . . . ,Θξr is a

system of representatives for Γ/Γ(α). To define the vertical arrow ? = u
(0)
α we

require
u(0)α (f)(Θξν) = uα(f(ξν)) ∀ ν = 1, . . . , r

and this yields a unique Γ(α)- module isomorphism, for all γ ∈ Γ(α) we must
have

u(0)α (f)(Θξνγ) = uα(f(ξνα
−1γα) ∀ ν = 1, . . . , r.

Iterating this construction gives us the u
(•)
α , by construction these morphisms

satisfy (i), (ii), (iii). Since the complex H0(Γ\X, ˜Ind(M)) computes the coho-
mology groups H•(Γ\X,M̃) the commutation rules hold in all degrees.

HSO

3.1.2 More relations between Hecke operators

We look at the algebra of Hecke operators in the special case that G/Z = Gl2/Z,
we consider the action on H1(Γ\H,M̃) where Γ = Sl2(Z), we assume n even
and M =M[−n2 ]. This has the effect that the centre of G/Z acts trivially on
M and this makes life simpler.

We attach a Hecke operator to any coset ΓαΓ where α ∈ Gl+2 (Q) (i.e.
det(α) > 0, we want α to act on the upper half plane). Then α and λα with
λ ∈ Q∗ define the same operator. Hence we may assume that the matrix entries
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of α are integers. The theorem of elementary divisors asserts that the double
cosets

Γ ·Mn(Z)det ̸=0 · Γ ⊂ Gl+2 (Q)

are represented by matrices of the form(
a 0
0 b

)
where b | a. But here we can divide by b, and we are left with the matrix

α =

(
a 0
0 1

)
, a ∈ N.

We can attach a Hecke operator to this matrix provided we choose uα. We see
that α induces on the basis vectors of our moduleM

XνY n−ν −→ aν−n/2 ·XνY n−ν .

Hence we see that we have the following natural choice for uα

uα : P (X.Y ) −→ an/2α · P (X,Y ).

(See the general discussion of the Hecke operators)
Hence we get a family of endomorphisms

T

(a 0
0 1

)
, ua 0

0 1



 = T (a) (3.8)

of the cohomology Hi(Γ\H,M̃) We have seen already that we have TaTb = Tab
if a, b are coprime.

Hence we have to investigate the local algebra Hp which is generated by the

Tpr = T

(pr 0
0 1

)
, upr 0

0 1



 (3.9)

for the special case of the group Γ = Sl2(Z) and the coefficient system M =
Mn[−n2 ]. To do this we compute the product

Tpr · Tp = T

((
pr 0
0 1

)
, uαr

p

)
· T
((

p 0
0 1

)
, uαp

)
(3.10)

where the u′αr are the canonical choices.

Again we investigate first what happens in degree zero, i.e. on H0(Γ\H, Ĩ)

here I is any Γ-module. Let α =

(
p 0
0 1

)
, ξ ∈ H0(Γ\X, Ĩ) then

T (αr, uαr )T (α, uα)ξ = (
∑

γ∈Γ/Γ(αr)

γuαr )(
∑

η∈Γ/Γ(α)

ηuα)(ξ)
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We have the classical system of representatives

Γ/Γ(αr) =
⋃

j mod pr

(
1 j
0 1

)
Γ(αr)

⋃ ⋃
j′ mod pr−1

(
1 0
j′p 1

)(
0 1
−1 0

)
Γ(αr),

and our product of Hecke operators becomes

( ∑
j mod pr

(
1 j
0 1

)
+

∑
j′ mod pr−1

(
1 0
j′p 1

)(
0 1
−1 0

)
uαr

)(
(
∑

j1 mod p

(
1 j1
0 1

)
+

(
0 1
−1 0

)
)uα
)
(ξ) =

[ ∑
j mod pr,j1 mod p

(
1 j
0 1

)
uαr

(
1 j1
0 1

)
uα)(ξ)

+
∑

j′ mod pr−1,j1 mod p

(
1 0
j′p 1

)(
0 1
−1 0

)
uαr

(
1 j1
0 1

)
uα(ξ)

]
+

+
[ ∑
j mod pr

(
1 j
0 1

)
uαr

(
0 1
−1 0

)
)uα(ξ)+

(
∑

j′ mod pr−1

(
1 0
j′p 1

)(
0 1
−1 0

)
uαr

(
0 1
−1 0

)
uα(ξ)

]
Now we have to assume t uαν satisfy commutation rules

uαruα = uαr+1

uαr

(
1 j1
0 1

)
=

(
1 j1p

r

0 1

)
uαr

uαr

(
0 1
−1 0

)
uα

(
0 1
−1 0

)
= cI(p)uαr−1

(3.11)

where cI(p) is a non zero integer. If we exploit the first two commutation relation
then we get as the sum in the first

[
. . .
]

[∑
j mod pr,j1 mod p

(
1 j + prj1
0 1

)
∑
j′ mod pr−1,j1 mod p

(
1 0

(j′ + pr−1j1)p 1

)(
0 1
−1 0

)]
uαr+1(ξ)

]
= T (pr+1, uαr+1)(ξ).

(3.12)

To compute the contribution of the second
[
. . .
]
we observe that w =(

0 1
−1 0

)
∈ Γ and hence we have wξ = ξ.Then the second commutation re-

lation yields for the sum of the terms in the second
[
. . .
]
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cI(p)(
∑

j mod pr

(
1 j
0 1

)
+

∑
j′ mod pr−1

(
1 0
j′p 1

)(
0 1
−1 0

)
)uαr−1(ξ). (3.13)

We observe that for j ≡ 0 mod pr−1 we get(
1 j
0 1

)
αr−1(ξ) = uαr−1

(
1 j

pr−1

0 1

)
(ξ) = uαr−1(ξ)

and in case r > 1 for j′ ≡ 0 mod pr−2

(
1 0
j′p 1

)(
0 1
−1 0

)
)uαr−1(ξ) =

(
0 1
−1 0

)
)uαr−1

(
1 pj′

pr−1

0 1

)
(ξ) =

(
0 1
−1 0

)
)uαr−1(ξ).

(3.14)

Here we used again (3.11) and ξ ∈ H0(Γ\X, Ĩ). In other words in the summation
(3.13) the first term only depends on j mod pr−1 and the second only on j′

mod pr−2. For r > 1 this yields for the second term (3.13)

pcI(p)(
∑

j mod pr−1

(
1 j
0 1

)
+

∑
j′ mod pr−2

(
1 0
j′p 1

)(
0 1
−1 0

)
)uαr−1(ξ) = pcI(p)T (p

r−1)ξ

If r = 1 the value for (3.13 ) is cI(p)(p + 1)uα0 and hence we get the general
formula

Tpr · Tp = Tpr+1 + (p+ ϵ(p))cI(p)Tpr−1 (3.15)

where ϵ(r) = 0 if r > 1 and ϵ(r) = 1 for r = 1.
This formula is valid for all values of r ≥ 0 if we put Tp−1 = 0.

We want to know what this means for the action on H1(Γ\H,M), we start
again from our special resolution. (3.7). A simple calculation gives that the uαr

satisfy the relations (3.11) with cM(p) = pn. Hence we get for the action on
H1(Γ\H,M)

Tpr · Tp = Tpr+1 + pn+1Tpr−1 + ϵ(r))pnTpr−1 (3.16)

where ϵ(r) = 0 if r > 1 and ϵ(r) = 1 for r = 1.

Interlude
We assume that a majority of the readers has seen Hecke operators in the

context of modular forms and also has seen formulas for these Hecke operators
acting on spaces of modular forms, which look very similar to the formulas above.
(See [80]), [50]) This is of course not accidental, in the following chapter we will
discuss the Eichler-Shimura isomorphism, which provides an injection of the
space of modular forms of weight k into the cohomology H1(Γ\H,Mk−2 ⊗C)).
(See Thm. 4.1.3). This is a Hecke-module isomorphism and this explains the
relation between the classical Hecke operators and the ”cohomological” Hecke
operators.
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There is a slight difference between the formulas here and in [80], the reason
is that our Tpr differ slightly from the classical Hecke operators. But we always
have Tp defined as above is equal to Tp in (3.1.2).

Here we want to stress that in this text so far -except in the introduction-
there is no mentioning of modular forms, this is intentional.

End Interlude

This can be generalised. We choose an integer N > 1 and we take as our
arithmetic group the full congruence group Γ = Γ(N). For any prime p /| N
the T (α, uα) with α ∈ Gl+2 (Z[1/p]) form a commutative subalgebra Hp which
is generated by Tp. It has an identity element ep = Tp0 This is the so called
unramified Hecke algebra.

For p|N we can also consider the T (α, uα) with α ∈ Gl+2 (Z[1/p]). They will
also generate a local algebra Hp of endomorphisms in any of our cohomology
groups, but this algebra will not necessarily be commutative. But if we have two
different primes p, p1 then we saw that the Hp,Hp1 commute with each other.
All these algebras Hp have an identity element ep, we form the algebra

HΓ =

′⊗
p

Hp

where the superscript indicates that a tensor hf =
⊗

p hp, hp ∈ Hp has a a
factor ep for almost all p. (In part II we will give a better construction of the
Hecke-algebra which uses the language of adeles). This algebra acts on all our
cohomology groups. We recall that the action of HΓ on the inner cohomology
groups is semi-simple (See Thm. 3.1.1). This has important consequences, which
we discuss after a brief recapitulation of the theory of semi simple modules.

3.2 Some results on semi-simple A- modules

We fix a field L and its algebraic closure L̄, for simplicity we assume that the
characteristic of L is zero, or that L is perfect. We consider an L-algebras A, not
necessarily commutative, but with identity. We need a few results and concepts
from the theory on finite dimensional vector spaces V/L with an action of A ,
i.e equipped with a homomorphism A → EndL(V ).

Such an A module V is called irreducible if it does not contain an A invariant
proper submodule W ⊂ V, i.e {0} ≠W ̸= V. It is called absolutely irreducible if
A ⊗ L̄ module V ⊗ L̄ is irreducible. We say that V is indecomposable if it can
not be written as the direct sum of two non zero submodules. An irreducible
module is also indecomposable.

We say that the action of A on V is semi-simple, if the action of A ⊗ L̄
on V ⊗ L̄ is semi simple and this means that any A submodule W ⊂ V ⊗ L̄
has a complement, i.e. we can find an A-submodule W⊥ ⊂ V ⊗ L̄ such that
V ⊗ L̄ =W ⊕W⊥.

Then it is clear that we get a decomposition indexed by a finite set E

V ⊗ L̄ =
⊕
i∈E

Wi
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where the Wi are (absolutely) irreducible submodules. In general this decom-
position will not be unique. For any two Wi,Wj of these submodules we have (
Schur’s lemma)

HomA(Wi,Wj) =

{
L̄ if they are isomorphic as A -modules

0 else

We decompose the indexing set E = E1 ∪ E2 ∪ .. ∪ Ek according to isomor-
phism types. For any Eν we choose an A moduleW[ν] of this given isomorphism
type. Then by definition

HomA(W[ν],Wj) =

{
L̄ if j ∈ Eν
0 else

.

Now we define H[ν] = HomA(W[ν], V ⊗L̄) we get an inclusion H[ν]⊗W[ν] ↪→
V ⊗ L̄. The image Xν will be an A submodule, which is a direct sum of copies
of W[ν], it is the unique such submodule.

We get a direct sum decomposition

V ⊗ L̄ =
⊕
ν

⊕
i∈Eν

Wi =
⊕
ν

Xν

then this last decomposition is easily seen to be unique, it is called the isotypical
decomposition.

If V is a semi simple A module then any submodule W ⊂ V also has a
complement ( this is not entirely obvious because by definition only W ⊗L L̄
has a complement in V ⊗L L̄. But a small moment of meditation gives us that
finding such a complement is the same as solving an inhomogeneous system of
linear equations over L. If this system has a solution over L̄ it also has a solution
over L.) Therefore we also can decompose the A module V into irreducibles.
Again we can group the irreducibles according to isomorphism types and we get
the isotypical decomposition

V =
⊕
i∈E

Ui =
⊕
ν

⊕
i∈Eν

Ui =
⊕
ν

Yν . (3.17)

But of course a summand Ui may become reducible if we extend the scalars
to L̄ (See examplple below). Since it is clear that for any two A- modules V1, V2
we have

HomA(V1, V2)⊗ L̄ = HomA⊗L̄(V1 ⊗ L̄, V2 ⊗ L̄)
we know that we get the isotypical decomposition of V ⊗ L̄ by taking the iso-
typical decomposition of the Yν ⊗ L̄ and then taking the direct sum over ν.

Example: Let L1/L be a finite extension of degree > 1, then we put A = L1

and V = L1, the action is given by multiplication. Clearly V is irreducible, but
V ⊗ L̄ is not. If L1/L is separable then the module is semisimple, otherwise it
is not.

We have a classical result:
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Proposition 3.2.1. Let V be a semi simple A module. Then the following
assertions are equivalent

i) The A module V is absolutely irreducible
ii) The image of A in the ring of endomorphisms is End(V )
iii) The vector space of A endomorphisms EndA(V ) = L.

This can be an exercise for an algebra class. Where do we need the assump-
tion that V is semi simple?

We return to our algebra A over L. Let V be an irreducible semi-simple
A -module, which is not necessarily absolutely irreducible. Let IV be the two
sided ideal which annihilates V , i.e. the kernel of A → EndL(V ). Let CL be
the centre of A/IV . This centre is a field, because any c ∈ CL is either zero or
an isomorphism, in other words V is a CL vector space. The CL-algebra A/IV
is a central simple algebra. There is a central division algebra D/CL such that
A/IV

∼−→ Mr(D), this is the algebra of (r, r) matrices with coefficients in D.
This algebra has exactly one -up to isomorphism- non zero irreducible module,
this is the module of column vectors Dr, the algebra acts by multiplication from
the left. Let us denote this module by X [A/IV ]

Theorem 3.2.1. The extension CL/L is separable. Let L1/L be a normal clo-
sure of CL. Then we have the isotypical decomposition

V ⊗L L1 =
⊕

σ:CL→L1

V ⊗CL,σ L1 (3.18)

The Galois group Gal(L1/L) permutes the summands simply transitively. The
A/IV⊗CL,σL1 module V⊗CL,σL1 is isomorphic to the standard module X [A/IV⊗CL,σ
L1].

Here Mr(D) is the L1 algebra of (r, r) matrices with coefficients in D. This
is essentially the classical Wedderburn theorem.

Proposition 3.2.2. For any semi -simple A module V we can find a finite
extension L2/L such that the irreducible sub modules in the decomposition into
irreducibles are absolutely irreducible.

Clear, we have to take an extension which splits D.

If V is any A module- not necessarily semi simple but finite dimensional over
L-then there is a finite extension L2/L and a filtration

{0)} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr−1 ⊂ V ⊗L L2

such that the successive quotients Vi/Vi−1 are absolutely irreducible. A very
elementary argument shows that the set of isomorphism types occurring in this
filtrations does not depend on the filtration, let us denote this set of isomorphism
types by SpecV (A⊗ L2).

We say that an A- sub module W ⊂ V is complete in V if the two sets
SpecW (A⊗ L2) and SpecV/W (A⊗ L2) are disjoint. We have the simple
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Proposition 3.2.3. a ) If V is a semi simple A-module and if W ⊂ V is
complete in V then we have a canonical splitting V =W ⊕W ′.

b) If V is not necessarily semi simple but if A is commutative instead then
any W ⊂ V which is complete in V also has a canonical complement W ′, i.e.
V =W ⊕W ′.

Proof. For the second assertion we observe that an absolutely irreducible A
module U is simply one dimensional over L2 and given by a homomorphism
π : A → L2, i.e. it is an eigenspace for A.

Let us call such a decomposition a isotypical decompositioninto complete
summands.i.

Let us now assume that we have two algebras A,B acting on V , let us
assume that these two operations commute i.e. for A ∈ A, B ∈ B, v ∈ V we
have A(Bv) = B(Av). This structure is the same as having a A⊗L B structure
on V . Let us assume that A acts semi simply on V and let us assume that the
irreducible A submodules of V are absolutely irreducible. Then it is clear that
the isotypical summands Yν =

⊕
Wi are invariant under the action B. Now we

pick an index i0 then the evaluation maps gives us a homomorpism

Wi0 ⊗ HomA(Wi0 , Yν)→ Yν .

Under our assumptions this is an isomorphism. Then we see that we get

V =
⊕
ν

Wiν ⊗ HomA(Wi0 , Yν)

where iν is any element in Eν and where A acts upon the first factor and B acts
upon the second factor via the action of B on Yν .

We apply this to our Hecke algebra HΓ =
⊗

p
′Hp and consider its action

on H1(Γ\H,M̃). We anticipate the theorem that this action is semi-simple.
Hence we can find a finite normal extension F/Q such that we get an isotypical
decomposition

H1(Γ\H,M̃ ⊗ F ) =
⊕
πf

H1(Γ\H,M̃ ⊗ F )(πf ), (3.19)

here πf is the isomorphism type of an absolutely irreducible H module over
F. We can realise this module by a vector space Hπf

/F with an absolutely

irreducible action of HΓ on it. Then Hπf
=
⊗′

Hπp
where Hπp

is an absolutely
Hp module. For almost all primes Hπp is one dimensional and πp is simply
simply a homomorphism

πp : Hp → F which is determined by its value πf (Tp) ∈ F (3.20)

The Galois group Gal(F/Q) acts onH1(Γ\H,M̃⊗F ) and hence it permutes
the πf which occur ih decomposition. Then for any πf the Hecke module⊕

σ∈ Gal(F/Q)

H1(Γ\H,M̃ ⊗ F )(σπf ), (3.21)
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is invariant under the action of the Galois group, hence defined over Q Theefore
we get an isotypical decomposition

H1(Γ\H,M̃) =
⊕
Πf

H1(Γ\H,M̃)(Πf ) (3.22)

HEOP

3.2.1 Explicit formulas for the Hecke operators, a general
strategy.

In the following section we discuss the Hecke operators and for numerical ex-
periments it is useful to have an explicit procedure to compute them in a given
case. The main obstruction to get such an explicit procedure is to find an ex-
plicit way to compute the arrow j•(α) in the top line of the diagram (3.3). (we
change notation j(α) to m(α)).

Let us assume that we have computed the cohomology groups on both sides
by means of orbiconvex coverings V : ∪i∈IVyi = Γ(α−1)\X and U : ∪j∈JUyj =
Γ(α)\X.

The map m(α) is an isomorphism between spaces and hence m(α)(V) is an
acyclic covering of Γ(α)\X. This induces an identification

C•(V,M̃) = C•(m(α)(V),M̃(α))

and the complex on the right hand side computes H•(Γ(α)\X,M̃(α)). But this
cohomology is also computable from the complex C•(U,M̃(α)). We take the
disjoint union of the two indexing sets I∪J and look at the covering mα(V)∪U.
(To be precise: We consider the disjoint union Ĩ = I ∪ J and define a covering
Wi indexed by Ĩ . If i ∈ Ĩ then Wi = m(α)(Vyi) and if i ∈ J then we put
Wi = Uxi . We get a diagram of Čzech complexes Čzech

→
⊕

i∈Iq M̃(α)(Wi) →
⊕

i∈Iq+1 M̃(α)(Wi)→
↑ ↑

→
⊕

i∈Ĩq M̃(α)(Wi) →
⊕

i∈Ĩq+1 M̃(α)(Wi)→
↓ ↓

→
⊕

i∈Jq M̃(α)(Wi) →
⊕

i∈Jq+1 M̃(α)(Wi)→

(3.23)

The sets I•, J• are subsets of Ĩ• and the up- and down-arrows are the resulting
projection maps. We know that these up- and down-arrows induce isomorphisms
in cohomology.

Hence we can start from a cohomology class ξ ∈ Hq(Γ(α)\X,M̃(α)), we
represent it by a cocycle

cξ ∈
⊕
i∈Iq
M̃(α)(Wi).

Then we can find a cocycle c̃ξ ∈
⊕

i∈Ĩq M̃(α)(Wi) which maps to cξ under
the uparrow. To get this cocycle we have to do the following: our cocycle cξ is
an array with components cξ(i) for i ∈ Iq. We have dq(cξ) = 0. To get c̃ξ we
have to give the values c̃ξ(i) for all i ∈ ẽIq \ Iq. We must have

dq c̃ξ = 0.
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this yields a system of linear equations for the remaining entries. We know that
this system of equations has a solution -this is then our c̃ξ - and this solution is
unique up to a boundary dq−1(ξ

′). Then we apply the downarrow to c̃ξ and get

a cocycle c†ξ, which represents the same class ξ but this class is now represented

by a cocycle with respect to the covering U. We apply the map ũα : M̃(α) → M̃
to this cocycle and then we get a cocycle which represents the image of our class
ξ under Tα.

The adjunction formula

LetM∨ be the dual module toM, We will define Hecke operators

Tc(α, uuα∨ ) : H
•
c (Γ\X,M̃∨)→ H•c (Γ\X,M̃∨) (3.24)

such that for x ∈ Hq(Γ\X,M̃), y ∈ Hd−q
c (Γ\X,M̃∨) we have

< T (α, uα)x, y >PD=< x, Tc(α
−1, uα∨)y >PD (3.25)

We proceed as in section 3.1. If Γ′ ⊂ Γ is of finite index we have again the
two maps

π•c : H•c (Γ
′\X,M̃)→ H•c (Γ\X,M̃) and π•,,c : H

•
c (Γ\X,M̃)→ H•c (Γ

′\X,M̃)

Then we can define

H•c (Γ(α
−1)\X,M̃∨) j(α−1)•←− H•c (Γ(α)\X, j(α−1)∗(M̃∨))

ũ•
α←− H•c (Γ(α)\X,M∨)yπ•

xπ•

H•c (Γ\X,M̃∨)
Tc(α

−1,uα−1 )←−−−−−−−−−−−−−−−−−−−−−−−− H•c (Γ\X,M̃∨)

,

(3.26)

Now it is easy to see that π• and π•c and as well pi• and π•,c are adjoint to
each other with respect to Poincare duality and then it becomes clear that (6.1)
holds.

In the following section we discuss the explicit computation of a Hecke op-
erator in a very specific situation. We start from our computation in section
(2.1.4) and write down some H•(Γ\X,M̃) explicitly. On these modules we give
explicit procedures to compute a Hecke operator. We get some supply of data
and we look for some interesting laws or we try to verify some conjectures (see
(3.89)).

3.3 Hecke operators for Gl2:

For the rest of this chapter we discuss a very specific case. The algebraic group
scheme will be Gl2/Z. The symmetric space will be

X = Gl2(R)/K∞ where K∞ = SO(2)× {
(
t 0
0 t)

)
|t ∈ R×, t > 0}.
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Then the space X is the union of an upper and a lower half plane. We choose
Γ̃ = Gl2(Z), then

Γ̃\G∞/K∞ = Γ\H,
where Γ = Sl2(Z) and H is the upper half plane.

Earlier we defined the Γ-modulesMn[m] (See1.2.2 ), in the following we put
M =Mn[0].

We refer to Chapter 2 2.1.3. We have the two open sets Ũi, resp. Ũρ ⊂ H,
they are fixed under

S =

(
0 −1
1 0

)
and R =

(
1 −1
1 0

)
,

respectively. We also will use the elements

T+ =

(
1 1
0 1

)
, S+

1 = T−ST
−1
− =

(
−1 1
−2 1

)
∈ Γ+

0 (2)

T− =

(
1 0
1 1

)
, S−1 = T+ST

−1
+ =

(
−1 2
−1 1

)
∈ Γ−0 (2)

.

The elements S+
1 and S−1 are elements of order four, i.e. (S+

1 )2 = (S−1 )2 = −Id,
the corresponding fixed points are i+1

2 and i + 1 respectively. Hence S−1 fixes

the sets αŨ i+1
2

and Ũi+1, this is the only occurrence of a non trivial stabilizer.

3.3.1 The boundary cohomology

It is easier to compute the action of the Hecke operator Tp on the cohomology
of the boundary, i. e. to compute the endomorphism

Tp : H
1(∂(Γ\H),M̃)→ H1(∂(Γ\H),M̃).

We know (see 2.81) that H1(∂(Γ\H),M̃) =M/(1−T+)M, we collect some
easy facts concerning this module. For n ≥ k ≥ 0 we define the submodules

M(k) = Z XkY n−k ⊕ Z Xk+1Y n−k−1 ⊕ · · · ⊕ Z Xn

for k = 0( resp. k = n) we haveM(0) = M( resp. M(n) = Z Xn). These
modules are invariant under the action of T+ we have (1−T+)M(k) ⊂M(k+1),
andM(0)/M(1) ∼−→ Z. The map (1− T+) induces a map

∂k :M(k)/M(k+1) →M(k+1)/M(k+2)

which is given by multiplication with n− k. Hence it is clear that

M/(1− T+)M = Z[Y n]⊕M(1)/(1− T+)M

and the second summand is a finite module. The filtration of M by the
M(k) induces a filtration on H1(∂(Γ\H),M̃), we put

H1(∂(Γ\H),M̃)(k) := Im(H1(∂(Γ\H),M̃(k))→ H1(∂(Γ\H),M̃) (3.27)

Then pn1
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Proposition 3.3.1. For k > 0 the quotient

H1(∂(Γ\H),M̃)(k)/H1(∂(Γ\H),M̃)(k+1) ∼−→ Z/(n− k + 1)Z

The Hecke operator Tp acts on H
1(∂(Γ\H),M̃)(k)/H1(∂(Γ\H),M̃)(k+1) by mul-

tiplication with pk + pn−k+1. Especially we have

Tp[Y
n] = (pn+1 + 1)[Y n]

Proof. We introduce the polynomials

ϵk(X,Y ) := Xn Y
X ( YX − 1) . . . ( YX − k + 1) = Xn

∏k−1
ν=0(

Y
X − ν) = k!Xn

( Y
X

k

)
=

Xn−k(Y −X) . . . (Y − (k − 1)X) = Xn−kY k + · · ·+ (−1)kk!Xn

Obviously these ϵk(X,Y ) form a basis ofM. Pascal’s rule for binomial coefficient

says
( Y

X +1
k

)
=
( Y

X
k

)
+
( Y

X
k−1
)
and this yields

T+ϵk(X,Y ) = ϵk(X,X + Y ) = ϵk(X,Y ) + kϵk−1(X,Y )

and from this we get

M/(1− T+)M = Zϵn(X,Y )⊕
0⊕

k=n−1

(Z/(k + 1)Z)ϵk(X,Y ) (3.28)

this is the first assertion.

We pick a prime p and investigate the action of Tp on H1(∂(Γ\H),M̃).
We recall the definition of the Hecke operator: We start from the matrix α =(
p 0
0 1

)
and consider the diagram (3.3) adapted to our situation

H1(∂(Γ(α−1)\H),M̃)
j(α)(1)−→ H1(∂(Γ(α)\H), j(α)∗(M̃))

ũ(1)
α−→ H1(∂(Γ(α)\H),M)xπ(1)

yπ(1)
H1(Γ\X,M̃)

T (α,uα)−−−−−−−−−−−−−−−−−−−−−−−−→ H1(∂(Γ\H,M̃)

(3.29)

The group Γ(α−1) = {
(
a b
c d

)
|c ≡ 0 mod p}, it acts on P1(Q) and has two

orbits which can be represented by ∞ and 0. The stabilisers of these two cusps
are Γ∞ = {±Id T ν+} and Γ0 = {±Id T pν− } respectively. Hence we get

H1(∂(Γ(α−1)\H),M̃) =M/(Id− T+)M⊕M/(Id− T p−)M (3.30)

We identify H1(∂(Γ\H,M̃) =M/(Id− T+)M
w0−→M/(Id− T−)M where the

last arrow is induced by the map m 7→ w0m with w0 =

(
0 1
−1 0

)
. Then

π(1)(m) = (m,

p−1∑
j=0

(
1 0
j 1

)
w0m). (3.31)
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Therefore the composition

u(1)α ◦j(α)(1) :M/(Id−T+)M⊕M/(Id−T p−)M→M/(Id−T p+)M⊕M/(Id−T−)M

is given by u
(1)
α ◦ j(α)(1)(m∞,m0) 7→ (αm∞, αm0). and π(1)((n∞, n0)) = n∞ +

w0n0. This yields

Tp(m) = αm+ w0αw
−1
0

p−1∑
j=0

(
1 j
0 1

)
m.

On M(k)/M(k+1) the element

(
1 j
0 1

)
acts as identity, α is multiplication by

pk and w0αw
−1
0 is multiplication pn−k.

Here we encounter a situation where the quotientH1(Γ\H,M) int,!/H
1
! (Γ\H,M) int

may become non trivial and somewhat interesting (see(2.72)). We have to con-
sider the exact sequence

0→ H1
! (Γ\H,M̃)→ H1(Γ\H,M̃)

r−→ H1(∂(Γ\H),M̃). (3.32)

Our cohomology groups may have some torsion T1 ⊂ H1(Γ\H,M̃), T2 ⊂
H1(∂(Γ\H),M̃) and the map r maps the torsion T1 to a submodule r(T1) ⊂ T2.
But it will happen that r(r−1(T2)) is strictly larger than r(T1) this means that
some non torsion elements are mapped to torsion elements under r. By definition
H1(Γ\H,M̃) int,! = r−1(T2) and therefore

H1(Γ\H,M̃) int,!/H
1
! (Γ\H,M̃) int = r(r−1(T2)/T1) (3.33)

This has been investigated extensively by Taiwang Deng in [27].

Let π1 : H → Γ\H be the projection. We get a covering Γ\H = π1(Ũi) ∪
π1(Ũρ) = Ui ∩ Uρ. From this covering we get the Čzech complex

0 → M̃(Ui)⊕ M̃(Uρ) → M̃(Ui ∩ Uρ) → 0

↓ evŨi
⊕ evŨρ

↓ evŨi∩Ũρ

M<S> ⊕M<R> → M → 0

(3.34)

and this gives us our formula for the first cohomology

H1(Γ\H,M̃) =M/(M<S> ⊕M<R>) (3.35)

We want to discuss the Hecke operator T2. To do this we pass to the sub-
groups

Γ+
0 (2) = {

(
a b
c d

)
| c ≡ 0 mod 2}

Γ−0 (2) = {
(
a b
c d

)
| b ≡ 0 mod 2}

(3.36)
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we form the two quotients and introduce the projection maps π±2 : H →
Γ±0 (2)\H. We have an isomorphism between the spaces

Γ+
0 (2)\H

α2−→ Γ−0 (2)\H

which is induced by the map m2 : z 7→
(
2 0
0 1

)
z = 2z. This map induces an

isomorphism

α•2 : H1(Γ+
0 (2)\H,M̃)

∼−→ H1(Γ−0 (2)\H,M̃(α)). (3.37)

We also have the map between sheaves u2 : m 7→
(
2 0
0 1

)
m and the com-

position with this map induces a homomorphism in cohomology

H1(Γ+
0 (2)\H,M̃)

u•
2◦α

•
2−→ H1(Γ−0 (2)\H,M̃). (3.38)

This is the homomorphism we need for the computation of the Hecke operator;
it is easy to define but it may be difficult in practice to compute it.

Each of the spaces Γ+
0 (2)\H,Γ

−
0 (2)\H has two cusps which can be rep-

resented by the points ∞, 0 ∈ P1(Q). The stabilizers of these two cusps in
Γ+
0 (2) resp. Γ

−
0 (2) are

< T+ > ×{±Id} and < T 2
− > ×{±Id} ⊂ Γ+

0 (2)

resp.

< T 2
+ > ×{±Id} and < T− > ×{±Id} ⊂ Γ−0 (2)

the factor {±Id} can be ignored. Then we get

H1(∂(Γ+
0 (2)\H),M̃)

∼−→M/(Id− T+)M⊕M/(Id− T 2
−)M

H1(∂(Γ−0 (2)\H),M̃)
∼−→M/(Id− T 2

+)M⊕M/(Id− T−)M.

But now it is obvious that α maps the cusp ∞ to ∞ and 0 to 0 and then it is
also clear that for the boundary cohomology the map

α•2 :M/(Id− T+)M⊕M/(Id− T 2
−)M→M/(Id− T 2

+)M⊕M/(Id− T−)M

is simply the map which is induced by u2 :M→M. If we ignore torsion then
the individual summands are infinite cyclic.

Our module M is the module of homogenous polynomials of degree n in 2
variables X,Y with integer coefficients. Then the classes [Y n], [Xn] of the poly-
nomials Y n (resp.) Xn are generators of (M/(Id−T ν+)M)/tors( resp. (M/(Id−
T ν+)M)/tors) where ν = 1( resp. 2.) Then we get for the homomorphism α•2

α•2 : [Y n] 7→ [Y n], α•2 : [Xn] 7→ 2n[Xn]. (3.39)

Nochmal ansehen
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3.3.2 The explicit description of the cohomology

We give the explicit description of the cohomology H1(Γ+
0 (2)\H,M̃). We intro-

duce the projections

H
π+
2−→ Γ+

0 (2)\H; H
π−
2−→ Γ−0 (2)\H

and get the covering U2

Γ+
0 (2)\H = π+

2 (Ũi) ∪ π+
2 (T−Ũi) ∪ π+

2 (Ũρ) = π+
2 (Ũi) ∪ π+

2 (Ũ i+1
2
) ∪ π+

2 (Ũρ)

where we put T−Ũi = Ũ i+1
2
. Our set {xν} of indexing points is i, i+1

2 , ρ, we put

U+
xi

= π+
2 (Ũxi). Note T− ̸∈ Γ+

0 (2), T+ ∈ Γ+
0 (2).

Again the cohomology is computed by the complex

0→ M̃(U+
i )⊕ M̃(T−Ũ

+
i )⊕ M̃(U+

ρ )→ M̃(U+
i ∩ U

+
ρ )⊕ M̃(T−Ũ

+
i ∩ U

+
ρ )→ 0

we have to identify the terms as submodules of some
⊕
M and write down the

boundary map explicitly. We have

M̃(U+
i )⊕ M̃(U+

i+1
2

)⊕ M̃(U+
ρ )

d0−→ M̃(U+
i ∩ U+

ρ )⊕ M̃(U+
i+1
2

∩ U+
ρ )

↓ evŨi
⊕ evT−Ũi

⊕ evŨρ
↓ evŨi∩Ũρ

⊕ evŨi∩T−1
+ Ũρ

⊕ evT−Ũi∩Ũρ

M⊕M<S+
1 > ⊕M d̄0−→ M⊕M⊕M

(3.40)

where the vertical arrows are isomorphisms. The boundary map d̄0 in the bot-
tom row is given by

(m1,m2,m3) 7→ (m1 −m3,m1 − T−1+ m3,m1 −m2) = (x, y, z)

We may look at the (isomorphic) sub complex where x = z = 0 and m1 = m2 =
m3 then we obtain the complex

0→M<S+
1 > →M→ 0; m2 7→ m2 − T−1+ m2

which provides an isomorphism

H1(Γ+
0 (2)\H,M̃)

∼−→M/(Id− T−1+ )M<S+
1 >. (3.41)

A simple computation shows that the cohomology class represented by the
class (x, y, z) is equal to the class represented by (0, y−x+T−1+ z−z, 0) we write

[(x, y, z)] = [(0, y − x+ T−1+ z − z, 0)] (3.42)
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3.3.3 The map to the boundary cohomology

We have the restriction map for the cohomology of the boundary

H1(Γ+
0 (2)\H,M̃)

∼−→ M/(Id− T−1+ )M<S+
1 >

↓ r+ ⊕ r− ↓

H1(∂(Γ+
0 (2)\H),M̃)

∼−→ M/(Id− T+)M⊕M/(Id− T 2
−)M

(3.43)

we give a formula for the second vertical arrow. We represent a class [m] by an
element m ∈M and send m to its class in each the two summands, respectively.
This is well defined, for r+ it is obvious, while for r− we observe that if m =
x− T−1+ x and S+

1 x = x then m = x− T−1+ S+
1 x = x− T 2

−x.

Restriction and Corestriction

Now we have to give explicit formulas for the two maps π∗, π∗ in the big diagram
((3.3 ).Here we should change notation: The map π will now be denoted by :

ϖ+
2 : Γ+

0 (2)\H→ Γ\H (3.44)

We have the two complexes which compute the cohomology H1(Γ+
0 (2)\H,M̃)

and H1(Γ\H,M̃), and we have defined arrows between them. We realized these
two complexes explicitly in (3.40) resp. (3.34) and we have

M̃(U+
i )⊕ M̃(U+

i+1
2

)⊕ M̃(U+
ρ )

d0−→ M̃(U+
i ∩ U+

ρ )⊕ M̃(U+
i+1
2

∩ U+
ρ )

(ϖ+
2 )

(0) ↑ ↓ (ϖ+
2 )(0) (ϖ+

2 )
(1) ↑ ↓ (ϖ+

2 )(1)

M̃(Ui)⊕ M̃(Uρ)
d0−→ M̃(Ui ∩ Uρ)

(3.45)

and in terms of our explicit realization in diagram (3.40 ) this gives

M⊕M<S1> ⊕M d0−→ M⊕M⊕M

(ϖ+
2 )

(0) ↑ ↓ (ϖ+
2 )(0) (ϖ+

2 )
(1) ↑ ↓ (ϖ+

2 )(1)

M<S> ⊕M<R> d0−→ M

(3.46)

Looking at the definitions we find

(ϖ+
2 )

(0) : (m1,m2) 7→ (m1, T−m1,m2)

(ϖ+
2 )(0) : (m1,m2,m3) 7→ (m1 + Sm1 + T−1− m2, (1 +R+R2)m3)

(3.47)

and we check easily that the composition (ϖ+
2 )(0) ◦ (ϖ

+
2 )

(0) is the multiplication
by 3 as it should be, since this is the index of Γ0(2)

+ in Γ.
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For the two arrows in degree one we find

(ϖ+
2 )

(1) : m 7→ (m,Sm, T−m)

(ϖ+
2 )(1) : (m1,m2,m3) 7→ (m1 + Sm2 + T−1− m3)

(3.48)

We apply equation (3.42) and we see that (ϖ+
2 )

(1)(m) is represented by

[(ϖ+
2 )

(1)(m)] = [0, Sm+ T−1+ T−m−m− T−m, 0] (3.49)

We do the same calculation for Γ−0 (2). As before we start from a covering

Γ−0 (2)\H = π−2 (Ũi) ∪ π−2 (T+Ũi) ∪ π−2 (Ũρ) = π−2 (Ũi) ∪ π−2 (Ũi+1) ∪ π−2 (Ũρ)

and as before we put U−yν = π−2 (Ũyν ). In this case Ũi+1 = T+Ũi is fixed by

S−1 =

(
−1 2
−1 1

)
∈ Γ−0 (2) and we get a diagram for the Čzech complex

M̃(U−i )⊕ M̃(U−i+1)⊕ M̃(U−ρ )
d0−→ M̃(U−i ∩ U−ρ )⊕ M̃(U−i+1 ∩ U−ρ )

evŨi
⊕ evŨi+1

↓ ⊕evŨρ
evŨi∩Ũρ

⊕ evŨi∩T−1
− Ũρ

↓ ⊕evŨi+1∩Ũρ

M⊕M<S−
1 > ⊕M d̄0−→ M⊕M⊕M

(3.50)

Again we can modify this complex and get

H1(Γ−0 (2)\H,M̃)
∼−→M/(Id− T−1− )M<S−

1 >. (3.51)

We compute the arrows (ϖ−2 )
∗, (ϖ−2 )∗ in degree one

(ϖ−2 )
(1) : m 7→ (m,Sm, T+m),

(ϖ−2 )(1) : (m1,m2,m3) 7→ (m1 + Sm2 + T−1+ m3).
(3.52)

The computation of α•2.

We recall our isomorphism α between the spaces and the resulting isomorphism
(3.37). The identity map of the moduleM and the isomorphism α on the space
identifies the two complexes

M̃(U+
i )⊕ M̃(U+

i+1
2

)⊕ M̃(U+
ρ )

d0−→ M̃(U+
i ∩ U+

ρ )⊕ M̃(U+
i+1
2

∩ U+
ρ )

M̃(α)(α(U+
i ))⊕ M̃(α)(α(U+

i+1
2

))⊕ M̃(α)(α(U+
ρ ))

d0−→ M̃(α)(α(U+
i ∩ U+

ρ ))⊕ M̃(α)(α(U+
i+1
2

∩ U+
ρ ))

(3.53)

and if we consider their explicit realization then this identification is given by
the equality of Z modules M = M(α). This equality of complexes expresses
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the identification (3.37). We can compute the cohomology H1(Γ−0 (2)\H,M̃(α))
from any of the two coverings

Γ−0 (2)\H = α(U+
i ) ∪ α(U+

i+1
2

) ∪ α(U+
ρ ) = Ux1

∪ Ux2
∪ Ux3

and
Γ−0 (2)\H = U−i ∪ U

−
i+1 ∪ U−ρ = Ux4 ∪ Ux5 ∪ Ux6 .

(3.54)

We have to pick a class ξ ∈ H1(Γ−0 (2)\H,M̃(α)) and represent it by a cocycle

cξ ∈
⊕

1≤i<j≤3

M̃(α)(Uxi
∩ Uxj

)

(The cocycle condition is empty since Ux1 ∩ Ux2 ∩ Ux3 = ∅.)
Then we have to produce a cocycle

c
(α)
ξ ∈

⊕
4≤i<j≤6

M̃(α)(Uxi
∩ Uxj

)

which represents the same class.
To get this cocycle we write down the three complexes⊕
1≤i<j≤3 M̃(α)(Uxi ∩ Uxj ) → 0

↑⊕
1≤i<j≤6 M̃(α)(Uxi

∩ Uxj
) →

⊕
1≤i<j<k≤6 M̃(α)(Uxi

∩ Uxj
∩ Uxk

)

↓⊕
4≤i<j≤6 M̃(α)(Uxi

∩ Uxj
) → 0

(3.55)

for our cocycle cξ we find a cocycle c†ξ in the complex in the middle which maps to
cξ under the upwards arrow and this cocycle is unique up to a coboundary. Then
we project it down by the downwards arrow, i.e. we only take its 4 ≤ i < j ≤ 6

components, and this is our cocycle c
(α)
ξ .

We apply the principles from section (2.1.3) and we write down these com-
plexes explicitly. For any pair i = (i, j), i < j of indices we have to compute the
set Fi. We drew some pictures and from these pictures we get (modulo errors)
the following list (of lists):

F1,2 = ∅ F1,3 = {Id, T−2+ } F1,4 = {Id} F1,5 = {Id, T−2+ }
F1,6 := {Id, T−1− } F2,3 = {Id} F2,4 = {Id, T−} F2,5 = {Id}
F2,6 = {Id} F3,4 = {Id, T 2

+} F3,5 = {Id} F3,6 = {Id, S−1 }
F4,5 = ∅ F4,6 = {Id, T−1− } F5,6 = {Id}

(3.56)

Now we have to follow the rules in the first section and we can write down
an explicit version of the diagram ( 3.55) . We refer to section 2.1.3 and get
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⊕
1≤i<j≤3

⊕
γ∈Fi,j

(M(α))Γi,j,γ → 0

↑⊕
1≤i<j≤6

⊕
γ∈Fi,j

(M(α))Γi,j,γ →
⊕

1≤i<j<k≤6
⊕

γ∈Fi,j,k
(M(α))Γi,j,k,γ

↓⊕
4≤i<j≤6

⊕
γ∈Fi,j

(M(α))Γi,j,γ → 0

(3.57)

Here we have to interpret this diagram. The moduleM(α) is equal toM as
an abstract module, but an element γ ∈ Γ−0 (2) acts by the twisted action (See
ChapII, 2.2)

m 7→ γ ∗α m = α−1γα ∗m

here the ∗ denotes the original action. Hence we have to take the invariants
(M(α))Γi,j,γ with respect to this twisted action. In our special situation this has
very little effect since almost all the Γi,j,γ are trivial, except for the intersection

α(Ũ i+1
2
) ∩ Ũi in which case Γi,j,γ =< S−1 > . Hence

(M(α))<S
−
1 > =M<S+

1 >.

Each of the complexes in (3.57) compute the cohomology groupH1(Γ−0 (2)\H,M̃)
and the diagram gives us a formula for the isomorphism in (3.37). To get u•α in
(3.37) we apply the multiplication m2:m 7→ αm to the complex in the middle
and the bottom. Then the cocycle cαξ is now an element in

⊕
M̃(α) and αcαξ

represents the cohomology class u•α(ξ) ∈ H1(Γ−0 (2)\H,M̃).

Now it is clear how we can compute the Hecke operator

T2 = T2 0
0 1

 :M/(M<S> ⊕M<R>)→M/(M<S> ⊕M<R>)

We pick a representative m ∈M of the cohomology class. We apply (ϖ+
2 )

(1) in
the diagram (3.46) to it and this gives the element (Sm,m, T−m) = cξ.We apply

the above process to compute c
(α)
ξ . Then αc

(α)
ξ = (m1,m2,m3) is an element in

M̃(U−i ∩U−ρ )⊕M̃(U−i+1 ∩U−ρ ) and this module is identified withM⊕M⊕M
by the vertical arrow in (3.50). To this element we apply the trace

(ϖ−2 )(1)(m1,m2,m3) = m1 +m2 + T−1+ m3

and the latter element inM represents the class T2([m]).
We have written a computer program which for a given M =Mn, i.e. for

a given even positive integer n, computes the module H1(Γ\H,M̃) and the
endomorphism T2 on it.
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Looking our data we discovered the following (surprising?) fact: We consider
the isomorphism in equation (3.37). We have the explicit description of the
cohomology in (3.41)

H1(Γ+
0 (2)\H,M̃)

∼−→M/(Id− T−1+ )M<S+
1 >

and

H1(Γ−0 (2)\H,M̃(α))
∼−→M/(Id− T−1− )(M(α))<S

−
1 >

We know that we may represent any cohomology class by a cocycle

cξ = (0, cξ, 0) ∈M(α)(π−2 (α(Ui)∩α(Uρ))⊕M(α)(π−2 (α(Ui)∩α(T−1+ Uρ))⊕M(α)(π−2 (α(U i+1
2
)∩α(T−1+ Uρ))

so it is non zero only in the middle component and then it is simply an element

in M. If we now look at our data, then it seems to by so that c
(α)
ξ is also non

zero only in the middle, hence

c
(α)
ξ ∈ (0, c′ξ, 0) ∈ 0⊕M(α)(π−2 (Ui ∩ T−1− Uρ))⊕ 0

hence it is also inM(α) and then our data seem to suggest that

c′ξ = cξ

Hence we see that the homomorphism in equation (3.38) is simply given by

XνY n−ν 7→ 2νXνY n−ν .

Is there a kind of homotopy argument (- 2 moves continuously to 1?-)-, which
explains this?

We get an explicit formula for the Hecke operator T2 : We pick an element
m ∈M representing the class [m]. We send it by (ϖ+

2 )
(1) to H1(Γ+

0 (2)\H,M̃),
i.e.

(ϖ+
2 )

(1) : m 7→ (m,Sm, T−m) (3.58)

We modify it so that the first and the third entry become zero see( 3.42)

[(m,Sm, T−m)] = [(0, Sm−m+ T−1+ T−m− T−m, 0)] (3.59)

To the entry in the middle we apply M2 =

(
2 0
0 1

)
and then apply (ϖ−2 )(1) and

get

T2([m]) = [S ·M2(Sm−m+ T−1+ T−m− T−m)] (3.60)

Eisn
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3.3.4 The first interesting example

We give an explicit formula for the cohomology in the case of M =M10. We
define the sub-module

Mtr =

5⊕
ν=0

ZY 10−νXν

and we have the truncation operator trunc :M→Mtr

trunc : Y 10−νXν 7→

{
Y 10−νXν if ν ≤ 5,

(−1)ν+1Y νX10−ν else,
,

it identifies the quotient moduleM/M<S> toMtr. To get the cohomology we
have to divide by the relations coming from M<R>, i.e. we have to divide by
the submodule trunc(M<R>) The module of these relations is generated by

R1 = 10Y 9X + 20Y 7X3 + Y 5X5

R2 = 9Y 8X2 − 36Y 7X3 + 14Y 6X4 − 45Y 5X5

R3 = 8Y 7X3 + 10Y 5X5

and then

H1(Γ\H,M̃) =

5⊕
ν=0

ZY 10−νXν/{R1,R2,R3} (3.61)

We simplify the notation and put eν = Y νXn−ν . Using R1 we can eliminate
e5 = −10e9 − 20e7 and then

H1(Γ\H,M̃) =

ν=6⊕
ν=10

Zeν/{−50e9 + 9e8 − 96e7 + 14e6,−100e9 − 192e7}

(3.62)

introduce a new basis {f10, f9, f8, f7, f6, f5} of the Z moduleMtr :

f10 = e10; f8 = −2e8 − 3e6; f6 = 9e8 + 14e6

f9 = −12e9 − 23e7; f7 = 25e9 + 48e7; f5 = 10e9 + 20e7 + e5

(3.63)

and hence in the quotient we get f̄5 = 0 and 2f̄7 = f̄6 and therefore

H1(Γ\H,M̃) = Zf̄10 ⊕ Zf̄9 ⊕ Zf̄8 ⊕ Z/(4)f̄7 (3.64)

x
We defined the action of complex conjugation (see 2.84) on H1(Γ\H,M̃)

and we leave it as an exercise to the reader to show that

c(1)(f̄10) = −f̄10, c(1)(f̄9) = −f̄9, c(1)(f̄8) = f̄8 (3.65)

If we can apply the above procedure to compute the action of T2 on coho-
mology. It is turns out to be reasonable to compute the matrix for T2 with
respect to the basis f̄10, f̄8, f̄9 then our program with Gangl yields
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T2 =


2049 0 −68040 0
0 −24 0 0
0 0 −24 0
0 0 0 2

 . (3.66)

Hence we see that T2 is non trivial on the torsion subgroup. If we divide by the
torsion then the matrix reduces to a (3,3)-matrix and this matrix gives us the
endomorphism on the ”integral” cohomology which is defined in general by

H•int(Γ\X,M̃) = H•(Γ\X,M̃)/tors ⊂ H•(Γ\X,M̃Q). (3.67)

Here we should be careful: the functor H• → H•int is not exact. In our case we
get (perhaps up to a little piece of 2-torsion) exact sequences of Hecke modules

0 → Zf̄9 ⊕ Zf̄8 → Zf̄10 ⊕ Zf̄9 ⊕ Zf̄8
r−→ Zf̄10 → 0

∥ ∥ ∥
0 → H1

int,!(Γ\H,M̃)→ H1
int(Γ\H,M̃)

r−→ H1
int(∂(Γ\H),M̃)→ 0

(3.68)

where T2(f̄10) = (211 + 1)f̄10. If we tensor by Q then we can find an unique

element - the Eisenstein class- f†10 ∈ H1
int(Γ\H,M̃⊗Q) which maps to f̄10 and

which satisfies T2(f
†
10) = (211 + 1)f†10. This element is not necessarily integral,

in our case an easy computation shows that f† ̸∈ H1
int(Γ\H,M̃), but 691f† ∈

H1
int(Γ\H,M̃). This means that 691 is the denominator of f†10, i.e. 691 is the

denominator of the Eisenstein class

Hence we see that

H1
int(Γ\H,M̃) ⊃ H1

int,!(Γ\H,M̃)⊕ Z(691f†) (3.69)

the quotient of these modules is isomorphic to Z/691Z.

The exact sequence X10 in (3.68) is an exact sequence of modules for the
Hecke algebra H ⊃ Z[T2] and hence it yields an element

[X10] ∈ Ext1H(Zf10, H1
int,!(Γ\H,M̃)), (3.70)

and an easy calculation shows that this Ext1 group is cyclic of order 691 and
that it is generated by X10.

We look at the action of the full Hecke algebra H on these cohomology
groups. It turns out that for any prime p the Hecke operator Tp acts by the
eigenvalue p11 + 1 on f10(see proposition 3.3.1). We will also see that a simple
argument using Poincare duality and the self adjointness of the Hecke operators
shows that

Tp acts by multiplication by a scalar τ(p) on the inner cohomology .

Then we can conclude

For all primes p we have

τ(p) ≡ p11 + 1 mod 691−

ƒ
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3.3.5 Interlude: Ramanujan’s ∆(z)

We want to stress that the previous considerations are of purely algebraic and
combinatorial nature, no analysis is involved. In the next chapter we will use an-
alytic methods -especially we will use the results from the theory modular forms-
to obtain some further insight into the structure of the cohomology groups. In
our special case here it comes down to the following.

In his paper [72] Ramanujan introduced the function

∆(z) = e2πiz
∞∏
n=1

(1− e2πinz)24 (3.71)

is a function on the upper half plane H = {z|ℑ(z) > 0} and it satisfies

∆(
az + b

cz + d
) = (cz + d)12∆(z)

for all

(
a b
c d

)
∈ Sl2(Z). This means that it is a modular form of weight 12.

Since it goes to zero if z = iy → ∞ it is even a modular cusp form. It is the
unique (up to a non zero scalar ) cusp form of weight 12 for Sl2(Z),

(See [80]). We can expand

∆(z) = e2πiz − 24e4πiz + 252e6πiz + · · ·+ ane
2nπiz + . . .

@ The coefficients satisfy (conjectured by Ramanujan) the following recursions

an1n2 = an1an2 if n1, n2 are coprime;

apr = apapr−1 + p11apr−2 if p is a prime and r ≥ 2
(3.72)

These recursion formulas for the coefficients of the expansion were proved
by Mordell [66] (essentially by using Hecke operators) and later by Hecke in a
more general framework.

In the next section we discuss the Eichler-Shimura isomorphism (see 4.1.7),
in this special case it implies that for any prime p we have ap = τ(p). Therefore
we define the Ramanujan τ function by τ(n) = an. With this definition of τ(n)
Ramanujan proved the famous congruence τ(p) ≡ p11 + 1 mod 691.

Ramanujan also made the famous conjecture saying that for all primes p we
have the inequality

τ(p) ≤ 2 p
11
2

This inequality implies of course that for all primes p (and especially for
p = 2 ) τ(p) ̸= p11 + 1 and this implies that any Hecke operator Tp provides a

canonical splitting into eigenspacesH1(Γ\H,M̃⊗Q) = H1
! (Γ\H,M̃⊗Q)⊕Qf10.

This is the simplest instance where the Manin-Drinfeld principle works.
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Other congruences

It is easy to check that H1(Γ\H,M̃) and H2
c (Γ\H,M̃) do not have 5 or 7 tor-

sion. Therefore we have ( see Prop. 3.3.1, )

Z/10Zϵ9(X,Y )⊕ Z/5Zϵ4(X,Y )⊕ Z/7Zϵ6(X,Y ) ⊂ r(r−1(T2))/T1 (3.73)

and this implies the well known congruences

τ(p) ≡ p10 + p ≡ p6 + p5 mod 5; τ(p) ≡ p7 + p5 mod 7 (3.74)

[86] [27] These congruences are called congruences of local origin whereas the
congruence mod 691 is a congruence of global origin.

End of interlude

Reduction mod 691

Of course our program also runs if we reduce mod 691, and in principle it
runs much faster. Since there is at most 2 torsion we get an exact sequence of
Hecke-modules

0→ H1
int,!(Γ\H,M̃ ⊗ F691)→H1

int(Γ\H,M̃ ⊗ F691)
r−→ H1

int(∂(Γ\H),M̃ ⊗ F691)→0.

(3.75)

The matrix giving the Hecke operator mod 691 becomes

T2 =

 667 0 369
0 667 0
0 0 667

.

 (3.76)

Now we see that our computation mod 691 yields the extension class [X10 ⊗
F691] is an element of order 691, or in other words the sequence (3.75 )does not
split under the action of T2. Therefore we get from the computation mod 691
that 691 divides the order of [X10] and hence divides the order of the denomi-
nator of the Eisenstein class.

Of course we may also consider the other Hecke operators Tp acting on

H1
int(Γ\H,M̃) then the corresponding matrix will be

Tp =

 p11 + 1 0 t(p)

0 τ(p) 0
0 0 τ(p)

.

 (3.77)

But there is no reason that for the other Hecke operators Tp the sequence
(3.75) is always non split. Here we have a little proposition

Proposition 3.3.2. The sequence (3.75) splits for the action of Tp if and only
if

p11 + 1− τ(p) ≡ 0 mod 6912 (3.78)



3.3. HECKE OPERATORS FOR GL2: 129

Proof. The sequence mod 691 splits for Tp if and only if t(p) ≡ 0 mod 691.
But we have seen that the equation x(p11 + 1− τ(p)) = t(p) has no solution in
the local ring Z(691), and this implies the above congruence.

For the curious reader we mention that this happens for p = 3559 and for
the first ten thousand primes it happens 13 times and 13 is roughly equal to
10000/691.

At the end of Chapter 5 we presume the result of Deligne which says that we
have an action of the Galois group on H1

int(Γ\H,M̃⊗F691).We will see that the
structure of this cohomology as a module for the Hecke algebra has interesting
consequences for this action ( See Theorem 5.1.5).

Eisng

3.3.6 The general case

Now we describe the general case M = Mn where n > 0 is an even integer
> 0. We define Mtr as above, if n/2 is even, then we leave out the summand
Xn/2Y n/2, we get

Mtr =M/M<S>.

This gives us for the cohomology and the restriction to the boundary coho-
mology

H1(Γ\H,M̃)
∼−→ Mtr/Rel

↓ ↓
H1(∂(Γ\H),M̃)

∼−→ M/(Id− T )M.

(3.79)

We have the basis

en = trunc(Y n), en−1 = trunc(Y n−1X), . . . ,

{
Y n/2Xn/2 n/2 odd

0 else

forMtr. Let us put n2 = n/2 or n/2− 1. Then the algorithm Smithnormalform
provides a second basis fn = en, fn−1, . . . , fn2

such that the module of relations
becomes

dnfn = 0, dn−1fn−1 = 0, . . . , dtft = 0, . . . , dn2fn2 = 0

where dn2
|dn2+1| . . . |dn. We have dn = dn−1 = · · · = dn−2s = 0 where 2s+ 1 =

dimH1(Γ\H,M̃)⊗Q and dn−2s−1 ̸= 0.

Now H. Gangl and I we have written a computer program which for a given
n gives us an explicit matrix for T2, it is of the form

T2(fi) =

j=n2∑
j=n

t
(2)
i,j fj (3.80)

where we have (the numeration of the rows and columns is downwards from n
to n2)

t
(2)
ν,n = 0 for ν < n and t

(2)
i,j ∈ Hom(Z/(di),Z/(dj))

and t
(2)
i,j = 0 for i ≥ n− 2s, j < n− 2s

(3.81)
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If we divide by the torsion we get for the restriction map to the boundary
cohomology

H1(Γ\H,M̃)int =

n−2s⊕
ν=n

Zfν
r−→ H1(∂(Γ\H),M̃)int = ZY n (3.82)

where fn 7→ Y n and T2(Y
n) = (2n+1 + 1)Y n. Now we will find that the endo-

morphism T2 − (2n+1 + 1)Id of H1
! (Γ\H,M̃)int is injective.

We mentioned the exercise (see3.65) to determine the action of c(1), in
the general case we find c(1)(fn) = −(fn) and for ν < n we find c(1)(fν) =

(−1)ν(fν). This has the consequence that t
(2)
n,j = 0 for j ≡ 0 mod 2. It turns

out that it may be wise to reorder the basis and take as a basis the list
{fn, fn−2, fn−1, fn−4, . . . } with respect to this basis the matrix for T2 looks
like this


2n+1 + 1 0 t

(2)
n,n−2 0 t

(2)
n,n−4 . . .

0 t
(2)
n−1,n−1 0 t

(2)
n−1,n−3 . . .

0 0 t
(2)
n−2,n−2 0 t

(2)
n−2,n−4 . . .

...

 (3.83)

Comment : We can verify this of course for any given n experimentally. But
this assertion follows from the Manin-Drinfeld principle. This principle exploits
the fact that we have estimates for the eigenvalues of T2 (or more generally for
Tp on H1(Γ\H,M̃ ⊗ C).) These estimates say that for all primes p we always
have the Ramanujan inequality

|πf (Tp)| ≤ 2p
n+1
2 : (3.84)

(This is a very deep theorem which has been proved by Deligne)
This implies that 2n+1+1 can not be an eigenvalue of T2 on H

1
! (Γ\H,M̃⊗C)

and this proves the injectivity. This implies that we can find a vector

Eisn = fn +

ν=n−2s∑
ν=n−1

xνfν , xν ∈ Q (3.85)

which is an eigenvector for T2 i.e.

T2( Eisn) = (2n+1 + 1) Eisn. (3.86)

The least common multiple ∆(n) of the denominators of the xν is the de-
nominator of the Eisenstein class, it is the smallest positive integer for which

∆(n)Eisn ∈ H1(Γ\H,M̃)int. (3.87)

This denominator is of great interest and our computer program allows us
to compute it for any given not to large n. We simply have to compute the xν .
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We know that T2(fn) = (2n+1+1)fn+
∑µ=n−2s
µ=n−1 t

(2)
n,µfµ and then the xν are the

unique solution of

ν=n−2s∑
ν=n−1

((2n+1 + 1)δν,µ − t(2)ν,µ)xν = t(2)n,µ; {µ = n− 1, . . . , n− 2s} (3.88)

With the help of H. Gangl we carried the computation of the xν and hence
the ∆(n) and we found for some not too large values of n (roughly n ≤ 150)
that

∆(n) = numerator(ζ(−1− n)). (3.89)

Here of course ζ(s) is the Riemann ζ function, it is well known that for any even
positive integer n the value ζ(−1−n) is a rational number, hence it makes sense
to speak of the numerator. A prime number p is called irregular if it divides
the numerator of such a value of the Riemann ζ function. The most famous
irregular prime is p = 691 we have

ζ(−11) = 691

32760
.

Actually 3.89 is a theorem, we will give a proof in Chapter 5 (Theorem
5.1.2).

The reader might argue, why do you make such efforts to find out some
experimental evidence for something you know to be true?

There are several reasons for doing this, but the main motivation is the
following. The Theorem 5.1.2 is hopefully a special case of a much more general
ensemble of assertions. The problem to determine (estimate) denominators of
Eisenstein classes is ubiquitous in the cohomology of arithmetic groups. And
we have many cases where we have conjectures relating these denominators
to special values of L-functions. In our case above this are the values of the
numerator ζ(−1 − n). Some further examples will be discussed in Chapter 9
(See also [42]) But in many of these cases the methods to prove theorems like
Theorem 5.1.2 fail.

On the other hand we explained in section 3.2.1 that in any given case we
can compute the denominator -in principle- . Therefore it seems to be of interest
to develop algorithms which compute the cohomology and the action of Hecke
operators explicitly in given cases and verify or falsify these conjectures. A
general strategy for such an algorithm has been outlined in section 3.2.1 and H.
Gangl and I wrote a toy model program in the above case. See also [44].

We are aware that these algorithms may become very slow for more general
reductive groups, and it is very likely that we need clever new ideas to achieve
this task. Finally I want to say that in many cases the resulting congruences
have been checked for certain finite sets of primes (see also Chapter 9).

3.3.7 Localisation at a prime ℓ

We will see later the we should not consider the denominator of the Eisenstein
class as a number but rather as an ideal. Hence we are only interested in the
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decomposition into prime ideals, i.e. for a prime ℓ we want to know the exact
power of ℓ which divides ∆(n). To achieve this we replace in the considerations
above the coefficient system M̃ by M̃(ℓ) := M̃⊗Z(ℓ), here Z(ℓ) ⊂ Q is the local
ring at ℓ. Then our cohomology modules will be finitely generated Z(ℓ)-modules

H•(Γ\H,M̃(ℓ)).

ℓ -ordinary endomorphisms

In this subsection we fix a prime ℓ we consider finitely generated modules M
over the local ring Z(ℓ) ⊂ Q. We consider such a module together with an
endomorphism Φ :M →M. Then

Proposition 3.3.3. We have a canonical decomposition into Φ submodules
M =M ord ⊕Mnilpt where Mnilpt is the maximal submodule such that⋂

k

Φk(Mnilpt) = {0}

Proof. This is rather obvious if M is a finite, i.e. a torsion module. If M is a
free Z(ℓ) module then we find a finite, normal extension F/Q such that M ⊗ F
can be decomposed into generalised eigenspaces

M ⊗ F =
⊕
µ

M [µ] ; M [µ] ̸= 0

where µ ∈ OF ⊗Z(ℓ), M [µ] := {m ∈M⊗F | (Φ−µ · Id)km = 0 for some k > 0}
The Galois group acts on the set of eigenvalues µ. We consider the set of primes
l1, . . . , lf ⊂ OF which lie above ℓ, the Galois group Gal(F/Q) acts transitively
on this set. We say that µ is ordinary if there is a prime lµ such that µ ̸∈ lµ,
the set of ordinary eigenvalues is invariant under the action of the Galois group.
We get a decomposition into

M ⊗ F =
⊕

µ ordinary

M [µ]⊕
⊕

µ not ordinary

M [µ]

the two summands are invariant under the action of the Galois group. We put

M ord =
⊕

µ is a unit

M [µ] ∩M and Mnilpt =
⊕

µ is not a unit

M [µ] ∩M.

Because of the Galois invariance it is clear thatM⊗Q =M ord⊗Q⊕Mnilpt⊗Q.
But a little bit of semi-local algebra shows that actually M = M ord ⊕Mnilpt

and this decomposition has the desired properties.

We call M ord the ordinary part with respect to Φ and ℓ and we call M ord

an ℓ-ordinary Φ module. Of course the functor M →M ord is exact.

This has some nice consequences for our considerations above. Since the
functor X → X int is not exact the surjectivity in (3.82) is problematic, because
H2
c (Γ\H,M̃) ̸= 0. But if we localise our fundamental exact sequence

H1
c (Γ\H,M̃(ℓ))→ H1(Γ\H,M̃(ℓ))→ H1(∂(Γ\H),M̃(ℓ))→ H2

c (∂(Γ\H),M̃(ℓ))
(3.90)
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and choose for Φ the Hecke operator Tℓ then it follows from our computations
in section 3.3.1 that Tℓ acts nilpotently on H2

c (∂(Γ\H),M̃(ℓ)), and therefore

H2
c, ord(∂(Γ\H),M̃(ℓ)) = 0. We get the exact sequence

H1
c, ord(Γ\H,M̃(ℓ))→ H1

ord(Γ\H,M̃(ℓ))→ H1
ord(∂(Γ\H),M̃(ℓ))→ 0. (3.91)

It follows from our earlier computations (prop. 3.3.1) thatH1
ord(∂(Γ\H),M̃(ℓ)) =

Z(ℓ)[Y
n]. Then we get for all Hecke operators Tp[Y

n] = (pn+1+1)[Y n], we denote
this Hecke-module by Z(ℓ)[n].

Now we can replace the sequence (3.82) by the above sequence if we want
to study the power ℓδℓ(n) = ∆ℓ(n) in ∆(n).

The Gl2/Z moduleMn contains the submodule

M♭
n = {

∑
aν

(
n

ν

)
XνY n−ν | aν ∈ Z} (3.92)

( see 4.1.1) , this is actually the smallest submodule ofMn which contains Xn.
Then we consider the cohomology H•(Γ\H,M̃♭

n) and again we can ask for the
denominator of the Eisenstein class. Here the method of localising at ℓ provides
a simple answer. We consider the exact sequence of coefficients

0→ M̃♭
n ⊗ Z(ℓ) → M̃n ⊗ Z(ℓ) → M̃n/M̃♭

n ⊗ Z(ℓ) → 0.

Now it follows easily from the definition that the Hecke operator Tℓ acts nilpo-
tently on the cohomology modules H•(Γ\H,M̃n/M̃♭

n ⊗ Z(ℓ)) and hence we see
that

H1
ord,?(Γ\H,M̃♭

n ⊗ Z(ℓ))
∼−→ H1

ord,?(Γ\H,M̃n ⊗ Z(ℓ)) (3.93)

is an isomorphism. This implies that the denominator of the Eisenstein class
does not depend on the choice of the coefficient system.

At this point it seems to be appropriate to use some homological algebra.
We consider the exact sequence of modules for the Hecke algebra H

Xn := 0→ H1
ord,!(Γ\H,M̃n ⊗ Z(ℓ))→ H1

ord(Γ\H,M̃n ⊗ Z(ℓ)) → Z(ℓ)[n]→ 0.

(3.94)

We consider the sequence HomH(Z(ℓ)[n],Xn) which is not exact anymore, this
sequence yields a long exact sequence, we are interested in the boundary map

Ext

→ HomH(Z(ℓ)[n], H
1
ord(Γ\H,M̃n ⊗ Z(ℓ))→

→ HomH(Z(ℓ)[n],Z(ℓ)[n])
δ−→ Ext1H(Z(ℓ)[n], H

1
ord,!(Γ\H,M̃n ⊗ Z(ℓ)))→

(3.95)

It is clear that the boundary map δ maps the identity element 1 ∈ HomH(Z(ℓ)[n],Z(ℓ)[n])
to an element of order ∆ℓ(n), in other words ∂1 maps HomH(Z(ℓ)[n],Z(ℓ)[n])

to a cyclic subgroup of the Ext1 of order ∆ℓ(n).
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We introduce the Eisenstein ideal IE ⊂ H, this is the ideal which is generated
the elements (pn+1+1)Id−Tp, where p runs through all primes. It is not difficult
to see that

Ext1H(Z(ℓ)[n], H
1
ord,!(Γ\H,M̃n ⊗ Z(ℓ)) =

H1
ord,!(Γ\H,M̃n ⊗ Z(ℓ))/IEH1

ord,!(Γ\H,M̃n ⊗ Z(ℓ)).

(3.96)

Now we choose a prime p and look at the sub algebra Z[Tp] ⊂ H which is
generated by the Hecke operator Tp. We consider the exact sequence (3.95) but
we change the subscript H to Z[Tp]. As before the map

HomZ[Tp](Z(ℓ)[n],Z(ℓ)[n])
δ−→ Ext1Z[Tp]](Z(ℓ)[n], H

1
ord,!(Γ\H,M̃n ⊗ Z(ℓ)))

(3.97)

maps the identity element 1 to an element to an element of order ∆ℓ(n). But
now it follows from the definition of δ1 that

δ(1) = t(p)n = {. . . , t(p)n,ν , . . . }ν mod (Id(pn+1 + 1)− Tp)H1
ord,!(Γ\H,M̃n ⊗ Z(ℓ)))

(3.98)

Hence we see that we simply have to compute the order of t
(p)
n in Ext1Z[Tp]]Z(ℓ)[n], H

1
ord,!(Γ\H,M̃n⊗

Z(ℓ))) for just one prime p.

3.3.8 Computing mod ℓ

Of course the coefficients t
(p)
ν,µ will become very large if n or p becomes larger,

hence we can verify (3.89) only in a very small range of degrees n. But if
we only want to verify that ℓ|∆ℓ(n) then it is sufficient to compute the coef-

ficients t
(p)
ν,µ modulo ℓ and to check whether t

(p)
n represents a non zero class in

Ext1Z[Tp]](Fℓ[n], H
1
ord,!(Γ\H,M̃n ⊗ Fℓ). Hence we see: We have ℓ|∆ℓ(n) if for

some choice of p the equation

ν≡n−2s∑
ν=n−1

((pn+1 + 1)δν,µ − t(p)ν,µ)xν ≡ t(p)n,µ mod ℓ (3.99)

has no solution. But now the coefficients are elements in Fℓ and this reduces
the computational complexity considerably.

We have to be careful, it may and will happen that t
(p)
n,µ mod ℓ is zero (for

some values of p) but still ℓ|∆ℓ(n).

higher

Higher powers of ℓ

This reasoning can also be applied if we look at higher powers of ℓ dividing a
numerator of a ζ(−1 − n)). Let us assume that ℓδℓ(n)||numerator(ζ(−1 − n)).
We have to show that ℓδℓ(n) divides the lcm of the denominators of the xν in
equation (3.88 ). If we assume that t

(p)
n is not zero modulo ℓ then this follows

if we show that the equation
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ν≡n−2s∑
ν=n−1

((pn+1 + 1)δν,µ − t(p)ν,µ)xν ≡ ℓδℓ(n)−1t(2)n,µ mod ℓδℓ(n) (3.100)

has no solution in Z/(ℓδℓ(n)). Then the class

[Xn ⊗ Z/ℓδℓ(n)Z] ∈ Ext1H((Z/ℓδℓ(n)Z)(−1− n), H1
int,!(Γ\H,M̃ ⊗ (Z/ℓδℓ(n)Z))

has exact order ℓδℓ(n).

If ℓ is an irregular prime, then there is always an even positive integer n0
such that n0 < p− 1 such that ℓ|ζ(−1− n0). One does not know any pair(ℓ, n)
with n0 < ℓ − 1 such that we even have ℓ2|ζ(−1 − n0). But if we drop the
assumption n < ℓ − 1 then we may find arbitrary high powers of ℓ dividing
ζ(−1− n) (See also section 3.3.11) We have some examples

ζ(−31) ≡ 0 mod 37; ζ(−283) ≡ 0 mod 372;

ζ(−37579) ≡ 0 mod 373; ζ(−1072543) ≡ 0 mod 374; . . .

ζ(−43) ≡ 0 mod 59; ζ(−913) ≡ 0 mod 592

ζ(−23) ≡ 0 mod 103 ; ζ(−227) ≡ 0 mod 1032

We verified (3.89) in the cases (37, 282), (59, 912), (103, 226) using our program
with Gangl. The case (59, 912) used roughly 18 hours, our algorithm becomes

very slow if n becomes large. denomcong

3.3.9 The denominator and the congruences

For the following we assume that (3.89) is correct. We discuss the denominator
of the Eisenstein class in this special case. In [Talk-Lille] this is discussed in
a more abstract way, so here we treat basically the simplest example of 4.3 in
[Talk-Lille]. Remember that in this section M̃ = M̃♭

n, or M̃ = M̃n for some
even positive integer n.

The fundamental exact sequence provides the short exact sequence

fuex

0→ H1
int,!(Γ\H,M̃)→ H1

int(Γ\H,M̃)
r−→ H1

int(∂(Γ\H),M̃)→ 0 (3.101)

It is clear that the restriction map r is surjective because it is surjective if we
localise at primes. We have H1

int(∂(Γ\H),M̃) = Zen and T2(en) = (2n+1+1)en.
We get a saturated decomposition into Hecke modules

H1
int,!(Γ\H,M̃)⊕ Zẽn ⊂ H1

int(Γ\H,M̃) (3.102)

where T2ẽn = (2n+1 + 1)ẽn and r(ẽn) = ∆(n)en and

H1
int(Γ\H,M̃)/(H1

int,!(Γ\H,M̃)⊕ Zẽn) = Z/∆(n)Z. (3.103)
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If e†n ∈ H1
int(Γ\H,M̃) maps to en then we can write

e†n = r(
y′ + ẽn
∆(n)

) (3.104)

and the element y′ ∈ H1
int,!(Γ\H,M̃) is unique up to an element in ∆(n)H1

int,!(Γ\H,M̃).

Hence

Theorem 3.3.1. The Hecke module H1
int,!(Γ\H,M̃) ⊗ Z/∆(n)Z contains a

cyclic submodule Z/∆(n)Z(−1 − n) on which for all primes p the Hecke op-
erator Tp acts by the eigenvalue pn+1 + 1 mod ∆(n)

Proof. The submodule is simply the cyclic submodule generated by y′.

We discuss some consequences of this theorem. We anticipate some results
from the following chapter and from chapter 5. These results can be formulated
in terms of the concepts and the language we used up to here, but the proofs
require tools from analysis.

We mentioned already the theorem that the cohomology H1
! (Γ\H,M̃⊗Q) is

semi-simple as module for the Hecke-algebra( Thm.3.1.1). This theorem implies
that we can find a finite normal field extension F/Q such that we have an

isotypical decomposition (see3.19) decoFint

H1
int,!(Γ\H,M̃)⊗ F =

⊕
πf

H1
int,!(Γ\H,M̃ ⊗ F )(πf ). (3.105)

Here πf runs over a finite set of homomorphisms πf : H → OF .We also have the
action of the complex conjugation on the cohomology (See sect. (2.84)). The
complex conjugation commutes with the action of the Hecke algebra and under
this action each eigenspace decomposes into a + and a −eigenspace. In the
following chapter 4 we will prove the famous multiplicity one theorem which
says that the spaces H1

int,!(Γ\H,M̃ ⊗ F )(πf )± are one dimensional. Let us
denote the set of πf : H → OF which occur with positive multiplicity (then 2)
in the above decomposition by Coh!(n).

We know that

H1(Γ\H,M̃)⊗ F = H1
! (Γ\H,M̃)⊗ F ⊕ Fen

where Tpen = (pn+1 + 1)en. Let π
Eis
f : H → Z be the homomorphism πEis

f :

Tp → pn+1 + 1, then Coh(n) = Coh!(n) ∪ {πEis
f }.

We make a list {π1,f , . . . , πr,f} of the elements in Coh!(n). . This decompo-

sition induces a Jordan-Hölder filtration on the integral cohomology JH

(0) ⊂ JH(1)H1
int,!(Γ\H,M̃OF

) ⊂ JH(2)H1
int,!(Γ\H,M̃OF

) ⊂ · · · ⊂ JH(r)H1
int,!(Γ\H,M̃OF

)

(3.106)

Here the first step JH(1)H1
int,!(Γ\H,M̃OF

) = H1(Γ\H,M̃⊗ |OF )(π1,f ), where
the subquotients a locally free OF modules of rank 2 and after tensoring with
F they become isomorphic to the corresponding πj,f eigenspace.
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We choose a prime ℓ which divides ∆(n), let ℓδℓ(n)||∆(n). Let l be a prime
in OF which lies above ℓ. If eℓ is the ramification index then we have

{0} ⊂ OF /leℓδℓ(n)(−1− n) ⊂ H1
int,!(Γ\H,M̃OF

)⊗OF /leℓδℓ(n) (3.107)

The above Jordan-Hölder filtration induces a Jordan-Hölder filtration on the
cohomology mod leℓδℓ(n) we have JHmod

{0} ⊂ JH(1)H1
int,!(Γ\H,M̃OF

)⊗OF /lepδℓ(n) ⊂ JH(2) . . . (3.108)

where again the successive subquotients JH(ν)H1
int,!(Γ\H,M̃OF

) are freeOF /lepδℓ(n)
modules of rank 2.

cong1

Theorem 3.3.2. We can find πf,1, πf,2 . . . , πf,r and numbers f1 > 0, f2 >
0, . . . , fr > 0 in the above filtration such that

∑
fi = eℓδℓ(n) and we have the

congruence

πf,i(Tp) ≡ pn+1 + 1 mod lfi (3.109)

for all primes p.

Proof. We look at the map from our cyclic submodule into the top Jordan-
Hölder quotient

OF /leℓδℓ(n)(−1− n)→ JH(r)H1
int,!(Γ\H,M̃OF

) (3.110)

This map has a kernel lgr and the image in the Jordan-Hölder quotient is the
cyclic sub module leℓδℓ(n)−gr = lfr . The Hecke operator Tp acts on the Jordan-
Hölder quotient quotient by multiplication by πf,r(Tp) and on the cyclic sub-
module by multiplication by pn+1+1. Hence we get πf,r(Tp) ≡ pn+1+1 mod lfr

Now we get an embedding lgr ↪→ JH(r−1)H1
int,!(Γ\H,M̃OF

)⊗OF /leℓδℓ(n) and
we apply the same reasoning to this embedding. This process stops if the em-
bedded cyclic sub module becomes trivial. This proves the claim.

But now we have to be aware that the Jordan-Hölder filtration does not
split, if we define

H1
int,!(Γ\H,M̃OF

)(πf ) = H1
int,!(Γ\H,M̃OF

) ∩H1(Γ\H,M̃ ⊗ F )(πf )

then we get a saturated decomposition (decomposition up to isogeny) satdeco

H1
int,!(Γ\H,M̃OF

) ⊃
⊕

πf∈Coh!(n)

H1
int,!(Γ\H,M̃OF

)(πf ) (3.111)

Here we encounter another interesting problem:

What can we say about the structure of the quotient if we divide the left hand
side by the right hand side.

We can formulate some more or less plausible assertions which we can verify
experimentally, but which are very difficult to prove. We definitely have to use
methods which go far beyond the very elementary tools we used so far. For
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instance we verified experimentally (3.89) for a certain range of values of n but
our proof in Chapter 5 requires some analysis.

in the following we choose a prime p, the role of the two primes p and ℓ will
be exchanged. In a first step we consider the cohomology mod p we are mainly
interested in the ordinary part. We start from the exact sequence of Γ modules

0→Mn
×p−→Mn →Mn ⊗ Fp → 0. (3.112)

Here we want to assume that p > 3 then we get the resulting exact sequence of
sheaves and hence a long exact sequence of cohomology groups

0→ (MΓ
n) ord

×p−→ (MΓ
n) ord → (Mn ⊗ Fp) ord →

→ H1
ord(Γ\H,Mn)

×p−→ H1
ord(Γ\H,Mn)→ H1

ord(Γ\H,Mn ⊗ Fp)→ 0

(3.113)

and we can break this sequence into pieces

0→ (MΓ
n) ord

×p−→ (MΓ
n) ord → (Mn ⊗ Fp)Γord → H1

ord(Γ\H,Mn)[p]→ 0
(3.114)

and

0→ H1
ord(Γ\H,Mn)[p]→ H1

ord(Γ\H,Mn)
×p−→ H1

ord(Γ\H,Mn)→ H1
ord(Γ\H,Mn ⊗ Fp)→ 0
(3.115)

where of course . . . [p] means kernel of the multiplication by p and the far most
0 on the right is the vanishing of H2.

We analyse these two sequences and get

ordtorfree

Theorem 3.3.3. The cohomology H1
ord(Γ\H,Mn) is p- torsion free unless we

have n > 0 and n ≡ 0 mod p(p−1). The cohomology groups H1
c, ord(Γ\H,Mn)

are always torsion free and H2
c, ord(Γ\H,Mn) = 0

Proof. We consider the polynomial ring in two variables Fp[X,Y ]. On this ring
we have the action of Sl2(Z). It is an old theorem of L.E. Dickson that the ring
of invariants is generated by the two polynomials

f1 = XpY −XY p and f2 =
Xp2−1 − Y p2−1

Xp−1 − Y p−1
= X(p−1)p +X(p−1)(p−1)Y p−1 + . . .

(3.116)

Now every element in (Mn ⊗ Fp)Γord is a sum of monomials fa1 f
b
2 where a(p +

1) + bp(p− 1) = n. We see that

up 0
0 1

 = uα :M(α)
n →Mn

multiplies f1 with a multiple of p and hence we see that all the monomials with
a > 0 are multiplied by a multiple of p. This means that (Mn ⊗ Fp)Γord ̸= 0
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if and only if n = bp(p − 1). If n = 0 the map MΓ
n = Zp → (Mn ⊗ Fp)Γ is

surjective if n > 0 we haveMΓ
n = 0 and hence the theorem.

For the assertions concerning the compactly supported cohomology we have
to recall that H2

c (Γ\H,Mn) = (Mn)Γ =Mn/IΓMn [book vol I, section 2 and
4.8.5 ]. We check easily that Xn, Y n ∈ IΓMn and the assertion is clear.

We now briefly discuss some interesting questions concerning the cohomology
groups H1

ord(Γ\H,Mn⊗Fp).We assume that we are not in the exceptional case
that n ≡ 0 mod p(p− 1) hence we know that

H1
ord(Γ\H,Mn ⊗ Fp) = H1

ord(Γ\H,Mn)⊗ Fp (3.117)

We can find a finite extension Fpr/Fp such that decomodp

H1
ord(Γ\H,Mn ⊗ Fpr ) =

⊕
π̄f

H1
ord(Γ\H,Mn ⊗ Fpr ){π̄f} (3.118)

where π̄f : H → Fpr is a homomorphism and

H1
ord(Γ\H,Mn ⊗ Fpr ){π̄f} = {x ∈ H1

ord(Γ\H,Mn ⊗ Fpr ) | (Tℓ − π̄f (Tℓ))Nx = 0}
(3.119)

is a generalised eigenspace. Such an generalised eigenspace has a socle, this is
the space

H1
ord(Γ\H,Mn ⊗ Fpr )(πf ) = {x ∈ H1

ord(Γ\H,Mn ⊗ Fpr ) | (Tℓ − π̄f (Tℓ))x = 0}
(3.120)

(Note the difference between ( ) and { }.) We know that the inner cohomology
H1

! (Γ\H,M̃⊗Q) is a semi simple Hecke module, but we can not expect anymore
that the inner cohomology H1

ord,!(Γ\H,Mn ⊗ Fpr ) is semi-simple. For the re-
striction oft the decomposition (3.118) to the inner cohomology semi simplicity
means that the generalised eigenspaces are always equal to their socle.

We choose a prime p ⊂ OF above p and assume OF /p = Fpr . Let Fp be
the completion of F at p, let Op its ring of integers. We consider the reduction

maps redukdiag

H1
!, ord(Γ\H,M̃n ⊗Op) → H1

!, ord(Γ\H,M̃n ⊗ Fpr )
↓ ↓

H1
ord(Γ\H,M̃n ⊗Op) → H1

ord(Γ\H,M̃n ⊗ Fpr )
(3.121)

under this map an eigenspace maps into the socle,, i.e.

rπf
: H1

ord(Γ\H,M̃n ⊗Op)(πf )→ H1(Γ\H,M̃n ⊗ Fpr )(π̄f ). (3.122)

The image rπf
(H1

ord(Γ\H,M̃n⊗Op)(πf )) is a Fpr vector space of dimension 2.

We are interested in the fibres of the surjective map

Rp : Coh!(n)→ Cohmodp!(n) ; πf 7→ π̄f
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For a subset Σ ⊂ {R−1p π̄f} we define

H1
!, ord(Γ\H,Mn ⊗Op){Σ} =

(
⊕

πf∈ΣH
1
!, ord(Γ\H,M̃n ⊗ F )(πf )) ∩H1

! ord(Γ\H,M̃n ⊗Op).
(3.123)

Given Σ we put Σ′ = R−1p (π̄f ) ∖ Σ and we say that Σ ( or Σ′ ) is closed if we
get a direct sum decomposition

H1
ord(Γ\H,M̃n ⊗Op) = H1

ord(Γ\H,M̃n ⊗Op){Σ} ⊕H1
ord(Γ\H,M̃n ⊗Op){Σ′}

(3.124)

and consequently we say that the fibre R−1p (π̄f ) ( or simply π̄f ) is connected if
∅ and the fibre itself are the only closed subsets. If πf and π′f ∈ R−1p (π̄f ) then
we say that they are inner congruent . We have an easy proposition

Proposition 3.3.4. If R−1p (π̄f ) is not connected, then the dimension of the

socle H1
! (Γ\H,M̃n ⊗ Fpr )(1){π̄f} over Fpr is ≥ 4

Proof. This is rather clear. If we have a non trivial direct sum decomposition
as above then we also get a direct sum decomposition

H1
!, ord(Γ\H,M̃n)⊗ Fpr = H1

!, ord(Γ\H,M̃n)⊗ Fpr{Σ} ⊕H1
!, ord(Γ\H,M̃n)⊗ Fpr{Σ′}

(3.125)

Now any πf ∈ Σ (resp.π′f ∈ Σ′) provides provides a two dimensional Fpr vector

space rπf
(H1

!, ord(Γ\H,M̃n ⊗OF )(πf )) (resp rπ′
f
(H1

!, ord(Γ\H,M̃n ⊗OF )(π′f )).
These two vector spaces lie in the socle and in two different summands.

We say that π̄f occurs with weak multiplicity one if the dimension of the

socle dimH1
! (Γ\H,M̃n ⊗ Fpr )(π̄f ) = 2, this socle is the direct sum of the ±

eigenspaces under the complex conjugation. Our above theorem implies that
then the fibre of π̄f must be connected.

The (plain) multiplicity of π̄f is just the number of elements in the fibre

R−1p (π̄f ) this is the number m(π̄f ) =
1
2 dimH

(
! Γ\H,M̃ ⊗ F2){π̄f}. One might

expect that a π̄f occurs with weak multiplicity one happens ”very frequently”.
But it seems to be very difficult to say something substantial in this direction.
We will come back to this issue.(See discussion of the Wieferich dilemma ).

We are especially interested in the case of the Eisenstein homomorphism
π̄Eis
f : Tℓ → ℓn+1 + 1 mod p. It certainly occurs in the cohomology mod p

and it follows from theorems 3.3.1 and 5.1.2 that π̄Eis
f occurs in Cohnodp!(n) if

p|ζ(−1− n).

Here it is very tempting to ask whether or not π̄Eis
f always occurs with weak

multiplicity one in the inner cohomology.

This question can be checked experimentally. For any prime ℓ we look at the
operator Tℓ on H

1
! (Γ\H,M̃n⊗Fp) . We compute the characteristic polynomial

Pℓ(X) = det(XId− ((ℓn+1 + 1)Id− Tℓ) | H1
ord,!(Γ\H,M̃n)⊗ Fp) = Qℓ(X)2

(3.126)
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The characteristic polynomial is a square because the ± eigenspaces are isomor-
phic as Hecke modules. Our computer program with Gangl gives us an explicit
expression for Q2(X) for a large number of pairs (n, p). We are interested in
pairs (n, p) with p | ζ(−1− n). Then we find

Q2(X) = a1(n, p)X + a2(n, p)X
2 . . . (3.127)

Then we found a1(n, p) ̸≡ 0 mod p for n ≤ 200. This means that in these cases
π̄Eis
f occurs with multiplicity one. This is in no way surprising, we expect that
p|ζ(−1− n) and p|a1(n, p) will be a very rare event.

Tobias Berger drew my attention to the paper [3] where the authors consider
the same problem in a slightly different context. They show that p|a1(n, p)
happens only once for p < 105 and this is the case p = 547, n = 484.

Assume we have such a pair (p, n) and we know that in addition that
p ̸ |a2(n, p). Then the Hecke operator TEis

ℓ = Tℓ − (ℓn+1 + 1)Id acts nilpotently

on the 4 dimensional space H1
ord,!(Γ\H,M̃n) ⊗ Fp){π̄Eis

f } and we can ask the
next question:

Is TEis
ℓ the zero operator? (For all choices of ℓ). Then this means that π̄Eis

f

has weak multiplicity 2.

If we restrict TEis
ℓ to one of the two-dimensional ± subspaces then TEis

ℓ is a
nilpotent endomorphism, i.e. a nilpotent (2,2) matrix with entries in Fp. If I am
not mistaken then there are exactly p2 such matrices and the zero matrix is just
one of them. So one might argue that the probability for TEis

ℓ = 0 is roughly
1
p2 . So with a high probability the answer to the above question is NO. Since

the probability that p|a1(n, p) is also very small it may be safe to conjecture
that π̄Eis

f always occurs weakly with multiplicity one.
Of course I checked the case (484, 547) for the operator T2 and indeed the

answer was NO!

We briefly return to theorem 3.3.2. Assume we have a pair (n, p) with
pδ|ζ(−1 − n) and in addition p|a1(n, p), we also assume p ̸ |a2(n, p), Then we
expect that π̄Eis

f occurs weakly with multiplicity one. Let Fp/Qp a smallest
extension such that we get a decomposition

H1
! (Γ\H,M̃n ⊗ Fp) = H1

1 (H,M̃n ⊗ Fp)(πf,1)⊕H1
! (H,M̃n ⊗ Fp)(πf,2).

This extension is either trivial or a ramified quadratic extension of Qp. The
probability that we are in the first case is again very low, so let us assume that
Fp = Qp[

√
p] We have the inclusion j : Z/pδ(−n−1) ↪→ H1

! (Γ\H,M̃n⊗Zp/pδ),
The filtration has 2-steps

{0} ⊂ H1(Γ\H,M̃n ⊗ Zp/pδ)(πf,1) ⊂ H1(Γ\H,M̃n ⊗ Zp/pδ) (3.128)

and let f1 the smallest integer such that pf1Z/pδ(−n − 1) ↪→ H1(Γ\H,M̃n ⊗
Zp)(πf,1). Then our previous argument yields the congruence πf,1(Tℓ) ≡ ℓn+1+1
mod pδ−f1 . Then the inclusion j yields the cyclic submodule Z/pf1 in the quo-
tient. This yields the congruence πf,2(Tℓ) ≡ ℓn+1 + 1 mod pf1 Now we invoke
our assumption that π̄f occurs weakly with multiplicity one and this implies
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that we can find a Hecke operator TEis
ℓ1

which maps the above cyclic mod-

ule Z/pf1 into H1(Γ\H,M̃n ⊗ Zp/pδ)(πf,1) and hence to the cyclic submodule
pf1Z/pδ ⊂ Z/pδ) Hence we can conclude that 2f1 ≤ δ.

Hence we see we see that under the above assumptions we have a congruence

πf,1(Tℓ) ≡ ℓn+1 + 1 mod pδ

Of course the same applies to πf,2.

With a little bit of luck we can check the assumptions using the explicit
computation of T2.

It is not very difficult to produce examples of π̄f ∈ Coh!(n) where we have

dimH1
ord,!(Γ\H,M̃n ⊗ Fpr ){π̄f} > 2. If we take n = 22, then we know that

H1
! (Γ\H,M̃12⊗Q) is of dimension four, then the ± eigenspaces are of dimension

2. We can compute T2 and find for the smallest field that decomposes the
cohomology (see 3.105) F = Q(

√
144169), this was of course known to Hecke. In

this case Coh!(22) consists of 2 elements, which are conjugate under the Galois
group Gal(F/Q). If πf is one of the elements in Coh!(22) then our program
yields πf (T2) = −12(−45+

√
144169) ( of course this value can be looked up in

any table for modular forms ) hence we see that for any prime p > 3 the image
of ring Z(p)[T2] = OF ⊗Z(p). This implies that we do not have inner congruences
except for p = 144169.

But now our program with Gangl provides an explicit matrix for T2 mod 144169
and this matrix has only one eigenvalue mod 144169.

This matrix for T2 is not a diagonal matrix, and this implies that the fibre
is connected and hence πf occurs weakly with multiplicity one.

Essentially the same happens if we look at the six values n = 22, 26, 28, 30, 32, 36
for which the degree of the splitting field F is 2. It will happen that the dis-
criminant is not a prime, so we will have inner congruences modulo several
primes.

3.3.10 L-values, weak multiplicity one and connectedness

in the previous section we investigated questions regarding the structure of
the integral cohomology as module for the Hecke algebra. We discussed the
denominator of the Eisenstein classes and our experimental data suggested an
answer in terms of special values of L-functions. (See 3.89 and also (5.1.2). )

We briefly mention some results about the questions concerning inner con-
gruences which we contemplated in the previous section. To state these results
we have to anticipate the notion of L− functions attached to a πf ∈ Coh!(n)
and we anticipate the theorems on special values. We still localise at a prime p
and we only look at the ordinary part. We apply the results from section 5.1.2 .

Assume we have two elements πf , π
′
f ∈ R−1p (π̄f ) We say that these two

elements are linked if they lie in the same connected component. I refer to
Theorem 5.1.1

Theorem 3.3.4. The Hecke modules πf , π
′
f ∈ R

−1
p (π̄f ) are linked if and only
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if

Z(ν)

Ω(ϵ(ν)× πf )
Λcoh(π, n+ 1− ν) ≡ Z(ν)

Ω(ϵ(ν)× π′f )
Λcoh(π′, n+ 1− ν) mod p

(3.129)

for all ν = 0, 1, . . . , n and where Z(ν) = 1 for ν ̸= 0, n and Z(0) = Z(n) =
numerator(ζ(−1− n)) and ϵ(ν) = ± depending on the parity of ν.

(The factor Z(ν) is needed to make the expressions integers) This is a slightly
strengthened version of a theorem of Vatsal ([88]). We do not prove it in this
book, it is not to difficult to prove using the results in ...

We have a second theorem which is due to Hida. We pick a πf ∈ R−1p (π̄f )
and we say that πf is isolated if {πf} is open. Then Hida’s theorem says ([52])

Theorem 3.3.5. The Hecke module πf ∈ R−1p (π̄f ) is isolated if and only if

Λcoh(πf ,Sym
2, 1)

Ω(+⊗ πf )Ω(−⊗ πf )
̸∈ p (3.130)

3.3.11 p-adic interpolation

p-adic-zeta

The p-adic ζ-function

Let p be an irregular prime, i.e. p | ζ(−1− n0), here we assume 0 < n0 < p− 1.
We consider ζ(−1 − n) = ζ(−1 − n0 − α(p − 1)) as function in the variable
α ∈ N and we want to find values n = −1−n0−α(p−1) such that ζ(−1−n) is
divisible by higher powers of p. We know that there exist a p-adic ζ− function
(See [58],[54],[90]) and this function has an expansion

p-appr

ζ(−1− n) = ζ(−1− n0 − α(p− 1)) ≡ ζ(−1− n0) + a(n0, 1)αp+ a(n0, 2)α
2p2 . . .

(3.131)

where the coefficients a(n0, ν) ∈ Zp they are only defined mod p. If now
p ̸ |a(n0, 1) then we can apply Newton‘s method and we find a converging
sequence α1, α2, . . . such that

αν ≡ αν+1 mod pν and ζ(−1− n0 − αν(p− 1)) ≡ 0 mod pν+1 (3.132)

The sequence converges to a zero α∞ of the p-adic ζ− function.

It is not always possible to raise the power of p which divides ζ(− − 1 −
n0 − α(p − 1)). If for instance p2 ̸ |ζ(−1 − n0) and in addition p|a(n0, 1) then
we never find a higher power of p dividing some ζ(−1−n0−α(p− 1)). Again a
naive probabilistic argument suggests that is an extremely rare event that this
happens, but the argument also suggests that such a prime exists (See section
on the Wieferich Dilemma).
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Again we write n = n0 + (p − 1)α where we assume 0 < n0 < p − 1 and
we want to study how the cohomology H1

ord(Γ\H,Mn ⊗Zp) varies with n. We
know for instance that the denominator of the Eisenstein class may become
larger. We have seen already that

H1
ord(Γ\H,Mn)⊗ Z/prZ ∼−→ H1

ord(Γ\H,Mn ⊗ Z/pr) (3.133)

Now we have the following theorem which is due to Hida

interpol

Theorem 3.3.6. If n = n0 + (p − 1)α, n′ = n0 + (p − 1)α′ and α ≡ α′

mod pr−1, ( i.e. n ≡ n′ mod (p − 1)pr−1) then we have a canonical Hecke in-
variant isomorphism

Φ(n, n′)r : H
1
ord(Γ\H,M̃n ⊗ Z/pr) ∼−→ H1

ord(Γ\H,M̃n′ ⊗ Z/pr). (3.134)

This system of isomorphisms is consistent with change of the parameter α, α′ and r.

Proof. See paper on interpolation.

We find a finite extension Fp/Qp such that we have a decomposition into
eigenspaces

H1
ord(Γ\H,Mn ⊗ F ) =

⊕
πf

H1
!, ord(Γ\H,Mn ⊗ F )(πf )⊕ Fen (3.135)

where the first summation on the right hand side goes over those πf ∈ Coh!(n)
for which πf (Tp) is a unit in Op, the ring of integers in F . Let us denote this

set by Coh
(n)
!,ord. Then the full summation goes over the set Coh

(n)
ord = Coh

(n)
!,ord ∪

{πEis
f }. Intersecting this decomposition with H1

ord(Γ\H,Mn ⊗ Op) gives us a
submodule of finite index

H1
ord(Γ\H,Mn ⊗Op) ⊃

⊕
πf

H1
!, ord(Γ\H,Mn ⊗Op)(πf )⊕Open (3.136)

and this also gives us a Jordan-Hölder filtration as in (3.106).

For π̄f ∈ Cohmodp!(n) we define

H1
!, ord(Γ\H,Mn ⊗Op){π̄f} := H1

!, ord(Γ\H,Mn ⊗Op){R−1p {π̄f )} (3.137)

and then we get a direct sum decomposition

H1
!, ord(Γ\H,Mn ⊗Op) =

⊕
π̄f

H1
!, ord(Γ\H,Mn ⊗Op){π̄f} (3.138)

and for any π̄f we get a decomposition up to isogeny

decoEis

H1
!, ord(Γ\H,Mn ⊗Op){π̄f} ⊃

⊕
πf∈R−1

p (π̄f )

H1
!, ord(Γ\H,Mn ⊗Op)(πf ) (3.139)
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We are mainly interested in the Hecke module H1
!, ord(Γ\H,Mn⊗Op){π̄Eis

f }
how this varies if α varies. Our theorem above implies that the Hecke module
H1

!, ord(Γ\H,Mn ⊗Op/p) does not depend on α.

Let us now assume that π̄Eis
f has multiplicity one. Then we know that the

decomposition (3.139) applied to π̄Eis
f has only one summand πEis

!,f , We still
assume that n = n0 + (p− 1)α,

Vand

Theorem 3.3.7. If pδℓ(n) | ζ(−1− n) we have the congruence

πf (Tℓ) ≡ ℓn+1 + 1 mod pδℓ(n) ∀ primes ℓ

Finally we get πf (Tℓ) ∈ Zp for all primes ℓ and hence we may take Op = Zp.
We can find a basis f0, f1, f2 of H1

ord(Γ\H,M̃n){π̄Eis
f } where

a) f1, f2 form a basis of H1
!, ord(Γ\H,M̃n) and f0 maps to a generator of

H1(∂(ΓH),M̃n ⊗ Zp)

b)The complex conjugation c acts by c(fi) = (−1)i+1fi

and finally
c) the matrix T ord

ℓ with respect to this basis satisfies

T ord
ℓ ≡

ℓn+1 + 1 0 t(ℓ)

0 ℓn+1 + 1 0
0 0 ℓn+1 + 1

 mod pδℓ(n)

Proof. Clear

Now we assume that p ̸ |a(1, n0) and we choose a sequence α0 = 0, α1, . . . , αν
as in (3.132) then we get Hecke-module maps

H1
!,ord(Γ\H,M̃nν+1

⊗ Zp/pν+1)→ H1
!,ord(Γ\H,M̃nν+1

⊗ Zp/pν)
∼−→ H1

!,ord(Γ\H,M̃nν
⊗ Zp/pν)

(3.140)

The sequence nν converges to an p-adic integer n∞, we can form the projec-
tive limit and define

H1
ord(Γ\H,M̃n∞) = lim

←
H1

ord(Γ\H,M̃nν ⊗ Z/pνZ) (3.141)

Under our assumptions H1
ord,!(Γ\H,M̃n∞){π̄Eis

f } is a free Zp-module of rank

3. The Hecke operators T ord
ℓ acts on H1

ord(Γ\H,M̃nν
⊗Z/pνZ) by a matrix of

the shape as in theorem 3.3.7, and the eigenvalues on the diagonal are

ℓnν+1 + 1 = ℓn0+(p−1)αν + 1 mod pν

For ℓ ̸= p we write
ℓp−1 = 1 + pδ(ℓ), δp(ℓ) ∈ N

and then

ℓn0+(p−1)αν = ℓn0(1 + δp(ℓ)p)
αν = ln0(1 + ανpδp(ℓ) +

(
α

2

)
α2
νp

2δp(ℓ)
2 . . .
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We see that we can define ℓn0+α(p−1) for any α ∈ Zp and then clearly limν→∞ ℓnν =

ℓn∞ . Hence we see that T ord
ℓ acts on H1

ord(Γ\H,M̃n∞) by the matrix

T ord
ℓ ≡

ℓn∞+1 + 1 0 t(ℓ)

0 ℓn∞+1 + 1 0
0 0 ℓn∞+1 + 1


where we have t(ℓ) ̸= 0. (This follows from earlier arguments)

If we drop the assumption that π̄Eis
f has multiplicity one then the situation

becomes definitely much more complicated. We believe that this a rare event,
we have seen that for p < 105 this happens only once. But on the other hand our
naive probabilistic argument suggests that it should happen again. But then the
same probabilistic argument suggests that it never happens that m(π̄Eis

f ) > 2.

Therefore we make the assumption that m(π̄Eis
f ) = 2. We look at that the

decomposition ( 3.139) applied to π̄f = π̄Eis
f . We consider the characteristic

polynomial

det(TEis
ℓ − IdX|H1

! (Γ\H,M̃ ⊗ Zp){π̄Eis
f )} = (b0(n, p) + b1(n, p)X +X2)2.

(3.142)

Our assumption m(π̄Eis
f ) = 2 implies that b1(n, p), b0(n, p) ≡ 0 mod p. Let us

write

PEis(Tℓ, n, ,X) := b0(n, p) + b1(n, p)X +X2 (3.143)

If we now find an ℓ such that p2 ̸ | b0(n, p), then it is clear that we need a
quadratic extension Fp = Qp[

√
ϵp] (ϵ a unit in Z×p ) if we want a decomposition

into eigen spaces (3.135). If Op is the ring of integers in Fp then we get a
decomposition up to isogeny into two conjugate eigenspaces

H1
! (Γ\H,M̃n ⊗Op)/{π̄Eis

f } ⊃ H1
! (Γ\H,M̃n ⊗Op)(πf )⊕H1

! (Γ\H,M̃ ⊗Op)(
σπf )

(3.144)

where σ is the non trivial element in the Galois group of Fp/Qp.
Under our assumptions the quotient of the left hand side by the right hand

side is isomorphic toH1
! (Γ\H,M̃⊗Op/p)(π̄

Eis
f ). For all ℓ′ we have the congruence

πf (Tℓ′) ≡ σπf (Tℓ′) mod p. We recall that n = n0+α(p−1). It is clear that the

condition p2 ̸ | b0(n, p) only depends on α mod p. Therefore we should expect
that for a fixed α the ”probability” that p2| b2(n, p) is 1/p. but there may be a
value of α for which this divisibility holds.

We return to our sequence α0, α1, . . . see((3.132)). We assume that
p2 ̸ | b0(n0 + α1(p − 1), p). Then it is easy to see that for ν ≥ 1 we have the
decomposition up to isogeny (3.144)

H1
! (Γ\H,M̃nν

⊗Op){π̄Eis
f } ⊃ H1

! (Γ\H,M̃nν
⊗Op)(π

(ν)
f )⊕H1

! (Γ\H,M̃nν
⊗Op)(

σπ
(ν)
f )

(3.145)

We have the inclusion Zp/(pν+1)(−nν − 1) ↪→ H1
! (Γ\H,M̃nν ⊗ Z/(pν+1)) and

tensoring by Op/p
2(nν+1) yields the inclusion

jp,ν : Op/p
2(ν+1)(−nν − 1) ↪→ H1

! (Γ\H,M̃nν
⊗Op/(p

2(ν+1)))
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We have H1
! (Γ\H,M̃n ⊗ Op/(p

(2(ν+1)))(πf ) ⊂ H1
! (Γ\H,M̃n ⊗ Op/(p

(2(ν+1)))
this is the first step in the Jordan-Hölder filtration and the quotient by this first
step is isomorphic to H1

! (Γ\H,M̃n ⊗Op/(p
(2(ν+1)))(σπf ). We repeat the argu-

ment in the proof of Theorem 3.3.2 and we conclude that we have congruences

π
(ν)
f (Tℓ) ≡ ℓnν+1 + 1 mod p(ν+1) ;σ π

(ν)
f (Tℓ) ≡ ℓnν+1 + 1 mod p(ν+1)

(3.146)

Again we can pass to the limit H1(Γ\H,M̃n∞){π̄Eis
f }, this limit has a three

step Jordan-Hölder filtration, the top quotient is Zp(−n∞− 1)⊗Op -this is the
cohomology of the boundary. For the eigenvalues on the middle step and the
bottom we also get the same limit . Hence -if we choose our basis as before, i.e.
we take the action of the complex conjugation into account, then we get for the
matrix of the Hecke operator-restricted to the Eisenstein part-

T∞ℓ =


ℓn∞+1 + 1 0 t(ℓ) 0 s(ℓ)

0 ℓn∞+1 + 1 0 u(ℓ) 0
0 0 ℓn∞+1 + 1 0 v(ℓ)

0 0 0 ℓn∞+1 + 1 0
0 0 0 0 ℓn∞+1 + 1


(3.147)

where the non zero entries are units for a suitable choice of ℓ.

In the special case (484,547) the number α1 = 100 we have ζ(−485− 100 ∗
546) = ζ(−55085) ≡ 0 mod 5472. Earlier we checked 5472 ̸ | b0(484, 547) for
the Hecke operator T2. But how can we ever check 5472 ̸ | b0(55084, 547)? The
matrices become too big.

Our chances that 5472 | b0(55084, 547) are 1/547.

But there is a way out. I think it is possible to prove that we have an
expansion

b0(484 + α546, 547) ≡ b0(484, 547) + α547b′0(484, 457) mod 5472. (3.148)

(This should follow from the general results which we announced in [41] and
which we still hope to prove in a paper with J. Mahnkopf).

Using our program with Gangl for T2 and with the help of A.Weisse we com-
puted T2 mod p2 for the cases α = 0, 1, 2,the program still works in reasonable
time in these cases. We found ( of course everything mod 5472)

b0(484) = 547× 10
b0(484 + 546, 547) = 547× 174 = 547(10 + 164),

b0(484 + 2× 546, 547) = 547× 338 = 547(10 + 2× 164)
(3.149)

Hence we expect b′0(484, 547) = 164 mod 547 and assuming the above linearity
we get b0(55084, 547) = 547(10 + 100× 164) = 547× 16410.

To my great surprise 16410 = 2× 3× 5× 547!!!
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Perhaps I was just stupid and a closer look shows that there is an obvious
reason that this must be so

Hence we have to compute PEis(T2, 484 + a ∗ 546, X) mod 5473 for some
small values of a. We computed the zeroes

λ(T2, a) = α ∗ 457±
√
β ∗ 547 mod 5473

of the quadratic factor PEis(T2, 484 + a ∗ 546, X) for a = 0, 1, 2. We found

λ(T2, 0) = 268381 ∗ 547±
√
537 ∗ 547 mod 5473

λ(T2, 1) = 189064 ∗ 547±
√
251993 ∗ 547 mod 5473

λ(T2, 2) = 13475 ∗ 547±
√
169232 ∗ 547 mod 5473

(3.150)

we see that these roots lie in a ramified quadratic extension of Z/(5473). From
the roots we get the coefficients of PEis(T2, 484 + a ∗ 546, X)

b0(484, 547) = (268381 ∗ 547)2 − 537 ∗ 547 = 37406595 mod 5473

b0(484 + 546, 547) = (189064 ∗ 547)2 − 251993 ∗ 547 = 135636855 mod 5473

b0(484 + 2 ∗ 546, 547) = (13475 ∗ 547)2 − 169232 ∗ 547 = 91742840 mod 5473

b1(484, 547) = 2 ∗ 268381 ∗ 547 mod 5473

b1(484 + 546, 547) = 2 ∗ 189064 ∗ 547 mod 5473

(3.151)

We now hope that in the still to be written paper with J. Mahnkopf we will
show that we have an expansion

b0(484 + α546, 547) = b0(484, 547) + b′0(484)α547 + b′′0(484)α
25472 mod 5473

(3.152)

where b′0(484), b
′′
0(484) are numbers mod 547, which we can compute from the

three values above. We easily get

b′0(484) = 164 ; b′′0(484) = 24 (3.153)

We do the same for b1(484+α ∗ 546) = b1(484) + 543 ∗ 547 mod 5472. Now
the discriminant is Discriminant ∆(α, 547) = −b0(484 + α546, 547) + b1(484 +
α ∗ 546, 457)2 and if we believe in the interpolation formula we get

∆(100, 547) = 286 ∗ 5472 mod 5473 (3.154)

Hence we see that

λ(T2, 100) = 547(238096± 1

2

√
286) mod 5473 (3.155)

Now we check easily that 286 is not a square mod 547 and hence we see the
roots now lie in the unramified quadratic extension Z/(5473)[

√
2]. Now we put
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again Op = Z547[
√
2] let us put p = 547 then p = (p) We consider the sequence

α0, α1, . . . , αν (see 3.132). As before we get for any ν ≥ 1 ( a decomposition up
to isogeny (3.139)

H1
! (Γ\H,M̃n1

⊗Op){π̄Eis
f } ⊃

H1
! (Γ\H,M̃n1

⊗Op)(π
(ν)f )⊕H1

! (Γ\H,M̃n1
⊗Op))(

σπ
(ν)
f ).

(3.156)

We argue as before, our embedding Z/pν+1(−1 − nν) ↪→ H1
! (Γ\H,M̃n1

⊗
Z/(pν+1)) provides the Galois invariant embedding Op/(p

ν+1)(−1 − nν) ↪→
H1

! (Γ\H,M̃nν
⊗ Op/(p

ν+1). There is a largest number fν ≤ ν such that the

submodule pfνOp/p
ν+1(−1− nν) embeds into the submodule H1

! (Γ\H,M̃n1
⊗

Op/(p
ν+1))(π

(ν
f ). But then we get an injection

Op/(p
ν+1)(−1− nν)/pµOp/(p

fν )(−1− nν) ↪→

H1
! (Γ\H,M̃nν

⊗Op/(p
ν+1)/H1

! (Γ\H,M̃n1
⊗Op)(π

(ν)
f )⊗Op/(p

ν+1)

(3.157)

The module in the bottom line is isomorphic to H1
! (Γ\H,M̃n1

⊗ Op)(
σπ

(ν
f ) ⊗

Op/(p
ν) and hence we get congruences

π
(ν)
f (Tℓ) ≡ ℓnν+1 + 1 mod pfν , σπ

(ν)
f (Tℓ) ≡ ℓnν+1 + 1 mod pν+1−fν

(3.158)

Since these congruences are invariant under the action of the Galois group we
get congruences

π
(ν)
f (Tℓ) ≡ ℓnν+1 + 1 mod p[

ν+2
2 ] , σπ

(ν)
f (Tℓ) ≡ ℓnν+1 + 1 mod p[

ν+2
2 ]

(3.159)

where [x] denotes the usual Gauss bracket.

The Galois group

Viel ausführlicher It is a fundamental fact that we have an action of the Ga-
lois group Gal(Q̄/Q) on the modules H1(Γ\H,M̃n ⊗ Zp/pδ), H1(Γ\H,M̃n ⊗
Op), H

1(Γ\H,M̃n∞){π̄Eis
f } this action commutes with the action of the Hecke

algebra. Hence we get interesting representations of the Galois group, these rep-
resentations have been studied by many people. (See for instance [65], [74],[86]
or [46]).

We will be explain this matter in a very cursory manner in section 5.1.5.

3.3.12 The Wieferich dilemma

In 1909 the student Arthur Wieferich proved the following

If for a prime p > 2 the equation xp+ yp+ zp = 0 has a solution in integers
with xyz ̸≡ 0 mod p, then 2p−1 − 1 ≡ 0 mod p2.
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Of course we now that 2p−1−1 ≡ 0 mod p but checking a few of small primes

suggests that the residue class w(p) = 2p−1−1
p mod p can just be any number

mod p. Hence we expect that it is a rare event that this residue class is zero,
the ”probability” is 1

p . Later these primes ere called Wieferich primes. At the

present moment it seems that there are only two Wieferich primes < 6.7× 105.,

But poor Arthur could not show that he had proved the first case of Fermat
for infinitely many prime exponents p because he could not show that there are
infinitely many non Wieferich primes (and we still do not know it now):

This kind of phenomenon was not new and well known at the time when
Wieferich proved his theorem (Simply Google: The first case of Fermat’s The-
orem) but Wieferich’s case is a striking example because it is so easy to state.
That is the reason why we propose to call it the Wieferich dilemma.

In this book we encounter the Wieferich dilemma at several occasions. If
p|ζ(−1 − n) we raised the question whether π̄Eis

f occurs with multiplicity one.
We saw that this is exactly the case if a1(n, p) ̸≡ 0 mod p. Again we may argue
that the probability that p|a1(n, p) is 1

p so we expect this to be a rare event that

π̄Eis
f occurs with higher multiplicity. Actually we learned from [3] that there is

only one exception for p < 105. On the other hand we believe that
∑
p irregular

1
p

is divergent so there is a certain chance that some larger such a prime exists.

Assume that there is a prime p for which π̄Eis
f occurs with higher multiplicity.

Then we may ask whether it occurs weakly with multiplicity one and again a
probability argument shows that the probability that this is not so is 1

p2 . This
now suggests that it may always occurs weakly with multiplicity one.

Here I want to make a metamathematical statement.
It is very well conceivable that π̄Eis

f always occurs with weak multiplicity one,
but we will never find a proof. But it is simply true because the probability that
π̄Eis
f occurs with higher weak multiplicity is so small. It is simply ”true” without

a proof.

In this chapter 3 we discuss some questions concerning the structure of the
cohomology of arithmetic groups as module under the Hecke algebra. We we ex-
ecute computations and experiments to support and suggest certain hypotheses.
But we only considered a very special example.

But there is much wider range where can ask questions and make hypotheses.
We drop our assumption that we are in the totally unramified situation, this

means that we can replace Γ0 = Sl2(Z) by a ( normal ) congruence subgroup
Γ ⊂ Γ0. We choose a free Z− module of finite rank V with an action of Γ0/Γ,
i.e. we have a representation

ρV : Γ0/Γ→ Gl(V)

we assume that the matrix −Id acts by a scalar ρV(−Id) = ±Id. The Γ0-

modules Mn ⊗ V provide sheaves M̃n ⊗ V, here we assume that ρV(−Id) ≡ n
mod 2.Again we study the cohomology groups and especially we can study the
fundamental exact sequence

→ H1
c (Γ0\H,M̃n ⊗ V)→ H1(Γ0\H,M̃n ⊗ V)

r−→ H1(∂(Γ0\H),M̃n ⊗ V)
(3.160)
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On these cohomology groups we have the action of Hecke operators T (α, uα).
Here we have to be a little carful. Our group Γ contains a full congruence group
Γ(N). Then we take the elements α ∈ Gl2(Z(N)) and our uα = uMα ⊗ uVα (See
section 3.1).

We may for instance choose a positive integer N and we consider the congru-

ence subgroup Γ0(N) = {
(
a b
c d

)
∈ Sl2(Z)|c ≡ 0 mod N}. Let Γ1(N) ⊂ Γ0(N)

be the subgroup where a ≡ 1 mod N then Γ0(N)/Γ1(N) = (Z/NZ)×. We
choose a character χ : Γ0(N)/Γ1(N)→ Z[ζN ]× and consider the induced repre-
sentation

Vχ = IndΓ0

Γ0(N)χ = {f : Γ0 → Z[ζN ] | f(γx) = χ(γ)f(x); γ ∈ Γ0(N), x ∈ Γ0}.

It an interesting task to extend the results and the experimental computa-
tions from the previous chapters to these Hecke modules. It should not be
too difficult to generalise the results in section 3.3.1 for the Hecke modules

H1(∂(Γ0\H),M̃n ⊗ Vχ). Then we can formulate the denominator question again.
In this case the denominator should be related to the L values L(χ,−1−n),

It is certainly interesting to collect some data, which might allow us to formulate
more precise hypotheses. For this purpose one has to extend the algorithm for
T2 to this new situation.

At this point we ignore (or forget) that analytic methods (Eisenstein coho-
mology) also provide some tools to understand the denominator. (see 5.1.2)

I think it is even more interesting to investigate the multiplicity questions.
Now our cohomology groups are Z[ζN ] modules, let us assume that we have
a prime ideal p|L(χ,−1 − n). We assume p ̸ |N and let Op = Z[ζN ]p be the
completion at p. Then we can should be able to define the direct summand
(see3.119)

H1(Γ0\H, ˜Mn ⊗ V ⊗Op){πEis
f,χ} ⊂ H1

ord(Γ0\H, ˜Mn ⊗ V ⊗Op) (3.161)

and we want this direct summand as Hecke module. Earlier we have done some
experimental computation in the unramified case (N = 1) and probabilistic
arguments let us make some conjectures. But now the we have many more cases
(vary the character χ and the primes involved are much smaller so we have some
chances to falsify the analogous conjectures once we have some ramification.

I think that here is a wide field for interesting experiments.
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Chapter 4

Representation Theory,
Eichler-Shimura
Isomorphism

HC

4.1 Harish-Chandra modules with cohomology

In Chapter 6 we will give a general discussion of the tools from representation
theory and analysis which help us to understand the cohomology of arithmetic
groups. Especially in Chapter 6 section 6.1.5 we will recall the results of Vogan-
Zuckerman on the cohomology of Harish-Chandra modules.

Here we specialise these results to the specific cases G = Gl2(R) (case A))
and G = Gl2(C) (case B)). For the general definition of Harish-Chandra modules
and for the definition of (g,K∞) cohomology we refer to (6.1.2)

Mlambda

4.1.1 The finite rank highest weight modules

We consider the case A), in this case our group G/R is the base extension of
the reductive group scheme G = Gl2/ Spec(Z). In principle this a pretentious
language. At this point it simply means that for for any commutative ring R
with identity we can speak of G(R)-the group of Rvalued points- , and that
G(R) depends functorially on R.

153
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( Sometimes in the following we will replace Spec(Z) by Z.) Then G(1)/Z is
the kernel of the determinant map det : G/Z → Gm/Z. We have the standard
maximal torus T /Z and choose the Borel subgroup B/Z ⊃ T /Z to be the group
of upper triangular matrices. Let X∗(T ) = X∗(T ×C) be the character module
This character module is Ze1 ⊕ Ze2 where

ei :

(
t1 0
0 t2

)
7→ ti (4.1)

Any character can be written as λ = nγ+ddet where γ = e1−e2
2 (̸∈ X∗(T ) !),det =

e1 + e2 and where n ∈ Z, d ∈ 1
2Z and n ≡ 2d mod 2. We say that λ is /it dom-

inant iif n ≥ 0.
To any such character λ = nγ + ddet we want to attach a highest weight

moduleMλ. We consider the Z− module of polynomials

Mn = {P (X,Y ) | P (X,Y ) =

n∑
ν=0

avX
νY n−ν , aν ∈ Z}.

To a polynomial P ∈Mn we attach the regular function (see 1.1.1)

fP (

(
x y
u v

)
) = P (u, v) det(

(
x y
u v

)
)−

n
2 +d, (4.2)

then

fP (

(
t1 w
0 t2

)(
x y
u v

)
) = tn2 (t1t2)

−n
2 +dfP (

(
x y
u v

)
) = λ−(

(
t1 w
0 t2

)
)fP (

(
x y
u v

)
)

(4.3)

where λ− = −nγ+ddet. On this module of regular functions the group scheme
G/Z acts by right translations:

ρλ(

(
a b
c d

)
)(fP )(

(
x y
u v

)
)) = fP (

(
x y
u v

)(
a b
c d

)
) (4.4)

This is now the highest weight moduleMλ for the group scheme G/Z. The
highest weight vector is fXn , clearly we have

ρλ(

(
t1 w
0 t2

)
)(fXn) = λ(

(
t1 w
0 t2

)
)fXn = λ(

(
t1 0
0 t2

)
fXn

In the following we change the notation, instead of fP we will simply write P.

Comment: When we say thatMλ is a module for the group scheme G/Z we
mean nothing more than that for any commutative ring R with identity we have
an action of G(R) onMn⊗R, which is given by (4.2 ) and depends functorially
on R. We can ”evaluate” at R = Z and get the Γ = Gl2(Z) module Mλ,Z.
(Actually we should not so much distinguish between the Gl2(Z) moduleMλ,Z
andMλ) Of course we have have seen these Gl2(Z) modules before, they are of
course equal to the modulesMn[d− n

2 ] in section 1.2.2.

Remark: There is a slightly more sophisticated interpretation of this module.
We can form the flag manifold B\G = P1/Z and the character λ yields a line
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bundle Lλ− . The group scheme G is acting on the pair (B\G,Lλ−) and hence
on H0(B\G,Lλ−) which is tautologically equal toMλ (Borel-Weil theorem).

We can do essentially the same in the case B). In this case we start from an
imaginary quadratic extension F/Q and let O = OF ⊂ F its ring of integers. We
form the group scheme G/Z = RO/Z(Gl2/O). Again G(1)/Z will be the kernel of
det : G/Z→ Z/Z = RO/Z(Gm). Then G(O) = Gl2(O⊗O) ⊂ Gl2(O)×Gl2(O).
The base change of the maximal torus T/Q ⊂ G ×Z Q is the product T1×T2/F
where the two factors are the standard maximal tori in the two factors Gl2/F.

We get for the character module CHMsplit

X∗(T × F ) = X∗(T1)⊕X∗(T2) = {n1γ1 + d1 det} ⊕ {n2γ2 + d2d̄et} (4.5)

where we have to observe the parity conditions n1 ≡ 2d1 mod 2, n2 ≡ 2d2
mod 2.

Then the same procedure as in case A) provides a free O- moduleMλ with
an action of G(Z) on it. To get this module and to see this action we embed
the group G(Z) = Gl2(O) into Gl2(O) × Gl2(O) by the map g 7→ (g, ḡ) where
ḡ is of course the conjugate. If now our λ = n1γ1 + d1 det1 +n2γ2 + d2det2 =
λ1+λ2 then we have our two Gl2(O) modulesMλ1,O,Mλ2,O and this provides
the Gl2(O) × Gl2(O)- module Mλ1,O ⊗ Mλ2,O, our Mλ,O is is now simply
the restriction of this tensor product module to G(Z). Sometimes we will also
write our character as the sum of the semi simple component and the central
component, i.e.

λ = λ(1) + δ = (n1γ1 + n2γ2) + (d1det1 + d2det2) (4.6)

The relevant term is the semi simple component, the central component is not
important at all, it only serves to fulfill the parity condition. If we restrict the
representation Mλ to G(1)/Z then the dependence on d disappears. In other
words representations with the same semi simple highest weight component only
differ by a twist, the role played by δ is marginal.

At this point we notice that the moduleMλ,O is only a module over O. We
may also say thatMλ,O ⊗F is an absolutely irreducible highest weight module
for the group G ⊗O F = Gl2 × Gl2/F, this representation ”is defined ” over F.
But in the special case that λ1 = λ2 we have an action of the Galois group
Gal(F/Q) : If c is the non trivial element in this Galois group then

c((
∑

aνX
νY n−ν)⊗(

∑
µ

bµX̄
µȲ n−µ) = (

∑
µ

c(bµ)X
µY n−µ)(

∑
c(aν)X̄

ν Ȳ n−ν)

and for g ∈ G(O),m ∈Mλ we have

c(g)c(m) = c(gm)

and therefore it is clear that the Z module (Mλ)
(c) is a module for G/Z.

We return to Gl2/Z. Given λ = λ(1) + δ we define the dual character as
λ∨ = λ(1) − δ. For our finite dimensional modules we have

M∨λ ⊗Q ∼−→Mλ∨ ⊗Q (4.7)
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If we consider the modules over the integers the above relation is not true.

We define the submodule duallambda

M♭
n = {P (X,Y ) | P (X,Y ) =

n∑
ν=0

(
n

ν

)
aνX

νY n−ν , aν ∈ Z}. (4.8)

This is a submodule of Mn and the quotient Mn/M♭
n is finite. It is also

clear that this submodule is invariant under Sl2/Z. We introduce some notation

eν := XνY n−ν and e♭ν :=

(
n

ν

)
Xn−νY ν , (4.9)

then the eν(resp. e
♭
ν) for a basis ofMn(resp. M♭

n).

An easy calculation shows that the pairing pairMn

< , >M: (eν , e
♭
µ) 7→ δν,µ (4.10)

is non degenerate over Z and invariant under Sl2/Z. We can also define the
twisted (?!?!) actions of G/Z. Of course we can define the twisted modulesM∨λ
and then we get a G/Z invariant non degenerate pairing over Z :

< , >M:M♭
λ∨ ×Mλ → Z

In other words
(Mλ)

∨ =M♭
λ∨

We always considerM♭
λ as the above submodule ofMλ.

prinseries

4.1.2 The principal series representations

We consider the two real algebraic groups G = Gl2/R( case A) ) and G =
RC/R(Gl2/C) ( case B). Let T/R, ( resp. B/R) be the standard diagonal torus
(resp. Borel subgroup of upper triangular matrices). Let us put C/R = Gm
(resp. RC/RGm). We have the determinant det : G/R → C/R and moreover
C/R = center(G/R). If we restrict the determinant to the center then this be-
comes the map z 7→ z2. The kernel of the determinant is denoted by G(1)/R, of
course G(1) = Sl2, resp. RC/R(Sl2/C). Let us denote by g, g(1), t, b, z the corre-
sponding Lie-algebras.

The Cartan decompositions

In both cases we fix a maximal compact compact subgroup K∞ ⊂ G(1)(R) :

K∞ = e(ϕ) = {
(

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
|ϕ ∈ R} and K∞ = {

(
α β
−β̄ ᾱ

)
|αᾱ+ ββ̄ = 1}

(4.11)

We define extensions K̃∞ = Z(R)(0)K∞, here of course Z(R)(0) is the connected
component of the identity. In both cases the group K∞ is the group of fixed
points under the Cartan involution Θ0 which is given by

Θ0 : g 7→t g−1 resp. g 7→t ḡ−1 i.e. Θ0(

(
a b
c d

)
) =

(
d̄ −c̄
−b̄ ā

)
. (4.12)
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This involution induces an involution on g(1) we can extend it to an involu-
tion acting on g = z⊕ g(1), we let it act trivially on z. Then the fixed point Lie
algebra k̃ = z⊕ k ⊂ z⊕ g(1) is the Lie-algebra of K̃∞.

Here are some arithmetic considerations, they may not be so relevant, but
further down we make some choices of a basis in some of these algebras, and
these choices can be justified by these arithmetic considerations.

We can write our group scheme G/R as a base extension of a group scheme
G/Z, i.e. G/R = G ×Z R. For this we simply take G/Z = Gl2/Z in case A). In
case B) we take G/Z = RZ[i]/Z(Gl2/Z[i]). In the case A) this gives a reductive
group scheme over Z, in case B) it is only a flat group scheme, but the base
extension G×ZZ[1/2] is reductive. ( This group scheme over Z is not semi-simple
since Z[i] is ramified at the prime 2.)

Now it is clear that Θ0 is actually an automorphism of G/Z and then it
follows that the scheme of fixed points is again a group scheme K/Z. If we
define R = Z[1/2] then K ×Z R is actually eductive. (If we replace Z[i] by the
ring of integers of another imaginary quadratic extension, we have to modify R
accordingly.)

Consequently we see that the all the above Lie-algebras are defined over R,
hence they actually are free R modules, we denote them by gR and so on.

The Cartan Θ0 involution induces an involution on the Lie algebras gR, g
(1)
R ,

the module decomposes into a + and a − eigenspace CaDec

gR = k̃R ⊕ pR and g
(1)
R = kR ⊕ pR, (4.13)

The + eigenspaces k̃R, kR are the Lie-algebras of K̃,K, both summands in the
decompositions are K̃-modules.

The Lie-algebra bR is not stable under Θ0, it is clear that the intersection

bR ∩Θ0(bR) = tR,

where tR is the Lie-algebra of the standard maximal torus T /R ⊂ G/R. This
torus is a product (up to isogeny) T /R = Z · T (1)/R.

In case A) the torus T (1)/R
∼−→ Gm/R and the Cartan involution Θ0 acts

by t 7→ t−1. Therefore it acts by −1 on t
(1)
R . We write

t
(1)
R = R

(
1 0
0 −1

)
= RH (4.14)

the generator H is unique up to an element in R×, i.e. up to a sign and a power
of 2.

In case B) the torus T (1)/R is (up to isogeny) a product T (1)
s · T (1)

c /R the

Cartan involution Θ0 acts by t → t−1 on the split component T (1)
s and by the

identity on T (1)
c . The Lie-algebra decomposes accordingly into two summands

of rank one:

t
(1)
R = R

(
1 0
0 −1

)
⊕R

(
i 0
0 −i

)
= RH ⊕RHi.

In both cases the group scheme K acts on pR by the adjoint action, we can
describe this action explicitly.
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In case A) the group scheme K is the following group of matrices

K = {α =

(
a b
−b a

)
|a2 + b2 = 1}

this is a torus over R which splits over R[i]. We have

pR = RH ⊕R
(
0 1
1 0

)
= RH ⊕RV

and Ad(α)(H) = (a2 − b2)H − 2abV, Ad(α)(V ) = 2abH + (a2 − b2)V. Since the
torus splits over Z[i] we can decompose p⊗R[i] into weight spaces, we introduce
the basis elements

P+ := H − V ⊗ i, P− := H + V ⊗ i ∈ p⊗R[i]

then Ppm

Ad(α)P+ = (a+ bi)2P+, Ad(α)P− = (a− bi)2P− (4.15)

Hence we get - in case A) -the decomposition

g
(1)
R = kR ⊕ pR = R

(
0 1
−1 0

)
⊕RP+ ⊕RP− = RY ⊕RP+ ⊕RP− (4.16)

where the generators are unique up to an element in R[i]×.

In case B) the group scheme K/R is semi simple, it contains T (1)
c /R as maxi-

mal torus. The two K/R modules kR and pR are highest weight modules of rank
3, since 2 is invertible in R they are even isomorphic. Again we can decompose
them into rank one weight spaces and give almost canonical generators for these

weight spaces. basisfkfp The Lie algebra

kR = RHi ⊕R
(

0 1
−1 0

)
⊕R

(
0 i
i 0

)
= RHi ⊕RY ⊕RFi. (4.17)

We introduce the elements Pc+ = Y − Fi ⊗ i, Pc− = Y + Fi ⊗ i and then

kR ⊗R[i] = R[i]Hi ⊕R[i]Pc+ ⊕R[i]Pc−. (4.18)

This is the decomposition into weight spaces under the action of T (1)
c /R, the

element α =

(
x 0
0 x̄

)
acts via the adjoint action

Ad(α)Pc+ = x2Pc+ , Ad(α)Hi = Hi , Ad(α)Pc− = x−2Pc−.

Essentially the same can be done for pR ⊗R[i]. We define

Pp,+ = V −
(

0 i
−i 0

)
⊗ i, Pp,− = V +

(
0 i
−i 0

)
⊗ i

then we get the weight decomposition basisfp

pR ⊗R[i] = R[i]Pp,+ ⊕R[i]H ⊕R[i]Pp,− (4.19)
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Rational characters vs continuous characters

Our aim is to to construct certain irreducible (differentiable) representations of
G(R) together with their ”algebraic skeleton” the associated Harish-Chandra-
modules.

For any torus T/R we consider the group of (continuous) characters Hom(T (R),C×),
we write this group multiplicatively, i.e. χ1 · χ2(x) = χ1(x)χ2(x). We also have
defined the group of (rational) characters X∗(T ×R C,Gm) (See Chap. 1, 1.5),
and we have the evaluation map

X∗(T ×R C,Gm)
ev−→ Hom(T (R),C×); ev : γ 7→ γR = {x 7→ γ(x)} (4.20)

Since we wrote the group of (rational ) characters additively we have

(γ1 + γ2)R = γ1R · γ2R.

We also introduce the character |γ| := {x 7→ |γR(x)|C} where of course
|a|C = aā.

We can also introduces the characters γ ⊗C we simply put γ ⊗C(x) = |γ|z.

4.1.3 The induced representations

We start from a continuous homomorphism (a character) χ : T (R) → C×, of
course this can also be seen as a character χ : B(R) → C×. This allows us to
define the induced module

IGBχ := {f : G(R)→ C | f ∈ C∞(G(R)), f(bg) = χ(b)f(g), ∀ b ∈ B(R), g ∈ G(R)}
(4.21)

where we require that f should be C∞. Then this space of functions is a G(R) -
module, the group G(R) acts by right translations: For f ∈ IGBχ, g ∈ G(R) we
put

Rg(f)(x) = f(xg)

If modify our character χ by a character δ ◦ det where δ : Z(R)→ C× then the
central character gets multiplied by δ2.

We know that G(R) = B(R) · K̃∞. This implies that a function f ∈ IGBχ is
determined by its restriction to K∞. In other words we have an identification

of vector spaces Iwasawa

IGBχ = {f : K̃∞ → C | f(tck) = χ(tc)f(k), tc ∈ K̃∞ ∩B(R), k ∈ K̃∞}. (4.22)

The center acts by the central character ωχ, the restriction of χ to Z(R).

We put Tc = B(R) ∩ K̃∞ and define χc to be the restriction of χ to Tc.

Then the module on the right in the above equation can be written as IK̃∞
Tc

χc.

By its very definition IK̃∞
Tc

χc is only a K∞ module. Inside IK̃∞
Tc

χc we have the
submodule of vectors of finite type

◦IK̃∞
Tc

χc := {f ∈ IK̃∞
Tc

χc | the translates Rk(f) lie in a finite dimensional subspace}
(4.23)
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Here it suffices to consider only the translates Rk(f) for k ∈ K∞ because
Z(R)(0) acts by the character ωχ. The famous Peter-Weyl theorem tells us that
all irreducible representations (satisfying some continuity condition) are finite

dimensional and occur with finite multiplicity in IK̃∞
Tc

χc and therefore we get

◦IK̃∞
Tc

χc =
⊕
ϑ∈K̂∞

V
m(ϑ)
ϑ =

⊕
ϑ∈K̂∞

◦IK̃∞
Tc

χc[ϑ] (4.24)

where K̂∞ is the set of isomorphism classes of irreducible representations ofK∞,
where Vϑ is an irreducible module of type ϑ and where m(ϑ) is the multiplicity

of ϑ in ◦IK̃∞
Tc

χc. Of course ◦IK̃∞
Tc

χc is a submodule IGBχ, but this submodule is
not invariant invariant under the operation of G(R), in other words if 0 ̸= f ∈
◦IK̃∞
Tc

χc and g ∈ G(R) a sufficiently general element then Rg(f) ̸∈ ◦IK̃∞
Tc

χc.

We can differentiate the action of G(R) on IGBχ. We have the well known
exponential map exp : g = Lie(G/R)→ G(R) and for f ∈ IGB , X ∈ g we define

Xf(g) = lim
t→0

f(g exp(tX))− f(g)
t

(4.25)

and it is well known and also easy to see, that this gives an action of the Lie-
algebra on IGB , we have X1(X2f) − X2(X1f) = [X1, X2]f. The Lie-algebra is

a K∞ module under the adjoint action and is obvious that for f ∈ ◦IK̃∞
Tc

χc[ϑ]

the element Xf lies in
⊕

ϑ∈K̂∞
◦IK̃∞
Tc

χc[ϑ
′] where ϑ′ runs over the finitely many

isomorphism types occurring in Vϑ ⊗ g. Hence

Proposition 4.1.1. The submodule ◦IK̃∞
Tc

χc ⊂ IGBχ is invariant under the
action of g.

The submodule ◦IK̃∞
Tc

χc together with this action of g will now be denoted

by IGBχ. We should think of this module as the algebraic skeleton of IGBχ.

Such a module will be called a (g,K∞) - module or a Harish-Chandra module
this means that we have an action of the Lie-algebra g, an action of K∞ and
these two actions satisfy some obvious compatibility conditions.

We also observe that ◦IK̃∞
Tc

χc is also invariant under right translation Rz
for z ∈ Z(R). Hence we can extend the action of K∞ to the larger group
K̃∞ = K∞ · Z(R). Then IGBχ becomes a (g, K̃∞) module. Finally observe that

in the case A) the element complexcon

c =

(
−1 0
0 1

)
̸∈ K̃∞, (4.26)

clearly Rc induces an involution on IGB . We could also say that we can en-
large K∞( resp. K̃∞) to subgroups K∗∞(resp.K̃∗∞) which contain c and contain
K∞ resp. K̃∞ as subgroups of index two. Then IGBχ also becomes a (g, K̃∗∞)
module.

These (g, K̃∞) modules IGBχ are called the principal series modules. We have
the following important
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Theorem 4.1.1. For any irreducible Harish-Chandra module(g, K̃∞) we can
find a χ such that we have an embedding of (g, K̃∞)-modules

i : V ↪→ IGBχ

This is actually a special case of a much more general theorem and applies
mutatis mutandis to all reductive groups over R. In the following we will see,
that in our special cases we only have a very short list of submodules of the IGBχ
and hence we get a complete list of irreducible Harish-Chandra modules.

We denote the restriction of χ to the central torus Z = {
(
t 0
0 t

)
} by ωχ.

Then Z(R) acts on IGBχ by the central character character ωχ, i.e. Rz(f) =
ωχ(z)f. Once we fix the central character, then there is no difference between

(g, K̃∞) and (g,K∞) modules. Hence we always assume that ωχ is fixed.

Unitary induction

In the general theory of representations of real ((-or p-adic groups-) people work
with the so called unitary induction. We introduce the special character

|ρ|R :

(
t1 u
0 t2

)
→ | t1

t2
| 12 , (4.27)

here the absolute value |t| is the usual absolute value if we are in case A) and
|z| = zz̄ for z ∈ C, i.e if we are in case B).

Now we define the unitarily induced module (see4.27).

IndunitGBχ := IGBχ · |ρ|R (4.28)

This concept of induction is of course equivalent to the previous one, it has
certain advantages, some statements have a more elegant formulation. But in
this book we are also interested in the ”arithmetic properties” of our modules
and the naive concept of inductions has its own virtues.

The decomposition into K∞-types

Kutypes

We look briefly at the K∞-module ◦IK̃∞
Tc

χc. In case A) the group

K∞ = SO(2) = {
(

cos(φ) sin(ϕ)
− sin(φ) cos(φ)

)
= e(φ)} (4.29)

and Tc = KT
∞ = T (R)∩K∞ is cyclic of order two with generator e(π). Then χc

is given by an integer mod 2, i.e. χc(e(φ)) = (−1)m. For any n ≡ m mod 2
we define ψn ∈ IGBχ by

ψn(e(ϕ))) = einϕ (4.30)

and then decoKuA

IGBχ =
⊕

k≡m mod 2

Cψk (4.31)
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In the case B) the maximal compact subgroup is

U(2) ⊂ G(R) = RC/R(Gl2/C)(R) ⊂ Gl2(C)×G2(C)

this is the group of real points of the reductive group U(2)/R. The intersection

Tc = KT
∞ = T (R) ∩K∞ = {

(
e2πiφ1 0

0 e2πiφ2

)
= e(ϕ)}.

The base change U(2)×C = Gl2/C and Tc×C becomes the standard maximal
compact torus. The irreducible finite dimensional U(2)-modules are labelled by
dominant highest weights λc = nγc + ddet ∈ X∗(Tc × C) (See section ( 4.1.1),
here again n ≥ 0, n ∈ Z, n ≡ 2d mod 2 and γc(e(ϕ)) = ei(ϕ1−ϕ2)/2.)

We denote these modules byMλc
after base change to C they become the

modulesMλ,C.
As a subgroup of G(R) ⊂ Gl2(C)×G2(C) our torus is

Tc = {
(
e2πiφ1 0

0 e2πiφ2

)
×
(
e−2πiφ1 0

0 e−2πiφ2

)
} ∼−→ {

(
e2πiφ1 0

0 e2πiφ2

)
}

(4.32)

and the restriction of χ to Tc is of the form

χc(e(ϕ)) = eiaϕ1+ibϕ2 = e
a−b
2 (ϕ1−ϕ2)e

a+b
2 (ϕ1+ϕ2). (4.33)

and this character is (a− b)γc + a+b
2 det. Then we know

decoKuB

◦IK̃∞
Tc

χc = IGBχ =
⊕

µc=kγc+
a+b
2 det;k≡(a−b) mod 2;k≥|a−b|

Mµc
(4.34)

IndInt

4.1.4 Intertwining operators

Let N(T ) the normalizer of T/R, the quotient W = N(T )/T is a finite group
scheme. The in our case the group W (R) is cyclic of order 2 and generated by

w0 =

(
0 1
−1 0

)
In case A) we have W (R) =W (C), in case B) we have

G×R C = (Gl2 ×Gl2)/C ; T ×R C = T1 × T2 ; and W (C) = Z/2× Z/2,

where the two factors are generated by s1 = (w0, 1), s2 = (1, w0). The group
W (R)- the group of real points of the Weyl group- is the cyclic group of order
two generated by (w0, w0). We call this element also w0. The group W (R) acts
on T (R) by conjugation and hence it also acts on the group Hom(T (R),C×) of
characters, we denote this action by χ 7→ χw. We write this group of characters
multiplicatively and we define the twisted action

w · χ = (χ|ρ|)w|ρR|−1 (4.35)
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We recall some well known facts

i) We have a non degenerate (g,K∞) invariant pairing

IGBχ× IGBχ
w0 |ρ|2R → Cω2

χ given by (f1, f2) 7→
∫
K∞

f1(k)f2(k)dk (4.36)

We define the dual IG,∨B χ of a Harish-Chandra as a submodule of HomC(I
G
Bχ,C),

it consists of those linear maps which vanish on almost all K∞ types. It is clear
that this is again a (g,K∞)-module. The above assertion can be reformulated

ii) We have an isomorphism of (g,K∞) modules

IGBχ(ωχ ◦ det)−1 → IG,∨B χw0 |ρ|2R (4.37)

The group T (R) = Tc × (R×>0)
2 and hence we can write any character χ in

the form char

χ(t) = χc(t)|t1|z1 |t2|z2 = | t1
t2
|
z1−z2

2 |t1t2|
z1+z2

2 (4.38)

where z1, z2 ∈ C. We put z = z1 − z2 and ζ = z1 + z2. The relevant variable is
z.

For f ∈ IGBχ, ; g ∈ G(R) we consider the integral

T loc
∞ (f)(g) =

∫
U(R)

f(w0ug)du. (4.39)

It is well known and easy to check that these integrals converge absolutely
and locally uniformly for ℜ(z) >> 0 and provide an intertwining operator

T loc
∞ (χw0 , z) : IGBχ

w0 |ρ|zR → IGBχ|ρ|2R|ρ|−zR . (4.40)

It is also not hard to see that they extend to meromorphic functions in the entire
C2. To see this we recall the decomposition into K∞ types

IGBλ
w0

R |ρ|
z
R =

⊕
ϑ∈K̂∞

◦IK̃∞
Tc

χc[ϑ] =
⊕
ϑ∈K̂∞

IGBλ
w0

R |ρ|
z
R[ϑ]

and our intertwining operator is a direct sum of linear maps between finite
dimensional vector spaces

c(λw0

R , z, ϑ) : IGBχ
w0 |ρ|zR[ϑ]→ IGBχ|ρ|2R|ρ|−zR [ϑ]

The finite dimensional vector spaces do not depend on z and the c(λw0

R |ρ|zR, ϑ)
can be expressed in terms of values of the Γ− function. Especially they are
meromorphic functions in the variable z (See sl2neu.pdf, ). For any z0 ∈ C
where we have a pole we can find an integer m ≥ 0 such that

(z − z0)mT loc
∞ (χw0 , z)|z=z0 : IGBχ

w0 → IGBχ|ρ|2R

is a non zero intertwining operator and this is now our regularized operator
T loc,reg
∞ (χw0).
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iii) The regularized values define non zero intertwining operators

T loc,reg
∞ (χw0 , z) : IGBχ→ IGBχ

w0 |ρ|2R (4.41)

These operators span the one dimensional space of intertwining operators

Hom(g,K∞)(I
G
Bχ, I

G
Bw0 · χ).

Of course we can translate this into the language of unitary induction, then
the intertwining operators map

T loc,un(χ) : IndunitGBχ→ IndunitGBχ
w0 . (4.42)

This is definitely a more elegant formulation.

Finally we discuss the question which of these representations are unitary.
This means that we have to find a pairing

ψ : IGBχ× IGBχ→ C (4.43)

which satisfies

a) it is linear in the first and conjugate linear in the second variable

b) It is positive definite, i.e. ψ(f, f) > 0 ∀f ∈ IGBχ

c) It is invariant under the action of K∞ and Lie-algebra invariant under
the action of g, i.e. we have

For f1, f2 ∈ IGBχ and X ∈ g we have ψ(Xf1, f2) + ψ(f1, Xf2) = 0.

We are also interested in quasi-unitatry modules. This is notion is perhaps
best explained if and instead of c) we require

d) There exists a continuous homomorphism (a character) η : G(R) →
R× such that for X ∈ g ψ(Xf1, gf2) + ψ(f1, Xf2) = dη(Xg)ψ(f1, f2), ∀g ∈
G(R), f1f2 ∈ IGBχ.

It is clear that a non zero pairing ψ which satisfies a) and c) is the same
thing as a non zero (g,K∞)-module linear map

iψ : IGBχ→ (IGBχ)
∨ (4.44)

this means that iψ is a conjugate linear map from IGBχ to (IGBχ)
∨. The map iψ

and the pairing ψ are related by the formula ψ(v1, v2) = iψ(v2)(v1).
Of course we know that (See (4.37))

(IGBχ)
∨ ∼−→ IGBχ

w0 |ρ|2Rδ
−1
χ (4.45)

and we find such an iψ if

χ = χw0 |ρ|2Rδ
−1
χ or χw0 |ρ|2R = χw0 |ρ|2Rδ

−1
χ (4.46)
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We write our χ in the form (4.38). A necessary condition for the existence of
a hermitian form is of course that all |ωχ(x)| = 1 for x ∈ Z(R) and this means
that ℜ(z1 + z2) = 0, hence we write

z1 = σ + iτ1, z2 = −σ + iτ2 (4.47)

Then the two conditions in (4.46) simply say

(un1) : σ =
1

2
or (un2) : τ1 = τ2 and χc = χw0

c (4.48)

In both cases we can write down a pairing which satisfies a) and c). We still
have to check b). In the first case, i.e. σ = 1

2 we can take the map iψ = Id and
then we get for f1, f2 ∈ IGBχ the formula

ψ(f1, f2) =

∫
K∞

f1(k)f2(k)dk (4.49)

and this is clearly positive definite. These are the representation of the unitary
principal series.

In the second case we have to use the intertwining operator in (4.41) and
write

ψ(f1, f2) = T loc,reg
∞ (f2)(f1) (4.50)

Now it is not clear whether this pairing satisfies b). This will depend on the
parameter σ. We can twist by a character η : Z(R) → C× and achieve that
χc = 1, τ1 = τ2 = 0. We know that for σ = 1

2 the intertwining operator T loc
∞ is

regular at χ and since in addition under these conditions IGBχ is irreducible we
see that

T loc
∞ (χ) = α Id with α ∈ R×>0 (4.51)

Since we now are in case A) and B) at the same time we see that the two pairings
defined by the rule in case (un1) and (un2) differ by a positive real number hence
the pairing defined in (4.50) is positive definite if σ = 1

2 .
But now we can vary σ. It is well known that IGBχ stays irreducible as long

as 0 < σ < 1 (See next section) and since T loc
∞ (χ)(f)(f) varies continuously we

see that (4.50) defines a positive definite hermitian product on IGBχ as long as
0 < σ < 1. This is the �supplementary series. What happens if we leave this
interval will be discussed in the next section.

nontriv

4.1.5 Reducibility and representations with non trivial co-
homology

As usual we denote by ρ ∈ X∗(T ) ⊗ Q the half sum of positive roots we have
ρ = γ( resp. ρ = γ1 + γ2 ∈ X∗(T )⊗Q) in case A) (resp. B)).

For any character λ ∈ X∗(T×C) the character λR provides a homomorphism
B(R) → T (R) and hence we get the Harish-Chandra modules IGBλR, which
are of special interest for us because these are the only ones with non trivial
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cohomology. We just mention the fact that IGBχ is always irreducible unless
χ = λR for some λ. (See sl2neu.pdf, Condition (red)).

We return to the situation discussed in section (4.1.1), especially we rein-
troduce the field F/Q. Then we have X∗(T × F ) = X∗(T × C) and hence
λ ∈ X∗(T × F ). We assume that λ is dominant, i.e. n ≥ 0 in case A) or
n1, n2 ≥ 0 in case B). Now we realise our modules Mλ as submodules in the
algebra of regular functions on G/Z : If we look at the definition (See (4.3)) we
see immediately that Mλ,C ⊂ IGBλ

w0

R and hence we get an exact sequence of
(g,K∞) modules seq

0→Mλ,C → IGBλ
w0

R
r−→ Dλ → 0 (4.52)

Hence we see that IGBλ
w0

R is not irreducible. We can also look at the dual
sequence. Here we recall that we wrote λ = nγ + ddet . We consider the dual
sequence. ClearlyM∨λ,C =Mλ−2d det,C, if we twist the dual sequence by det2d

then dual sequence becomes

0→ D∨λ ⊗ det2dR → (IGBλ
w0

R )∨ ⊗ det2dR →Mλ,C → 0 (4.53)

Equation (4.37) yields (IGBλ
w0

R )∨ ⊗ det2dR
∼−→ IGBχ|ρ|2R and our second sequence

becomes

0→ D∨λ ⊗ det2dR → IGBλR|ρ|2R →Mλ,C → 0, (4.54)

we put Dλ∨ := D∨λ ⊗ det2dR .

Now we consider the two middle terms in the two exact sequences (4.52,4.54)
above. The equation (4.41) claims that we have two non zero regularized inter-
twining operators

T loc,reg
∞ (λw0

R ) : IGBλ
w0

R → IGBλR|ρ|2R ;T loc,reg
∞ (λR|ρ|2R) : IGBλR|ρ|2R → IGBλ

w0

R
(4.55)

If we now look more carefully at our two regularized intertwining operators
above then a simple computation yields (see sl2neu.pdf)

Proposition 4.1.2. The kernel of T loc,reg
∞ (λw0

R ) is Mλ,C and this operator
induces an isomorphism

T̄ (λR) : Dλ
∼−→ D∨λ ⊗ det2dR

Remember λ is dominant.

The kernel of T loc,reg
∞ (λR|ρ|2R) is D∨λ ⊗ det2dR and it induces an isomorphism

ofMλ,C.

The module IGBχ is reducible if T loc,reg
∞ (χ) not an isomorphism and this hap-

pens if an only if χ = λR or λw0

R |ρ|2R and λ dominant. (There is one exception
to the converse of the above assertion, namely in the case A) and σ = 1

2 and
χw0
c ̸= χc.) bf Etwas genauery
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Unitarity

For us it is of relevance to know whether we have a positive definite hermitian
form on the (g,K∞)-modules Dλ. To discuss this question we treat the cases A)
and B) separately.

We look at the decomposition into K∞-types. (See ( 4.31)) In case A) (See (
4.31)) it is clear thatMλ,C is the direct sum of the K∞ types Cψl with |l| ≤ n.
Hence KTA

Dλ =
⊕

k≤−n−2,k≡d(2)

Cψk ⊕
⊕

k≥n+2,k≡d(2)

Cψk = D−λ ⊕D
+
λ (4.56)

Proposition 4.1.3. The representations D−λ ,D
+
λ are irreducible, these are the

discrete series representations. The element c interchanges D−λ ,D
+
λ , hence Dλ

is an irreducible (g, K̃∗∞) module.
The operator T̄ (λR) induces a quasi-unitary structure on the (g, K̃∞)-module

Dλ. The two sets : K∞ types occurring inMλ,C and K∞ types occuring in Dλ
(resp.) are disjoint.

Proof. Remember that as a vector space D∨λ ⊗ det2dR = D∨λ , only the way how

K̃∞ acts is twisted by det2dR . .Then the form

hψ(f1, f2) = T loc,reg
∞ (λw0

R )(f2)(f1) (4.57)

defines a quasi invariant hermitian form. It is positive definite (for more details
see sl2neu.pdf).

A similar argument works in case B).We restrict the Gl2(C)×Gl2(C) module
Mλ,C to U(2)×U(2) then it becomes the highest weight moduleMλc

=Mλ1,c
⊗

Mλ2,c . (See4.1.1) Under the action of U(2) ⊂ U(2) × U(2) it decomposes into

U(2) types according to the Clebsch-Gordan formula CG

Mλc
|U(2) =

⊕
µc=kγc+

d1+d2
2 det; k≡(n1−n2) mod 2; n1+n2≥k≥|n1−n2|

Mµc
(4.58)

Hence we get KTB

Dλc
|U(2) =

⊕
µc=kγc+

d1+d2
2 det; k≡(n1−n2) mod 2; k≥n1+n2+2

Mµc
(4.59)

Again we have unit

Proposition 4.1.4. The operator T loc,reg
∞ (λw0

R ) induces an isomorphism

T̄ (λR) : Dλ
∼−→ D∨λ ⊗ det2dR

The (g,K∞) modules are irreducible.
The operator T loc,reg

∞ (λw0

R ) induces the structure of a quasi-unitary module
on Dλ if and only if n1 = n2. This is the only case when we have a quasi-unitary
structure on Dλ. The two sets of K∞ types occurring inMλ,C and in Dλ (resp.)
are disjoint.
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The Weyl W group acts on T by conjugation, hence on X∗(T × C) and we
define the twisted action by

s · λ = s(λ+ ρ)− ρ (4.60)

Given a dominant λ we may consider the four characters w · λ,w ∈W (C) =
W and the resulting induced modules IGBw · λR. We observe (notation from
(4.1.1))

s1 · (n1γ + d1 det+n2γ̄ + d2det) = (−n1 − 2)γ + d1 det+n2γ̄ + d2det)

s2 · (n1γ + d1 det+n2γ̄ + d2det) = n1γ + d1 det+(−n2 − 2)γ̄ + d2det)
(4.61)

Looking closely we see that the K∞ types occurring in IGBs1 · λ or IGBs2 · λ
are exactly those which occur in Dλ. This has a simple explanation, we have

exiso

Proposition 4.1.5. For a dominant character λ we have isomorphisms between
the (g,K∞) modules

Dλ
∼−→ IGBs1 · λ, Dλ

∼−→ IGBs2 · λ. (4.62)

The resulting isomorphism IGBs1 ·λR
∼−→ IGBs2 ·λR is of course given by T loc

∞ (s1 ·
λ).

Interlude: Here we see a fundamental difference between the two cases A)
and B). In the second case the infinite dimensional subquotients of the induced
representations are again induced representations. In the case A) this is not so,
the representations D±λ are not isomorphic to representations induced from the
Borel subgroup.

These representation D±λ are called discrete series representations and we
want to explain briefly why. Let G be the group of real points of a reductive
group over R for example our G = G(R), here we allow both cases. Let Z be
the center of G, it can be written as Z0(R) · Zc where Zc is maximal compact
and Z0 = (R×>0)

t. Let ω(0) : Z0 → R×>0 be a character. Then we define the space

C∞(G,ωR) := {f ∈ C(G) | f(zg) = ω(0)(z)f(g) ;∀z ∈ Z0, g ∈ G} (4.63)

and we define the subspace

L2
∞(G,ωR) := {f ∈ C∞(G,ωR) |

∫
G

f(g)f(g)(ω(0)(g))−2dg <∞} (4.64)

where of course dg is a Haar measure. As usual L2(G,ωR) will be the Hilbert
space obtained by completion. This Hilbert space only depends in a very mild
way on the choice of ω(0) we can find a character δ : G → R×>0 such that

ω(0)δ|Z0
= 1. Then f 7→ fδ provides an isomorphism L2(G,ω(0))

∼−→ L2(G/Z0).

We have an action of G × G on L2(G,ω(0)) by left and right translations.
Then Harish-Chandra has investigated the question how this ”decomposes” into
irreducible submodules. Let Ĝω(0) be the set of isomorphism classes of irre-
ducible unitary representations of G.
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Harish-Chandra shows that there exist a positive measure µ on Ĝω(0) and a
measurable family Hξ of irreducible unitary representations of G such that

L2(G,ωR) =

∫
ĜωR

Hξ ⊗Hξ µ(dξ) (4.65)

( If instead of a semi simple Lie group we take a finite group G then this is
the fundamental theorem of Frobenius that the group ring C[G] = ⊕θVθ ⊗ V ∨θ
where Vθ are the irreducible representations.)

If we are in the case A), the sets consisting of just one point {D±λ } have
strictly positive measure, i.e. µ({D±λ }) > 0. This means that the irreducible
unitary G × G modules D±λ ⊗ D

±
λ∨ occur as direct summand (i.e. discretely in

L2(G).).
Such irreducible direct summands do not exist in the case B), in this case

for any ξ ∈ Ĝ we have µ({ξ}) = 0.
End Interlude

We return to the sequences (4.52),(4.54). We claim that both sequences
do do not split as sequences of (g,K∞)-modules. Of course it follows from
the above proposition that these sequences split canonically as sequence of K∞
modules. But one sees easily that complementary summand is not invariant
under the action of g. This means that the sequence provides a non trivial
classes in Ext1(g,K∞)(Dλ,Mλ,C).

The general principles of homological algebra teach us that we can under-
stand these extension groups in terms of relative Lie-algebra cohomology. Let
k resp. k̃ be the Lie-algebras of K∞ resp. K̃∞ the group K̃∞ acts on g, k̃ via the
adjoint action (see 1.1.4)

We start from a (g, K̃∞) module IGBχ and a module Mλ,C. Our first goal
is to compute the cohomology H•(g,K∞, I

G
Bχ⊗Mλ,C) which is defined as the

cohomology of the complex (See 6.1.2, (6.3))

H•(g,K∞, I
G
Bχ⊗Mλ,C) := HomK̃∞

(Λ•(g/k̃), IGBχ⊗Mλ,C). (4.66)

Here we only assume that χ : T (R) → C× is any character, we will see that
there is only one χ for which we have non trivial cohomology.

There is an obvious condition for the complex to be non zero. The group
Z(R) ⊂ K̃∞ acts trivially on g/k and hence we see that the complex is trivial
unless we have

ω−1χ = λR|Z(R)(0) (4.67)

we assume that this relation holds.

We will derive a formula for these cohomology modules. This formula is a
special case of a formula of Delorme. which will be discussed in greater generality
in Chapter 9.

An element ω ∈ HomK̃∞
(Λn(g/k̃), IGBχ ⊗Mλ,C) attaches to any n tuple

v1, . . . , vn of elements in g/k̃ an element

ω(v1, . . . , vn) ∈ IGBχ⊗Mλ,C (4.68)
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such that ω(Ad(k)v1, . . . ,Ad(k)vn) = kω(v1, . . . , vn) for all k ∈ K̃∞.
By construction

ω(v1, . . . , vn) =
∑

fν ⊗mν where fν ∈ IGBχ,mν ∈Mλ,C

and fν is a function in C∞ which is determined by its restriction to K̃∞ ( and
this restriction is K̃∞ finite). We can evaluate this function at the identity
eG ∈ G(R) and then

ω(v1, . . . , vn)(eG) =
∑

fν(e)⊗mν ∈ Cχ⊗Mλ,C.

The K̃∞ invariance (4.68) implies that ω is determined by this evaluation at
eG. Let K̃

T
∞ = T (R) ∩ K̃∞ = Z(R) · Tc. Then it is clear that

ω∗ : {v1, . . . , vn} 7→ ω(v1, . . . , vn)(eG) (4.69)

is an element in

ω∗ ∈ HomK̃T
∞
(Λn(g/k̃),Cχ⊗Mλ,C) (4.70)

and we have: The map ω 7→ ω∗ is an isomorphism of complexes iso1 . Besser
machen

HomK̃∞
(Λ•(g/k̃), IGBχ⊗Mλ,C)

∼−→ HomK̃T
∞
(Λ•(g/k̃),Cχ⊗Mλ,C) (4.71)

The Lie algebra g can be written as a sum of c invariant submodules

g = b+ k̃ = t+ u+ k̃ (4.72)

in case B) this sum is not direct, we have b∩ k̃ = t∩ k̃ = c and hence we get the
direct sum decomposition into K̃T

∞-invariant subspaces

g/k̃ = t/c⊕ u. (4.73)

We get an isomorphism of complexes isodel

HomK̃∞
(Λ•(g/k̃), IGBχ⊗Mλ,C)

∼−→ HomK̃T
∞
(Λ•(t/k̃),Cχ⊗ Hom(Λ•(u),Mλ,C))

(4.74)

the complex on the left is isomorphic to the total complex of the double complex
on the right. The next step is the computation of the cohomology of the complex
Hom(Λ•(u),Mλ,C).

Case A). We have u = QE+ where E+ =

(
0 1
0 0

)
and our moduleMλ,Q has

a decomposition into weight spaces

Mλ,Q =

ν⊕
ν=0

QXn−νY ν =

µ=n⊕
µ=−n,µ≡n(2)

Qeµ. (4.75)

The torus T (1) = {
(
t 0
0 t−1

)
} acts on eµ = Xn−νY ν by

ρλ(

(
t 0
0 t−1

)
)eµ = tµeµ (4.76)
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We also have the action of the Lie algebra onMλ,Q and by definition we get

d(ρλ)(E+)eµ = E+eµ =
n− µ
2

eµ+2 (4.77)

Now we can write down our complex Hom(Λ•(u),Mλ,C) very explicitly. Let
E∨+ ∈ Hom(u,Q) be the element E∨+(E+) = 1 then the complex becomes

0→
µ=n⊕

µ=−n,µ≡n(2)

Qeµ
d−→

µ=n⊕
µ=−n,µ≡n(2)

QE∨+ ⊗ eµ → 0 (4.78)

where d(eµ) = n−µ
2 E∨+ ⊗ eµ+2. This gives us a decomposition of our complex

into two sub complexes

Hom(Λ•(u),Mλ,C) = H•(u,Mλ,Q)⊕AC• (4.79)

where AC• is acyclic (it has no cohomology) and

H•(u,Mλ,Q) = {0→ Q en
d−→ Q E∨+ ⊗ e−n → 0}, (4.80)

where the differential d = 0. Hence we get

H•(u,Mλ,Q) = H•( Hom(Λ•(u),Mλ,Q)) = H•(u,Mλ,Q). (4.81)

We notice that the torus T acts on H•(u,Mλ,Q) ( The Borel subgroup B acts
on the complex Hom(Λ•(u),Mλ,Q) but since the Lie algebra cohomology is
the derived functor of taking invariants under U (elements annihilated by u) it
follows that this action is trivial on U). Now it is clear that (4.74) yields

H•(g,K∞, I
G
Bχ⊗Mλ,C)

∼−→ H•(t,KT
∞,Cχ⊗H•(u,Mλ,Q)) (4.82)

Hence we see that T acts by the character λ on Q en = H0(u,Mλ,Q) and
by the character λ− − α = w0 · λ = λw0 − 2ρ on Q E∨+ ⊗ e−n = H1(u,Mλ,Q).
Here we see the simplest example of the famous theorem of Kostant which will
be discussed in Chap. 8 section ??

Then our cohomology groups H•(t,KT
∞,Cχ⊗H•(u,Mλ,Q)) are given as the

cohomology groups of the double complex with entries HomKT
∞
(Λp(t/k)Cχ ⊗

Hq(u,Mλ,Q) where p = 0, 1, q = 0, 1 and where the differentials in direction q
are zero. We have to compute the cohomology of the complexes

0→ HomKT
∞
(Λ0(t/k),Cχ⊗Hq(u,Mλ,Q))

d−→ HomKT
∞
(Λ1(t/k),Cχ⊗Hq(u,Mλ,Q))→ 0

(4.83)

In this complex we drop the subscript KT
∞ then both spaces in the complex are

one dimensional and the differential is up to a non zero factor multiplication
by dχ(H) + d(w · λ)(H) and hence we have zero cohomology unless we have
dχ(H) + d(w · λ)(H) = 0. Hence we see (observe that q = l(w))

H•(t,KT
∞,Cχ⊗Hq(u,Mλ,Q)) ̸= 0 =⇒ χ|T (R)(0) = (w · λ)−1R |T (R)

(0).

We now reintroduce the subscript KT
∞. Since clearly KT

∞ · T (R)(0) = T (R)
we see that we have non trivial cohomology if and only if χ = (w ·λ)−1R . Putting
everything together we see
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H•+l(w)(g,K∞, I
G
Bχ⊗Mλ,Q) =

{
Hl(w)(u,Mλ,Q)) ∧ Λ•(t/k)∨ if χ = (w · λ)−1R
0 else

(4.84)

Now we tensorize the sequence (4.52) with the dual Mλ∨ we get an exact se-
quence of (g,K∞) modules and we look at the resulting long exact sequence in
cohomology. We know that H1(g,K∞,Mλ⊗Mλ∨) = 0 and then we look at the
piece

0→ H1(g,K∞, I
G
Bλ

w0 ⊗Mλ∨)→ H1(g,K∞,Dλ ⊗Mλ∨)→ H2(g,K∞,Mλ ⊗Mλ∨)→ 0
(4.85)

We have seen and we know that the two extreme terms are equal to C and then
we get easily

H1(g,K∞,Dλ ⊗Mλ∨) = C⊕ C (4.86)

and vanishes in all other degrees.
Of course we can get this last result easily if we look at the complex HomK∞(Λ•(g/k),Dλ⊗

Mλ∨) which in this situation collapses to

0→ HomK∞(Λ1(g//k,Dλ ⊗Mλ∨)→ 0→ .., (4.87)

in section 4.1.11 we give explicit elements ω†± ∈ HomK∞(Λ•(g/k),Dλ ⊗Mλ∨)
which form a basis for this space.

We discuss briefly the case B). Again we want that our group G/R =
RC/R(Gl2/C) is a base change from a group G/Q denoted by the same letter.
We need an imaginary quadratic extension F/Q and put G/Q = RF/Q(Gl2/F ).
We choose a dominant weight λ = λ1 + λ2 = n1γ1 + d1 det1 +n2γ2 + d2det2
and thenMλ,F =Mλ1,F ⊗Mλ2,F is an irreducible representation of G×Q F =
Gl2 × Gl2/F. Now we have u ⊗ F = FE1

+ ⊕ FE2
+. Then basically the same

computation yields:
The cohomology H•(u,Mλ,F ) is equal the complex

H•(u,Mλ,F ) = {0→ Fe
(1)
n1 ⊗ Fe

(2)
n2

d−→ FE1,∨
+ ⊗ e(1)−n1

⊗ e(2)n2 ⊕ FE
1,∨
+ ⊗ e(1)n1 ⊗ E

2,∨
+ ⊗ e(2)−n2

d−→ FE1,∨
+ ⊗ e(1)−n1

⊗ E2,∨
+ ⊗ e(2)−n2

→ 0}
(4.88)

where all the differentials are zero. The torus T acts by the weights

λ in degree 0, s1 · λ, s2 · λ in degree 1, w0 · λ in degree 2 (4.89)

and we have a decomposition into one dimensional weight spaces

H•(u,Mλ,F ) =
⊕

w∈W (C)

H•(u,Mλ,F )(w · λ)

We go back to (4.74) and get a homomorphism of complexes
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Homc(Λ
•(g/k̃),Cχ⊗Mλ,C)→ HomK̃∞⊗T (Λ

•(t/k̃),Cχ⊗H•(u,Mλ,C))

(4.90)

which induces an isomorphism in cohomology so that finally

H•(g,K∞, I
G
Bχ⊗Mλ,C)

∼−→ H•( HomK∞(Λ•(t/k̃),Cχ⊗H•(u,Mλ,C))
(4.91)

and combining this with the results above we get cohlam

Theorem 4.1.2. If we can find an element w ∈ W (C) such that χ−1 = w · λR
then

H l(w)(u,Mλ,C)(w · λ)⊗ Λ•(t/k̃)∨
∼−→ H•(g,K∞, I

G
Bχ⊗Mλ,C)

If there is no such w then the cohomology is zero.

Proof. Our torus T (R) = c×{
(
t 0
0 t−1

)
; t ∈ R×>0} = c×A. Hence we see that

dim t/k̃ = 1, and the element H0 =

(
1 0
0 −1

)
. Of course we must have that

χ−1 · λR|c is the trivial character. The second factor A does acts on Cχ by the
character χ(t) = tz and on H l(w)(u,Mλ,C)(w · λ) by t 7→ tm(w). Differentiating
we get for the complex

0→ H l(w)(u,Mλ,C)(w · λ)→ C⊗H∨0 ⊗H l(w)(u,Mλ,C)(w · λ)→ 0 (4.92)

where the differential is multiplication by m(w) + z. Hence we see that the
cohomology is trivial unless m(w) + z = 0, but this means χ−1 = w · λR.

4.1.6 The cohomology of the modules Mλ,C, Dλ and the
cohomology of unitary modules

Let Irr(G,K∞) be the set of isomorphism classes of irreducible (g,K∞)-Harish-
Chandra-modules, we are a little bit pedantic, if V is such an irreducible module,
then its isomorphism class is [V]. For any dominant λ we define the sets

Coh(λ) = {[V] ∈ Irr(G,K∞) | H•(g,K∞,V ⊗Mλ,C) ̸= 0} (4.93)

We also define Coh2(λ), this are those [V] which in addition are unitary. This
definition makes sense in greater generality (see 6.25). In our special case there
these sets are very small. Remember that we have a fixed central character ω.

At first we determine the finite dimensional elements in Coh(λ). Of course
Mλ,C itself is a Harish-Chandra module and it follows from Wigner‘s lemma
that H•(g,K∞,Mλ,C)) = 0 unless λ(1) = 0, i.e. Mλ,C is one dimensional. Then
it follows from Clebsch- Gordan that

Proposition 4.1.6. In case A)

H0(g,K∞,Mλ∨,C ⊗Mλ,C) = H2(g,K∞,Mλ∨,C ⊗Mλ,C) = C,

H1(g,K∞,Mλ∨,C ⊗Mλ,C) = 0
(4.94)
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In case B)

H0(g,K∞,Mλ∨,C ⊗Mλ,C) = H3(g,K∞,Mλ∨,C ⊗Mλ,C) = C,

H1(g,K∞,Mλ∨,C ⊗Mλ,C) = H2(g,K∞,Mλ∨,C ⊗Mλ,C) = 0
(4.95)

Here we take notice of a point, which plays a role if it comes to questions
concerning orientability. In case A) we can twist the G(R) module Mλ∨,C by
the sign character η : g 7→ sgn(det(g)), it has the same central character.
Obviously the twisted module Mλ∨,C ⊗ η provides the same (g,K∞)-module.
But this depends on the choice of K∞, if we replace K∞ by the larger group
K∗∞ (see section 4.1.3 ) then the (g,K∗∞) modules Mλ∨,C and Mλ∨,C ⊗ η are
not isomorphic. If we replace in the above proposition K∞ by K∗∞ andMλ∨,C
byMλ∨,C ⊗ η, then the cohomology vanishes in all degrees.

Small remark: In general it is sapient to work with a connected K∞ or K̃∞
and then keep track of the action of K∗∞ on H•(g,K∞,V ⊗Mλ,C).

Again we start from a dominant character λ. Then our considerations yield
that in case A)

Coh(λ∨) = {Mλ,C,D+
λ ,D

−
λ } (4.96)

we even have D+
λ ,D

−
λ ∈ Coh2(λ

∨) andMλ,C ∈ Coh2(λ
∨) if and only if λ(1) = 0.

For some reason we call {D+
λ ,D

−
λ } = Cohcusp(λ

∨) and {Mλ,C} = CohEis(λ
∨)

in case B) we take the tensor product of the exact sequence (4.52) byMλ∨,C
and we get a long exact sequence of (g,K∞) cohomology modules (we insert the
values for H•(g,K∞,Mλ,C ⊗Mλ∨,C))

0→ C→ H0(g,K∞, I
G
Bλ

w0

R ⊗Mλ∨,C)
r0−→ H0(g,K∞,Dλ ⊗Mλ∨,C)(= 0)

→ 0→ H1(g,K∞, I
G
Bλ

w0

R ⊗Mλ∨,C)
r1−→ H1(g,K∞,Dλ ⊗Mλ∨,C)→

0→ H2(g,K∞, I
G
Bλ

w0

R ⊗Mλ∨,C)
r2−→ H2(g,K∞,Dλ ⊗Mλ∨,C)

→ C→ H3(g,K∞, I
G
Bλ

w0

R ⊗Mλ∨,C)
r3−→ 0

(4.97)

The homomorphisms r1, r2 are isomorphisms and all the H1, H2 = C. Hence
we see that in this case

Coh(λ∨) = {Mλ,C,Dλ} (4.98)

and

Coh2(λ
∨) =

{
{Mλ,C,Dλ} if λ(1) = 0

{Dλ} if n1 = n2 > 0
(4.99)

EiShiso
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4.1.7 The Eichler-Shimura Isomorphism

We want to apply these facts about representation theory to the study of co-
homology groups H•(Γ\X,Mλ,C) where now Γ is a congruence subgroup of
Gl2(Z) or Gl2(O).

We start again from a dominant weight λ = nγ + ddet ∈ X∗(T ×C). Every
(g,K∞) invariant homomorphism Ψλ : IGBw · λR → C∞(Γ\G(R)) induces a
homomorphism

ΨΛ : HomK∞(Λ•(g/k̃), IGBw · λR ⊗Mλ∨,C)→ HomK∞(Λ•(g/k̃), C∞(Γ\G(R))⊗Mλ∨,C)
(4.100)

We will show in section 6.1.3 Proposition 6.1.1 that the complex on the right is
isomorphic to the de-Rham complex:

HomK∞(Λ•(g/k̃), C∞(Γ\G(R)⊗Mλ∨,C)
∼−→ Ω•(Γ\X,M̃λ∨,C) (4.101)

This de-Rham complex computes the cohomology and hence we get an homo-

morphism gkdeR

Ψ•λ : H•(g,K∞, I
G
Bw · λR ⊗Mλ∨,C)→ H•(Γ\X,M̃λ∨,C) (4.102)

We denote by ω(0) the restriction of the central character of IGBw · λR to the
subgroup Z0. and we introduce the spaces

E(∞)(λ,w,Γ) = Hom(g,K∞)(I
G
Bw · λR, C∞(Γ\G(R), ω(0))

∪
E(2)(λ,w,Γ) = Hom(g,K∞)(I

G
Bw · λR, C

(2)
∞ (Γ\G(R), ω(0))

(4.103)

where the superscript (2) means square integrable.(See 6.14). It is clear from
the results in Chapter 6 that the spaces E(?) are finite dimensional.

We still have another subspace of C∞(Γ\G(R)) namely the space of cusp
forms

C(cusp)∞ (Γ\G(R)) = {f ∈ C(2)∞ (Γ\G(R)|; |
∫
Γ∩U(R)

f(ug) = 0} (4.104)

here U runs over the set of unipotent radicals of Borel subgroups over Q
and f should satisfy some mild growth condition (see ??). It is well known

that cusp forms are rapidly decreasing and hence we have C(cusp)∞ (Γ\G(R)) ⊂
C(2)∞ (Γ\G(R))

For ? =∞, (2), (cusp) we e get maps in cohomology

Φ? : E?(λ,w,Γ)⊗H•(g,K∞, IGBw · λR ⊗Mλ∨,C)→ H•(Γ\X,Mλ∨,C) (4.105)

Of course the module E(2)(λ,w, λ) = 0 unless IGBw · λR has a non trivial
quotient module which admits a positive definite quasi unitary (g,K∞) invariant
metric. This means that E(2)(λ,w ·λ) ̸= 0 implies that in case B) the coefficients

satisfy ul

n1 = n2, i.e.λ = n(γ1 + γ2) + d1 det+d2 det, (4.106)
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we will say that λ is unitary if this condition is fulfilled. Then the results in
section (4.1.5) yield that these irreducible quasi unitary quotient modules are
D±λ in case A) and Dλ in case B) .

Hence it is clear that a Ψλ ∈ E(2)(λ,w · λ) must vanish on the finite dimen-
sional submoduleMλ if n > 0 and hence under this condition we have

E(2)(λ,w · λ) = Hom(g,K∞)(Dλ, C(2)∞ (Γ\G(R), ω(0))

We have the fundamental
ESI

Theorem 4.1.3. (Eichler-Shimura Isomorphism) For λ = nγ unitary the map

Φ
(2)
λ : E(2)(λ,w,Γ)⊗Hq(g,K∞,Dλ ⊗Mλ∨,C)→ Hq

! (Γ\X,Mλ∨,C) (4.107)

is an isomorphism for q = 1 in case A) and for q = 1, 2 in case B).

This is well known and proofs can be found everywhere in the literature. it
is a special case of theorem 6.1.1. It says a little bit more, it says that the image

of Φ
(2)
λ lies in the inner cohomology and not only in H•(2). But this is very easy

to see, if we apply our considerations from section ?? to this special case.
We still have the special case llambda(1) = 0 in this caseMλ is one dimen-

sional and isomorphic to the one dimensional subspace C[λ] ⊂ C(2)∞ (Γ\G(R)..
Then and the map

H•(g,K∞,C[λ̃]⊗ C[λ̃∨])→ H•(Γ\X,Mλ∨,C ⊗ C) (4.108)

is an isomorphism in degree zero and zero in all other degrees.

For the case A).we want to relate this to the classical formulation. The
group Sl2(R) acts transitively on the upper half plane H = Sl2(R)/SO(2). For

g =

(
a b
c d

)
and z ∈ H we put j(g, z) = cz + d. To any

Φ ∈ Hom(g,K∞)(D+
λ , C

(2)
∞ (Γ\G(R), ω(0)))

we attach a function fΦn+2 : H → C : We write z = gi with g ∈ Sl2(R) and put

holWh

fΦn+2(z) = Φ(ψn+2)(g)j(g, i)
n+2 (4.109)

An easy calculation shows that fΦn+2 is well defined and holomorphic (slzweineu.pdf)p.25-

26) and for γ =

(
a b
c d

)
∈ Sl2(Z) it satisfies

fΦn+2(γz) = (cz + d)n+2fΦn+2(z) (4.110)

The condition that Φ(ψn+2)(g) is square integrable implies that fn+2 is a holo-
morphic cusp form of weight n + 2 = k. It is a special case of the theorem of

Gelfand-Graev that this provides an isomorphism GelfGraev

Hom(g,K∞)(D+
λ , C

(2)
∞ (Γ\G(R)) ∼−→ Sk(Γ) (4.111)



4.1. HARISH-CHANDRA MODULES WITH COHOMOLOGY 177

where of course Sk(Γ) is the space of holomorphic cusp forms for Γ.

We can do the same thing with D−λ then we land in the spaces of anti
holomorphic cusp forms, these two spaces are isomorphic under conjugation.
Combining this with our results above gives the classical formulation of the
Eichler-Shimura theorem:

We have a canonical isomorphism

Sk(Γ)⊕ Sk(Γ)
∼−→ H1

! Γ\H,M̃λ∨,C) (4.112)

Of course the involution c(1) interchanges the two summands. It is also clear
that c(1) is the extension of the involution

There is an analogous formulation in case where we have to work with
Bianchi modular forms.

4.1.8 Petersson scalar product and semi simplicity

Earlier in chapter 3 we stated a general theorem 3.1.1 which in this case says
that H1

! Γ\H,Mλ∨,C) is a semi-simple module for the Hecke algebra, we gave
an outline of the proof. In this case the hermitian scalar product is obtained
from the Petersson scalar product on Sk(Γ). For two cusp forms f, g ∈ Sk(Γ)
this scalar product is given by

< f, g >=

∫
Γ\H

f(z)g(z)yn+2i
dz ∧ dz̄
y2

For this metric the Hecke operators are self adjoint, and from this it follows that
Sk(Γ) is semi simple as Hecke module.

We can decompose into eigenspaces

H1
! (Γ\H,M̃λ∨,F ) =

⊕
πf

H1
! (Γ\H,M̃λ∨,F )(πf ) (4.113)

where πf : H → F is a homomorphism. In this case we know that each πf
which occurs actually occurs with multiplicity 2 (it occurs with multiplicity one
in Sk(Γ) and Sk(Γ) )

For any embedding ι : F ↪→ C we know the Ramanujan-Petersson conjecture,
which says

For all primes p we have |ι(πf (Tp))| ≤ 2 p
n+1
2 (4.114)

and again we can conclude that we get a canonical splitting of Hecke-modules

H1Γ\H,M̃λ∨,F ) = H1
! Γ\H,M̃λ∨,F )⊕ F Eisn (4.115)

where Tp( Eisn) = (pn+1 + 1) Eisn. ( The eigenvalue of Tp on Eisn is different

from the eigenvalues of Tp on H1
! Γ\H,M̃λ∨,F ) (Manin-Drinfeld principle) and

then a standard linear argument gives us the splitting.) Of course we could also
say that the Hecke-module H1

! Γ\H,M̃λ∨,F ) is complete in H1(Γ\H,M̃λ∨,F ).

Whittloc
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4.1.9 Local Whittaker models

How do we get such Ψλ? In our special situation we get them from Fourier-
expansions of Whittaker functions and this will be explained next. We recall
some fundamental results from representation theory of groups Gl2(Qp). Let
F/Q be a finite extension Q. An admissible representation of Gl2(Qp) is an ac-
tion of Gl2(Qp) on a F -vector space V which fulfills the following two additional
requirements

a) For any open subgroup Kp ⊂ Gl2(Zp) the space of fixed vectors V Kp is
finite dimensional.

b) For any v ∈ V we find an open subgroupKp ⊂ Gl2(Zp) such that v ∈ V Kp .

We say that V is a Gl2(Qp) module, we denote the action of Gl2(Qp) on V
by (g, v) 7→ gv. In addition we want to assume that our module has a central
character, this means that the center Z(Qp) = Q×p acts by a character ωV :
Z(Qp) → F×. Such a module is called irreducible if it does not contain a non
trivial invariant submodule.

Again we dispose of a Hecke algebra, given Kp we consider the space of
functions

HKp = {f : Gl2(Qp)→ F | f(zg) = ω−1V (z)f(g) ; f has compact support mod Z(Qp)}
(4.116)

this gives as an algebra by convolution and this algebra acts on V Kp by

f ∗ v =

∫
Gl2(Qp)/Z(Qp)

f(x)xvdx.

We normalize the measure dx such that it gives volume one to Kp.

We recall - and explain the meaning of - the fundamental fact that each
isomorphism class of admissible irreducible modules has a unique Whittaker

model. We assume that F ⊂ C, then we define the (additive) character PSI

ψp : Qp → C×; ψp : a/pm 7→ e
2πia
pm (4.117)

it is clear that the kernel of ψp is Zp. Since we have U(Qp) = Qp we can view
ψp as a character ψp : U(Qp)→ C×. We introduce the space

Cψp(Gl2(Qp)) = {f : Gl2(Qp)→ C|f(ug) = ψp(u)f(g)}

where in addition we require that our f is invariant under a suitable open sub-
group Kf ⊂ Gl2(Zp). The group Gl2(Qp) acts on this space by right translation
the action is not admissible but satisfies the above condition b) .

Now we can state the theorem about existence and uniqueness of the Whit-
taker model

Whittp

Theorem 4.1.4. For any infinite dimensional, absolutely irreducible admissible
Gl2(Qp) -module V we find a non trivial ( of course invariant under Gl2(Qp))
homomorphism

Ψ : V → Cψp
(Gl2(Qp)), (4.118)

it is unique up to multiplication by a non zero scalar.

Proof. We refer to the literature, [55], [32]
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Spherical representations, their Whittaker model and the Euler factor

An absolutely irreducible Gl2(Qp) module is called spherical or unramified if for
Kp = Gl2(Zp) we have V Kp ̸= {0}. In this case it is known that (Reference)

dimF (V
Gl2(Zp)) = 1;V Gl2(Zp) = Fh0. (4.119)

The Hecke algebra HKp
is commutative and generated by the two double cosets

Tp = Gl2(Zp)
(
p 0
0 1

)
Gl2(Zp) and Cp = Gl2(Zp)

(
p 0
0 p

)
. (4.120)

The space V Gl2(Zp) is an absolutely irreducible module for HKp hence it is
of rank one, let ψ0 be a generator. Our two operators act by scalars on V Kp ,
we write

Tp(h0) = πV (Tp)h0 and Cp(h0) = πV (Cp)h0 (4.121)

The module V is completely determined by these two eigenvalues, of course
πV (Cp) = ωV (Cp).

We can formulate this a little bit differently. Let πp an isomorphism type of
our Gl2(Qp) module V . Then our theorem above asserts that there is a unique
Gl2(Qp) -module

W(πp) ⊂ Cψp(Gl2(Qp)) (4.122)

with isomorphism-type equal to πp ×F C. We call this module the Whittaker
realization of πp. If our isomorphism type is unramified then the resulting ho-
momorphism of Hp to F is also denoted by πp.

We have the spherical vector h
(0)
πp ∈ W(πp)

Gl2(Zp) which is unique up to a
scalar. Since Gl2(Qp) = U(Qp)T (Qp)Gl2(Zp) this spherical vector is determined
by its restriction to T (Qp). We have a formula for this restriction. First of all
we observe that

h(0)πp
(

(
pn 0
0 pm

)
= πp(C

m
p )h(0)πp

(

(
pn−m 0
0 1

)
). (4.123)

We claim that h
(0)
πp (

(
pn 0
0 1

)
) = 0 if n < 0. To see this we look at the equalities

h(0)πp
(

(
1 u
0 1

)(
pn 0
0 1

)
) = ψp(u)h

(0)
πp

(

(
pn 0
0 1

)
) = h(0)πp

(

(
pn 0
0 1

)(
1 p−nu
0 1

)
)

and we can find an element u ∈ Qp such that p−nu ∈ Zp and ψp(u) ̸= 1, this

implies the claim. We exploit the eigenvalue equation Tp(h
(0)
πp ) = πp(Tp)h

(0)
πp , we

write the double coset Kp

(
p 0
0 1

)
Kp as union of right Kp cosets

Kp

(
p 0
0 1

)
Kp =

⋃
x∈Z/pZ

(
1 x
0 1

)(
p 0
0 1

)
Kp

⋃(
0 1
−1 0

)(
p 0
0 1

)
Kp.



180CHAPTER 4. REPRESENTATION THEORY, EICHLER-SHIMURA ISOMORPHISM

Clearly

h(0)πp
(

(
pn 0
0 1

)(
1 x
0 1

)(
p 0
0 1

)
) = h(0)πp

(

(
pn+1 0
0 1)

)
)

h(0)πp
(

(
pn 0
0 1

)(
0 1
−1 0

)(
p 0
0 1

)
) = πp(Cp)h

(0)
πp

(

(
pn−1 0
0 1

)
)

and this implies the recursion formula recurs

πp(Tp)h
(0)
πp

(

(
pn 0
0 1

)
) = πp(Cp)h

(0)
πp

(

(
pn−1 0
0 1

)
) +

ph
(0)
πp (

(
pn+1 0

0 1)

)
) if n ≥ 0

0 if n < 0

(4.124)

We can normalize h
(0)
πp (

(
1 0
0 1

)
) = 1, then the values for n > 0 follow from the

recursion.
There is a more elegant way writing this recursion. For our unramified πp

we define the local Euler factor Euler

L(πp, s) =
1

1− πp(Tp)p−s + pπp(Cp)p−2s
(4.125)

We expand this into a power series in p−s and an elementary calculation shows

that Mellin

L(πp, s) =

∞∑
n=0

h(0)πp
(

(
pn 0
0 1

)
)pnp−ns (4.126)

Whittaker models for Harish-Chandra modules

We also have a theory of Whittacker models for the irreducible Harish-Chandra
modules studied in section 4.1. The unipotent radical U(R) = R resp. U(R) =
C. Again we fix characters ψ∞ : U(R)→ C× we put

ψ∞(x) =

{
e−2πix in case A)

e−2πi(x+x̄) in case B)
(4.127)

and as in the p-adic case we define

Cψ∞(G(R)) = {f : G(R)→ C | f(ug) = ψ∞(u)f(g), f is C∞} (4.128)

Then we have again Whittinf

Theorem 4.1.5. For any infinite dimensional, absolutely irreducible admissible
Gl2(R) -module V we find a non trivial ( of course invariant under Gl2(R))
homomorphism

Ψ : V → Cψ∞(G(R)), (4.129)

This homomorphism is unique up to a scalar. The image of V under the homo-
morphism Ψ will be denoted by Ṽ .
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Proof. Again we refer to the literature. [32].

Hence we can say that for any isomorphism class π∞ of irreducible infi-
nite dimensional Harish-Chandra modules we have a unique Whittaker model
W(π∞) ⊂ Cψ∞(G(R)). In the book of Godement we find explicit formulae for
these Whittaker functions.

Actually it is easy to write down such maps Ψ̃± resp. Ψ̃ explicitly for our
induced modules, we start from a dominant weight λ = nγ + δ (resp. n1γ1 +
n2γ2 + δ where n ≥ 0, n1, n2 ≥ 0. We define

F : IGBλR|ρ|2R → Cψ∞(G(R))

by the integral

F(f)(g) =
∫
U(R)

f(wug)ψ∞(−u)du,

there is no problem with convergence as long n > 0, n1, n2 > 0. If one of these
numbers is zero then there is a tiny difficulty to overcome, we ignore it. In any
case we get an isomorphism

F : IGBλR|ρ|2R
∼−→ IG,†B λR|ρ|2R (4.130)

i.e. we will denote elements or spaces which lie in a Whittaker model by ?†.
We consider the case A). Let n be even. We consider induced module

IGBλRρ
2
R =

⊕
ν≡0(2) Cϕλ,ν , (See 4.31we have the exact sequence (See seqd

0→ D+
λ∨ ⊕D−λ∨ → IGBλRρ

2
R →Mλ → 0

We have the Whittaker map

F : IGBλRρ
2
R → Cψ(G(R))

which is defined by

F(ϕλ,ν)(
(
t 0
0 1

)
) :=

∫ ∞
−∞

ϕλ,ν(w

(
1 x
0 1

)(
t 0
0 1

)
)e−2πixdx

We change variables x→ −x then the Iwaswa decomposition gives

w

(
1 −x
0 1

)(
t 0
0 1

)
=

(
0 −1
t x

)
=

( t√
t2+x2

∗
0

√
t2 + x2

)( x√
t2+x2

t√
t2+x2

−t√
t2+x2

x√
t2+x2

)

and a straightforward computation gives us that we have to evaluate

F(ϕλ,ν)(
(
t 0
0 1

)
) = t

n
2 +1

∫ ∞
−∞

e2πix

(−x+ ti)n/2+ν/2+1(−x− ti)n/2−ν/2+1
dx

We apply the Residue theorem. We consider the case t > 0. Let R >> 0 we
consider the path from −R to R on the real line followed by the half arc CR
in the upper half plane from from R back to R. The integral along this path is
the sum of the residues in the interior of this closed path. On the other hand
it it is easy to see that for R→∞ the integral along CR goes to zero, basically
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because |e|2πiz| becomes very small if Im(z) becomes large. Our function has
only one pole in the upper half plane, namely for x = ti and therefore∫ ∞
−∞

ϕλ,ν(w

(
1 −x
0 1

)(
t 0
0 1

)
)e2πixdx = t

n
2 +1 Resx=ti

e2πix

(−x+ ti)n/2+ν/2+1(−x− ti)n/2−ν/2+1

If we put z := x− ti then our integral becomes

(2i)−n/2−ν/2−1t−ν/2e−2πt Resz=0
e2πiz

(1 + z
2ti )

n/2+ν/2+1zn/2+ν/2+1
= Pλ,ν(t)e

−2πt,

where Pλ,ν(t) is a Laurent polynomial in C[t, t−1].
If t > 0 then there is no pole forν ≤ −n − 2 and this implies that F maps

D−λ∨ to zero. If we restrict to t > 0 our map F induces an injection

IGBλRρ
2
R/D−λ∨ ↪→ Cψ(G(R))

this is of course an intertwining operator. The module D+
λ∨ ⊂ IGBλRρ

2
R/D

+
λ∨ it

has ϕλ,n+2 as a lowest weight vector. We compute F(ϕλ,n+2), then the nasty
factor (1 + z

2ti )
n/2+ν/2+1 is equal to one in this case and hence we have up to a

non zero constant

F(ϕλ,n+2)(

(
t 0
0 1

)
) = cλt

n
2 +1e−2πt.

If we now restrict to t < 0 then bsidcally the same computation shows that
F sends |Dsm to zero-

In the case A) the we the two discrete irreducible series representations
D+
λ∨ ,D−λ∨ attached to a dominant weight λ. We have their Whittaker model

F± : D±λ∨ ↪→ Cψ∞(Gl2(R)). (4.131)

The group (Gl2(R) has the two connected components Gl2(R)+,Gl2(R)−,( det >
0,det < 0) and we have

F+(D+
λ∨) = D+,†

λ∨ is supported on Gl2(R)+,D−,†λ∨ is supported on Gl2(R)−
(4.132)

Under the isomorphism Ψ̃± the elements ψ±(n+2) (See (4.30) ) are mapped to

functions ψ†±(n+2). We can normalize Ψ̃± such that tpsin

ψ†n+2(

(
t 0
0 1

)
) =

{
t
n
2 +1e−2πt if t > 0

0 else
(4.133)

and ψ†−n−2 is given by the corresponding formula.

We discuss the same issue for the group Gl2(C) later in section 4.1.11

Whitt
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Global Whittaker models, Fourier expansions and multiplicity one

We also have global Whittaker models. To define them we recall some results
from Tate’s thesis ([87]). We introduce the ring of adeles A = AQ, we write it
as a product A = Q∞ × Af = R × Af . The ring of finite adeles contains the

compact subring Ẑ =
∏
p Zp of integral adeles.

We define a global character ψ : U(A)/U(Q) = A/Q → C× as the product

psiq

ψ(x∞, . . . , xp, . . . ) = ψ∞(x∞)
∏
p

ψp(xp) (4.134)

where the local components ψv are as above, we have to check that ψ is trivial on
U(Q). (See [87], ”note the minus sign”) For any a ∈ Q we define ψ[a](x) = ψ(ax),
so ψ = ψ[1]. In ([87]) it is shown that the map

Q→ Hom(A/Q,C×); a 7→ ψ[a] (4.135)

is an isomorphism between Q and the character group of A/Q. Hence we know
that for any reasonable function h : A/Q → C we have a Fourier expansion

Fouex

h(u) =
∑
a∈Q

ĥ(a)ψ(au) (4.136)

where ĥ(a) =
∫
A/Q h(u)ψ(−au)du, and where voldu(A/Q) = 1. Then we put

Cψ(Gl2(R)×Gl2(Af )/Kf )) = {f : Gl2(R)×Gl2(Af )/Kf → C|f(ug) = ψ(u)f(g)}

this is a module for Gl2(R)×
⊗′Hp

Let us start from the Harish-Chandra module π∞ = D+
λ and a homo-

morphism πf = ⊗′πp : ⊗′Hp → F from the unramified Hecke algebra to F.
Here F/Q is a finite extension of Q. We assume it comes with an embedding
ι : F ↪→ C, i.e. we also may it consider as a subfield of C.

We still assume for simplicity that Kf = Gl2(Ẑ). The results on Whittaker-
models imply that we have a unique Whittaker-model

W(π) =W(π∞)⊗ Ch(0)πf
⊂ Cψ(Gl2(R)×Gl2(Af )/Kf ) (4.137)

for our isomorphism class π = π∞ × πf . Here of course h
(0)
πf = ⊗h(0)πp .

We return to Theorem 4.1.3. On the space C(2)∞ (Γ\G(R), ω(0))) we have the
action of the unramified Hecke algebra. To see this action we start from the
observation that the map Gl2(Q)→ Gl2(Af )/Kf (Chap. III , 1.5) is surjective
and hence

Gl2(Z)\Gl2(R)
∼−→ Gl2(Q)\Gl2(R)×Gl2(Af )/Kf (4.138)

and hence

C(2)∞ (Gl2(Z)\Gl2(R)) = C(2)∞ (Gl2(Q)\Gl2(R)×Gl2(Af )/Kf ) (4.139)
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and the space on the right is a Gl2(R) ×
⊗′Hp module. Now we consider the

π = π∞ × πf isotypical submodule C(2)∞ (Gl2(Q)\Gl2(R) × Gl2(Af )/Kf )(π) ⊂
C(2)∞ (Gl2(Q)\Gl2(R)×Gl2(Af )/Kf ).

We have the famous Theorem which in the case Γ = Sl2(Z) is due to Hecke

multone

Theorem 4.1.6. If C(2)∞ (Gl2(Q)\Gl2(R) × Gl2(Af )/Kf )(π) ̸= 0 then have a
canonical isomorphism

F :W(π)
∼−→ C(2)∞ (Gl2(Q)\Gl2(R)×Gl2(Af )/Kf )(π) (4.140)

especially we know that π occurs with multiplicity one.

Proof. We give the inverse of F . Given a function

h ∈ C(2)∞ (Gl2(Q)\Gl2(R)×Gl2(Af )/Kf )(π)

we define

h†((g∞, gf )) =

∫
U(Q)\U(A)

h(ug)ψ(u)du (4.141)

it is clear that h†(g∞, gf ) ∈ W(π). It follows from the theory of automorphic

forms that h is actually in the space of cusp forms, this means that the con-
stant Fourier coefficient

∫
U(Q)\U(A) h(ug)du = 0 and hence our Fourier expansion

yields ((4.136), evaluated at u = 0)

h(g) =
∑
a∈Q×

∫
U(A)/U(Q)

h(ug)ψ[a](u)du (4.142)

The measure du is invariant under multiplication by a ∈ Q× and hence a indi-
vidual term in the summation is∫
U(A)/U(Q)

h(

(
1 u
0 1

)
g)ψ(

(
1 au
0 1

)
)du =

∫
U(A)/U(Q)

h(

(
1 a−1u
0 1

)
g)ψ(

(
1 u
0 1

)
)du

(4.143)

Now (
1 a−1u
0 1

)
=

(
a−1 0
0 1

)(
1 u
0 1

)(
a 0
0 1

)
Since h is invariant under the action of G(Q) from the left we find∫

U(A)/U(Q)

h(ug)ψ[a](u)du = h†(

(
a 0
0 1

)
)g∞)h†f (af )

(
a 0
0 1

)
(g∞, gf )) (4.144)

We evaluate at g = (g∞, e) then

h†(

(
a 0
0 1

)
(g∞, e)) = h†(

(
a∞ 0
0 1

)
g∞,

(
af 0
0 1

)
) (4.145)

For a fixed g∞ the function g
f
7→ h†(g∞, gf ) is up to a factor equal to

h
(0)
πf =

⊗′
p h

(0)
πp and hence we find
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h†(

(
a 0
0 1

)
(g∞, e)) = h†(

(
a∞ 0
0 1

)
g∞, e)h

(0)
πf

(

(
af 0
0 1

)
) (4.146)

The recursion formulae ( 4.124),(4.126) imply that h
(0)
πf (

(
af 0
0 1

)
) = 0 unless

a ∈ Z.
We restrict our functions to Gl+2 (R), i.e. we take g∞ ∈ Gl2(R)+ and we

remember that our representationπ∞ is D+
λ∨ . Then we know that for h∞ ∈ D+

λ∨

the value h†(

(
a∞ 0
0 1

)
g∞, e) = 0 if a∞ < 0 and hence

h†(

(
a 0
0 1

)
(g∞, e)) = h†(

(
a∞ 0
0 1

)
g∞,

(
af 0
0 1

)
) = 0 unless a > 0, a ∈ Z,

and our Fourier expansion (4.136) becomes Fexpl

h(g) =

∞∑
a=1

h†(

(
a 0
0 1

)
(g∞, e))h

(0)
πf

(

(
af 0
0 1

)
) (4.147)

We notice that there is never any problem with convergence. The Whit-
taker functions h†∞ always decay very rapidly at infinity. We write g∞ =(
1 u
0 1

)(
t 0
0 1

)
k with k ∈ K∞, then it is easy to see

|h†∞(

(
t 0
0 1

)
g∞| < P (t)e−2πt

where P (t) is a polynomial in t. This implies that the series is really very rapidly
converging (See remark below).

Now we choose for the component at infinity the function h†∞ = ψ̃n+2 and
we compute the corresponding holomorphic cusp form hΦ under the Eichler-
Shimura isomorphism. We have the formula (4.109)

hΦ(z) = hΦ(x+iy) = h(

(
y

1
2

x

y
1
2

0 y−
1
2

)
)j(

(
y

1
2

x

y
1
2

0 y−
1
2

)
, i)n+2 = h(

(
y

1
2

x

y
1
2

0 y−
1
2

)
)y−

n
2−1

and hence our Fourier expansion (4.147) becomes FouH

hΦ(z) = y−
n
2−1

∞∑
a=1

ϕ̃n+2(

(
ay ax
0 1

)
)h(0)πf

(

(
a 0
0 1

)
) (4.148)

We have the formula (4.133) for ϕ̃n+2 and then this becomes

hΦ(z) =

∞∑
a=1

a
n
2 +1h(0)πf

(

(
a 0
0 1

)
)e2πiza (4.149)

This is now the classical Fourier expansion of a holomorphic cusp eigenform of

weight k = n + 2, ([50]). The numbers c(πf , a) = a
n
2 +1h

(0)
πf (

(
a 0
0 1

)
) are the
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Fourier coefficients and they also the eigenvalues of the operator Ta -defined
in by Hecke in [50]- on hΦ. If we apply the Eichler-Shimura isomorphism and
interpret hΦ as a cohomology class then it is an eigenclass in H1

! (Γ\H,M̃n⊗C)
and for any prime p the number c(πf , p) is the eigenvalue of the operator Tp
defined in 3.9.

We briefly come back to the question of convergence. Hecke proves in [50]

that Estone

|c(πf , a)| ≤ Can+1+ϵ (4.150)

and with this estimate the convergence becomes obvious.
Actually there is a much better estimate, which will be discussed in the

”probably removed” section. Lfu

4.1.10 The L-functions

We still assume thatKf = Gl2(Ẑ) or what amounts to the same that Γ = Sl2(Z).
We start from an eigenspace H1

! (Γ\H,M̃λ ⊗F )(πf ), now πf is simply a homo-
morphism πf : HKf

→ OF . To this homomorphism we attach the cohomological
L-function

Lcoh(πf , s) =
∏
p

1

1− πp(Tp)p−s + p1+n−2s
(4.151)

here Tp is the Hecke operator defined in 3.9, it differs from the Hecke operator
defined by convolution by a factor p

n
2 in front. If we expand this product over

all primes we get

Lcoh(πf , s) =

∞∑
a=1

c(πf , a)

as
(4.152)

and this is exactly the L-function Hecke attaches to the cusp form provided by
πf . But we want to stress that this cohomological L-function is defined in purely
combinatorial terms (See section 3.2.1, and Chapter 7).

At this moment this L function is a formal expression, it is a formal Dirichlet
series with coefficients in our field F , which is simply a finite extension of Q. If
we assume that F ⊂ C. then we may interpret s as a complex variable and the
above estimate of the size of the coefficients implies that this series converges
absolutely and locally uniformly for ℜ(s) > n+2 and hence gives a holomorphic
function in this halfspace. But something much better is true. We define the
completed L function

Λcoh(πf , s) =
Γ(s)

(2π)s
Lcoh(πf , s), (4.153)

for this completed L-function Hecke proved HFu

Theorem 4.1.7. The function Λcoh(πf , s) has holomorphic continuation into
the entire complex plane and satisfies the functional equation

Λcoh(πf , s) = (−1)n
2 +1Λcoh(πf , n+ 2− s)
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Proof. We could refer to Hecke, but for some reason we give an outline of the
argument. We have the integral representation (Mellin-transform)

Λcoh(πf , s) =

∫ ∞
0

∞∑
a=1

c(πf , a)e
−2πayys

dy

y
=

∫ ∞
0

hΦ(iy)ys
dy

y

of course here we have to be courageous ( or stupid ) enough to exchange
integration and summation. But since e−2πay goes rapidly to zero if y → ∞
there is no problem with the upper integration limit ∞. If ℜ(s) >> 0 the ys

also tends to zero fast enough, so that we do not have a problem with the lower
integration limit. But now we can split the integration into two parts∫∞

0

∑∞
a c(πf , a)e

−2πayys dyy =

∫ 1

0

∑∞
a c(πf , a)e

−2πayys dyy +
∫∞
1

∑∞
a c(πf , a)e

−2πayys dyy

the second integration is converging for all values of s. To handle the first integral
we observe that hΦ(− 1

z ) = zn+2hΦ(z), Hence we can substitute y → 1
y in the

first integral and get

Λcoh(πf , s) =

∞∑
a

( 1

(2π)s
c(πf , a)

as
Γ(s, 2πa) +

(−1)n
2 +1

(2π)n+2−s
c(πf , a)

an+2−s Γ(n+ 2− s, 2πa)
)
.

(4.154)

Here Γ(, ) is the incomplete Γ function, which defined by Γ(s,A) =
∫∞
A
e−yys dyy ,

it has the virtue that for any given value of s it decays rapidly ifA goes to infinity.

Therefore we see that Λcoh(πf , s) can be written as a sum of two infinite
series which are very rapidly converging, hence it follows that Λcoh(πf , s) is
holomorphic in the entire s plane and the functional equation also becomes
obvious.

We included the proof of the above theorem, because the above formula also
gives us a very effective procedure to compute the numerical value of Λcoh(πf , s0)
with high accuracy. We will come back to this issue in section 5.6.

periods

4.1.11 The Periods

Together with the map F comes the map

F̃ = Id⊗F ⊗ Id : HomK̃∞
(Λ(g/k̃),W(π)⊗ M̃λ)→

HomK̃∞
(Λ•(g/k̃), C∞(Gl2(Q)\(Gl2(R)×Gl2(Af )/Kf )⊗ M̃λ)

The purpose of the following computations is to fix a specific choice of basis
elements ω†± ∈ HomK̃∞

(Λ1(g/k),Dλ∨
†⊗M̃λ) (in case A) ω†1,2 ∈ HomK̃∞

(Λ1,2(g/k),D†λ∨⊗
M̃λ) (in case B)) These ”canonical” generators will serve us to define the peri-
ods.
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In case A) we have

g/k̃
∼−→ Q

(
1 0
0 −1

)
⊕Q

(
0 1
1 0

)
= QH ⊕QV = p (4.155)

If we put P = H + V ⊗ i, P̄ = H − V ⊗ i ∈ g/k̃⊗Q(i) then

g/k̃⊗Q(i) = Q(i)P ⊕Q(i)P̄ and e(ϕ)Pe(−ϕ) = e22πiφP ; e(ϕ)P̄ e(−ϕ) = e−22πiφP̄
(4.156)

Let P∨, P̄∨ ∈ Hom(g/k̃,Q(i)) be the dual basis. Then we check easily that Pvee

P∨(H) = P̄∨(H) =
1

2
and P∨(V ) = − i

2
, P̄∨(V ) =

i

2
(4.157)

The module M̃λ⊗Q(i) decomposes under the action of K̃∞ into eigenspaces
under K̃∞

Mλ∨ ⊗Q(i) =

n⊕
ν

Q(i)(X + Y ⊗ i)n−ν(X − Y ⊗ i)ν (4.158)

where

e(ϕ)((X + Y ⊗ i)n−ν(X − Y ⊗ i)ν) = eπi(n−2ν)ϕ · (X + Y ⊗ i)n−ν(X − Y ⊗ i)ν .

Then we define the basis elements

ω† = P∨ ⊗ ψ̃n+2 ⊗ (X − Y ⊗ i)n ; ω̄† = P̄∨ ⊗ ψ̃−n−2 ⊗ (X + Y ⊗ i)n (4.159)

We still have our involution c ∈ K̃∗∞( See (4.26)) and clearly we have cω† = inω̄†

( Remember n ≡ 0 mod 2. )

Now we put OPM

ω†+ =
1

2
(ω† + inω̄†) ; ω†− =

1

2
(ω† − inω̄†) (4.160)

then these elements

ω†± =
1

2
(ω† ± inω̄†) ∈ HomK∞(Λ1(g/k), D̃λ ⊗Mλ)±

and they are generators of these one dimensional spaces. The choice of these
generators seems to be somewhat arbitrary, in [?] we give some motivation for
this choice.

There is an alternative way to select ω†±. If we evaluate ω†± on the element
H ∈ g/k = p then

ω†±(H) =
1

4
(ψ†n+2 ⊗ (X − Y ⊗ i)n ± in(ψ†−n−2 ⊗ (X + Y ⊗ i)n) ∈ D†λ ⊗Mλ

These are functions on Gl2(R) with values inMλ. We pair these functions
with anMλ⊗C valued function, more precisely we consider the function g 7→<
ω†±(Ad(g)H)(g), ρλ(g)X

νY ν > .
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We restrict these scalar valued functions to the real points of the split torus

< ω†±(H)(

(
t 0
0 1

)
), ρλ(

(
t 0
0 1

)
)XνY n−ν >=

< 1
4 (ψ

†
n+2(

(
t 0
0 1

)
)⊗ (X − Y ⊗ i)n ± inψ†−n−2(

(
t 0
0 1

)
)⊗ (X + Y ⊗ i)n), XνY n−ν > t−

n
2 +ν

Now let ϵ be a variable which can take the values +,−, then ϵ = +1,−1. Our
formula (4.10) gives us < (X − ϵY ⊗ i)n, XνY n−ν >= (−ϵi)n−ν and combining

this with the explicit formula (4.133 ) for the values of ψ†ϵ(n+2)(

(
t 0
0 1

)
) we get

< ω†ϵ (H)(

(
t 0
0 1

)
), ρλ(

(
t 0
0 1

)
)XνY n−ν >=

{
(−i)n−νtn

2 +1e−2πtt−
n
2 +ν for t > 0

ϵin−ν(−t)n
2 +1e2πt(−t)−n

2 +ν for t < 0
.

(Here we use that n is even, but with suitable minor modifications we can also

treat the case n odd.) Then a straight forward computation yields Mellinone

∫
T ad(R) < ω†ϵ (H)(

(
t 0
0 1

)
), ρλ(

(
t 0
0 1

)
)XνY n−ν > dt

t =

1
2

{
Γ(n+1−ν)
(2π)n+1−ν if (−1)n

2−ν = sg(ϵ)

0 else

(4.161)

For each choice of the sign ϵ = ±1 one of these equation determines the generator
Ω†±. This formula will be of importance when we discuss the special values of
L-functions.

In case B) we do basically the same, in some sense it is even simpler because
K∞ is maximal compact in this case, i.e. K∞ = K∗∞. But on the other hand
we need some very explicit information about the theory of irreducible repre-
sentations of K∞ and also about the decomposition of tensor products of these
representations. We will also use some explicit formulas for Bessel functions.

A small arithmetic consideration
The quotient g/k̃ is a three-dimensional vector space over Q the group K∞

acts by the adjoint representation and this gives us the standard three dimen-
sional representation of K∞ = U(2), which in addition is trivial on the center.
(See 4.1.2). This module is given by the highest weight 2γc. We must have
λ = n(γ + γ̄) + .., if we want E(2)(λ,w,Γ) ̸= 0, and then the formulae 4.1.6 and
4.59 imply that for • = 1, 2

dimC HomK∞(Λ•(g/k̃),D†λ∨ ⊗Mλ∨) = 1 (4.162)

Now we recall that we have defined a structure of a R = Z[ 12 ] module on all the
modules on the stage, hence we see that

HomK∞(Λ•(g/k̃),Dλ∨ ⊗Mλ∨) = HomK∞(Λ•(g/k̃)R,Dλ∨R ⊗Mλ∨R)⊗ C,
(4.163)

here we are a little bit sloppy: The first subscript K∞ is the compact group and
the second subscript is a smooth groups scheme over R. For both choices of •
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the second term in the above equation is a free R module of rank 1. We choose
generators

ω†,•λ ∈ HomK∞(Λ•(g/k̃)R,Dλ∨R ⊗Mλ∨R).

These generators ω†,1, ω†,2 are well defined up to an element in R×.
End of the small consideration

The quotient g/k̃ is a three-dimensional vector space over Q the group K∞
acts by the adjoint representation and this gives us the standard three dimen-
sional representation of K∞ = U(2), which in addition is trivial on the center.
(See 4.1.2). This module is given by the highest weight 2γc. We must have
λ = n(γ + γ̄) + .., if we want E(2)(λ,w,Γ) ̸= 0, and then the formulae 4.1.6 and
4.59 imply that for • = 1, 2

dimC HomK∞(Λ•(g/k̃),D†λ∨ ⊗Mλ∨) = 1 (4.164)

We fix these generators by prescribing values of certain Mellin transforms. To
do this we need a little bit of representation theory. Of course we may replace
K∞ by SU(2) because the action of the center on the different modules cancels

out. The modules g/k ⊗ C, wD†λ∨ andMλ∨ ⊗ C extend naturally to Sl2(C)
modules and hence we have to find an explicit generator in

HomSl2(C)(g/k⊗ C,D†λ∨ ⊗Mnγ ⊗Mnγ̄).

We have an explicit basis for g/k ⊗ C (See (4.19), our module Mλ∨ =M♭
nγ ⊗

M♭
nγ ⊗O C is given explicitly to us.

Our module D†λ∨ ⊂ IGBλRρ
2
R, and this last module decomposes into SU(2)

-types (See( 4.34). These SU(2) modules canonically extend to Sl2(C)-modules,

we have decU

IGBλRρ
2
R =

∞⊕
ν=0

M2νγ =

∞⊕
ν=0

IGBλRρ
2
R(2ν) (4.165)

and
(IGBλRρ

2
R(2(n+ 1)))† = D†λ∨(2(n+ 1))

Now it is clear that we have the problem to select a specific generator in

HomSl2(C)(g/k⊗ C,D†λ∨(2(n+ 1))⊗M♭
nγ ⊗M♭

nγ̄ ⊗ C).

The modules g/k ⊗ C,M♭
nγ ,M♭

nγ̄ come with an explicit basis (See 4.19), if we

want to write down a specific generator ω†,• we have to write down a basis of
D†λ∨(2(n+ 1)).

Again we start from our exact sequence

0→ Dλ∨ → IGB →Mλ → 0 (4.166)

we apply the map F to it and get an exact sequence of Whittaker modules

0→ D†λ∨ → IG,†B →Mλ → 0 (4.167)
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We recall the definition of IGBλRρ
2
R as an induced representation, the space

of K∞ invariant vectors is spanned by the spherical function

ψλ,0(bk) = ψλ,0(

(
t1 u
0 t2

)(
α β
−β̄ ᾱ

)
) = λRρ

2
R(b).

We map the induced representation to its Whittaker model by

F : ψ 7→ {g 7→
∫
ψ(w

(
1 x+ iy
0 1

)
g)e2πixdxdy} (4.168)

our basis element will be ϕ†λ,0 = F(ψλ,0). A straightforward computation yields

ϕ†λ,0(

(
t 0
0 1

)
) = F(ψλ,0)(

(
t 0
0 1

)
) =

∫ ∞
∞

tn+2

(t2 + x2 + y2)n+2
e2πixdxdy

The educated reader knows that this function in the variable t is well known,
we have

ϕ†λ,0(

(
t 0
0 1

)
) =

2πn+2

Γ(n+ 2)
tKn+1(2πt)

where Kn(2πt) is the modified Bessel function. Of course

phi†λ,0 is a function on G(R) = Gl2(C), it is right invariant under K∞ and of
course

ϕ†λ,0(

(
1 x+ iy
0 1

)(
t 0
0 1

)
) = e2πixϕ†λ,0(

(
t 0
0 1

)
)

hence it is defined by its restriction to T ad(R)>0.

Starting from this function we construct the desired basis of D†λ∨(2(n+ 1)).
The Lie-algebra g acts on IGBλRρ

2
R, we restrict this action to p and it is clear

that under this action

p⊗ IGBλRρ
2
R(2ν)→ IGBλRρ

2
R(2ν + 2)⊕ IGBλRρ

2
R(2ν)⊕ IGBλRρ

2
R(2ν − 2)

and if we extend this action to the tensor algebra we get a map

Un+1 : p⊗(n+1) ⊗ IGBλRρ
2
R(0)→

n+1⊕
ν=0

IGBλRρ
2
R(2ν). (4.169)

here we may replace n+ 1 by any positive integer k.
The group K∞ acts on p⊗(n+1) by the adjoint action and the above map

is of course a K∞ homomorphism. On the right hand side we can project to
the highest K∞ type IGBλRρ

2
R(2n+ 2) = D†λ∨(2(n+ 1)), i.e. we get a surjective

homomorphism

Πn+1 : p⊗(n+1) ⊗ IGBλRρ
2
R(0)→ D

†
λ∨(2(n+ 1)), (4.170)

again we may replace n+ 1 by any positive integer k.

We have the standard surjective homomorphism p⊗(n+1) → Symn+1(p), let
us denote its kernel by In+1. For any f ∈ IGBλRρ

2
R and X ′, X ′′ ∈ p we have

(X ′X ′′ −X ′′X ′)f = [X ′, X ′′]f.
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Since the Lie bracket [X1, X2] ∈ k it follows easily that Πn+1 vanishes on the
kernel In+1. Hence our homomorphism Πn+1 factors over the quotient, i.e.

Πn+1 : Symn+1(p)→ D†λ∨(2(n+ 1)).

We change our notation for the basis of p⊗ C (see 4.19) and put

X1 = 1
2 (

(
0 1
1 0

)
− i⊗

(
0 i
−i 0

)
);X0 = 1√

2
(

(
1 0
0 −1

)
)

X−1 = 1
2 (

(
0 1
1 0

)
+ i⊗

(
0 i
−i 0

)
)

(4.171)

We have the following proposition

Proposition 4.1.7. The 2n+ 3 elements

{Xn+1
1 , X0X

n
1 , . . . , X

n+1
0 , Xn

0X−1, . . . , X
n+1
−1 }

form a basis of a K∞ invariant subspace of Symn+1(p) ⊗ C. This subspace is
irreducible, it is isomorphic to M2n+2. These basis elements are weight eigen-
vectors for the action of Tc.

Proof. The representation of the algebraic group K∞ on p extends to a repre-
sentation of the algebraic group Sl2/C on p ⊗ C. As such it is isomorphic to
the symmetric square Sym2(C2) of the tautological representation, i.e. to the
moduleM2 of polynomials aU2 + bUV + cV 2. We get an isomorphismM2

∼−→
p ⊗ C by sending U2 7→ X1, UV 7→ X0, V

2 7→ X1.. Now Sym2n+2(M2) ⊂
Symn+1(Sym2(C2)) = Symn+1(p ⊗ C) is an invariant submodule. It has the
basis U2n+2−νV ν and clearly

U2n+2−νV ν = Xn+1−ν
1 Xν

0 if ν ≤ n+ 1 and Xn+1ν
0 X1

and this implies the assertion.

This implies that the elements

{Πn+1(X
n+1
1 ϕ†λ,0),Πn+1(X0X

n
1 ϕ
†
λ,0), . . . ,Πn+1(X

n
0X1ϕ

†
λ,0),

Πn+1(X
n+1
0 , ϕ†λ,0),Πn+1(X

n
0X−1ϕ

†
λ,0), . . . ,Πn+1(X

n+1
−1 ϕ†λ,0)}

(4.172)

form a basis of D†λ∨(2(n+ 1)).

We change our notation slightly. For m < 0 we put Xm
1 := X−m−1 and for

0 ≤ ν ≤ 2n + 2 we put [ν] = ν if ν ≤ n + 1 and [ν] = 2n + 2 − ν if ν ≥ n + 1.
Then our above basis can be written as

{. . . ,Πn+1(X
[ν]
0 Xn+1−ν

1 ϕ†λ,0), . . . }ν=0,...,ν=2n+2, (4.173)

these are the weight vectors of weight 2(n+1− ν)γ. We introduce the notation

ϕ†λ,n+1−ν := Πn+1(X
[ν]
0 Xn+1−ν

1 ϕ†λ,0)

These functions ϕ†λ,µ are Whittaker functions they satisfy

ϕ†λ,µ(

(
1 x+ iy
0 1

)
g) = e2πixϕ†λ,µ(g).



4.1. HARISH-CHANDRA MODULES WITH COHOMOLOGY 193

They are not K∞ invariant, but they are weight vectors for the torus, we have

ϕ†λ,µ(g

(
e2πiφ 0
0 1

)
) = e4µπiφϕ†(g) (4.174)

and more generally ϕ†λ,ν(gk) =
∑
µ aν,µ(k)ϕ

†
λ,µ(g) where the aν,µ(k) are the

matrix coefficients ofM2n+2. (above proposition).

We consider the restriction of the functions ϕ†λ,ν to the maximal torus T (R).
Since IGBλRρ

2
R(2ν) has a central character, it suffices to consider the restriction

ϕ†λ,ν → {z 7→ ϕ†λ,ν(

(
z 0
0 1

)
), }

we write z = te2πiφ. This means that we map the module IGBλRρ
2
R to its Kir-

illow realisation IG,κB λRρ
2
R ⊂ C∞(C×). (See [32] , §2 5.), especially this map is

injective.
We express the restriction of these functions ϕ†λ,ν to the torus T ad(R)>0 in

terms of Bessel functions. We introduce the notation

IGB [2k] :=

k⊕
ν=0

IGBλRρ
2
R(2ν) (4.175)

For any Whittaker function ϕ† ∈ IGB [2k]
† we have

Πk+1(X1ϕ
†)(

(
t 0
0 1

)
) =

ϕ†(

(
t 0
0 1

)
exp(ϵX1))− ϕ†(

(
t 0
0 1

)
)

ϵ

We write X1 = 1
2 (

(
0 2
0 0

)
+

(
0 2i
0 0

)
+

(
0 −1
1 0

)
+

(
0 −i
i 0

)
) the last two

matrices are in k so they preserve the K∞ type and

ϕ†(

(
t 0
0 1

)
exp(ϵ(

(
0 1
0 0

)
+

(
0 i
0 0

)
))) =

ϕ†(exp(ϵ(

(
0 t
0 0

)
+

(
0 it
0 0

)
)

(
t 0
0 1

)
) = ϕ†(((

(
1 ϵ(t+ it)
0 1

)(
t 0
0 1

)
) =

e2πiϵtϕ†(

(
t 0
0 1

)
) = ϕ†(

(
t 0
0 1

)
)(1 + itϵ))

and hence

Πk+1(X1ϕ
†)(

(
t 0
0 1

)
) = 2itϕ†(

(
t 0
0 1

)
)

If ϕ† is a weight vector, i.e. ϕ†(

(
te2πiφ 0

0 1

)
) = e2πiµφϕ†(

(
t 0
0 1

)
) then X1ϕ

†

is also a weight vector with weight e2πi(µ+2)φ.

This gives us

ϕ†λ,n+1(

(
t 0
0 1

)
) = (Xn+1

1 ϕ†λ,0)(

(
t 0
0 1

)
) =

22n+3π2n+3

Γ(n+ 2)
tn+2Kn+1(2πt)

(4.176)
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Since this function is of weight 2n+ 2 we can forget the projection Πn+1.

We have recursion formulas for the Bessel functions

d
dtKn(t) = − 1

2 (Kn−1(t) +Kn+1(t))

Kn+1(t) = Kn−1(t) +
2n
t Kn(t)

(4.177)

A straightforward calculation yields

t
d

dt
tµKν(2πt) = (µ− ν)tµKν(2πt)− 2πtµ+1Kν−1(2πt) (4.178)

Then ϕ†λ,n+1−ν(

(
t 0
0 1

)
) = Πn+1(X

[ν]
0 Xn+1−ν

1 ϕ†λ,n+1(

(
t 0
0 1

)
)). We get

Xn+1−ν
1 ϕ†λ,n+1(

(
t 0
0 1

)
)) =

(2π)n+2+|n+1−ν|

Γ(n+ 2)
t1+|n+1−ν|Kn+1(2πt).

To this we apply X
[ν]
0 . The operator X0 is t ddt , then the above formula gives

Πn+1(X
[ν]
0 Xn+1−ν

1 ϕ†λ(

(
t 0
0 1

)
)) = Πn+1(· · ·+

22n+3π2n+3

Γ(n+ 2)
tn+2Kn+1−ν(2πt))

(4.179)

where the dots · · · are a sum of those terms which are in the image of IG,κB λRρ
2
R[2n]

hence they vanish under Πn+1. and consequently

ϕ†λ,µ(

(
t 0
0 1

)
) =

22n+3π2n+3

Γ(n+ 2)
tn+2Kµ(

(
t 0
0 1

)
) (4.180)

where µ runs from n+ 1 to −n− 1 and of course Kµ = K−µ.

Decompositions of tensor products

If λ1 = n1γ, λ2 = n2γ are two highest weights and if we consider the highest
weight modulesMλ1,Q,Mλ2,Q then it is a classical theorem that

Mλ1,Q ⊗Mλ2,Q =M(n1+n2)γ,Q ⊕M(n1+n2−2)γ,Q ⊕ · · · ⊕M(n1−n2)γ,Q . . .

where we assume n1 ≥ n2, we put n = n1 + n2. Our next aim is to give an
explicit homomorphism

jn1,n2 :M♭
(n1+n2)γ

↪→M♭
n1γ ⊗M

♭
n2γ (4.181)

in other words we want to write explicit tensors for the images of e♭µ, µ =
n1 + n2, n1 + n2− 2, . . . ,−n1− n2. Of course we send the highest weight vector

e♭n1+n2
7→ ′e

♭
n1
⊗ ′′e♭n2

, this vector is the highest weight vector in the direct

summand M♭
(n1+n2)γ,Q ⊂ M(n1+n2)γ,Q ⊕ · · · ⊕ M(n1−n2)γ,Q. In terms of the

explicit realisation of these modules we can say

Xn1+n2 7→ ′X
n1 ⊗ ′′Xn2 (4.182)
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Now we apply the matrix

(
1 0
t 1

)
to it, here we may think of t as an in deter-

minant. Then we see

(X + tY )n1+n2 7→ (′X + t ′Y )n1 ⊗ (′′X + t ′′Y )n2 (4.183)

We expand on both sides and find∑n1+n2

µ=0

(
n1+n2

µ

)
tµXn1+n2−µY µ 7→

∑n1+n2

µ=0 tµ(
∑
µ1,µ2:µ1+µ2=µ

(
n1

µ1

)′Xn1−µ1 ′Y
µ1 ⊗

(
n2

µ2

)′′Xn2−µ2 ⊗ ′′Xn2−µ2 ′′Y µ2)

(4.184)

We remember the definition of the basis elements e♭µ, the formula above gives
us

jn1,n2
: e♭µ 7→

∑
µ1+µ2=µ

′e
♭
µ1
⊗ ′′e♭µ2

(4.185)

We apply this to the SU(2) -module

(g/k)∨F ⊗Mnγ ⊗F Mnγ̄ ,

this module contains a unique copy ofM♭
2n+2. We write

g/k∨F = F 0e♭2 ⊕ F 0e♭0 ⊕ F 0e♭−2, Mn1γ,F =
⊕
µ1

Fe♭µ1
, Mn2γ,F =

⊕
µ2

F ē♭µ2

(4.186)

where of course µi run from ni to − ni and µi ≡ ni mod 2. Then our copy of
M♭

2n+2 comes with the basis

ẽ♭µ =
∑

µ0+µ1+µ2=µ

0e
♭
µ0
⊗ e♭µ1

⊗ ē♭µ2

We have the invariant pairing (4.10) and this tells us that we can choose as our
generator cangen

ω†,•λ =

n1+n2+2∑
µ=0

ϕ†λ,µ ⊗ (
∑

µ0+µ1+µ2=n+1−µ

0e
♭
µ0
⊗ e♭µ1

⊗ ē♭µ2
) (4.187)

This generator is only determined up to a scalar.

The ”canonical” choice of the generator

Again we can fix the generator by requiring that certain Mellin transforms have
a prescribed value at certain prescribed arguments.

We do essentially the same as in the case A). We can interpret ω†,1 as a
differential 1- form on G(R) with values inM♭

λ⊗C. We can restrict this 1-form
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to the torus T ad(R)>0 = {
(
t 0
0 1

)
|t > 0}.We have the ”cycles” eµ1

⊗eµ2
∈M∨λ .

We evaluate ω†,1(X0) on these ”cycles” and get

< ω†,•λ (X0), eµ1 ⊗ eµ2 > (

(
t 0
0 1

)
) = ϕ†λ,n−µ1−µ2

(

(
t 0
0 1

)
)tµ1+µ2 =

c′nt
n+2+µ1+µ2Kn−µ1−µ2

(2πt)

(4.188)

Later -when we study the special values of L-functions- we need to know the
value∫ ∞
0

< ω†,•(X0), eµ1
⊗ eµ2

> (

(
t 0
0 1

)
)
dt

t
= c′n

∫ ∞
0

tn+2+µ1+µ2Kn−µ1−µ2
(2πt)

dt

t
(4.189)

We also will need formulas for the Mellin transforms of these Bessel functions.
Here we quote [1] .p.331,334 and recall two of them (the second one for later
use) ∫∞

0
Kν(2πt)t

s dt
t = 2s−2(2π)−sΓ( s−ν2 )Γ( s+ν2 )∫∞

0
Kµ(2πt)Kν(2πt)t

s dt
t = 2s−3(2π)−sΓ( s−µ−ν2 )Γ( s−µ+ν2 )Γ( s+µ−ν2 )Γ( s+ν+µ2 )

(4.190)

the first one gives us∫ ∞
0

tn+2+µ1+µ2Kn−µ1−µ2
(2πt)

dt

t
=

Γ(n+ 1)

4π

Γ(µ+ 1)

πµ+1
(4.191)

We observe that the first factor in front does not depend on µ1, µ2. So we

renormalise our generator and for µ = −n− 1,−n, . . . , n+ 1 we now put Phi

ϕ†λ,µ(t) =
4π

Γ(n+ 1)
tn+2Kn+1−µ(t) (4.192)

and with this choice of ϕ†λ,ν the ω†,1 (4.187) is now our canonical generator.
Now our formula (4.188) becomes

< ω†,•(X0), eµ1
⊗ eµ2

> (

(
t 0
0 1

)
) =

Γ(µ+ 1)

πµ+1
(4.193)

Hence we may just choose µ1 = µ2 = 0 to nail down ω†,•, it is not clear to
me whether or not it is a ”miracle” that the above relation holds for all values
of µ1, µ2.

The definition of the periods

The inner cohomology with rational coefficients is a semi-simple module under
the action of the Hecke algebra (See Theorem 3.1.1). We find a finite Galois-
extension F/Q such that we get a decomposition into absolutely irreducible
modules

H•! (Γ\H,M̃λ ⊗ F ) =
⊕
πf

H•! (Γ\H,M̃λ ⊗ F )(πf ) (4.194)
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Since we assume that Γ = Gl2(Z), hence the πf are homomorphisms πf : H →
OF . (See see 3.20) In the case A) such an isotypical piece is a direct sum

H•! (Γ\H,M̃λ ⊗ F )(πf ) = H1
! (Γ\H,M̃λ ⊗ F )(πf )+ ⊕H1

! (Γ\H,M̃λ ⊗ F )(πf )−
(4.195)

where both summands are of dimension one over F.

In case B) we get

H•! (Γ\H,M̃λ ⊗ F )(πf ) = H1
! (Γ\H,M̃λ ⊗ F )(πf )⊕H2

! (Γ\H,M̃λ ⊗ F )(πf )
(4.196)

and again the summands are one dimensional.

We have defined the module of integral classes H1
!, int(Γ\H,M̃♭

λ ⊗ OF ) ⊂
H1

! (Γ\H,M̃♭
λ ⊗ F ) (See 2.72) and we consider the intersection

H•!, int(Γ\H,M̃♭
λ⊗OF )(πf )ϵ = H•! (Γ\H,M̃λ⊗F )(πf )ϵ∩H1

!, int(Γ\H,M̃♭
λ⊗OF )

is a locally free OF -module of rank 1, here ϵ = ±, • = 1( resp. ϵ = 1, • ∈ {1, 2}).
We assume for simplicity that it is actually free, otherwise the formulation of
the following becomes slightly more complicated. (See below). On the set of πf
which occur in this decomposition we have an action of the Galois group (See
(3.21)) and the Galois action yields canonical isomorphisms

Φσ,τ : H•!, int(Γ\H,M̃♭
λ ⊗OF )(σπf )ϵ

∼−→ H•!, int(Γ\H,M̃♭
λ ⊗OF )(τπf )ϵ

(4.197)

We choose generators σe•ϵ (πf ) and a simple argument using Hilbert theorem 90

shows that we can assume the consistency condition H90

Φσ,τ (e
•
ϵ (
σπf )) = e•ϵ (

τπf ) (4.198)

We get isomorphisms

F•(ω†ϵ ) :W(σπf )⊗F C ∼−→ H•ϵ (Γ\H,Mλ∨)(σπf )⊗F C (4.199)

which are defined by Armand1

F•(ω†ϵ ) : hσπf
7→ [F(ω†ϵ × hσπf

)], (4.200)

here F(ω†ϵ × hσπf
) is viewed as a closed Mλ ⊗ C valued differential via the

identification 4.101, and [. . . ] is its class in cohomology.
Since we assume that πf is unramified everywhereW(πf ) we have the canon-

ical basis element h
(0)
f =

∏
p h

(0)
σπp

where h
(0)
σπp is defined by the equality 4.126.

Then we have obviously σ(h
(0)
πp ) = h

(0)
σπp

.
Then we define the periods by the relation

F(ω†ϵ )(h
(†,0)
σπf

) = Ω•(ϵ× πf , )e•(ϵ× πf ) (4.201)
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These periods depend of course on our choice of the ”canonical” generator ω†ϵ .
We see that the numbers Ω•(σπf , ϵ) are well defined up to an element in O×F .

If H•!, int(Γ\H,M̃♭
λ ⊗OF )(πf )ϵ is not a free OF module, then we can find a

covering by two open subsets U1, U2 of Spec(OF ) such that H•!, int(Γ\H,M̃♭
λ ⊗

⊗OF (Ui))(ϵ × πf ) is free. We can apply the above procedure and we get
periods Ω1(ϵ × πf , ),Ω2(ϵ × πf ), they are well defined up to an element in
OF (U1)

×,OF (U2)
× respectively. The ratio of these periods is an element in

OF (U1 ∩ U2)
×.

Perhaps at this point we should introduce the sheaf P of periods over F .
For any open subset U ⊂ Spec(OF ) we put P∗F (U) := C×/OF (U)×, this is a
Zariski preasheaf on Spec(OF ), the associated sheaf is our sheaf of periods PF .

Now we can interpret the generators e•(ϵ × πf ) as (the unique) section in
the sheaf of generators modulo O×F and then the equation (4.201) makes sense
without the assumption on the class number.

These considerations will play a role in the following chapter.

Some little subtleties

We should notice that these periods are defined with respect to the ”small”
sheaves M̃♭

λ. We have M̃♭
λ ⊂ M̃λ and therefore the map

H•!, int(Γ\H,M̃♭
λ ⊗OF )(πf )ϵ → H•!, int(Γ\H,M̃λ ⊗OF )(πf )ϵ (4.202)

may not be surjective. (The reader should not be puzzled by the fact that
M̃♭

λ ⊗ F = M̃λ ⊗ F.) Therefore, if we would work with M̃λ instead and define
the periods Ω•,#(σπf , ϵ) by the same procedure. Then we will get a relation

Ω•,#(σπf , ϵ) = d(πf , ϵ)Ω
•(σπf , ϵ)

where d(π,, ϵ) is a non zero factor in OF . The primes in these factors are the
divisors of the binomial coefficients.

But we could also with the module H•(Γ\H,M̃♭
λ ⊗ OF ) int,!(πf )ϵ and de-

fine the periods with respect to this module. Again these periods will integral
multiples of the periods Ω•(πf , ϵ).

In the following Chapter 5 we will discuss the rationality results (Manin and
Shimura) which relate these periods to special values of the L− function (see
section 5.6). But we also want to discuss this method not only for cuspidal
classes but also for the Eisenstein cohomology classes, therefore we close this
Chapter with a brief account of these Eisenstein classes.

4.1.12 The Eisenstein cohomology class

In section 3.3.6 we claimed the existence of the specific cohomology class Eisn ∈
H1(Γ\H,Mn). In this section we give s construction of this class on transcen-
dental level, i.e. we construct a cohomology class Eis(ωn) ∈ H1(Γ\H,Mn⊗C)
whose restriction to the boundary H1(∂(Γ\H),Mn⊗C) is a given class ωn. For
the general theory of Eisenstein cohomology we refer to Chapter 9.

We start from our highest weight moduleMλ and we observe that by defi-
nition we have an inclusion



4.1. HARISH-CHANDRA MODULES WITH COHOMOLOGY 199

i0 : IGBλ
w0

R ↪→ C∞(Γ+
∞\G+(R))

where

Γ+
∞ = {

(
t1 m
0 t1

)
|m ∈ Z ; t1 = ±1}.

Therefore we get an isomorphism

H1(g,K∞, I
G
Bλ

w0

R ⊗Mλ⊗C) ∼−→ H1(Γ+
∞\H,Mλ⊗C) = H1(∂(Γ\H),Mλ⊗C)

The inclusion i0 sends the module IGBλ
w0

R into a space of functions which are
Γ+
∞ invariant under left translations. Therefore we get a homomorphism

Eis : IGBλ
w0

R → C∞(Γ\Sl2(R))

if we make it invariant by summation, i.e. for f ∈ IGBλ
w0

R we define ESeries

Eis(f)(x) =
∑

Γ+
∞\Sl2(Z)

f(γx) (4.203)

Of course we have to discuss the convergence of this infinite series. We could
quote H. Jacquet: ”Let us speak about convergence later”, but here is a short
interlude discussing this issue.

Interlude: Here is the point: We twist our module, for any complex number
z ∈ C we consider the induced module

IGBλ
w0

R |ρ|
z ⊂ C∞(Γ+

∞\Sl2(R))

and again we write down the Eisenstein series. Now it an elementary exercise
to show that the map (

a b
c d

)
7→ (c, d)

provides a bijection

Γ+
∞\Sl2(Z)

∼−→ {(c, d) ∈ Z× Z | (c, d) coprime }/{±1} = P1(Q).

An element x ∈ Sl2(R) can be written as x =

(
t u
0 t−1

)
k with k ∈ K∞. Then

for f ∈ IGBλ
w0

R |ρ|z

f(γx, z) =

f(

(
a b
c d

)(
t u
0 t−1

)
k, z) =

f(

(
(c2t2 + (cv + dt−1)2)−1/2 ∗

0 (c2t2 + (cv + dt−1)2)1/2

)
)f(k(γg)k, z) =

(c2t2 + (cv + dt−1)2)−n−2−zf(k(γg)k).
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Since |f(k(γ)k)| is bounded the series

Eis(f, z)(x) =
∑

Γ+
∞\Sl2(Z)

f(γx, z)

is converging if ℜ(z) >> 0 and then it is also holomorphic in z. Selberg and
others showed that it can be extended to a meromorphic function in the entire
complex plane, it is now a special case of a theorem of Langlands [61]. If now
the function x 7→ Eis(f, z)(x) is holomorphic at z = 0 then we do not care
about convergence and we simply define

Eis(f)(x) =
∑

Γ+
∞\Sl2(Z)

f(γx) = Eis(f, 0)(x).

In our special case it is easy to see that the series is convergent at z = 0 provided
we have n > 0 and this is the only case where we will apply this construction.
End interlude

This provides a homomorphism

Eis• : H1(g,K∞, I
G
Bλ

w0

R ⊗Mλ ⊗ C))→ H1(Γ\H,Mλ ⊗ C) (4.204)

In 4.80 we wrote down a distinguished generator ωn = E∨+⊗e−n ∈ H1(g,K∞, I
G
Bλ

w0

R ⊗
Mλ ⊗ C) and we define

Eisn = Eis(ωn)

Proposition 4.1.8. The restriction of Eisn to H1(∂(Γ\H),Mλ ⊗ C) is the
class [Y n]

We have a brief look at the Eisenstein cohomology in case B). We refer
to the Final remark at the end of chapter 2. For our imaginary field we take
again F = Q[i],Γ = Sl2(Z[i]) and Mλ = Mn1 ⊗Mn2 . We assume the parity
condition n1 ≡ n2+2 ≡ 0 mod 4. In chapter 4 we get from a rather elementary
computation

H1(∂(Γ\H3),M̃λ) int = Z[i]e01 ⊕ Z[i]e10. (4.205)

If we extend the scalars to C we can represent these classes by differential forms.
To do so we apply the two reflections s1, s2 to our highest weight λ = n1γ1+n2γ2
and get the two characters

s1 · λ = (−n1 − 2)γ1 + n2γ2; s2 · λ = n1γ1 + (−n2 − 2)γ2

These two characters yield characters si · γ : B(R) → C× and the we have

seen that the two classes E1,∨
+ ⊗ e

(1)
−n1−2 ⊗ e

(2)
n2 , e

(1)
n1 ⊗ E2,∨

+ ⊗ e
(2)
−n−2 provide

differential forms esi·λ and cohomology classes in H1(g,K∞, I
G
Bsi ·λ⊗Mλ) (see

Thm.4.1.2 Since we have IGBsi · λ ⊂ C∞(B(Z)\G(R)) we get the two classes
esi·λ ∈ H1(∂(Γ\H3),Mλ ⊗ C). Hence we know

H1(∂(Γ\H3),M̃λ ⊗ C) = Ces1·λ ⊕ Ces2·λ (4.206)

but a close inspection shows that the es1·λ are equal to the e[i, j].
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Again we invoke the theory of Eisenstein series, we assume n1 > n2 and
define the Eisenstein intertwining operator

Eis : IGBs1 · λ→ (g,K∞)∞(B(Z)\G(R))) ; {g 7→ f(g} 7→ {g 7→
∑

α∈B(Z)\G(Z)

f(ag)}.

(4.207)

It is not difficult to check that this infinite series is convergent (locally uniformly
on compact sets),but we can also define the Eisenstein operator if n2 > n1 by
analytic continuation.

Hence we get the Eisenstein cohomology class

Eis(es1·λ) ∈ H1(Γ\H3,Mλ ⊗ C). (4.208)

and if we restrict again to the boundary we get by a standard computation

r((Eis(es1·λ)) = es1·λ + c(λ)es2·λ (4.209)

where a priori c(λ) ∈ C. Hence we conclude that dim r(H1(Γ\H3,M̃λ ⊗ C) ≥
1 but then it follows from proposition 2.1.2 that this dimension is equal to
one.Therefore

r(H1(Γ\H3,Mλ ⊗ C)) = C · (es1·λ) + c(λ)es2·λ) = r(H1(Γ\H3,Mλ)⊗Q(i) C
(4.210)

and then we can conclude that c(λ) ∈ Q[i) actually it lies in Q.

The computation of the constant term of the Eisenstein series yields an ex-
plicit and very simple formula for c(λ), which we explain next. (see for instance
[?]:

Let IQ(i) be the group of fractional ideals of Q(i), we can view our characters
si · λ ∈ X∗(T × Q[i) also as Hecke characters si · λ : IQ(i) → Q(i)×, where we
exploit the fact that every fractional ideal is principal and define

s1 · λ(a) = si · λ((α)) = α−n1−n2 ᾱn2 ; s2 · λ(a) = si · λ((α)) = αn1 ᾱ−n2−2

(4.211)

Here we need the above parity condition.

To these Hecke characters we attach (completed) Hecke L functions

Λ(si · λ, z) :=
Γ(z)

(2π)z

∏
p

1

1− si·λ(p)
Npz

=
Γ(z)

(2π)z

∑
a

si · λ(a)
Naz

, (4.212)

here the p run over all prime ideals and a = (a+bi) runs over all integral ideals in
Z[i] and of course Na = (a2+ b2). It is well known that these Hecke L functions
are meromorphic in the entire complex z-plane with possible first order pole at
z = 0,−1, . . .

Then our simple formula for the restriction of the Eisenstein class to the
boundary cohomology is

r(H1(Γ\H3,Mλ ⊗ C)) = C · (es1·λ +
Λ(s1 · λ,−1)
Λ(s1 · λ, 0)

es2·λ) (4.213)
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here we have to observe that the two poles at z = −1 and z = 0 cancel out.

We comment a little bit on this result. We put 4k = n1+n2+2. and consider
the Hecke character ϕk : a = (a+ bi)→ (a− bi)4k and the completed Hecke L−
function

Λ(ϕk, z) :=
Γ(z)

(2π)z

∏
p

1

1− ϕk(p)
Npz

=
Γ(z)

(2π)z

∑
a

ϕk(a)

Naz
=

Γ(z)

(2π)z
L(ϕk, z). (4.214)

It is well known that the series is converging for ℜ(z) >> 0 and can be analyt-
ically continued into the entire z-plane. It satisfies the functional equation

Λ(ϕk, z) = 24k+1−zΛ(ϕk, 4k + 1− z) (4.215)

In his paper [53] Hurwitz considered the period integral

Ω =

∫ 1

0

1√
1− x4

dx = 2.62206.....

and proved that for all values of k > 0 the number

E4k =
L(ϕk, 4k)

Ω4k
∈ Q (4.216)

Hurwitz proved many more things about these numbers, his main concern was
an analogue of the von Staudt-Clausen theorem.

We now observe that for for s1 ·λ = (−n1−2)γ1+n2γ2 we have the equality

L(ϕk, 4k − n2) = L(s1 · λ, 0) (4.217)

and hence we get

Λ(s1 · λ,−1)
Λ(s1 · λ, 0)

= 2π
L(s1 · λ,−1)
L(s1 · λ, 0)

= 2π
L(ϕk, 4k − 1− n2)
L(ϕk, 4k − n2)

∈ Q (4.218)

and this implies that

πν
L(ϕk, 4k − ν)

Ω4k
∈ Q for ν = 0, 1, . . . 4k − 2 (4.219)

This has been proved by Damerell [24] and is one of the first instances of
Deligne’s conjecture [26].



Chapter 5

Application to Number
Theory

5.1 Modular symbols, L-values and
denominators of Eisenstein classes.

In this chapter we want to restrict to the case Γ = Sl2(Z) or Γ = Sl2(O) where O
is the ring of integers of an imaginary quadratic extension. We refer to section
4.1.1 then this means that Γ = G(Z). Our coefficient systems will be obtained
from the modulesMλ. We assume that we have d = 0 and hence n ≡ 0 mod 2
in case A), and d1 = d2 = 0, n1 = n1 in case B). This has the effect that
λ∨ = λ.

We want to study the pairing

H1
c (Γ\X,M̃♭

λ)×H1(Γ\X, ∂(Γ\X),Mλ)→ Z, (5.1)

5.1.1 Modular symbols attached to a torus in Gl2.

In a first step we construct ( relative) cycles in C1(Γ\X,Mλ), C1(Γ\X, ∂(Γ\X),Mλ).
Our starting point is a maximal torus T/Q ⊂ G/Q and we assume that it is
split over a real quadratic extension F/Q. Then the group of real points

T (R) = R× × R×

act on H and H̄ and it has two fixed points r, s ∈ P1(F ). There is a unique
geodesic (half) circle C̄r,s ⊂ H̄ joining these two points. Then T (R) acts tran-
sitively on Cr,s = C̄r,s \ {r, s}. We have two cases:

a) The torus T/Q is split. Then the two points r, s ∈ P1(Q). Here for instance
we can take r = 0, s = ∞, then the geodesic circle is the line {iy, y > 0} and
the torus is the standard diagonal split torus.

b) Here {r, s} ∈ P1(F )\P1(Q), then r, s are Galois-conjugates of each other.
Our torus T/Q is given by a suitable embedding

j : RF/Q(Gm/F ) = T ↪→ Gl2/Q.

203
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In case a) we can choose any reasonable homeomorphism [0, 1]
∼−→ [0,∞] -

for instance x 7→ x/(1− x)− and then we get a one chain

σ : [0, 1]
∼−→ C̄r,s = R>0 ∪ {0} ∪ {∞}, σ(0) = r, σ(1) = s ∈ ∂(H̄),

and for any m ∈ M we can consider the image of σ ⊗ m ∈ C1(H̄) ⊗ M in
C1(Γ\H̄, ∂(Γ\H̄),M). By definition this is a cycle and hence we get a (relative)
homology class

[C̄r,s ⊗m] ∈ H1(Γ\H̄, ∂(Γ\H̄),Mλ), (5.2)

it is easy to see that it does not depend on the choice of σ.

In case b) we have T (Q)
∼−→ F×. Then the group T (Q)∩Γ is a subgroup of

finite index in the group of units O×F = {ϵ0}× {±1}, where ϵ0 is a fundamental
unit. Hence

ΓT = T (Q) ∩ Γ = {ϵT } × µT (5.3)

where ϵT is an element of infinite order and µT is trivial or {±1}. This element
ϵT induces a translation on Cr,s. The quotient Cr,s/ΓT is a circle. If we pick
any point x ∈ Cr,s then [x, ϵTx] ⊂ Cr,s is an interval and as above we can

find a σ : [0, 1]
∼−→ [x, ϵTx], σ(0) = x, σ(1) = ϵTx, As before we can consider

the 1-chain σ ⊗ m ∈ C1(H) ⊗ M. Its boundary boundary is the zero chain
{x} ⊗m− {ϵTx} ⊗m. If we look at the images in C•(Γ\H,Mλ) then

∂1(σ ⊗m) = σ(0)⊗ (m− ϵTm) = r ⊗ (m− ϵTm) (5.4)

Hence we see that σ⊗m is a 1 -cycle if and only ifm = ϵTm and hencem ∈MT .
We have constructed homology classes

[Cr,s ⊗m] ∈ H1(Γ\H,Mλ) for all m ∈M
<ϵT>
λ =MT

λ (5.5)

PDualsec

5.1.2 Evaluation of cuspidal classes on modular symbols

The following issue will also be discussed in greater generality and more sys-
tematically in part II-

We start from a highest weight λ = nγ for simplicity we assume n to be even
and d = 0. Then λ = λ∨, we consider the two modulesMλ andM♭

λ. Then we
have the pairings

H1(Γ\H,M̃♭
λ)×H1(Γ\H,Mλ)→ Z

H1
c (Γ\H,M̃♭

λ)×H1(Γ\H, ∂(Γ\H),Mλ)→ Z
(5.6)

These two pairings are non degenerate if we invert 6 and divide by the torsion
on both sides. (See [book]).
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We have the surjective homomorphismH1
c (Γ\H,M̃♭

λ)→ H1
! ((Γ\H,M̃♭

λ) and

over a suitably large finite extension F/Q we have the isotypical decomposition

H1
! ((Γ\H,M̃♭

λ ⊗ F ) =
⊕
πf

H1
! ((Γ\H,M̃♭

λ ⊗ F )(πf ) (5.7)

where the πf are absolutely irreducible. (See Theorem 5.7, of course here it
does not matter whether we work withMλ orM♭

λ) . We choose an embedding
ι : F ↪→ C, in section 4.1.11 we constructed the isomorphism

F1
1 (ω

†
ϵ ) :W(πf )⊗F,ι C→ H1

ϵ,!(Γ\H,M̃♭
λ ⊗ F )(ιπf ) (5.8)

The space W(πf ) is a very explicit space. Since we want to stick to the case

Kf = K
(0)
f it is of dimension one and is generated by the element

h†,0πf
=
∏
p

h†,0p ∈
∏
p

W(πp) where h
†,0
p (e) = 1 (5.9)

Now we want to compute the value

< F1
1 (ω

†
ϵ )(h

†,0
πf

)), C̄r,s ⊗m) > . (5.10)

here we assume that the torus is split, i.e. r, s ∈ P1(Q). Then this expression is
problematic. The argument Cr,s on the left lives in the relative homology group,
hence the argument on the right should be in H1

c (Γ\H,Mn ⊗C). Of course we
can lift the class F1

1 (ω
†
ϵ )(h

†,0
πf

) to a class

˜F1
1 (ω

†
ϵ )(h

†,0
πf ) ∈ H1

c (Γ\H,Mn ⊗ C).

Then

<
˜F1

1 (ω
†
ϵ × h†,0πf ), Cr,s ⊗m >

makes sense, but the result may depend on the lift. We have paircusp

Proposition 5.1.1. If ∂(Cr,s⊗m) gives the trivial class in H0(∂(Γ\H̄),M̃λ⊗C)

then <
˜F1

1 (ω
†
ϵ )(h

†,0
πf ), Cr,s ⊗ m > does not depend on the lift, i.e. the value

< F1
1 (ω

†
ϵ )(h

†,0
πf

), Cr,s ⊗m > is well defined.

Proof. This is rather clear, we refer to the systematic dscussion in 2.1.10.

Now we compute the value of the pairing. We realised the relative homol-
ogy class by a Mλ valued 1-chain σ ⊗m. The cohomology class F1

1 (ω
†
ϵ )(h

†,0
πf

)

is represented by
˜F1(ω†ϵ × h†,0πf ). (See 4.101 ,6.4). We consider the pullback

σ∗(
˜F1(ω†ϵ × h†,0πf )), since F1(ω†ϵ × h†,0πf

) is rapidly decaying if x → 0 or x → 1

this gives us a 1-form with values inMλ ⊗ C on the closed interval [0, 1].
We claim - under the assumption [∂(Cr,s ⊗m)] = 0-that

< F1
1 (ω

†
ϵ )(h

†,0
πf

), Cr,s ⊗m >=

∫ 1

0

< σ∗(
˜F1(ω†ϵ × h†,0πf ),m > . (5.11)
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We have to be a little bit careful at this point. Of course our assumption
implies that the integral class [∂(Cr,s⊗m)] ∈ H0(∂(Γ\H̄),M̃λ) is a torsion class,
Let δr,s(m) be the order of this torsion class, hence we can write

defdel

δr,s(m)∂Cr,s ⊗m = ∂cr,s with cr,s ∈ C1(∂(Γ\H̄,Mλ). (5.12)

This 1-chain lies in the boundary of the Borel-Serre compactification (see sec-
tion 1.2.7). We consider the special case that T is the standard split diagonal
torus, this means that {r, s} = {0,∞}. We can pull the cycle δr,s(m)Cr,s ⊗
m − cr,s into the interior Γ\H by a simple homotopy, this means we replace it
by δr,s(m)[iy−10 , iy0] ⊗m − ∂δr,s(m)(y0) where y0 >> 1 and δr,s(m)(y0) is the
1-chain cr,s on the level y0. Then

δr,s(m) < F1
1 (ω

†
ϵ )(h

†,0
πf

), Cr,s ⊗m >=< F1
1 (ω

†
ϵ )(h

†,0
πf

), δr,s(m)[iy−10 , iy0]⊗m− cr,s(y0) > .

(5.13)

where now the value on the right hand side is an integral over the truncated
cycle. Since the differential form F1

1 (ω
†
ϵ )(h

†,0
πf

) is rapidly decreasing if y0 →∞ we

get δr,s(m) < F1
1 (ω

†
ϵ )(h

†,0
πf

), Cr,s⊗m >= lim
y0→∞

< F1
1 (ω

†
ϵ )(h

†,0
πf

), δr,s(m)[iy−10 , iy0]⊗
m > .

We use the above identification [0, 1] = [0,∞] and our 1- chain is given by
the map

σ : [0,∞]→ H̄ : t 7→
(
t 0
0 1

)
i = ti ∈ H̄, (5.14)

especially σ(0) = 0 and σ(∞) = i∞. The group T (R) acts transitively on the
open part C0,i∞. This action can be used to trivialize the tangent bundle. The
tangent space at i ∈ H is identified to the subspace p ⊂ g (see 4.1.11) and H

2
is a generator of the tangent space of C0,i∞ at one. Using the translations by
T (R) we get an invariant vector field on C0,i∞. If we identify C0,i∞ = R>0, an
easy calculation shows that this vector field is t ddt = D∗.

Now an easy calculation (See 6.4) shows that ( here ef is the identity element
in G(Af ))

˜F1(ω†ϵ × h†,0πf )(D
∗)((

(
t 0
0 1

)
ef ) = ρλ(

(
t−1 0
0 1

)
)F1(ω†ϵ×h†,0πf

)(
H

2
)((

(
t 0
0 1

)
, ef ))

and our integral in the formula above becomes∫ ∞
0

< ρλ(

(
t−1 0
0 1

)
)F1(ω†ϵ (

H

2
)× h†,0πf

)(

(
t 0
0 1

)
, ef ),m >

dt

t
. (5.15)

Our formulas in 4.1.11 give

ω†±(
H

2
) =

1

8
(ψ̃n+2 ⊗ (X − Y ⊗ i)n ± ψ̃−n−2 ⊗ (X + Y ⊗ i)n (5.16)

this is an element in D̃±λ ⊗Mλ. We apply F1 to ω†±(
H
2 )× h

†,0
πf

) and evaluate at

(

(
t 0
0 1

)
, ef ). Applying F1 means that we have to sum over a ∈ Q× but since
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h†,0πf
) is the Whittaker function attached to the unramified spherical function

only the terms with a ∈ Z can be non zero. Hence get

F1(ω†±(
H
2 )× h

†,0
πf

)(

(
t 0
0 1

)
, ef ) =

1

8

∑
a∈Z;a̸=0

(ψ̃n+2(

(
at 0
0 1

)
)⊗ (X − Y ⊗ i)n ± ψ̃−n−2(

(
at 0
0 1

)
)⊗ (X + Y ⊗ i)nh†,0πf

(a)

(5.17)

We have seen that ψ̃n+2(

(
at 0
0 1

)
) = 0 if at < 0 and ψ̃n+2(

(
−at 0
0 1

)
) =

ψ̃−n−2(

(
at 0
0 1

)
) and therefore our Fourier expansion becomes

1

8

∞∑
a=1

ψ̃n+2(

(
at 0
0 1

)
)⊗ ((X − Y ⊗ i)n ± in(X + Y ⊗ i)n)h†,0πf

(a) (5.18)

We have

ρλ(

(
t−1 0
0 1

)
)((X − Y ⊗ i)n ± in(X + Y ⊗ i)n) =

n∑
ν=0

(
n

ν

)
t
n
2−νXνY n−ν(in+ν ± i−ν),

(5.19)

we remember that n is even, then the last factor is equal to i−ν((−1)n
2 +ν ± 1).

and this is i−ν times 2 or 0 or -2, depending on the choices of signs and the
parity of n2 and ν. The elements eν = XνY n−ν form the dual basis to the basis(
n

n−ν
)
Xn−νY ν of M♭

λ, this implies: If we choose m = en−ν in our expression

above then pairinf

< ρλ(

(
t−1 0
0 1

)
)((X − Y ⊗ i)n ± in(X + Y ⊗ i)n),m >= t

n
2−ν(in−ν ± i−ν)

(5.20)

and hence we have to compute

in+ν ± i−ν

8

∫ ∞
0

∞∑
a=1

ψ̃n+2(

(
at 0
0 1

)
)t

n
2−νh†,0πf

(a)
dt

t
. (5.21)

We remember ψ̃n+2(

(
t 0
0 1

)
) = t

n
2 +1e−2πt, we exchange summation and

integration and after some innocent substitutions we get

in+ν ± i−ν

8

∫ ∞
0

tn−ν+1

(2π)n−ν+1
e−t

dt

t

∞∑
a=1

h†πf
(a)a

n
2

aν
(5.22)
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We refer to the discussion of the L -function attached to πf and get∫ ∞
0

tn−ν+1

(2π)n−ν+1
e−t

dt

t

∞∑
a=1

h†πf
(a)a

n
2

aν
= Λcoh(π, n+ 1− ν) (5.23)

Of course some question concerning convergence have to be discussed, for
this we refer to the proof of Theorem 4.1.7.

In the case that ν ̸= 0, n we know that ∂(C0,∞ ⊗ Xn−νY ν) is a torsion

element in H0(∂(Γ\H,M̃) and therefore the value of the integral is also the
evaluation of the cohomology class F1

1 (ω
†
ϵ )(h

†,0
πf

) on a integral homology class.
We get

< F1
1 (ω

†
ϵ )(h

†,0
πf
, C0,∞ ⊗XνY n−ν) >=

in+ν ± i−ν

8
Λcoh(π, n+ 1− ν) (5.24)

In the factor in front on the right side we have ϵ = ±1, this factor is zero unless
we have ϵ = (−1)n

2−ν (see 4.161) and then it is simply ± 1
4 .

If the class number of OF is one we defined the periods Ω(ϵ×πf ), (see 4.1.11)
we then know that

1

Ω(ϵ× πf )
F1

1 (ω
†
ϵ )(h

†,0
πf

) ∈ H1(Γ\H,M̃ ⊗OF ) (5.25)

and hence we can conclude for ν ̸= 0, n ratint

δ0,∞(eν)

Ω(ϵ× πf )
Λcoh(π, n+ 1− ν) ∈ OF (5.26)

If the class number is not one we have to interpret Ω(ϵ×πf ) as section in the
sheaf of periods and OF has to be replaced by the monoid of integral ideals in
OF . Notice that the term δ0,∞(eν) has only prime factors < n. We will improve
this term after the following discussion of the cases ν = 0, ν = n.

This argument fails for ν = 0, n because ∂(C0,∞⊗Xn) =∞⊗ (Xn− Y n) is
not a torsion class in H0(Γ\H,M̃λ) (See section 3.2.1). We apply the Manin-
Drinfeld principle to show that the rationality statement also holds for ν = 0, n
but we will get a denominator.

We pick a prime p then we know that the class [∂(C0,∞⊗Xn)] is an eigenclass
modulo torsion for Tp, i.e.

Tp([∂(C0,∞ ⊗Xn]) = (pn+1 + 1)[∂(C0,∞ ⊗Xn)] (5.27)

This implies that ∂(Tp([C0,∞⊗Xn])− (pn+1 +1)[(C0,∞⊗Xn])) is a torsion
class, hence we can apply proposition 5.1.1 and get that the value of the pairing
is equal to the integral against the modular symbol. If we exploit the adjointness
formula for the Hecke operator then we get

< Tp([C0,∞ ⊗Xn])− (pn+1 + 1)[(C0,∞ ⊗Xn]),F1
1 (ω

†
ϵ ⊗ h†,0πf

) >

=
∫∞
0

(< C0,∞ ⊗Xn,F1
1 (ω

†
ϵ ⊗ Tp(hπf

)†,0) >

−(pn+1 + 1) < C0,∞ ⊗Xn,F1
1 (ω

†
ϵ )⊗ ((h†,0πf

) >))dtt

(5.28)
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We have Tp(h
†,0
πf

) = aph
†,0
πf

where ap ∈ OF and hence we get

< Tp([C0,∞ ⊗Xn])− (pn+1 + 1)[(C0,∞ ⊗Xn]),F1
1 (ω

†
ϵ ⊗ h†,0πf

) >

= (ap − (pn+1 + 1))Λcoh(πf , n+ 1)
(5.29)

It is again the Manin-Drinfeld principle that tells us that for almost all primes
p the number ap − (pn+1 + 1) ̸= 0. Let (Z(n)) be the ideal in OF generated by
these numbers. of these numbers. We will see (Theorem 5.1.2) that

(numerator(ζ(−1− n))) ⊂ (Z(n)) (5.30)

Ribet gives an argument in [74] that yields even equality.

Now we can conclude: For ν = 0, n+ 1 ratintE

Z(n)

Ω(ϵ× πf )
Λcoh(π, n+ 1− ν) ∈ OF (5.31)

We want to have an estimate of the denominator ideal of

Λcoh(π, n+ 1− ν)
Ω(ϵ× πf )

for all values of ν. For ν = 0, ν = n we have the estimate Z(n). For the
other values of ν we have the δ0,∞(eν), but we can do much better. No-
tice that this denominator ideal is an ideal in OF . We pick a prime p < n
which then may divide δ0,∞(eν). We work locally at p and replace Z by Z(p),
the local ring at p. It follows from proposition 3.3.1 that for 0 < ν < n the
torsion element [∂(C0,∞ ⊗ e∨ν ))] is annihilated by a sufficiently high power of
the Hecke operator Tmp . Hence we see that Tmp (c) can be lifted to an element

T̃mp (c) ∈ H1(∂(Γ\H),M̃♭
λ ⊗ Z(p)). Hence we can lift Tmp (C0,∞ ⊗ e∨ν )) to an

element ˜Tmp (C0,∞ ⊗ e∨ν )) ∈ H1(Γ\H,M̃♭
λ ⊗ Z(p)). We know that

< F1
1 (ω

†
ϵ )(h

†,0
πf
, ˜Tmp (C0,∞ ⊗ e∨ν )) ∈ OF ⊗ Z(p). (5.32)

Again we can use the adjointness property of Tp and we get

πf (Tp)
m < F 1

1 (ω
†
ϵ )(h

†,0
πf
, (C0,∞ ⊗ e∨ν )) >=

πf (Tp)
m

Ω(ϵ× πf )
Λcoh(π, n+ 1− ν) ∈ OF ⊗ Z(p)

(5.33)

We consider the ideal n(p, ν, πf ) = (δ0,∞(eν), πf (Tp)
m) ⊂ OF ⊗Z(p). This ideal

may be much larger than (δ0,∞(eν).We put n(ν, πf ) =
∏
p n(p, ν, πf ) for ν ̸= 0, n

and for convenience n(n) = n(0) = Z(n)
Then we get the final result: Noch mal genauer diskutieren und vorher

sagen was δ0,∞(eν) ist

Theorem 5.1.1. For any πf which occurs in (5.7) and any ν = 0 . . . n the ideal

n(ν, πf )

Ω(ϵ× πf )
Λcoh(π, n+ 1− ν)) (5.34)

is an integral ideal in OF . The primes p dividing n(ν, πf ) lie over primes p < n.
Furthermore these primes are not ordinary for πf , i.e if p divides n(ν, πf ) then
πf (Tp) ≡ 0 mod p.
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These rationality results go back to Manin and Shimura, In principle we may
say that also the integrality assertion goes back to these authors, but here we
have to take into account the fine tuning of the periods. (Deligne conjecture?
Later if we speak about motives)

It is clear that this compatible with the action of the Galois group Gal(F/Q),
for σ ∈ Gal(F/Q) we have

σ(
1

Ω(ϵ× πf )
Λcoh(π, n+ 1− ν)) = 1

Ω(ϵ× πf )
Λcoh(σπ, n+ 1− ν)) (5.35)

There is still a slightly different way to look at the theorem above. For each
choice of ϵ = ± we can look at the array of numbers

{Λ̇coh(π, n+ 1− ν)), . . . }
ν=0,...n;(−1)

n
2

−ν=ϵ
(5.36)

Since we may assume that n ≥ 10 it is easy to see that not all of the entries
entries can be zero, hence we can project the arrays to a point Λ(ϵ, πf ) in the
projective space Pd(ϵ,n)(C). Then a slightly weakened form of our results asserts

Λ(ϵ, πf ) ∈ Pd(ϵ,n)(F ) = Pd(ϵ,n(OF ) and σ(Λ(ϵ, πf )) = Λ(σ(ϵ, πf ))) (5.37)

In this formulation we do not see the period. But now we can fix the period
as a section in the period sheaf: We require that the arrays of ideals

{. . . , n(ν, πf )

Ω(ϵ× πf )
Λcoh(π, n+ 1− ν), . . . }

ν=0,...n;(−1)
n
2

−ν=ϵ
(5.38)

is an ideal of integral and coprime ideals. This period is not necessarily equal
to our period we defined earlier, but they may only differ at primes p dividing
n(ν, πf ).

We pay so much attention to the careful choice of the periods because we

conjecture that the factorisation of the numbers
n(ν,πf )
Ω(ϵ×πf )

Λcoh(π, n+ 1− ν)) has
influence on the structure of the integral cohomology of some other groups. We

expect that prime ideals p ⊂ OF which divide an ideal
n(ν,πf )
Ω(ϵ×πf )

Λcoh(π, n+1−ν))
will also divide the denominator of an Eisenstein class on the symplectic group.
A prototype of such an assertion has been discussed in [42]. We will resume this
discussion in part 2.

In the following section we discuss another ( simpler ) example, where we
see the relationship between divisibility of certain L-values and denominators
of Eisenstein classes.

EvalEis

5.1.3 Evaluation of Eisenstein classes on capped modular
symbols

In the following we consider cohomology with coefficients inMn. We have seen

that MDEis

H1(Γ\H,M̃♭
λ ⊗Q) = H1

! (Γ\H,M̃♭
λ ⊗Q)⊕QEisn (5.39)



5.1. MODULAR SYMBOLS, L-VALUES AND DENOMINATORS OF EISENSTEIN CLASSES.211

where Eisn is defined by the two conditions

r(Eisn) = [Y n] and Tp(Eisn) = (pn+1 + 1)Eisn, (5.40)

for all Hecke operators Tp, in our special situation it suffices to check the second
condition for p = 2. Earlier we raised the question to determine the denominator
of the class Eisn, i.e. we want to determine the smallest integer ∆(n) > 0 such
that ∆(n)Eisn becomes an integral class.

To achieve this goal we compute the evaluation of Eisn on the first homology
group, i.e we compute the value < c,Eisn > for c ∈ H1(Γ\H,Mλ). We have the
exact sequence

H1(∂(Γ\H),Mλ)
j−→ H1(Γ\H,Mλ)→ H1(Γ\H, ∂(Γ\H),Mλ)

δ−→ H0(∂(Γ\H),Mλ)
(5.41)

It follows from the construction of Eisn that < c,Eisn >∈ Z for all the elements
the image of j. Therefore we only have to compute the values < c̃ν ,Eisn >,
where c̃µ are lifts of a system of generators {cµ} of ker(δ).

In our special case the elements C0,∞ ⊗ eν , where ν = 0, 1 . . . , n form a set
of generators of H1(Γ\H, ∂(Γ\H),Mλ). (Diploma thesis Gebertz). We observe:

The boundary of the element C0,∞ ⊗ e∨n(= ±C0,∞ ⊗ e∨0 ) is an element of

infinite order in H0(∂(Γ\H),M̃♭
λ),

The boundary of an elements C0,∞⊗e∨ν with 0 < ν < n are torsion elements

in H0(∂(Γ\H),M̃♭
λ), This implies

Proposition 5.1.2. The elements C0,∞ ⊗ m ∈ H1(Γ\H, ∂(Γ\H),M̃♭
λ) with

∂(C0,∞ ⊗m) = 0 are of the form

c = C0,∞ ⊗ (

ν=n−1∑
ν=1

aνe
∨
ν ); with aν ∈ Z

Now it seems to be tempting to choose for our generators above the C0,∞⊗e∨ν ,
but this is not possible because for δ(C0,∞⊗e∨ν ) is not necessarily zero, it is only
a torsion element. So we see that it is not clear how to find a suitable system
of generators.

To overcome this difficulty we use the Hecke operators. If we want to de-
termine the denominator ∆(n) we can localize, i.e. for each prime p we have
to determine the highest power pd(n,p) which divides ∆(n). As usual we write
d(n, p) = ordp(∆(n)). We replace the ring Z by its localization Z(p) and re-
place all our cohomology and homology groups by he localized groups. In other
words we have to check we have to find a set of generators {. . . , c̃ν . . . }ν ⊂
H1(∂(Γ\H),M̃♭

λ ⊗ Z(p)) and compute the denominator < c̃ν , Eisn >∈ Z(p).

It follows from proposition 3.3.1 that for 0 < ν < n the torsion element
∂(c) = ∂(C0,∞ ⊗ (

∑ν=n−1
ν=1 aνe

∨
ν )) is annihilated by a sufficiently high power of

the Hecke operator Tmp and hence we see that Tmp (c) can be lifted to an element

T̃mp (c) ∈ H1(∂(Γ\H),M̃♭
λ ⊗ Z(p)). Now

< T̃mp (c), Eisn >=< c, Tmp ( Eisn) >= (pn+1 + 1)m < c, Eisn > (5.42)
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and hence ordp(< T̃mp (c), Eisn >) = ordp(< c, Eisn >). Hence we get

Proposition 5.1.3. If ν runs from 1 to n− 1 and if ˜Tmp (C0,∞ ⊗ e∨ν ) is any lift
of Tmp (e∨ν ) then

d(n, p) = −min
(
min
ν

( ordp(< ˜Tmp (C0,∞ ⊗ e∨ν ), Eisn >)), 0
)

Proof. This is now obvious.

.

CMS

5.1.4 The capped modular symbol

Therefore we have to compute < ˜Tmp (C0,∞ ⊗ eν), Eisn >). At this point some
meditation is in order. Our cohomology class Eisn is represented by a closed
differential form Eis(ωn) (See (???)) and this differential form lives on Γ\H
a hence provides a cohomology class in Γ\H. But we know that the inclusion
provides an isomorphism

H1(Γ\H,M̃♭
λ)

∼−→ H1(Γ\H̄,M̃♭
λ)

and since ˜Tmp (C0,∞ ⊗ eν) ∈ H1(Γ\H̄,Mλ) we can evaluate the cohomology class

Eis(ωn) on the cycle. But we want get this value < ˜Tmp (C0,∞ ⊗ eν), Eisn > by
integration of the differential form against the cycle. This is problematic because
the cycle has non trivial support in ∂(Γ\H), and on this circle at infinity the
differential form is not really defined.

There are certainly several ways out of this dilemma. The Borel-Serre bound-

ary is a circle Γ∞\R where Γ∞ = {±Id}× {T m∞ } and T∞ =

(
1 1
0 1

)
. The cycle

is the sum of two 1-chains:

˜Tmp (C0,∞ ⊗ eν) = C0,∞ ⊗mν + [i∞, T∞i∞]⊗ Pν

(recall definition of Borel-Serre construction from earlier chapters) where

∂(C0,∞ ⊗mν) =∞⊗ (mν − wmν) +∞⊗ (1− T∞)Pν = 0

One possibility is to deform the cycle ˜Tmp (C0,∞ ⊗ eν) and ”pull” it into the

interior Γ\H. Recall that C0,∞ is the continuous extension of t 7→
(
t 0
0 1

)
i from

R×>0 to H to a map from [0,∞] → H̄. We choose a sufficiently large t0 ∈ R×>0

and restrict C0,∞ to [t−10 , t0] we get the one chain C0,∞(t0)⊗mν . The boundary
of this 1-chain is ∂(C0,∞(t0)⊗mν) = t0 ⊗ (mν −wmν). Now we can do at this
level the same thing as what we do at infinity we get a 1-cycle

˜C0,∞(t0)⊗mν = C0,∞(t0)⊗mν + [t0, T∞t0]⊗ Pν
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This 1-cycle clearly defines the same class as ˜Tmp (C0,∞ ⊗ eν) and since it is a

cycle in C1(Γ\H,M̃) we get

< ˜Tmp (C0,∞ ⊗ eν), Eisn >=
∫
C0,∞(t0)⊗mν+[t0,T t0]⊗Pν

Eisn (5.43)

The value of this integral does not depend on t0 and we check easily that for

both summands the limit for t0 →∞ exists. We find that Nenner1

< ˜Tmp (C0,∞ ⊗ e∨ν ), Eis(ωn) >=

∫∞
0

< Tmp (C0,∞ ⊗ e∨ν ), Eisn > dt
t + lim

t0→∞

∫ 1

0

< [it0, it0 + x]⊗ Pν , Eisn > dx

(5.44)

For the first integral we have∫ ∞
0

< Tmp (C0,∞ ⊗ e∨ν ), Eisn >
dt

t
= (1+ pn+1)m

∫ ∞
0

< C0,∞ ⊗ e∨ν , Eisn >
dt

t

and (handwritten notes page 49)∫ ∞
0

< C0,∞ ⊗ e∨ν , Eisn >
dt

t
=
ζ(−ν)ζ(ν − n)
ζ(−1− n)

(5.45)

remember this holds for 0 < ν < n.
For the second term we have to observe that it depends on the choice of

Pν . We can replace Pν by Pν + V where V T = V. (This means of course that
V = aXn) Then [V ] ∈ H0(∂(Γ\H),M̃λ) and

lim
t0→∞

∫ 1

0

< [it0, it0+x]⊗(Pν+V ), Eisn > dx = lim
t0→∞

∫ 1

0

< [it0, it0+x]⊗Pν , Eisn > dx+ < V, ωn > .

Therefore the second term is only defined up to a number in Z(p) but this is ok
because we are interested in the p-denominator in (5.44).

We have to evaluate the expression < [it0, it0+x]⊗(Pν+V ), Eisn > . Using
the formula (6.4) we find

< [it0, it0 + x]⊗ (Pν + V ), Eisn >=<

(
t0 x
0 1

)
Pν , Eis(ωn)(E+)(

(
t0 x
0 1

)
>

(5.46)

We know that for t0 >> 1 the Eisenstein series is approximated by its constant
term, i.e.

Eis(ωn)(E+)(

(
t0 x
0 1

)
) = t−n0 Y n +O(e−t0) (5.47)

On the other hand we can write Pν(X,Y ) =
∑
p
(ν)
µ Xn−µY µ with p

(ν)
µ ∈ Z.

Then (
t0 x
0 1

)
Pν = tn0p

(ν)
0 Xn + . . . (5.48)
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and

<

(
t0 x
0 1

)
Pν , Eis(ωn)(E+)(

(
t0 x
0 1

)
) >= p

(ν)
0 +O(e−t0) (5.49)

and hence we see that the limit exists and we get

lim
t0→∞

∫ 1

0

< [it0, it0 + x]⊗ (Pν + V ), Eisn > dx = p
(ν)
0 = Pν(1, 0) (5.50)

and hence we have the final formula

< ˜Tmp (C0,∞ ⊗ eν), Eisn >=
ζ(−ν)ζ(ν − n)
ζ(−1− n)

+ Pν(1, 0) mod Z(p). (5.51)

Therefore we have to compute Pν(1, 0) mod Z(p). Recall that for any ν, ν ̸=
0, n we have to choose a very large m > 0 such that the zero chain Tmp (eν) is
homologous to

Tmp (eν) ∼ {∞} ⊗ Lν = {∞} ⊗ (1− T )Qν (5.52)

with Qν ∈Mn. Then we find Pν = Qν ±Qn+1−ν .
Hence we have to compute Tmp (eν). A straightforward but lengthy compu-

tation yields

Qν(1, 0) ∈

{
Z(p) if (p− 1) ̸ | ν + 1

1
p ν+1

p−1

+ Z(p) else
(5.53)

Now we are ready to compute d(n, p) , it is the maximum over all ν denomest

d(n, p, ν) = − ordp(
ζ(−ν)ζ(ν − n)
ζ(−1− n)

+ (Qν(1, 0) +Qn−ν(1, 0)) mod Z(p)).

(5.54)

We analyse this expression. We exploit the old theorems of Kummer and
of von Staudt-Clausen. For an odd positive integer m the number ζ(−m) is a
rational number. The theorem of von Staudt-Clausen asserts{

ζ(−m) ∈ Z(p) if p− 1 ̸ | m+ 1

ζ(−m) + 1
pm+1

p−1

∈ Z(p) if p− 1|m+ 1
(5.55)

We distinguish cases.
I) We have (p− 1) ̸ | n+2, then ordp(ζ(−1−n)) = ordp(Numeratorζ(−1−

n)), and p− 1 can divide at most one of the two numbers ν + 1 or n+ 1− ν.
Ia) Let us assume it divides neither of them. Then in (5.54)

d(n, p, ν) = − ordp((ζ(−ν)ζ(ν − n)) + ordp(ζ(−1− n)) (5.56)
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Ib) Alternatively we assume that p − 1|ν + 1 we write ν + 1 = pα−1ν0,
with pα−1||ν + 1. Then the p-denominator of ζ(−ν) is pα and ν − n ≡ −n − 1
mod (p− 1)pα−1. The Kummer congruences imply

ζ(ν − n) = ζ(−n− 1) + pαZ(ν, n) ; with Z(ν, n) ∈ Z(p) (5.57)

and then mod Z(p)

ζ(−ν)ζ(ν−n)
ζ(−1−n) + (Qν(1, 0) +Qn−ν(1, 0)) =

ζ(−ν)(1 + pα Z(ν,n)
ζ(−1−n) ) +Qν(1, 0) = ζ(−ν)pα Z(ν,n)

ζ(−1−n)

(5.58)

This implies that

d(n, p, ν) = ordp(Numerator(ζ(−1− n))− ordp(Z(ν, n),

the factor in front is a unit.

II) We have p − 1|n + 2. Then p does not divide Numerator(ζ(−1 − n))
and hence we have to prove d(n, p, ν) = 0 for all ν. This is obvious if p −
1 does not divide ν + 1 and hence also does not divide n+ 1− ν.

Therefore assume p − 1|ν + 1. We write ν + 1 = (p − 1)xpa−1, n + 1 − ν =
(p − 1)ypb−1 with a > 0, b > 0 and x, y prime to p. We assume a ≤ b and
compute

ζ(1− (p− 1)xpa−1)ζ(1− (p− 1)ypb−1)

ζ(1− (p− 1)pa−1(x+ ypb−a))
mod Z(p) (5.59)

For a value ζ(1−m) with p− 1|m we write m = (p− 1)xpk−1 with (x, p) = 1.
We apply again the von Staudt-Clausen theorem

ζ(1−m) = ζ(1− (p− 1)xpk−1 = − 1

xpk
+ Z(x) where Z(x) ∈ Z(p)

In our case this gives -let us assume a < b - for our expression above

− 1
(xpa + Z(x))(− 1

(ypb
+ Z(y))

− 1
(x+ypb−a)pa

+ Z(x+ ypb−a))
= −

(x+ ypb−a)( 1x + paZ(x))( 1
ypb

+ Z(y))

1 + pa(x+ ypb−a)Z(x+ pb−ay)

(5.60)

The denominator is a unit, we need to know it modulo pb, the numerator is a
sum of eight terms we can forget all the terms in Z(p). Then the above expression
simplifies

1
ypb

+ 1
xpa + pa−bxZ(x)

y

1 + paxZ(x+ ypb−a)
(5.61)

We want this to be equal to 1
ypb

+ 1
xpa . Hence we have to verify the equality

1

ypb
+

1

xpa
+
pa−bxZ(x)

y
= (

1

ypb
+

1

xpa
)(1 + paxZ(x+ ypb−a)) (5.62)
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and this comes down to

pa−b
xZ(x)

y
≡ pa−bxZ(x+ ypb−a)

y
mod Z(p) (5.63)

and this means

Z(x) ≡ Z(x+ ypb−a) mod pb−a

and this congruence is easy to verify.
Basically the same argument works if a = b. Then it can happen that x+y ≡

0 mod p. Then we have to write x+ y = pcz. Then (5.60) changes into

(− 1
xpa + Z(x))(− 1

ypa + Z(y))

− 1
zpa+c + Z(z))

= −
zpc( 1x + paZ(x))( 1

ypa + Z(y))

1 + pa+czZ(z)
. (5.64)

We ignore the denominator then the only non integral term is

(x+ y)
1

x

1

ypa
=

1

xpa
+

1

ypa

We see that in case p− 1 |n+ 2 the prime p does not divide the numerator
of ζ(−1− n) and that the prime p does not divide the denominator ∆(n).

If p − 1 ̸ | n + 2 then p must be an irregular prime. We look at the maxi-
mal value of d(n, p, ν) in (5.54), this means we look for the minimum value of
ordp((ζ(−ν)ζ(ν − n)) for ν = 1, 3, . . . n2 . We claim that this minimum value
is actually equal to zero. Now it is extremely likely that this is true, because
simply too many random integers have to be divisible by p. But as always it is
not easy to prove.

For our given prime p the index of irregularity of p is the number of even
numbers k with 2 ≤ k ≤ p − 3 such that p|ζ(1 − k) = Bk

k , it is denoted by
i(p). Probabilistic considerations suggest that i(p) = O(log(p)/ log log(p)), but
this can not be proved at the present time. (Again a Wieferich dilemma).
Therefore it seems to be very plausible that always i(p) < n

4 . Then not all of
the n

4 numbers ζ(−ν)ζ(ν − n) can be divisible by p. The above assertion that
i(p) < n

4 is certainly true for all primes p ≤ 163577833. (See [20]). In the same
paper the authors assert that for the above set of primes the largest the index
of irregularity i(p) ≤ 7 and i(32012327) = 7.

There is a way out of this dilemma. In his paper [21] L. Carlitz proves a
very crude estimate for the index of irregularity. This estimate says that

i(p) <
p+ 3

4
− log(2)

log(p)

p− 1

4
(5.65)

and this implies that i(p) < p−3
4 − 2 provided p > 100.

If we now assume assume n > p then we see that not all the p−3
2 numbers

ζ(−ν)ζ(ν−n) can be divisible by p and hence we proved d(n, p) = ordp(ζ(−1−
n) and hence the theorem below under this assumption.

denomEis
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Theorem 5.1.2. If Γ = Sl2(Z) then the denominator of the Eisenstein class in
H1(Γ\H,M̃♭

λ) is the numerator of ζ(−1− n).

Proof. We have to remove the assumption p < n. We use Hida’s method of
p-adic interpolation, we refer to the approach in [41]. In section 3.3.12 we
explain how the fact pδ||∆(n) is reflected in the structure of the Hecke-module
H1

ord(Γ\H,M̃♭
λ ⊗ Z/pδZ). In [41] we prove that we have an isomorphism of

Hecke modules

H1
ord(Γ\H,M̃♭

λ ⊗ Z/pδZ) ∼−→ H1
ord(Γ\H,M̃♭

λ′ ⊗ Z/pδZ)

provided we have λ ≡ λ′ mod pδ i.e. n ≡ n′ mod pδ. Hence we can replace n
by an n′ > p and apply the previous argument.

A slightly weaker version of this theorem has been proved by Haberland in
[33]. Somewhat later C. Kaiser proved a more general version in his Diploma
thesis and in about the same time the theorem was proved in my class.

The above theorem can be generalised: For instance we may pass to con-
gruence subgroups of Gl2(Z), then the special values of the ζ− function have to
be replaced by special values of Dirichlet L functions. Another situation where
the above method might lead to some success is provided by Hilbert modular
varieties, i.e. G/Q = RF/Q(Gl2/F ) and F/Q a totally real field.

The denominators of the Eisenstein cohomology classes can be studied for
arbitrary semi simple (reductive) groups G/Q. Roughly our general expectation
is that there is a connection between the prime factorisation of certain special
values of L-functions and denominators of Eisenstein classes.

A first example is discussed in [42], where we consider then cohomology
of the group Sp2(Z) with coefficients in a very specify coefficient system and
we make a conjecture about the denominator of an Eisenstein class. But it
is only a conjecture, our method to determine the denominator (-integrating
the Eisenstein class against a cycle-) seems to fail. Nevertheless we give some
heuristic speculations about mixed Tate motives which support this expectation.

On the other hand we know that the denominators create congruences and
for the special case above and some others these congruences have been checked
experimentally in v.d. Geer’s article in [19]. In many other cases the congruences
have been checked experimentally -for some finite number of Hecke operators-
[6], [8], but they never check the denominators. Later G. Chenevier and J.
Lannes prove the congruences in some cases [22].

If we want to check experimentally the conjectures about the denominators,
we have to broaden our program with Gangl, which we wrote for the operator
T2 and the cohomology of Sl2(Z). We have to write algorithms for Sp2(Z) or
some other groups, see also [44]. Several attempts have been made, but this
seems to be a very difficult task. Since we believe that know the interesting
values of ℓ we hope that some mod ℓ version might work. (See Chap. 3). .

The case B)

We may discuss the denominator issue also in case B), here the situation is
slightly different. We go back to the end of chapter 4 . Even if we start from
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the integral class es1·λ we can not expect that the the restriction of the the
Eisenstein class is integral, simply because the number c(λ) (see 4.213) may not
be integral. We have to to multiply the Eisenstein class by the denominator δ(λ)
of c(λ) and then the restriction r(δ(λ)Eis(es1·λ)) ∈ H1(∂(Γ\H3),M̃λ). This
class generates a direct summand in the boundary cohomology and it plays now
the role of the class ωn in case A) I think that only now it is a reasonable to ask

What is the denominator D(λ) of the class δ(λ)Eis(es1·λ)? Does this de-
nominator tell us something about the structure of the cohomology as Hecke
module?

. We modify the period Ω4k by a rational factor Nk such that the array

{...., πν L(ϕk, 4k − ν)
Ω4kNk

, ...}ν=1,...4k−3.

is an array of coprime integers. To simplify the notation we put

Lar(ϕk, ν) :=
πνL(ϕk, ν)

Ω4kNk

and call this the arithmetic part of the L value. If now

∆(λ) = gcd(Lar(ϕk, 4k − n2 − 1), Lar(ϕk, 4k − n2))

then

δ(λ) =
1

∆(λ)
Lar(ϕk, 4k − n2)).

This says that the above restriction is equal to

r(δ(λ)Eis(es1·λ)) =
1

∆(λ)
Lar(ϕk, 4k − n2))es1·λ +

1

∆(λ)
Lar(ϕk, 4k − n2 − 1))es2·λ

(5.66)

We want to compute (or better estimate) the denominator. We apply the
techniques from case A), namely testing δ(λ)Eis(es1·λ) against certain modular
symbols (see section 5.1.4). We have a certain supply of (capped) modular
symbols MS, these z̃ ∈ MS yield homology classes z̃ ∈ H1(Γ\H3,M̃λ ⊗ Q),
which have a ”small” denominator n(z̃), here small means that n(z̃) is an integer
which in its prime factorisation has only primes p < 4k (here it is very desirable
to have more precise information). We can evaluate for z̃ ∈MS the integral∫

z̃

Eis(es1·λ) =
L(z̃)

Lar(ϕk, 4k − n2))
, (5.67)

, here L(z̃) is a number which is given as expression in terms of special L- values.
We formulate an assumption, which can be verified with very high probability
by a quick evaluation of L-value

For any (not too small) prime ℓ we can find a z̃ ∈MS suchthatℓ ̸ |L(̃z)
(5.68)

class n(z̃)z̃ we get

< δ(λ)Eis(es1·λ), n(z̃))z̃ > =
n(z̃)

∆(λ)
× unit in Z(ℓ) (5.69)
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and we conclude

ℓ|∆(λ)

n(z̃)
=⇒ ℓ|D(λ), (5.70)

hence we see again that primes which divide L values also may divide denomi-
nators of Eisenstein classes.

We call a prime ℓ large (with respect to 4k) if ℓ > 4k, otherwise it is small.
For large primes we know that they do not divide n(z̃). A highest weight λ is
called unitary if n1 = n2(= 2k − 1). If this is the case the functional equation
(see 4.215) tells us that Lar(ϕk, 4k − n2 − 1) = 2 × Lar(ϕk, 4k − n2) and hence
we get

For a unitary λ we have ∆(λ) = Lar(ϕk, 4k − n2)) (5.71)

and since the value of the Lar function will very large we see a very large
denominator, if k becomes large.

But if λ is not unitary we should not expect ”large” denominators. The two
integers Lar(ϕk, 4k−n2− 1), Lar(ϕk, 4k−n2) will become very large if k grows,
but they are not entangled by the functional equation. Hence it should be a
rare event if a large prime ℓ divides both of them. I produced a table of values
∆(λ) for k = 1, . . . , k = 20 and I did not find any large prime ℓ dividing a ∆(λ)
for a non unitary λ. I found some small primes which divide ∆(λ) but then I did
not investigate the influence of n(z̃), hence I do not know whether they divide
the denominator.

This leads us to the second half of the question above.
If λ is not unitary we know that the inner cohomology with rational co-

efficients is trivial, i.e. we have H•! (Γ\H3,M̃λ ⊗ Q) = 0. We will see in the
next chapter that this phenomenon happens quite frequently (see 6.1.1). More
generally we can say that H•! (Γ\X,M̃λ⊗Q) = 0 if λ is not conjugate self dual.
N. Bergeron and A. Venkatesh proposed to look at the torsion of the cohomol-
ogy, and they formulated some conjectures which in a certain sense say that the
torsion of the cohomology becomes very large. In our special case we have a
theorem by W. Müller and F. Rochon which says

Let Γ ⊂ Sl2(Z[i]) a torsion free congruence subgroup, then for any ϵ > 0 we
find an n(ϵ) such that for all n1 > n(ϵ) and λ = n1γ1 we have

(1− ϵ)e
vol(Γ\H3)

2π n2
1 < #H2

tor(Γ\H3),M̃λ) < (1 + ϵ)e
vol(Γ\H3)

π n2
1 (5.72)

This is Thm. 1.11 in [67], the authors claim that they can also prove a similar
result for weights λ where also n2 ̸= 0. I believe that the assumption of torsion
freeness of Γ is not necessary and I expect that #H2(Γ\H3),M̃λ)tors has some
kind of exponential growing in the variable λ even for Γ = Sl2(Z[i]). But these
methods only give some information about the archimedian size of the torsion,
we do not get information about the primes dividing #H2Γ\H3,M̃λ)tors.

Small primes will occur in #H2(Γ\H3),M̃λ)tors, even with high multiplic-
ity. This is very plausible because, we apply the same arguments as in section
(3.3.1) and get an analogous statement to proposition (3.3.1).This implies that



220 CHAPTER 5. APPLICATION TO NUMBER THEORY

H1(∂(Γ\H3),M̃λ)tors is a finite abelian group and its order is only divisible
by small primes. Then the image of H1(∂(Γ\H3),M̃λ)tors under the boundary
operator in the fundamental exact sequence provides a notable contribution to
H2
c (Γ\H3,M̃λ)tors. But if the ℓ torsion in H2

c (Γ\H3)tors is non zero then it is
also non zero in H2(Γ\H3,M̃λ)tors.

To get further information we have to analyse the following diagram

H1(∂(Γ\H3),M̃λ) tors

↓
H1(Γ\H3,M̃λ)

r−→ H1(∂(Γ\H3),M̃λ)
δ1−→ H2

c (Γ\H3)
↓ ↓ π1

H1(Γ\H3,M̃λ) int
r int−→ H1(∂(Γ\H3),M̃λ) int

∪
Z[i](r(δ(λ)Eis(es1·λ))

∪
Z[i](Lar(ϕk, 4k − n2)Eis(es1·λ))

(5.73)

But let us assume we found is a large prime ℓ which divides ∆(λ) for a non
unitary λ. We tensorize the above diagram by the local ring Z[i] ⊗ Z(ℓ). Then
π1 becomes an isomorphism, hence the class [δ(λ)Eis(es1·λ)] is an element in
H1(∂(Γ\H3),M̃λ)⊗ Z(ℓ). Then our assumption above implies that

Z(ℓ)[i](r(δ(λ)Eis(es1·λ))/Z(ℓ)[i](L
ar(ϕk, 4k−n2)Eis(es1·λ)) = Z(ℓ)[i]/∆(λ)Z(ℓ)[i]..

Therefore the boundary operator δ1 yields an injection

Z(ℓ)[i]/∆(λ)Z(ℓ)[i] ↪→ H2
c (Γ\H3). (5.74)

We have constructed a ℓ torsion class, which owes its existence some divisibility
properties of special L− values.

I remind the reader that as long as λ is not unitary- for k ≤ 20 I did not
find an ℓ|∆(λ) with ℓ > 4k.

The situation changes dramatically if λ is unitary. In this case ∆(λ) is will
become very large. For example if we take k = 20 and λ unitary. then the two
primes

ℓ = 27006373, ℓ = 12621663529147 (5.75)

are divisors of ∆(λ). The map r int is not necessarily injective anymore, and
it can happen, that the image of r int is larger than just Z[i](Lar(ϕk, 4k −
n2)Eis(es1·λ)). To be more precise we take such a prime ℓ and and localise our di-
agram 5.73 at ℓ, then the element [r(Eis(δ(λ)es1·λ))] ∈ H1(∂(Γ\H3),M̃λ)⊗Z(ℓ)

has two options

i) The boundary operator δ1 maps it to a non zero ℓ -torsion class.

ii) The boundary operator sends it to zero and hence this class is in the image
of r.
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In case ii) we get H1
! (Γ\H3),M̃λ) ̸= 0. Our previous discussion in case A)

also yield that we find an eigenclass, which is congruent to the Eisenstein class
mod ℓ.

Now I believe that the case i) almost never occurs. At this point we should re-
turn remorsefully to our algorithm (2.33) and carry out some experimental com-
putations. Actually H. Sengun provides some data in his paper [76] in section
5.1. , he gives a complete list of large primes which divide #H2(Γ\H3,M̃λ)tors
for k = 1, . . . , 13 (His large primes may be smaller than ours). A simple compu-
tation using Poincare duality and some simple exact sequences shows that for a
large prime

ℓ|#H2(Γ\H3,M̃λ)tors ⇐⇒ ℓ|#H2
c (Γ\H3,M̃λ)tors.

Now we can compare this list with the list of large prime dividing ∆(λ) and we
see that these two list do not have any member in common. This shows that
for these few values of k we always have option ii). It would be nice if Sengun’s
list could be extended up to k = 20 his parameter n and our parameter k are
related by 2k = n+ 1.

5.1.5 The Deligne-Eichler-Shimura theorem

In this section the material is not presented in a satisfactory form. One reason is
that it this point we should start using the language of adeles, but there are also
other drawbacks. So in a final version of these notes this section will probably
be removed.

Begin of probably removed section

In this section I try to explain very briefly some results which are specific
for Gl2 and a few other low dimensional algebraic groups. These results con-
cern representations of the Galois group Gal(Q̄/Q) which can be attached to
irreducible constituents Πf in the cohomology. These results are very deep and
reaching a better understanding and more general versions of these results is
a fundamental task of the subject treated in these notes. The first cases have
been tackled by Eichler and Shimura, then Ihara made some contributions and
finally Deligne proved a general result for Gl2/Q.

We start from the group G = Gl2/Q, this is now only a reductive group
and its centre is isomorphic to Gm/Q. Its group of real points is Gl2(R) and
the centre Gm(R) considered as a topological group has two components, the
connected component of the identity is Gm(R)(0) = R×>0. Now we enlarge the
maximal compact connected subgroup SO(2) ⊂ Gl2(R) to the group K∞ =
SO(2) · Gm(R)(0). The resulting symmetric space X = Gl2(R)/K∞ is now a
union of a upper and a lower half plane: We write X = H+ ∪H−.

We choose a positive integer N > 2 and consider the congruence subgroup
Γ(N) ⊂ Gl2(Q)). We modify our symmetric space: This modification may look
a little bit artificial at this point, it will be justified in the next chapter and is in
fact very natural. At this point I want to avoid to use the language of adeles.)

We replace the symmetric space by

X = (H+ ∪H−)×Gl2(Z/NZ).
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On this space we have an action of Γ = Gl2(Z), on the second factor it
acts via the homomorphism Gl2(Z)→ Gl2(Z/NZ) by translations from the left.
Again we look at the quotient of this space by the action of Gl2(Z). This quotient
space will have several connected components. The group Gl2(Z) contains the
group Sl2(Z) as a subgroup of index two, because the determinant of an element

is ±1. The element

(
1 0
0 −1

)
interchanges the upper and the lower half plane

and hence we see

Gl2(Z)\X = Gl2(Z)\((H+ ∪H−)×Gl2(Z/NZ)) = Sl2(Z)\(H+ ×Gl2(Z/NZ)),

the connected components of (H+ × Gl2(Z/NZ)) are indexed by elements g ∈
Gl2(Z/NZ). The stabilizer of such a component is the full congruence subgroup

Γ(N) = {γ =

(
a b
c d

)
|a, d ≡ 1 mod N, b, c ≡ 0 mod N}

this group is torsion free because we assumed N > 2.
The image of the natural homomorphism Sl2(Z) → Gl2(Z/NZ) is the sub-

group Sl2(Z/NZ) (strong approximation), therefore the quotient is by this sub-
group is (Z/NZ)×.

We choose as system of representatives for the determinant the matrices

ta =

(
a 0
0 1

)
, a ∈ (Z/NZ)×. The stabiliser of then we get an isomorphism

SN = Gl2(Z)\(H×Gl2(Z/NZ)) ∼−→ (Γ(N)\H)× (Z/NZ)×.

We consider the cohomology groupsH•c (SN ,M̃n), H
•(SN ,M̃n), H

•(∂SN ,M̃n),
again we have the fundamental long exact sequence and we define H•! (SN ,M̃n)
as before.

To any prime p, which does not divide N we can again attach Hecke opera-
tors. Again we can attach Hecke operators

Tpr = T

(pr 0
0 1

)
, upr 0

0 1




these to the double cosets and using strong approximation we can prove the
recursion formulae ( for this and the following see the next chapter 6). We
define Hp := Z[Tp]. We also have a Hecke algebra Hp for the primes p|N, but
this will not be commutative.anymore. We get an action of a larger Hecke
algebra

Hlarge
N =

⊗
p

′
Hp.

We apply 3.1.1 and find a finite normal extension F/Q such that we get an
isotypical decomposition

H•! (SN ,M̃n ⊗ F ) =
⊕

H•! (SN ,M̃n ⊗ F )(πf ) (5.76)

where πf = ⊗′πp and the πp are isomorphism types of absolutely irreducible
Hp modules. For p ̸ |N this Hp-module is a one dimensional F -vector space
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Hπp
= F and πp is simply a homomorphism πp : Hp → OF . If p|N then the Hp

module is F d(πp) with d(πp) ≥ 1 and the theory of semi-simple algebras tells us
that the map Hp → EndF (Hπp

) is surjective. Hence we know the isomorphism
type πp once we know the two sided ideal I(πp) of this map.

Now we have some input from the theory of automorphic forms

Theorem 5.1.3. The isomorphism type πf is determined by its restriction to
the central subalgebra ⊗p ̸| NHp. Under the action of the group π0(Gl2(R)) =
{±1} decomposes into two eigenspaces

H•! (SN ,M̃n ⊗ F )(πf ) = H•! (SN ,M̃n ⊗ F )+(πf )⊕H•! (SN ,M̃n ⊗ F )−(πf )
(5.77)

and these two eigenspaces are absolutely irreducible of type πf . (These assertions
are summarised under ”strong multiplicity one”)

Of course we have the action of the Galoisgroup Gal(F/Q) on the cohomol-
ogy groups H•! (SN ,M̃n ⊗ F ) and it is clear that this induces an action on the
isomorphism types πf . For σ ∈ Gal(F/Q) we have

σ(H•! (SN ,M̃n ⊗ F )(πf )) = H•! (SN ,M̃n ⊗ F )(σ(πf )). (5.78)

I want to discuss some applications.
A) To any isotypical component πf we can attach an ( so called automorphic)

L function

L(πf , s) =
∏
p

L(πp, s)

where for p ̸ |N we define

L(πp, s) =
1

1− λ(πp)p−s + pn+1ω(πf )(p)p−2s

and for p|N we have

L(πp, s) =

{
1

1−pn+1ω(Πf )(p)p−s if πp is a Steinberg module

1 else

This L-function, which is defined as an infinite product is holomorphic for
ℜ(s) >> 0 it can written as the Mellin transform of a holomorphic cusp form
F of weight n+ 2 and this implies that

Λ(π, s) =
Γ(s)

2πs
L(πf , s)

has a holomorphic continuation into the entire complex plane and satisfies a
funtional equation

Λ(πf , s) =W (πf )(N(πf ))
s−1−n/2Λ(πf , n+ 2− s)

Here W (Πf ) is the so called root number, it can be computed from the πp
where p|N , its value is ±1, the number N(πf ) is the conductor of πf it is a
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positive integer, whose prime factors are contained in the set of prime divisors
of N .

Now we exploit the fact, that the disjoint union of Riemann surfaces Γ(N)\X.
is in fact the space of complex points of the moduli schemeMN → Spec(Z[1/N ]).
This has been explained at several places in the literature. I refer to the second
edition of my book [39] section 5.2.5 where I try to explain that the functor
schemes S → Spec(Z[1/N ]) to elliptic curves over S with N -level structure is
representable, provided N ≥ 3, More precisely we have a smooth quasiprojec-
tive scheme MN → Spec(Z[1/N ]) with one dimensional fibers and we have the
universal elliptic curve with N level structure

E ; {e1, e2}
↓ π
MN

(5.79)

where ei : MN → E are sections which yield a pair of generators of the group
of N -division points. The group Gl2(Z/NZ) acts on the group of N -division
points, this gives an action of Gl2(Z/NZ) on MN . We can define the moduli
stack M1 → Spec(Z) of elliptic curves without level structure. For any N ≥ 3
we have M1 × Spec(Z[ 1N ]) =MN/Gl2(Z/NZ).

On E we have the constant ℓ-adic sheaf Zℓ. For i = 0, 1, 2 we can consider
the ℓ- adic sheaves Riπ∗(Zℓ) on MN . We have the spectral sequence

Hp(MN × Q̄, Rqπ∗(Zℓ))⇒ Hn(E × Q̄,Zℓ).

We can take the fibered product of the universal elliptic curve

E(n) = E ×MN
E × · · · ×MN

E πN−→MN

where n is the number of factors. This gives us a more general spectral sequence

Hp(MN × Q̄, RqπN,∗(Zℓ))⇒ Hn(E(n) × Q̄,Zℓ).

The stalk RqπN,∗(Zℓ)y ) of the sheaf RqπN,∗(Zℓ) in a geometric point y of

MN is the q-th cohomology Hq(E(n)y ,Zℓ) and this can be computed using the
Kuenneth formula

Hq(E(n)y ,Zℓ)
∼−→

⊕
a1,a2...,an

Ha1(Ey,Zℓ)⊗Ha2(Ey,Zℓ) · · · ⊗Han(Ey,Zℓ),

where the ai = 0, 1, 2 and sum up to q. We haveH0(Ey,Zℓ) = Zℓ(0), H2(Ey,Zℓ) =
Zℓ(−1) and the most interesting factor is H1(Ey,Zℓ) which is a free Zℓ module
af rank 2.

This tells us that the sheaf decomposes into a direct sum according to the
type of Kuenneth summands. We also have an action of the symmetric group
Sn which is obtained from the permutations of the factors in E(n) which also
permutes the Kuenneth summands. We are mainly interested in the case q = n
and then we have the special summand where a1 = a2 · · · = an = 1. This
summand is invariant under Sn and contains a summand on which Sn acts
by the signature character σ : Sn → {±1}. This defines a unique subsheaf
Rnπ∗,n(Zℓ)(σ) ⊂ Rnπ∗,n(Zℓ) and hence we get an inclusion
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H1(MN × Q̄, Rnπ∗,n(Zℓ)(σ) ↪→ Hn+1(E(n) × Q̄,Zℓ) (5.80)

and we can do the same thing for the cohomology with compact supports.

Now I claim that
A) The restriction of the etale sheaf Rnπ∗,n(Zℓ)(σ) on MN ×C to the topo-

logical space SN = MN (C) is isomorphic to Mn ⊗ Zℓ. Then the comparison
theorem gives us

H1(MN (C),Mn ⊗ Zℓ)
∼−→ H1(MN × Q̄, Rnπ∗,n(Zℓ)(σ))

B) The Hecke operators Tp for p ̸ |N are coming from algebraic correspon-
dences Tp ⊂MN×MN and induce endomorphisms Tp : H

1(MN⊗Q̄, Rnπ∗,n(Zℓ)(σ))→
H1(MN ⊗ Q̄, Rnπ∗,n(Zℓ)(σ)) which commute with the action of Gal(Q̄/Q) on
the cohomology.

This gives us the structure of a Gal(Q̄/Q)×HΓ on H1(MN (C),Mn ⊗Zℓ).

C) The operation of the Galois group on H1(MN (C),Mn⊗Zℓ) is unramified
outside N and ℓ therefore we have the conjugacy class Φ−1p for all p ̸ |N as
endomorphism of H1(MN (C),Mn ⊗Qℓ).

We choose our normal extension F/Q and a prime l above ℓ. Then an iso-
typical component H1(MN (C),Mn⊗Fl)(πf ) is a Galois module. Let Hπf

be a
vector space over F which is an irreducible HΓ module which is of isomorphism
type πf . Then W (πf ) = HomHγ (Hπf

⊗ El, H
1
! (MN (C),Mn ⊗ Fl) is a Galois

module which is unramified outside N and ℓ

We now apply our theorem 2 to the cohomology H1
! (MN (C),Mn⊗Zℓ), as a

module under this large Hecke algebra. Then the isotypical summands will be
invariant under the Galois group.

Theorem 5.1.4. (Deligne) For all primes p ̸ |N, p ̸= ℓ

tr(Φ−1p |W (πf )) = λ(πp),det(Φ
−1
p |W (πf )) = pn+1ω(πf )(p)

This theorem is much deeper than the previous ones. The assertion a) fol-
lows from the theory of automorphic forms on Gl2 and b) requires some tools
from algebraic geometry. We have to consider the reduction MN × Spec(Fp)
and to look at the reduction of the Hecke operator Tp modulo p. I will resume
this discussion in Chap. V.

We conclude by giving a few applications.
A) To our modular cusp form ∆(z) we attach the Hecke L-function

L(∆, s) =

∫ ∞
0

∆(iy)ys
dy

y
=

Γ(s)

(2π)s

∞∑
n=1

τ(n)

ns
=

Γ(s)

(2π)s

∏
p

1

1− τ(p)p−s + p11−2s

the product expansion has been discovered by Ramanujan and has been proved
by Mordell and Hecke.
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Now it is in any textbook on modular forms that the transformation rule

∆(−1

z
) = z12∆(z)

implies that L(∆, s) defines a holomorphic function in the entire s plane and
satisfies the functional equation

L(∆, s) = (−1)12/2L(∆, 12− s) = L(∆, 12− s).

This function L(∆, s) is the prototype of an automorphic L-function. The
above theorem shows that it is equal to a ”motivic” L-function. We gave some
vague explanations of what this possibly means: We can interpret the projective
system (M/ℓnM̃)et as the ℓ−adic realization of a motive:

M = Sym10(R1(π : E → S))

(All this is a translation of Deligne‘s reasoning into a more sophisticated
language.)

It is a general hope that “motivic” L-functions L(M, s) have nice properties
as functions in the variable s (meromorphicity, control of the poles, functional
equation). So far the only cases, in which one could prove such nice properties
are cases where one could identify the ”motivic” L-function to an automorphic
L function. The greatest success of this strategy is Wiles‘ proof of the Shimura-
Taniyama-Weil conjecture, but also the Riemann ζ-function is a motivic L−
function and Riemann‘s proof of the functional equation follows exactly this
strategy.

B) But we also have a flow of information in the opposite direction. In 1973
Deligne proved the Weil conjectures, which in this case say that the two roots
of the quadratic equation

x2 − τ(p)x+ p11 = 0

have absolute value p11/2, i.e. they have the same absolute value. This implies
the famous Ramanujan- conjecture

τ(p) ≤ 2p11/2

and for more than 50 years this has been a brain-teaser for mathematicians
working in the field of modular forms.

End of probably removed section

The ℓ-adic Galois representation in the first non trivial case

Again we consider the module M = M10[−10]. We choose a prime ℓ and for
some reason let us assume ℓ > 7. Then we can consider the cohomology groups

H1(Γ\H,M̃/ℓnM̃)

and the projective limit

H1(Γ\H,M̃ ⊗ Zℓ) = lim
←
H1(Γ\H,M̃/ℓnM̃).
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. We know that

H1
et(M1 × Spec(Z) Q̄, (M/ℓnM̃)et)

∼−→ H1(Γ\H,M̃/ℓnM̃).

On the etale cohomology groups we have an action of the Galois group hence
we get an action

ρ
(n)
ℓ : Gal(Q̄/Q)→ Gl(H1(Γ\H, (M/ℓnM̃)et)). (5.81)

From Galois theory we get a finite normal extension K
(n)
ℓ /Q which is defined

by Gal(Q̄/K(n)
ℓ ) = ker(ρ(n)). The representation ρ

(n)
ℓ is unramified outside ℓ,

and this means that the finite extension K
(n)
ℓ /Q is unramified outside ℓ.

From the fundamental exact sequence we get a diagram

0
↓

H0(∂(Γ\H),M̃ ⊗ Zℓ)
↓

0 → H1
c (Γ\H,M̃ ⊗ Zℓ)

↓
0 → H1

! (Γ\H,M̃ ⊗ Zℓ) → H1(Γ\H,M̃ ⊗ Zℓ) → H1(∂(Γ\H),M̃ ⊗ Zℓ) → 0
↓
0

(5.82)

the vertical and the horizontal sequence are exact sequences of Hecke× Galois
modules. Here we may replace Zℓ by Z/ℓnZ. We computed these Hecke mod-
ules in section 3.3.4, the cohomology H1(Γ\H,M̃ ⊗ Zℓ) is free of rank 3 and
H1(∂(Γ\H),M̃ ⊗ Zℓ) is free of rank one. We get the two Galois modules

ρ! : Gal(Q̄/Q)→ Gl(H1
! (Γ\H,M̃ ⊗ Zℓ)), and ρ∂ : Gal(Q̄/Q)→ Gl(Z×ℓ ).

(5.83)

The ℓ-adic Tate character αℓ : Gal(Q̄/Q) → Z×ℓ is defined by the rule: For all
σ ∈ Gal(Q̄/Q) and all ℓn-th roots of unity ζ ∈ Q̄ we have σ(ζ) = ζαℓ(σ). Then
it is not difficult to see ( or well known ) that ρ∂ = α11

ℓ . The representation
ρ∂ is the ℓ− adic realisation of the Tate-motive Z(−11). (For a slightly more
precise explanation I refer to MixMot.pdf on my home-page). On Zℓ(−1) =
H2(P1 × Q̄,Zℓ) the Galois group acts by the Tate-character αℓ

For the representation ρ! the above theorem of Deligne gives

det(Id− ρ(Φ−1p )t|H1
! (Γ\H,M̃ ⊗ Zℓ)) = 1− τ(p)t+ p11t2 (5.84)

We also have det(ρ(σ)) = α11
ℓ (σ) and we can ask what is the image of

Gal(Q̄/Q) in Gl(H1
! (Γ\H,M̃ ⊗ Zℓ) = Gl2(Zℓ). This question is discussed in

[86]. If ℓ ̸= 691 then the Hecke algebra induces a splitting (Manin-Drinfeld
principle)

H1(Γ\H,M̃ ⊗ Zℓ) = H1
! (Γ\H,M̃ ⊗ Zℓ))⊕ Zℓ (5.85)
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where Tp acts by multiplication by p11 + 1 on the second summand.
Now Swinnerton-Dyer shows in [86] that for ℓ ̸= 23, 691 the image of the

Galois group under ρ! is as large possible, it is the inverse image of (F×ℓ )11

From now on we choose ℓ = 691 and our coefficient system M̃10. Then we
get a diagram of Hecke modules

0
↓

H0(∂(Γ\H),M̃ ⊗ Z/ℓZ)
↓

0 → H1
c (Γ\H,M̃ ⊗ Z/ℓZ)

↓
0 → H1

! (Γ\H,M̃ ⊗ Z/ℓZ) → H1(Γ\H,M̃ ⊗ Z/ℓZ) → H1(∂(Γ\H),M̃ ⊗ Z/ℓZ) → 0
↓
0

(5.86)

We learned in the probably removed section that we have an action of Gal(Q̄/Q)
on this diagram and this action of the Galois group commutes with the action of
the Hecke algebra. The two modules H0(∂(Γ\H),M̃⊗Z/ℓZ), H1(∂(Γ\H),M̃⊗
Z/ℓZ) are isomorphic to Z/ℓZ and a Hecke operator Tp acts by the eigenvalue

p11+1 mod ℓ. The module H1
! (Γ\H,M̃⊗Z/ℓZ) = Z/ℓZ⊕Z/ℓZ and the Hecke

operator acts by the eigenvalue τ(p).
The Galois group acts on H0(∂(Γ\H),M̃ ⊗ Z/ℓZ), resp.H1(∂(Γ\H),M̃ ⊗

Z/ℓZ) by α0
ℓ resp. α−11ℓ , here αℓ is the reduction of the Tate character mod ℓ.

We also know that we have the inclusion of Galois modules

j : Z/ℓZ(−11) ↪→ H1
! (Γ\H,M̃ ⊗ Z/ℓZ), (5.87)

We want to understand the two Galois modulesH1
c (Γ\H,M̃⊗Z/ℓZ) and H1(Γ\H,M̃⊗

Z/ℓZ), There is perfect pairing with values in Z/ℓZ(−11) between them, hence
we have to study only one of them say H1(Γ\H,M̃ ⊗ Z/ℓZ),

From the above considerations it follows that we have ia basis e1, e0, e−1 of
this module such that a σ ∈ Gal(Q̄/Q) acts by the matrix

ρ(σ) =

αℓ(σ)−11 u12(σ) u13(σ)
0 1 u23(σ)
0 0 αℓ(σ)

−11

 ∈ B(Z/ℓZ) (5.88)

We want to describe the image of the Galois group inB(Z/ℓZ). Let T (1)(Z/ℓZ)
be the torus t 0 0

0 1 0
0 0 t

 ; t ∈ Z/ℓZ× (5.89)

and let U(Z/ℓZ) be the unipotent radical in B(Z/ℓZ). Then I claim

Theorem 5.1.5. The image of the Galois group is T (1)(Z/ℓZ)⋉ U(Z/ℓZ)
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Here are arguments why this must be the case.
The quotientB(Z/ℓZ)/U(Z/ℓZ) = T (1)(Z/ℓZ) and the resulting map Gal(Q̄/Q)→

T (1)(Z/ℓZ) is surjective. We have to show that the restriction map Gal(Q̄/Q(ζℓ))→
U(Z/ℓZ) is surjective. The center of U(Z/ℓZ) is the group U1,3(Z/ℓZ) where
u1,2 = u2,3 = 0. Let V (Z/ℓZ) be the quotient U(Z/ℓZ)/U1,3(Z/ℓZ). It suffices
to show that Gal(Q̄/Q(ζℓ))→ V (Z/ℓZ) , is surjective because the commutators
of the elements in V (Z/ℓZ) fill up the elements in U1,3((Z/ℓZ). Then it becomes
clear that it suffices to find a σ ∈ Gal(Q̄/Q) with u1,2(σ), u2,3(σ) ̸≡ 0 mod ℓ
because we still have action of T (1)(Z/ℓZ) by conjugation on the image of the
Galois group.

Now we apply the Eichler-Shimura congruence relation which says that for
any p we have

ρ(Φp)
2 − Tpρ(Φp) + p11Id = 0. (5.90)

and if we are courageous enough to compute with 3 × 3 matrices we find for
σ = Φp0 0 u12(Φp)u23(Φp) + (−1 + p11)u13(Φp)− p11t(p)

0 0 0
0 0 0

 = 0. (5.91)

Hence the right upper entry must be zero. If p ≡ 1 mod 691 this means that
u12(Φp)u23(Φp)−p11t(p) = 0 and this implies: If t(p) ̸= 0 then u12(Φp) and u23(Φp) ̸=
0. But we have seen that t(p) = 0 implies the stronger congruence τ(p) ≡ p11+1
mod 6912. (See section 3.3.4) But now the prime p1 = 6911 is congruent to 1
mod 691 but τ(p1) is not congruent to 69111+1 modulo 6912. Hence u12(Φp1) ̸=
0, u23(Φp1) ̸= 0. The claim follows.

By definition K
(1)
ℓ /Q is the normal extension of Q such that

Gal(K
(1)
ℓ /Q) = T (1)(Z/ℓZ)⋉ U(Z/ℓZ) := B(1)(Z/ℓZ), (5.92)

this extension is unramified outside ℓ. It contains the field of ℓ-th roots of
unity, i.e. Q(ζℓ) ⊂ K

(1)
ℓ . The Galois group Gal(K

(1)
ℓ /Q(ζℓ)) = U(Z/ℓZ). This

group has a center U13(Z/ℓZ) = Z/ℓZ, this is also the center of the larger group

Gal(K
(1)
ℓ )/Q).We define the subfieldK

(1,0)
ℓ by requiring that Gal(K

(1,0)
ℓ /Q) =

Gal(K
(1)
ℓ /Q(ζℓ))/U13(Z/ℓZ). Then K

(1,0)
ℓ /Q) is the composite of two cyclic

extensionsK
(1,!
ℓ /Q(ζℓ) .andK

(1,∂)
ℓ /Q(ζℓ). These two extensions have the faithful

two dimensional representations

ρ! : Gal(K
(1,!)
ℓ /Q)→ Gl(H1

! (Γ\H,M̃ ⊗ Z/ℓZ))

σ 7→ ρ!(σ) =

(
1 u23(σ)
0 αℓ(σ)

−11

)
ρ∂ : Gal(K

(1,∂)
ℓ /Q)→ Gl(H1(Γ\H,M̃ ⊗ Z/ℓZ)/Z/ℓZe1)

σ 7→ ρ∂(σ) =

(
αℓ(σ)

−11 u12(σ)
0 1

) (5.93)

Now we invoke the theory of crystalline representations. We consider the re-
striction of the action of Gal(Q̄/Q) on H1

! (Γ\H,M̃ ⊗ Zℓ) to the Galois group
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Gal(Q̄ℓ/Qℓ). This representation is crystalline and I think that this implies that
as a Gal(Q̄ℓ/Qℓ) module it has a filtration

{(0)} ⊂ Zℓ(0) ⊂ H1
! (Γ\H,M̃ ⊗ Zℓ) with H1

! (Γ\H,M̃ ⊗ Zℓ)/Zℓ(0) = Zℓ(−11)

here Zℓ(0) = H1
! (Γ\H,M̃ ⊗ Zℓ)Iℓ , where Iℓ is the inertia group. Therefore we

get a direct sum decomposition for the Gal(Q̄ℓ/Qℓ) module

H1
! (Γ\H,M̃ ⊗ Z/ℓZ) = Z/ℓZ(0)⊕ Z/ℓZ(−11) (5.94)

and this implies that K
(1,!)
ℓ /Q(ζℓ) is also unramified at ℓ hence it is an

unramified extension.
This unramified extension extension has been constructed by Ribet in [74].,

it has also been constructed in [46]. At the end of that paper we raise the
question for a decomposition law. This means that for any prime p we want to
find a rule to determine the conjugacy class of ρ(Φp), ρ!(Φp) . . . . If p ̸≡ 1 mod ℓ.
then the two conjugacy classes ρ!(Φp), ρ∂(Φp) are semi simple and determined
by their eigenvalues. But if p ≡ 1 mod ℓ then ρ(Φp) is unipotent and here are
several possibilities for the conjugacy class.

Theorem 5.1.6. If p ≡ 1 mod ℓ and if the horizontal long exact sequence of

Z[Tp] (See 3.97) modules splits then p splits completely either in the field K
(1,!)
ℓ

or in the field K
(1,∂)
ℓ .

If p ≡ 1 mod ℓ and if the horizontal long exact sequence of Z[Tp] modules

does not split then both fields K
(1,!)
ℓ /Q(ζℓ) and the field K

(1,∂)
ℓ /Q(ζℓ) are inert

at the primes above p.
The density of primes which satisfy p ≡ 1 mod 691 and τ(p) ≡ p11 + 1

mod 6912 is equal to 1
238395

For the curios reader: The first such prime is p = 3178601. We leave it as

an exercise for the reader to find out whether it splits completely in K
(1,!)
ℓ or in

K
(1,∂)
ℓ . It is the 228759-th prime.

Finally we have a brief look at the action of the Galois group onH1
! (Γ\H,M̃⊗

Zℓ). Again we choose a basis e1, e0, e−1 the element e1 maps to a generator in
the boundary cohomology and e0, e−1 form a basis of H1

! (Γ\H,M̃⊗ Zℓ) we as-
sume that this basis reduces mod ℓ to the basis which we denoted by the same
letters. Then

ρ(σ) =

αℓ(σ)−11 u12(σ) u13(σ)
0 a(σ) b(σ)
0 ℓc(σ) d(σ)

 ∈ Gl3(Zℓ), (5.95)

where a(σ) ≡ 1 mod ℓ, d(σ) ≡ α−11(σ) mod ℓ.

We claim that there is a σ with c(σ) ̸≡ 0 mod ℓ

For a prime p and the Frobenius Φp we get a(Φp)d(Φp)− ℓb(Φp)c(Φp) = p11

and τ(p) = a(Φp) + d(Φp). Now an straightforward calculation shows that for
a prime p ≡ 1 mod ℓ which in addition satisfies c(Φp) ≡ 0 mod ℓ we must
have τ(p) ≡ p11 + 1 mod ℓ2. But p = 1 + 10 ∗ 691 = 6911 does not satisfy this
congruence, hence c(Φ6911) ̸≡ 0 mod ℓ.
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The cohomology H1(Γ\H,M̃⊗Zℓ) has the submodule H1
! (Γ\H,M̃⊗Zℓ)⊕

Zℓe†1, where e
†
1 = ℓf†10(see(3.69)) this submodule is determined by T2. Therefore

it is invariant under the action of the Galois group, with respect to the basis
e†1, e0, e−1 the Galois action is given by

ρ†(σ) =

αℓ(σ)−11 0 0
0 a(σ) b(σ)
0 ℓc(σ) d(σ)

 ∈ Gl3(Zℓ), (5.96)

where we still have α11(σ) = det(

(
a(σ) b(σ)
ℓc(σ) d(σ)

)
). It is clear from the above

considerations that the image of the Galois group is given by those matrices in
Gl3(Zℓ) which satisfy the conditions above.

But we want to know the image of the Galois group with respect to our basis

e1, e0, e−1. For this we write e1 =
x0e−1+e

†
1

ℓ and then clearly

ρ(σ) =

αℓ(σ)−11 c(σ)x0
(d(σ)−αℓ(σ)

−11)
ℓ x0

0 a(σ) b(σ)
0 ℓc(σ) d(σ)

 ∈ Gl3(Zℓ), (5.97)

We put

a(x0, σ) = α11
ℓ (σ)(u12(x0, σ), u13(x0, σ))) (5.98)

then σ 7→ a(x0, σ) is a one-cocycle with values in H1
! (11) := H1

! (Γ\H,M̃ ⊗
Zℓ) ⊗ Zℓ(11). We compute its cohomology class [v] ∈ H1( Gal(Q̄/Q, H1

! (11)).
We start from the exact sequence of Galois-modules

0→ H1
! (11)→

1

ℓ
H1

! (11)→
1

ℓ
H1

! (11)/H
1
! (11)→ 0 (5.99)

where of course 1
ℓH

1
! (11)/H

1
! (11) = H1(Γ\H,M̃ ⊗ Z/ℓZ). This yields a long

exact sequence in Galois cohomology. The element v provides a well defined
element in ṽ ∈ H0( Gal(Q̄/Q, H1(Γ\H,M̃ ⊗ Z/ℓZ) and clearly δ(ṽ) = v.

Now we can say that the image of the Galois group under ρ consists of the
matrices

{

x u12 u13
0 a b
0 c d

 |ad− bc = x; ℓu12 = c; ℓu13 = d− x} ⊂ Gl3(Zℓ) (5.100)

It is the cocycle condition which makes this to a subgroup. Now it is not
difficult to see that this is the group of Zℓ− valued points of a smooth groups
scheme I(1)/Zℓ ⊂ Gl2/Z.

We can say that we constructed a Galois-extension K
(∞)
ℓ /Q which is un-

ramified outside ℓ and we have an isomorphism

ρℓ : Gal(K
(∞)
ℓ /Q)

∼−→ I(1)(Zℓ) (5.101)
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We also consider the finite extensions K
(r)
ℓ (Z/ℓrZ) ∼−→ I(1)(Z/ℓrZ) and for

r = 1 we have I(1)(Z/ℓZ) = B(1)(Z/ℓZ).

Here we see the prototype of a very general strategy to get insight into the
structure of the Galois group Gal(Q̄/Q). We wee that that value of certain L
functions at a certain special argument (in this case the Riemann ζ(s)-function
at s = −11) has influence on structure of certain cohomology groups of arith-
metic groups and these Hecke modules contain some information on the struc-
ture of the Galois group, We can construct certain interesting extensions of Q
with controlled ramification. On the other hand we see that there is also a flow
of information from the Galois side back to the structure of the Hecke modules.

This connection between the congruence for the values of τ(p) and the struc-
ture of the Galois group was observed by Serre in his paper [79] and proved later
by Deligne [25]. Later this relationship was exploited by Ribet in [74] and by
many other authors.

Here I want to point out that there is a change of paradigm between our
approach and the approach by the authors mentioned above. These authors
mostly look at the space of holomorphic cusp forms or what essentially amounts
to the same the inner cohomology H1

! (Γ\H,M̃n⊗C). (Eichler-Shimura isomor-
phism).Then these authors get the consequences for the structure of the Galois
group from the congruences.

In our approach we consider the module H1(Γ\H,M̃n) and exploit our
knowledge of the denominator of the Eisenstein class.

We explain this approach in a more general situation, but we also keep an
eye on the computational aspects. We start from any irregular prime ℓ and
an even integer n > 0 such that ℓδ || ζ(−1 − n). In section 3.3.8 we introduced
the Hecke-modules H1(Γ\H,M̃n⊗Z/ℓ){π̄Eis

f } or H1(Γ\H,M̃n⊗Zℓ){π̄Eis
f }, and

Deligne’s theorem tells us, that we have an action of the Galois group on these
modules. This action commutes with the action of the Hecke algebra H . More
precisely we have a finite normal extension QEis(Mn ⊗ Fℓ)/Q and an injective
homomorphism

ρℓ,1 Gal(QEis(Mn ⊗ Fℓ)/Q)→ GlH(H
1(Γ\H,M̃n ⊗ Z/ℓ)({π̄Eis

f }). (5.102)

We can replace ℓ by higher powers ℓr and get representations ρℓ,r and in the
limit we get an injection

ρℓ : Gal(QEis(Mn ⊗ Zℓ)/Q)→ GlH(H
1(Γ\H,M̃n ⊗ Zℓ)({π̄Eis

f }). (5.103)

and this is the representation in the above theorem of Deligne. This theorem of
Deligne also asserts that the extensions QEis(Mn ⊗ Zℓ) ⊃ QEis(Mn ⊗ Fℓ) are
unramified outside ℓ. If we want to understand these representations we have to
make some further assumptions, for instance we may assume that m({π̄Eis

f }) =
1. This is of course true in our example above, we expect it to be true most of
the times but we know that this is not always true (see section 3.3.9). Assuming
that m({π̄Eis

f }) = 1, then we can proceed as in our example.

We know that H1(Γ\H,M̃n⊗Zℓ)({π̄Eis
f }) is a free Zℓ module of rank 3. We

can find generators e1, e0, , e−1 of this module such that
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a) Z/ℓδe−1 is the submodule in theorem 3.3.1

b) the two elements e−1, e0 generate H1
! (Γ\H,M̃n ⊗ Z/δℓ)({π̄Eis

f }).
(5.104)

With respect to this basis the Hecke operator Tp mod ℓδ is of the form

Tp =

pn+1 + 1 0 t(p)

0 pn+1 + 1 0
0 0 pn+1 + 1

 mod ℓδ (5.105)

Now we want to understand the representations of the Galois group. In
our argument for above example we needed the that we can find a prime p ≡ 1
mod ℓ such that τ(p) ̸≡ pn+1+1 mod 6912. This can not be the right condition
in the general situation because we may have δ > 1 Therefore we formulate the
alternative condition

We can find a prime p1 ≡ 1 mod ℓ such that t(p1) ̸≡ 0 mod ℓ (5.106)

This condition is difficult to verify because we have to compute the quantity t(p)

for a very large prime. Already in our baby example we relied on the tables for
the values τ(p) provided by Mathematica, we can always verify it in principle
but not in practice. We formulate the much weaker condition

We can find a prime p0 such that t(p0) ̸≡ 0 mod ℓ (5.107)

This assumption is almost certainly always true, but I do not have a proof.
Further down we will explain that - in theory- we can verify this assertion
effectively in a given case. But we will also explain that in practice this such
a verification can be achieved -for small values of n- in a few seconds on the
computer.

Now we explain how we can use the Galois-module structure to verify that
a given Hecke-module H1(Γ\H,M̃n ⊗ Zℓ)({π̄Eis

f }) satisfies (5.106). The field
QEis(Mn⊗Fℓ) has a non trivial intersection with the fieldQ(ζℓ), this intersection
is the fixed field under the action of µd ⊂ F×ℓ , We denote it by Q(ζℓ)

µd . We

recall that H1(Γ\H,M̃n ⊗ Zℓ)({π̄Eis
f }) has the generators e1, e0, e−1 such that

the flag Fℓe−1 ⊂ Fℓe−1⊕Fℓe0 is invariant under the action of the Galois group.
Again we get the two representations ρ!,ℓ, ρ∂,ℓ of Gal(QEis(Mn ⊗ Fℓ)/Q). We
restrict these representations to the subgroup Gal(QEis(Mn ⊗ Fℓ)/Q(ζℓ)

µd).
These restrictions are simply homomorphisms

u′1,2 : Gal(QEis(Mn ⊗ Fℓ)/Q(ζℓ)
µd)→ Fℓ

u′2,3 : Gal(QEis(Mn ⊗ Fℓ)/Q(ζℓ)
µd)→ Fℓ

(5.108)

If these homomorphisms are non zero, then they are surectves and hence they
provide cyclic field extensions K1,!/Q(ζℓ)

µd ,K1,∂/Q(ζℓ)
µd of degree ℓ. These

extension are normal over Q and since we assumed that d ̸= ℓ−1
2 these extensions

must be disjoint. Then the congruence relation (5.91) implies

Lemma 5.1.1. We find a prime p ≡ 1 mod ℓ for which t(p) ̸≡ 0 mod ℓ if and
only if both u′1,2, u

′
2,3 are non zero.
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Proof. Of course if one of the homomorphisms is zero then the Eichler-Shimura
congruence relation implies that t(p) ≡ 0 mod ℓ for all p ̸= ℓ, p ≡ 1 mod ℓ.
On the other hand we see that t(p) ≡ 0 mod ℓ implies that always one of the
two quantities u1,2(Φp), u2,3(Φp) = 0. Now we apply the famous Chebotareff’s
density theorem to the two extensions K1,!,K1,∂ . In this case it says that for
T →∞ the following limit exist and is equal to

lim
T→∞

#{ p ≤ T | p ≡ 1 mod ℓ;ui,j(Φp) = 0}
#{p ≤ X}

=
1

ℓ(ℓ− 1)
(5.109)

This limit is called the density of the set {p | p ≡ 1 mod ℓ;ui,j(Φp) = 0} and
denoted by d({p | p ≡ 1 mod ℓ;ui,j(Φp) = 0}. Dirichlet’s theorem implies that
the density of the set of primes {p | p ≡ 1 mod ℓ} is equal to 1/(ℓ− 1). Hence
we know that for i, j = 1, 2 or 2, 3 and very large T >> 0

#{ p ≤ T | p ≡ 1 mod ℓ;ui,j(Φp) = 0} ≃ 1

ℓ
#{ p ≤ T | p ≡ 1 mod ℓ}

(5.110)

Since we know that ℓ ≥ 37 it follows that we find a p ≡ 1 mod ℓ with
u1,2(Φp) and u2,3(Φp) ̸= 0.

Of course this does not give an effective algorithm to find the prime p. We
discuss this further down.

If we now assume that (5.106) is true then we can prove a generalisation of
theorem 5.1.5 for this given prime ℓ. We have to modify the statement a little
bit. In general the homomorphism αn+1

ℓ : Z×ℓ → Fℓ× will not be surjective,
Hence have to replace the group T (1)(Z/ℓZ) in the formulation of theorem 5.1.5
by T (1)(Z/ℓZ)d where d = gcd(n+1, ℓ− 1). From the beginning we left out the
case that ℓ−1|n+1, but from now on we also assume that d ̸= ℓ−1

2 . Then using
the same arguments as in the proof of theorem 5.1.5 we get an isomorphism

Gal(QEis(Mn ⊗ Z/ℓ)/Q)
∼−→ I(d)(Z/ℓ) = {

a u1,2 u1,3
0 1 u2,3
0 0 a

 | a ∈ ((Z/ℓ)×)d, uij ∈ Z/ℓ}

(5.111)

Now we will show that this result provides an indication how to verify (
5.107) and then (5.106) . A direct computation shows that the function

t : I(d)(Z/ℓ)→ Fℓ; t : γ 7→ u1,2u2,3 + (−1 + a)u1,3 (5.112)

is constant on the conjugacy classes in I(d). Again we invoke the Chebotareff
density theorem. For γ ∈ I(d)(Z/ℓ) we denote its conjugacy class by Cγ and its
centraliser by Zγ . Then the theorem says that the density of primes p for which
Φp ∈ Cγ is 1/#Zγ . I leave to the reader to analyse the conjugacy classes and to
check that

d({p | Φp ∈ Cγ ; t(γ) ̸= 0} ≃ ℓd({p | Φp ∈ Cγ ; t(γ) ̸= 0} (5.113)

(This can easily be made more precise) But this suggests that the probability to
find t(Φp) = t(p) = 0 is roughly 1

ℓ hence very small. So we must be really very
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unlucky if we do not find a t(p) ̸= 0 for some very small prime p = 2, 3,. Since we
can write algorithms which compute Tp for small values of p we should be able to
verify in practice (in a given case). In the six cases n = 10, 14, 16, 18, 20, 24 the
Hecke module H1

! (Γ\H,M̃n)) is of rank 2 and for any ℓ|ζ(−1−n) our program
with Gangl yields t(2) ̸≡ 0 mod ℓ, hence T2 suffices to verify (5.107) in few
seconds in these cases.

In principle this procedure is effective. In [59]) the authors prove effective
versions of the Chebotareff density theorem, and using these results we can
show, that there is a computable constant c0(p) such that we find a p < c0(p)
t(p) ̸= 0 provided (5.106) is true. But this constant is terribly large and not of
practical use.

Now we want to show that there is another way to verify (5.106) in a given
case, which with very high probability also works in practice. We have a
closer look what happens if one of the two homomorphisms u′1,2, u

′
2,3 is zero.

This means that one of the two representation in (5.93) factors through a
conjugate of the diagonal torus, Hence we can replace the basis vector e1 →
e1 + xe0(resp.e0 → e0 + ye−1) such that with respect to this new basis we have
u1,2(σ) = 0, (resp, u2,3(σ) = 0) for all σ in the matrix for ρ(σ) (see 5.88).The
Hecke operator Tp with respect to either of these new basis is still given by

Tp =

pn+1 + 1 0 t(p)

0 pn+1 + 1 0
0 0 pn+1 + 1

 mod ℓ (5.114)

and hence the Eichler-Shimura congruence relation gives us (in both cases)

(−1 + pn+1)u13(Φp) = pn+1t(p) (5.115)

On the other hand it is clear that under our assumption the map

U1,3 : Gal(QEis(Mn ⊗ Fℓ)/Q)→ Fℓ

σ 7→ u1,3(σ)
(5.116)

is a homomorphism. We define the subfield L ⊂ QEis(Mn⊗Fℓ) by Gal(QEis(Mn⊗
Fℓ)/L) = ker(U1,3). Then we get an injective homomorphism

Ū13 : Gal(L/Q) ↪→ Fℓ. (5.117)

Hence we see that either L = Q or L/Q is a cyclic extension of order ℓ which
is unramified outside ℓ. Then class field theory tells us that L/Q is actually the
unique cyclic subfield of degree ℓ in Q(ζℓ2). The Galois group Gal(L/Q) = Fℓ
and for any prime p ̸= ℓ the Frobenius is given by a number vℓ(p) in Fℓ, and
this number is defined by

pℓ−1 = 1 + ℓvℓ(p) mod ℓ2 (5.118)

Hence there is a number λn,ℓ ∈ Fℓ such that for all p ̸= ℓ

u1,3(Φp) = λn,ℓvℓ(p) (5.119)
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If we now that we found a prime p0(̸= ℓ) such that t(p0) ̸= 0 mod ℓ, then
we get for any other prime p the relation

t(p)

t(p0)
=

(1− p−11)vℓ(p)
(1− p−110 )vℓ(p0)

(5.120)

Then we look at some other small primes and check the relation (5.120). Almost
certainly we will find a small prime such that (5.120) fails and we have verified
that our Hecke module is not degenerated. For small values of n, ℓ this should
be rather effective. Again we need a little bit of luck. I have not yet checked
the six cases n = 10, 14, 16, 18, 20, 24 the program with Gangl is not yet written
for T3, T5

Clearly these results are just the beginning of a very interesting story, we
are just discussing the first case of a much wider circle of problems.

For instance we can allow some ramifications, this means we pass to congru-
ence subgroups Γ ⊂ Sl2(Z). We have to discuss the denominator issue, in this
more general context some special values of Dirichlet L-functions L(χ,−n− 1)
will determine (or closely related to) the denominator of Eisenstein classes.

Here some experimental aspects will become of interest. In the unramified
case the primes ℓ dividing ζ(−1− n) are large, the smallest are ℓ = 37, 59, . . . .
In section 3.3.9 we discussed the multiplicity m(π̄Eis

f ), we get higher multiplicity
if two or even more numbers are divisible by ℓ. We saw (see [3]) that there is
exactly one number n which is less than 105 such that m(π̄Eis

f ) ≥ 2 But we also
checked that in this case we still have weak multiplicity one. The probability
that in the unramified case we will ever find a case with weak multiplicity > 1
is very small.

But if we allow ramification then we may have a much larger supply of
cases where a reasonably small prime ℓ divides a value L(χ,−n− 1) and where
we find cases with weak multiplicity > 1. Some heuristic considerations con-
siderations could suggest to us a probability P (ℓ) > 0 that in a case where
ℓ|L(χ,−n− 1) (perhaps we should consider only quadratic characters) we have
weak multiplicity > 1. If we now have a finite set X of triples (ℓ, n, χ) with
ℓ|L(χ,−n − 1), n ≤ ℓ − 2. If then #X × P (ℓ) >> 1 then we can start to look
cases where the weak multiplicity of π̄Eis

f is greater than one. It may be of
interest to find out whether the number of these events match our probabilistic
expectations.

The next question we can ask is: If we have higher multiplicity. what can we
prove about the action of the Galois group on H1(Γ\H,M̃n⊗Z/ℓ)? Fortunately
we know a prime -namely ℓ = 547 for which we have multiplicity 2, but we still
have weak multiplicity one. For this case we made some experimental computa-
tions in section 3.3.11 and we made some predictions about the structure of the
Hecke modules H1(Γ\H,M̃484+α(ℓ−1)⊗Z/(ℓ2)). In this case it is an interesting
question to consider that case α = 100 and find out what the structure of the
Galois module is, especially describe the image of the Galois group.

But by far the most interesting issue is to generalise this approach to larger
groups. We assume that somebody has written an algorithm which computes
- in a given case - the cohomology groups and the arrows in the long exact
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sequence. Furthermore we assume that the algorithm computes some ”small”
Hecke operators. For instance we can verify the conjecture about the denomi-
nator 41 in [42], basically by the same method as the one we used in chapter 3
for 691.

Then the next task will be to analyse the interplay between the Galois action
on the ℓ−adic cohomology and the Hecke action on the cohomology.
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Chapter 6

Analytic methods

6.1 The representation theoretic de-Rham com-
plex

6.1.1 Rational representations

We start from a reductive group G/Q for simplicity we assume that the semi
simple component G(1)/Q is quasisplit. There is a unique finite normal exten-
sion F/Q, F ⊂ C such that G(1) ×Q F becomes split. If T (1)/Q is a maximal
torus which is contained in a Borel subgroup B/Q, let U/Q be its unipotent
radical. Then the Galois group Gal(Q̄/Q) acts on X∗(T (1) ×Q F ). It acts by
permutations on the set of positive roots πG ⊂ X∗(T (1)×Q F ) corresponding to
B/Q. This action factors over the quotient Gal(F/Q). Then it also acts on the
set of dominant weights. Since our group is quasi split we find for any dominant
weight λ an absolutely irreducible G×Q F - moduleMλ.

r : G×Q F → Gl(Mλ).

This representation is characterised by the following two properties. The space
of invariants under the action of U is one dimensional, i.e. Mλ

U = Feλ and the
torus acts on this one dimensional space by the character λ, i.e.teλ = λeλ. We
say that eλ is a highest weight vector. Since we assumed that Q ⊂ F ⊂ Q̄ ⊂ C
we get the extension

rC : (G×Q F )×F C→ Gl(Mλ ⊗F C).

Given such an absolutely irreducible rational representation, we can construct
two new representations. We can form the dualM∨λ,C = HomC(Mλ,C) and the

complex conjugateMC of our moduleMλ. On the dual module we have the con-
tragredient representation r∨, which is defined by ϕ(rC(g)(v)) = r∨C(g

−1)(ϕ)(v).
To get the rational representation on the conjugate module M̄ ⊗F C, we

recall its definition: As abelian groups we have M⊗F C = M̄ ⊗F C but the
action of the scalars is conjugated, we write this as z ·c m = z̄m. Then the
identity gives us an identification

EndC(M⊗F C) = EndC(M̄λ ⊗F C).

239
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Now we define an action r̄C on M̄λ ⊗F C: For g ∈ G(C) we put

r̄C(g)m = rC(g) ·c m.

This defines an action of the abstract group G(C), but this is in fact obtained
from a rational representation. Therefore M∨C and MC both are given by a
highest weight.

The highest weight ofM∨λ is −w0(λ). Here w0 is the unique element w0 ∈W ,
which sends the system of positive roots ∆+ into the system ∆− = −∆+.

The highest weight of M̄λ⊗F C is c(λ) where c ∈ Gal(C/R) ⊂ Gal(F/Q) is
the complex conjugation acting on X∗(T ×Q F ). So we may say: MλC =Mλ̄.

We will call the module M̃λ - conjugate-autodual or simply c-autodual if

c(λ) = −w0(λ) (6.1)

If our group G/Q is split then c acts trivially on the character module and
the condition becomes λ = −w0(λ). If now in addition the element w0 acts by
−1 on the character module, the every λ is conjugate-autodual.

In the following few sections (until 6.1.6 we will always assume that our local
system (resp. the corresponding representation) are local systems in C-vector
spaces (resp. C-vector spaces M̃λ). Therefore we will suppress the factor ⊗C.

Now we choose an arithmetic subgroup Γ ⊂ G(R) and we will use transcen-

dental methods to investigate the cohomology H•(Γ\X,M̃λ). HCmod

6.1.2 Harish-Chandra modules and (g, K∞)-cohomology.

We consider the group of real points G(R), it has the Lie algebra g, inside this
Lie algebra we have the Lie algebra k of the group K∞. We have the notion of
a (g,K∞) module: This is a C-vector space V together with an action of g and
an action of the group K∞. We have certain assumptions of consistency:

i) The action of K∞ is differentiable, this means it induces an action of k,
the derivative of the group action.

ii) The action of g restricted to k is the derivative of the action of K∞.

iii) For k ∈ K∞, X ∈ g and v ∈ V we have

(Ad(k)X)v = k(X(k−1v)).

Inside V we have have the subspace of K∞ finite vectors, a vector v is called
K∞ finite if the C- subspace generated by all translates kv is finite dimensional,
i.e. v lies in a finite dimensional K∞ invariant subspace. The K∞ finite vectors
form a subspace V (K∞) and it is obvious that V (K∞) is invariant under the
action of g, hence it is a (g,K∞) sub module of V. We call a (g,K∞) module a
Harish-Chandra module if V = V (K∞).

For such a (g,K∞)-module we can write down a complex

HomK∞(Λ•(g/k), V ) = {0→ V → HomK∞(Λ1(g/k), V )→ HomK∞(Λ2(g/k), V )→ . . . }
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where the differential is given by liealgc

dω(X0, X1, . . . , Xp) =
∑p
i=0(−1)iXiω(X0, . . . , X̂i, . . . , Xp)+∑

0≤i<j≤p(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, , . . . , X̂j , . . . ,
(6.2)

A few comments are in order. We have inclusions

HomK∞(Λ•(g/k), V ) ⊂ Hom(Λ•(g/k), V ) ⊂ Hom(Λ•(g), V ).

The above differential defines the structure of a complex for the rightmost
term, we have to verify that the leftmost term is a subcomplex, this is not so
difficult.

We define the (g,K∞) cohomology as the cohomology of this complex, i.e.

H•(g,K∞, V ) = H•( HomK∞(Λ•(g/k), V )) (6.3)

It is clear that the map

H•(g,K∞, V
(K∞))→ H•(g,K∞, V )

is an isomorphism.
If we have two (g,K∞) modules V1, V2 and form the algebraic tensor product

W = V1⊗ V2 the we have a natural structure of a (g,K∞) -module on W : The
group K∞ acts via the diagonal and U ∈ g acts by the Leibniz-rule U(v1 ⊗
v2) = Uv1 ⊗ v2 + v1 ⊗ Uv2. If both modules are Harish-Chandra modules,
then the tensor product is also a Harish-Chandra module. Of course any finite
dimensional rational representation of the algebraic group also yields a Harish-
Chandra module.

deRhamiso

6.1.3 The representation theoretic de-Rham isomorphism

For us the (g,K∞) module C∞(Γ\G(R),- this is the space of functions which
are C∞ in the variable g∞- is one of the most important (g,K∞) -modules. On
these functions the group G(R) acts by translations from the right, since our
functions are C∞ we also get an action of the Lie algebra g. Hence this is also
a (g,K∞)-module.

If we fix the level see that C∞(Γ\G(R)) is a (g,K∞) × HKf
, the Hecke

algebra acts by convolution. We choose a highest weight moduleMλ and apply
the previous considerations to the Harish-Chandra module

V = C∞(Γ\G(R)⊗Mλ.

Notice that we can evaluate an element f ∈ C∞(Γ\G(R)) ⊗ Mλ in a point
g = (g∞, gf ) and the result f(g) ∈Mλ. The Hecke algebra acts via convolution

on the first factor.
Let us assume for the moment that is torsion free. . Then we can define

the sheaf of de-Rham complexes Ω•Γ\X(Mλ), for any open subset V ⊂ Γ\X the

complex of sections is the de-Rham complex Ω•Γ\X(V ) ⊗Mλ (See for instance
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[39], 4.10) If V is small enough a section in .Ω•Γ\X(V )⊗Mλ can be written as

ω =
∑
ν ων⊗mν wherem1,m2, . . . ,mk is a basis ofMλ and then the differential

is given by
∑
ν dων ⊗mν .

If consider the complex of global sections we drop the subscript and write
Ω•(Γ\X)⊗Mλ.

We have the following fundamental fact: Borel

Proposition 6.1.1. We have a canonical isomorphism of complexes

HomK∞(Λ•(g/k), C∞(Γ\G(R)⊗Mλ)
∼−→ Ω•(Γ\X,M̃λ ⊗ C),

this isomorphism is compatible with the action of the Hecke algebra on both sides

This is rather clear. We have the projection map

q∞ : G(R)→ G(R)/K∞ = X

let x0 ∈ X be the image of the identity e ∈ G(R). The differential Dq(e) maps
the Lie algebra g = tangent space of G(R) at e to the tangent space TX,x0 at

x0 × ef . This provides the identification TX,x0

∼−→ g/k.
An element ω ∈ HomK∞(Λp(g/k), C∞(Γ\G(R) ⊗Mλ) can be evaluated on

a p-tuple (X0, X1, . . . , Xp−1) and the result

ω(X0, X1, . . . , Xp−1) ∈ C∞(Γ\G(R)⊗Mλ.

We want to produce an element ω̃ in the de-Rham complex Ω•(Γ\X,M̃λ).
Pick a point x × g

f
∈ X, we find an element (g∞, ) ∈ G(R) × G(Af ) such

that g∞x0 = x. Our still to be defined form ω̃ can be evaluated at a p-tuple
(Y0, . . . , Yp−1) of tangent vectors in x× gf and the result has to be an element

inMC,x. We find a p-tuple (X0, X1, . . . , Xp−1) of tangent vectors at x0 which
are mapped to (Y0, . . . , Yp−1) under the differential Dg∞ of the left translation

by Lg∞ . We put Armand

ω̃(Y0, . . . , Yp−1)(x) = g−1∞ (ω(X0, . . . , Xp−1)(g∞, gf )). (6.4)

At this point I leave it as an exercise to the reader that this gives the iso-
morphism we want.([16]).) Actually we do not really need that Γ torsion free,
If this is not the case then M̃λ is only an orbilocal system and we can have to
take suitable invariants under the finite stabilizers, we simply have to modify
the definition of Ω•(Γ\X,M̃λ) accordingly.

We recall that the de-Rham complex ([39],sect. 4.8. computes the cohomol-

ogy and therefore we can rewrite the de-Rham isomorphism BodeRh

H•(Γ\X,M̃λ)
∼−→ H•( HomK∞(Λ•(g/k), C∞(Γ\G(R)⊗Mλ) (6.5)

From now on the complex HomK∞(Λ•(g/k), C∞(Γ\G(R) ⊗Mλ) will also be
called the de-Rham complex.

By the same token we can compute the cohomology with compact supports

BodeRhcs

H•c (Γ\X,M̃λ)
∼−→ H•( HomK∞(Λ•(g/k), Cc,∞(Γ\G(R)⊗Mλ) (6.6)
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where Cc,∞(Γ\G(R) are the C∞ function with compact support. These isomor-
phisms are also valid if we drop the assumption that Γ is torsion free..

The Poincaré duality on the cohomology is induced by the pairing on the

de-Rham complexes: PD

Proposition 6.1.2. If ω1 ∈ HomK∞(Λ•(g/k), C∞(Γ\G(R) ⊗ M̃) is a closed
form and ω2 ∈ HomK∞(Λ•(g/k), C∞,c(Γ\G(R)⊗M̃∨) a closed form with com-
pact support in complementary degree then the value of the cup product pairing
of the classes [ω1] ∈ Hp(Γ\X,M̃λ), [ω2] ∈ Hd−p

c (Γ\X,M̃∨λ) is given by

< [ω1] ∪ [ω2] >=

∫
Γ\X

< ω1 ∧ ω2 >

(Reference Book Vol. !)

6.1.4 Input from representation theory of real reductive
groups.

Let us consider an arbitrary irreducible (g,K∞)- module V. Let K̂∞ be the set
of irreducible continuous representations they are finite dimensional. We also

assume that for any ϑ ∈ {̂K)∞ the multiplicity of ϑ in V is finite (we say that V
is admissible). Then we can extend the action of the Lie-algebra g to an action
of the universal enveloping algebra U(g) on V and we can restrict this action
to an action of the centre Z(g). The structure of this centre is well known
by a theorem of Harish-Chandra, it is a polynomial algebra in r = rank(G)
variables, here the rank is the absolute rank, i.e. the dimension of a maximal
torus in G/Q. (See Chap. 4 sect. 4)

Clearly this centre respects the decomposition into K∞ types, since these
K∞ types come with finite multiplicity we can apply the standard argument,
which proves the Lemma of Schur. Hence Z(g) has to act on V by scalars, we
get a homomorphism χV : Z(g)→ C, which is defined by

zv = χV (z)v.

This homomorphism is called the central character of V .

A fundamental theorem of Harish-Chandra asserts that for a given central
character there exist only finitely many isomorphism classes of irreducible, ad-
missible (g,K∞)-modules with this central character.

Of course for any rational finite dimensional representation r : G/Q →
Gl(Mλ) we can consider Mλ ⊗ C as (g,K∞)-module. If Mλ is absolutely
irreducible with highest weight λ (See chap. IV) then it also has a central
character χM = χλ.

Wigner’s lemma: Let V be an irreducible, admissible (g,K∞)-module, let
M = Mλ, a finite dimensional, absolutely irreducible rational representation.
Then H•(g,K∞, V ⊗MC) = 0 unless we have

χV (z) = χM∨(z) = χλ∨(z) for all z ∈ Z(g)
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Since we also know that the number of isomorphism classes of irreducible,
admissible (g,K∞)-modules with a given central character is finite, we can con-
clude that for a given absolutely irreducible rational module Mλ the num-
ber of isomorphism classes of irreducible, admissible (g,K∞)-modules V with
H•(g,K∞, V ⊗MC) ̸= 0 is finite.

The proof of Wigner’s lemma is very elegant. We haveM⊗V =M∨⊗V and
hence we haveH0(g,K∞,M⊗V ) = Hom(M∨, V )(g,K∞) = Hom(g,K∞)(M∨, V ).
In [16] , Chap.I 2.4 it is shown, that the category of g,K∞ -modules has enough
injective and projective elements (See [16], I. 2.5) . If I is an injective (g,K∞)-
module thenM⊗ I is also injective because for any g,K∞-module A we have
Hom(A,M⊗ I) = Hom(M∨, I). Hence an injective resolution 0→ V → I0 →
I1 . . . yields an injective resolution 0→M→M⊗ I0 →M⊗ I1 . . . and from
this we get

Hq(g,K∞,M⊗ V ) = Extq(g,K∞)(M
∨, V ).

Any z ∈ Z(g) induces an endomorphism ofMλ and V . Since Ext• is functo-
rial in both variables, we see that z induces endomorphisms z1 (via the action on
Mλ) and z2 (via the action on V ) on Extq(g,K∞)(M

∨, V ).We show that z1 = z2.

This is clear by definition for Ext0(g,K∞)(M∨, V ) = Hom(g,K∞)(M∨, V ) : For
z ∈ Z(g) and ϕ ∈ Hom(g,K∞)(M∨, V ),m ∈ Mλ we have z1ϕ(m) = ϕ(zm) =
z2(ϕ(m)). To prove it for an arbitrary q we use devissage and induction. We
embed V into an injective (g,K) module I and get an exact sequence

0→ V → I → I/V → 0

and from this we get

Extq−1(g,K∞)(Mλ, I/V ) = Extq(g,K∞)(Mλ, V ) for q > 0.

Now by induction we know z1 = z2 on the left hand side, so it also holds on
the right hand side.

If now χV ̸= χM∨ then we can find a z ∈ Z(g) such that χM∨(z) =
0, χV (z) = 1. This implies that z1 = 0 and z2 = 1 on all Extq(g,K∞)((g,K∞)(Mλ, V ).

Since we know that z1 = z2 we see that the identity on Extq(g,K∞)(Mλ, V ) is

equal to zero and this implies the assertion.

On the universal enveloping algebra U(g) we have an antiautomorphism u 7→t

u which is induced by the antiautomorphism X 7→ −X on the Lie algebra g. If
V is an admissible (g,K∞)-module, then we can form the dual module V ∨ and
if we denote the pairing between V, V ∨ by < , >V then

< Uv, ϕ >V=< v,t Uϕ >V for all U ∈ U(g), v ∈ V, ϕ ∈ V ∨.

If V is irreducible, then it has a central character and we get

χV ∨(z) = χV (
tz).

This applies to finite dimensional and to infinite dimensional (g,K∞)-modules.
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6.1.5 Representation theoretic Hodge-theory.

We consider irreducible unitary representations G(R)→ U(H). We know from
the work of Harish-Chandra:

1) If we fix an isomorphism class ϑ irreducible representations of K∞ then
the isotypical subspace dimCH(ϑ) ≤ dim(ϑ)2, i.e. ϑ occurs at most with mul-
tiplicity dim(ϑ).

2) The direct sum
∑
ϑ∈K̂∞

H(ϑ) = H(K∞) ⊂ H is dense in H and it is an
admissible irreducible Harish-Chandra -module.

We call an irreducible (g,K∞)-module unitary, if it is isomorphic to such an
H(K∞).

For a given G/R and any rational irreducible moduleMλ Vogan and Zucker-
man give a finite list of certain irreducible, admissible (g,K∞)− modules Aq(λ),
for which H•(g,K∞, Aq(λ)⊗Mλ) ̸= 0 they compute these cohomology group.
This list contains all unitary, irreducible (g,K∞)−modules, which have non
trivial cohomology with coefficients inMλ.

For the following we refer to [16] Chap. II , §1-2 . We want to apply the
methods of Hodge-theory to compute the cohomology groups H•(g,K∞, V ⊗
Mλ) for an unitary (g,K∞)-module V. This means have a positive definite scalar
product < , >V on V, for which the action of K∞ is unitary and for U ∈ g and
v1, v2 ∈ V we have < Uv1, v2 >V + < v1, Uv2 >V= 0.

We assume thatMλ is conjugate-autodual. In the next step we introduce for
all p a hermitian form on HomK∞(Λp(g/k), V ⊗Mλ). To do this we construct
a hermitian form onMλ.

(The following considerations are only true modulo the centre). We consider
the Lie algebra and its complexification gC = g ⊗ C. On this complex vector
space we have the complex conjugation − : U 7→ Ū . We rediscover g as the
set of fixed points under −. We also have the Cartan involution Θ which is
the involution which has k as its fixed point set. Then we get the Cartan
decomposition

g = k⊕ p where p is the -1 eigenspace of Θ.

The Killing form is negative definite on k and positive definite on p, we
have for the Lie bracket [p, p] ⊂ k. We consider the invariants under − ◦ Θ,
this is the Lie algebra gc = k ⊕

√
−1 ⊗ p. On this real Lie algebra the Killing

form is negative definite and gc is the Lie algebra of an algebraic group Gc/R
whose base extension Gc ⊗R C ∼−→ G ⊗R C and whose group Gc(R) of real
points is compact (this is the so called compact form of G). We still have
the representation Gc/R → Gl(Mλ) which is irreducible and hence we find a
hermitian form < , >λ on Mλ, which is invariant under Gc(R) and which is
unique up to a scalar.

This form satisfies the equations

< Um1,m2 >M + < m1, Um2 >λ= 0 for all m1,m2 ∈Mλ, U ∈ k

this is the invariance under K∞ and

< Um1,m2 >M=< m1, Um2 >λ for all m1,m2 ∈Mλ, U ∈ p

this is the invariance under
√
−1⊗ p.
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Now we define a hermitian metric on V ⊗Mλ, we simply take the tensor
product < , >V ⊗ < , >λ=< , >V⊗λ . Finally we define the (hermitian)
scalar product on HomK∞(Λ•(g/k), V ⊗Mλ).We choose and orthonormal (with
respect to the Killing form) basis E1, E2, . . . , Ed on p, we identify g/k

∼−→ p.
Then a form ω ∈ HomK∞(Λp(g/k), V ⊗Mλ) is given by its values ω(EI) ∈ V ⊗
Mλ, where I = {i1, i2, . . . , ip} runs through the ordered subsets of {1, 2, . . . , d}
with p elements. For ω1, ω2 ∈ HomK∞(Λp(g/k), V ⊗Mλ) we put

< ω1, ω2 >=
∑

I,|I|=p

< ω1(EI), ω2(EI) >V⊗λ (6.7)

Now we can define an adjoint operator

δ : HomK∞(Λp(g/k), V ⊗Mλ)→ HomK∞(Λp−1(g/k), V ⊗Mλ), (6.8)

which can be defined by a straightforward calculation. We simply write a for-
mula for δ: For an element Ei we define E∗i (v ⊗m) = −Eiv ⊗m + v ⊗ Eim.
Then we can define δ by the following formula:

We have to evaluate δ(ω) on EJ = (Ei1 , . . . , Eip−1
) where J = {i1, . . . , ip−1}.

We put

δ(ω)(EJ) =
∑
i̸∈J

(−1)p(i,J∪{i})E∗i ωJ∪{i},

where p(i, J ∪{i}) denotes the position of i in the ordered set J ∪{i}. With this
definition we get for a pair of forms ω1 ∈ HomK∞(Λp−1(g/k), V ⊗Mλ) and
ω2 ∈ HomK∞(Λp(g/k), V ⊗Mλ) (See [16], II, prop. 2.3)

< dω1, ω2 >=< ω1, δω2 > (6.9)

We define the Laplacian ∆ = δd+ dδ. Then we have ([16] , II ,Thm.2.5)

< ∆ω, ω >≥ 0 and we have equality if and only if dω = 0, δω = 0 (6.10)

Inside Z(g) we have the Casimir operator C (See Chap. 4). An element
z ∈ Z(g) acts on V ⊗Mλ by z⊗ Id via the action on the first factor and by the
scalar χλ(z) via the action on the second factor. Then we have

Kuga’s lemma : The action of the Casimir operator and the Laplace op-
erator on HomK∞(Λp(g/k), V ⊗Mλ) are related by the identity

∆ = C ⊗ Id− χλ(C).

If the (g,K∞) module is irreducible, then ∆ acts by multiplication by the
scalar χV (C)− χλ(C)

This has the following consequence
If V is an irreducible unitary g,K∞- module and if Mλ is an irreducible

representation with highest weight λ then

H•(g,K∞, V ⊗MC) =

{
0 if χV (C)− χλ(C) ̸= 0

HomK∞(Λ•(g/k), V ⊗Mλ) if χV (C)− χλ(C) = 0
.

This only applies for unitary g,K∞-modules, but for these it is much stronger:
It says that under the assumption χV (C) = χλ(C) we have χV = χλ ( we only
have to test the Casimir operator) and it says that all the differentials in the
complex are zero.
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6.1.6 Input from the theory of automorphic forms

We apply this to the s90okf square integrable functions on G(Q)\G(A)/Kf .
Because of the presence of a non trivial center, we have to consider functions
which transform in a certain way under the action of the center. We may assume
that coefficient system Mλ has a central character and this central character
defines a character ζλ on the maximal Q-split torus S ⊂ C. This character can
be evaluated on S0(R) this is the connected component of the identity of the real
valued points of S. The map z∞ 7→ (z∞, 1, . . . , 1, . . . ) ∈ S(A) is an embedding
of S0(R) into G(A). It follows from [14] that the quotient G(Q)S0(R)\G(A)/Kf

has finite volume. We define the space of functions

C∞(Γ\G(R)ζ−1∞ ) (6.11)

to be the subspace of those C∞ functions which satisfy f(z∞g) = ζ−1∞ (z∞)f(g)

for all z∞ ∈ S0(R). The isogeny dC : C → C ′ (see ??) induces an isomorphism
S0(R) ∼−→ S′,0(R), where S′ is the maximal Q split torus in C ′. Therefore we get
a character ζ ′∞ : S′,0(R)→ R×>0 and this is also a character ζ ′∞ : G(R)→ R×>0.
Its restriction to S0(R) is ζ∞. If now f ∈ C∞(Γ\G(R)ζ−1∞ ) then

f(g)ζ ′∞(g) ∈ C∞(G(Q)S0(R)\G(A)/Kf ) (6.12)

We say that f ∈ C∞(Γ\G(R)ζ−1∞ ) is square integrable if sqint∫
(G(Q)S0(R)\G(A)/Kf )

|f(g)ζ ′∞(g)|2dg <∞ (6.13)

and this allows us to define the Hilbert space L2(Γ\G(R)ζ−1∞ ). Since the space
(G(Q)S0(R)\G(A)/Kf ) has finite volume we know that

ζ ′∞ ∈ L2(Γ\G(R)ζ−1∞ ).

The group G(R) acts on C∞(Γ\G(R)ζ−1∞ ) by right translations and hence
we get by differentiating an action of the universal enveloping algebra U(g) on

it. We define by C(2)∞ (Γ\G(R)ζ−1∞ ) the subspace of functions f for which Uf is
square integrable for all U ∈ U(g).

This allows us to define a sub complex of the de-Rham complex Ltwo

HomK∞(Λ•(g/k), C(2)∞ (Γ\G(R), ζ−1∞ )⊗Mλ). (6.14)

We will not work with this complex because its cohomology may show some bad
behavior. (See remark below).

We do something less sophisticated, we simply define H•(2)(Γ\X,M̃λ) ⊂
H•(Γ\X,M̃λ) to be the image of the cohomology of the complex (6.14) in the
cohomology. Hence H•(2)(Γ\X,M̃λ) is the space of cohomology classes which
can be represented by square integrable forms.

Remark: Some authors also define L2− de-Rham complexes, using the above
complex (6.14) and then they take suitable completions to get complexes of
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Hilbert spaces. These complexes also give cohomology groups which run under
the name of L2-cohomology. These L2-cohomology groups are related but not
necessarily equal to our H•(2)(Γ\X,M̃λ). They can be infinite dimensional.

The Hilbert space L2(Γ\G(R), ζ−1∞ ) is a module for G(R)×HKf
the group

G(R) acts by unitary transformations and the algebra HKf
is selfadjoint.

Let us assume thatH = Hπ∞×πf
is an irreducible unitary module for G(R)×

H =
⊗′

pHp and assume that we have an inclusion of this G(R)×H-module

j : H ↪→ L2(Γ\G(R), ζ−1∞ ).

It follows from the finiteness results in 6.1.5 that induces an inclusion into the
space of square integrable C∞ functions

H(K∞) ↪→ C(2)∞ (Γ\G(R), ζ−1∞ )(K∞).

We consider the (g,K∞)− cohomology of this module with coefficients in our
irreducible module Mλ, we assume χV (C) = χλ(C). We have H•(g,K∞, H ⊗
Mλ) = HomK∞(g,K∞, H

(K∞) ⊗Mλ) and get

H•(g,K∞, H
(K∞) ⊗MC)

j•−→ H•(g,K∞, C∞(Γ\G(R), ζ−1∞ )(K∞) ⊗Mλ).

This suggests that we try to ”decompose” C∞(Γ\G(R), ζ−1∞ )(K∞) into irre-
ducibles and then investigate the contributions of the irreducible summands to
the cohomology. Essentially we follow the strategy of [Bo-Ga] and [12] but in-
stead of working with complexes of Hilbert spaces we work with complexes of
C∞ forms and modify the arguments accordingly.

It has been shown by Langlands, that we have a decomposition into a discrete
and a continous spectrum

L2(G(Q)\G(A)/Kf ) = L2
disc(Γ\G(R)⊕ L2

cont(Γ\G(R),

where L2
disc(Γ\G(R) is the closure of the sum of all irreducible closed subspaces

occuring in L2(G(Q)\G(A)/Kf ) and where L2
cont(Γ\G(R) is the complement.

The discrete spectrum L2
disc(Γ\G(R) contains as a subspace the cuspidal

spectrum L2
cusp(Γ\G(R)) :

A function f ∈ L2(Γ\G(R)) is called a cusp form if for all proper parabolic
subgroups P/Q ⊂ G/Q, with unipotent radical UP /Q the integral

FP (f)(g) =
∫
UP (Q)\UP (A)

f(ug)du = 0,

this means that the integral is defined for almost all g and zero for almost all

g. The function FP (f)(g), which is an almost everywhere defined function on
P (Q)\G(A)/Kf is called the constant Fourier coefficient of f along P/Q. The
cuspidal spectrum the intersection of all the kernels of the FP .

If our group is anisotropic, then it does not have any proper parabolic sub-
group and in this case we have L2

cusp(Γ\G(R) = L2
disc(Γ\G(R) = L2(Γ\G(R).
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For any unitary G(R)×H- module Hπ = Hπ∞ ⊗Hπf
we put

Wcusp(π) := HomG(R)×H(Hπ, L
2
cusp(Γ\G(R)). (6.15)

We can ignore the H-module structure and define

Wcusp(π∞) = HomG(R)(Hπ∞ , L
2
cusp(Γ\G(R)).

Then the dimension of Wcusp(π∞) is the multiplicity mcusp(π∞). It has been
shown by Gelfand-Graev and Langlands that

mcusp(π∞) =
∑
πf

dim(Wπ,cusp) <∞.

We get a decomposition into isotypical subspaces

L2
cusp(Γ\G(R) =

⊕
π∞⊗πf

(L2
cusp(Γ\G(R)(π∞ × πf ),

where (L2
cusp(Γ\G(R)(π∞ × πf ) is the image of Wπ,cusp ⊗Hπ in L2

cusp(Γ\G(R).
The cuspidal spectrum has a complement in the discrete spectrum, this

is the residual spectrum L2
res((Γ\G(R). It is called residual spectrum, because

the irreducible subspaces contained in it are obtained by residues of Eisenstein
classes.

Again we defineWres(π) = HomG(R)×H(Hπ, L
2
res(Γ\G(R)), (resp. Wres(π∞) =

HomG(R)(Hπ∞ , L
2
cusp(Γ\G(R)), and it is a deep theorem of Langlands that

mres(π∞) = dim(Wres(π∞) <∞. Hence we get a decomposition

L2
res(Γ\G(R) =

⊕
π∞⊗πf

(L2
res(Γ\G(R)(π∞ × πf ).

If our group G/Q is isotropic, then the one dimensional space of constants
is in the residual (discrete) spectrum but not in the cuspidal spectrum.

Langlands has given a description of the continnuos spectrum using the

theory of Eisenstein series, we have a decomposition decomp-cont

L2
cont(Γ\G(R) =

⊕
Σ

H̃+
P (πΣ), (6.16)

we briefly explain this decomposition following [Bo-Ga]. The Σ are so called
cuspidal data, this are pairs (P, πΣ) where P is a proper parabolic subgroup
and πΣ is a representation of M(A) = P (A)/U(A) occurring in the discrete
spectrum L2

cusp(M(Q)\M(A)).
LetM (1)/Q be the semi simple part ofM and recall that C/Q was the center

of G/Q. We consider the character module Y ∗(P ) = Hom(C ·M (1),Gm). The
elements Y ∗(P )⊗C provide homomorphisms γ⊗z :M(A)/C(A)M (1)(A)→ C×.
(See (4.20)). The module Y ∗(P )⊗Q comes with a canonical basis which is given
by the dominant fundamental weights γµ which are trivial on M (1). We define

ΛΣ = Y ∗(P )⊗ iR = {
∑
µ

γµ ⊗ itµ|tµ ∈ R}
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this is a group of unitary characters. For σ ∈ ΛΣ we define the unitarily induced
representation

Ind
G(A)
P (A)πΣ ⊗ (σ + ρP ) = IGP πΣ ⊗ σ

{f : G(A)→ L2
res(M(Q)\M(A))(πΣ)|f(pg) = (σ + |ρP |)(p)πΣ(p)f(g)}

(6.17)

where of course p ∈ P (A), g ∈ G(A) and ρP ∈ Y ∗(P ) ⊗ Q is the half sum of
the roots in the unipotent radical of P. This gives us a unitary representation
of G(A). Let dΣ be the Lebesgue measure on ΛΣ then we can form the direct
integral unitary representations

HP (πΣ) =

∫
ΛΣ

IGP πΣ ⊗ σ dΣσ (6.18)

The theory of Eisenstein series gives us a homomorphism of G(R)×H -modules

EisP (πΣ) : HP (πΣ)→ L2
cont(Γ\G(R). (6.19)

Let us put

Λ+
Σ = {

∑
µ

γµ ⊗ itµ|tµ ≥ 0}

then the restriction

EisP (πΣ) : H
+
P (πΣ) =

∫
Λ+

Σ

IGP πΣ ⊗ σ dΣσ → L2
cont(Γ\G(R). (6.20)

is an isometric embedding. The image will be denoted by H̃+
P (πΣ) these spaces

are the elementary subspaces in [B-G]. Two such elementary subspaces H̃+
P (πΣ), H̃

+
P1
(πΣ1

)
are either orthogonal to each other or they are equal. We get the above decom-
position if we sum over a suitable set of representatives of cuspidal data.

Now we are ready to discuss the contribution of the continuous spectrum to
the cohomology. If we have a closed square integrable form

ω ∈ HomK∞(Λp(g/k), C(2)∞ (Γ\G(R)⊗Mλ),

then we can decompose it

ω = ωres + ωcont,

both summands are C2∞ and closed.

Proposition 6.1.3. The cohomology class [ωcont] is trivial.

Proof. This now the standard argument in Hodge theory, but this time we apply
it to a continuous spectrum instead of a discrete one. We follow Borel-Casselman
and prove their Lemma 5.5 (See[B-C]) in our context. We may assume that ω∞
lies in one of the summands, i.e. ωcont = Eis(

∫
ΛΣ
ω∨(σ)dΣσ) where ω∨(σ) ∈

HomK∞(Λp(g/k), IGP πΣ ⊗ σ ⊗Mλ)) is the Fourier transform of ω∞ in the L2.,
(theorem of Plancherel). As it stands the expression

∫
ΛΣ
ω∨(σ)dΣσ) does not

make sense because the integrand is in L2 and not necessarily in L1. If we
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choose a symmetric positive definite quadratic form h(σ) =
∑
ν,µ bν,µtνtµ and

a positive real number τ then the function

hτ (σ) = (1 + τh(σ)m)−1 ∈ L2(ΛΣ)

and then ω∨(σ)hτ (σ) is in L
1 and by definition

lim
τ→0

∫
ΛΣ

ω∨(σ)hτ (σ)dΣσ) =

∫
ΛΣ

ω∨(σ)dΣσ (6.21)

where the convergence is in the L2 sense. Since ω∞ ∈ HomK∞(Λp(g/k), IGP πΣ⊗
σ ⊗Mλ) we get get that ω∨(σ) has the following property

For any polynomial P (σ) =
∑
aµt

µ in the variables tµ and with real coeffi-

cients the section diffmult

ω∨(σ)P (σ) is square integrable (6.22)

this follows from the well known rules that differentiating a function provides
multiplication by the variables for the Fourier transform.

The Lemma of Kuga implies

∆(ω∨(σ)) = (χσ(C)− χλ(C))ω∨(σ)

and if σ =
∑
γµ ⊗ it µ the eigenvalue is

χσ(C)− χλ(C) =
∑

aν,µtνtµ +
∑

bµtµ + cπΣ
− cλ. (6.23)

where cπΣ
is the eigenvalue of the Casimir operator of M (1) on πΣ If the tµ ∈ R

then this expression is always ≤ 0 especially we see that the quadratic form
on the right hand side is negative definite. This implies that for σ ∈ ΛF the
expression χσ(C)−χλ(C) assumes a finite number of maximal values all of them
≤ 0 and hence

VΣ = {σ|χσ(C)− χλ(C) = 0} (6.24)

is a finite set of point. This set has measure zero, since we assumed that P was
a proper parabolic subgroup. The of σ for which H•(g,K∞, HΛΣ

(σ)⊗MC) ̸= 0
is finite. We choose a C∞ function hΣ(σ) which is positive, which takes value
1 in a small neighbourhood of VΣ, which takes values ≤ 1 in a slightly larger
neighbourhood and which is zero outside this second neighbourhood. Then we
write

ω∞ = Eis(

∫
Λ+

Σ

hΣ(σ)ω
∨(σ)dΣσ) + Eis(

∫
Λ+

Σ

(1− hΣ(σ))ω∨(σ)dΣσ)

We have dω∨(σ) = 0 and hence we get

∆((1− hΣ(σ))ω∨(σ) = d
(
(χσ(C)− χλ(C))(1− hΣ(σ))δω

∨(σ)
)

and this implies that

Eis(

∫
Λ+

Σ

(1−hΣ(σ))ω∨(σ)dΣσ) = d Eis(

∫
Λ+

Σ

(1−hΣ(σ))(χσ(C)−χλ(C))−1δω∨(σ)dΣσ)
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It is clear that the integrand in the second term-
∫
Λ+

Σ
(1 − hΣ(σ))(χσ(C) −

χλ(C))
−1δω∨(σ) still satisfies (6.22) and then our well known rules above imply

that ψ = Eis(
∫
Λ+

Σ
(1 − hΣ(σ))(χσ(C) − χλ(C))−1δω∨(σ)dΣσ) is C2∞. Therefore

the second term in our above formula is a boundary.

ωcont =

∫
ΛΣ

hΣ(σ)ω(σ)dΣσ + dψ.

This is true for any choice of hΣ. Hence the scalar product < ω−dψ, ω−dψ >
can be made arbitrarily small. Then we claim that the cohomology class [ω] ∈
H•( HomK∞(Λp(g/k), C∞(Γ\G(R)⊗Mλ) must be zero. This needs a tiny final
step.

We invoke Poincaré duality: A cohomology class in [ω] ∈ Hp(Γ\X,M̃λ) is
zero if and only the value of the pairing with any class [ω2] ∈ Hd−p

c (Γ\X,M̃∨λ)
is zero. But the (absolute) value [ω] ∪ [ω2] of the cup product can be given
by an integral (See Prop.6.1.2). Therefore it can be estimated by the norm
< ω − dψ, ω − dψ > (Cauchy-Schwarz inequality) and hence must be zero.

As usual we denote by Ĝ(R) the unitary spectrum, for us it is simply the
set of unitary irreducible representations of G(R). Given M̃λ, we define

Coh2(λ) = {π∞ ∈ Ĝ(R)| H•(g,K∞, Hπ∞ ⊗ M̃λ) ̸= 0} (6.25)

The theorem of Harish-Chandra says that this set is finite.

Let

HCoh2(λ) =
⊕

π:π∞∈Coh2(λ)

L2
disc(Γ\G(R)(π∞ × πf ) =

⊕
π:π∞∈Coh2(λ)

Hπ∞(πf )

(6.26)

the theorem of Gelfand-Graev and Langlands assert that this is a finite sum of
irreducible modules. This space decomposes again into Hcusp

Coh2(λ)
⊕Hres

Coh2(λ)

Then we get the following theorem which is due to Borel, Garland, Mat-

sushima and Murakami Bo-Ga-Mu

Theorem 6.1.1. a)The map

H•(g,K∞, H
(K∞)
Coh2(λ)

⊗Mλ) = HomK∞(Λ•(g/k), H
(K∞)
Coh2(λ)

⊗Mλ)→ H•(2)(Γ\X,M̃λ)

surjective. Especially the image contains H•! (Γ\X,M̃λ).

b) (Borel) The homomorphism

H•(g,K∞, H
(cusp,K∞)
Coh2(λ)

⊗Mλ)→ H•(Γ\X,M̃λ)

is injective.
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In [13] Prop.5.6, they do not consider the above space H•(2)(Γ\X,M̃λ) we
added an ϵ > 0 to this proposition by claiming that this space is the image.

In general the homomorphism

H•(g,K∞, H
res
res(λ) ⊗Mλ)→ H•(Γ\X,M̃λ)

is not injective. We come back to this issue in the next section.

If we denote by H•cusp(Γ\X,M̃λ) the image of the homomorphism in b),

then we get a filtration of the cohomology by four subspaces four

H•cusp(Γ\X,M̃λ) ⊂ H•! (Γ\X,M̃λ) ⊂ H•(2)(Γ\X,M̃λ) ⊂ H•(Γ\X,M̃λ).

(6.27)

We get the representation theoretic Hodge decomposition⊕
π∞

Wcusp(π∞)⊗H•cusp(g,K∞, Hπ∞ ⊗Mλ)
∼−→ H•cusp(Γ\X,M̃λ) (6.28)

If we replace the subscript cusp by ! the corresponding map is still surjective
but may be not injective.

We want to point out that our spaceH•(2)(Γ\X,M̃λ) is not the space denoted

by the same symbol in the paper [12]. They define L2 cohomology as the complex
of square integrable forms, i.e. ω and dω have to be square integrable. But then
a closed form ω which is in L2 gives the trivial class in their cohomology if we
can write ω = dψ where ψ must also be square integrable. In our definition we
do not have that restriction on ψ.

The semi-simplicity of the inner cohomology

Now we assume again that our representation M̃λ is defined over some number
field F we consider it as a subfield of C. In other word we have a representation
r : G×F → Gl(Mλ).We have defined H•! (Γ\X,M̃), this is a finite dimensional
F -vector space and Theorem 3.1.1 in Chapter 3 asserts that this is a semi simple
module under the Hecke algebra. The following argument shows that this is an
easy consequence of our results above.

The module H1 ⊂ L2
disc(Γ\G(R) can also be decomposed into a finite direct

sum of irreducible G(R)×HKf
modules

H1 =
⊕

π∞⊗πf∈Ĥ1

(Hπ∞ ⊗Hπf
)m1(π∞×πf ),

this module is clearly semi-simple. Of course it is not a (g,K∞)-module, but
we can restrict to the K∞-finite vectors and get

H•(g,K∞, H
(K∞)
1 ⊗Mλ⊗C) =

⊕
π∞⊗πf∈Ĥ1

( HomK∞(Λ•(g/k), Hπ∞⊗MC)⊗Hπf
)
m1(π∞×πf )

This is a decomposition of the left hand side into irreducible HKf
modules. Now

we have the surjective map
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H•(g,K∞, H
(K∞)
1 ⊗Mλ ⊗ C)→ H•(2)(Γ\X,M̃λ ⊗ C)

hence it follows that H•(2)(Γ\X,M̃λ ⊗ C)) is a semi simple HKf
module and

hence also H•! (Γ\X,M̃λ) is a semi simple HKf
module.

Friendship

We touch upon a question which comes up naturally in this context. Assume we
have a non zero isotypical submodule H•! (Γ\X,Mλ)(πf ). Then we know that
there is a unitary (g,K∞) module Hπ∞ with π∞ ∈ Coh(λ) such that we can
embed Hπ∞ ×Hπf

into L2
disc(Γ\G(R). The interesting question is:

Given πf , what are the possible choices for π∞?.

We can formulate this differently. We recall that

W?(π∞ ⊗ πf ) = HomG(R)×HKf
(Hπ∞ ⊗Hπf

, L2
?(Γ\G(R)

where ? = cusp or = (2) resp. disc then we get the surjective map⊕
π∞

W?(π∞ × πf )⊗Hπ∞ ⊗Hπf
→ H•? (Γ\X,M̃λ)(πf ) (6.29)

which is an isomorphism if ? = cusp. The friends of πf are those π∞ where
W?(π∞ × πf ) ̸= 0.

This question may become very delicate and we will not discuss it profoundly.
(As J. Arthur puts it : πf looks around and asks ”Who is my friend?”) In
principle we give a complete answer to these questions in the low dimensional
cases discussed in section (4.1.5), i.e G/R = Gl2/Q and G/R = RC(R(Gl2/C).

In section (6.1.5) we mentioned the Vogan-Zuckerman classification of uni-
tary representations with non trivial cohomology. More precisely Vogan and
Zuckerman construct a family of (g,K∞) irreducible modules Aq(λ) for which
they show H•(g,K∞, Aq(λ)⊗Mλ) ̸= 0, and they compute H•(g,K∞, Aq(λ)⊗
Mλ) explicitly. Moreover they show that any irreducible unitary module V
with H•(g,K∞, V ⊗Mλ) ̸= 0, is isomorphic to an Aq(λ).

We give some very cursory description of their construction. Let T c1/R be a

maximal torus in K
(1)
∞ /R. Then it is clear that the centraliser T/R is a maximal

torus in G/R. In section 1.1.2l we introduced the one dimensional torus S1/R
and we choose an isomorphism i0 : S1×RC

∼−→ Gm/C.We consider cocharacters
χ : S1/R → T c1/R. Such a cocharacter defines a centraliser Zχ ⊂ G/R and a
parabolic Pχ/C ⊂ G ×R C, this parabolic subgroup also depends on i0. (See
section ??) The Lie-algebra q = Lie(Pχ/C) is the q in Aq(λ). We will denote
these modules also by Aχ(λ), i.e. Aχ(λ) := Aq(λ) if χ and q are related as
above.

The second datum is a highest weight λ ∈ X∗(T ×R C), it has to satisfy two
conditions

a) The weight λ is c-autodual (see (6.1)) i.e. c(λ) = −w0λ).



6.1. THE REPRESENTATION THEORETIC DE-RHAM COMPLEX 255

b) The highest weight λ is trivial on the semi simple part Z
(1)
χ or what

amounts to the same λ extends to a character λ : Pχ → Gm/C.

We have two extreme cases. In the first case the cocharacter χ is trivial,
then the centraliser is the entire group G ×R C/C and then the condition b)
implies that λ = 0. This implies thatMλ is one dimensional, q = g and Aq(0)
is this trivial one dimensional (g,K∞)-module.

But on the other hand for λ = 0 we do not have any constraint on the χ, i.e.
we get a non trivial irreducible module Aχ(0) for any χ. But it is not known in
general which of these modules are unitary.

In the second case χ is regular, this means that Zχ = T and Pχ = Bχ is a
Borel subgroup, we have no constraint on λ. In this case the Aq(λ) = Ab(λ) are
the so called tempered representations (see [16], IV, 3.6).

The regular cocharacters χ ∈ X∗(T c1 ) ⊗ R lie in the complement of finitely

many hyperplanes, hence the set (X∗(T
(c)
1 ) ⊗ R))(0) of regular characters is a

finite union of connected components. It is clear from the description that
the module Aq(λ) does not change, if χ moves inside a connected component.
Finally we have the action of the real Weyl group W (R) = N(T )(R)/T (R) on
X∗(T

c
1 )⊗ R and again it is clear that the isomorphism type does not change if

we conjugate χ by an element in W (R). Hence we can say that the tempered

Ap(λ) are parametrised by π0((X∗(T
(c)
1 )⊗ R))(0))/W (R).

We have a brief look at the case that G(1)/R has a compact maximal torus
T c1 ,i.e. T = T. This case played an important role in the section on the Gauss-
Bonnet formula. Then

T c1 ×R C ⊂ K(1)
∞ ×R C ⊂ G(1) ×R C,

hence T c1 is a maximal torus in both reductive groups. We have the two (abso-
lute) Weyl groupsWK∞ =W (R) = NK∞(T )(C)/T (C) and WG = NG(T )(C)/T (C)
The big Weyl groupWG acts simply transitively on the set of connected compo-

nents of (X∗(T
(c)
1 )⊗R))(0). Hence we have WG = π0(X∗(T

(c)
1 )⊗R))(0)) once we

choose a base point [χ0] ∈ π0(X∗(T (c)
1 )⊗ R))(0)) and therefore we get a family

{Awχ0
(λ)}w∈WK∞\WG

, (6.30)

and the results of Vogan and Zuckerman assert:

These repesentations are unitary, they are pairwise non isomorphic, and they
are the Harish-Chandra modules attached to the discrete series representations
of G(R).

The cohomology groups are given by

Hq(g,K∞, Awχ0
(λ)⊗Mλ) =

{
C if q = d

2

0 else
(6.31)

Now it is clear that for a regular highest weight λ regular the condition b)
forces the cocharacter χ to be regular.
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We come back to the question raised above. Assume λ is regular and we
have an isotypical component H•(Γ\X,M̃λ)(πf ). Then the possible ”friends”
are the Aχ(λ) with χ regular. Hence we get

H•! (Γ\X,M̃λ)(πf ) =
⊕

w∈WK\WG
H

d
2 (g,K∞, Awχ0

(λ)⊗Mλ)
m(wχ0×πf ) =⊕

w∈WK\WG
Cm(wχ0×πf )

(6.32)

where m(wχ0 × πf ) is the multiplicity of Awχ0
(λ) × πf . in L2

disc(Γ\G(R). (In
Arthurs’ words : If) λ is regular then the only friends of a πf ∈ Coh(H•! (Γ\X,M̃λ)
are the wχ0.)

If we refrain from decomposing into isotypical subspaces then we get a sim-
pler formula

H•! (Γ\X,M̃λ) =
⊕

w∈WK\WG

Cm(wχ0) (6.33)

where of coursem(wχ0) is the multiplicity of Awχ0(λ) in L
2
disc(Γ\G(R). Actually

we know that Awχ0(λ) must even lie in the cuspidal spectrum (see [?]). In
principle we already used this fact because we tacitly used the theorem of Borel
(see Thm 6.1.1, b).

6.1.7 Cuspidal vs. inner

Now we remember that in the previous sections we made the convention (See
end of (6.1.1)) that our coefficient systems Mλ are C vector spaces. We now
revoke this convention and recall that the coefficient systems Mλ should be
replaced byMλ⊗F C, where F is some number field over whichMλ is defined.
Then in the above list (6.27) of four subspaces in the cohomology the second
and the fourth subspace have a natural structure of F -vector spaces and they
have a combinatorial definition, whereas the first and third subspace need some
input from analysis in their definition. In other words if we replaceMλ in (6.27)
byMλ ⊗F C then (6.27) can be written as

H•cusp(Γ\X,M̃λ ⊗F C) ⊂ H•! (Γ\X,M̃λ)⊗F C ⊂ H•(2)(Γ\X,M̃λ ⊗F C) ⊂ H•(Γ\X,M̃λ)⊗F C
(6.34)

It is a very important question to understand the discrepancy between the
first two steps. If λ is regular then it follow from the results of [64] that in fact

H•cusp(Γ\X,M̃λ ⊗F C) = H•! (Γ\X,M̃λ)⊗F C (6.35)

but without the assumption λ regular this is not true for interesting reasons.
Of course we should also take the action of the Hecke algebra into account.

If πf is the isomorphism type of an absolutely irreducible Hecke module which
is defined over F. Then we can consider

H•cusp(Γ\X,M̃λ ⊗F C)(πf ) ⊂ H•! (Γ\X,M̃λ)⊗F C(πf ) (6.36)
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and compare these two modules. We will say that πf is strongly inner if we
have equality.

We come back to this issue in part II.

Conseq

6.1.8 Consequences

.

Vanishing theorems

If V is unitary and irreducible, then we have that V̄
∼−→ V ∨ and this implies

for the central character

χV (z) = χV ∨(z) for all z ∈ Z(g).

Combining this with Wigner’s lemma we can conclude

If V is an irreducible unitary (g,K∞)-module,Mλ is an irreducible rational
representation, and if

H•(g,K∞, V ⊗Mλ) ̸= 0

then χM∨
λ
(z) = χMλ

(tz) = χM̄λ
(z)

In other words: For an unitary irreducible (g,K∞)-module V the cohomology
with coefficients in an irreducible rational representationM vanishes, unless we
have M∨λ

∼−→ M̄λ, or in terms of highest weights unless −w0(λ) = c(λ). (See
3.1.1)

If we combine this with the considerations following Wigner’s lemma we get

Corollary 6.1.1. IfM is an absolutely irreducible rational representation and
ifM∨λ is not isomorphic to M̄λ then

H•(2)(Γ\X,M̃λ) = 0.

Hence also
H•! (Γ\X,M̃λ) = 0.

We will discuss examples for this in section 6.1.8

The group G/Q = Sl2/Q

Let us consider the group G/Q = Sl2/Q. We have tautological representation
Sl2 ↪→ Gl(Q2) = Gl(V ) and we get all irreducible representations of we take the
symmetric powersMn = Symn(V ) of V. (See 2, these are theMn[m] restricted
to Sl2, then the m drops out.)

In this case the Vogan-Zuckerman list is very short. It is discussed in [Slzwei]
for the groups Sl2(R) and Sl2(C), where both groups are considered as real Lie-
groups.

In the case Sl2(R) we have the trivial module C and for any integer k ≥ 2
we have two irreducible unitarizable (g,K∞)-modules D±k (the discrete series
representations) (See [Slzwei], 4.1.5 ). These are the only (g,K∞)-modules
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which have non trivial cohomology with coefficients in a rational representation.
If we now pick one of our rational representation Mn, then the non vanishing
cohomology groups are

Hq(g,K∞,Mn ⊗ C) = C for n = 0, q = 0, 2

Hq(g,K∞,D±k ⊗Mn ⊗ C) = C for n = k − 2, q = 1

The trivial (g,K∞)-module C occurs with multiplicity one in L2(Γ\G(R)
hence we get for the trivial coefficient system a contribution

H•(g,K∞,C⊗Mn⊗C) = H0(g,K∞,C)⊕H2(g,K∞,C) = C⊕C→ H•(2)(Γ\X,C).

This map is injective in degree 0 and zero in degree 2.
For the modules D±k we have to determine the multiplicities m±(k) of these

modules in the discrete spectrum of L2(Γ\G(R). A simple argument using
complex conjugation tells us m+(k) = m−(k). Now we have the fundamental
observation made by Gelfand and Graev, which links representation theory to
automorphic forms:

We have an isomorphism

Hom(g,K∞)(D+
k , L

2
disc(Γ\G(R))

∼−→ Sk(Γ\H) =

space of holomorphic cusp forms of weight k and level Γ

This is also explained in [Slzwei] on the pages following 23. We explain how
we get starting from a holomorphic cusp form f of weight k an inclusion

Φf : D+
k ↪→ L2

disc(Γ\G(R)

and that this map f 7→ Φf establishes the above isomorphism. This gives us
the famous Eichler-Shimura isomorphism

Sk(Γ\H)⊕ Sk(Γ\H)
∼−→ H1

! (Γ\X,M̃k−2).

The group G/Q = RF/Q(Sl2/F ).

For any finite extension F/Q we may consider the base restriction G/Q =
RF/Q(Sl2/F ). (See Chap-II. 1.1.1). Here we want to consider the special case
the F/Q is imaginary quadratic. In this case we have G⊗ C = Sl2 × Sl2/C the
factors correspond to the two embeddings of F into C. The rational irreducible
representations are tensor products of irreducible representations of the two
factorsMλ =Mk1⊗Mk2 where againMk = Symk(C2). These representations
are defined over F .

In this case we discuss the Vogan-Zuckerman list in [Slzwei], here we want
to discuss a particular aspect. We observe that

M∨λ
∼−→Mk1 ⊗Mk2 ,M̄λ =Mk2 ⊗Mk1

and hence our corollary above yields for any choice of Kf

H•! (Γ\X,M) = 0 if k1 ̸= k2.
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In Chapter II we discuss the special examples in low dimensions. We take
F = Q[i] and Γ = Sl2[Z[i]] this amounts to taking the standard maximal com-
pact subgroup Kf = Sl2[ÔF ]. If now for instance k1 > 0 and k2 = 0, then we get

H•! (Γ\X,Mλ) = 0. Hence we have by definition H•! (Γ\X,M) = H•Eis(Γ\X,M̃)
and we have complete control over the Eisenstein- cohomology in this case.
Hence we know the cohomology in this case if we apply the analytic methods.

On the other hand in Chapter 2 we have written an explicit complex of finite
dimensional vector spaces, which computes the cohomology. It is not clear to
me how we can read off this complex the structure of the cohomology groups.

We get another example where this phenomenon happens, if we consider the
group Sln/Q if n > 2. In Chap.2 1.2 we describe the simple roots α1, α2, . . . , αn−1,
accordingly we have the fundamental highest weights ω1, . . . , ωn−1. The element
w0 (See 6.1.1) has the effect of reversing the order of the weights. Hence we see
that for λ =

∑
niωi we have

H•! (Γ\X,Mλ) = 0

unless we have −w0(λ) = λ and this means ni = nn−1−i.

The algebraic K-theory of number fields

I briefly recall the definition of the K-groups of an algebraic number field F/Q.
We consider the group Gln(OF ), it has a classifying space BGn. We can pass to
the limit lim

n→∞
Gln(OF ) = Gl(OF ) = G and let BG its classifying space. Quillen

invented a procedure to modify this space to another space BG+, whose funda-
mental group is now abelian, but which has the same homology and cohomology
as BG. Then he defines the algebraic K-groups as

Ki(OF ) = πi(BG
+).

The space is an H-space, this means that we have a multiplication m :
BG+ × BG+ → BG+ which has a two sided identity element. Then we get a
homomorphism m• : H•(BG+,Z)→ H•(BG+×BG+,Z) and if we tensorize by
Q and apply the Künneth-formula then we get the structure of a Hopf algebra
on the Cohomology

m• : H•(BG+,Q)→ H•(BG+,Q)⊗H•(BG+,Q)

Then a theorem of Milnor asserts that the rational homotopy groups

πi(BG
+)⊗Q = prim(Hi(BG,Q),

where prim are the primitive elements, i.e. those elements x ∈ Hi(BG,Q) for
which

I sketch a second application. We discuss the group G = RF/Q(Gln/F ),

where F/Q is an algebraic number field. the coefficient system M̃λ = C is
trivial. In this case Borel, Garland and Hsiang have shown hat in low degrees
q ≤ n/4

Hq(Γ\X,C) = Hq
(2)Γ\X,C).
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On the other hand it follows from the Vogan-Zuckerman classification ([89],
that the only irreducible unitary (g,K∞) modules V , for which Hq(g,K∞, V ) ̸=
0 and q ≤ n/4 are one dimensional.

Hence we see that in low degrees

Hq(g,K∞,C)→ Hq(Γ\X,C)
is an isomorphism (Injectivity requires some additional reasoning.)
On the other hand we have Hq(g,K∞,C) = HomK∞(Λ•(g/k),C) and ob-

viously this last complex is isomorphic to the complex Ω•(X)G(R) of G(R)-
invariant forms on the symmetric space G(R)/K∞. Our field has different em-
beddings τ : F ↪→ C, the real embeddings factor through R, they form the set
Sreal
∞ and the pairs of may conjugate embeddings into C form the set Scomp

∞
Then

X =
∏

v∈Sreal
∞

Sln(R)/SO(n)×
∏
Scomp
∞

Sln(C)/SU(n).

Now the complex Ω•(X)G(R) of invariant differential forms (all differentials are
zero) does not change if we replace the group

G(R) =
∏

v∈Sreal
∞

Sln(R)×
∏
Scomp
∞

Sln(C)

by its compact form Gc(R) and then we get the complex of invariant forms on
the compact twin of our symmetric space

Xc =
∏

v∈Sreal
∞

SUn(R)/SO(n)×
∏
Scomp
∞

(SU(n)× SU(n))/SU(n),

but then
Ω(Xc)

Gc(R) = H•(Xc,C).

The cohomology of the topological spaces like the one on the right hand side
has been computed by Borel in the early days of his career. Referenz

If we let n tend to infinity, we can consider the limit of these cohomology
groups, then the limit becomes a Hopf algebra and we can consider the primitive
elements

At this point we encounter an interesting problem. We have the three sub-
spaces (See end of 3.2)

H•cusp(Γ\X,M̃λ⊗C) ⊂ H•! (Γ\X,M̃λ)⊗C ⊂ H•(2)(Γ\X,M̃λ⊗C) ⊂ H•(Γ\X,M̃λ)⊗C,

note the positions of the tensor symbol ⊗. The first and the third space are only
defined after we tensorize the coefficient system by C, whereas the second and
the fourth cohomology groups by definition F vector spaces tensorized by C.

Now the question is whether the first and the third space also have a natural
F -vector space structure. Of course we get a positive answer, if the Manin-
Drinfeld principle holds. All the vector spaces are of course modules under the
Hecke algebra and we and we can look at their spectra

Σ(H•cusp(Γ\X,M̃λ ⊗ C)) = Σcusp Σ(H•! (Γ\X,M̃λ ⊗ C)) = Σ!

Σ(H•(2)(Γ\X,M̃λ ⊗ C)) = Σ(2) Σ(H•(Γ\X,M̃λ ⊗ C)) = Σ
.
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If now for instance Σcusp∩(Σ!∖Σcusp) = ∅ then we can defineH•cusp(Γ\X,M̃λ) ⊂
H•! (Γ\X,M̃λ) as the subspace which is the sum of the isotypical components
in Σcusp.

If this is the case we say that the cuspidal cohomology is intrinsically defin-
able and we get a canonical decomposition

H•! (Γ\X,M̃λ) = H•cusp(Γ\X,M̃λ)⊕H•!,noncusp(Γ\X,M̃λ).

The classical Manin-Drinfeld principle refers to the two spectra Σ! ⊂ Σ, if it
is true in this case we get a decomposition

H•(Γ\X,M̃λ) = H•! (Γ\X,M̃λ)⊕H•Eis(Γ\X,M̃λ)

the canonical complement is called the Eisenstein cohomology. (See Chap. 2
2.2.3 and Chap 3 section 5.)

6.1.9 Extroduction

We return to our fundamental exact sequence fil0

0→ H•! (Γ\X,M̃)→ H•(Γ\X,M̃)
r−→ H•(

•
N (Γ\X),M̃)→ ... (6.37)

We know that H•! (Γ\X,M̃) ⊂ H•(2)(Γ\X,M̃) and we gained some understand-
ing of the latter space using analytic methods, we have seen that classes in
[ω] ∈ H•(2)(Γ\X,M̃ ⊗ C) can be represented by harmonic forms ω.

We also want to understand the cohomology of the boundary and we want
to describe the image of the restriction map r. This leads us to very difficult
questions, again we have to use analytic tools (Langlands theory of Eisenstein
series ), we will only very superficially touch this subject in this first part of this
book.

If we want to compute H•(
•
N (Γ\X),M̃) = H•(∂(Γ\X̄),M̃) we invoke the

spectral sequences (2.63, 2.64), their Ep,q2 term is is the cohomology of the com-

plex Epqone

→:
⊕

[P ]:d(P )=p+1

Hq(ΓP \X,M̃)
dp,q1−→

⊕
[Q]:d(Q)=p+2

Hq(ΓQ\X,M̃)→ . (6.38)

We can go one step further and employ the spectral sequence (2.52) and decom-
pose invoke Kostant’s theorem to decompose the cohomology of the fiber into
weight spaces, we explain this briefly in the following subsection.

growth

The cohomology of unipotent groups

We drop the subscript P , we know that the group scheme U/Q is a unipotent
group scheme, let A = A(U) be its affine algebra (see section 1.1.1).. Then U/Q
has a filtration by subschemes U0 = {e} ⊂ U1 ⊂ U2 ⊂ . . . Um−1 ⊂ Um such that
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Ui/Ui−1
∼−→ Ga. The subgroup ΓU ⊂ U(Q) is Zariski dense, more precisely we

know the following: If Γi = Ui(Q)∩Γ then Γi/Γi−1
∼−→ Z ⊂ Ui/Ui−1(R)

∼−→ R.
We consider the category of U/Q modules ModU (see 1.1.1.) Then it is clear

that the functorM→MU is equal toM→MΓU . ( Our Z− moduleM above
is now a Q− vector space, i.e. we consider coefficient systems with rational
coefficients.)

We choose the action of U on A by left translations on A. It follows from
Frobenius reciprocity that the U/Q module A is an injective module in ModU
(See ???) This implies that we get an injective resolution of the U/Q -module
Q by

0→ Q→ A→ (A/Q)⊗A→ · · · = 0→ Q→ I0 → I1 → (6.39)

and hence

Hq(U,M) = Hq(ΓU\U(R),M) = Hq(0→ (I1 ⊗M)U → (I2 ⊗M)U → . . . ) =

Hq((I• ⊗M)U )

(6.40)

Since U/Q is the unipotent radical of the parabolic group P/Q, the parabolic
group P/Q acts via the adjoint action on the modules Im ⊗ M This action
respects the submodules (Im ⊗M)U and U/Q acts trivially on (Im ⊗M)U ,
this implies that the modules Im ⊗M)U are M/Q = (P/U)/Q modules. The
groupM/Q is reductive and we know that the category ofM/Q modules is semi
simple (???). This implies that we can decompose

(I• ⊗M)U = H•(U,M)⊕ACI(I•)U (6.41)

where the first summand is a complex of M/Q -modules in which all the differ-
entials are zero and the second is an acyclic complex of M/Q- modules. Hence

H•(U,M) = H•(ΓU ,M)
∼−→ H•(U,M) (6.42)

We get a ”smaller” resolution from the (algebraic) de-Rham complex of
differential forms. On the smooth affine scheme U/Q we have the sheaves of
differential forms ΩpU = ΛpΩ1

U ([40] ,7.5) and we have the de-Rham complex

Ω(U)• = 0→ Q→ A→ Ω1(U)→ Ω2(U)→ . . . (6.43)

where Ωp(U) = ΩpU (U) is the module of global sections and A = Ω0(U). These
modules of differentials are free A modules, hence they are injective. Since our
unipotent group scheme U/Q is isomorphic to the affine space Ad (as affine
scheme) we see easily that this complex is exact, hence it provides an acyclic
resolution. As before we get the cohomology by taking the complex (Ωp(U) ⊗
M)U of invariants under the action of U/Q. Since an U/Q- invariant differential
form with values inM is determined by its value at the identity e the complex
of invariants under U/Q becomes

0→M→ Hom(u,M)→ Hom(Λ2u,M)→ · · · = 0→ Hom(Λ•u,M) (6.44)

and the cohomology of this complex is the cohomology H•(u,M). We still have
the action of P/Q on u by the adjoint action, hence we get an action of P on
Hom(Λ•u,M) and we have
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Theorem 6.1.2. (van Est [?])

H•(u,M)
∼−→ H•(u,M) = (Hom(Λ•u,M))U ,

Proof. later

A famous theorem of Kostant yields a description of the M/Q module
(Hom(Λ•u,M))U , Let λ ∈ X∗(T ) be the highest weight of M, i.e. we have
M =Mλ. The set

WP = {w ∈W | α ∈ ∆+
M , w

−1(α) ∈ ∆+} (6.45)

is the set of Kostant representatives for WM\W. For any w ∈WP we define the
element

ωw = Λα∈∆U ;w−1α<0 u
∨
α ⊗ ewλ (6.46)

It is clear that this element lies in (Hom(Λ•u,Mλ))
U and hence it is the highest

weight vector of an irreducible M -module

H•(u,Mλ)w·λ ⊂ H•(u,Mλ)

where w · λ = w(λ+ ρ)− ρ
Now the theorem theorem of Kostant says

Theorem 6.1.3.

H•(u,M) =
⊕

w∈WP

H•(u,M)w·λ =
⊕

w∈WP

Hl(w)(u,M)w·λ

where we have to be aware that the summand H•(u,M)w·λ sits in degree l(w)

Proof. Rather clear after the preparation.

Since the differentials in the complex H•(u,Mλ) are zero, the spectral se-
quence degenerates and we get

cohboundstrat

Hn(ΓP \XP (cπ′),M̃)
∼−→

⊕
w∈WP

Hn−l(w)(ΓM\XM (r(cπ′)), ˜H•(u,M)w·λ),

(6.47)

this is the decomposition of the cohomology of the boundary stratum ∂P (Γ\X)
into weight spaces. We insert this decomposition into the spectral sequence and
get a more precise description of the Ep,q1 page (6.38):

dp−1,q
1−→

⊕
[P ]:d(P )=p+1

⊕
w∈WP Hq−l(w)(ΓMP

\XMP , ˜Hl(w)(uP ,M)w·λ)
dp,q1−→

dp,q1−→
⊕

[Q]:d(Q)=p+2

⊕
v∈WQ Hq−l(v)(ΓMQ

\XMQ , ˜Hl(v)(uQ,M)v·λ)
dp+1,q
1−→

(6.48)
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and it becomes clear that the computation of the cohomology of this complex,
i.e. the computation of the Ep,q2 , and the differentials will become a very delicate
issue, The computation of the higher pages of the spectral sequence will be even
more difficult.

But I am convinced that a thorough study of the deeper pages
and of the map r will be very rewarding. We get interesting applica-
tion to number theory. We can prove rationality results for special
values of L-functions (divided by a well chosen period.) In certain

cases the value of these normalised L− values Lar(πf , ν) =
Lπf ,ν)
Ωϵ(ν)

carry

some relevant arithmetic information. It may tell us something about
the structure of some cohomology groups as Hecke-modules (for in-
stance the denominator of Eisenstein classes) and as a consequence
something about the structure of the Galois group.

We have executed this program in some very specific cases in this book. We
discussed the rationality of normalised special L− values in a special situation
at the end of chapter 4 (see (4.219)). For some more general cases I refer to
[45],[47]. In these papers the authors always work on the E0,•

2 page of the
spectral sequence.

In the note [?] I consider the group Sl4(Z) and carry out some speculative
computation which indicate that d•,•2 ̸= 0. Hence we get E•,•2 ̸= E•,•3 , we also get
a rationality relation between special values of the Riemann ζ- function which
of course will be well known.

The other application is intensively studied in the chapters 3-5 for the case
Sl2(Z). We also consider the case Sl2(Z[i]) where the answer is less complete
and some experimental computations should be done. I also refer to the papers
[42] and [44], in both papers I produce situations where we expect

The prime ℓ divides normalised L value =⇒ ℓ divides the denominator of
an Eisenstein class.

But it requires new ideas to prove such an assertions, it seems that at this
moment we should make some numerical experiments.

Finis operis
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tifiques de l’É.N.S. 4e série, tome 7, no 2 (1974), p. 235-272

[10] A. Borel, Stable real cohomology of arithmetic groups II. Manifolds
and Lie groups (Notre Dame, Ind., 1980), pp. 21–55, Progr. Math., 14,
Birkhäuser, Boston, Mass., 1981

[11] A.Borel, Regularization theorems in Lie algebra cohomology. Applica-
tions. Duke Math. J. 50 (1983), no. 3, 605–623.

[12] A. Borel and W. Casselman, L2-cohomology of locally symmetric man-
ifolds of finite volume. Duke Math. J. 50 (1983), no. 3, 625-647.

[13] A.Borel and H.Garland, Laplacian and the discrete spectrum of an
arithmetic group. Amer. J.Math. 105 (1983), no. 2, 309–335.
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