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Preface

During the years 1980-2000 I gave various advanced courses on number theory,
algebraic geometry and on Cohomology of Arithmetic Groups at the university
of Bonn. I prepared some very informal notes for my students, I wanted the
necessary prerequisites to be available for them at one place.

At some point I had the feeling that these notes could as a basis for a book.
on the subject Cohomology of arithmetic groups.

The cohomology groups of arithmetic groups are sheaf cohomology groups.
Hence we should provide some basic material on sheaves and homological algebra
and cohomology of sheaves. On the other hand the theory of sheaves and sheaf
cohomology are ubiquitous in algebraic geometry and some other branches of
mathematics. I also gave lectures on algebraic geometry and turned my notes-
into the two volumes [39], [40]..

The present volume is now part 1 of volume III. If T need a well known
theorem, whose proof is given in one of these two volumes, then I take the
freedom to refer to these volumes.

The subject has applications to number theory - actually it is part of num-
ber theory. The central theme is the relationship between special values of
L-functions and the integral structure of the cohomology as module under the
Hecke algebra. We can prove rationality results for special values of L-functions
(Manin, Shimura and many others). On the other hand these special values
tell us something about the denominators of the Eisenstein classes, and in some
cases from here we get information about the structure of the Galois group.
This relationship has been already discussed in the original notes, for the spe-
cial case of Sly(Z) we have the culminating theorem 5.1.2. In the probably
removed section I discuss - for a specific example - an application concerning to
the structure of the Galois group. In theorem 5.1.5 I construct a normal exten-
sion K/Q of degree 690 - 6912, which is unramified outside 691 and we have a
partial decomposition law. This is really number theory.

The theorem 5.1.2 can be stated in elementary terms, we do not need any
analysis (thanks to Euler, who taught us that the the equality numerator of
¢(—11) = 691 is an elementary statement) and can be verified by an algorithm.
To prove it we need some analysis. We need some tools from representation
theory Lie groups and from the theory of automorphic forms.
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I am convinced -and there is a lot of evidence for it - that theorem 5.1.2 is
a special case of a much larger class of (conjectural) assertions about L-values
and denominator of Eisenstein classes.

In section (3.3.9) we will see that denominators imply congruences between
eigenvalues of Hecke operators acting the cohomology of arithmetic different
groups. It was extremely important for me that these conjectures on congru-
ences could be verified in some finite number of cases by experimental calcula-
tions [19]. The experimental support for these congruences had great influence
on the content of this book. But these experimental verifications confirmed only
the congruences for a finite number of Hecke operators, but not the denomina-
tors.

On the other hand it seems that our analytic method to prove 5.1.2 only
works in a few other cases. In Chapter III I describe a toy model of an algorithm ,
which in a given simple case computes the cohomology and the action of a Hecke
operator. Hence we can check our conjecture (theorem 5.1.2) experimentally for
some small cases.

But to the best of my knowledge there are only very few other cases, where
we have such an algorithm, which works in practice. It is outlined in Chapter
IIT that we can write an algorithm which works in principle. But on the other
hand there are abundantly many situations, where we can raise the denominator
issue, some will be discussed in volume III part 2 .
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0.1 Introduction

An arithmetic group I is a discrete subgroups of a Lie group G(R) C Gl,(R)
whose matrix entries satisfy certain rationality and integrality condition. The
most basic example of such a group is the group Sl,(Z) C Sl,,(R). More gen-
erally we can start from an algebraic subgroup G/Q C Gl,/Q, for instance
the orthogonal group of a quadratic form. Then we get arithmetic groups
I' ¢ G(Q) C G(R) if we impose certain integrality conditions on the matrix
coefficients of the elements of T

For any I'- module M we can define the cohomology groups H*(I', M) =
) H (T, M). These cohomology groups are abelian groups, which are defined
in terms of homological algebra, they are the derived functors of the functor
M — MY (= invariants under I'. .

We are mainly interested in the cohomology of a very special class of I'-
modules. We consider rational representations p : G/Q — Mg, where Mg
is a finite dimensional Q-vector space. Then we can find finitely generated Z
modules M such that Mg = M ®z Q which are I'-invariant and hence I'-
modules.

Let Koo C G(R) be a maximal compact subgroup, for example SO(n) C
S1,(R). The quotient X = G(R)/K is a symmetric space, it carries a Rieman-
nian metric which is G(R)— invariant under the left action, it may have finitely
many connected components, each connected component is diffeomorphic to R¢,
hence contractible.

Our arithmetic group I' acts properly discontinuously on X, we can form the
quotient I"\ X, this quotient is an orbifold. We can pass to a suitable subgroup
of finite index IV C T such that IV has no non trivial elements of finite order
(i.e. is torsion free). Then I\ X is a Riemannian manifold, it is a so called
locally symmetric space. The map I"\X — I'\ X is a finite covering with some
ramifications. If I" has elements of finite order then I'\ X is only a Riemannian
orbifold. These spaces I'\X provide a very interesting class of spaces, which
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are of interest for differential geometers, mathematicians interested in analysis
on manifolds and topologists. But they are in a sense of arithmetic origin and
therefore they are of interest for number theorists.

Our I" module M endows the space I'\X with a sheaf M with values in
finitely generated abelian groups. If I" is torsion free then M is a locally constant
sheaf, or in other words a local system.

We introduce the sheaf- cohomology groups

H*(T\X, M) = @ H)(T\X, M)

these cohomology groups are ”essentially” the same as the above group cohomol-
ogy groups, these two versions of cohomology become equal, if X is connected
and T' is torsion free. We will see that these cohomology groups are finitely
generated Z— modules.

We have some additional structure on these cohomology groups. In general
the quotient space I'\X is not compact. We have the Borel-Serre compacti-
fication ¢ : T\X < T'\X, where i is a homotopy equivalence and T'\X is a
manifold (orbifold) with corners. The difference set O(I'\X) := T'\X ~\ '\ X is
the boundary of the Borel-Serre compactification. Moreover we will construct a

"tubular” neighbourhood N (T\X) C I'\ X of "infinity” (see (1.2.8)). We may
also consider the cohomology with compact supports H? (I'\ X, M). and we get
the fundamental long exact sequence

oo HYT\X, M) 2= HYT\X, M) - HQ(/(/ (T\X), M) -2 HIPYD\X, M) — . ..
(1)

We also introduce the ”inner cohomology”
HI(T\X, M) := ker(r) = Im(i.).

A second structural ingredient is the Hecke algebra. We have an action of a
big algebra of operators acting on all these cohomology groups and the action
commutes with arrows in the fundamental exact sequence.

This is the so called Hecke algebra H( or Hr), it originates from the structure
of the arithmetic group I'. The group I" has many subgroups I of finite index,
for which we can construct two arrows

p1
I\X 3 T\X. (2)
P2

Such a pair of arrows is also called a correspondence between on MX. A cor-
respondence, together with a suitable map w : pj(M) — p3(M), induces an
endomorphism in the cohomology. These endomorphisms act on all the mod-

ules in the exact sequence above and are compatible with the arrows.

The basic objects of interest in this book are the various cohomology groups,
which appear in the fundamental exact sequence, together with the action of the
Hecke algebra H on them.
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The central theme of this book is the understanding of the integral cohomol-
ogy H*(T'\ X ,M) as a module under the Hecke algebra, for instance we want
to understand the denominators of the Eisenstein classes.

In Chapter 9 we formulate the general principle that under suitable con-
ditions this denominator should be related ( divisible?, equal ?) to a certain
special value of an L-function, which occurs in the constant term of the Eisen-
stein series. The prototype of such a relationship occurs in [42], (actually the
"abelian” case is discussed in chapter 5).

This principle ( or conjecture ) can be verified (or falsified) experimentally,
on the other hand there is a strategy to prove assuming certain finiteness for
mixed Grothendieck motives.

It is my intention is to keep the exposition as elementary as possible, the
text should be readable by graduate students. We will need some background
material from algebraic topology and from homological algebra ( cohomology
and homology of groups, spectral sequences, sheaf cohomology). This material
is expounded in the first four chapters in [39], of course it can be found in many
other textbooks.

In the later chapters (starting from chapter 6) we also need results and
concepts from the theory of algebraic groups, the theory of symmetric spaces,
arithmetic groups, and reduction theory for arithmetic groups. Furthermore we
need results from the theory of representations of real semi-simple groups.

This material is somewhat more advanced, but in the in the first five chapters
all these concepts and results are explained in terms in terms of special examples.
Especially the sections on the general reduction theory and the Borel-Serre
compactification (section (1.2.8)) could be skipped in a first reading.

For the Lie groups Slz(R) and Slp(C) and their arithmetic subgroups Sla(Z)
and Sly(Z[y/—1]) these prerequisite concepts are easy to explain and we will
do so in this book. For instance if I' = Sl3(Z) or more generally a congruence
subgroup of finite index the symmetric space Slo(R) /K, is the upper half plane
H={zecC| 3z =y >0} = Sh(R)/SO(2). The quotient space I'\H is
punctured Riemann surface. In this special case we have the I' module M,, =
{3 a, X"Y"¥| a, € Z}. We will study the cohomology groups H*(I'\H, M,,)
and their module structure under the Hecke algebra in detail. We will prove
some very specific results for these cohomology groups.

In Chapter four we discuss results from the theory of representations of the
Lie- groups Sla(R) and Sl2(C), and we explain the impact of these results on
the cohomology. With these results at hand we formulate the famous Eichler-
Shimura isomorphism, and we can sketch its proof. This Eichler-Shimura iso-
morphism also establishes the connection between H'(I'\H, M,,) ® C and the
space of modular forms of weight n+ 2. In the second half of this book in Chap-
ter 8 we discuss what is called "Representation theoretic Hodge theory” and
the Eichler-Shimura theorem becomes a special case of a much more general
theorem.

On the other hand we will show that the results for the special groups
S1(Z), Sla(Z[V/d)), or suitable subgroups of finite index of them, have deep and
interesting consequences. We will discuss the Eisenstein cohomology for these
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special groups and explain the interaction between special values of L-functions
and the structure of the cohomology. A prototype of such a result is the formula
for the denominator of the Eisenstein class (Theorem 5.1.2). Tt is clear that this
result should be a special case of a much more general theorem. At this moment
it is not clear how far these generalisations reach (See section 3.3.9).

In Chapter 5 we discuss some applications of these results to number theory,
and we have to accept some even more advanced topics. We concentrate on the
case that I' C Sl3(Z) and we will use the fact that- with a grain of salt - the
quotient T\H is the set of C-valued points the moduli space of elliptic curves
(with some additional structure). This is also explained in [39],[40].

Then for any prime ¢ the cohomology groups H* (I'\H, M,,)®Z;) are actually
{-adic etale cohomology groups, especially we get an action of the Galois-group

Gal(Q/Q) on these /— adic cohomology groups. This action commutes with the
action of the Hecke algebra. The insights into the structure of the cohomology
groups as Hecke modules provides insights into the structure of the Galois group

Gal(Q/Q), for instance we discuss the theorem of Herbrand-Ribet ([25], [74])

In Chapter 6 we develop the analytic tools for the computation of the co-
homology. Here we do not use the language of adeles. We assume that the
I-module M is a C-vector space and it is obtained from a rational representa-
tion of the underlying algebraic group. In this case one may interpret the sheaf
M as the sheaf of locally constant sections in a flat bundle, and this implies
that the cohomology is computable from the de-Rham-complex associated to
this flat bundle. We could even go one step further and introduce a Laplace
operator so that we get some kind of Hodge-theory and we can express the
cohomology in terms of harmonic forms. Here we encounter serious difficulties
since the quotient space T'\ X is not compact. But we will proceed in a slightly
different way. Instead of doing analysis on I'\ X we work on Coo (I\G(R)). This
space is a module under the group G(R), which acts by right translations, but
we rather consider it as a module under the Lie algebra g of G(R) on which also
the group K, acts, it is a (g, K)-module.

Since our module M comes from a rational representation of the underlying
group G, we may replace the de-Rham-complex by another complex

H*(g, Koo, Coo(T\G(R)) @ M),

this complex computes the so called (g, K)-cohomology. The general principle
will be to ”decompose” the (g, K)-module Co (I'\G(R) into irreducible submod-
ules and therefore to compute the cohomology as the sum of the contributions
of the individual submodules. This is a group theoretic version of the clas-
sical approach by Hodge-theory. Again we have to overcome two difficulties.
The first one is that the quotient I'\G(R) is not compact and hence the above
decomposition does not make sense.

The second problem is that we have to understand the irreducible (g, K)-
modules and their cohomology.

The first problem is of analytical nature, we will give some indication how
this can be solved by passing to certain subspaces of the cohomology the so called
cuspidal or better the inner cohomology. The central result is the Theorem 6.1.1.
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This result is a partial generalisation of the theorem of Eichler-Shimura, it
describes the cuspidal part of the cohomology in terms of irreducible represen-
tations occurring in the space of cusp forms and contains some information on
the discrete cohomology, which is slightly weaker. (See proposition ?7) We shall
also give some indications how it can be proved.

We shall shall also state some general results concerning the second problem,
we briefly recall the construction of the irreducible modules with non trivial
(g, K) cohomology.

We discuss some consequences of Theorem 6.1.1. It implies some vanishing
theorems in cohomology, it implies that the inner cohomology is a semi simple
module for the Hecke-algebra, and it helps to understand the K —-theory of
algebraic number fields.

In the next section we use reduction theory-or better the description of N
(T\X), M)- to discuss some growth conditions for cohomology classes, basically
we show that cohomology classes which given by a weight can be represented
by differential forms which have essentially the same weight.

In the second half of this chapter we will resume the discussion of modular

symbols.
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Chapter 1

Basic Notions and
Definitions

1.1  Affine algebraic groups over Q.

A linear algebraic group G/Q is a subgroup G C Gl,, which is defined as the
set of common zeroes of a set of polynomials in the matrix coefficients, where in
addition these polynomials have coefficients in Q . Of course we cannot take just
any set of polynomials, the set has to be somewhat special before its common
zeroes form a group. The following examples will clarify what I mean:

1.) The group GL,, is an algebraic group itself, the set of equations is empty.
It has the subgroup Sl,, C Gl,,, which is defined by the polynomial equation

Sl, = {x € GL,, | det(z) = 1}

2.) Another example is given by the orthogonal group of a quadratic form

n
flze, ... xn) = Zaix?
=

where a; € Q and all a; # 0 (this is actually not necessary for the following).
We look at all matrices

a1 ... Qin
o=
An1 ... Gnn
which leave this form invariant, i.e.
floz) = f(z)
for all vectors = (z1,...,2,). This defines a set of polynomial equations for

the coefficient a;; of a. These o form a group, this is the linear algebraic group

SO(f)-
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3.) Instead of taking a quadratic form — which is the same as taking a
symmetric bilinear form — we could take an alternating bilinear form

(z,y) =(@1,- - Ton, Y15 - Y2n) =
n

Z(ﬂflyz‘Jrn — Titn¥i) = f(z,Y)-

i=1
This form defines the symplectic group:
Sp, = {a € GLay | (az,ay) = @,y)} .

An Important remark: The reader may have observed tha we did not specify
a field (or a ring) from which we take the entries of the matrices. This is done
intentionally, because we may take the entries from any commutative ring R
which contains the rational numbers Q and for which 1 € Q is the identity
element (this means that R is a Q— algebra). In other words: for any algebraic
group G/Q C GL,, and any Q algebra R we may define

G(R) Cc Gl,(R)
as the group of those matrices whose coefficients satisfy the required polynomial

equations. Adopting this point of view we can say that

A linear algebraic group G/Q defines a functor from the category of Q-
algebras (i.e. commutative rings containing Q) into the category of groups.

4.) Another example is obtained by the so-called restriction of scalars. Let
us assume we have a finite extension K/Q, we consider the vector space V- = K™.
This vector space may also be considered as a Q-vector space Vj of dimension
n[K : Q] = N. We consider the group

GLn/Q.
Our original structure as a K-vector space may be considered as a map
© : K — Endg(W),

and the group GL,(K) is then the subgroup of elements in GLy(Q) which
commute with all the elements of O(z),x € K. Hence we define the subgroup

G/Q = Rk q(Gl,) = {a € Gly | o commutes with ©(K)} . (1.1)
Then G(Q) = Gl,,(K). For any Q-algebra R we get
G(R) = Gl (K ®q R).

This can also be applied to an algebraic subgroup H/K < Gl,,/K, i.e. a sub-
group that is defined by polynomial equations with coefficients in K.

Our definition of a linear algebraic group is a little bit provisorial. If we
consider for instance the two linear algebraic groups

s - {(} 1)}eos

1 0
GZ/Q = 01 C GL3
0 0

=]
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then we would like to say, that these two groups are isomorphic. They are
two different “realizations” of the additive group G,/Q. We see that the same
linear algebraic group may be realized in different ways as a subgroup of different
GIN’S.

Of course there is a concept of linear algebraic group which does not rely
on embeddings. The understanding of this concept requires a little bit of affine
algebraic geometry. The drawback of our definition here is that we cannot define
morphism between linear algebraic group. Especially we do not know when they
are isomorphic.

We assert the reader that the general theory implies that a morphism be-
tween two algebraic groups is the same thing as a morphism between the two
functors form Q-algebras to groups. In some sense it is enough to give this
functor. For instance, we have the multiplicative group G,,/Q given by the
functor

R — R*

and the additive group G,/Q given by R — R*.
We can realise (represent is the right term) thegroup G,,/Q as

Gn/Q= {(é t(—)l)} C Gl

1.1.1 Affine group schemes

AGS

We say just a few words concerning the systematic development of the theory
of linear algebraic groups. This is not directly used in the next few chapters but
it will be useful later.

For any field &k an affine k-algebra is a finitely generated algebra A/k, i.e.
it is a commutative ring with identity, containing k, the identity of k is equal
to the identity of A, which is finitely generated over k as an algebra. In other
words

A= k[l’l,{EQ, . ,.’ﬂn] = k[Xl,XQ,. .. ,Xn]/I,

where they X; are independent variables and where I is a finitely generated
ideal of polynomials in k[X7,...,X,].

Such an affine k-algebra defines a functor from the category of k— algebras
to the category of sets, namely B — Homy(A, B).

A structure of an affine group scheme scheme on A/k consists of the fol-
lowing data:

a) A k homomorphism m : A - A ®; A (the comultiplication)
b) A k-valued point e : A — k (the identity element)
¢) An inverse inv : A — A,

which satisfy the following requirement: For any k-algebra B our homomor-
phism m induces a map

“m : Homyg(A ®p A, B) = Homy (A, B) x Homy (A, B) — Homy (A, B)

and we require that this induces a group structure on Homy (A, B). We also
require that the k valued point e is the identity and that ¢nv yields the inverse.
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We leave it to the reader to figure out what this means for m, e, inv, especially
what does associativity mean (Hint: Choose B = A).

An affine k-algebra A together with such a collection m,e,inv is called
an affine group scheme G/k = (A,m,e,inv). The k-algebra A is the coordi-
nate ring, or the ring of regular functions of the group scheme. We will de-
note it by A(G). The group of B/k valued points will be denoted by G(B) =
Homy(A(G), B). For g € G(B) and f € A(G) ® B we write g(f) = f(g), we
evaluate the regular function at the point g € G(B).

The group Gy, has the coordinate ring A(G,,) = k[t,t71],m(t) = t®t,e(t) =
1,inv(t) = t~! and the coordinate ring of the additive group G, is A(G,) = k[z]
and m(z) =z ®1+ 1@z, e(z) =0,inv(z) = —z.

The group scheme Gl,,/k has the coordinate ring

A=kl zij,...,yl/(det(z; )y —1); 1<4,5,<n

and the comultiplication is given by

m(zi ;) wa@vx,,] (1.2)

Now we know what a homomorphism between affine group schemes is. This
is a homomorphism ‘¢ between the affine algebras A(H) and A(G) which is
compatible with the respective maps in a),b),c). A homomorphism ¢ : G — H is
surjective (resp. injective) if the homomorphism ‘¢ : A(H) — A(G) is injective
(resp.) surjective.

A rational representation of G/k is a homomorphism of group schemes p :

G/k = Gl,/k.

If for instance V/k is a vector space of dimension n then we can define
the group scheme GI(V), if we choose a k-basis on V, then we can identify
GI(V)/k = Gl, /k. If G/k is any affine group scheme, we say that V/k is a G-
module if we have a homomorphism p : G/k — G1(V). Hence we know that for
any k -algebra B/k we have a homomorphism p(B) : G(B) — GI(V ® B). Of
course this is functorial in B/k, i.e. a homomorphism 1 : B/k — B’/k induces
a homomorphism G(B) — G(B’).

We may also consider actions of G/k on vector spaces W/k which are not
of finite dimension, here we require a certain finiteness condition. As before we
have an action

pp:GB)x (W@B)—-W®B (1.3)

which is functorial in B/k. But now we assume in addition that for any w € W
there is a finite set of elements wy,ws, ..., wy such that for any B/k and any
g € G(B)

9w = w; @bi(g) with b; € A(G).
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It suffices to check this for the "universal” element Id € Homy(A(G), A(G)) =
G(A(G)), this means we have to find wy,ws,...,wqg € W such that

d
PAG) (Id)w = Z h; ® w; with h; € A(G)

i=1

This implies of course that the k-subspace W’ = >~ kw; which is generated by
these w; is invariant under the action p and it contains w. Hence we see that our
k-vector space W is a union of finite dimensional subspaces which are invariant
under the action of G/k.

Therefore we say that a vector space W/k with an action of G/k is a G-
module if it satisfies the above finiteness condition. The category of these mod-
ules will be called Mod..

The ring of regular functions A(G) is a G X G module: For (g1,g2) €
G X, G(B) = G(B) x G(B) the action and f € A(G),z € G(B) the action is
defined by
p91,92) f () = flg1 " 2go).

We have to verify the finiteness condition. To do this we write a formula for
p(g1,92)f € A(G)®B. We have the comultiplication m : A(G) = A(G)®,A(G),
we apply it to the first factor on the right hand side and get my 20m : A(G) —
A(G) ®r A(G) ® A(G). Then

ml’gom(f):ZhL@)hM@hZ
I

Then by definition

p(g1,92)f = Z hy @ inv(hy, ) (g1)hy, (g2)

and this says that p(g1,g2)f lies in the submodule generated by the hy,.

Of course we may restrict the action to each the two factors, we simply
choose g1 = e,-we get the action by right translations- or we choose g5 = e, this
gives the action by left translations.

It is not difficult to show that for an affine group scheme we can find a
collection of elements e, e1,..., e, € A(G) such that e? = e; Vi,e;e; = 0Vi # j
such that 14 = ), e; and such that the subalgebras A(G)e; are integral. Then
there is exactly one element (say eg) such that e(eg) = 1. Then A(G)ey is a
subgroup scheme, it is called the connected component of the identity (See for
instance [40], Chap. 7, 7.2)

A group scheme G/k is connected, if its affine algebra A(G) = A(G)eq is
integral, i.e. it does not have zero divisors.

Base change

If we have a field L D k and a linear group G/k then the group G/L = G x;, L
is the group over L where we forget that the coefficients of the equations are
contained in k. The group G X L is the base extension from G/k to L.
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1.1.2 Tori, their character module,..

A special class of algebraic groups is given by the tori. We briefly recall the
results of T. Ono [69].
An algebraic group T'/k over a field k is called a split torus if it is isomorphic
to a product of G, /k-s,
T/k -~ G2,

The algebraic group T'/k is called a torus if it becomes a split torus after a
suitable finite extension of the ground field, i.e we have T' xj L — G" /L.

If we take an arbitrary separable finite field extension L/k we may consider
the functor

R— (L® R)*.

It is not hard to see that this functor can be represented by an algebraic
group over k, which is denoted by Ry (G, /L) and called the Weil restriction
of G,,,/L. We propose the notation

Ry /i(Gp/L) = GL/* (1.4)

The reader should try to prove that for a finite extension L/L which is normal
over Q we have } 3
GE/* xx L =5 (G /L)EH

and this shows that G,Ln/ *is a torus .

A torus T'/k is called anisotropic if is does not contain a non trivial split torus.
Any torus C/k contains a maximal split torus S/k and a maximal anisotropic
torus C1/k. The multiplication induces a map

m:SxC; —C

this is a surjective (in the sense of algebraic groups) homomorphism whose
kernel is a finite algebraic group. We call such map an isogeny and we write
that C = S - C1, we say that C' is the product of S and C; up to isogeny.

We give an example. Our torus Ry ,q(Gy,/L) contains G,,/k as a subtorus:
For any ring R containing k we have R* = G,,(R) C (R ® L)*. On the other
and we have the norm map Ny, : (R® L)* — R* and the kernel defines a
subgroup

Ry (Gm/L) C Ry (G /L)
and it is clear that
m: G x R (G /L) = Ry (G /L)

has a finite kernel which is the finite algebraic group of [L : k]-th roots of unity.

For any torus T we define the character module as the group of homomor-
phisms

X*(T) = Hom(T,G).. (1.5)
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If the torus is split, i.e. T = GJ, then X*(T) = Z" and the identification is
given by (ni,na,...,n,) = {(z1,22,...,2,) — z'25? ... 2" }. We write the
group structure on X*(7') additively, this means that (yy +72)(x) = y@)y2(z).

It is a theorem that for any torus T'/k we can find a finite, separable, normal
extension L/k such that T xj L splits. Then it is easy to see that we have an
action of the Galois group Gal(L/k) on X*(T xj L) = Z". If we have two tori
T1/K,T>/K which split over L

Homk(Tl,Tg) —~+ Hom Gal(L/k)(X*(T2 Xk L),X*(Tl Xk L)) (16)

To any Gal(L/k)— action on Z"™ we can find a torus T'/k which splits over L
and which realises this action.

A homomorphism ¢ : T} /k — Ty /k is called an isogeny if dim(7T;) = dim(7T%)
and if ¢ : X*(Ty) — X*(T}) is injective. Then the kernel ker(¢) is a finite
group scheme of multiplicative type. If Y C X*(T}) is a submodule of finite
index the Y = X*(T3) and the inclusion provides an isogeny v : Ty — T5. The
quotient X*(771)/Y is a finite constant group scheme and ker(1)) thedual of his
quotient.

YWe also define the cocharacter module Hom(G,,,T). If the torus /k = G’,
then every cocharacter is the form x — (2™, 2™, ... 2") It is clear that we
have a pairing

<, >: X.(T) x X*(T) — Z which is defined by ~v(x(t)) = t<X7~ (1.7)

A very prominent torus is the torus S!/R, this the one dimensional torus
whose character module X*(S! x C) = Z and the complex conjugation acts by
—1.

1.1.3 Semi-simple groups, reductive groups,.

An important class of linear algebraic groups is formed by the semisimple and
the reductive groups. (For a general reference [84].) We do not want to give the
precise definition here. Roughly, a linear group is reductive if it is connected
and if it does not contain a non trivial normal subgroup which is isomorphic to
a product of groups of type G,. A group is called semisimple, if it is reductive
and does not contain a non trivial torus in its centre.

A semi-simple group G/k is simple, if it does not contain any normal sub-
group of dimension > 0. Any semi-simple group is up to isogeny a product of sim-
ple groups. Any semi simple group G/Q contains a maximal torus T/Q C G/Q
such a maximal torus is equal to its own centraliser. A semi simple group is
split if it contains a split maximal torus Tp/k, i.e. a maximal torus which is
split. If T'/k C G/k is any (maximal) torus, then there is a finite extension L/Q
such that T' xg L is split, and hence G xg L is also split.

For example the groups Sl,,, Sp,, are (split) semi simple, the groups SO(f)
are semi-simple provided n > 3. (See next subsection 1.1.5 ). The groups
Gl,, and especially the multiplicative group Gl; /Q = G,,,/Q are reductive. Any
reductive group G/Q (or over any field of characteristic zero) has a central torus
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C'/Q and this central torus contains a maximal split torus S. The derived group
G /Q is semi simple and we get an isogeny

m:GM xC; xS —G

or briefly G = GV . ¢ - S.

If for instance G = Rp,g(Gl,/L) then GV = Ry o(Sl,/L) and C =
R1/0(Gy, /L) and this yields the product decomposition up to isogeny

1
G =GR (Gn/L) Gy (1.8)

For Gl,,/Q the central torus is the group G,,/Q. The center of Sl,/Q is the
finite group group scheme p,, of of n-th roots of unity. The coordinate ring of
U is the finite algebra A(p,) = Q[t]/(t" — 1). Of course we may replace Q by
any ring commutative ring R.

We can form the quotient group scheme

PGL,/Q = (Gl,/G)/Q — (S1,/Q)/pin (1.9)
this is also the adjoint group of Gl,,/Q and Sl,,/Q, i.e.
Ad(Gl,) = PGl, = Gl,/G,,, = Sl,,/an. (1.10)

We could certainly drop the assumption that a reductive group should be
connected, we could simple say that G/Q is reductive ( semi-simple...) if its
connected component of the identity is reductive (semi-simple...).

Another important class of semi simple groups is given by the quasisplit
groups (see also section 1.1.7. A group G/Q is called quasisplit if it contains
a Borel subgroup B/Q C G/Q. A Borel subgroup B/Q is a maximal solvable
subgroup, it contains a maximal torus 7/Q C B/Q, this torus is also a maximal
torus in G/Q. Then B = U x T is the semidirect product of this torus and the
unipotent radical U/Q. We discuss a special example which is of great relevance
for our subject.

Let L/Q be a quadratic extension, let us denote the non trivial automor-
phism by a — a. Let V/L be a finite dimensional vector space together with a
hermitian form h: V xp V — L, i.e.

h(v,w) = h(w,v); h(Au+ po,w) = A(u, w) + ph(v,w) Vu,v,w € V, A\, u € L.

Furthermore we assume that h is non degenerate, i.e. for any v € Vv # 0
we find a w € V such that h(v, w) # 0. Then we can define the group SU(h)/Q :
For any commutative Q -algebra R we define

SU(R)(R) = {g € SV ®q R | h(gv, gw) = h(v,w) and det(g) =1}. (1.11)

Then SU(R)/Q is a semi simple group over Q. We can also define the unitary
group U(h)/Q where we drop the condition that the determinant is one and the
group of hermitian similitudes GU(h) where

GU(R)(R) = {g € GI(V @q R | h(gv, gw) = d(g)h(v,w) Vv,w € V ®q fz’/}, :
1.12
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here d : GU(h) — Rp;q(Gn) is a homomorphism, the kernel of d is the group
U(h).

We consider the special case where
VZLel69-~-@Len@(Leo)@Lfn®"'@Lf1

the summand Leg is left out if dimy, V' is even. The hermitian scalar product is
given by

hl(eiyf’i) = hl(fi7ei) =1Vi= 1,-..,7’1, (h1(60760) = 1)

and all other scalar products equal to zero. Then SU(h;) is a quasi split semi
simple group over Q: The elements ¢ € GI(V') for which

t= {t e = tiepst: fl — fiil; (t 1 eg — toeg with t(){o = 1)}

are the Q-valued points of a maximal torus 77 /Q C SU(hy). The vector space
V/L comes with a natural flag

F={0}CLeyC---C®Ley®---®Le, C(Ley®...Ley,+ Leg) C
(Le1y®...Le, ® Leg® Lf,) C...(Ley®---® Le,, ®Leg ® Lf, ®--- D Lfa) C V.
(1.13)

Now the subgroup B;/Q C SU(h1)/Q which fixes F is a maximal solvable
subgroup in SU(hy).

1.1.4 The Lie-algebra

We need some basic facts about the Lie-algebras of algebraic groups.

For any algebraic group G/k we can consider its group of points with values
in kle] = k[X]/(X?). We have the homomorphism k[e] — k sending € to zero
and hence we get an exact sequence

0—g— G(kle])) » G(k) — 1.

The kernel g is a k-vector space, if the characteristic of k is zero, then its
dimension is equal to the dimension of G/k. It is denoted by g = Lie(G).

Let us consider the example of the group G = SO(f), where f: V xV — k
is a non degenerate symmetric bilinear form. In this case an element in G(k[e])
is of the form Id + €A, A € End(V) for which

F(Ad+ eA)v, (Id + eA)w) = f(v,w)
for all v,w € V. Taking into account that €2 = 0 we get
e(f(Av,w) + f(v, Aw)) = 0,

ie. A is skew with respect to the form, and g is the k-vector space of skew
endomorphisms. If we give V a basis and if f = 3 27 with respect to this basis
then this means thematrix of A is skew symmetric.
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If we consider G = Gl,,/k then g = M, (k), the Lie-bracket is given by
(A,B)— AB — BA (1.14)
We have some kind of a standard basis for our Lie algebra
i=1 47,047

where H; (resp.E; ;) are the matrices

00 . 0 0 0 0 0 0 0 0
00 . 0 0 0 0 0 0 0 0
0 0 0 0 00 - 1 0
H=1o0 0 1 o0 o|l™PFi=|g0 0 0 o0 o0
00 0 ... .0 00 0 ... .0
00 0 0 0 0 00 0 0 0 0

and the only non zero entries (=1) is at (i,7) on the diagonal (resp. and (i, 7)
off the diagonal.)

For the group Sl,,/k the Lie-algebra is g(*) = {A € M, (k)| tr(4) = 0} and
again we have a standard basis

n—1
i=1 i.5,i7]

If p : G — GI(V) is a rational representation of our group G/k then it is clear
from our considerations above that we have a ”derivative” of this representation

dp : g = Lie(G/k) — Lie(GI(V)) = End(V) (1.17)

this is k-linear.

Every group scheme G/k has a very special representation, this is the Adjoint
representation. We observe that the group acts on itself by conjugation, this is
the morphism

Inn:Gx, G—= G

which on R valued points is given by
Inn(g1,92) = g192(g1) "
This action clearly induces a representation
Ad: G/k — Gl(g)

and this is the adjoint representation. This adjoint representation has a deriva-
tive and this is a homomorphism of k vector spaces

Dpag =ad:g— End(g).
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We introduce the notation: For 71,75 € g we put
[Tl, TQ] = ad(Tl)(Tg)
Now we can state the famous and fundamental result

Theorem 1.1.1. The map (Th,T2) — [T1, T2] is bilinear and antisymmetric. It
induces the structure of a Lie-algebra on g, i.e. we have the Jacobi identity

(T1, [To, T3]] + 12, [T5, T1]] + [15, [T, T2]] = 0.

We do not prove this here. In the case G/k = G1(V) and Ty, T5 € Lie(Gl(V)) =
End(V) we have [Ty, Ts] = T1T> — T>T} and in this case the Jacobi Identity is
a well known identity.

On any Lie algebra we have a symmetric bilinear form (the Killing form )
B:gxg—k (1.18)
which is defined by the rule

B(Ty,T) = trace(ad(T7) o ad(T»))

A simple computation shows that for the examples g = Lie(Gl,,) and 9@ =
Lie(Sl,) we have

B(Tl,TQ) =2n tI‘(TlTQ) -2 tI‘(Tl) tI‘(Tg) (119)

we observe that in case that one of the T; is central, i.e.= uld we have B(Ty,T,) =
0. In the case of g(©) the second term is zero.

It is well known that a linear algebraic group is semi-simple if and only if
the Killing form B on its Lie algebra is non degenerate. [18]

class

1.1.5 The classical groups and their realisation as split
semi-simple group schemes over Spec(Z)

We will not discuss the general notion of a semi-simple group scheme over a
base S, instead we will discuss the examples of classical groups and explain the
main structure theorems in examples.

The group scheme Sl,,/ Spec(Z)

We consider a free module M of rang n over Spec(Z). We define the group
scheme SI(M)/ Spec(Z): for any Z algebra R we have SI(M)(R) = SI(M ®z R).
This is clearly a semi simple group scheme over Spec(Z) because :

a) The group scheme is smooth over Spec(Z)
b) For any field k -which is of course a Z-algebra we have

SI(M) X spec(z) Spec(k) = SI(M ®z k)/ Spec(k)
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and for any k this group scheme does not contain a normal subgroup scheme,
which is isomorphic to G%/ Spec(k) (hence it is reductive) and its center is a
finite group scheme.

If we fix a basis ey, ea, ..., e, then we get a split maximal torus T/ Spec(Z)
this is the sub group scheme which fixes the lines Ze;, with respect to this basis
we have

tp 0 0
0 t 0

T(R) = { . o] ! tie R, J[ti=1 (1.20)
0 0 0 ¢t

With respect to this torus 7'/ Spec(Z) we define root subgroups. This are
smooth subgroup schemes U C G which are isomorphic to the additive group
scheme G,/ Spec(Z) and which are normalized by T'. It is clear that these root
subgroups are given by

Tij * Go — SI(M) (1.21)
1 0 0 0
0 1 0 0
Tiie— 10 0 x 0 (1.22)
0 0 O -0
00 0 o0 1

where the entry x is placed in the i-th row and j-th collumn. Let us denote
the image by Uy, .
Then we get the relation
trij ()t = 75 ((ti/t;)2)

(If T write such a relation then I always mean that t,z.. are elements in
T(R),Gy(R)... for some unspecified Z— algebra R.)

The root system

The characters

al-j:T%Gm

to0 0
0 0 /
Qi . — t;/t;
1o o . o0 !
0 0 0 ¢,
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are form the set A of roots in the character module of the torus. We may select
a subset of positive roots
AT = {Oél'j |Z<]}

Then the torus T and the U,,, with a;; C A™ stabilize the flag
F= (0) C Zey C Zey D Zes C --- C M.

The stabilizer of the flag is a smooth sub group scheme B/ Spec(Z). It is so-but
not entirely obvious- that B is a maximal solvable sub group scheme. These
maximal subgroup schemes are called Borel subgroups.

It is clear that the morphism

Tx [[ Ua, — B,

Oti]',i<j

which is induced by the multiplication is an isomorphism of schemes.

The set AT of positive roots contains the subset 7 C A of simple roots
a; = t;/t;+1. Every positive root can be written as a sum of simple roots with
positive coefficients.

We consider the normaliser N(T') C Sl,, it acts by permutations on the set
of submodules Ze;. The quotient N(T)/T = W is the Weyl group, in this case
it is isomorphic to the symmetric group S,. It is easy to see that we have a
positive definite, symmetric, W invariant bilinear form on X*(T") which is given
by

<o, >=2;< ag, 0441 > —1, and < g, 5 >=01if |[i — j| > 1 (1.23)

All these data about the set of roots and simple roots are encoded in the
Dynkin diagram

An—l =a — Qg — = Qp_1 (124)

The flag variety

It is not so difficult to see that the flags form a projective scheme Gr/ Spec(Z).
From this it follows: For any Dedekind ring A and its quotient field K we have

Gr(K) = Gr(4).

If A is even a discrete valuation ring then we can show easily that the group
Sl (A) acts transitively on Gr(A).

The whole point is, that results of this type are true for arbitrary split semi
simple groups G/ Spec(Z). This is not so easy to explain and also much more
difficult to prove. But we have the series of so called classical groups and for
those these results are again easy to see. ( The main problem in the general
approach is that we have to start from an abstract definition of a semi simple
group and not from a group which is given to us in a rather explicit way like
Sl,, or the classical groups)
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The group scheme Sp,/ Spec(Z)

Now we choose again a free Z module M but we assume that we have a non
degenerate alternating pairing

<, >MxM—7Z

where non degenerate means: If x € M and < &, M >C aZ with some integer
a > 1, then z = ay with y € M. It is well known and also very easy to prove
that M is of even rank 2g and that we can find a basis

{ela"'aegafga"'vfl}

such that < e;, f; >= — < fi,e; >= 1 and all other values of the pairing on
basis elements are zero.

The automorphism group scheme of G = Aut((M, < . >)) is the symplectic
group Sp,/ Spec(Z). Again it is easy to find out how a maximal torus must
look like. With respect to our basis we can take

t1 0 0
0 0
o o ¢ 0
=g o ¢ = . |} (125
0 .0
0 !

We can say that the torus is the stabilser of the ordered collection of rank 2
submodules Ze;, Z f;. We can define a Borel subgroup B/Z which is the stabilizer
of the flag

F=0)CZerC---CZer-&®...Zeg Cley ... Zeg®LfgC---CM

(A flag starts with isotropic subspaces until we reach half the rank of the
module. But then this lower part of the flag determines the upper half, because
it is given by the orthogonal complements of the members in the lower half).

Again we can define the root subgroups (with respect to T')

rootsubgroupt, : G, — Uy C G (1.26)
which are normalized by T'. As before we have the relation
()t = 7(a(t)x), (1.27)

where o € A C X*(T).

Now it is not quite so easy to write down what these root subgroups are, we
write down the simple positive roots in the thecase g = 2: We have the maximal
torus

v 0 0 0
0 t 0 O
T={o o 1 ol
0 0 0 ¢t
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and we want to find one-parameter subgroups U, C G which stabilize the flag.
The one parameter subgroups corresponding to the simple roots are

Tay t & — {e1 — e1,ea > eg + zeq, fa = fo, 1 = f1 —xfa}

Tas 1Y > {€1 > €1,e2 = €2, f2 = fo+yes, f1 = fi}
where oy (t) = t1/ta, az(t) = t3. The unipotent radical is then

1 =z v U
01 vy v—2ay
{ 0 0 1 —T }

0 0 0 1

From here it is not difficult to see that for all values of g the simple roots
are a(t) = t;/tiy1 with 1 < i < g and a4(t) = t2. Again we define the Weyl
group W as above, We have a W invariant positive definite, symmetric bilinear

form on X*(T) and for this form we have
<ag,o4 >=2fori < gand <oy, ay >=4, (1.28)
<ag, o4 >=—-1lifi<g—1and <oy_1,ay >= -2 ’

and all other values of the pairing between simple roots are zero.
Agin these data are encoded in the Dynkin diagram

Cphi=0q — g —--—<= a4
See [18]. We will see this Dynkin diagram for g = 3 at the end of this book.

As before it is not so difficult to show that the flags form a smooth projec-
tive scheme X/ Spec(Z) (see also [book], V.2.4.3). Show that for any discrete
valuation ring A the group G(A) acts transitively on X (A4) = X(K). It is also
easy to verify the statements in 1.1.

The group scheme SO(n,n)/ Spec(Z)

We can play the same game with symmetric forms. Let M together with its
basis as above, we replace g by n. But now we take the quadratic form F'

F:M—-Z
which is defined by

Flzier -+ anen + ynfn + - +y1f1) = leyz

and all other values of the pairing on basis elements are zero. We define the
group scheme of isomorphisms but in addition we require thedeterminant is one.
Hence

SO(n,n)/ Spec(Z) = Aut(M, F,det = 1).
The maximal torus and the flags look pretty much the same as in the previous
case. But the set of roots looks different. For n = 2 the torus and the unipotent
radical are given by

t7 0 O 0 1 z y —ay
o w0 o0 o1 0 —y
=g o0 g o|PV=o o1 2|
0 0 0 ¢t 000 1
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The system of positive roots consists of two roots ay(t) = t1/ta, aa(t) =
t1ty. This is the Dynkin diagram A; x A; hence there exists a homomorphism
(isogeny) between group schemes over Spec(Z) :

Sly x Sly — SO(2,2).

It is an amusing exercise to write down this isogeny.
Another even more interesting excercise is the computation of the roots for
the torus (here n = 3)

tp 0 0 0 0 0
0 t2 0 0 0 0
0 0 ts 0 0 0
T={lo o o tz1 0 0 s (1.29)
0 0 0 0 t;' 0
00 0 0 o0 ¢t
In this case we have the root subgroups
1 2 000 0 1000 0 0
01 000 O 01 0 0 0
L 00100 0 L0010 0 0
Ta s P09 00010 0f ™" ]oo0o 01 -z 0
00001 —=z 0000 1 0
00000 1 0000 0 1
and
1 000 0 O
010z 0 0
L0010 —2 0
Tag = % 0001 0 O
0000 1 0
0000 0 1
where

al(t) = tl/tg, Oég(t) = tg/tg, Oég(t) = tgtg
Use the result of this computation to show that we have an isogeny
Sly — SO(3,3).

How can we give a linear algebra interpretation of this isogenies?
If we now consider the maximal torus (1.25) and put (1.29) into the middle
then we see that the simple roots are

az(t) = ti/ti-l—l for ¢ = 17 oo — 1, and Oén(t) =tp_1tn (130)
which gives us the Dynkin diagram (wird noch korrigiert!)
Qp—1

Dn =1 — Q2 —rr—Qp_92 (131)
Qn
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The group scheme SO(n + 1,n)/ Spec(Z)

Of course we can also consider quadratic forms in an odd number of variables.
We take a free Z-module of rank 2n 4+ 1 with a basis

{61,...’6n7h7fn,...’f1}~
On this module we consider the quadratic form

F:M—=7Z

F(Z wie; + zh + Zyzfz) = Zﬂﬂzyz + 22
From this quadratic fom we get the bilinear form
B(u,v) = F(u+v) — F(u) — F(v).

We have the relation
F(u) =2B(u,u),

hence we can reconstruct the quadratic form from the bilinear form if we extend
Z to a larger ring where 2 is invertible.
We consider the automorphism scheme

G/ Spec(Z) = SO(n + 1,n)/ Spec(Z) = Aut(M, F,det = 1)/ Spec(Z)

and I claim that this is indeed a semi simple group scheme over Spec(Z). To
see this I strongly recommend to discuss the case n = 1.
We have of course the maximal torus

t
T={[0
0

S = O

t—l

It is also the stabiliser of the collection of three subspaces Ze, Zh,Zf, here we
use the determinant condition.
Now one has to discuss the root subgroups with respect to this torus.
From this we can derive that we have an isogeny

Sl, — SO(2,1)

It is also interesting to look at the case n = 2. In this case we can com-
pare the root systems of Sp, and SO(3,2) they are isomorphic. Now it is a
general theorem in the theory of split semi simple group schemes that the root
system determines the group scheme up to isogeny. Hence we should be able to
construct an isogeny between Sp, and SO(3,2). Who ctan do it?

For an arbitrary value of n we get the Dynkin diagram

Bn = Qg — Qo — = => Oy (132)
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The element wy.

Finally we have a short look at the automorphism groups of the Dynkin dia-
grams.

For the Dynkin diagram of type A the group of automorphisms is trivial
if n =1 and for n > 1 the group of automorphism is Z/27Z , the non trivial
element € exchanges the roots «; and a,_1_;.

For the diagrams B,,, C,, the automorphism group is trivial,

For the Dynkin diagram D,, and n > 4 the group of automorphisms is Z/27Z
and the non trivial automorphism e fixes the simple roots a; with 1 <7 <n—2
and interchanges o, _1, a,.

For n = 4 the automorphism group is the symmetric group S3 and it acts
by permutations on the three simple roots a1, as, ay.

The Weyl group W = N(T')/T acts simply transitively on the set of Borel
subgroups B’ D T. Hence there is a unique element wg € W which sends our
Borel subgroup B into its opposite B~ this is the group whose simple roots are
the roots —qy;.

If the automorphism group of the Dynkin diagram is trivial we have wy = —1,
i.e. it acts by multiplication by —1 on X* (7).

For the diagram A, and n > 1 the element wg = —e and therefore not equal
to —1.

For the diagram D,, the element wy = —1 if n is even and equal to —e if n
is odd.

The element wqy will play an important role later in this book.

The fundamental and the dominant weights

The Weyl group W = N(T')/T acts by conjugation on the character module
X*(T) and there a positive definite symmetric bilinear form <, >: X*(T') x
X*(T) — Q which is invariant invariant under this action.. The Weyl group is
generated by the reflections

2 <y, >

and this implies that M € Z. Of course we have a; € X*(T') for all simple
roots, the sublattice @Zaz it is of finite index in X*(7'). To this sublattice
belongs a torus 7! and an isogeny v : T — T®d) . The kernel ker(t) = pu is
the centre of our group scheme G/Z and the quotient G/ = G is the adjoint

group.
In X*(T) ® Q we have the elements ~; which are defined by

2< iy O >
SR (1.34)
< aj,a; > ’

these elements are the fundamental weights . The lattice @ Z~; contains X*(T')
as a sublattice of finite index. It provides a torus 79 and an isogeny 1 :
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T(e) — T. This torus is the maximal torus in a semi simple group scheme
G(9) /7, which admits an isogeny

Y1 : G = @ (1.35)

whose kernel is ker(y;) € T®9. The group G®%/Z is the simply connected
cover of G/ Spec(Z).

The dominant weights are the weights A = >~ n <; ; with all n; > 0. They
parametrise the irreducible representation of G. We come to this in chapter 6.

The abstract group G©° (k)

We want to show that the abstract group G (k) is generated by the groups
Ua (k).

For any root o we can consider the two root subgroups U,,U_,. It is easy
to see -at least in our examples above - that these root subgroups generate a
subgroup H, C G, this is the smallest subgroup which contains U,, U_. This
subgroup is either PSl; or Sly. Then T = H,NT is a maximal torus in H,.

If our group G = G(G) is simply connected then H, = Sly and we define
define the coroot a¥ € X,(T¢9)) by a¥ : G,, = T and < a¥,a >= 2. We
have the relation < o¥,~; >= §; ; and this implies that the o form a basis of
X, (T¢9). This in turn implies that the map given by multiplication

m: Haiv(Gm) = 7o), (1.36)

is an isomorphism.

Now it is easy to see that for any field k the abstract group Sla(k) is generated
by the two root subgroups Uy (k), U_, (k). Combined with the observation above
this implies that T0°)(k) is contained in the subgroup which is generated by
the subgroups Uy, (k),U_q, (k). Now we recall the Bruhat decomposition. The
unipotent radical Uy of B is equal to the product Uy = [[,ca+ U and the
same holds for U_ = [, ca- Ua. The Bruhat decomposition tells us that the
multiplication m : U_ x T®% x U, — G provides an isomorphism of the left
hand side with an Zariski-open ¥V C G, ( this is the Big Cell). This means that
we get a bijection

U_(k) x T®) (k) x Uy (k) =5 V(k). (1.37)
Our previous arguments imply that V(k) lies in the subgroup generated by the
Uq (k). But then it is clear that GG (k) is generated by the Uy (k).

1.1.6  k-forms of algebraic groups

For the following concepts and results on Galois cohomology we also refer to
[70] and [81].

Exercise: 1) Consider the following two quadratic forms over Q:

f(iE,y,Z) :x2+y2—z2, fl(xayvz) =x2—|—y2—3z2.
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Prove that the first form is isotropic. This means there exists a vector (a, b, c) € Q*\ {0}
with
f(a,b,c) =0.

Show that the second form is anisotropic, i.e. it has no such vector.

2) Prove that the two linear algebraic group G/Q = SO(f)/Q and G1/Q =
SO(f1)/Q cannot be isomorphic. (Hint: This is not so easy since we did not define
when two groups are isomorphic.)

Here is some advice: In general we call an element e # u € G(Q) unipotent if it is
unipotent in Gl,,(Q) where we consider G/Q — Gl,,/Q. It turns out that this notion
of unipotence does not depend on the embedding.

Now it is possible to show that our first group G(Q) = SO(f)(Q) has unipotent
elements, and G1(Q) does not. Hence these two groups cannot be isomorphic.

3) Prove that the two algebraic groups G Xg R and G1 xg R are isomorphic, and
therefore the two groups G(R) and G1(R) are isomorphic.

In this example we see, that we may have two groups G/k, G1/k which are
not isomorphic but which become isomorphic over some extension L/k. Then
we say that the groups are k-forms of each other. To determine the different
forms of a given group G/k is sometimes difficult one has to use the concepts of
Galois cohomology. For a separable normal extension L/k we have the almost
tautological description

G(k) ={g9 € G(L)|o(g) = g for all elements in the Galois group Gal(L/k)}.

Now let we can consider the functor Aut(G) : It attaches to any field exten-
sion L/k the group of automorphisms Aut(G)(L) of the algebraic group G xy, L.
We denote this action by g — o(g) = g°. Note that this notation gives us the
rule g(°7) = (¢g7)?. A 1-cocycle of Gal(L/k) with values in Aut(G) is a map
¢: 0 ¢, € Aut(G)(L) which satisfies the cocycle rule

Cor = CoCZ (1.38)
Now we define a new action of Gal(L/k) on G(L): An element o acts by

—1
g cs9°c,

We define a new algebraic group G;/k: For any extension F/k we have an
action of Gal(L/k) on E ®, L and we put

Gi(E)={9€G(E®k L)lg = co97c; '} (1.39)

For the trivial cocycle o — 1 this gives us back the original group.

It is plausible and in fact not very difficult to show that £ — G1(E) is in
fact represented by an algebraic group Gp/k. This group is clearly a k-form of
G/k.

We can define an equivalence relation on the set of cocycles, we say that

{oco}t~{o—d}
if and only if we can find a a € G(L) such that

d =a"'c,a’ for all o € Gal(L/k)
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We define H!(L/k, Aut(G)) as the set of 1-cocycles modulo this equivalence
relation. If we have a larger normal separable extension L’ D L D k then we get
an inclusion H'(L/k, Aut(G)) — HY(L'/k, Aut(Q)). If k is a separable closure
of k we can form the limit over all finite extensions k C L C k, and put

H' (ks /k, Aut(G)) = li_r>nH1(L/k, Aut(G))

This set is isomorphic to the set of isomorphism classes of k-forms of G/k.

If L/k is a cyclic extension and if o € Gal(/k) is a generator, then a cocycle
c¢: Gal(L/k) = Aut(G)(L) is determined by its value g = ¢(o) € Aut(G)(L).
But we have to satisfy the cocycle relation. We have a useful little

Lemma 1.1.1. The assigment o — c¢(o) = g provides a 1-cocycle if and only
uf
n—1

Norm(g) =g¢°...¢° =1d

and
H'( Gal(L/k, Aut(G)(L)) = {g € Aut(G)(L)| Norm(g) = Id}/hgh™° ~ g}.

Proof. Straightforward calculation O

We may apply the same concepts in a slightly different situation. A k—
algebra D over the field k is called a central simple algebra, if it has a unit
element # 0, if it is finite dimensional over k, if its centre is k (embedded via
the unit element) and if it has no non trivial two sided ideals. It is a classical
theorem, that such an algebra over a separably closed field kg is isomorphic to
a full matrix algebra M, (ks). Hence we can say that over an arbitrary field &
any central simple algebra of dimension n? is a k-forms of M, (k).

For any algebraic group G/k we may consider the adjoint group Ad(G), this
is the quotient of G/k by its center. It can be shown, that this is again an
algebraic group over k. It is clear that we have an embedding

Ad(G) —» Aut(G)
which for any g € Ad(G)(L) is given by
g {2 g7 ag).
A k-form G /k of a group G/k is called an inner k-form, if it is in the image of
H'(ky/k,Ad(G)) — H'(ky/k, Aut(Q)).
We call a semi simple group G/k anisotropic , if it does not contain a non
trivial split torus (See exercise in (1.1.6)) In our example below the group of

elements of norm 1 is always semi simple and anisotropic if and only if D(a,b)
is a field.

I want to give an example, we consider the algebraic group Glz/Q we con-
sider two integers a, b # 0, for simplicity we assume that b is not a square. Then
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we have the quadratic extension L = Q(v/b), let ¢ be its non trivial automor-

phism. The element (? 8

s ghom (3 5)o(15)

of the group Gly, Then ¢ +— Ad( <(1) g)) and Idgaiz/k) = Idaut( clo)z) is @

) defines the inner automorphism

1-cocycle and we get a Q form of our group.
Hence we get a Q form G; = G(a,b)/Q of our group Gly. It is an inner
form.

Now we can see easily that group of rational points of our above group
G(a,b)(Q) is the multiplicative group of a central simple algebra D(a,b)/Q. To
get this algebra we consider the algebra Ms(L) of (2,2)-matrices over L. We
define

D(a,b) = {& € My(L)|z = Ad(((l) 8))3:"Ad(<(1) g))—l}. (1.40)

We have an embedding of the field L into this algebra, which is given by

un—>uo
0 u°

Let u;, the image of v/b under this map. We also have the element u, = ((; 8)

in this algebra.
Now I leave it as an exercise to the reader that as a Q vector space

D(aa b) = Q 2] QUb S2) Qua S2) Quaub
2 __

We have the relation u; = a, ug = b, UgUp = —UpUg.
Of course we should ask ourselves: When is D(a, b) split, this means isomor-
phic to M>(Q)? To answer this question we consider the norm homomorphism,

which is defined by
THYUp+2Ug Fwaguy — (T+yupt2u, Fwagup) (T —yuy—2uq —waguy ) = 2 —y*b—z2a+w?ab.

It is easy to see that D(a,b) splits if and only if we can find a non zero element
whose norm is zero.

If we do this over R as base field and if we take a = —1,b = —1 then we get
the Hamiltonian quaternions, which is non split.

We may also look at the p-adic completions Q, of our field. Then it is not
difficult to see that D(a,b) splits over Q, if p # 2 and p | ab. Hence it is clear
that there is only a finite number of primes p for which D(a,b) does not split.

If we consider R as completion at the infinite place, and the Q, as the com-
pletions at the finite places, then we have
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The algebra D(a,b) splits if and only if it splits at all places. The number of
places where it does not split is always even.

The first assertion is the so called Hasse-Minkowski principle, the second
assertion is essentially equivalent to the quadratic reciprocity law.

Construction of division algebras and anisotropic groups

We give some indication how to construct anisotropic groups over Q ( or even
overn any number field). We choose a cyclic extension L/Q of degree n and we
pick a number a € Q*, let A(a) € G1,(Q) be the following matrix

01 0 ... 0
00 1 ... 0

A(a) = Lo (1.41)
00 ... 0 1
00 0 0

Let 0 € Gal(L/Q) be a generator then ¢” — A(a)” mod G, is a homomor-
phism from Gal(L/Q) to PGl,(Q) and since A(a) € GlL,(Q) this is also a
1-cocycle ¢ : Gal(L/K) — PGl,(Q) := {¢¥ — A(a)"}. It defines a cohomology
class [A(a)] € HY(L/Q, Ad(Gl,) and hence an inner Q-form G/Q of Gl,,/Q. In
Galois cohomology we have the boundary map

§: H'(L/Q,Ad(Gl,) = H*(L/Q,G.,) = Q" /N (LX)

and it is clear that
6([A(a)]) = a € Q" /Nr (L")

Now it is well known that the Q -form G/Q of Gl,,/Q is anisotropic if and only
if the class a € Q* /Ny g(L*) is an element of order n. We know from algebraic
number theory that there are infinitely many primes p which are inert, i.e. p is
unramified in L and the prime ideal (p) stays prime in the ring of integers Oy,.
Then it easy to see that the order of p € Q* /Ny o(L*) is n. Hence we see that
the set of isomorphism classes of anisotropic Q forms of Gl,,/Q is abundant.

Obviously the group M, (Q)* = G1,,((Q) and we also know that any auto-
morphism of M, ((Q)* is inner, hence Aut(M,(Q)) = PGI,(Q) Therefore the
isomorphism classes of (Q-forms of M, (Q) are equal to the set H'(Q,PGl,).
Such a Q-form D/Q is a central simple algebra over Q. The central simple
algebra D defined by the class [A(a)] can be described explicitly:

It contains the field L/Q as a maximal commutative subalgebra and it is
generated by L and another element a, € D which satisfies the following rela-

tions

1 n

Vz € L we have a,za, " =o(z); a) =a

If we modify a, and put a_, = a,y with y € L™ then the first relation still holds
and the second relation becomes (a,)" = aNpg(y). Hence the isomorphism
class of D is determined by the class a € Q* /Ny, o(L*). It is easy to see that
for a = 1 the central simple algebra is equal to the endomorphism ring of the
Q vector space L/Q. (This is the linear independence of the elements ¢” in

End(L/Q).)
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1.1.7  Quasisplit Q-forms

We recall that a semi-simple group G/Q is quasisplit, if contains a Borel sub-
group B/Q. This Borel subgroup contains its unipotent radical U/Q and a max-
imal torus T'/Q. Two such maximal tori T'/Q, T; /Q are conjugate by an element
u € U(Q). Let Go/Q by a split group which is a Q-form of G/Q. We pick a max-
imal split torus 7p/Q and a Borel By/Q D Ty/Q. Then we see that the triple
(G,B,T)/Q is a Q-form of (Gg, By, Tp)/Q. Hence it can by constructed from a
1-cocycle representing a cohomology class ¢ € H'(Q, Aut(((Go, Bo,Tp))), where
of course Aut(((Go, Bo,Tp)) is the subgroup of Aut(Gg) which fixes Ty, By. Ob-

viously we have an exact sequence

1 T3V — Aut(((Go, Bo, To)) — Autext((Go, Bo, Tp)) — 1, (1.42)
here Autext((Go, By, Tp)) is the very "small” group of automorphisms of the
Dynkin diagram ®. This is also the subgroup of Aut(X*(Tp)) which leaves
the set AT of positive roots invariant. We could say Autext((Go, Bo,Tp)) =
Aut(X*(Tp), AT))

It is well known- and easy to see in the examples of classical groups- that
this sequence has a section sg : Autext((Go, Bo,To)) — Aut((Go, Bo,Tp)) and
this gives us a map in Galois cohomology

58+ HY(Q, Autext((Go, By, Tp)) = Hom( Gal(Q/Q), Autext((Go, Bo, Tp))

— HY(Q, Autext((Gp))
(1.43)

Hence we see that the isomorphism classes of quasisplit Q -forms of Go/Q are
given homomorphisms ¢ : Gal(Q/Q) — Autext((Go). The maximal torus
T/Q C B/Q is not split (unless G/Q is split. Hence there is a finite nor-
mal extension Fy/Q such that T xg Fy splits, we assume that Fy/Q is min-
imal. ie. Gal(FpQ) C Aut(X*(T xq Fy),AT). We see that a quasisplit
form of Go/Q is given by a finite normal extension Fy/Q and a injection
P Gal(Fp/Q) — Aut(X*(Tp), A™).

In the special case Go/Q = Sl,,/Q with To/Q, By/Q being the standard
diagonal torus and the standard Borel subgroup of upper triangular matrices
this looks as follows: We have the element

00 0 .. 1
0o 0 ... 1 0

wo = Lo € S1,(Q) (1.44)
0 1 ... 0 0

£ 0 0 0 O

this element wy conjugates By into its opposite B the group of lower triangular
matrices. The standard Cartan involution © : g —* ¢g~! does the same and
therefore the composition Ad(wp) o © is an automorphism of Go/Q which fixes
By, Tp. It is an outer automorphism if n > 3 and gives us the non trivial element
of Autext(Gp). Hence we get a 1-cocycle if choose a quadratic extension L/Q
and send the non trivial element in Gal(L/Q) to Ad(wyg) o O.
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We leave it an exercise to the reader to show theQ form obtained from this
cocycle (cohomology class) is isomorphic to the above group SU(h1)/Q.

An important class of quasi split groups is given by the groups G/Q =
Rp,/0(Go) where Fy/Q is a finite extension of Q and Go/Fy is a split group. If
By/Fy C Gy is a Borel subgroup then B = Rp, ,o(By) is a Borel subgroup in
G/Q. Let F D Fy be a normal closure of F then

GxoF =[] Goxm.F (1.45)
vFog—F

where ¢ runs over the set ¥ of maps from F to F. The Galois group acts on the
product via the action on .

1.1.8 Structure of semisimple groups over R and the sym-
metric spaces

We need some information concerning the structure of the group Go, = G(R)
for semisimple groups over G/R. We will provide this information simply by
discussing a series of examples.

Of course the group G(R) is a topological group, actually it is even a Lie
group. This means it has a natural structure of a Co, -manifold with respect to
this structure. Instead of G(R) we will very often write Goo. Let G be the
connected component of the identity in Go,. It is an open subgroup of finite
index. We will discuss the

Theorem of E. Cartan: The group G2, always contains a maximal com-
pact subgroup K., C G% and all maximal compact subgroups are conjugate
under G%,. The quotient space X = G, /K, is again a Coo-manifold. It is dif-
feomorphic to an RV and carries a Riemannian metric which is invariant under
the operation of GO from the left. It has sectional curvature < 0 and there-
fore any two points can be joined by a unique geodesic. The maximal compact
subgroup K C G, is connected and equal to its own normalizer. Therefore the
space X can be viewed as the space maximal compact subgroups in G.. See
for instance [51].

For any maximal compact subgroup K, C G exists an unique automor-
phism ©, with ©2 = e such that K, = {g € G |0(g) = g}, this is the
Cartan involution corresponding to K,. The Cartan involutions are in one-to
one correspondence with the maximal compact subgroups.

A Cartan involution ©, induces an involution also called ©, on the Lie
algebra gr of G, and we get a decomposition into + eigenspaces

where of course ¢, is the Lie algebra of K,. The differential of the action of
G on G(R)/K, provides an isomorphism D, : p, — T;:* (then tangent space
at z). For V1,Va € p, we have [Vq,V3] € €, the map R : p, X p, — €, is the
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curvature tensor. The R-vector space g. := &, + v—1p, C g ®r C is a Lie
algebra, for Uy + /—1V1,Us + /—1V5 € g, we get for the Lie-bracket

[Uy + V=1V, Uy + V=1Va] = [U1, U] — [Vi, Va] + V—=1([Uy, Va] + [U2, V1)) € g

To this Lie algebra g. corresponds an algebraic group G./R which is a R-form
of G/R, the group G.(R) is compact. The group G./R is called the compact
dual of G/R. On G./R we have only one Cartan involution © = Id.

This theorem is fundamental. To illustrate this theorem we consider a series
of examples:

The groups S1,(R) and Gl,(R):

The group Slg(R) is connected. If K C Slz(R) is a closed compact subgroup, I
claim that we can find a positive definite quadratic form f : R™ — R, such that
K C SO(f,R) Snce the group SO(f, R) itself is compact, it is maximal compact.
Two such forms f1, fo define the same maximal compact K, subgroup if there
isa A > 0 in R such that A\f; = fo. We say that f; and fo are conformally
equivalent.

This is rather clear, if we believe the first assertion about the existence of f.
The existence of f is also easy to see if one believes in the theory of integration
on K. This theory provides a positive invariant integral

C.(K) — R
¢ — [ e(k)dk
/

with [ > 0 if ¢ > 0 and not identically zero (positivity), [ ¢(kko)dk =
J p(kok)dk = [ @(k)dk (invariance). To get our form f we start from any
positive definite form fy on R™ and put

flz) = /K Jolk)dk.

A positive definite quadratic form on R™ is the same as a symmetric positive
definite bilinear form. Hence the space of positive definite forms is the same as
the space of positive definite symmetric matrices

X ={A=(a;) | A="A,A>0}.

Hence we can say that the space of maximal compact subgroups in Sl,(R) is
given by
X = X/RY,.

It is easy to see that a maximal compact subgroup K, C Sl;(R) is equal
to its own normalizer (why?). If we view X as the space of positive definite
symmetric matrices with determinant equal to one, then the action of Slz(R)
on X = Sly(R)/K is given by

(9,A) — g Ay,
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and if we view it as the space of maximal compact subgroups, then the action
is conjugation.

There is still another interpretation of the points € X. In our above inter-
pretation a point was a symmetric, positive definite bilinear form < , >, on R"
up to a homothety. From this we get a transposition g — ‘=g, which is defined
by the rule < gv,u >,=< v, gu >, and from this we get the involution

O, :gr (t=g)7* (1.46)
Then the corresponding maximal compact subgroup is

K, = {g € SL,(R)|0.(9) = g} (1.47)

This involution ©, is a Cartan involution, it also induces an involution also
called O, on the Lie-algebra and it has the property that (See 1.18)

(u,v) = B(u,04(v)) = Be, (u,v) (1.48)

is negative definite. This bilinear form is K, invariant. All these Cartan invo-
lutions are conjugate.

If we work with Gl,(R) instead then we have some freedom to define the
symmetric space. In this case we have the non trivial center R* and it is
sometimes useful to define

X = Gl,,(R)/SO(R) - R%,, (1.49)

then our symmetric space has two components, a point is pair (©,,¢) where ¢
is an orientation. If we do not divide by RZ, then we multiply the Riemannian
manifold X by a flat space and we get the above space X.

A Cartan involution on Gl,(R) is an involution which induces a Cartan
involution on Sl, (R) and which is trivial on the center.

Proposition 1.1.1. The Cartan involutions on Gl,(R) are in one to one cor-
respondence to the euclidian metrics on R™ up to conformal equivalence.

Finally we recall the Iwasawa decomposition. Inside Gl,(R) we have the
standard Borel- subgroup B(R) of upper triangular matrices and it is well known
that

Gl,(R) = B(R) - SO(R) - R%, (1.50)

and hence we see that B(R) acts transitively on X.

The compact dual of S1,(R)

If G/R is a semi simple group, then G./R is a R-form of G/R. Therefore we find
a cohomology class & € H'C/(R, Aut(G)) corresponding to G.. It is clear from
the Theorem of Cartan how we get a cocycle representing this class: We choose
a Cartan involution © € Aut(G), the Galois group Gal(C/R) is cyclic of order
SO( 2 let ¢ be the generator (the complex conjugation). Then ¢ — co © yields
a l-cocycle in C'( Gal(C/R), Aut(G)(C)). (Lemma 1.1.1 ) and this 1-cocycle
represents the class &..
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This means for the group Sl, /R that
Ge(R) ={g € SL,(O)lc('g™") = g}

and if we go back to the usual notion and write ¢(g) = g then we get
Ge(R) = {g € 81,(C)['gg = 1d} = SU(n)

Here of course SU(n) = SU(h.) where h.(z1,22,...,2n) = Y., zi% is the
standard positive definite hermitian form on C™.

We know that for G/R = Sl,,/R and n > 2 the Cartan involution © is the
generator of Aut(G)/Ad(G) and hence it is clear that . is not in the image of
HY(C/R,Ad(G)) — H*(C/(R, Aut(G)). This means that in this case G./R =
SU(n)/R is not an inner R -form of Sl,, /R, in turn this also means that Sl, /R
is not an inner R -form of SU(n)/R.

In this context the following general proposition is of importance

Proposition 1.1.2. A semi simple group scheme G/R is an inner R form of
its compact dual G./R if an only if

a) The Cartan involution © of G/R is an inner automorphism of G/R.

b) The group G/R has a compact mazimal torus T./R C G/R.

Give a name to this class of groups 7 Examples?

The Arakelow- Chevalley scheme (Gl,/Z, ©g)

We start from the free lattice L = Zey @ Zes @ - - - @ Ze,, and we think of Gl,,/Z
as the scheme of automorphism of this lattice. If we choose an euclidian metric
<, >on L ®R, then we call the pair (L,< , >) an Arakelow vector bundle.
From the (conformal class of) metric we get a Cartan involution ©. on Gl,(R),
and the pair (Gl,,/Z, ©) is an Arakelow group scheme

We may choose the standard euclidian metric with respect to the given
basis, i.e. < ej,e; >= 0; ;. theresulting Cartan involution is the standard one:
B0 : g — (tg)~ L. This pair (Gl,/Z, ) is called an Arakelow- Chevalley scheme.
(In a certain sense the integral structure of Gl,,/Z and the choice of the Cartan
involution are ”optimally adapted”)

In this case we find for our basis elements in (1.15)

B@o (HZ, HJ) = —2n§i,j + 2; B@O (Ei’j, Ek,l) = —271(51"}6(5%1 (151)

hence the E; ; are part of an orthonormal basis.

We propose to call a pair (L,< , >,) an Arakelow vector bundle over
Spec(Z)U{oo} and (Gl,,, ©,,) an Arakelow group scheme. The Arakelow vector
bundles modulo conformal equivalence are in one-to one correspondence with
the Arakelow group schemes of type Gl,,.

The group S1;(C)

We now consider the group G/R whose group of real points is G(R) = Sl4(C)
(see 1.1 example 4)).

A completely analogous argument as before shows that the maximal compact
subgroups are in one to one correspondence to the positive definite hermitian
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forms on C™ (up to multiplication by a scalar). Hence we can identify the
space of maximal compact subgroups to the space of positive definite hermitian
matrices

X={A|A="A, A>0, detA=1}.

The action of Sl;(C) by conjugation on the maximal compact subgroups becomes
A—gA'g

on the space of matrices.

The orthogonal group:

The next example we want to discuss is the orthogonal group of a non degenerate
quadratic form

2 2 2 2
flxy,..o,zn) =214+ 42, — 25 — ... — T,

since at this moment we consider only groups over the real numbers, we may

assume that our form is of this type. In this case one has the usual notation

SO(f,R) =SO(m,n —m).

Of course we can use the same argument as before and see that for any maximal
compact subgroup K C SO(f,R) we may find a positive definite form 1

¢:R" — R

such that K = SO(f,R) NSO(x,R). But now we cannot take all forms 1, i.e.
only special forms 1 provide maximal compact subgroup.

We leave it to the reader to verify that any compact subgroup K fixes an
orthogonal decomposition R™ = V, @ V_ where our original form f is positive
definite on V and negative definite on V_. Then we can take a ¢ which is equal
to f on V; and equal to —f on V_.

Exercise 3 a) Let V/R be a finite dimensional vector space and let f be a symmetric
non degenerate form on V. Let K C SO(f) be a compact subgroup. If f is not definite
then the action of K on V' is not irreducible.

b) We can find a K invariant decomposition V.= V_ & V. such that f is negative
definite on V_ and positive definite on V.

In this case the structure of the quotient space G(R)/K is not so easy to
understand. We consider the special case of the form

242k —ak g = (@, Tag).
We consider in R"*! the open subset
X_= {U: (.1‘1...1‘”+1) | f(’l)) < 0}

It is clear that this set has two connected components, one of them is

Xt ={veX_ |zp >0}
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Since it is known that SO(n, 1) acts transitively on the vectors of a given length,
we find that SO(n, 1) cannot be connected. Let G C SO(n, 1) be the subgroup
leaving X invariant.

Now it is not to difficult to show that for any maximal compact subgroup
Ko C G we can find a ray R% - v C X which is fixed by K.

(Start from vg € X(_+) and show that RY (K. ,vg is a closed convex cone in

X (f). It is K invariant and has a ray which has a “centre of gravity” and this
is fixed under Ko.)

For a vector v = (21,...,Zp41) € X we may normalise the coordinate
ZTp4+1 to be equal to one; then the rays Riov are in one to one correspondence

with the points of the ball

o

Dyp={(z1,..,xn) |23+ ...+ 22 <1} c X, (1.52)

This tells us that we can identify the set of maximal compact subgroups K., C
GY, with the points of this ball. The first conclusion is that G2 /K., ~ D™ is
topologically a cell (diffeomorphic to R™). Secondly we see that for a v € X
we have an orthogonal decompositon with respect to f

R™™ = (v) + (v)*,
and the corresponding maximal compact subgroup is the orthogonal group on
(v)*.

The space X7 is often called the n-dimensional hyperbolic space H,,.
Give Cartan Involutions?

1.1.9 Special low dimensional cases

1) We consider the ( semi-simple ) group Sla(R). It acts on the upper half plane
H={z]2z€C,3(z) >0}

by

az+b a b
(gvz)_) =

o d) S SlQ(R)

It is clear that the stabiliser of the point ¢ € H is the standard maximal compact

subgroup .
B B cosp  singp
Ko =50(2) = {(sincp Cosgo)}'

Hence we have H = Sl»(R) /K. But this quotient has also been realized as the
space of symmetric positive definite 2 x 2-matrices with determinant equal to

one
Yy X1 2

z= —x7=1Ly1 >0;.

{<x1 y2)|y1y2 o }

It is clear how to find an isomorphism between these two explicit realizations.

The map
yrow) i+
T1 Y2 Y2
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is compatible with the action of Sly(R) on both sides and sends the identity

1 0 oL
(O 1) to the point .

If we start from a point z € H the corresponding metric is as follows: We
identify the lattices (1,2) = {a + bz | a,b € Z} = Q to the lattice Z?> C R?

by sending 1 — (é) and z — ([1)) The standard euclidian metric on C =

R? induces a metric on ! C C, and this metric is transported to R? by the

identification Q @ R — R2. Hence the symmetric matrix will be <i sz> .

We may also start from the (reductive) group Gly(R), it has the centre
CR) = {<8 (t)) }. Let C(R)(® be the connected component of the identity of
C(R). In this case we define K., = SO(2) x C(R)(?). Then the quotient

Gly(R) /Ko = HUH_

where H_ is the lower half plane.

2) The two groups Slp(R) and PSIy(R)(®) = SIy(R)/{+Id} give rise to the
same symmetric space. The group PSl3(R) acts on the space M3(R) of 2 x 2-
matrices by conjugation (the group Gly(R) acts by conjugation and the centre
acts trivially) and leaves invariant the space

{A € My(R) | trace(A) = 0} = M2 (R).
On this three-dimensional space we have a symmetric quadratic form
B : M)R)—R

1
B : A~ B trace (A?)

and with respect to the basis

O R (O R Rt

this form is 2% + 23 — 22.

Hence we see that SO(MY(R), B) = SO(2,1), and hence we have an isomor-
phism between PSly(R) and the connected component of the identity G C
SO(2,1). Hence we see that our symmetric space H = Sla(R)/K o, = PSI(R)/K
can also be realised as disc

D = {(z1,22) | 2% + 235 < 1}

where we normalized 3 = 1 on X asin 1.52) .
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The group Sl;(C).

Recall that in this case the symmetric space is given by the positive definite
hermitian matrices

A:{(gle 52) |det(A):1,y1>0}.

In this case we have also a realization of the symmetric space as an upper half

space. We send
now)
w Y2
The inverse of this isomorphism is given by

0 (5 1)

As explained earlier, the action of Glz(C) on the maximal compact subgroup
given by conjugation yields the action

(,)z(zg )€ C x Ryo

GR)x X — X,

(ga A) — gAtya

on the hermitian matrices. Translating this into the realization as an upper half
space yield the slightly scaring formula

G x (CxRsp) — C x Ry,

(az +b) (cz +d) +ac ¢? ¢
@ (z0) — <(cz+d) (cz4+d)+ @2 (cz+d) (cz+d)+ccg2>

. Here X is the three dimensional hyperbolic space Hs.

1.3.4. The Riemannian metric: It was already mentioned in the state-
ment of the theorem of Cartan that we always have a G2, invariant Riemannian
metric on X. It is not to difficult to construct such a metric, which in many
cases is rather canonical.

In the general case we observe that the maximal compact subgroup is the
stabilizer of the point o = e - Ko, € G% /K, = X. Hence it acts on the
tangent space of xp, and we can construct a K..-invariant positive definite
quadratic form on this tangent sapce. Then we use the action of G on X to
transport this metric to an arbitrary point in X: If x € X we find a g so that
T = gxg, it defines an isomorphism between the tangent space at zy and the
tangent space at x. Hence we get a quadratic form on the tangent space at zx,
which will not depend on the choice of g € G% . In our examples this metric is
always unique up to scalars.

a) In the case of the group Sl,(R) we may take as a base point zg € X
the identity Id € S1,(R). The corresponding maximal compact subgroup is the
orthogonal group SO(n). The tangent space at Id is given by the space

Symg R) = TI{A(



1.1. AFFINE ALGEBRAIC GROUPS OVER Q. 33

of symmetric matrices with trace zero. On this space we have the form
Z — trace(Z?),

which is positive definite (a symmetric matrix has real eigenvalues). It is easy to
see that the orthogonal group acts on this tangent space by conjugation, hence
the form is invariant.

b) A similar argument applies to the group G, = Slg(C). Again the identity
Id is a nice positive definite hermitian matrix. The tangent space consists of
the hermitian matrices

Ty ={A|A="Aand tr(A) =0},
and the invariant form is given by
A — tr(AA).

¢) In the case of the group G2 C SO(f)(R) where f is the quadratic form

flay,. o ap) =2+ ap —ap g

We realized the symmetric space as the open ball
[e]

Dp={(z1,...,2n) [ 2] +... + 2} <1},

The orthogonal group SO(n, 1) is the stabilizer of 0 €D,,, and hence it is clear
that the Riemannian metric has to be of the form

h(x3 4 ...+ 22)(dx? + ... dx2)
(in the usual notation). A closer look shows that the metrics has to be

do? + ... +dx?
\/1—90%—...—30%.

In our two low dimensional spacial examples the metric is easy to determine.
For the action of the group Sly(R) on the upper half plane H we observe that
for any point zp = x + iy € H the tangent vectors %po, 3%|Zo form a basis of
the tangent spaces at zg.

If we take zp =4 then the stabilizer is the group SO(2) and for

e(p) = ( cos ¢ sin<p) .

—sing cosep

We have
0 0 7]
(3 ) cos2<p~%|i+sin2<p-8—y\i
0 0 0
(3 ) sin2<p-£ |i+cos2<p-8—y ;.
Hence we find that 4 |Z and ai |; have to be orthogonal and of the same length.
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(1)

sends ¢ into the point z = x + iy. It sends % |; and a% |; into y - % |, and

Now the matrix

e 8% |-, and hence we must have for our invariant metric

0 0 0
<% |za87y|z>* ) <% |27%|Z>*E7 <87y ‘zvaiy|z>*y

0 1 0] 0 1
R

and this is in the usual notation the metric
1
ds® = ?(dﬁ + dy?). (1.54)
A completely analogous argument yields the metric

1
ds* = a (d¢? + dx? + dy?) (1.55)

for the space Hs.

1.2  Arithmetic groups

If we have a linear algebraic group G/Q — GL, we may consider the group
I' = G(Q) N GL,(Z). This is the first example of an arithmetic group. It has
the following fundamental property:

Proposition: The group I' is a discrete subgroup of the topological group
GR).

This is rather easily reduced to the fact that Z is discrete in R. Actually our
construction provides a big family of arithmetic groups. For any integer m > 0
we have the homomorphism of reduction mod m, namely

GLn(Z) — GLn(Z/m1L).

The kernel GL,,(Z)(m) of this homomorphism has finite index in GL,(Z)
and hence the intersection I' = GL,,(Z)(m) NT has finite index in T".

Definition 2.1.: A subgroup I of T' is called a congruence subgroup, if we
can find an integer m such that

GL,(Z)(m)NT cT” CT.

At this point a remark is in order. We explained already that a linear
algebraic group G/Q may be embedded in different ways into different groups
GL,, ie.

— GLy,
G
—  GLy,
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In this case we may get two different congruence subgroups
Fl = G(Q) N GLn1 (Z)7 F? = G(Q) n GLn2 (Z)
It is not hard to show that in such a case we can find an m > 0 such that

't DI'en GLn2 (Z) (m)
I'sODI'in GLn1 (Z) (m)

From this we conclude that the notion of congruence subgroup does not
depend on the way we realized the group G/Q as a subgroup in the general
linear group.

Now we may also define the notion of an arithmetic subgroup. A subgroup
I € G(Q) is called arithmetic if for any congruence subgroup I' C G(Q) the
group IV N T is of finite index in IV and T'. (We say that IV and T" are commen-
surable.) By definition all congruence subgroups are arithmetic subgroups.

The most prominent example of an arithmetic group is the group
I' = Slx(Z).

Another example is obtained as follows. We defined for any number field K/Q
the group

G/Q = Rk /q(Sla)

for which G(Q) = Slg(K). If Ok is the ring of integers in K, then I" = S1;(Ok)
(and also T' = GL,(Ok)) is a congruence (and hence arithmetic) subgroup of
G(Q).

It is very interesting that the groups I' = Slo(Z) and Sly(Ok) for imaginary
quadratic K/Q always contain arithmetic subgroups I'V C T which are not con-
gruence subgroups. This means that in general the class of arithmetic subgroups
is larger than the class of congruence subgroups. We will prove this assertion in
Non Congruence subgroups).

If only the group G(R) is given (as the group of real points of a group G/R
or perhaps only as a Lie group, then the notion of arithmetic group I' € G(R)
is not defined. The notion of an arithmetic subgroup I' C G(R) requires the
choice of a group scheme G/Q such that the group G(R) is the group of real
points of this group over Q. The exercise in 1.1.2. shows that different Q- forms
provide different arithmetic groups.

Exercise 2 If v € Gl (Z) is a nontrivial torsion element and if v = Id mod m
then m = 1 or m = 2. In the latter case the element y is of order 2.

This implies that for m > 3 the congruence subgroup Gl,(Z)(m) of Gl,(Z) is
torsion free.

This implies of course that any arithmetic group has a subgroup of finite
index, which is torsion free.
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1.2.1 Affine group schemes over Z

There is a slightly more sophisticated view of arithmetic groups. In our book
[40] section 7.5.6 and on p. 50,51 we discuss briefly the general notion of a
group scheme over an arbitrary base scheme S. An affine group scheme over
G/Z is a finitely generated Z-algebra A(G) together with a comultiplication
m : A(G) —- A(G) ® A(G). For any Z -algebra B (commutative and with
identity) the comultiplication m induces a multiplication on the B-valued points

‘m Hom,ig(A, B) x Homge (A, B) = Homaie(A, B)

and the requirement is that this multiplication defines a group structure on
G(B) = Hom,(A, B). In educated language : G/Z is a functor from the
category of affine schemes into the category of groups.

For instance we can define the group scheme Gl,,/Z. The affine algebra is
A(Gln) = Z[Xlla X12, e 7X1n7 Xgl, e ,Xnn, Y]/(Y det(X” — 1)

Then the group Gl,,(Z) of Z-valued points of Gl,,/Z is our group Gl,(Z).
If G/Q c Gl,/Qis a subgroup, then the affine algebra A(G) = A(Gl,)®Q/I,
where I is an ideal in A(Gl,,)®Q. Since G/Q is a subgroup this ideal must satisfy

ma, (I) € A(GL,) ©Q® I +1® A(Gl,) ® Q.

Let J = A(Gl,) N1, then it is easy to check that the comultiplication of A(Gl,,)
satisfies
may, (J) C A(Gl,) ® J + J @ A(Gl,)

and this tells us that mg), induces a comultiplication
m: A(Gl,)/J — A(Gl,)/J ® A(Gl,,)/J

which provides a group scheme structure. This means that we have extended
the group scheme G/Q to a group scheme over G/Z. The affine algebra A(G) =
A(Gl,)/J. This extension depends on the choice of the embedding into Gl,,/Q
and it is called the flat extension. Then the base extension G xz Q = G/Q, this
base extension is called the generic fiber of G/Z.

We now may understand our arithmetic group I' = G(Q) N Gl,(Z) as the
group G(Z) of Z valued points of a group scheme over Z. Since we know what
G(Z/mZ) is we can define congruence subgroups I'y as inverse images of sub-
groups H C G(Z/mZ) under the projection G(Z) — G(Z/mZ).

There is the special class of semi-simple or reductive group schemes. Roughly
speaking an affine group scheme G/Z is semi-simple (resp. reductive) , if its
generic fiber G xz Q is semi-simple (resp. reductive) and if for all primes p
the group scheme G xz F, ( the reduction mod p) is a semi-simple ((resp.
reductive)) group scheme over F,,.

Of course the simplest example of a semi-simple (resp. reductive) group
(scheme) over Z is the group Sl,,/Z (resp. G, /Z).

We can also construct semi-simple group-schemes by taking flat extensions
of orthogonal (resp. symplectic ) groups over Q, (see sectionl.2.1, example 2)
and 3). Here the symmetric (resp. alternating) form has to satisfy certain
arithmetic conditions (See chap4.pdf).
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1.2.2 I -modules

We consider modules M (i.e. abelian groups) with an action of I', we want to
discuss briefly discuss some special classes of such I'-modules.

The most important classes of I'-modules are the modules of arithmetic
origin . To construct such modules we realise our arithmetic group as I' =
G(Q) N Gl,(Z). Then we take any rational representation p : G/Q — Gl(V),
where V is a finite dimensional Q— vector space. Now we look for finitely
generated submodules M C V such that M ® Q = V which are invariant under
the action of I'. Such a module is a I'-module of arithmetic origin.

It is not to difficult to show that given any finitely generated module M’
which is a full sublattice, i.e. M’ ® Q = V, we can find a congruence subgroup
I'1 T such that Iy M’ = M’. Then

M= () M

~yel'/Ty

is a I'— module of arithmetic origin..

A second class of I' modules are those of congruence origin. To get such a
module we simply pick a congruence subgroup I'(N) C T" and then we simply
look at finitely generated abelian groups V' with an action of I'/T'(N) on V.

We get some important examples of I' modules of congruence origin if we
start from a I'-module M of arithmetic origin. Then we choose an integer N
and consider the I' module M ® Z/NZ. On this module T'(N) acts trivially,
hence this module is a T'/T'(IN) module of congruence origin.

We go back to the more sophisticated point of view above, our arithmetic
group is the group I' = G(Z) of Z valued points of the flat extension G/Z.

Now we pick a torsion free finitely generated module M, we know what it
means that M is a G/Z module: It simply means that for any commutative ring
B with identity we have a B-linear action of G(B) on the B-module M ® B, or
in other words we have a homomorphism G(B) — Glg(M ®z B). Of course we
require that this action is functorial in B.

For this book -especially for the first half- the group scheme Gly/Z plays
a dominant role. In this case the irreducible representations of Gly x7z Q are
well known. We consider the Q vector space of homogenous polynomials in two
variables and of degree n

Mg = {P(X,Y)=> a,X"Y" "[a, € Q}. (1.56)

v=0

We choose an integer m define an action of Gly(Q):

(i Z) P(X,Y) = P(aX + cY,bX + dY) det( (‘Cl Z) . (1.57)

this gives us the Gla/Q-module M,, g[m].
But now it is easy to get Gly/Z-modules, we simply define

My :={P(X,Y)=> a,X"Y" "|a, € Z} (1.58)
v=0
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and then we define the Gly/Z modules M,,[m] by the same formula as above.
If n is even we will sometimes work with the module M[—%,. because in this
case the center acts trivially.

At this point a small remark is in order. If look at M,,[m] only as Gla(Z)-
module then the module "knows” what n is, clearly n = rank(M,,) — 1. But
this Glz(Z)- module does not "know” what m is. The only information we get

’ (_01 _01) P=(-1)"P

and from this we only get the value of m mod 2. But if we consider M,,[m] as
module for the group scheme Gly/Z then the module also knows the value of m

because then we know
a 0 m
< 0 a) P=am"P

for any @ € R* in any commutative ring R with identity. If n is even we may
consider the module M, [—%], this is a module for PGly/Z = Gl3/G,,.

In section 4.1.1 we discuss the corresponding situation for groups Gl (Z[v/—d)).

1.2.3 The locally symmetric spaces

We start from a semisimple group G/Q. To this group we attached the group
of real points G(R) = G4. In G we have the connected component GY_ of the
identity and in this group we choose a maximal compact subgroup K.,. The
quotient space X = G /K is a symmetric space which now may have several
connected components. On this space we have the action of an arithmetic group
T.

We have a fundamental fact:
The action of T' on X is properly discontinuous, i.e. for any point r € X
there exists an open neighbourhood U, such that for all v € I' we have

YW, NU, =0 or ~vz=uzx.
Moreover for all x € X the stabilizer

Ly ={y|yz=ux}

is finite.

This is easy to see: If we consider the projection p : G(R) - G(R)/ K = X,
then the inverse image p~!(U,) of a relatively compact neighbourhood U, of x =
90K is of the form Vi, - K, where Vj, is a relatively compact neighbourhood
of go. Hence we look for the solutions of the equation

yok =v'kK vy €T, 0,0 € Vg, kK € Kuo.

Since T is discrete in G(R) there are only finitely many possibilities for v and
they can be ruled out by shrinking U, with the exception of those v for which
vz = x. If v = x this means that ygo K = goK~ and hence v € FﬂgoKoogo_l
this intersection is a compact discrete set, hence finite.
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If T has no torsion then the projection
m: X —D\X

is locally a Coo-diffeomorphism. To any point # € '\ X and any point & € 7 1(x)
we find a neighbourhood Uj; such that

m:Uz;—U,.

Hence the space I'\ X inherits the Riemannian metric and the quotient space
is a locally symmetric space . In the following we will denote the dimension of
MX by d, i.e. d =dim(T\X).

If our group I' has torsion, then a point £ € X may have a nontrivial
stabilizer I'z. Then it is not difficult to prove that & has a neighbourhood Ujz
which is invariant under I'; and that for all § € U; the stabilizer I'y C I'z. This
gives us a diagram

| l

X — = N\X

i.e. the point # € I'\X has a neighbourhood which is the quotient of a neigh-
bourhood Uz by a finite group.

In this case the quotient space I'\ X may have singularities. Such spaces are
called orbifolds. They have a natural stratification. Any point x defines a I
conjugacy class [['z] of finite subgroups I'z C I'. On the other hand a conjugacy
class [¢] of finite subgroups H C I' defines the (non empty ) subset (stratum)
I\ X([¢]) of those points x € T\ X for which I'; € [¢].

These strata are easy to describe. We observe that for any finite H C T the
fixed point set X intersected with a connected component of X is contractible.
Let 29 € X be a point with I',, = H. Then any other point z € X is of the
form x = gxy with ¢ € G(R). This implies that g € N(H)(R), where N(H) is
the normaliser of H, it is an algebraic subgroup. Then N(H)(R) N K., = KX
is compact subgroup, put I'! =T'N N(H)(R), and we get an embedding

M\ X" < T\ X.

This space contains the open subset (T*\ X)) of those x where H € [['z]
and this is in fact the stratum attached to the conjugacy class of H.

We have an ordering on the set of conjugacy classes, we have [c1] < [eg] if
for any H; € [c1] there exists a subgroup Hy € [¢g] such that Hy C Hs. These
strata are not closed, the closure T\ X ([c]) is the union of lower dimensional
strata.

If we start investigating the stratification above we immediately hit upon
number theoretic problems. Let us pick a prime p and we consider the group
I' = S1,_1[Z] and the ring of p-th roots of unity Z[(,] as a Z-module is free of
rank p — 1 and hence we get an element
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G € SI(Z[CP]) = Slpfl(Z)

and hence a cyclic subgroup of order p. But clearly we have many conjugacy
classes of elements of order p in I' because any ideal a is a free Z-module. If we
want to understand the conjugacy classes of elements of order p or the conjugacy
classes of cyclic subgroups of order p in Sl,,_1(Z) we need to understand the ideal
class group. In the next section we will discuss some simple examples.

These quotient spaces I'\ X attract the attention of various different kinds of
mathematicians. They provide interesting examples of Riemannian manifolds
and they are intensively studied from that point of view. On the other hand
number theoretic data enter into their construction. Hence any insight into the
structure of these spaces contains number theoretic information. This is the
main theme of this book.

It is not difficult to see that any arithmetic group I' contains a normal
congruence subgroup I which does not have torsion. This can be deduced
easily from the exercise .... at the end of this section. Hence we see that I\ X
is a Riemannian manifold which is a finite cover of I'\ X with covering group
r/1T.

We discuss special examples below.

1.2.4 Low dimensional examples

We consider the action of the group I' = Slo(Z) C Slo(R) on the upper half
plane
X=H={z]|S(2) =y > 0} = SI1(R)/SO(2).

We want to describe the quotient T'\H, for this purpose we construct further
down the fundamental domain F

As we explained in .section 1.1.9 we may consider the point z = x + iy as a
positive definite euclidian metric on R? up to a positive scalar. We saw already
that this metric can be interpreted as the metric on C induced on the lattice
Q = (1, z). The action of Slo(Z) on the upper half plane corresponds to changing
the basis 1, z of {2 into another basis and then normalising the first vector of the
new basis to length equal one. This means that under the action of Sly(Z) we
may achieve that the first vector 1 in the lattice is of shortest length. In other
words §2 = (1, z) where now |z| > 1.

Since we can change the basis by 1 — 1 and z — z 4+ n. We still have
|z + n| > 1. Hence see that this condition implies that we can move z by these
translation into the strip —1/2 < R(z) < 1/2 and since 1 is still the shortest
vector we end up in the classical fundamental domain:

F={z]—-1/2<R(2) <1/2,|2| > 1} (1.59)

Two points z1, 29 € F are inequivalent under the action of Sly(Z) unless they
differ by a translation. i.e.

1 1
a=—gtit, m=a+l=o+il, (1.60)
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or we have |z1| =1 and 23 = f%. Hence the quotient Slz(Z)\H is given by the
following picture

The circles are actually the images of horizontal lines iy + = where x € R or
2 € [9,1] in the quotient. The picture is a little bit misleading because it does

not reflect the Riemannian metric: The circumference of the circle at level iy is
1

It turns out that this quotient is actually a Riemann surface, i.e. the finite
stabilisers at ¢ and p do not produce singularities. As a Riemann surface the
quotient is the complex plane or better the projective line P*(C) minus the point
at infinity.

It is clear that the points ¢ and p = +% + % —3 in the upper half plane are
-up to conjugation by an element v € Sly(Z)- the only points with non-trivial
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stabiliser . Actually the stabilisers are given by
0 1 -1 1
S (I I ()

The second example is given by the group I' = Sly(Z[i]) C Sl5(C) = G =
Re/r(Gl2/C)(R) (See(1.1) . Here we should remember that the choice of Go
allows a whole series of arithmetic groups. For any imaginary quadratic exten-
sion K = Q(v/—d) with O as its ring of integers we may embed K into C and
get

Sl (Ok) =T C G

If the number d becomes larger then the structure of the group I' becomes
more and more complicated. We only discuss the simplest case O = Z[i]. We
will construct a fundamental domain for the action of I' on the three-dimensional
hyperbolic space Hz = C x R+g.

We identify H3 with the space of positive definite hermitian matrices

X ={AeMy(C)|A="A,A>0,det(A) =1}.

Q= 7[i]- ((1)) + 2] (?)

in C% and view A as a hermitian metric on C? where C/Q has volume 1. Let
ey = () be a vector of shortest length. We can find a second vector ) = (1)

s
)

ideal domain. We consider the vectors e}, + ve} where v € Z[i]. We have

We consider the lattice

so that det 3 > = 1. This argument is only valid because Z[i] is a principal

(e +vel, ey +ven)a = (e +ve: 1) a+vlel eh)a +Tles €l)a + vP(er, €1) 4.

Since we have the euclidean algorithm in Z[i] we can choose v such that

(e1,€1)a.

N |

1
7§<6,17 6/1> < Re<6,17 6/2>A7 S<6/13 6/2>A <

If we translate this to the action of Sly(Z[i]) on Hs then we find that every point

x = (z;() € Hs is equivalent to a point in the domain

F={(2:0)| 3 < Re(2),3(2) < 552+ 2 2 1},

N —

Since we have still the action of the matrix (é —Oz> we even find a smaller

fundamental domain

F={(z0]| —% < Re(2),3(2) < =322+ ¢? > 1 and Re(2) + 3(2) > 0}.

DN | =

I also want to discuss the extension of our considerations to the case of the
reductive group Gla(C). In such a case we have to enlarge the maximal compact
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Figure 1.1: Fundamental Domain

subgroup. In this case the group K = S1;(2) - C* = K - C* is a good choice
where C* is the centre of Glz(C). Then we get

Hs = Sl5(C)/K = Gly(C)/K

i.e. we have still the same symmetric space. But the group I' = Gly(Z[i]) is still
larger. We have an exact sequence

1T T = {i"} =1

i’ 0
0 o) The centre Zr has

index 2 in Zf. Since the centre acts trivially on the symmetric space, hence the

above fundamental domain will be “cut into two halfes” by the action of T. the
sV

matrices (ZO (1)> induce rotation of v -90° around the axis z = 0 and therefore

it becomes clear that the region

The centre Z of T is given by the matrices

Fo={(2,010<3(2),Re(z) < 5,22+ ¢? > 1}

DN | =

is a fundamental domain for T.
The translations z — z + 1 and z — z + i identify the opposite faces of F.
This induces an identification on Fj, namely

1 . 1 7
<2+zyvc> — (_2 +Zy7<> — <y+27<> .

On the bottom of the domain Fp, namely
Fo(l) ={(z,Q) e Fo | zz+ (> =1}
we have the further identification

(2,0) — (%, Q).

Hence we see that the quotient space f\Hg is given by the following figure.
I want to discuss the fixed points and the stabilizers of the fixed points of I
Before I can do that, I need some simple facts concerning the structure of Gls.
The group Gly(K) acts upon the projective line P*(K) = (K2 \ {0})/K*.
We write
PYK) = (K)U{c} ; K(ze; +e3) =x,Ke; = 0.

It is quite clear that the action of g = (: ?) € Gly(K) is given by

ar + 8
T = .
yr + 4§

The action of Gla(K) on P*(K) is transitive. For a point x € P!(K) the stabilizer
B, is clearly a linear subgroup of Gly/K. If x = oo, then this stabilizer is the

subgroup
a u
v 0))
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w9}

It is clear that these subgroups B, are conjugate under the action of Gla(K).
They are in fact maximal solbable subgroups of Gls.

If we have two different points x1, 7o € P(K), then this corresponds to a
choice of a basis where the basis vectors are only determined up to scalars. Then
the intersection of the two groups By, N B, is a so-called maximal torus. If we
choose z1 = Kej, o = Kes, then

B, ={(5 )}

Any other maximal torus of the form B,,, B is conjugate to Ty under Gly(K).
Now we assume K = C. We compactify the three dimensional hyperbolic
space by adding P*(C) at infinity, i.e.

and for x = 0 we get

Hg‘—)ﬁg :H3UP1((C) :(CXRZ()U{OO}.

(The reader should verify that there is a natural topology on Hjs for which the
space is compact and for which Gly(C) acts continuously.)

Now let us assume that a € Glo(C) is an element which has a fixed point on
Hjs and which is not central. Since it lies in a maximal compact subgroup times
C* we see that this element a can be diagonalized

1 a 0 /
a—)goago = 0 ﬁ =a

with a # 8 and |a/8] = 1.
Then it is clear that the fixed point set for a’ is the line

Fix (a’) = {(0,¢) | ¢ € R},

i.e. we do not get an isolated fixed point but a full fixed line.
The element a’ has the two fixed points co, 0 in P}(C), and hence ist defines
the torus Tp(C). Then it is clear that

Fix(a') = {(0,¢) | ¢ > 0} = To(C) - (0,1)

i.e. the fixed point set is an orbit under the action of Ty(C).

1.2.5 Fixed point sets and stabilizers for Gly(Z[i]) =T

If we want to describe the stabilizers up to conjugation, we can focus our atten-
tion on Fj.

If we have an element v € I', 4 not central and if we assume that ~ has fixed
points on Hs, then we know that ~ defines a torus 7', = centralizerg, (v) =
stabilizer of z.,z,, € P*(C). This torus is defined over Q(i), but it is not
necessarily diagonalizable over Q(), it may be that the coordinates of x., z./
lie in a quadratic extension of F'/Q(i). This is the quadratic extension defined
by the eigenvalues of ~.
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We look at the edges of the fundamental domain Fy. We saw that they
consist of connected pieces of the straight lines

141
- 2 }a

and the circles (these circles are euclidean circles and geodesics for the hyperbolic
metric)

Di={(2,0)] 224+ =1,%(2) = Re(2)}, D2 = {(2,0) | 22+ % =1,3(2) = 0},

G ={(=0) 2 =0,G2 = {(5:0) | 2= 51,Gs = {(=.0) |

1
D3 ={(2,¢)| 22+ ¢* =1,Re(z) = 5}
The pair of points (o0, (29,0)) € P}(C) x P(C) has as its stabilizer

re=( )6 56 =0 %)

the straight line {(z9,¢) | ¢ > 0} is an orbit u nder T,,(C) and it consists of

fixed points for
T,.(C)(1) = {({g 20(56— a))

We can easily compute the pointwise stabilizer of G1, G2, G5 in I'. They are

{3 O){6 )

a/ﬁesl}.

o

where in the last case we have to take into account that W € Z|i] for
all v.
Hence modulo the centre Zj these stabilizers are cyclic groups of order 4, 2, 4.

The arcs D; are also pointwise fixed under the action of certain cyclic groups,

namely D, =Fix <((1) é))
porie (1)
b= (1)),

and we check easily that these arcs are geodesics joining the following points in
the boundary

D; runs from Vi to — Vi

D5 runs from i to — 1

1mi

Ds runs frome =¢6 =¢

fuxl
3

to p.
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The corresponding tori are

T =Stab(—1,1) = {(g f)}

Ty =Stab(—Vi,Vi) = {(g f‘)}

Ty =Stab(p, p) = {(5‘55 g) } .

The torus T4 splits over Q(4), the other two tori split over an quadratic extension
of Q(7).

Now it is not difficult anymore to describe the finite stabilizers and the
corresponding fixed point sets. If « € Hs for which the stabilizer is bigger than
Zy, then we can conjugate x into Fy. It is very easy to see that x cannot lie
in the interior of Fj because then we would get an identification of two points
nearby z and hence still in Fy under T.

If 2 is on one of the lines Dy, D5, D3 or on one of the arcs G, G2, G3 but not
on the intersection of two of them, then the stabilizer I'; is equal to Zf times
the cyclic group we attached to the line or the arc earlier. Finally we are left
with the three special points

zr12 =D1NDyNGL = {(07 1)}

T13 =D10D30G3:{<12ﬂ,\g§>}

1 V3
T3 _DQOngGg_{<2,\2[>}

In this case it is clear that the stabilizers are given by

O

1.2.6 Compactification of I'\ X

Our two special low dimensional examples show clearly that the quotient spaces
I'\ X are not compact in general. There exist various constructions to compactify
them.

If, for instance, I' C Sly(Z) is a subgroup of finite index, then the quotient
I'H is a Riemann surface. It can be embedded into a compact Riemann sur-
face by adding a finite number of points. this is a special case of a more general
theorem of Satake and Baily-Borel: If the symmetric space X is actually her-
mitian symmetric (this means it has a complex structure) then we have the
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structure of a quasi-projective variety on I'\X. This is the so-called Baily-Borel
compactification. It exists only under special circumstances.

I will discuss the process of compactification in some more detail for our
special low dimensional examples.

Compactification of Sly(Z)\H by adding points

Let I C Sl2(Z) be any subgroup of finite index. The group I" acts on the rational
projective line P1(Q). We add it to the upper half plane and form

H=HUP'(Q),

and we extend the action of T' to this space. Since the full group Sly(Z) acts

transitively on P*(Q) we find that I has only finitely many orbits on P*(Q).
Now we introduce a topology on H. We defined a system of neighbourhoods

of points £ =r € P}(Q). We define the Farey circles S (c, %) which touch the

real axis in the point 7 = p/q (p,q) = 1 and have the radius ﬁ. For c =1 we
get the picture

am

T ™ T
0 1

~1 _

N=
= A

Let us denote by D (c, %) = U o<er<eS (c’, g) the Farey disks. For ¢ — 0 these

Farey disks D (c, g) define a system of neighbourhoods of the point r = p/q.
The Farey disks at co € P}(Q) are given by the regions

D(T,0) ={2|3(z) > T}.
It is easy to check that an element v € Sly(Z) which sends oo € P1(Q) into the
point r = % sends D(T, 00) to D (%7 %). These Farey disks D(c,r) do not meet

provided we take ¢ < 1. The considerations in 1.6.1 imply that the complement
of the union of Farey disks is relatively compact modulo I', and since I' has
finitely many orbits on P(Q), we see easily that

Yr = I\B

is compact (which means of course also Hausdorff).

It is essential that the set of Farey circles D(c,r) and D (%, oo) is invariant
under the action of I on the one hand and decomposes into several connected
components (which are labeled by the point r € P(Q)) on the other hand.

Hence
\ U D(c,r) = U - \D(e,7;)
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where 7; is a set of representatives for the action of I' on P!(Q) and where T',.,
is the stabilizer of r; in T".

It is now clear that T, \ D(c, r;) is holomorphically equivalent to a punctured
disc and hence the above compactification is obtained by filling the point into
this punctured disc and this makes it clear that Yr is a Riemann surface.

BSC

1.2.7 The Borel-Serre compactification of Sl,(Z)\H

There is another construction of a compactification. We look at the disks D(c, r)
and divide them by the action of I',.. For any point y € S(¢/,r) — {r} there
exists a unique geodesic joining r and y, passing orthogonally through S(¢/,7)
and hitting the projective line in another point y, ( = —1/4 in the picture
below)

I T I

0 1

N= o

If r = oo, then this system of geodesics is given by the vertical lines {y - i+ z |
x € R}.. This allows us to write the set

D(c,r) —{r} = Xeor X [c,0)

where X = P1(R)—{r}. The stabilizer I, acts D(c,r) and on the right hand
side of the identification it acts on the first factor, the quotient I''\ X, is a
circle. Hence we can compactify the quotient

I'A\D(e,r) —{r} = I'\ X X [c,0] (1.61)

This gives us a second way to compactify I'\H, we apply this process to a finite
set of representatives of P*(Q) mod I
There is a slightly different way of looking at this. We may form the union

HU| JXoor =H

and topologize it in such a way that
D(c,r) = Xoor X [¢,0) C Xoor X [c, 0] (1.62)

is a local homeomorphism. Then we see that the compactification above is just
the quotient I'\H and the boundary is simply
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OM\H) =T\ | Xeor (1.63)
reP(Q

This compactification is called the Borel-Serre compactification. Its relation
to the Baily-Borel is such that the latter is obtained by the former by collapsing
the circles at infinity to a point.

It is quite clear that a similar construction applies to the action of a group
I’ C Slx(Z][i]) on the three-dimensional hyperbolic space. The Farey circles will
be substituted by spheres S(c, &) which touch the complex plane {(z,0) | z €
C} C Hj in the point (a,0),«a € P1(Q(4)) and for o = oo the Farey sphere is
the horizontal plane S(oo, (o) = {(z,{o) | z € C). An element vy € T which maps
(0,00) to o maps S(00,¢p) to S(c, ), where ¢ = 1/(p. For a given o we may
identify the different spheres if we vary ¢ and for any point a € P}(Q(i)) we
define X o = P1(C) \ {a}. Again we can identify

D(c,a)\ {a} = Xoo.o X (0,¢] C D(c, ) \ {a} = (T\H) = X.o X [0,¢]

The stabiliser I',, acts on D(c, ) \ {a} and again this yields an action on the
first factor. If we choose av = oo then

I = {(g Ca1> |¢ root of unity,a € as} (1.64)

where o, is a free rank 2 module in Z[i]. If ¢ does not assume the value 4 then
I'oo\ X000 is & two-dimensional torus, a product of two circles. If { assumes
the value 4 then I'oo\ X oo 00 is & two dimensional sphere. If T' = Sly(Z[i]) then
0o = Z[i]. If course we get the same result for an arbitrary o.

Then we get an action of the group Ton Hz = Hs U |J D(c,a)\ {a}

a€ePl(K)

and the quotient is compact, the set of orbits of T' on P*(Q(4)) is finite, these
orbits are called the cusps.

1.2.8 The Borel-Serre compactification, reduction theory
of arithmetic groups

This section could be skipped in a first reading. For the particular groups Sly/Q
or Sly(Z[v/—d) this compactification has been discussed in detail in the previous
sections. A reader who is interested in the specific applications to number theory
which will be discussed in the following chapters 2-5 only needs the results from
section 1.2.7.

The Borel-Serre compactification works in complete generality for any semi-
simple or reductive group G/Q. To explain it, we need the notion of a parabolic
subgroup of G/Q.

A subgroup P/Q — G/Q is parabolic if the quotient variety in the sense of
algebraic geometry is a projective variety. We mentioned already earlier that
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for the group Gly/Q we have an action of Gly on the projective line P! and
the stabilizers B, of the points x € P!(Q) are the so-called Borel subgroups of
Glz/Q. They are maximal solvable subgroups and

Gly/B, = P,

hence they are also parabolic.

More generally we get parabolic subgroups of Gl,,/Q, if we choose a flag on
the vector space V =Q" = Qe; & - -- ® Qe,. This is an increasing sequence of
subspaces

F:0)={0)}=VycVicWcC...CV,=V.

The stabilizer P of such a flag is always a parabolic subgroup; the quotient
space
G /P = Variety of all flags of the given type,

where the type of the flag is the sequence of the dimensions n; = dim V.
These flag varieties (the Grassmannians ) are smooth projective schemes
over Spec(Z) and this implies that any flag F is induced by a flag

./—"Z:(O):{(O)}:LOCL:[CLQC...CLk:L:Zn (165)

where L; = V; N L, and of course L; ® Q = V;. This is the elementary fact which
will be used later.

If our group G/Q is the orthogonal group of a quadratic form

n
flz, ... zn) = Zaim?
i=1

with a; € Q*. Then we have to replace the flags by sequences of subspaces
F:0CW,CW,... CWi cwicv,

where the W; are isotropic spaces for the form f, i.e. f | W; =0, and where the
Wit are the orthogonal complements of the subspaces. Again the stabilizers of
these flags are the parabolic subgroups defined over Q.

Especially, if the form f is anisotropic over Q, i.e. there is no non-zero
vector z € K™ with f(z) = 0, then the group G/Q does not have any parabolic
subgroup over Q. This equivalent to the fact that G(Q) does not have unipotent
elements.

These parabolic subgroups always have a unipotent radical Up which is
always the subgroup which acts trivially on the successive quotients of the flag.
The unipotent radical is a normal subgroup, the quotient P/Up = M is a
reductive group again, it is called the Levi-quotient of P.

We go back to the group Gl,,/Q. It contains the standard maximal torus
whose R valued points are

| tie R*} (1.66)

<~
no
o o O

o
o
o -
s



1.2.  ARITHMETIC GROUPS 51

It is a subgroup of the Borel subgroup (maximal solvable subgroup or minimal
parabolic subgroup) whose R-valued points are

t1 ur2 ... Ul,n
0 to e U2.n
Bo(R) ={b= . | t; € R} (1.67)
0 0 © Un—1,n
0 0 0 ln

and its unipotent radical Uy consists of those b € By where all the t; = 1. This
unipotent radical contains the one dimensional root subgroups

10 ... 0 0
01 0 0

U;={lo o z 0|}zeR (1.68)
00 0 .0
00 0 0 1

where ¢ < j, these one dimensional subgroups are isomorphic to the one di-
mensional additive group G,. They are normalized by the torus, for an element
teT(R) and z; ; € U; j(R) = R we have

txi,jtil = ti/tjl‘iﬂ'. (169)

Fori=1,...,n,j=1,...,n,9%# j (resp. i < J ) the characters «; ;(t) =
t;/t; are called the roots (resp. positive roots) of Ty in Gl,. We denote these
systems of roots by AG! (resp)A$!". The one dimensional subgroups U; j,i # j
are called the root subgroups.

Inside the set of positive roots we have the set of simple roots

7T=7TG1" = {051,27---aai,i+17~-~7an—1,n} (170)

If we pass to the semi-simple subgroup Sl,,/Q then the torus and the Borel-

subgroup has to be replaced by Tél), B((Jl), where we have [[, t; = 1. The system

of roots does not change, we have 7 = 7Gn = 750
We change the notation slightly, for i = 1,...,n — 1 we define o; := ;41
then for i < j we get aj j = a; + ... -1, and 7 = {on, a0, . .., p—1}
The Borel subgroup By is the stabilizer of the ”complete” flag
{0} CQe1 CQey Qe C -+ CQey ®Qea @ -+ @ Qey, (1.71)

the parabolic subgroups Py D By are the stabilizers of ”partial” flags

{0} CQe1®---®Qep, CQe1P---BQep, Qepy+1 - BQepyyn, C--- C Q™
(1.72)

The parabolic subgroup P, also acts on the direct sum of the successive quotients

(Qer &+ @ Qen,) P(Qen, 118+ & Qe 4n,) P - (1.73)

and this yields a homomorphism
rp, : Po = My =Gl,, xGl,, x ... (1.74)
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hence My is the Levi quotient of Py. By definition the unipotent radical Up, of

P, is the kernel of 9. The semi-simple component will be Mél) = Sl, XSy, ...
A parabolic subgroups Py D By defines a subset

APU = {Ozi)j € AGI" | Ui)j C Po}
and the set decomposes int two sets
AMO = {Oéi,j | Ui,j and Uj,i C APO}; AUPO = APO \AMO. (175)

Gl

Intersecting this decomposition with the set 7' yields a disjoint decomposition

Gl = Moy 7U (1.76)

U Gl,

where 7 = {an,, @ny4ng, - - -, b+ In turn any such decomposition of 7=~ yields
a well defined parabolic Py D By.

We define the index of a parabolic subgroup this is the number
d(P) = #7Y (1.77)

The proper maximal parabolic subgroups are the ones with d(P) = 1.

If we choose another maximal split torus 77 and a Borel subgroup By D T}
then this amounts to the choice of a second ordered basis vy, v, ..., v, the v;
are given up to a non zero scalar factor. We can find a g € Gl,,(Q) which maps
€1,€a,...,e, to v1,va,...,v,, and hence we can conjugate the pair (By,Tp) to
(B1,T1) and hence the parabolic subgroups containing By into the parabolic
subgroups containing B;. The conjugating element g also identifies

iTy,Bo,11,B, * X (To) — X*(Th)

and this identification does not depend on the choice of the conjugating element
g. This allows us to identify the two set of positive simple roots 7= c X*(Tp)
and 7 C X*(T1). Eventually we can speak of the set 7 of simple roots of Gl,,.
Hence we have the fundamental fact

The G1,,(Q) conjugacy classes of parabolic subgroups P/Q are in one to one
correspondence with the subsets ™ C . Then number of elements in m~ 1M =
7V is called the rank of P, the set wV is called the type of P.

We will denote the unipotent radical of P by Up and the reductive quotient
of P by Up will be denoted by Mp = P/Up. Later we will also use a slightly dif-
ferent notation: If we discuss a given P then we put U(= Up) for the unipotent

radical and M = P/U for the reductive quotient. Then we also put 7’ = 7U.

We formulated this result for Gl,,/Q but we can replace Q by any field k
and Gl,, by any reductive group G/k. We have to define the system of relative
simple positive roots 7¢ for any G/k (See [B-T]). We also refer to section 1.1.5.

The group G/k itself is also a parabolic subgroup it corresponds to 7’ = .
We decide that we do not like it and hence we consider only proper parabolic
subgroups P # G, i.e. ©’ # (). We can define the Grassmann variety Grl™1 of
parabolic subgroups of type «’ This is a smooth projective variety and Grl™] Q)
is the set of parabolic subgroups of type 7’.
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There is always a unique minimal conjugacy class it corresponds to «’ = ().
(In our examples this minimal class is given by the maximal flags, i.e. those
flags where the dimension of the subspaces increases by one at each step (until
we reach a maximal isotropic space in the case of an orthogonal group)). The
(proper) maximal parabolic subgroups are those for which 7/ = 7\ {«;}, i.e.
7P = {a;}

For any parabolic subgroup P/Q C G/Q we consider the character module
X*(P) := Hom(P/Q,G,,). Since we do not have any non trivial homomor-
phisms from the unipotent Up to G,,, we have Hom(P/Q,G,,) = Hom(Mp,G,,).

The reductive quotient Mp = M 1(31) - Cp where Cp is the central torus und
M ](31) the semi-simple part ( the derived group). The quotient Mp /M}_,l) =Chp
is a torus and Cp — C% is an isogeny. Hence we have

Hom(P/Q,G,,) ® Q = Hom(Mp,G,,) ® Q = Hom(Cp,G,,) ® Q = Hom(Cp,G,,) ® Q
(1.78)

For a maximal parabolic subgroup P of type 7’ = {«;} we consider the mod-
ule Hom(P,G,,)®Q C X*(T)®Q. Of course it always contains the determinant
and

Hom(P,G,,) ® Q = Qy; ® Qdet
where ~; is

v=1

7i(t) = ([ tv) det(t) /™. (1.79)

v=1

These ~; are called the dominant fundamental weights.

If our maximal parabolic subgroup is P/Q is defined as the stabilizer of a
flag 0 ¢ W C V = Q7, then the unipotent radical is U = Hom(V/W,W).
An element y € P(Q) induces linear maps yw,yv,w and hence Ad(y) on U =
Hom(V/W,W). We get a character vp(y) = det(Ad(y)) € Hom(P,G,,) which
is called the sum of the positive roots. An easy computation shows that

ny; = yp (1.80)

We add points at infinity to our symmetric space: We consider the disjoint
union Uy zrg GrI™1(Q) and form the space

X=xuJ a.
' #0
This is the analogue of or H U P!(Q) in our first example, it is now more
complicated because we have several Grassmannians, and we also have maps

Ty GrM(Q) = Grl™(Q) if 7y € ;.

Our first aim is to put a topology on this space such that I'\X becomes a
compact Hausdorff space.

In our first example we interpreted the Farey circle D (c, g) with0<e<1
as an open subset of points in H, which are close to the point %, but far away
from any other point in P*(Q).
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The point of reduction theory is that for any parabolic P € Grl™l (Q) (here
we also allow P = G) we will define open sets

X (cpryr(eq) € X (1.81)

which depend on certain parameters ¢ ,,7(c)» The points in XF(c,,7(c,/))
should be viewed as the points, which are ”very close” to the parabolic subgroup
P (controlled by ¢,/) but "keep a certain distance” (controlled by r(c,/)) to the
parabolic subgroups Q p P. They are the analogues of the Farey circles. We
will see:

a)This system of open sets is invariant under the action Gl,(Z)

b) For P = G the set X% (), ) is relatively compact modulo the action of
Gl,(Z).

¢) Any subgroup I' C Gl,,(Z) has only finitely many orbits on any Grl™] (Q)

d) For a suitable choice of the parameters ¢/, and r(c,/) we have :

X =JX (o r(ex) =X0,m0)U | XP(cpr(cy))
P

P:Pproper

and if P and P; are conjugate and P # P; then X P (c_,,7(c,.))N Xt (c..,7(c,/)) =
0.

Let us assume that we have constructed such a system of open sets, then c)
and d) impliy that for a given type 7’ we have

F\ U XP(QW’7T(QTr’)) = Urpi\XPi<gw”T(g7r’))

P:type(n’)=m

where {..., P;,...} = X(m,T) is a set of representatives of Grl™(Q) modulo the
action of I and I'p, = T'N P;(Q).

This tells us that we have a covering

NX =T\X%W,r)u | J |J TrP\X(crr(cn)) (1.82)

w'#) PeX(n’,I")

The philosophy of reduction theory is that T\X% (0, 7o) is relatively compact
and that we have an explicit description of the sets Tp\XT (c,,,r(c./)) as fiber
bundles with nil manifolds as fiber over the locally symmetric spaces T pr\X™M.

We give the definition of the sets X (c,,,7(c,/)). We stick to the case that
G =Gl,/Qand T C Ty = Gl,(Z) is a (congruence) subgroup of finite index.
We defined the positive definite bilinear form (See 1.48)

- 1
Beg :*TB@E:QRXQR*}R
n

x
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and we have the identification gr — TE’ (R)

on the tangent space T o ®) at the identity e. This extends to a left invariant

Riemannian metric on G(R), we denote it by deg,s?. Hence we get a volume
form d2: on any closed subgroup H(R) ¢ G(R).

VOlH

, and hence we get a euclidian metric

For any point € X and any parabolic subgroup P/Q with unipotent radical
U/Q) we define

pp(P,x) = voly®* Ty N U(R))\U(R)) (1.83)

_ For the Arakelow-Chevalley scheme (Gl,/Z,00) See(1.1.8) we have that
Be, (F; ;) = 1. We have by construction

Ui ;(Z)\U; ;(R) =R/Z (1.84)
and under this identification E; ; maps to a%. Hence we get

Aoy (Ui (Z)\Ui;(R)) =1

volUiTj
and from this we get immediately

Proposition 1.2.1. For any parabolic subgroup Py containing the torus Ty we
have

pp(FPo,00) = 1.

Let (L, <, >;) be an Arakelow vector bundle and (Gl,,, ©,) the correspond-
ing Arakelow group scheme (of type Gl,, ) let

]:Z:(O):{(O)}:LOCLlCLQC...CLk:L:Zn

be a flag and P/Z the corresponding parabolic subgroup. Then we have the
homomorphism

i=k
rp : P/ Spec(Z) — M/Z = [ [ GI(L;/Li-1) (1.85)
i=1
with kernel Up/Z. The metric <, >, on L ® R yields an orthogonal decompo-
sition
i=k
LeoR=@)Li/Li-1®R
i=1
and hence an Arakelow bundle structure (L;/L;_1,(0;);) for all i, and therefore
an Arakelow group scheme structure on M/Z.
Hence we get

Proposition 1.2.2. If (Gl,,©) is an Arakelow group scheme then O induces
an Arakelow group scheme structure ©™ on any reductive quotient M = P/U.

Definition : A pair (Gl,/Z,0) is called stable (resp. semi stable) if for
any proper parabolic subgroup P/Q C Gl,,/Q we have

pp(P,0) > 1 resp.pp(P,0) > 1 (1.86)
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In our example in (1.2.6) the stable points are those outside the union of the
closed Farey circles.

To get a better understanding of these numbers we have to do some com-
putations with roots and weights. Let us start from an Arakelow vector bundle
(L =74 <, >) and let us assume that L is equipped with a complete flag

Fo={)}=LoCLi C-CLg1CLqg (1.87)

which defines a Borel subgroup B/Z. The quotients (L;/L;—1,< , >;) are
Arakelow line bundles over Z or in a less sophisticated language they are free
modules of rank one and the generating vector €; has a length /< €;,€; >;. This
length is of course also the volume of (L;/L;—1 ® R)/(L;/L;—1).
The unipotent radical U/Z C B/Z has a filtration {(0)} C V1 C ..., Vy(n—1)/2-1 C

Va(n—1)/2 = U by normal subgroups, the successive quotients are isomorphic to

G, and the torus T = B/U acts by a positive root oy ; and this is a one to

one correspondence between the subquotients and the positive roots. Then it is
clear: If v corresponds to (i,7) then

(VV/VV+1, @u) = (Li/Li_l, <, >i) ® (Lj/Lj_l, <, >j)71. (188)
Moreover the quotients (V,,/V,11,0,) depend only on the conformal class

of <, > and hence only on the resulting Cartan involution ©.

The unipotent subgroup U/Z contains the one parameter subgroup U; ;/Z
and this one parameter subgroup maps isomorphically to (V,,/V,1). Hence our
construction defines the Arakelow line bundle (U; ;, ©; ;).

If we now define ng, ;(B,z) = vole, ;(U; ;(R)/U; ;(Z)) then it is clear that
pp(B,x) = Hnai,].(B,x) (1.89)
i<j

If P O B then its unipotent radical Up C U and we defined the set AU? as
the set of positive roots for which U; ; C Up. Then we have

pp(Biz)= [ 7., (B.2) (1.90)
(i,j)€EAYP

Here it is important to notice the right hand side does not depend on the choice
of BC P.

We follow a convention and put 2pp = Z(mv)eAUp o ; so that pp is the half
sum of positive roots in in the unipotent radical. Formula (1.80) tells us that

for any maximal parabolic subgroup F;,

2pp,, = Z QG = M- (1.91)

1<ig,j>t0+1

For any v =Y ;. i41 ® z; € X*(T') ® C we define the homomorphism

s TR) = © : ol < ¢ = [ lawisa ()] (1.92)
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Since the numbers nq, (B, ) are positive real numbers we define for any

ny(B,x) = 1:[ Ne, ; (B, ). (1.93)

Here we see that the second argument is a Borel-subgroup B. But if the above
character v : B(R) — RZ, extends to a character v : P(R) — RZ then we can
define

ny (P, z) == n (B, z)

and this number only depends on P and not on the Borel subgroup B C P.
The characters in v € X*(T) for which || extend to P(R)are exactly the lin-
ear combinations (See (1.95) below) v = > _ v ;%;. The characters yp =
Zai cnv Tivi Where the r; > 0 are rational numbers. Let P; be the maximal
parabolic subgroup of type 7 \ {a;} containing P then the above formula im-
plies that

pe(Px)= [[ nu(Pu2) = ] pe(Poa)™ (1.94)

a;ent a; eV

This tells us

The Arakelow scheme (Gl, /Z,0) is stable if for all maximal parabolic sub-
groups pp, (P;, ©) = n, (P;,0)" > 1.

We need a few more formulas relating roots and weights. For any parabolic
subgroup we have the division of the set of simple roots into two parts

r=aMunlr,
This induces a splitting of the character module
XM eQ= P Qe P Qv (1.95)
a;emM a;enUP

where ~; is the dominant fundamental weight attached to «; (See (1.79)).
If now a; € wVUP then we can project «; to the second component, this
projection

of =ai+ Y ey (1.96)

a,enM

Here an elementary - but not completely trivial - computation shows that
cip >0 (1.97)

Since o € ® @, vr Qi these characters extend to P(R) and hence n,,» (P, z)
is defined.

We state the two fundamental theorems of reduction theory
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Theorem 1.2.1. For any Arakelow group scheme (Gl,,,0,) we can find a Borel
subgroup B C Gl,, for which

2
Ng,; (B,03) =nq,(B,x) < —= foralli=1,...,n—1
(B.02) =0 (B.x) < =

Theorem 1.2.2. For any Arakelow group scheme (Gl,,0) we can find a a
unique parabolic subgroup P such that for all a; € TVP we have

nor(P,0) < 1 and the reductive quotient (M,0) is semi stable.

The first theorem is due to Minkowski, the second theorem is proved in [Stu],
[Gray].

This parabolic subgroup is called the canonical destabilizing group. We
denote it by P(z), if (G,z) is semi stable then P(z) = G. This gives us a
dissection of X into the subsets

X = U XW ={ze X |P(x)=P} (1.98)
P: parabolic subgroups of G/Q

Clearly v X [Pl = X[’VP'WI], if we divide by the group I' the we get

nx= |[J r,\xt" (1.99)
PePar(T")

where Par (T') is a set of representatives of I' conjugacy classes of parabolic
subgroups of Gl,,/Q. This is a decomposition of I'\X into a disjoint union of
subsets. The subset I'\X [Gln] i compact, it is the set of semi stable pairs
(z,Gl,), the subsets I'p\XF] for P # G are in a certain sense "open in some
directions” and ”closed in some other direction”. Therefore this decomposition
is not so useful for the study of cohomology groups.

To remedy this we introduce larger subsets. For a real number r,0 < r < 1
we define | Gstable

XCn(r) ={x € X| n,, (P(z),x) >r, forall a € 7VP®). (1.100)

It contains the set of semi-stable (Gl,,z) If we choose r < 1 but close to one
then some of the elements in X (1) may be unstable but only a "little bit ”.

Together with the first theorem this has a consequence

Proposition 1.2.3. The quotient XCn (r) = T\ XSG (r) is relatively compact
open subset of T\ X. It contains the set of semi-stable (Gl,,x).

Now we start from a parabolic subgroup P and let M = P/Up be its Levi-
quotient. Our considerations above also apply to M/Q. The group P(R) acts
transitively on X and we put (See (1.85))

XM = Up(R)\X and let gp; : X — XM be the projection .

Here XM = M(R)/KY where KX is the image of P(R) N K, in M(R). Let
Z C M be the center of M, it is a (split) torus and as usual M) the semi
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simple component. Then we define XM" = MO (R)/KM and if T'j; is the

image of P(R)NT in M(R) then
T \XM =Ty \ MY x ZO(R) (1.101)

where of course Z(9)(R) is the connected component of the identity of Z(R),
We change the notation and put

ZOM) = Ap = {(-. ., aas- - Daer—nvpm|aa € RZ} (1.102)

For a simple roots o € 7™, and a Borel subgroup B C M/Q and a point
2y = gy (x) we can define the numbers n, (B, zr) essentially in the same way
as before and clearly

na(B,xy) = na(B, )
if B is the inverse image of B.
We have to be a little bit careful with the numbers pQ(Q, M) because the

for the inverse image @ the unipotent radical Uy, is larger than Ug. Therefore

we have to look at the dominant fundamental weights v € D, crm Qai, and

M

formulate the stability condition for 2 in terms of these v :

The point 2™ is stable, if for all a; € T the inequality Ty (P, ™M) > 1
holds. Again we denote the destabilizing group by P(x™).

Hence we see that for a number rj; < 1 we can define regions

XM(rp) = {zM|n,Yé»z (Py,,2™) > r) whenever P,, D P(2™)} (1.103)

We choose numbers 0 < ¢p < 1, furthermore we choose a number r(cp) < 1
and define

*XP(cp,r(cp)) = {x]| nor(P,z) < cp for all a« € 7Y% 20 € XM (r(cp))}
(1.104)

Proposition 1.2.4. For a given r(cp) < 1 we can find numbers cp such that
for any x € *X¥ (cp,r(cp)) the destabilising parabolic subgroup P(x) C P. The
same is true in the other direction: For a given 0 < cp < 1 we can find r < 1
such that for x € *X¥ (cp,r)) the destabilising parabolic subgroup P(x) C P.

To see this we have to look at the destabilising subgroup Q C (M, zy/). Its
inverse image (Q C P is a parabolic subgroup of Gl,. The reductive quotient
(M, zy;) of Q is semi- stable. We want to show that @ is the destabilising
parabolic of (Gl,, z). We have to show that

nee(Q,z) <1Vacenle =gY7yurle,

For a € 7Ya this is true by definition. For o € 7Y% we have

a =a+ Z a8 and a9 = a + Z ap, 5B,

pgerM BrenM
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where aq,g > 0. The roots f € 7Y@ can be expressed in terms of the BQ =59

BU=8+ > ajufb (1.105)
Bleﬂ-M
and hence
a®=a"— 3" a.pB%+ > capB. (1.106)
5671—0(2 B'enM

The last sum is zero because a®,a’’, 39 are orthogonal to the module B L.
We get the relation

n0e(Q,2) =nar(Pa,) - [[ npe(@a) . (1.107)

ﬁEwUQ
Now it comes down to show that

Nar (P, 1) < co, ¥ a € 7Y% and nge(Q,x) >r, Vp € Fde)
(1.108)
= nge(P,r)<1;Vaecnrlr

This is certainly true if either the ¢, are small enough or if r is sufficiently close
to one. In this case we say that (P,c¢,r) is well chosen
Therefore we define

XFP(cp,r(cp)) ={x € *XP(CP,T(CP))|P(x) C P} (1.109)
we have XP(cp,r(cp)) = * X (cp,r(cp)), if (cp,r(cp)) is well chosen.
We claim that we can find a family of parameters

(. coy (CP, T'(CP))y cee )P: parabolic over Q

where (cp,r(cp)) only depend on the type of P, such that we get a covering
COV

X = Jx"(cp,r(cp))) (1.110)
P
and hence
N\X =D\ JX"(cpr(cp)) = |J Tr\X"(cp,r(cp)) (1.111)
P PePar(T)

We change the notation slightly, since these numbers only depend on the type
7/ = M = t(P) we replace cp by ¢, and r(cp) by r(cy/). We even go one step
further and denote a well chosen pair (¢q/,7(cy/)) simply by (c,..).

To prove the claim we choose a number 0 < ¢y < 1. In this case rg = r(cp)
can be any number. Then we choose a number 0 < 1 < ¢g. For any m; = {«;}
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we choose a ¢, < 1 such that (¢g,,r1) is well chosen. We continue and chose
0 < 7y < ¢, for all ¢ and for any two element subset J C 7m we choose numbers
0 < ¢y < 1 such that (cy,r2) is well chosen. This goes until we reach top
parabolic.

Now we get a covering of X by the open sets X ¥ (c.,7(n)). To see this we
pick a point x € X, we have to show that it lies in at least one of the sets
XP(ep,r(cp)). If it is not in X! (r,,_;) then we find a maximal parabolic P;
such that ng, (P, ) < cp\(a,}- We project = to the point oMi e XM If this
point is in X*(r,, _5) then z € X (€m\{a;}>Tn—2) and we are done. If not we
apply our argument above to ¢ and 7' = 7\ {a;}. We continue the same
reasoning and at latest it stops for 7’ = ().

It is clear that we can choose ¢, r(c,/)T a tiny bit larger and these numbers
are still well chosen. Then the closure I'\ Jp X (car,7(crr)) C T\Up X P (cF, r(ct)).

s

We get a second covering by slightly larger open sets. This can be used to pro-
duce a partition of unity

Proposition 1.2.5. We can find a family of Co, functions hp > 0 which satis-
fies

a) hp restricted to Tp\X T (cpr,7(cp) is identically equal to one
b) S php =1 and hp is zero outside of I p\XT (ct,,r(cl))

!

Proof. Well known O

We have a very explicit description of these sets Tp\ X% (cr/,7(crr)). We
consider the evaluation map

n* . Ip\XT(crr,r(car)) — [Tacx(0,ca)

(1.112)
x (cooyngr (Px), .. aen
Of course we also have the homomorphism
la™ [ : P(R) = {...,|a"],.. . }aen (1.113)

and the multiplication by an element y € P(R) induces an isomorphisms of
the fibers

(0™ )" (er) =5 (n7) " New) if [0 |(y) e = o

where the multiplication is taken componentwise. This identification depends
on the choice of y.

Delete up to signum

To get a canonical identification we use the geodesic action which is intro-

duced in the paper by Borel and Serre. We define an action of A = (I, ¢~ RZ0)
on X. This action depends on P and we denote it by
(a,x) —aex (1.114)

A point z € X defines a Cartan involution ©, and then the parabolic sub-
group PO+ of G x R is opposite to P x R and P x RN P®* = M, is a Levi
factor, the projection P — M induces an isomorphism
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¢zt M xR "5 M,. (1.115)
The character o™ induces an isomorphism
Sp i A" SI(IR)(O)

where S, is the maximal Hence we S, (R)(?) is the connected component of the
identity of the center M, (R) N Sl,(R) and we put

aex = s;(a)x

We have to verify that this is indeed an action. This is clear because for the
Cartan-involution ©,,, we obviously have

PO: — pOaex

It is also clear that this action commutes with the action of P(R) on X
because
ysz(a)r = sy (a)yx for all y € P(R),z € X.

It follows from the construction that the semigroup A_ = {...,a,,... }- where
0 < a, <1 - acts via the geodesic action on X (c,,7(c,,)) and that fora € A_
we get an isomorphism

’

(™) (er) = (07 (ae).
This yields a decomposition

XP(ew,r(ee)) = (07 ") Heo) x JT (0, el

aecmn’

where ¢g is an arbitrary point in the product.
Since we know that |a™ | is trivial on I'p and since the action of P commutes
with the geodesic action we conclude

PPAXP (e, r(ee)) = Do\ ) (o) x [ (0] (1.116)

aemn’

signum
The roots o € 7" factor over the reductive quotient M = P/Up and hence
we get a surjective homomorphism

0™ [ M(R) = Aqr = [] RZ,.
aen’

Let M;(R) be the kernel of this homomorphism. This homomorphism also
yields an isomorphism between Z(R)(®) and A, and therefore we get a canonical
identification

We put KM = P(R) N K4 we identify it with its image in M;(R) and we get
again our symmetric space attached to M
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XM = M(R)/Kq

We have the projection map ppas : X — XM where XM is the space of Cartan
involutions on the reductive quotient M. Hence we get a map

Ppar =ppa X n™0r : X — XM x A (1.118)

The group Up(R) acts simply transitively on the fibers of this projection,

gpar i TP\XT (car,7(cr)) = Ta\X M (r(cp)) x ] (0, ca] (1.119)

aemn’

is a fiber bundle with fiber isomorphic T'y/\U (R). If we pick a point 2 € T\ XM (r(

[lac(0,cq] then the identification of 91_3,11\/1() with Ty \U(R) depends on the
choice of a point & € X¥(c,s,7(c,/)) which maps to .

This can now be compactified partially in the A direction we define the
closure

TP\X(car),r(cp) == TP\(n™ ") (co) x [] 10,ex], (1.120)
and
AL p\X P (crr, Qr) = Tp\X P (crr, 7(cr)) \TP\XT (Cr, Q) (1.121)

this is equal to

O P\XP (exr,7(cp) = Tp\(0™ ") eo) x O[] [0,ex)

verg\m

where of course ([ ],,/[0,¢x]) C [[aex[0,cx] is the subset where at least one
of the coordinates x, is equal to zero.

We form the disjoint union of of these boundaries over the m and set of
representatives of I' conjugacy classes, this is a compact space. Now there is
still a minor technical point. If we have two parabolic subgroups @ C P then
the intersection X (cp, r(c,) N X9(cq,7(cq)) # 0. If we now have points

z € T P\XP (cr,7(Crr),y € OTQ\X P (crr,7(cpr)

then we identify these two points if we have a sequence of points {x,, } neny which
lies in the intersection X (¢, 7(c,/))NX?(cqr,7(cps)) and which converges to x
in Tp\XF(cr,7(c, ) and to y in I‘Q\XQ (crryr(cpr). A careful inspection shows
that this provides an equivalence relation ~, and we define

oM\X)= | J Orp\XP(cr,r(c)/ ~ (1.122)

! ,PePar(T)

and the Borel-Serre compactification will be the manifold with corners

X =1\(xXU |J XPle.rie). (1.123)

P:Pproper

cp))x
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We define a ”tubular” neighbourhood of the boundary we put

NO\X) ) =T\ |J XP(ew r(ea) (1.124)

P:Pproper

where ¢ stands for the collection of parameters ¢/, 7(c;). Then we define the
punctured tubular neighbourhood as

NOX)e) =T\ | XPler(e,) =T\XNNTX)  (1125)

P:Pproper

We also define the Borel-Serre stratification of the Borel-Serre boundary

O(I\X) = Jop(I\X) (1.126)

where 9p(I'\X)(r(cy)) is the the subset of Tp\ X (c,,,7(c,/) where a, =0
for all o € #’ and where we take the union over all 1 r(c,/) > 0.

The projection ¢p s extends to a fibration on the closure and restriction to
the boundary yields the fibration with fibre I'yy\U (R).

qpa(0) : 9p(T\X) — Ty XM x {(0)} (1.127)

Eventually we want to use the above covering as a tool to understand co-
homology (See section ??) ) For this it is also necessary to understand the
intersections

XP ey, (e, ) NN X (eq,r(c,)) (1.128)

=71 —Tk

Our proposition 1.2.4 implies that for any point « in the intersection the desta-
bilizing parabolic subgroup P(z) C Py N---N Py. Hence we see that the above
intersection can only be non empty if QQ = P, N---N P is a parabolic subgroup.
Then Ve = Uk_, 7UPv . Let M be the reductive quotient of Q.

Now we look at the product [, v RZy, here it seems to be helpful to

identify it - using the logarithm - with R%e:
log: [ RZ, >R (1.129)
aer’@
We consider the map

NQ . XPl(cm,r(gm)) N---NXP(cp  r(c, ) — R

=Ty

(1.130)
N9 :z (..., —10g(nee (@, 7)), ..) o a

Consider a point x € X' (¢x,,7(c,,)), for a € 7V we have

—log(ngr. (P, x)) = —log(cx, )
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We can express — log(n,r. (P,, z)) as a linear combination of the — log(n,e (@, x),
with @ € 7Y@, This means that the root o € 7P defines a half space H, («)
in R and N9(x) C H,f (a) in R,

Now we assume that z is in the intersection (1.128). For the roots a €
7\ 7wYPv we have the condition (1.103). For the roots a € 7@ \ 7U#+ this yields

—log(nymv (P, 7)) < —log(r(m,)).

Therefore we see that the image of N? is contained in the intersection of a
finite number of half spaces, which are obtained from a finite family of hyper-
planes. These hyperplanes depend on the parameters c,, , r(m, ), let us call this
intersection C(c,r), it is a convex -possibly empty- subset of R<.
We investigate the restriction
N X (en r(er,)) N N X (eny, 7(es,)) = Clesr)
We observe that the unipotent radical Ug(R) acts by left translations on the
intersection, we get a diagram
X ey, r(er)) N N X (e, r(eq,)) = Cler)

=T

Lom (1.131)
XM x Rie - Rda
Now it is clear from the definitions that the image of pys is a set
Im(par) = QY (c,r) x C(c,r)

where QM (c,7) C XM is a subset containing the set X 5! of semi stable points
and is described by certain inequalities as in (1.100). This subset is I'ps invariant
and '3/ \QM (¢, r) is relatively compact.

Hence we see that we have essentially the same situation as in (1.119). The
map

a : X (eny,r(ee,)) - N X (e, r(ey,)) = Ta\2Y (e, ) x Cle, 1)
(1.132)

is a fiber bundle with fiber isomorphic to I'y,, \Ugq(R).

In the following we refer to the book of S. Helgason [51].

We mention an important property of the sets X' (c,,,7(cp)). We assume
that our symmetric space X is connected, then it is well known that it is convex,
any two points p,q € X can be joined by a unique geodesic [p, g]. We say that a
subset U C X is convex if for any two points p, g € U also the geodesic [p,q] C U.

Proposition 1.2.6. Let Q C QM (c,r) be a convex subset. Then the inverse im-
age pr (2xC(c,1)) is a convez subset of X (¢, r(c, )N+ NX T (ery,(cy )

Proof. The assertion is easily reduced to the following:
Let P be a maximal parabolic subgroup, let M be its reductive quotient, let
a be the simple root not in 7™ and Q C XMY  Then the set for any choice
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of We choose a ¢, > 0 and claim that X (c,,Q) = {z € X | nor(P,z) <
Co 5qm () € Q} is convex .

To see this we pick a point © € XF(cq, ), let TX be the tangent space at
x. The action of G(R) on X gives us a surjective map D, : gg — Tafg and this
induces an isomorphism D, : gr/€, — T:*, here of course £, is the Lie-algebra
of K,. We get the well known Cartan decomposition of the Lie-algebra

gr = b, @ p, where p, ={V egr |0,(V)=-V} (1.133)

and we get the isomorphism D, : p, — T:X. Starting from our parabolic
subgroup P we get a finer decomposition of p,.

Let Pr be theLie algebra of PxR. The intersection PxR N 0, (PxR) = M,
and we get for the Lie algebras m, = m(®) ®a and this gives the finer decoposition
m, = t;,, ®pM+ & a and then

pe =pM) @ad{V-0,(V)}veu (1.134)

where V € ug and a = RY4. We normalise Y4 such that da”(Y,4) = 1.Then we
can write a tangent vector T;X as image of

Y=Yy+a¥Ys+(V-0V));

We know that there is a unique geodesic ¢ : R — X starting at « with ¢/(¢) =Y
The theorem 3.3 in Chapter IV in [51] says that this geodesic is ¢(t) = exp(tY) -
. A tedious computation using the Iwasawa decomposition and the Campell-
Hausdorff formula shows that

—log(nar(exp(tY) - ) = —log(ngr(2)) + at — a®q(Ya, V)t (1.135)

where ¢(Y4,,V) is a positive definite form in V.

If now 21 € X% (ca,Q) is a second point, We find a tangent vector ¥ =
Yu + aYa + (V — 6(V)) such that ¢ — exp(tY) - x is the geodesic joining x
and x1 = exp(Y) - z. If we project these two points to XM then the images
z,21 € Q and exp(t(Yar)Z is the geodesic in XM " and hence for ¢ € [0, 1] we
have exp(¢(Yy)Z. But now

—log(nqr () = —log(ca); —log(nar (exp(Y)-x) = —log((nar (1) = —log(ca).

Since the second derivative is always > 0 (see(1.135) it follows that — log(n,r (exp(tY)-
z) > —log(cy) V't €10,1].
O

We formulated the main theorems of reduction theory only for Gl,, /Z because
we did not want to use to much from the theory of reductive groups ( for instance
[15] ). But for any ring of algebraic integers O and for any Chevalley scheme
G/O we can define the notion of Arakelow group scheme (G,©,) and we can
define the numbers n,, (B, ©,). Then we can prove the two theorems 1.2.1,1.2.2.
For the first theorem we just copy the classical approach. For the second one
we refer to the paper [2] of Kai Behrends.

For any semi simple group G/K over a number field K/Q we can find a
normal extension F//K such that G x i F splits. Then we can extend Gx x F' to a
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split i simple group scheme (i.e. a Chevalley scheme) Gr/Op. Then we also can a
group scheme Gg /O such that Gx(Ok) = G(K)NG(Op). Now any arithmetic
group I' C G(K) is commensurable to G(Or). With these preparations it is easy
to show

Theorem 1.2.3. (Borel-Harish-Chandra): If G/K is a reductive group and
I' C G(Q) is an arithmetic subgroup then

I\X = I\G(R)/ Ko
is compact if and only if G/K is anisotropic.

Let T be a Gal(F/K) invariant arithmetic subgroup of G(Or) and let us
assume that I' = I' N G(K) is torsion free. Then an easy argument shows that

j:D\X - T\X
is injective. Then we have for x € X the numbers and for any o € Gal(F/K)
e, (§(x), B,G(OF) ~ na,(j(x), B,G(OF)7)

i.e. the ratio is bounded away from zero. And this implies that the destabilising
parabolic for G(Op) equals the destabilising parabolic is invariant under the
Galois group, i.e. defined over K, provided it is very unstable. Hence it is clear:
If the image of j is not compact, then G/K is not anisotropic, and the theorem
follows.
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Chapter 2

The Cohomology groups

2.1 Cohomology of arithmetic groups as coho-
mology of sheaves on I'\ X.

We are now in the position to unify — at least for the special case of arithmetic
groups — the two cohomology theories from our chapter IT and chapter IV in
[39].

We start from a semi simple group G/Q and we choose an arithmetic con-
gruence subgroup I' C G(Q). Let X = G(R)/K as before. A second datum
will be a I'- module M, in principle this can be any I'- module.

To such a T'— module we attach a sheaf M on '\ X. This sheaf has values in
the category of abelian groups. For any open subset U C X we have to define
the group of sections M(U ). We start from the projection

m: X —D\X (2.1)

and define
MU) ={f: 7 Y U) = M| f is locally constant f(yu) =~f(u)}. (2.2)

This is clearly a sheaf. For any point « € I'\X we can find a neighbourhood
V, with the following property: We choose a point & € 7~ !(x), then 7 has a
convex I'z-invariant neighbourhood Ugz, for which vU; NUz # 0 < v € T;.
Then we put V, = I';\Uz. We call such a neighbourhood V, an orbiconvex
neighbourhood. It is clear that

M(V,) = M=,

Since x has a cofinal system of neighbourhoods of this kind, we see that we get
an isomorphism

69
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If we are in the special case that I" has no fixed points then we can cover I'\ X
by open sets U so that M /U is isomorphic to a constant sheaf M;;. These
sheaves are called local systems If we have fixed points we call them orbilocal
systems

Sometimes we will denote the functor, which sends M to M by

shr : Modr — SF\Xa
this may be useful if we are dealing with varying subgroups I.

The motivations for these constructions are

1) The spaces I'\ X are interesting examples of so-called locally symmetric
spaces (provided T' has no torsion). Hence they are of interest for differential
geometers and analysts.

2) If we have some understanding of the geometry of the quotient space I'\ X
we gain some insight into the structure of I'. This will become clear when we
discuss the examples in (2.1.4)

3) The cohomology groups H*(T', M) are closely related - and in many cases
even isomorphic - to the sheaf cohomology groups H®(I'\X, M). Again the
geometry provides tools to compute these cohomology groups in some cases
(again 2.1.4).

4) If the I'module M is a C-vector space and obtained from a rational
representation of G/Q, then we can apply analytic tools to get insight (de Rham
cohomology, Hodge theory See Chapter 8).

2.1.1 The relation between H*(I', M) and H*(T'\ X, M)

For the following we refer to [39] Chapter 2. In this section we assume that X
is connected. The functor

M — H(T\X, M) = M".

is a functor from the category of I'— modules to the category Ab of abelian
groups. We can write our functor M — MU' as a composition of

shp : M — M and H® : M — H(I\ X, M).

We want to apply the composition rule from [39] 4.6.4.
In a first step we have to convince ourselves that shr sends injective T'-
modules to acyclic sheaves.

In [39], 2.2.4. we constructed the induced T' -module Indgl}/\/l7 for any T’
module M. This is the module of all functions f : ' = M and ~; € T" acts on
this module by (y1.f)(v) = f(y71)- The map

mi— fm = {y = ym} (2.3)

is an injective I'— module homomorphism.
In a first step we prove that for any such induced module the sheaf shr( Indlfl}./\/l).
is acyclic. We have a little
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Lemma 2.1.1. Let us consider the projection m: X — I'\X and the constant
sheaf My on X. Then we have a canonical isomorphism of sheaves

(M) = Indf, M.

Proof. This is rather obvious. Let us consider a small neighbourhood U, of a
point x, such that 7=1(U,) is the disjoint union of small contractible neigh-
bourhoods Uy for # € 7=1(x). Then for all points Z we have My (Uz) = M
and

nMOU) = [ M

zer—1(x)

On the other hand

Indlfl}M(Ux) = {h s N U,) = Indgl}./\/l | h is locally constant h(yu) = ’yh(u)}

For u € m=1(U,) the element h(u) itself is a map
h(u) : T — M,

and (vh(u))(y1) = h(u)(71y) (here v1 € T is the variable.) Hence we know the
function u — h(u) from 7=1(U,) to Indfl}/\/l if we know its value h(u)(1) and
this value can be prescribed on the connected components of 7=1(U,). On these
connected components it is constant, we may take its value at & and hence
h— (..., h(Z)(1),... )iE‘ﬂ'_l(I)

yields the desired isomorphism.

Now acyclicity is clear.. We apply example d) in [39], 4.6.3 to this situation.
The fibre of 7 is a discrete space and hence

T(Mx) = Indlfl}./\/l
and R(m,)(Mx) = 0 for ¢ > 0. Therefore the spectral sequence yields
HOX M) = HY(O\X, 7 () = 17 (DX, ndfy ).

and since X is a cell, we see that this is zero for ¢ > 1. O

We apply this to the case that M = 7 is an injective ['-module. Clearly we
can always embed Z —> Indgl}l. But this is now a direct summand; hence it

follows from the acyclicity of Indlfl}I that also Z must be acyclic.

Hence we can apply the composition rule and get spectral sequence with Fo
term

HP(T\ X, R%(shp)(M)) = H™(T, M).

The edge homomorphism yields a homomorphism

H™(D\X, shp(M)) — H"(T, M) (2.4)
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which in general is neither injective nor surjective.

We have seen in section (1.2.2) that -under our assumption that G/Q is
semisimple- the stabilisers I';, are finite. This implies hat the stalks R?(shr)(M), =
H1(Tz, M) for ¢ > 0 are torsion groups actually they are annihilated by #T,.
This implies that the edge homomorphism has finite kernel and kokernel.

In this book we are mainly interested in the cohomology groups H™(I'\ X, shr (M)
and not so much in the group cohomology H*(T', M).

2.1.2  Functorial properties of cohomology

We investigate the functorial properties of the cohomology with respect to the
change of T'. If I C T is a subgroup of finite index, then we have, the functor

MOdr‘ — MOdp/ N

which is obtained by restricting the I'-module structure to I'. Since for any
I'-module M we have MY — M| we obtain a homomorphism

res : H'(D, M) — H'(T', M).

We give an interpretation of this homomorphism in terms of sheaf cohomology.
We have the diagram

X

o N\ T
T = Tp,r :F/\X — F\X

and a T-module M produces sheaves shp (M) = M and shr (M)=M’ on T"\ X
and T\ X respectively. It is clear that we have a homomorphism

(M) — M.

To get this homomorphism we observe that for y; € I"\ X we have n{(M),, =
M, (y1), and this is

{f 7 (my) = M| f(v§) =~f(§) for all y €T, g € 7~ (m(y1))}
and
M, ={fg: (7)) > M| F(7'5) = f(§) for all y €T, € ()7 (1)},
and if we pick a point § € (7)1 (y1) C 7~ 1(m1(y1)) then
T (M)y, = MU M = MU,
Hence we get (or define) our restriction homomorphism as

HY(T\X,shpr(M)) — HY(I'\X, 7} (shp(M)) — HY(I'\X,shp (M)). (2.5)
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There is also a map in the opposite direction.
Since the fibres of 7 are discrete we have

HY(I'\X, M)—H"(I'\X, 7, (M)).

But the same reasoning as in the previous section yields an isomorphism

—_~—

71+ (M)— Indp, M.

Hence we get an isomorphism

—_~—

H{(T'\X, M)~ H'(I'\X, Indf- M) (2.6)

which is well known as Shapiro’s lemma. But we have a I'-module homomor-
phism
e: Indh M — M

which sends an f: ' — M, in f € IndF,M to the sum

tr(f) = > v " fn)

where the ~; are representatives for the classes of I"\I'. This homomorphism
induces a map in the cohomology. We get a composition

Te s H(I'\X, M) — H'(T'\X, M). (2.7)
It is not difficult to check that

meon® =[[:T']Id (2.8)

2.1.3 How to compute the cohomology groups H'(I'\ X, M)?
The Cech complex of an orbiconvex Covering

We consider a point Z € X and an open neighbourhood U; C X. We say that
U;z is an orbiconver neighbourhood of z if

a) The set U}; is convex, i.e. for any two points in %1, Zo € U;;; the geodesic
joining 1 and 2 lies in Uj;.
irgendwo frither was zu Geoditen sagen, )

_b) We have ’yU}; N Uz = 0 unless vz = T and in this case we even have
’in = Ui»

A family of orbiconvex neighbourhoods {f];gl Yi=1,..r (Z1,..., &, set of points)
will be called an orbiconvex covering, if

U U s, = X. (2.9)

i=1~el

We will show later that we can always find a finite orbiconvex covering of X.
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If now {ﬁf}lzl ,,,,, ~ 18 an orbiconvex covering we put U,, = ( ~z~i), and then
we get finite covering by open sets

Uu., =1\x.
Ty

We abbreviate and use the usual notation 4l = {U,;, } for this orbiconvex covering
of I\ X.

We will see further down that the intersections U; = Uy, NUg,, N---NUy,,
are acyclic, more precisely

i ,_
HYU,) = {M £ a=0 (2.10)
- 0 q>0
This implies that the Czech complex (See [39], Chap. 4)
CU U M) =0 PMU,) 2 @MU, NUL,) — (2.11)
i€l i<j

computes the cohomology, i.e. the cohomology groups H*(I'\X, M). are the
cohomology groups of the Czech complex.

For the implementation on a computer we need to resolve the definition of
the spaces of sections and the definition of the boundary maps. (By this I mean
that we have to write explicitly

M(Uz') = @ M,

where 7 runs through an index set and the M, are explicit subspaces of M and
then we have to write down certain explicit linear maps M, — M,,.)

We have to be aware that the intersections U; are not necessarily connected.
We write U; = UU, as the union of its connected components, we have to choose
a connected component Un in 771 (U,) for each value of . Then the evaluation
of a section m € M(U;) on these U, yields an isomorphism

P evs, : MU (= MU) = P M.

If we replace U, by yU, then we get for m € M(n(U,)) the equality
vevg, (m) = ev, 5 (2.12)
In degree zero the U,, are connected and this gives for the first term of the

complex

evy, : M(Uy,) = M5, (2.13)

z

The computation the second term is a little bit more delicate. We have to
understand the connected components of U, N U,,. To get these connected
components we have to find the elements v € I' for which

Uz, n1(Uz,) # 0 (2.14)

It is clear that this gives us a finite set G; ; of elements v € T'/ Ly,. We have a
little lemma
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Lemma 2.1.2. The images 7(Ugz, N 'y(Ufj)) are the connected components of
Uz, NUy,, two elements v, give the same connected component if and only if
71 S Faslfyr:vl .

Let F;; C G;; be a set of representatives for the action of I'y, on G ;
this set can be identified to the set of connected components. Of course the
set Uz, N W(Uggj) may have a non trivial stabilizer T; j, and then we get an
identification

@VGFi,jeUUmiﬂ'yUmj : M(U,, N Us,) — @ MPUiin (2.15)
’Yefi,j

This is now an explicit (i.e. digestible for a computer) description of the second
term in our complex above. We still need to give the explicit formula for dy in
the complex

05 DM @D @ M (2.16)

i€l 1<j vyEFij

Looking at the definition it is clear that this map is given by

(coosmy, oo ,my, )= (oo my —ymy,. L) (2.17)

Here we have to observe that v € T'/I';; but this does not matter since m; €

MY%5 . So we have an explicit description of the beginning of the Cech complex.
A little reasoning shows of course that a different choice ]—'i’) ; of the representa-
tives provides an isomorphic complex.

Now it is clear, how to proceed. At first we have to understand the combi-
natorics of the covering 4 = {U,, };c;. We consider sets

Gi={v=(e;71,--,Y)7i € T/Tu;; Usy N -+ N0z NygUs, # 0}

on these sets we have an action of I';, by multiplication from the left. Again
let F; be a system of representatives modulo the action of I'y,.
We abbreviate

Uiy = Uz, N --- 07Uz N YUz,

let I'; , be the stabiliser of (7171.

The images 7(U; ) under the projection map 7 are the connected compo-

nents 7(Uyy) = Uiy C U = Uy, N---NUy, N...Us, . On the other hand each

IiO

set U;  is a connected component in 7! (U; ). We get an isomorphism

P evy,, : MU) = MU,y NN Uy, N Uy, ) = @D MPE2L (2.18)

YEFi YEFL

We need to give explicit formulas for the boundary maps

P mw) 2 @ my.

i€lq ieIa+l
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Abstractly this boundary operator is defined as follows: We look at pairs ¢ €
1941 i) e J7 where i) is obtained from i by deleting the v-th entry. Then we
have U; C U and from this we get the resulting restriction homomorphism

Rl‘(u)71‘ : M(UZ(U)) — M(Ui). Then

dg = Z Z(—l)uRim,i (2.19)

7 v=0

and hence we have to give an explicit description of Ri(l‘),z‘ with respect to the
isomorphism in the diagram (2.18). o

We pick two connected components W(ULZ) C U;) and W(UQ(WW, C Uswy,
then we know that B

Uz‘g - ﬁl-(uw/ <= 31, € such that n, vy, =, for all p#v

and then the restriction of R;w) ; to these two components is given by
CUU

~ ~ i(l/)Y / . ,

M(x(Uyo 1)) M i
4 R@(V)&‘ L Ny (2.20)

M(ﬂ'(ﬁll)) — MPin

Here the two horizontal maps are isomorphisms, we observe that 7, , is unique

up to an element in Fz(”%v’ and hence the vertical arrow 7,/ is well defined.

Hence we conclude:

Once we have found a a finite orbiconvex covering of T\X, we can write
down an explicit complex, which computes the cohomology groups H®(T\X, M).

We may also look at this situation from a different point of view: If x € X
is any point and I';, C T its stabilizer, then we define the induced I" module

IndFJZ :={f:T — Z| f has finite support and f(ay) = f(v), Va € T'y,y € T'}
(2.21)

If V, is an open neighbourhood of 2 which satisfies b) an ¢) then we have
7T_1<7T(Va:>) = U"/GF/FI vV, and

T (M)( U YV,) = Hom( Indll:xZ,M).
~eT /Ty
We have the covering
U= YUz =X
i,7€l'/T'z,

of the symmetric space. The Czech-complex C'* (41, 7*(M)) computes the coho-

mology groups H?(X,n*(M)) which are trivial for ¢ > 0. Our considerations
above yield

C* (8,5 (M)) =0 — ED Hom( IndgmiZ,M) LN @ Hom( Ind;ii)j 7, M) e

i=1 i<§,%i
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Now it is easy see that the boundary maps are induced by maps between the
induced modules

2 1 r
5 P mdh, z- @ Indp, Z -0,

i<j,ii7j =1
where for f € @ IndII:iJZ, in degree v and w € C*~1({l, 7*(M)) the relation
w(8”(f)) = d~1(w)(f) defines §”. We get an augmented complex

Z @) Indp, Z—~Z—0

Zy Fi 5 i=1

P == Indr, Z—---— P Indy,,

i

(2.22)

and since C* (fl, 7r*(/\;l)) is acyclic in degree > 0, we get that P*® is an acyclic
resolution of the trivial module Z.

Let N = [], #I'z, and R := Z[+] then the R[I'] module Ind?w ® R is a
direct summand in R[I'] and hence a projective R[I'] module. This implies of
course that

P*®R== P Indr, R~ =P Indr, R~ P Indr, R+ R—0
g Ti,j =1

(2.23)

is indeed a projective resolution of the trivial I' -module R. Therefore we know
that

H*(T', Mp) = H*(0 — Homr (P Indp, R Mp) » €O Homr(Indr, R,Mg)—)
i=1 7;<j>53i,j
(2.24)

where now on the left hand side we have the group cohomology.
If we do not tensor by R then the Czech-complex

0 — P Homp(Indr Z,M) - € Homr(Indp, Z,M)—... (2.25)
i=1 1<J,i,j ?
is isomorphic to the Czech complex (2.11) and it computes the sheaf cohomology
He*(T\X, M).
It follows from reduction theory that

Theorem 2.1.1. We can construct a finite covering '\X = {J;cp Uz, = U by
orbiconvex sets.

Proof. This is rather clear. We start from the covering by the sets X© (c,/,7(cq)).)
The set of ”almost stable” points X (r) C X is relatively compact modulo T'.
For any point £ € X we look at the minimum distance

d(z) = in d(z.vx).
(Z) Din (Z,72)
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since the action of I" is properly discontinuous this minimum distance d(z) > 0.
Let D(2,d(£)/2) := {g|d(g,%) < d(Z)/2}, (-the Dirichlet-ball around Z- ) then
D(Z,d(Z)/2) is an orbiconvex neighbourhood of Z. Then we can find finitely
many points Z1, ..., T, such that

U | vD (@, d(#:)/2)) > XC(r).

i=1~el’

We have to find a covering for the X (cp,r(cp))). We recall the fibration
(See (1.118))

p}‘;’M:X (caryr(cr)) = XM(r(c,.)) x H 0, ol
We apply our previous argument and find a finite covering

U U D@ d(3:)/2) 2 XM (r(cq))-

i=1~v€el

We pick a point ¢y € [], e, (0, ¢a] then the inverse image (pp, ;) ™" (D (9, d(5:)/2)) %
¢ is relatively compact and we can find an orbiconvex covering {U{Vz, } of this
set. Then the products Vz, x [[,c (0,cq] provide an orbiconvex covering of
XP(cp,r(c,)). Of course these sets are not (relatively) compact anymore.

O

I think that it is a very important problem to write algorithms which com-
pute the cohomology effectively. The main goal would be to collect experimental
data which may suggest conjectures or give support for conjectures which come
from different sources. We come back to this aspect in the following chapter 3
and also in the final chapter 9.

I do not claim that my proposal using orbiconvex coverings provides an ac-
ceptable solution to this problem. It solves the problem in principle but it not
clear how far it reaches in practice. We see that the fixed points create some
problems if we want to write down the explicit complexes. But it is certainly
no solution to avoid these problems by passing to a congruence subgroup. Then
the number of members in the covering growth rapidly and the complexes be-
come much bigger. For the groups Sl,(Z) ( for some small values of n and for
some congruence subgroups ) various authors have computed the cohomology
(Ash, Stevens, Gunnels) using the Voronoi decomposition of the cone of positive
definite symmetric matrices.

A first step would be to find effectively an optimal orbiconvex covering {Uz, }
of the set X (r) of almost stable points. The covering sets must not necessar-
ily be Dirichlet balls. We could proceed and apply this also to the different
XM(r(c,,)) and find orbiconvex covers {Vﬂj\f } for them. Then we may con-

sider the inverse images (pp 5) " (V! % [[oen (0, ¢a]) = VM. This family of

~ M
sets {{7Uz,},.-.»m Vi } provide a covering of X by open sets, hence the
images under the projection provide a covering

0 = {Wi}iel = {{Uzy}vv{f/y]y 7}
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of I"'\X, here the index set I is the union of the 1%, ... M (e
Of course we have a problem: The sets ng\f are not acyclic anymore, so

we can not use the Czech complex of this covering for the computation of the
cohomology. But we know that

Vﬂj\f - Vﬂj\f x H (07 ca}

aecmn’

is a fiber bundle with fiber U(Z)\U(R), Since the base Vgﬁ{ X [Toenr (0,cq] is
acyclic we know that

H* (V') = H*(U(Z)\U(R), M) (2.26)

and we have a good understanding of the cohomology on the right. If for instance
we tensor by the rationals the Theorem of Kostant (See section ?7?) gives us a
complete description of the cohomology H*(U(Z)\U(R), M @ Q).

For i € IP*! we put 20; = W;, N W;, N---N W;, Now we follow [39], 4.6.6,
for any q > 0 write the Czech complexe

Co(w, 1Y) =— [[ H'W) — ] HW) (2.27)

ielrtl ielrt2
and then we know that we get a spectral sequence

HP(C*(W,H7)) = EP? — HPY(D\X, M) (2.28)

2.1.4 Special examples in low dimensions.

We consider the group I = Sl»(Z)/{£Id} and its action on the upper half plane
H. We want to investigate the cohomology groups H*(I'\H, M) for any module
I-module M. Let p : H — T'\H be the projection. We have the two special
points i and p in H. They are - up to conjugation by I' - the only points which
have a non trivial stabilizer. We construct two nice orbiconvex neighbourhoods
of these two points. The stabilizers I';, resp. I', are cyclic and generated by the

two elements
0 1 1 -1
= (%)= (0 9)

respectively.

We begin with i. We consider the strip V; = {z| — 1/2 < R(z) < 1/2}, the
element S maps the two vertical boundary lines R(z) = j:% into geodesic circles
starting from 0 and ending in +2. Then the intersection Ul =V;,NnS(V;) is an
orbiconvex neighbourhood of .

Let us look at p. We consider the strip V, = {z | —0 < R(z) < 1} and now
we define U, = V, N R(V,) N R?(V,). This is a nice orbiconvex neighbourhood
of p.
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Now it is clear that these two sets provide an orbiconvex covering of H, if

U; = p(ﬁi)v U, = p(Up) then
MNH=U,UU,. (2.29)

We have M(U;) = shr(M)(U;) = MY, M(U,) = M"» and hence the cohomol-
ogy groups are given by the cohomology of the complex

0> MigoMy 5 M—0 (2.30)

Then HO(T'\H, M) = M = M QM . Since this is true for any I' module
we easily conclude that I' is generated by I';,I',. And we get

H(Sly(Z)\H, Mz) = M/(M5> ¢ M<F>), (2.31)

and the cohomology vanishes in higher degrees.

Exercise 1: Let IV C T' = Slo(Z)/=£1d be a subgroup of finite index. Prove
ii) We have (Shapiros lemma)

—_~—

HY(T'\H, Z) = H("'\H, Indy.,Z).
These cohomology groups are free of rank
L:T—n;—n,+1

where n; (resp. m,) is the number of orbits of I'; (resp. T',) on IT'\L'. If I is torsion
free then

—_ 1
rank(H'T\H, IndjZ) = Gl I +1
The Euler-characteristic of T"\H is %[F IV

Exercise 2: Let M,, be the Sl3(7Z)-module of homogenous polynomials in the two
variables X, Y and coefficients in Z. (See 1.2.2). We have the usual action of Sly(Z) on
this module by

(z Z) P(X,Y) = P(aX + ¢Y,bX +dY).

these modules define a sheaf M., on T'\H., We compute the cohomology groups H*(.(T'\H, Mn)
Prove:

i) Ifn is odd, then M,, = 0.
Hence we assume n > 2 and n even from now on.

i) Forn > 0 we have HO(I'\H, M,,) = 0.
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i) If we tensorize by Q , then H'(I'\H, M,, ® Q) is a vector space of rank
n—1-2[g] -2[g].
Hint: Diagonalise the action of I'; and I', on M,, ® Q separately and look at the

= 0 -1
eigenspaces. To say it differently: Over Q we can conjugate the matrices <1 0 >,

-1 0

sition of M, into eigenspaces.

1 1 t 0
( ) into the diagonal maximal torus (0 t1> , and then look at the decompo-

iv) Investigate the torsion in H'(I'\H, M,,). (Start from the sequence 0 — M,, —
M, = M, /[tM,, — 0.)

v) Now we consider I' = Sl3(Z). The two matrices S = <0

1 _01> and R =

-1 1 . .
(1 O) are generators of the stabilisers of © and p respectively.

We take for our module M the cyclic group 7 /127, consider the spectral sequence
HP(T\H, R (shr)(Z/12Z)).
Show that HO(T'\H, R (shr)(Z/127Z) = Z/12Z. Show that the differential
H°(T\H, R*(shr)(Z/12Z)) — H*(T'\H, shr(Z/127))
vanishes and conclude

HY(T,Z/127) = 7./]127.

The group I' = Gl (Z[i])

A similar computation can be made up to compute the cohomology in the case
of T' = Gly (Z[i])). We have the three special points z12, 213 and z23 (See(1.2.5),
and we choose closed sets A;; containing these points which just leave out a
small open strip containing the opposite face. If fL-j is a connected component
of the inverse image of A;; in Hs, then

Ay =Tij\Ayj.
The intersections A;; N Ay = A, are closed sets. They are of the form
A, =T,\A,

where I',, is the stabilizer of the arc joining x;; and xy ;. The restrictions of
our sheaves M to the A;; and A, and to A = A5 N Aaz N Aj3 are acyclic and
hence we get a complex

0—M— PMa, — P M, — Ms—0 (2.32)
(4,5)

where the M- are the restrictions of M to ? and then extended to the space
again.
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Hence we find that our cohomology groups are equal to the cohomology
groups of the complex

1 2
0— PMs L PM L M0 (2.33)
(4,4) v
with boundary maps

d' :(myg, mig, mag) — (Mig — Mmy3, Ma3 — M1z, M1z — Ma3)

d? :(my,ma, m3) — my 4+ mo +ms.

If we take for instance M = Z then we get H*(I'\Hs, Z) = Z and H*(T'\H3, Z) =
0 for ¢ > 0 as it should be.

We do not get a satisfying answer to our question. We consider the special
case I' = Sly(Z[i]) and the coefficient system M,,, ®z};; M, where

My, ={P(X,Y)=> a,X"Y™ ¥|a, € Z[i]}, (2.34)
v=0

My, ={P(X,Y)=> a,X"Y""|a, € Z[i]}, (2.35)
v=0

and where a matrix v € I' acts by

YP(X,Y) @ Q(X,Y) = P(aX +cY,bX +dY) ® Q(aX + &Y ,bX + dY)
(2.36)

If we now choose for our module M in (2.33) the module M = M, @z M,
then it i clear that for any given (not too large) values ny,no we can compute the
cohomology explicitly. But we do not get any theoretical insight, for instance we
do not get a formula for the dimensions of the cohomology groups (tensorised

by Q),

2.1.5 Homology, Cohomology with compact support and
Poincaré duality.

Here we have to use the theory of compactifications. For any locally symmetric
space we can embed I'\ X into its Borel-Serre compactification

% F\X — F\YBSH

and this process was explained in detail for our low dimensional examples.
Especially we give an explicit description of a neighbourhood of a point = €
d(I'\X pg). If we have a sheaf M on T'\ X, we can extend it to the compactifi-
cation by using the functor i,.. We get a sheaf

is(M) on T\Xgs,
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it is clear from the description of a neighbourhood of a point in the boundary,
that 4, is exact. ( This is not true for the Baily-Borel compactification.)

Our construction M — M can be extended to the action of I' on X pg and
clearly

ix(M) = result of the construction M — M on I'\X pg.
Hence we get from our general results in Chapter I, ..... that
H*(T\X, M) = H*(T\X s, is(M)).

But we have another construction of extending the sheaf M from '\ X to
['\Xps. This is the so called extension by zero. We define the sheaf (M)
on I\ X pg by giving the stalks. For z € I'\ X ps we put

M, if zel\X
0 if rzgT\X'

It is clear that iy is an exact functor sending sheaves on I'\ X to sheaves on
I\ X g, and we have for an arbitrary sheaf

H(I\X ps,i(F)) = H)(I'\ X, F)

where HO(T'\ X, F) is the abelian group of those sections s € H°(I'\ X, F) for
which the support

supp (s) = {2 | sz # 0}

is compact.
Hence we define the cohomology with compact supports as

HI(T\X,F) = H(T\X g, i1.F)).

If M is a sheaf on I\ X which is obtained from a I-module M, then it is quite
clear that

HY(T\X, M) =0,

provided our quotient I'\ X is not compact.

The cohomology with compact supports is actually related to the homology
of the group: I want to indicate that we have a natural isomorphism

H;(I, M) ~ HY{(T\ X, M)

under the assumption that X is connected and the orders of the stabilizers are
invertible in R.

This is the analogous statement to the theorem .... which we discussed when
we introduced cohomology.

Our starting point is the fact that the projective I'-modules have analogous
vanishing properties as the induced modules.
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Lemma 2.1.3. Let us assume that I' acts on the connected symmetric space
X. If P if a projective module then

0 if i#dimX
HY(T\X, P) =
Pr if i=dimX.

Let us believe this lemma. Then it is quite clear that
Hl(Fv M) = H(U’lil(F\X7 ]5)7

because both sides can be computed from a projective resolution.

2.1.6 The homology as singular homology

We have still another description of the homology. We form the singular chain
complex

= Ci(X) = Ci1(X) — ... = Cp(X) = 0.

This is a complex of I'-modules, and we can form the tensor product with M.
We get a complex of I'-modules

S X OM 25 O (X)) O M —s ...
We define the chain complex
C-(F\X7 M)?

simply as the resulting complex of I'-coinvariants. The homology groups are
defined as

The cosheaves

The symbol M should be interpreted as the cosheaf attached to our I'-module,
this is an object which is dual to the sheaf M. For a point Z € T'\ X costalk M. Z
is given as follows: As in (2.2) we consider the projection 7p : X — I'\X and
maps with finite support

C(@, M) = {f:mp*(z) = M}. (2.38)
On this module we have an action of I which is given by
(V) (@) =7 (f(y ). (2.39)
Then our costalk is given by the coinvariants

M; = C(jaM)F = C(EvM)/{f —vfivel, fe C(va)} (240)
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We have the homomorphism f : Mz — M which is given by summation f —

Z$eﬂ_;1(i) f(z) and this induces an isomorphism
/ :C(7, M)r — M, (2.41)

We pick a point = € WITl(f) and an open neighbourhood U, of x such that
~U, N U, # 0 implies v € T',.. We consider the space C(Z, z, M) of those maps,
which are supported in in the point z. This space is of course equal to M and
the composition

0z : C(Z,2, M) = C(Z, M) = M,

induces an isomorphism
8y Mp, — M, (2.42)

If we pick a second point § € 7p(U,) and a y € 7' () N U, then clearly
I'y C I'y; and therefore we get a specialization map

Ty 0 My — M. (2.43)

Now it becomes clear why these objects are called cosheaves. For the sheaf M
we get in the corresponding situation a map in the opposite direction

Mz — My (2.44)

as a specialization map between the stalks of M. An element f* € M can be

represented as an array
f* = {”wf(w)w"}wETr—l(i) (245)
where f(z) € (Mg)r, and f(yz) = ~f(x).

Now we can give a different description of the group of i-chains C; (IT'\ X, M) :
An i-chain with values in the cosheaf M is of the form o® f where o : A* — I'\ X
is a continuous (differentiable) map from the i dimensional simplex A’ to I'\ X
and where f is a section in the cosheaf, i.e. f, € MU(I) and where f, varies
continuously. (This means: If o(y) specializes to o(x) then 74y o(2)(fy) = fz-)

Then C;(T'\ X, M) is the free abelian group generated by these i chains with

values in M). Then the boundary maps d; are defined in the usual way and we
get a slightly different description of the homology groups H,(I'\ X, M).

But we may choose for our module M simply the group ring. Then
(C.(X) @ Z[M)r =~ C(X),
and hence we have, since X is a cell, that
H;(T\X,Z[I')) =0 for 1> 0.

On the other hand we have

Ho(T\X, M) = Mr.
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This follows directly from looking at the complex
(C1(X) @ M)r — (Co(X) @ M)r.
First of all we observe that 0-cycles
T1®m —To®m
are boundaries since X is pathwise connected. On the other hand we have that
To @m — yxg ®ym € Co(X) @ M

becomes zero if we go to the coinvatiants and this implies the assertion.
If we have in addition that the orders of the stabilizers are invertible in R
than it is clear that a short exact sequence of R-I'-modules

0—M —M-—M'"—0
leads to an exact sequence of complexes
0— C.(M\X, M) — C,(T\X, M) — C,(I'\X, M") — 0,
and hence to a long exact cohomology sequence
H,M\X,M") — H;(T\X, M) — H;(T\X,M") — H; 1(T\X, M").
Now it is clear that

H;(T, M) ~ Hy(T\X, M) ~ H"H(T\ X, M).

2.1.7 The fundamental exact sequence
By construction we have the exact sequence

0= iy(M) = i (M) = iy (M) /i(M) =0

of sheaves and clearly i.(M)/i;(M) is simply the restriction of i.(M) to the
boundary extended by zero to the entire space. This yields the fundamental
exact sequence

— HI7L(9(T\X), M) = HY(T\X, M) = HY(T\X, M) — HIY(QI\X),M) — ...
(2.46)

We define the “inner cohomology”

H}(T\X, M) := Im(HY(T'\ X, M) — HYT\X, M)) = kerHI(T'\ X, M) - H1(d('\X), M)
(2.47)

( This a little bit misleading because these groups are not honest cohomology
groups, they are not the cohomology groups of a space with coefficients in a
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sheaf. An exact sequence of sheaves 0 — M’ — M — M” — 0 does not
provide an exact sequence for these H, groups. )

In the special case that the underlying group G/Q is anisotropic the funda-
mental exact sequence becomes trivial, in this case the quotient I'\ X is compact
and we have

H*(T\X, M) = H*(T\X, M) = H*(T\X, M).

Many authors prefer to consider the case of a compact quotient I'\ X, but I think
we loose some very interesting phenomena if we concentrate on this case. On
the other hand we do not need to read the next subsection. Also readers who
are more interested in the low dimensional cases and the more specific results
in these cases may well skip reading the next subsection.

The cohomology of the boundary

We want to have a slightly different look at this sequence. We recall the covering
(See 1.124,1.125)

NX =N\X(r)UN (T\X) =T\X(r) U U Fp\XP(gW,,r(gﬂ,)) (2.48)
P:Pproper
where the union runs over I' conjugacy classes of parabolic subgroups over Q

and N (I'\X) is a punctured tubular neighbourhood of oo, i.e. the boundary of
the Borel-Serre compactification.

It is well known (See for instance [book] vol I , 4.5 ) that from a covering
IMN\X =, Vi we get a Czech complex and a spectral sequence with EY- term

I #'(ViM) (2.49)

i={40,i1...,ip }

where V; = V;; N --- NV, . The boundary in the Czech complex gives us the
differential

a2 H HY(V;, M) — H Hq(Vl,/\;l) (2.50)

i={i0,i1...,ip} J={josJ1-dp+1}

Here we work with the alternating Czech complex, we also assume that we have

an ordering on the set of simple positive roots. If such a V; is non empty then
it of the form I'o\X%(C(2)).

We return to the diagram (1.132), on the left hand side we can divide by I'¢.
We have the map which maps a Cartan involution on X to a Cartan-involution
on M. Then we get a diagram

flx9C@) —  XM(r)x Cuy(@)
1 pg Lom (2.51)
fiTQ\X?(C@) — Ta\XM(r) x Cyqy (2))
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where the bottom line is a fibration. To describe the fiber in a point Z we
pick a point z € (pp, o fT)~1. Then Ug(R) acts simply transitively on the fiber
(f1) 7' (fT(2)) hence Ug(R) = (fT)~'(fT(x)). Then pq : Ug(R) = L'y, \Ug(R)
yields the identification i, : Iy, \Ug(R) — f~1(&). If we replace = by y& = x4
with v € I'y,, then we get iy, = Ad(y)oi, where for u € Uy, Ad(y)(u) = yuy™!
where for u € Ug(R), under this action of T'g.

We have the spectral sequence

HP (DA \X ™M (r), R f.(M)) = HPH(TQ\XV(Cleq,s -+ ¢m,))s M)
and clearly RYf, (M) is a locally constant sheaf. This sheaf is easy to determine.
Under the above identification we get an isomorphism

iy : H*(Py,\Ug(R), M)) — R*(M);.

The adjoint action Ad : I'q — Aut(I'y,\Ug(R)) induces an action of I'q

on the cohomology H*((I'y,\Uq(R)), M). Since the functor cohomology is the
derived functor of taking I'y,, invariants it follows that the restriction of Ad to

Ty, acts trivially on H*(T'y, \Ug(R), M). Consequently H*((I'y, \Ug(R)), M)
is a I'yy— module. We get

—_~—

R* fi(M) = H*(Tu, \Ug(R), M)

and hence our spectral sequence becomes

HP (P \X ™ (r), H* (Tu, \Ug(R), M)) = HPT(Tg\X?(C(2), M) (2.52)

We can take the composition rg o f. Then it is obvious that for any point
co € Cy,(€)) the restriction map

H*(X?(C(0), M) = H*(X((rq o f) " (co), M) (2.53)

is an isomorphism. On the other hand it is clear that we may vary our parameter
¢ we may assume that the Cy,(¢) go to infinity. Then we may enlarge the
parameter r without violating the assumptions in proposition 1.2.3. Hence
we get that the inclusion I'o\X®@(C(g)) C I'o\X® induces an isomorphism in
cohomology

H*(To\X?(C(&), M) =5 H*(Tg\X, M) (2.54)

We choose a total ordering on the set of I' conjugacy classes of parabolic
subgroups, i.e. we enumerate them by a finite interval of integers [1, N|. We also
enumerate the set of simple roots {aq,...,a4) in our special case o; = @; i+1.
For any conjugacy class [P] we define the type of P to be t(P) = 7P the
subset of unipotent simple roots and d(P) = #mUP the cardinality of this set.
If P,,..., P, are maximal, i1 < i2--- < 4, and if P,,N,---NP, =@ is a
parabolic subgroup then we require that ¢(P;,) < --- < t(P;, ).

The indexing set Par(I") of our covering is the I' conjugacy classes of parabolic
subgroups over Q. If we have a finite set [P, ], [P}, ], . -, [P;,] of conjugacy classes

p
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then we say [Q] € [P,], [Py, ],...,[P,] if we can find representatives P; € [P;,]
and Q' € [Q] such that Q' = P/ N---N Pi'p.

Hence we see that the E7'? complex in our spectral sequence (2.50) is given
by

HHq (To\ X (C =11 II  E'@C\XF(CE@)M) =
<3 (RIE@iIn(@;]
(2.55)

this obtained from our covering (1.125). Now we replace our covering by a
simplicial space, i.e. we consider the diagram of maps between spaces

—

Pat := HFQZ\X o IT 1II Ta\x— (2.56)
i< (ReQiInQ)] —
this yields a spectral sequence with E}? term
~ d(U) R 1 4
[[H T\, M) =T ] HTRX"M) = (2.57)
i i<J [R]€[P:]N[Py]

Our covering also yields a simplicial space which is a subspace of ( 2.56) we get
a map from (2.50) to (2.57 ) and this map is an isomorphism of complexes.

We replace Par by another simplicial complex

P1 —
<_
Parmay := H Fp\X ,, H o\ X+— (2.58)
[Pl:d(P)=1 [Ql:d(Q)=2 —

We have an obvious projection IT : Par — PBarmar which induces a homo-
morphism

- 4O e
Hi Hq(FQz\X’M) — H7,<j H[R G[P]ﬁ Hq(FR\XR ) —
T T
~ 40 R\ 4
iprapy=1 HITPAX, M) — Hirpary—2 HITRAXT, M) —
(2.59)

and an easy argument in homological algebra shows that this induces an iso-
morphism in cohomology or in other words an isomorphism of the E5¢ terms
of the two spectral sequences.

We had the covering

Nox) = | e\XPler(e,) (2.60)

P:Pproper
which gives us the spectral sequence converging to H '( (T\X), M) with

Ef’q — @ @ Hq(FQ\XQ(Qﬂ—UT(Qﬂ")?M)) (261)

i <i1 <+ <ip [QIE[Pyp IN[Piy JN-+N[Py,]



90 CHAPTER 2. THE COHOMOLOGY GROUPS

Our covering of N/ (I'\X) gives us a simplicial space €ov(N)['\X) and we
have maps

Qﬁon(J{/ (T\X)) — Par — Parmag. (2.62)

We saw that the resulting maps induced an isomorphism in the EY'? terms of
the spectral sequences. Hence we see that Parmay yields a spectral sequence

EP = @ HUH\X, M) = B (T\X), K1) (2.63)
[P):d(P)=p+1

the differentials d29 : EP? — EPTH? are simply obtained from the restriction
maps.

This is of course the "same” spectral sequence as the one above (2.57) and
we may also restrict to the cohomology of the Borel-Serre boundary and get

EM= D  HY0pT\X),M)= HM(O(T\X, M) (2.64)
[Pl:d(P)=p+1

At this point we want to raise an interesting question
Does this spectral sequence degenerate at EY? level?

The author of this book is hoping that the answer to this question is no!
And this is so for interesting reasons! We come back to this question when we
discuss the Eisenstein cohomology.

[
The complement of V' (I'\X) is a relatively compact open set V' C T'\X,
this set contains the stable points. We define M}, = iy, (M) then we get an
exact sequence

0= My > M= M/M, =0 (2.65)

and M /M, is obviously the extension of the restriction of M to A" (I'\ X) and
the extended by zero to I'\X. We claim (easy proof later) that

H:(T\X, M) = H*(I'\ X, M},) (2.66)

and this gives us again the fundamental exact sequence

HI YN (T\X), M) — HYT\X, M) — HIUT\X, M) — HIN (T\X), M) —
(2.67

2.1.8 How to compute the cohomology groups H?(I'\ X M)

We apply the considerations in 4.8 from [39] Again we cover I'\ X by orbiconvex
open neighbourhoods Uy,, and now we define

My, = (ig)ip(M).
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These sheaves have properties, which are dual to those of the sheaves ./\;lg
If x = (z1,...,25) and if we add another point ' = (z1,...,zs,2s41) then
we have the restriction /\;l£ — /\;lg/ , which were used to construct the Cech
resolution.

Now let d = dim(X). For the ! sheaves we get (See [39] , loc. cit.) get a
morphism M, — M.. Forz = (x1,...,z,) we define the degree d(z) = d+1—s.
Then we construct the Cech-coresolution (See [39] , 4.8.3)

- I Mi=-= [I M., = TIM. = i) =0 (2:68)

z:d(z)=q (z4,25) T4

Now we have a dual statement to (2.10)
Proposition: If d = dim(X) then

Mr, q=d

. 0 d (2.69)

HY(Uz, M) = {

Hence the above complex of sheaves provides a complex of modules

CP(U, M) :=
= [pd@)—g H(Us, M) == | P HY Uy, o), My, ) = [, HA(Us,, MS,,) = 0.
(2.70)
and then
HIO\X, (M) = HID\X, M) = HI(CR L M) (2.71)

Now let us assume that M is a finitely generated module over some commutative
noetherian ring R with identity. Then clearly all our cohomology groups will be
R-modules.

Our Theorem A above implies

Theorem (Raghunathan) Under our general assumptions all the coho-
mology groups HI(T\X, M), HY(T'\X, M), H/(T\ X, M), H/(d(T'\X), M) are
finitely generated R modules.

2.1.9 Modified cohomology groups

Most of the time our module M will be a finitely generated Z module and
the theorem of Raghunathan says that the cohomology groups are also finitely
generated Z modules. Sometimes we replace Z ring of integers O of a finite
extension F/Q and then we will even invert some finite numbers of primes.
Hence we our coefficient modules will be finitely generated R-modules where
Opr C R C F. In any case these rings R will be Dedekind rings.
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Starting from the fundamental exact sequence we have introduced the mod-
ified cohomology groups H{( ). There is a second process of modification: If
H*( ) is any of these cohomology groups then

H*( )int:=H®*( )/Tors=Im(H*( ) - H*( )®Q) (2.72)

We have to discuss a minor problem: These two processes of modification
do not quite commute. This is due to the fact that the resulting sequence

— HTHOM\X), Mg) e — HUO\X, Mp) it —— HYT\X, Mg) int — HIO(T\X), Mp) int

is not necessarily exact anymore. Clearly we have H(T'\X, Mpg) ins = Im(j)
and if we now define HIT\X, MRg) int,1 := ker(r) then we have

HIT\X, MR) ins € HY(T\X, MR) int. (2.73)

but this inclusion may be proper. The following proposition is an elementary

exercise in homological algebra. | supgbd

Proposition 2.1.1. The quotient HY(T\X, Mg) i1/ H (T\X, MR) ins is fi-
nite and isomorphic to a subquotient of H1(O(T\X), MRg).

We will discuss an example in section 3.3.1

This may be a good place to introduce some terminology. If V' is a torsion
free, finitely generated R -module and we have a direct sum of submodules
V O &,V, then we say that this direct sum is decomposition up to isogeny if
the quotient V/ @, V, is a torsion module and if for any v the quotient V/V,, is
torsion free. Sometimes we also call this a saturated decomposition (see section
2.1.9).

2.1.10 Poincare duality in general

Let us assume that the symmetric space X = G(R)/K is connected and let us
also assume that I' operates orientation preserving, this means that any finite
stabiliser I', acts trivially on A%(Tx ). Then we know that H(T'\ X,Z) — Z,
the isomorphism depends on the choice of an orientation.

Assume that M is a finitely generated torsion free Z module with an action
of T on it and let MY = Hom(M,Z) be the dual module. Then we have an
obvious pairing between the two complexes Cf (&, M) : and C*(4, M) (See (
2.70 ),(2.11) which induced by the obvious pairing H°(U,, M) x HY(U,, M")
and summation over the components. This pairing induces a pairing on the
cohomology groups which are computed by these complexes (See [39],4.8.4.)

HIT\X, M) @ H YT\ X, M) “=5° HIT\X,M @ M") - HY(T\X,Z) = Z
(2.74)

Of course < z,y >pp= 0 if one of the entries is a torsion element and hence we
get a pairing between the modified cohomology groups
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HI(T\X, M) iy ® H"YT\X, M) ine ~Spp Z (2.75)

If T is torsion free this is a non degenerate pairing (see for instance ([39], Thm.
4.8.4). If " has non trivial torsion the same is true if we replace Z by R = Z[1/N]
where N is the product of the orders of the finite stabilisers.

If we analyse the fundamental exact sequence we also find a non degenerate
pairing

<,>PD

HY(T\X, M) ine @ H7IT\X, M) ine Z (2.76)

Eventually we can pass to rational coefficient systems we get a non degen-
erate pairing

HY(T\X, Mg) ® H{ ™I\ X, M) “Z5° = Q (2.77)

If we look again at the fundamental exact sequence we see the two homo-
morphisms

SHTHO(T\X), Mg) — HYT\X, Mg) and r : H*9(I'\ X, M) — H" 9T\ X), M)
(2.78)

The Borel-Serre boundary has the homotopy type of a d — 1 dimensional

manifold hence we we also have a non degenerate pairing | PDbound
<, >ot HHO(T\X), Mg) x HI™9T\X, M) — Q. (2.79)

Now an easy computation shows that for z € HI~Y(Q(T\X), Mq),y €
HI~ 9\ X, M) we have the formula

<z,r(y) >o=<6(x),y > (2.80)

and this has the following important consequence

Proposition 2.1.2. The spaces Im(r(H?'(I'\ X, Mg)) and Im(r(H*9(T'\ X, /\;lé))
are mutual orhogonal complements of each other, i.e.

Im(r(H1(T\X, Mg)) = {y | <y, Im(r(H*"(T\X, Mq)) >5=10

2.1.11 The case I' = SI4(Z)

We return to the case I' = Sly(Z). (See section 2.1.4). We will see that for
this seemingly very easy case we can formulate and prove some deep results, for

instance we understand the denominators of the Eisenstein classes (Theorem
3.89).

In the following M can be any I'-module. We investigate the fundamental
exact sequence for this special group. We computed already the cohomology
groups H*(I"\H, M) in (2.1.4).
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We compute the cohomology with compact supports. Of course we start
again from our covering I'\H = U; UU,. The cohomology with compact supports
is the cohomology of the complex (see 2.70)

0— H*(U;NU,, M} ) = H*(U; ,M}) & H*(U,, M,,) = 0.
Now we have H2(U; N Uy, ML) = M, H*(U; , M}) = Mr, = M/(1d —
SIM, HQ(UP ,/\;li)) = Mrp, = M/(Ild - R)M and hence we get the complex
0—>M—=Mr,&Mr, =0

and from this we obtain

HY(T\H,i;(M)) = ker(M — (M/(Id — S)M & M/(Id — R)M))

and

HO(D\HL iy(M)) = 0, H2(T\H, i:(M)) = M.

Now we consider the cohomology of the boundary H*(9(I'\H), M). We dis-
cussed the Borel-Serre compactification and saw that in this case we get this
compactification if we add a circle at infinity to our picture of the quotient. But
we may as well cut the cylinder at any level ¢ > 1, i.e. we consider the level
line H(c) = {z = x + ic|z € H} and divide this level line by the action of the
translation group

To={(Y "Vmezy={(¢ "\ neze=+1}/{+1d}.
0 1 0 €
But this quotient is homotopy equivalent to the cylinder

Ty \H ~ Ty \H(c).

We apply our general consideration on cohomology of arithmetic groups to
this situation and find

H*(9(T'\H), M) = H*(I'y\H, shr, (M)) = H*(T'y\H(c), shr,, (M)).
This cohomology is easy to compute. The group I'yy is generated by the

element T = <(1) 1) . It is rather clear that

H°(I'y\H, shr, (M)) = M'"v, HY (T \H, shp, (M)) = Mr, = M/(1d — T)M.

Then our fundamental exact sequence becomes (See( 2.31))

0— M' = MU — ker(M — (M/(Id — S)M & M/(Id — R)M))

MJ(MEi @ MFe) 25 M/(Id = T)M — Mp — 0
(2.81)



2.1. COHOMOLOGY OF ARITHMETIC GROUPS AS COHOMOLOGY OF SHEAVES ONT\ X.95

Now it may come as a little surprise to the readers, that we can formulate a
little exercise which is not entirely trivial

Exercise: Write down explicitly all the arrows in the above fundamental sequence

We give the answer without proof. I change notation slightly and work with

the matrices
0 -1 1 -1
s=(1 0)m=(0 %)

and we have the relation
1 1
psr= (1)

Then I'; =< S >,I') =< R > . The map
MJ(M5> & M<F>) 5 M/(1d - T)M
is given by
m—=m—Sm

We have to show that this map is well defined: If m € M<5> then m — 0. If
m € M<E> then

m—Sm=m—SR 'm=m—Tm
and this is zero in M/(Id — T)M.
The map
ker(M — (M/(Id — SYM & M/(Id — R)M)) = M/(M<5> @& M<F>)

is a little bit delicate. We pick an element m in the kernel, hence we can write
it as
m=mq —Sm; =ms — R ms

and send m — my — mg (Here we have to use the orientation). If we modify
mi,my to my = my + ny, mh = ma + ng then mj — mj gives the same element
in M/(M<S> D M<R>).

This answer can only be right if m, — mso goes to zero under the map r, i.e.
we have to show that

mip — Mmo — S(m1 — mg) S (Id — T)M
We compute
my —mg —S(my —ma) =m—my+Smy =m—mg+R 'my— R 'mo+ Smo =

—R_lmg + Smq = —T_lSmg + Smq € (Id — T)M

Finally we claim that the map M<T> — ker(M — (M/(Id—S)M &M /(1d —
R)M)) is given by m +— m — Sm=m — R~ 1T 'm =m — R~ 'm.

There is still another element of structure. The map ¢: z — —Z induces an

(differentiable) involution of H. We put S; = <_01 (1)> then yez = ¢SSy 2



96 CHAPTER 2. THE COHOMOLOGY GROUPS

and therefore ¢ induces an involution on I'\H. We get an isomorphism of coho-
mology groups

W HYT\H, M) =5 HY(T\H, ¢, (M)) (2.82)

The direct image sheaf ¢, (M) is by definition the sheaf attached to the I' module
M!51] : This is the module which equal to M as an abstract module, but the
action is twisted by a conjugation by the above matrix Sy, i.e.

yxm = S1vS;'m (2.83)

Now we assume that M is actually a Glz(Z) module. Then the map m — Sym
provides an isomorphism M 1) =5 M and hence we get in involution on the
cohomology groups

c®: H*(D\H, M) — H*(T\H, M) (2.84)

We have the explicit description of the cohomology groups H'(I'\H, M) and
we can compute this involution in terms of this description.The map m +— Sim
induces an isomorphism

SEM/(MYV 4 MEe) 5 MJ(MY 4 MEe?), (2.85)

both sides are equal to the cohomology HI(I‘\JHL/\;I). Hence c*® is the map
induced by SzlLo

The cohomology has a + and a — eigen submodule under this involution,
and

HY(T\H, M) > H'(T\H, M), & H'(I'\H, M)_, (2.86)

the sum of the two eigen modules has finite index which is a power of 2.

Poincare’ duality

We assume that our I' module M is a finitely generated and locally free module
over R , where R is a Dedekind ring or a field. We assume % € R. In section
2.1.10 we discuss Poincare duality in greater generality, here we consider the
pairing (see 2.76)

HYNT\H, M) e x HY(T\H, M) inss — HZ(T\H,R) = R (2.87)

It is clear that the involution ¢ induces multiplication by —1 on HZ(I'\H, R).
On the other hand we have the decompositions of the above cohomology groups
into &+ eigen modules. The pairings of the 4,4+ parts and the —, — give zero
and then we get pairings

HYNT\H, M) int,+ x HY(T\H,M") ine1— — R
i i (2.88)
HI(F\H,M) int,!,+ X H!l(F\H, Mv) int,— — R

both of them are partially non degenerate.
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If we have M = MV then we get

rank(HH(T\H, M) 1) = rank(H(T\H, M) in;.—) (2.89)

Final remark: The reader may get the impression that - at least in the
case I' = Sl»(Z)-it is easy to compute the cohomology, but the contrary is true.
In the case T' = Sly(Z)/+1d we found formulae for the rank of the cohomology
groups, this seems to be a satisfactory answer, but it is not. The point is
that there is an additional structure. In the next section we will introduce the
Hecke operators, these Hecke operators form an algebra of endomorphisms of
the cohomology groups.

It is a fundamental question (see further down) to understand the cohomology
as a module under the action of this Hecke algebra.

It is not so easy to write down the effect of a Hecke operator on a module
like M /(MY + MPr). We will discuss an explicit example in section 3.3.

We mentioned already that the situation is even less satisfying if we consider
the case I' = Sly(Z][i]). In this case we considered the coefficient system M =
My, ® My, (see 2.36). Then it turns out that the complex (??) does not tell
us very much about the cohomology.

We may for instance employ the complex (2.33). and the resulting complex
for the cohomology with compact supports, then we can compute -for a given
pair ny, ne- the modules (Q[i] -vector spaces) in the exact sequence

0 — H)I\Hs, M ® Q) — H'(T'\Hs, M ® Q) — H'(J(T'\H3), M @ Q).
An easy computation (see later) shows that
H'(9(T'\Hz3), M © Q) = QliJeo,1 © Qlilex 0

where the e;; ; are some naturally given generators. Another simple argument
using Poincare’ duality shows that the image under the restriction map r will
be a one dimensional subspace

Im(r)(HY(T'\H3, M ® Q)) = Q[i](L(n1,n2)e01 + L(n2,11)e10)

This far we get with our topological methods.

In chapter 4 we will use tools from analysis and prove a vanishing theorem
H?(T\H3, M ® Q) = 0 if ny # ny (2.90)

(See 4.1.7) T do not see how such a result can not be obtained from studying
the complex (2.33).

At this point we ask a natural question: Can we compute the position of the
one dimensional subspace Im(r) the cohomology of the boundary, i.e. can we
compute the point (£(n1,n2), L(na,n1)) € PY(Z[i])?

Here the answer is yes, but we have to use transcendental tools The ratio

EEZ;Z;"& (or its inverse) is the quotient of a Hecke L function function evaluated
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at two consecutive critical integer arguments arguments (depending on ny,ny we
come back to this later) So the complex can not give an elementary expression
for it.

On the other hand our purely combinatorial considerations imply that the
L(n1,n2)
L(na,n1)
between special values of the Hecke L function..

ratios € QJi] (or =oc0) this implies a non trivial rationality relation

The rationality relation are easy consequences the results of Hurwitz on the
special values of his Zeta-function.

The complex computes the Z[i]— modules H;(I'\Hz, M)) and therefore it
also computes the torsion. Again it seems to be difficult to derive general
theorems, except the obvious finiteness assertions.



Chapter 3

Hecke Operators

3.1 The construction of Hecke operators

We mentioned already that the cohomology and homology groups of an arith-
metic group have an additional structure: They are modules for the Hecke
algebra. The following description of the Hecke algebra is somewhat proviso-
rial, we get a richer Hecke algebra, if we work in the adelic context (See Chapter
6 ). The description here is more intuitive.

We start from the arithmetic group I' C G(Q) and an arbitrary I'-module
M. The module M is also a module over a ring R which in the beginning
may be simply Z. More generally is R may the ring of integers in an algebraic
number field, where we also inverted a finite number of primes. At this point it
is better to have a notation for this action

I'x M = M, (v,m) — r(y)(m)
where now 7 : I' = Autr(M). We abbreviate r(y)m = ym.
If we have a subgroup I'" C T of finite index, then we constructed maps
v tH(T\X, M) — H*(I"\X, M)
T e (H(T'\ X, M) — H*(T\ X, M)

(see section 2.1.2).
We pick an element oo € G(Q). The group

I'aH=a'TanT

is a subgroup of finite index in I and the conjugation by « induces an isomor-
phism
inn(a) : T(a™ ') — T'(a).

We get an isomorphism
j(a) : T(@™)\X — D(a)\X

which is induced by the map x — ax on the space X. This yields an isomor-
phism of cohomology groups

j@)*: H*(D(a™\X, M) — H*(T(a)\X, j(a)<(M)).

99
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_ We compute the sheaf j(a).(M). For apoint z € I'(a)\X we have j(a),(M), =
Mg where j(a)(z') = 2. We have the projection mp(q-1y : X = (e )\ X,
and the definition yields

My = {s : WE(L,I)(irl) — M| s(ym) = vs(m) for all v € F(a_l)} (3.1)

The map z — «az provides an identification W;(loé,l)(l‘/) - Wr_(la)(x) in
terms of this fibre we can describe the stalk at = as

(@)s(M)y = {s : W;(la) (z) = M | s(yv) = a tyas(v) for all y € F(a)} . (3.2)

Hence we see: We may use a to define a new I'(a)-module M(®): The
underlying abelian group of M(®) is M but the operation of T'(c) is given by

(v,m) — (@™ tya)m = v x4 m.
Then the sheaf j(a).(M) is equal to M), Now every element

Uy € Homp(a)(/\/l(o‘), M)

defines a map g : j(a)*(M) — M, and we get a commuting diagram

H* (D0~ NX, M) "% B D)\ X, j(a). (M) 25 H*(D(a)\ X, M)

s T 5

H*(T\X, M) T a) H*(T\X, M)

(3.3)

and now the operator the bottom line is the Hecke operator.
The Hecke operator depends on two data:
a) the element oo € G(Q),
b) the choice of u, € Homp () (M), M).

It is not difficult to show that the operator T'(a,u,) only depends on the
double coset " a I', provided we adapt the choice of u,. To be more precise if

ap = 710072 7,72 €1
then we have an obvious bijection
(1)71,72 : Homp(a)(/\/l(o‘),/\/l) — Homp(al)(./\/lal),./\/l)

which is given by
RS (Ua) = Uay = V1UaY2-

The reader will verify without difficulties that

T(a,uq) =T, uqa, ).
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(Verify this for H® and then use some kind of resolution (See next section) )

The choice of u, may be delicate in some situations. There are cases where
we also have a canonical choice of u,. The first case is that our I'-module M
is of arithmetic origin. In this case G(Q) acts upon Mg = M ® Q. Then the
canonical choice of an

Uq,Q * Mé@a) — MQ,

is given by u, : m — am. Hence we can speak of the Hecke-opertor T'(«) :
H*(I'\ X, Mg) — H*(T\ X, Mg).

But if we return to the R-module sheaf M this morphism u,,g will not
necessarily map the lattice M(®) into M. Clearly we can find a rational number
d(a)) > 0 for which

d(a) - g : M@ — M and d() - ta,o(M ™) ¢ bM for any integer b > 1.

Then uy = d(a@) - uq,g is called the normalised choice, and then T'(ov, uy) will
be the normalised Hecke operator.

The canonical choice defines endomorphisms on the rational cohomology, i.e.
the cohomology with coefficients in M@ whereas the normalised Hecke operators
induce endomorphism of the integral cohomology. The normalised choice and
the canonical choice differ only by a scalar factor.

In the second case we assume that I'y = G(Z), let I'(N) C I'g be the full
congruence subgroup mod N. Then I'y/T'(N) C G(Z/NZ) Now we assume
that V is a G(Z/NZ) module, in section 1.2.2 we called this a module of con-
gruence origin. Then we have some constraints on the choice of elements a.
We introduce the semi local ring Z(y) where we invert all primes not dividing
N. Now we pick our elements o € G(Z(y) Since we have the homomorphism
Z[(ny— Z/NZ our module V is also a G(Z(y))) module. Therefore we can
simply choose u, :=m — am.

We see that we can construct many endomorphisms 7'(cv, uq) : H*(I'\ X, V) —
H*(I'\X,V). These endomorphisms will generate an algebra

Hyp C End(H®*(T\X,V)). (3.4)

This is now the so-called Hecke algebra..

We can also define endomorphisms 7'(a, u,) on the cohomology with com-
pact supports, on the inner cohomology and the cohomology of the boundary.
Since the operators are compatible with all the arrows in the fundamental exact
sequence we denote them by the same symbol.

The Hecke algebra also acts on the inner cohomology H(I'\ X, M). Of course
we may tensorize our coefficient system with any number field L D Q , then we
write My, = M® L..

We state without proof the following fundamental theorem :

He-ss
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Theorem 3.1.1. Let M be a module of arithmetic origin. For any extension
L/Q the Hr @ L module H(T\X, Mp) is semi simple, i.e. a direct sum of
irreducible Hr modules.

The proof of this theorem will be discussed in Chapter 6 ( section 6.1.8) it
requires some input from analysis. We give a brief sketch. We tensorize our
coeflicient system by C, i.e. we consider M ®j C = M. Let us assume that T’
is torsion free. First of all start from the well known fact, that the cohomology
H*(I'\X, Mc) can be computed from the de-Rham-complex

H*(T\X, M¢) = H*(Q*(I'\ X) ® Mc. (3.5)

We introduces some specific positive definite hermitian form on Mc and this
allows us to define a hermitian scalar product between two M -valued p-forms

< Wi, w2 >=/ w1 N *wa,
\X

provided one of the forms is compactly supported. }
This will allow us a positive definite scalar product on H{ (I'\H, M,, ¢), We
apply theorem 6.1.1 , this theorem tells us that we can find representatives

Wi, wh which are harmonic (they satisfy certain differential equations) and then

<fonlfoal >= [ wlased, (3.6)
r\Xx

defines a positive definite hermitian scalar product on H(I'\ X, Mc). Finally
we show that Hr is self adjoint with respect to this scalar product,(see 6.1 and
then semi-simplicity follows from the standard argument.

For the groups I' C Sly(Z) and the cohomology groups H!'(T'\H, M,, ® C)
these harmonic representatives are given linear combinations of holomorphic
and antiholomorphic cusp forms of weight n+2 (See 4.1.7). The scalar product
on this space of modular forms is given by the by the Peterson scalar product
(see section 4.1.8.)

3.1.1 Commuting relations

We want to say some words concerning the structure of the Hecke algebra.

To begin we discuss the action of the Hecke-algebra on HO(I'\ X, M). We do
this since we defined the cohomology in terms of injective (or acyclic) resolutions
and therefore the general results concerning the structure of the Hecke algebra
can be reduced to this special case.

If we have a I'-module M and if we look at the diagram defining the Hecke
operators, then we see that we get in degree 0

ME@TD Ly (M@)D(@) ey pqT(@)

T |

MF T(a,ua) MF
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where the first arrow on the top line is induced by the identity map M —
M@ = M and the second by a map u, € Homap(M, M) which satisfies
Uo ((aya™t)m) = qyuq(m). Recalling the definition of the vertical arrow on the
right, we find

T(a,uq)(v) = Z v - ua (V).

Y€ /T ()

We are interested to get formulae for the product of Hecke operators, for in-
stance, we would like to show that under certian assumptions on «, 8 and certain
adjustment of u,,ug and u,g we can show

T(a,uq) - T(B,up) =T(B,ug) - T(ov,uaq) = T(af, uas)-

It is easy to see what the conditions are if we want such a formula to be
true. We look at what happens in H°. For v € M" we get

T(a,ua) - T(Bug)w) = Y yual Y nus(v))

YEr/T(a) ner/T(B)

We assume that the following three conditions hold

(i) for each n we can find an ' € T" such that

/ _
1 OUg = Ua O,

(ii) The elements 7’ form a system of representatives for I'/T'(a3)

(ill) uqug(v) = ugua(v) = uas(v).

Then we get

T(a,uq) T(B,up)(v) = Z Z Y uaup(v) = Z fuap(v) =

Y€ET/T () n'€T/T(B) £€r/T(ap)

T(afB,uap)(v)

We want to explain in a special case that we may have relations like the one
above.

Let S be a finite set of primes, let |S| be the product of these primes. Then we
define I's = G(Z [‘S‘]) We say that o € G(Q) has support in S if « € G(Z [\SI])

We take the group I" = Sly(Z), and we take two disjoint sets of primes Si,
Ss. For the group I' one can prove the so-called strong approximation theorem
(see [57]) which asserts that for any natural number m the map

is surjective. (This special case is actually not so difficult. The theorem holds
for many other arithmetic groups, for instance for simply connected Chevalley
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schemes over Spec(Z). )
We consider the case

al bl
as b2
o = . Erslaﬂ: .. 6FSQ7

aqd bq

where aglag—1 ...|a; and bg|bg—1|...|b1. It is clear that we can find integers n
and no which are only divisible by the primes in S; and S5 respectively, so that

D(n;) C T(a™),T(nz2) C T(B7Y),
where the I'(n;) are the full congruence subgroups mod n;. Since we have
Sly(Z/nZ) = Sla(Z/n1Z) x Sla(Z/n>Z)
we get
L/T(a™7") == T/T(a™) xT/T(57).

On the right hand side we can chose representatives v for I'/T'(a~!) which satisfy
v = Id mod ny and 5 for I'/T(3~!) which satisfy 7 = Id mod n;. Then the
products yn will form a system of representatives for I'/T'(a=1871). But then
we clearly have u,n = nu,, and we see that (i) and (ii) above are true. Then we
can put uag = UqUg.

We consider the case that our module M is a R-lattice in Mg, where Mg
is a rational G(Q)-module. Then we saw that we can write

Uy = d(a) -«

where d(«) will be a product of powers of the primes p dividing n; and an
analogous statement can be obtained for 8 and ns.

Since we have af = o and since clearly d(«)d(8) = d(af) we also get the
commutation relation.

So far we only proved this relation only for the action on H°(I'\ X, M) If
we want to prove it for cohomology in higher degrees, we have to choose an
acyclic resolution

0—M-—3A" A 5  =0—M— A°

and compute the cohomology from this resolution. We have to extend the maps
Uq, Ug to this complex

0— M@ — (4@

o L

0— M— A
and we have to prove that the relation

UaTp = 1 UaUs = N/ Uag
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also holds on the complex. Once we can prove this, it becomes clear that the
commutation rule also holds in higher degrees.

We choose the special resolution

0> M— Ind*(M) =
(3.7)
0 — M — Ind{j; M — Ind{};( Indj;, M/M) —

It is clear that if suffices to show: If we selected the uq,ug in such a way that
we have the condition (i), (ii) and (iii) above satisfied, then we can choose
extensions uq, ug, Uag t0 Indlfl}./\/l so that (i), (ii) and (iii) are also satisfied.
Once we have done this we can proceed by induction.

In other words we have the diagram of I'(«)-modules

0— M — (IndfjM)@

e |
0— M—  IndjjM,

and we are searching for a suitable vertical arrow ?. The horizontal arrows are
given by (as before see (2.3)) by i : m — fi, : {y — ym}.

We make another assumption concerning our «, 3. We assume that there
exists an automorphism © of G/Q such that O(a) = a=1,0(8) = 7! and
OT = I'. This assumption is certainly fulfilled in the case above, we simply take
O(g) =t g7, i.e. transpose inverse.

We choose representatives &1, ...,&, for I'/T(a™1), then ©&,...,0¢, is a
system of representatives for I'/T'(«). To define the vertical arrow ? = u? we
require

WO (£)(08) = ua(f(&)) Yv=1,...,r

and this yields a unique I'(«)- module isomorphism, for all v € I'(«) we must
have
u (£)(06,7) = ua(f(Ea ya) Y =1,....7.

Iterating this construction gives us the u((;), by construction these morphisms

satisfy (i), (ii), (iii). Since the complex H°(T'\X, Ind(M)) computes the coho-
mology groups H®(I'\ X, M) the commutation rules hold in all degrees.

HSO

3.1.2 More relations between Hecke operators

We look at the algebra of Hecke operators in the special case that G/Z = Gly/Z,
we consider the action on H'(I'\H, M) where T' = Sly(Z), we assume n even
and M = M[—%]. This has the effect that the centre of G/Z acts trivially on
M and this makes life simpler.

We attach a Hecke operator to any coset Tal' where a € G (Q) (i.e.
det(a) > 0, we want « to act on the upper half plane). Then o and Ao with
A € Q* define the same operator. Hence we may assume that the matrix entries
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of o are integers. The theorem of elementary divisors asserts that the double
cosets
[+ My (Z)ger0 - T € Gl3 (Q)

are represented by matrices of the form

G )

where b | a. But here we can divide by b, and we are left with the matrix

a 0
a-(o 1) , a€N.

We can attach a Hecke operator to this matrix provided we choose u,. We see
that a induces on the basis vectors of our module M

XYY"V aufn/2 . XYYy,
Hence we see that we have the following natural choice for u,
U : P(XY) — a™?a- P(X,Y).

(See the general discussion of the Hecke operators)
Hence we get a family of endomorphisms

T (g (1)>u<a o) =T(a) (3.8)

0 1

of the cohomology H*(I'\H, M) We have seen already that we have T,T;, = Ty,
if a, b are coprime.

Hence we have to investigate the local algebra H, which is generated by the

T

Ty =T (% (1)),u<p, 0) (3.9)

0 1

for the special case of the group I' = Sl3(Z) and the coefficient system M =
My, [—-5]. To do this we compute the product

Ty T, =T ((%T ?) ,ua;> T ((’5 ?) ,u%) (3.10)

where the u/,. are the canonical choices.
Again we investigate first what happens in degree zero, i.e. on H°(T'\H, I)
here I is any I'-module. Let o = <€ (1)> & € HY(I'\ X, I) then
T uer) T u)e = (S qua)( 3 nua)(©)

~Y€Er/T(a) nel/T(«a)
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We have the classical system of representatives

rren= U (5 e U U (5 1) (G o)ren,

j  mod p” j’ mod pr—1

and our product of Hecke operators becomes

CX O T (O D () Do

j mod p” 3’ mod pm—1 ji mod p

D SR R A (R G

j mod p”,j1 modp

R S o [ € Ry R

j’ mod pm~1j1 modp

T (e (B e

j mod p”
1 0 0 1 0 1
7’ mod pr—1

Now we have to assume t u,» satisfy commutation rules

UarUq = Ugr+1

L g\ _ (1 5"
tar (0 1) - (0 1 )“0” (3.11)
0 1 0 N\ _ o)
Uar | 7 o) l_y o) =cr(P)ar—

where ¢y (p) is a non zero integer. If we exploit the first two commutation relation
then we get as the sum in the ﬁrst[. . ]

L j+p'h
[Zj mod p”,71 mod p <0 1

1 0 0 1 3.12
Zj’ mod p”~1,j1 mod p <(j/+pr1j1)p 1) (1 0)}’&@74&(5)] ( )

=T ugrir)(§).
To compute the contribution of the second [ ] we observe that w =

<_01 (1]> € I and hence we have w¢ = £.Then the second commutation re-

lation yields for the sum of the terms in the second [ . }
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ao X (5 1)+ X (5 (G o) @)

j  mod p” 7’ mod pr—1

r—1

We observe that for j =0 mod p

(é ‘i) A" H(E) = tar—s ((1) p1> (€) = tar=1(€)

r—2

we get

and in case r > 1 for 5 =0 mod p

(j}p (1)> <_01 é))uar—l(f)—c)l é))uar-l (é p€f1>(£)—<_01 é))uar_l(g).

(3.14)

Here we used again (3.11) and ¢ € HO(I'\ X, I). In other words in the summation
(3.13) the first term only depends on j mod p"~! and the second only on j’
mod p"~2. For r > 1 this yields for the second term (3.13)

e S (o 1) 2 () (G o) @ =retirer e

j mod pr—1 3’ mod pr—2

If » = 1 the value for (3.13 ) is ¢;(p)(p + 1)uno and hence we get the general
formula

Tpr - Tp = Tpr1r + (p + €(p))cr(p)Tpr—1 (3.15)

where e(r) =0 if r > 1 and €(r) =1 for r = 1.
This formula is valid for all values of r > 0 if we put T},,-1 = 0.

We want to know what this means for the action on H(I'\H, M), we start
again from our special resolution. (3.7). A simple calculation gives that the wqr

satisfy the relations (3.11) with caq(p) = p™. Hence we get for the action on
HY(T\H, M)

Tyr - Ty = Tyrr + p" T s + €(r))p" Tprs (3.16)

where e(r) =0 if r > 1 and €(r) =1 for r = 1.

Interlude

We assume that a majority of the readers has seen Hecke operators in the
context of modular forms and also has seen formulas for these Hecke operators
acting on spaces of modular forms, which look very similar to the formulas above.
(See [80]), [50]) This is of course not accidental, in the following chapter we will
discuss the Eichler-Shimura isomorphism, which provides an injection of the
space of modular forms of weight k into the cohomology H!(TI'\H, Mj,_» @ C)).
(See Thm. 4.1.3). This is a Hecke-module isomorphism and this explains the
relation between the classical Hecke operators and the ”cohomological” Hecke
operators.
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There is a slight difference between the formulas here and in [80], the reason
is that our 7))~ differ slightly from the classical Hecke operators. But we always
have T, defined as above is equal to T}, in (3.1.2).

Here we want to stress that in this text so far -except in the introduction-
there is no mentioning of modular forms, this is intentional.

End Interlude

This can be generalised. We choose an integer N > 1 and we take as our
arithmetic group the full congruence group I' = T'(N). For any prime p | N
the T, u,) with a € Gl3 (Z[1/p]) form a commutative subalgebra #, which
is generated by 7},. It has an identity element e, = 1,0 This is the so called
unramified Hecke algebra.

For p|N we can also consider the T(«a, u,) with a € Gl (Z[1/p]). They will
also generate a local algebra #, of endomorphisms in any of our cohomology
groups, but this algebra will not necessarily be commutative. But if we have two
different primes p,p; then we saw that the H,,H,, commute with each other.
All these algebras #H, have an identity element e,, we form the algebra

/
Hr = Q) Hy
p

where the superscript indicates that a tensor hy = @, hy,hy € H, has a a
factor e, for almost all p. (In part IT we will give a better construction of the
Hecke-algebra which uses the language of adeles). This algebra acts on all our
cohomology groups. We recall that the action of Hr on the inner cohomology
groups is semi-simple (See Thm. 3.1.1). This has important consequences, which
we discuss after a brief recapitulation of the theory of semi simple modules.

3.2 Some results on semi-simple A- modules

We fix a field L and its algebraic closure L, for simplicity we assume that the
characteristic of L is zero, or that L is perfect. We consider an L-algebras A, not
necessarily commutative, but with identity. We need a few results and concepts
from the theory on finite dimensional vector spaces V/L with an action of A ,
i.e equipped with a homomorphism .4 — Endy (V).

Such an A module V is called irreducible if it does not contain an A invariant
proper submodule W C V, i.e {0} # W # V. It is called absolutely irreducible if
A® L module V ® L is irreducible. We say that V is indecomposable if it can
not be written as the direct sum of two non zero submodules. An irreducible
module is also indecomposable.

We say that the action of A on V is semi-simple, if the action of A ® L
on V ® L is semi simple and this means that any A submodule W C V & L
has a complement, i.e. we can find an A-submodule W+ C V ® L such that
VeoL=WaeWwt.

Then it is clear that we get a decomposition indexed by a finite set F

V®E=@Wi
i€l
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where the W; are (absolutely) irreducible submodules. In general this decom-
position will not be unique. For any two W;, W; of these submodules we have (
Schur’s lemma)

L if they are isomorphic as A -modules

Hom. (W, W) = {0 else

We decompose the indexing set F = E; U Fs U .. U E} according to isomor-
phism types. For any F, we choose an A module W[, of this given isomorphism
type. Then by definition

L ifjekb,
HomA(W[,,], W]) = { .
0 else
Now we define Hj,; = Hom4(W},},V ® L) we get an inclusion Hy,; @ W, —
V ® L. The image X, will be an A submodule, which is a direct sum of copies
of W},j, it is the unique such submodule.

We get a direct sum decomposition

VaL=FB P w.=px

v i€lE,

then this last decomposition is easily seen to be unique, it is called the isotypical
decomposition.

If V' is a semi simple A module then any submodule W C V also has a
complement ( this is not entirely obvious because by definition only W ®r, L
has a complement in V ®7, L. But a small moment of meditation gives us that
finding such a complement is the same as solving an inhomogeneous system of
linear equations over L. If this system has a solution over L it also has a solution
over L.) Therefore we also can decompose the A module V into irreducibles.
Again we can group the irreducibles according to isomorphism types and we get
the isotypical decomposition

Vv=u =p P U =FHv. (3.17)

icE v i€k,

But of course a summand U; may become reducible if we extend the scalars
to L (See examplple below). Since it is clear that for any two A- modules Vi, V4
we have

Hom 4 (V1,V2) ® L = Hom o7 (Vi ® L, Vo ® L)

we know that we get the isotypical decomposition of V' ® L by taking the iso-
typical decomposition of the Y, ® L and then taking the direct sum over v.

Example: Let Li/L be a finite extension of degree > 1, then we put A = L,
and V' = Ly, the action is given by multiplication. Clearly V' is irreducible, but
V ® L is not. If Ly/L is separable then the module is semisimple, otherwise it
is not.

We have a classical result:



3.2.  SOME RESULTS ON SEMI-SIMPLE A- MODULES 111

Proposition 3.2.1. Let V be a semi simple A module. Then the following
assertions are equivalent

i) The A module V is absolutely irreducible

it) The image of A in the ring of endomorphisms is End(V)

iii) The vector space of A endomorphisms Enda(V) = L.

This can be an exercise for an algebra class. Where do we need the assump-
tion that V is semi simple?

We return to our algebra A over L. Let V be an irreducible semi-simple
A -module, which is not necessarily absolutely irreducible. Let Iy be the two
sided ideal which annihilates V, i.e. the kernel of A — Endp (V). Let Cr be
the centre of A/Iy. This centre is a field, because any ¢ € Cy, is either zero or
an isomorphism, in other words V is a Cp, vector space. The Cp-algebra A/Iy
is a central simple algebra. There is a central division algebra D/Cy, such that
A/Iy = M,(D), this is the algebra of (r,7) matrices with coefficients in D.
This algebra has exactly one -up to isomorphism- non zero irreducible module,
this is the module of column vectors D", the algebra acts by multiplication from
the left. Let us denote this module by X[A/Iv]

Theorem 3.2.1. The extension Cr/L is separable. Let Li/L be a normal clo-
sure of Cr,. Then we have the isotypical decomposition

VerL = @ V ®c, .0 L1 (3.18)

o:Cr,—L1

The Galois group Gal(Ly/L) permutes the summands simply transitively. The
A/Iy®c, »L1 module V®c, L1 is isomorphic to the standard module X[A/Iy Qc, o
Ly).

Here M, (D) is the Ly algebra of (r,r) matrices with coefficients in D. This
is essentially the classical Wedderburn theorem.

Proposition 3.2.2. For any semi -simple A module V we can find a finite
extension Lo/L such that the irreducible sub modules in the decomposition into
wrreducibles are absolutely irreducible.

Clear, we have to take an extension which splits D.

If V is any A module- not necessarily semi simple but finite dimensional over
L-then there is a finite extension Ly /L and a filtration

{O)cWvicV,C---CV,o1 CV®L Ly

such that the successive quotients V;/V;_; are absolutely irreducible. A very
elementary argument shows that the set of isomorphism types occurring in this
filtrations does not depend on the filtration, let us denote this set of isomorphism
types by Specy (A ® La).

We say that an A- sub module W C V is complete in V if the two sets
Specy, (A ® La) and Specyy, (A ® Lo) are disjoint. We have the simple
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Proposition 3.2.3. a ) If V is a semi simple A-module and if W C V is
complete in V then we have a canonical splitting V=W @& W',

b) If V is not necessarily semi simple but if A is commutative instead then
any W C V which is complete in V also has a canonical complement W', i.e.
V=weW.

Proof. For the second assertion we observe that an absolutely irreducible A
module U is simply one dimensional over Ly and given by a homomorphism
m: A— Lo, i.e. it is an eigenspace for A. O

Let us call such a decomposition a #sotypical decompositioninto complete
summands.i.

Let us now assume that we have two algebras A, B acting on V, let us
assume that these two operations commute i.e. for A € A,B € B,v € V we
have A(Bv) = B(Av). This structure is the same as having a A ®y, B structure
on V. Let us assume that A acts semi simply on V' and let us assume that the
irreducible A submodules of V' are absolutely irreducible. Then it is clear that
the isotypical summands Y, = @ W; are invariant under the action B. Now we
pick an index 7y then the evaluation maps gives us a homomorpism

Wio ® HOHIA(WZ'O,YV) —Y,.

Under our assumptions this is an isomorphism. Then we see that we get
V=W, @ Homa(W;,,Y,)
v

where i, is any element in F,, and where A acts upon the first factor and B acts
upon the second factor via the action of B on Y.

We apply this to our Hecke algebra Hr = ®p'7-[p and consider its action

on H'(I'\H, M). We anticipate the theorem that this action is semi-simple.
Hence we can find a finite normal extension F'/Q such that we get an isotypical
decomposition

H'(T\H,M ® F) = @ H'(T'\H, M ® F)(;), (3.19)
w5
here 7y is the isomorphism type of an absolutely irreducible # module over
F. We can realise this module by a vector space Hy,/F with an absolutely
irreducible action of Hr on it. Then H,, = ®/ Hy, where H;  is an absolutely
H, module. For almost all primes H, is one dimensional and m, is simply
simply a homomorphism

Tp : Hp — F which is determined by its value 7;(T,) € F (3.20)

The Galois group Gal(F/Q) acts on H'(I'\H, M®F) and hence it permutes
the 7y which occur ih decomposition. Then for any 7y the Hecke module

P HOHMF) (")), (3.21)

o€ Gal(F/Q)
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is invariant under the action of the Galois group, hence defined over Q Theefore
we get an isotypical decomposition

H'(T\H, M) = @ H' (T\H, M)(I1y) (3.22)

oy

3.2.1 Explicit formulas for the Hecke operators, a general
strategy.

In the following section we discuss the Hecke operators and for numerical ex-
periments it is useful to have an explicit procedure to compute them in a given
case. The main obstruction to get such an explicit procedure is to find an ex-
plicit way to compute the arrow j®(«) in the top line of the diagram (3.3). (we
change notation j(a) to m(a)).

Let us assume that we have computed the cohomology groups on both sides
by means of orbiconvex coverings U : U;e;Vy,, = I'(a™!)\X and U : UjesUy, =
I(a)\X.

The map m(a) is an isomorphism between spaces and hence m(a)(%0) is an
acyclic covering of I'(a))\ X. This induces an identification

C*(T, M) = C*(m(a)(), M)

and the complex on the right hand side computes H®(I'(a)\ X, M(®). But this
cohomology is also computable from the complex C'(il,/\;l(a)). We take the
disjoint union of the two indexing sets I UJ and look at the covering m,, () ULL
(To be precise: We consider the disjoint union I =TUJ and define a covering
90; indexed by I. If i € I then W; = m(a)(V,,) and if i € J then we put
W; = U,,. We get a diagram of Czech complexes Czech

= Dicr MW — Dicrin MEO(W,) —

T i
= @icia MW = Byciorr MO W) — (3.23)
2 {

= @ics s MWL) = Bycyors MDD (W) —

The sets I*®, J® are subsets of I* and the up- and down-arrows are the resulting
projection maps. We know that these up- and down-arrows induce isomorphisms
in cohomology.
Hence we can start from a cohomology class ¢ € H9(I(a)\X, M), we
represent it by a cocycle
Ce € @M(a)(Wi).

iela

Then we can find a cocycle ¢ € @, ;. M@ (W;) which maps to ¢¢ under
the uparrow. To get this cocycle we have to do the following: our cocycle c¢ is
an array with components c¢(2) for i € I9. We have dy(ce) = 0. To get & we
have to give the values é(¢) for all ¢ € €17\ I9. We must have

dgée = 0.
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this yields a system of linear equations for the remaining entries. We know that
this system of equations has a solution -this is then our ¢ - and this solution is
unique up to a boundary dq_1(§’). Then we apply the downarrow to ¢¢ and get
a cocycle cz, which represents the same class £ but this class is now represented

by a cocycle with respect to the covering 4. We apply the map u® : M@ 5 M
to this cocycle and then we get a cocycle which represents the image of our class
& under T,.

The adjunction formula

Let MY be the dual module to M, We will define Hecke operators
Te(o,uy,, ) s HY(T\X,M") — H?(T\X, M) (3.24)
such that for z € H9(I\X, M),y € H¥9(T'\ X, M") we have
< T(a,uq)z,y >pp=< x, Tc(a_17uav)y >pD (3.25)

We proceed as in section 3.1. If IV C T is of finite index we have again the
two maps

78 HY(I'\X, M) — H*('\X, M) and 7, . : H*(T\X, M) — H2(I'"\X, M)

Then we can define

He (T VX M) 7

) s

CH(D(0)\X,j(a ). (MY) £ H2(T(a)\X, M)

™ To

Tc(a71,1La,1)

H(P\X, M) H(P\X, M)

(3.26)

Now it is easy to see that 7* and 7§ and as well pi, and 7, . are adjoint to
each other with respect to Poincare duality and then it becomes clear that (6.1)
holds.

In the following section we discuss the explicit computation of a Hecke op-
erator in a very specific situation. We start from our computation in section
(2.1.4) and write down some H*(I'\ X, M) explicitly. On these modules we give
explicit procedures to compute a Hecke operator. We get some supply of data
and we look for some interesting laws or we try to verify some conjectures (see
(3.89)).

3.3 Hecke operators for Gls:

For the rest of this chapter we discuss a very specific case. The algebraic group
scheme will be Gly/Z. The symmetric space will be

X = Gl3(R) /Ko where Ko = SO(2) x {<é g) It e Rt > 0}.
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Then the space X is the union of an upper and a lower half plane. We choose
I' = Gly(Z), then 3
MNGo/Ko =T\H,

where I" = Sl5(Z) and H is the upper half plane.
Earlier we defined the I'-modules M,,[m] (Seel.2.2 ), in the following we put
M = M,,[0].

We refer to Chapter 2 2.1.3. We have the two open sets U;, resp. Up C H,

they are fixed under
0 -1 1 -1
S_(l 0)andR—<1 O)’

respectively. We also will use the elements

11 _ -1 1
T+:<O 1>,S;L2T_ST_1:< 5 1>erg(2)

10 _ _ -1 2 _
T:(1 1>7SI:T+ST+1=<_1 1>EF0(2)

The elements S and S; are elements of order four, i.e. (S7)? = (57)? = —Id,
the corresponding fixed points are % and i 4 1 respectively. Hence S] fixes

the sets alUi1 and Ui+17 this is the only occurrence of a non trivial stabilizer.
2

3.3.1 The boundary cohomology

It is easier to compute the action of the Hecke operator 7, on the cohomology
of the boundary, i. e. to compute the endomorphism

T, : HY((T'\H), M) — H'(d(T'\H), M).

We know (see 2.81) that H'(Q(T'\H), M) = M/(1—T, )M, we collect some
easy facts concerning this module. For n > k > 0 we define the submodules

M(k) -7 Xkyn—k: o) 7 Xk:-‘rlyn—k—l DB 7 X"

for k = O(resp. k = n) we have M© = M(resp. M = Z X"). These
modules are invariant under the action of T we have (1 — T )M®) < ME+D,
and M /MM =5 7. The map (1 — T ) induces a map

ak : M(k:)/M(k+1) N M(k+1)/M(k+2)
which is given by multiplication with n — k. Hence it is clear that
M/ =THIM=Z[Y"| & MB /1 - T )M

and the second summand is a finite module. The filtration of M by the
M®) induces a filtration on H'(9(I'\H), M), we put

HY(OT\H), M)®) .= Im(H" (JT\H), M*)) — H ((T\H), M)  (3.27)

Then
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Proposition 3.3.1. For k > 0 the quotient
H'(O(D\H), M)® /H' (9(D\H), M)*TD =5 Z/(n — k +1)Z

The Hecke operator Ty, acts on H*(A(T\H), M)®) / H (9(T\H), M)*+D) by maul-
tiplication with p* + p™~*+1. Especially we have

TIY" =" +1)Y"]

Proof. We introduce the polynomials

Y
(X Y) = X% (% 1) (% -kt )= X% - v) = k!Xn(;;) -

x|~

X Ry —X) ... (Y — (k= 1)X) = X" FYF 4o (—1)FEIXT

Obviously these €;(X,Y") form a basis of M. Pascal’s rule for binomial coefficient

says (%:1) = (%) + (ké) and this yields

Toen(X,Y) = (X, X +Y) = ex(X,Y) + kep_1(X,Y)

and from this we get

0
M/A=TOM =Ze,(X,Y) & P (Z/(k+1)Z)ex(X,Y) (3.28)

k=n—1
this is the first assertion.

We pick a prime p and investigate the action of T, on H'(8(T'\H), M).
We recall the definition of the Hecke operator: We start from the matrix o =

(g ?) and consider the diagram (3.3) adapted to our situation

~ i (1)
J(a
(o)

HY(O(I' (a7 1)\H), M) H'(O(L(a)\H), j(a)«(M)) ==  H'(9(I'(a)\H), M

%(1) lﬂ(l)

HY(T\X, M) o) HY(D(I\H, M)
(3.29)

The group I'(a™1!) = { Z Z) lc=0 mod p}, it acts on P}(Q) and has two

orbits which can be represented by co and 0. The stabilisers of these two cusps
are I'oo = {£Id T%} and I'y = {£Id T""} respectively. Hence we get

HY(O(T(a™Y)\H), M) = M/(Id — T)M & M /(1d — TP )M (3.30)
We identify H*((D\H, M) = M/(Id — T, )M =% M/(Id — T_)M where the

last arrow is induced by the map m — wom with wg = (01 (1)) . Then

0 (m) = (m, C (1)) wom). (3.31)

j=0
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Therefore the composition
ulPoj(e) : M/Id-T) MM/ (Id-TP )M — M/(1d-T?) MM /(1d-T-)M

is given by u(()}) oj(a)(l)(moo,mo) = (Moo, amyg). and ) (Moo, 10)) = Moo +

wong. This yields
p—1 1
_ J
T,(m) = am + woawgy * E . (0 1) m.
=

On M®) / MEFD the element ((1) {) acts as identity, o is multiplication by

pF and Wo oWy ! is multiplication p™—*. O

Here we encounter a situation where the quotient H*(T\H, M) int,1/H (T\H, M) ins
may become non trivial and somewhat interesting (see(2.72)). We have to con-
sider the exact sequence

0 — HYT\H, M) —» HYT\H, M) — HY(J(T'\H), M). (3.32)

Our cohomology groups may have some torsion 7; ¢ H'(I\H, M), T3 C
H'(d(T'\H), M) and the map r maps the torsion 77 to a submodule r(7;) C Ty.
But it will happen that r(r=1(7z)) is strictly larger than r(7;) this means that
some non torsion elements are mapped to torsion elements under r. By definition

HY(T\H, M) ity = 7' (72) and therefore
H'(T\H, M) it/ H (T\H, M) i = 7(r~(T2)/Th) (3.33)
This has been investigated extensively by Taiwang Deng in [27].

Let 7y : H — I'\H be the projection. We get a covering NH = m (Ui) U
m1(U,) = U; N U,. From this covering we get the Czech complex

0 - MU)eMU,) — MUNU,) —0
L evg, @ evg Levgnp, (3.34)
M<S> @M<R> N M =0

and this gives us our formula for the first cohomology

HY(T\H, M) = M/(M<5> @& M<F>) (3.35)

We want to discuss the Hecke operator T5. To do this we pass to the sub-
groups

1"3(2):{(; Z |[c=0 mod 2} (3.36)
3.36
L@ ={(* ")1b=0 mod2}
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we form the two quotients and introduce the projection maps 7r2jE cH —
I'Z(2)\H. We have an isomorphism between the spaces

T3 (2)\H = I (2)\H

which is induced by the map mo : z — (2 0

0 1) z = 2z. This map induces an

isomorphism

as : HY(TT (2)\H, M) = HY(Ty (2)\H, M), (3.37)

We also have the map between sheaves us : m +— (g (1)> m and the com-

position with this map induces a homomorphism in cohomology

HY (T (2\H, M) "% 515 (2)\H, M). (3.38)

This is the homomorphism we need for the computation of the Hecke operator;
it is easy to define but it may be difficult in practice to compute it.

Each of the spaces T'g (2)\H, Ty (2)\H has two cusps which can be rep-
resented by the points co,0 € P!(Q). The stabilizers of these two cusps in
[ (2) resp. I'y (2) are

< Ty > x{£Id} and < T? > x{+Id} Cc T{(2)

resp.
<T? > x{#Id} and <T_ > x{£Id} C I';(2)

the factor {£Id} can be ignored. Then we get
HY (9T (2)\H), M) =5 M/(1d -~ T )M & M/(1d — T*)M

HY(O(Ty (2)\H), M) = M/(Id — T )M & M/(1d — T_) M.

But now it is obvious that a maps the cusp oo to co and 0 to 0 and then it is
also clear that for the boundary cohomology the map

s M/Id - T )M e M/1d - T2 )M — M/(1d - THIM & M/(Id — T_)M

is simply the map which is induced by ue : M — M. If we ignore torsion then
the individual summands are infinite cyclic.

Our module M is the module of homogenous polynomials of degree n in 2
variables X, Y with integer coefficients. Then the classes [Y™], [X™] of the poly-
nomials Y (resp.) X™ are generators of (M /(Id—T%) M) /tors( resp. (M /(Id—
TY)M)/tors) where v = 1( resp. 2.) Then we get for the homomorphism o3

al: [Y"] = [Y7, 0l 1 [X7] > 27 [X7). (3.39)

Nochmal ansehen
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3.3.2 The explicit description of the cohomology

We give the explicit description of the cohomology H'(I'{ (2)\H, M) We intro-
duce the projections

oy Ty
H -2 Tf (2)\H; H -2 T (2)\H
and get the covering i,

I @\H = 7 (0) Uy (T-03) U (0,) = nf (03) Umd (Tus) U (D)

where we put T_U; = ﬁ# Our set {z,} of indexing points is i, i1 we put
Ut =n3 (Us,). Note T_ ¢ T§(2), Ty € IT§(2).

Again the cohomology is computed by the complex
0= MU & M(T_U;") @ M(US) = MU NUS) & M(T_UF nUS) =0

we have to identify the terms as submodules of some @ M and write down the
boundary map explicitly. We have

MUH & MUL) & MUF) 5 MU U & MUL NUF)

| evg, @ evp_g, @ evy b evgap, © Vg ar-1g, ® €V ging,

M e MSST> @ M o, MoeMaoM
(3.40)

where the vertical arrows are isomorphisms. The boundary map dy in the bot-
tom row is given by

(m1,ma,m3) = (m1 —mg,my — T 'mg, mq —ma) = (2,9, 2)

We may look at the (isomorphic) sub complex where z = z = 0 and m; = ms =
mg then we obtain the complex

0— M<Sl+> - M- 0; mo = Mo — T;lmg
which provides an isomorphism
HY(TE (2)\H, M) =5 M/(Id — Ty HYM=5>, (3.41)

A simple computation shows that the cohomology class represented by the
class (z,y, z) is equal to the class represented by (0, yfx+T_:1,zfz, 0) we write

[(xvyvz)] = [(Ovy_x+TJ:12_Zvo)] (342)
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3.3.3 The map to the boundary cohomology

We have the restriction map for the cohomology of the boundary
HY(TF2\H,M) M/(1d = TYM=S>

i) rterT ] (3.43)

~

HY(Q(TF(2)\H),M) =% M/(Id-T )Mo M/(Id - T?)M

we give a formula for the second vertical arrow. We represent a class [m] by an
element m € M and send m to its class in each the two summands, respectively.
This is well defined, for T it is obvious, while for 7~ we observe that if m =
a:fT_le and S{z =2 then m =2 — T_'Sf 2 =2 — T2

Restriction and Corestriction

Now we have to give explicit formulas for the two maps 7*, 7, in the big diagram
((3.3 ).Here we should change notation: The map 7 will now be denoted by :

@l :TH(2)\H — I\H (3.44)

We have the two complexes which compute the cohomology H'(T'y (2)\H, M)
and H'(I'\H, M), and we have defined arrows between them. We realized these
two complexes explicitly in (3.40) resp. (3.34) and we have

MU & MUL) @ MUS) -2 MU NUF) @ MUL NUS)
(@)1 L (@) 0 (@)D 1 4 (w3 (3.45)
M(U;) & M(U,) o, MU NU,)

and in terms of our explicit realization in diagram (3.40 ) this gives

do

MMM =% MaeMaeM

(@)1 L (@3)) (@)1 4 (w3)q (3.46)

M<S> @M<R> ﬂ) M

Looking at the definitions we find
(w3 )@« (m1,ma) = (ma, T_my,my)
(3.47)
(@) o) : (M1, ma,m3) — (M1 + Smq + T "ma, (1 + R+ R?*)ms)

and we check easily that the composition (o ))° (wwq ) is the multiplication
by 3 as it should be, since this is the index of I'g(2)" in I.
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For the two arrows in degree one we find

() :m = (m, Sm, T_m)

(3.48)
(WSF)(l) : (my1, ma,mg) — (mq + Smg + lemg)
We apply equation (3.42) and we see that (w5 )" (m) is represented by
(@)D (m)] = [0, Sm + T "T_m —m — T_m, 0] (3.49)

We do the same calculation for I'; (2). As before we start from a covering

L5 (\H = 75 (U3) Uy (T4 Us) Uy (Up) = m (Uh) Uy (Uign) Uy ()
and as before we put U, = W;(Uy) In this case Ujyq = T4 U; is fixed by

ST = (:} ?) €'y (2) and we get a diagram for the Czech complex

MUY MU ) @ MU;) 2 MU nUy) & MU, NU;)

1

evg, @ evg,,, | Bevg, Vind, D Vginr-1a, + Vg, o,

M@ MSST> g M o, MoeMae M
(3.50)

Again we can modify this complex and get
HY(Ty (2)\H, M) —5 M/(Id — T-H)M=51 >, (3.51)
We compute the arrows (w, )*, (wy )« in degree one

(wy )M 2 m — (m, Sm, Tym),
(3.52)
(w5>(1) : (m17m2,m3) — (m1 + Smo + T;1m3)

The computation of a3.

We recall our isomorphism a between the spaces and the resulting isomorphism
(3.37). The identity map of the module M and the isomorphism « on the space
identifies the two complexes

M(U) & MULL) & M(U) o, MU U & MUL, N US)

_do,

MO (a(Uf) & MO (a(Ui) & MO (a(U)) MO (U NUH)) & MO (a(Uf NUY))

(3.53)

and if we consider their explicit realization then this identification is given by
the equality of Z modules M = M(® . This equality of complexes expresses
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the identification (3.37). We can compute the cohomology H*(T'y (2)\H, M(®))
from any of the two coverings

Ty (2)\H = a(U;") Ua(Uih ) U(US) = Uy, UUy, U UL,
2
Lo 2N\H=U; VU, VU, = Uz, UUyz, UUy,.
We have to pick a class ¢ € H (T (2)\H, M(®)) and represent it by a cocycle
ce P MU, NUL,)
1<i<j<3
(The cocycle condition is empty since U, N U, NU,, = 0.)
Then we have to produce a cocycle
e P MU, UL,
4<i<j<6

which represents the same class.
To get this cocycle we write down the three complexes

Dicici<s M (U, N Uz;) — 0
T

Di<ici<s MU, N Us;) = Dicicjcr<s M@ (U, N Uz, NU,) (3.55)
1

Dicicj<o MU, NU,,;) — 0

for our cocycle c¢ we find a cocycle cg in the complex in the middle which maps to
c¢ under the upwards arrow and this cocycle is unique up to a coboundary. Then
we project it down by the downwards arrow, i.e. we only take its 4 <¢< 75 <6
components, and this is our cocycle .

We apply the principles from section (2.1.3) and we write down these com-
plexes explicitly. For any pair i = (4, j),7 < j of indices we have to compute the
set F;. We drew some pictures and from these pictures we get (modulo errors)
the following list (of lists):

Fia=10 Fi3={1d,T*} Fia={d} Fis={1d,T;?}
Fre:={Id,T-"} Foz = {Id} Fou={Id,T_} Fos = {Id}
Foe = {Id} Faa4={1d,T?} Fas={ld}  Fs36={Id, S}
Fas=10 Fie={Id, 7'}  Fse={1d}
(3.56)

Now we have to follow the rules in the first section and we can write down
an explicit version of the diagram ( 3.55) . We refer to section 2.1.3 and get
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Dicici<sDPrer, (M@ Tisy 0
1)

Bicicics Brer,,MNT7 5 B oiije Boer,, (M) minn
i

Bicicics Dyer, (M) — 0

(3.57)

Here we have to interpret this diagram. The module M(®) is equal to M as
an abstract module, but an element v € I'; (2) acts by the twisted action (See
Chapll, 2.2)

mn—>7*am:of1'ya>km

here the * denotes the original action. Hence we have to take the invariants
(M@ iy with respect to this twisted action. In our special situation this has
very little effect since almost all the I'; ; , are trivial, except for the intersection
oz(f]%) N U; in which case T'; ;., =< S > . Hence

(M(a))<s;> _ M<ST>,

Each of the complexes in (3.57) compute the cohomology group H'(I'y (2)\H, M)
and the diagram gives us a formula for the isomorphism in (3.37). To get u?, in
(3.37) we apply the multiplication mq:m +— am to the complex in the middle
and the bottom. Then the cocycle ¢ is now an element in @/\;1(0‘) and acg

represents the cohomology class u$,(£) € H'(Ty (2)\H, M).

Now it is clear how we can compute the Hecke operator

Ty=T 5 0 :M/(M<S> EBM<R>) — M/(M<S> EBM<R>)
o)
We pick a representative m € M of the cohomology class. We apply (g )(1) in
the diagram (3.46) to it and this gives the element (Sm, m,T_m) = c.. We apply

the above process to compute Céa). Then acéa) = (mq,mg, m3) is an element in

MU NU;) ®M(U;;; NU; ) and this module is identified with M & M & M

by the vertical arrow in (3.50). To this element we apply the trace
(w3 )1y (ma, ma, m3) = my +mso + T_:lmg

and the latter element in M represents the class To([m]).

We have written a computer program which for a given M = M,,, i.e. for
a given even positive integer n, computes the module H 1(F\H,M) and the
endomorphism 75 on it.
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Looking our data we discovered the following (surprising?) fact: We consider
the isomorphism in equation (3.37). We have the explicit description of the
cohomology in (3.41)

HY(TE (2\H, M) =5 M/(Id — Ty HM<S>

and
HY Ty (2)\H, M) =5 M/(Id — T-H(M(@))<5r>

We know that we may represent any cohomology class by a cocycle
ce = (0,¢¢,0) € M (my (a(Uy)Na(U,)) M (5 (a(U)Na(T U, )M (5 (Ui )Na(T11U,))

so it is non zero only in the middle component and then it is simply an element
()

in M. If we now look at our data, then it seems to by so that ¢; ' is also non

zero only in the middle, hence
s € (0,¢,0) € 00 M@ (5 (U; NT=U,)) @0
hence it is also in M(®) and then our data seem to suggest that
e =ce
Hence we see that the homomorphism in equation (3.38) is simply given by
XYY"V s 2V XYV,

Is there a kind of homotopy argument (- 2 moves continuously to 17-)-, which
explains this?

We get an explicit formula for the Hecke operator 7> : We pick an element
m € M representing the class [m]. We send it by (cy ) to HY(T'§ (2)\H, M),
ie.
()Y = m — (m, Sm, T_m) (3.58)
We modify it so that the first and the third entry become zero see( 3.42)

[(m, Sm,T_m)] = [(0, Sm —m + T 'T_m — T_m,0)] (3.59)

To the entry in the middle we apply My = <2 0

0 1> and then apply (@, )(1) and

get

To(m]) = [S - Ma(Sm —m + T ' T_m — T_m)] (3.60)

Eisn
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3.3.4 The first interesting example

We give an explicit formula for the cohomology in the case of M = Myy. We
define the sub-module

5
Mtr — @Zylo—uxl/
v=0

and we have the truncation operator trunc : M — M?*

ylo—v xv if v <5,

trunc : YOV XV
{(—1)”+1Y”X10” else,

it identifies the quotient module M/ M<5> to M. To get the cohomology we
have to divide by the relations coming from M<%> ie. we have to divide by
the submodule trunc(M<f>) The module of these relations is generated by

R; = 10Y9X 4+ 20Y7X3 + Y° X5
Ry = 9Y3X2 —36Y7 X3 4+ 14YSX* — 45Y5X®
Rs = 8Y7X3 4 10Y5X°

and then
~ 5
H'(D\H, M) = @ 2Y"*"" X" /{Ry, Rz, Rs} (3.61)
v=0

We simplify the notation and put e, = Y X" %. Using R; we can eliminate
es = —10eg — 20e7 and then

v=>6
H'(D\H, M) = @P Ze, /{~50eq + 9es — 96e7 + 14eg, —100eg — 192e7}
v=10
(3.62)
introduce a new basis { fi0, fo, fs, f7, f6, f5} of the Z module M*" :
Ji0 = €105 fs = —2es — 3eq; fo = Yes + 1deg
(3.63)
fo = —12e9 — 23e7; f7 = 2beg + 48e7; f5 = 10eg + 20e7 + e5
and hence in the quotient we get fs = 0 and 2f; = f and therefore
HY(T\H, M) =Zf10 ® Zfo ® Zfs ® Z/(4) fz (3.64)

X
We defined the action of complex conjugation (see 2.84) on H'(I'\H, M)
and we leave it as an exercise to the reader to show that

e (fi0) = —fro, M (fo) = —fo, ¢V (fs) = fs (3.65)

If we can apply the above procedure to compute the action of 75 on coho-
mology. It is turns out to be reasonable to compute the matrix for 7> with
respect to the basis fig, fs, fo then our program with Gangl yields
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2049 0 —68040 O
0 -24 0 0

0

2

T, = (3.66)

0 0 —24
0 0 0

Hence we see that T is non trivial on the torsion subgroup. If we divide by the
torsion then the matrix reduces to a (3,3)-matrix and this matrix gives us the
endomorphism on the ”integral” cohomology which is defined in general by

HS (D\X, M) = H*(I'\ X, M)/tors ¢ H*(T\ X, Mg). (3.67)

Here we should be careful: the functor H®* — HJ, is not exact. In our case we
get (perhaps up to a little piece of 2-torsion) exact sequences of Hecke modules

0 — Zfy® Zfs — ZfioDZLfo ®Zfs — Zfio — 0
I | |

0 — Hilnt,!(F\H’ M) - H} (T\H, M) o H (0(T\H), M) - 0

(3.68)

where Ty(f10) = (2'* + 1) fi0. If we tensor by Q then we can find an unique
element - the Eisenstein class- fi, € HL, ("'\H, M ® Q) which maps to fio and
which satisfies T»(f],) = (2" + 1) f{y. This element is not necessarily integral,
in our case an easy computation shows that fT ¢ Hl (I'\H, M), but 691f7 €
H} (D\H, M). This means that 691 is the denominator of fl,, i.e. 691 is the

denominator of the Eisenstein class

Hence we see that

Hip (T\H, M) D Hp, (T\H, M) & Z(691 ) (3.69)

the quotient of these modules is isomorphic to Z/6917Z.

The exact sequence X in (3.68) is an exact sequence of modules for the
Hecke algebra H O Z[T3] and hence it yields an element

[X10] € Exty (Zfi0, Hiye ,(D\H, M)), (3.70)

1

and an easy calculation shows that this Ext' group is cyclic of order 691 and
that it is generated by Xip.

We look at the action of the full Hecke algebra H on these cohomology
groups. It turns out that for any prime p the Hecke operator T}, acts by the
eigenvalue p*! + 1 on fio(see proposition 3.3.1). We will also see that a simple
argument using Poincare duality and the self adjointness of the Hecke operators
shows that

T, acts by multiplication by a scalar T(p) on the inner cohomology .
Then we can conclude

For all primes p we have

7(p) =p' +1 mod 691—
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3.3.5 Interlude: Ramanujan’s A(z)

We want to stress that the previous considerations are of purely algebraic and
combinatorial nature, no analysis is involved. In the next chapter we will use an-
alytic methods -especially we will use the results from the theory modular forms-
to obtain some further insight into the structure of the cohomology groups. In
our special case here it comes down to the following.

In his paper [72] Ramanujan introduced the function

A(Z) _ e27riz ﬁ(l o eQm’nz)24 (371)

n=1
is a function on the upper half plane H = {z|3(z) > 0} and it satisfies

az+b

e I CRRILING

A(

for all (Z 2) € Slp(Z). This means that it is a modular form of weight 12.

Since it goes to zero if z = iy — oo it is even a modular cusp form. It is the
unique (up to a non zero scalar ) cusp form of weight 12 for Sly(Z),
(See [80]). We can expand

A(Z) — 627'riz _ 246471'1',2 + 2526671'2'2 N ane2nﬂ'iz ¥
@ The coefficients satisfy (conjectured by Ramanujan) the following recursions

Gnyny = Gn, Qn, if n1,n9 are coprime;
(3.72)
_ 11 . . .
Qpr = QpGpr—1 + P ayr—2 if p is a prime and r > 2

These recursion formulas for the coefficients of the expansion were proved
by Mordell [66] (essentially by using Hecke operators) and later by Hecke in a
more general framework.

In the next section we discuss the Eichler-Shimura isomorphism (see 4.1.7),
in this special case it implies that for any prime p we have a, = 7(p). Therefore
we define the Ramanujan 7 function by 7(n) = a,. With this definition of 7(n)
Ramanujan proved the famous congruence 7(p) = p'* +1 mod 691.

Ramanujan also made the famous conjecture saying that for all primes p we
have the inequality

r(p)<2p®

This inequality implies of course that for all primes p (and especially for
p=2) 7(p) # p'' +1 and this implies that any Hecke operator T}, provides a
canonical splitting into eigenspaces H (I'\H, M®Q) = H}(T\H, M2Q)2Qf10.
This is the simplest instance where the Manin-Drinfeld principle works.
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Other congruences

It is easy to check that H'(I'\H, M) and H2(I'\H, M) do not have 5 or 7 tor-
sion. Therefore we have ( see Prop. 3.3.1, )

Z/10Zeo(X,Y) D Z/5Zes(X,Y) @ Z)TZes(X,Y) Cr(r (T2))/T1  (3.73)
and this implies the well known congruences
(p)=p+p=p°+p° mod5; 7(p)=p" +p° mod 7 (3.74)

[86] [27] These congruences are called congruences of local origin whereas the
congruence mod 691 is a congruence of global origin.

End of interlude

Reduction mod 691

Of course our program also runs if we reduce mod 691, and in principle it
runs much faster. Since there is at most 2 torsion we get an exact sequence of
Hecke-modules

0= Hy (D\H, M ® Fo91) —Hiy (T\H, M © Fg91) = Hyo (9(D\H), M ® Feg1) —0.
(3.75)
The matrix giving the Hecke operator mod 691 becomes
667 0 369
Ty = 0 667 0 . (3.76)
0 0 667

Now we see that our computation mod 691 yields the extension class [X1p ®
Fgo1] is an element of order 691, or in other words the sequence (3.75 )does not
split under the action of T5. Therefore we get from the computation mod 691
that 691 divides the order of [X0] and hence divides the order of the denomi-
nator of the Eisenstein class.

Of course we may also consider the other Hecke operators 7}, acting on
H} . (T\H, M) then the corresponding matrix will be

T, = 0 T(p) 0 . (3.77)

But there is no reason that for the other Hecke operators T, the sequence
(3.75) is always non split. Here we have a little proposition

Proposition 3.3.2. The sequence (3.75) splits for the action of T), if and only
if

P +1—-7(p) =0 mod 6912 (3.78)
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Proof. The sequence mod 691 splits for T}, if and only if t®) = 0 mod 691.
But we have seen that the equation z(p'! + 1 — 7(p)) = t») has no solution in
the local ring Zsg1), and this implies the above congruence. O

For the curious reader we mention that this happens for p = 3559 and for
the first ten thousand primes it happens 13 times and 13 is roughly equal to
10000/691.

At the end of Chapter 5 we presume the result of Deligne which says that we
have an action of the Galois group on H}, (T\H, M ®Fgg;). We will see that the
structure of this cohomology as a module for the Hecke algebra has interesting
consequences for this action ( See Theorem 5.1.5).

3.3.6 The general case

Now we describe the general case M = M,, where n > 0 is an even integer
> 0. We define M as above, if n/2 is even, then we leave out the summand
X2y n/2 we get
Mtr — M/M <S>.
This gives us for the cohomology and the restriction to the boundary coho-
mology

HYT\H,M) = M /Rel
b \ (3.79)
HYH(T\H), M) = M/Id-T)M.

We have the basis

yr/2xm/2 n /2 odd

en = trunc(Y™), e,_1 = trunc(Y" 1 X), ..., {0 X
else

for M. Let us put no = n/2 or n/2 — 1. Then the algorithm Smithnormalform
provides a second basis f, = en, fn—1,--., fn, such that the module of relations
becomes

dnfn = Oadnflfnfl = 07-~'7dtft = 07"-udn2fn2 =0

where d,|dn, 1] .. |dn. We have d,, = dp, 1 = -+ = d;,_25 = 0 where 25 + 1 =
dim HY(T'\H, M) ® Q and d,,_2s_1 # 0.

Now H. Gangl and I we have written a computer program which for a given
n gives us an explicit matrix for 75, it is of the form

Jj=no

L(f) =Y.t (3.80)

Jj=n

where we have (the numeration of the rows and columns is downwards from n
to na)

t,(FT)L =0 for v < n and tEQJ) € Hom(Z/(d;),Z/(d;))

andt(Q-):OforiZn—257j<n—25

,J

(3.81)
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If we divide by the torsion we get for the restriction map to the boundary
cohomology

n—2s
HY(D\H, M)ine = €D Zf, — H'(O(D\H), M)y = ZY™" (3.82)

v=n

where f,, —= Y™ and To(Y™) = (2"*! + 1)Y™. Now we will find that the endo-
morphism Ty — (2" + 1)Id of H}! (I'\H, M )iyt is injective.

We mentioned the exercise (see3.65) to determine the action of ¢!, in
the general case we find ¢V(f,) = —(f.) and for v < n we find cV(f,) =
(=1)”(f,). This has the consequence that tfz =0 for 5 =0 mod 2. It turns
out that it may be wise to reorder the basis and take as a basis the list
{fn, fn—2, fn-1, fn—a,... } with respect to this basis the matrix for 75 looks
like this

ontl 41 0 &, 0 2
2 2
0 2. 0 2 s (3.8
0 o @ 0 P, .. '

Comment : We can verify this of course for any given n experimentally. But
this assertion follows from the Manin-Drinfeld principle. This principle exploits
the fact that we have estimates for the eigenvalues of Ty (or more generally for
T, on Hl(F\H,/\;l ® C).) These estimates say that for all primes p we always
have the Ramanujan inequality

n+1

| (Tp)] < 2p 2 (3.84)

(This is a very deep theorem which has been proved by Deligne) .
This implies that 2"+ +1 can not be an eigenvalue of 75 on H'(T'\H, M ®C)
and this proves the injectivity. This implies that we can find a vector

v=n—2s
Eisp = fn + Z zyfy, 2, €Q (3.85)
v=n—1
which is an eigenvector for T5 i.e.
Ty( Eis,) = (2" 4 1) Eis,. (3.86)

The least common multiple A(n) of the denominators of the z, is the de-
nominator of the Eisenstein class, it is the smallest positive integer for which

A(n)Eis,, € H(T\H, M)ins. (3.87)

This denominator is of great interest and our computer program allows us
to compute it for any given not to large n. We simply have to compute the x,.
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We know that T (f,) = (2" +1)f, + ZZ;Z:%S 2, . and then the z, are the
unique solution of

v=n—2s
S (@ T+ 1)y — t)m, =t {p=n—1,...,n—2s} (3.88)
v=n—1

With the help of H. Gangl we carried the computation of the z, and hence
the A(n) and we found for some not too large values of n (roughly n < 150)
that

A(n) = numerator(¢(—1 — n)). (3.89)

Here of course ((s) is the Riemann ¢ function, it is well known that for any even
positive integer n the value ((—1—n) is a rational number, hence it makes sense
to speak of the numerator. A prime number p is called irreqular if it divides
the numerator of such a value of the Riemann ( function. The most famous
irregular prime is p = 691 we have

691
—11) = ——.
(=1 32760
Actually 3.89 is a theorem, we will give a proof in Chapter 5 (Theorem
5.1.2).

The reader might argue, why do you make such efforts to find out some
experimental evidence for something you know to be true?

There are several reasons for doing this, but the main motivation is the
following. The Theorem 5.1.2 is hopefully a special case of a much more general
ensemble of assertions. The problem to determine (estimate) denominators of
Eisenstein classes is ubiquitous in the cohomology of arithmetic groups. And
we have many cases where we have conjectures relating these denominators
to special values of L-functions. In our case above this are the values of the
numerator ¢(—1 — n). Some further examples will be discussed in Chapter 9
(See also [42]) But in many of these cases the methods to prove theorems like
Theorem 5.1.2 fail.

On the other hand we explained in section 3.2.1 that in any given case we
can compute the denominator -in principle- . Therefore it seems to be of interest
to develop algorithms which compute the cohomology and the action of Hecke
operators explicitly in given cases and verify or falsify these conjectures. A
general strategy for such an algorithm has been outlined in section 3.2.1 and H.
Gangl and I wrote a toy model program in the above case. See also [44].

We are aware that these algorithms may become very slow for more general
reductive groups, and it is very likely that we need clever new ideas to achieve
this task. Finally I want to say that in many cases the resulting congruences
have been checked for certain finite sets of primes (see also Chapter 9).

3.3.7 Localisation at a prime /

We will see later the we should not consider the denominator of the Eisenstein
class as a number but rather as an ideal. Hence we are only interested in the
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decomposition into prime ideals, i.e. for a prime ¢ we want to know the exact
power of ¢ which divides A(n). To achieve this we replace in the considerations
above the coefficient system M by /\;l(g) =M ® Z(yy, here Z C Q is the local
ring at £. Then our cohomology modules will be finitely generated Z,)-modules

H*(D\H, M ).

¢ -ordinary endomorphisms

In this subsection we fix a prime ¢ we consider finitely generated modules M
over the local ring Z) C Q. We consider such a module together with an
endomorphism ® : M — M. Then

Proposition 3.3.3. We have a canonical decomposition into ® submodules
M =M org ® Mpjipe where Myt is the mazimal submodule such that

ﬂ (I)k(Mnilpt) = {0}
k

Proof. This is rather obvious if M is a finite, i.e. a torsion module. If M is a
free Z(;) module then we find a finite, normal extension F/Q such that M @ F
can be decomposed into generalised eigenspaces

M@ F =@Myl ; Mlu) #0

where p € Op ®@Zpy, Mlp] :={m € MQF | (®—p-1d)*m = 0 for some k > 0}
The Galois group acts on the set of eigenvalues . We consider the set of primes
[,,...,l; C Op which lie above ¢, the Galois group Gal(F/Q) acts transitively
on this set. We say that p is ordinary if there is a prime [, such that p & [,
the set of ordinary eigenvalues is invariant under the action of the Galois group.
We get a decomposition into

MeF= @ Muye H My

p ordinary o not ordinary

the two summands are invariant under the action of the Galois group. We put

Moa= € MpnMand My = @ Mpln.

1 is a unit 1 is not a unit

Because of the Galois invariance it is clear that M @ Q = M 4;q @ Q@ Myiipt ® Q.
But a little bit of semi-local algebra shows that actually M = M o;q © Mnipt
and this decomposition has the desired properties. O

We call M ,.q the ordinary part with respect to ® and ¢ and we call M o4
an f-ordinary ® module. Of course the functor M — M ,,q is exact.

This has some nice consequences for our considerations above. Since the
functor X — X i is not exact the surjectivity in (3.82) is problematic, because
HZ2(T\H, M) # 0. But if we localise our fundamental exact sequence

H}(D\H, M) — HY(T\H, M) — H(O(T\H), M) — HZ(Q(F\H),/(\;W)))
3.90
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and choose for ® the Hecke operator T; then it follows from our computations

in section 3.3.1 that T} acts nilpotently on H2(9(I'\H), ./\;l(g)), and therefore
H? _(O(T\H), M(@)) = 0. We get the exact sequence

¢, ord

H} o M\H, M 4) = HY g (T\H, M p)) = Ho g (OT\H), M(p)) — 0. (3.91)

C7

It follows from our earlier computations (prop. 3.3.1) that HY ;(O(T'\H), M) =
Zp)[Y™]. Then we get for all Hecke operators T,[Y "] = (p" 1 +1)[Y™], we denote
this Hecke-module by Z[n].

Now we can replace the sequence (3.82) by the above sequence if we want
to study the power £9¢(") = A,(n) in A(n).

The Gly/Z module M,, contains the submodule

M= a, (Z) XYY" | a, € Z) (3.92)

('see 4.1.1) , this is actually the smallest submodule of M,, which contains X™.
Then we consider the cohomology H*®(T'\H, M”) and again we can ask for the
denominator of the Eisenstein class. Here the method of localising at ¢ provides
a simple answer. We consider the exact sequence of coefficients

0— M&;L ®Z(@) — Mn ®Z(@) — ./\;ln/./\;lEL ®Z(g) — 0.

Now it follows easily from the definition that the Hecke operator T} acts nilpo-
tently on the cohomology modules H*(T'\H, M,,/M’, ® Z ) and hence we see
that

Hlord,?(r\Ha M, ® L)) — Hlord,?(F\Hv M, ® Zyy) (3.93)

is an isomorphism. This implies that the denominator of the Eisenstein class
does not depend on the choice of the coefficient system.

At this point it seems to be appropriate to use some homological algebra.
We consider the exact sequence of modules for the Hecke algebra H

Xy =0— H. o \(T\H,M, ®Z)) — H.q(T\H, My, ® Z(r)) — Zy[n] = 0.
(3.94)

We consider the sequence Homy(Zg)[n], X,) which is not exact anymore, this
sequence yields a long exact sequence, we are interested in the boundary map
Ext

— Homy(Z ) [n], HY ((T\H, M,, ® Z(s)) —

6 ~
— Homy(Z[n), Z)[n]) — Exty (Zg [n], H g (D\HL, My, ® Zipy)) =
(3.95)

It is clear that the boundary map J maps the identity element 1 € Homy (Zy)[n], Z(y [n])
to an element of order Ay(n), in other words 9, maps Homs (Z4)[n], Z)[n])
to a cyclic subgroup of the Ext! of order Ay(n).
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We introduce the Eisenstein ideal ZE C H, this is the ideal which is generated
the elements (p"*! +1)Id—T,,, where p runs through all primes. It is not difficult
to see that

EXt’lH (Z(Z) [n]v Hlord,!(F\Ha M“ ® Z(é)) =
) ) (3.96)
Hlord,!(F\H? M, @ Z(Z))/Ingord,!(F\Hv M, @ Lyy)-

Now we choose a prime p and look at the sub algebra Z[T,] C H which is
generated by the Hecke operator T,,. We consider the exact sequence (3.95) but
we change the subscript H to Z[T},]. As before the map

5 ~
Homgzz,)(Z ) [n], Z(e) [n]) — EX‘C%[TP]](Z(K) [n], Hlord,!(F\Ha My @ L))
(3.97)

maps the identity element 1 to an element to an element of order A;(n). But
now it follows from the definition of d; that

6(1) =t ={...,t%), ...}, mod Id(p" ™ +1) = T,)H' .4 ,(T\H, M, ® Z()))
(3.98)

Hence we see that we simply have to compute the order of t& in Exté[TPHZ(@ [n], HY g (T\H, M,,®
Zy)) for just one prime p.

3.3.8 Computing mod /

Of course the coefficients tl(,{? L will become very large if n or p becomes larger,
hence we can verify (3.89) only in a very small range of degrees n. But if
we only want to verify that ¢|A,(n) then it is sufficient to compute the coef-
ficients t(f ,)L modulo ¢ and to check whether t'” represents a non zero class in
Ext%[Tp” (Fe[n], HY g ,(T\H, M,, ® Fy). Hence we see: We have ¢|Ay(n) if for
some choice of p the equation

S (@ + 16y, — tP))a, =), mod ¢ (3.99)

has no solution. But now the coefficients are elements in F, and this reduces
the computational complexity considerably.

We have to be careful, it may and will happen that tsf L mod ¢ is zero (for
some values of p) but still £|As(n).

Higher powers of /

This reasoning can also be applied if we look at higher powers of ¢ dividing a
numerator of a ¢(—1 — n)). Let us assume that £¢(")||numerator(¢(—1 — n)).
We have to show that £%¢(™) divides the lem of the denominators of the z, in
equation (3.88 ). If we assume that t%) is not zero modulo ¢ then this follows
if we show that the equation



3.3. HECKE OPERATORS FOR GLj: 135

v=n—2s
> (@™ + 1)y — tE))wy, = 4R mod £ (3.100)
v=n—1

has no solution in Z/(¢%(™)). Then the class
(X © B/5:)2) € Bxtl(2/0%E) (-1 — ), Hh (TVH M & (2/607))
has exact order £9¢(")

If ¢ is an irregular prime, then there is always an even positive integer ng
such that ng < p — 1 such that ¢|¢(—1 — ng). One does not know any pair(¢,n)
with ng < £ — 1 such that we even have ¢2|¢(—1 — ng). But if we drop the
assumption n < ¢ — 1 then we may find arbitrary high powers of ¢ dividing
¢(—1 —n) (See also section 3.3.11) We have some examples

¢(—31)=0 mod 37; ((—283) =0 mod 372
((=37579) =0 mod 37% ((—1072543) =0 mod 37%;...

¢(—43) =0 mod 59; ¢(—913) =0 mod 59*
¢(—23)=0 mod 103 ;¢(—227) =0 mod 1032

We verified (3.89) in the cases (37,282), (59,912), (103, 226) using our program
with Gangl. The case (59,912) used roughly 18 hours, our algorithm becomes

very slow if n becomes large. | denomcong

3.3.9 The denominator and the congruences

For the following we assume that (3.89) is correct. We discuss the denominator
of the Eisenstein class in this special case. In [Talk-Lille] this is discussed in
a more abstract way, so here we treat basically the simplest example of 4.3 in
[Talk-Lille]. Remember that in this section M = M”, or M = M,, for some
even positive integer n.

The fundamental exact sequence provides the short exact sequence

0 — Hp, (T\H, M) — H;,

int

(T\H, M) -~ HL (9(T\H),M) -0  (3.101)
It is clear that the restriction map r is surjective because it is surjective if we
localise at primes. We have H. (O(T\H), M) = Ze,, and Tx(e,) = (2" +1)e,,.
We get a saturated decomposition into Hecke modules

Hio (T\H, M) & Zé,, C Hp (T\H, M) (3.102)
where Thé,, = (2"*! + 1)é,, and r(é,) = A(n)e,, and

Hi (D\HL M)/ (Hiy (D\H, M) @ Z,) = Z/A(n)Z. (3.103)
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If ef, € HL, (T\H, M) maps to e, then we can write
r s
el =r( Aln) ) (3.104)

and the element y' € Hy, ((C\H, M) is unique up to an element in A(n)H e (T\H M).

Hence

Theorem 3.3.1. The Hecke module Hy, (T'\H, M) ® Z/A(n)Z contains a
cyclic submodule Z/A(n)Z(—1 — n) on which for all primes p the Hecke op-
erator T, acts by the eigenvalue p"*' +1 mod A(n)

Proof. The submodule is simply the cyclic submodule generated by /' O

We discuss some consequences of this theorem. We anticipate some results
from the following chapter and from chapter 5. These results can be formulated
in terms of the concepts and the language we used up to here, but the proofs
require tools from analysis.

We mentioned already the theorem that the cohomology H (T'\H, M ®Q) is
semi-simple as module for the Hecke-algebra( Thm.3.1.1). This theorem implies
that we can find a finite normal field extension F/Q such that we have an

isotypical decomposition (see3.19)

Hipo (T\H, M) @ F = @Hmt. (T\H, M @ F)(ry). (3.105)

Here 7y runs over a finite set of homomorphisms 7y : H — Op. We also have the
action of the complex conjugation on the cohomology (See sect. (2.84)). The
complex conjugation commutes with the action of the Hecke algebra and under
this action each eigenspace decomposes into a + and a —eigenspace. In the
following chapter 4 we W111 prove the famous multiplicity one theorem which
says that the spaces H mt (D\H, M & F)(rf)s+ are one dimensional. Let us
denote the set of 7y : H — Op which occur with positive multiplicity (then 2)
in the above decomposition by Cohy(n).
We know that

HYT\H,M)® F = HY(T'\H, M) ® F @ Fe,

where Tpe, = (p"T + 1)e,. Let ﬂjl?is : H — Z be the homomorphism WIfEiS
T, — p"*' + 1, then Coh(n) = Coh(n) U {7}*}.

We make a list {71 f,..., 7, s} of the elements in Cohy(n). . This decompo-
sition induces a Jordan-Hoélder filtration on the integral cohomology

(0) C jH 1)I_[mt '(F\H MOF) - jH(Q Hlnt '(F\]HLMOF) c---C jH(T)Hilnt,!(F\HvMOF)
(3.106)

Here the first step JH"W HL, ((P\H, Mo, ) = H'(I'\H, M & |OF)(m1,s), where
the subquotients a locally free Op modules of rank 2 and after tensoring with

F' they become isomorphic to the corresponding ; ; eigenspace.
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We choose a prime ¢ which divides A(n), let £2¢(™)||A(n). Let [ be a prime
in Op which lies above £. If e, is the ramification index then we have

{0} C Op/1ee® ™) (=1 —n) C HY, ((T\H, Mo,) ® Op /155 (3.107)

The above Jordan-Hoélder filtration induces a Jordan-Holder filtration on the
cohomology mod [€9¢(") we have

{0} ¢ THWHL, (D\H, Mo,.) ® Op /1% ¢ gH® . (3.108)
where again the successive subquotients J H(")Hilnt’!
modules of rank 2.

Theorem 3.3.2. We can find 7y1,72...,75, and numbers fi > 0, fo >
0,..., fr > 0 in the above filtration such that Y fi = esde(n) and we have the
congruence

(T\H, Mo, ) are free O /[¢»%(")

mri(Tp) =p" ' +1 mod IV (3.109)
for all primes p.

Proof. We look at the map from our cyclic submodule into the top Jordan-
Holder quotient

OF /1909 (=1 —n) — JHW HE, (D\H, Mo,.) (3.110)

This map has a kernel [97 and the image in the Jordan-Hdélder quotient is the
cyclic sub module [¢9¢(")=9» — (f+ The Hecke operator T, acts on the Jordan-
Holder quotient quotient by multiplication by 7y ,(T,) and on the cyclic sub-
module by multiplication by p"*1+4-1. Hence we get 7s,,.(T},) = p"*1+1 mod I/
Now we get an embedding 9 — jH(r_l)Hilntyl(I’\H,./\;toF) ® Op /169" and
we apply the same reasoning to this embedding. This process stops if the em-
bedded cyclic sub module becomes trivial. This proves the claim. O

But now we have to be aware that the Jordan-Holder filtration does not
split, if we define

Hilnt,I<F\Hv MOF)(Wf) = Hilnt,!(F\H7 MOF) N Hl(F\H7 M ® F)(ﬂ-f)
then we get a saturated decomposition (decomposition up to isogeny)
Hypo (T\H, Mo,) > @ Hi (T\H, Mo, () (3.111)
w5 €Cohi(n)
Here we encounter another interesting problem:

What can we say about the structure of the quotient if we divide the left hand
stde by the right hand side.

We can formulate some more or less plausible assertions which we can verify
experimentally, but which are very difficult to prove. We definitely have to use
methods which go far beyond the very elementary tools we used so far. For
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instance we verified experimentally (3.89) for a certain range of values of n but
our proof in Chapter 5 requires some analysis.

in the following we choose a prime p, the role of the two primes p and ¢ will
be exchanged. In a first step we consider the cohomology mod p we are mainly
interested in the ordinary part. We start from the exact sequence of I' modules

0— M, -5 M, > M,aF, 0. (3.112)

Here we want to assume that p > 3 then we get the resulting exact sequence of
sheaves and hence a long exact sequence of cohomology groups

0— (M'yrz) ord ﬁ) (M}:) ord —7 (Mn 02 Fp) ord —7
(T\H, M,,) =% H (T\H, M,,) = H._,(T\H, M,, ® F,) =0

- Hl ord
(3.113)

ord

and we can break this sequence into pieces

0— (Mg) ord g (Mg) ord —7 (Mn ® IF‘p)rord — Hlord(F\HaMn)[p] —0
(3.114)

and

0— H 4 (D\H, M,,)[p] = H.,(T\H, M,,) =% H'_(D\H, M,) — H. ,(T\H, M,, @ F,) = 0

ord

(3.115)

ord

where of course ... [p] means kernel of the multiplication by p and the far most
0 on the right is the vanishing of H?.
We analyse these two sequences and get

Theorem 3.3.3. The cohomology H', ,(T'\H, M,,) is p- torsion free unless we

haven >0 and n =0 mod p(p—1). The cohomology groups HC1 ora(T\H, M.,)
are always torsion free and H? _ (D\H, M,) =0

c, ord

Proof. We consider the polynomial ring in two variables F,[X,Y]. On this ring
we have the action of Slo(Z). It is an old theorem of L.E. Dickson that the ring
of invariants is generated by the two polynomials

Xp2—1 _ Yp2—1

— y(@-p (p—1)(p—1)yp-1
X1 _yr1 =X + X Y + ...

(3.116)

flszY—XYp andf2:

Now every element in (M,, ® F,)% , is a sum of monomials f{f% where a(p +
1) + bp(p — 1) = n. We see that
u = Ug : M = M,
p 0
&%)

multiplies f; with a multiple of p and hence we see that all the monomials with
a > 0 are multiplied by a multiple of p. This means that (M,, ® F,)' , # 0

ord
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if and only if n = bp(p — 1). If n = 0 the map ML = Z, - (M,, @ F,)I" is
surjective if n > 0 we have ML, = 0 and hence the theorem.

For the assertions concerning the compactly supported cohomology we have
to recall that H2(I'\H, M,,) = (M,)r = M,,/IrM,, [book vol I, section 2 and
4.8.5 ]. We check easily that X™, Y™ € IrM,, and the assertion is clear. O

We now briefly discuss some interesting questions concerning the cohomology
groups H® ,(I'\H, M,,®F,). We assume that we are not in the exceptional case

ord

that n =0 mod p(p — 1) hence we know that

H g (D\H, My, @ Fp) = H g (T\H, M) @ Fy (3.117)
We can find a finite extension F,- /IF,, such that
Hoxa(T\HL My @ Fpr) = €D H g (ML Moy & ) {77} (3.118)
s

where 7y : H — F),» is a homomorphism and

H'q(T\H, My, @ Fpr) {75} = {# € Hopq(D\H, My, @ Fpr) | (Te — 75(T2)) V& = 0}
(3.119)

is a generalised eigenspace. Such an generalised eigenspace has a socle, this is
the space

H g (D\H, My, @ Fyr ) (75) = {2 € H g (D\HL, My, @ Fpr) | (T2 — 7y (T2))z = 0}
(3.120)

(Note the difference between () and { }.) We know that the inner cohomology
H}(T\H, M®Q) is a semi simple Hecke module, but we can not expect anymore
that the inner cohomology H lord)!(F\H, M, @ Fpr) is semi-simple. For the re-
striction oft the decomposition (3.118) to the inner cohomology semi simplicity
means that the generalised eigenspaces are always equal to their socle.

We choose a prime p C Op above p and assume Op/p = F,r. Let F}, be
the completion of F' at p, let O, its ring of integers. We consider the reduction

H117 ord (F\H’ ’A;ln ® OP) — H'l, ord (F\Ha Mn ® FpT)
b o (3.121)
HY G(D\H, M, ® Op) = HY, g (D\H, My, @ Fr)

ord

under this map an eigenspace maps into the socle,, i.e.

e, o HY g (D\H, M, ® Op)(mp) — HY(T\H, M,, @ Fp,r ) (7¢). (3.122)

ord

The image rr, (H" 4(T\H, M,, ®Op)(7s)) is a Fpr vector space of dimension 2.

We are interested in the fibres of the surjective map

R, : Cohi(n) — Cohmodp,(n) ; mf — 7



140 CHAPTER 3. HECKE OPERATORS

For a subset ¥ C {R, '7;} we define

Hll, ord(F\H’ M" ® OP){Z} =
) ) (3.123)
(@wfez H'l, ord(r\]HL M’"« ® F)(ﬂ-f)) N Hllord<F\H7 M" ® OP)

Given ¥ we put ¥’ = R, '(7y) \ £ and we say that £ (or ¥ ) is closed if we
get a direct sum decomposition

H'opg (D\H, My, © Op) = Hgrg (D\H, My, © Op){E} @ H'g (T\H, My, © Op){X'}
(3.124)

and consequently we say that the fibre R, '(7¢) ( or simply 7; ) is connected if
() and the fibre itself are the only closed subsets. If 7 and W} € R;l(ﬁf) then
we say that they are inner congruent . We have an easy proposition

Proposition 3.3.4. If Rp_l(ﬁf) is not connected, then the dimension of the
socle HY(D\H, M,, @ Fpr )V {7;} over Fyr is > 4

Proof. This is rather clear. If we have a non trivial direct sum decomposition
as above then we also get a direct sum decomposition

Hll, ord(F\Ha Mn) ® FPT = H'l, ord(F\H7 M”) ® IFI)T{E} D H‘l, ord(F\H’ M") ® FPT{E/}
(3.125)

Now any 7y € ¥ (resp.7; € ') provides provides a two dimensional F,~ vector
space 1, (H' .q(T\H, M,, ® Op)(7y)) (vesp T (H ora(T\H, M,, @ OF)(7})).
These two vector spaces lie in the socle and in two different summands. O

We say that 7y occurs with weak multiplicity one if the dimension of the
socle dim H}'(T\H, M,, ® F,-)(7;) = 2, this socle is the direct sum of the +
eigenspaces under the complex conjugation. Our above theorem implies that
then the fibre of 7y must be connected.

The (plain) multiplicity of s is just the number of elements in the fibre
R, '(7y) this is the number m(7f) = 3 dim H!(F\H,/\;l @ Fo){7s}. One might
expect that a Ty occurs with weak multiplicity one happens ”very frequently”.
But it seems to be very difficult to say something substantial in this direction.
We will come back to this issue.(See discussion of the Wieferich dilemma ).

We are especially interested in the case of the FEisenstein homomorphism
7?]]2315 : Ty — "' +1 mod p. It certainly occurs in the cohomology mod p
and it follows from theorems 3.3.1 and 5.1.2 that ﬁ'?is occurs in Cohnodp,(n) if
pl¢(=1 —n).

Here it is very tempting to ask whether or not ﬁ?is always occurs with weak
multiplicity one in the inner cohomology.

This question can be checked experimentally. For any prime £ we look at the
operator Ty on H'(T'\H, M,, ® F,) . We compute the characteristic polynomial

Py(X) = det(XId — (0" + 1)Id — Tp) | HY o (D\H, M,,) @ F,)) = Q¢(X)?
(3.126)
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The characteristic polynomial is a square because the + eigenspaces are isomor-
phic as Hecke modules. Our computer program with Gangl gives us an explicit
expression for Q2(X) for a large number of pairs (n,p). We are interested in
pairs (n,p) with p | ((—1 — n). Then we find

Q2(X) =a1(n,p)X + az(n,p) X2 ... (3.127)

Then we found a;(n,p) Z 0 mod p for n < 200. This means that in these cases
ﬁ?is occurs with multiplicity one. This is in no way surprising, we expect that
p|¢(=1 — n) and plai(n,p) will be a very rare event.

Tobias Berger drew my attention to the paper [3] where the authors consider
the same problem in a slightly different context. They show that plai(n,p)
happens only once for p < 10° and this is the case p = 547, n = 484.

Assume we have such a pair (p,n) and we know that in addition that
p faa(n,p). Then the Hecke operator T® = Ty — (£7F! + 1)Id acts nilpotently
on the 4 d.imensional space H', , (C\H, M,,) @ F,){7}**} and we can ask the
next question:

Is T the zero operator? (For all choices of £). Then this means that ﬁ?is
has weak multiplicity 2.

If we restrict Tfis to one of the two-dimensional + subspaces then TeEis is a
nilpotent endomorphism, i.e. a nilpotent (2,2) matrix with entries in F,,. If T am
not mistaken then there are exactly p? such matrices and the zero matrix is just
one of them. So one might argue that the probability for T = 0 is roughly
]%. So with a high probability the answer to the above question is NO. Since
the probability that p|a;(n,p) is also very small it may be safe to conjecture
that 7_r112jis always occurs weakly with multiplicity one.

Of course I checked the case (484,547) for the operator T» and indeed the
answer was NO!

We briefly return to theorem 3.3.2. Assume we have a pair (n,p) with
p°|¢(=1 —n) and in addition p|a;(n,p), we also assume p Jaz(n,p), Then we
expect that ﬁ?is occurs weakly with multiplicity one. Let F},/Q, a smallest

extension such that we get a decomposition
Hll(F\Han ® Fp) = Hll(Han ® Fp)(ﬂ—f,l) D H!l(Han ® Fp)(ﬂ-ﬁ?)'

This extension is either trivial or a ramified quadratic extension of Q. The
probability that we are in the first case is again very low, so let us assume that
F, = Q,[\/p] We have the inclusion j : Z/p®(—n—1) — HYT\H, M,, ® Z,/p°),
The filtration has 2-steps

{0} ¢ HYT\H, M,, ® Z,/p°)(rs.1) € HY(T\H, M,, ® Z,/p°) (3.128)

and let f; the smallest integer such that p/1Z/p®(—n — 1) < HY(T\H, M,, ®
Zy)(7¢1). Then our previous argument yields the congruence ¢ 1(Ty) = ("1 +1
mod p?~f1. Then the inclusion j yields the cyclic submodule Z/pf! in the quo-
tient. This yields the congruence mso(Ty) = " +1 mod pt Now we invoke
our assumption that 7y occurs weakly with multiplicity one and this implies
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that we can find a Hecke operator Tgis which maps the above cyclic mod-

ule Z/p/* into H(T\H, M,, ® Z,,/p°)(r4.1) and hence to the cyclic submodule
p/1 Z/p? C Z/p®) Hence we can conclude that 2f; < 6.

Hence we see we see that under the above assumptions we have a congruence
mr(Ty) =+ 1 mod p°

Of course the same applies to m¢ 2.

With a little bit of luck we can check the assumptions using the explicit
computation of T5.

It is not very difficult to produce examples of 7, € Cohi(n) where we have
dim Hlord,!(F\HM\;ln ® Fpr){7ms} > 2. If we take n = 22, then we know that

H}(T\H, Mo ®Q) is of dimension four, then the + eigenspaces are of dimension
2. We can compute T, and find for the smallest field that decomposes the
cohomology (see 3.105) F' = Q(1/144169), this was of course known to Hecke. In
this case Cohy(22) consists of 2 elements, which are conjugate under the Galois
group Gal(F/Q). If 7y is one of the elements in Coh;(22) then our program
yields 7¢(T) = —12(—45+ v/144169) ( of course this value can be looked up in
any table for modular forms ) hence we see that for any prime p > 3 the image
of ring Z ) [T>] = O ® Z(;,). This implies that we do not have inner congruences
except for p = 144169.

But now our program with Gangl provides an explicit matrix for 7o mod 144169
and this matrix has only one eigenvalue mod 144169.

This matriz for Ty is not a diagonal matriz, and this implies that the fibre
is connected and hence wy occurs weakly with multiplicity one.

Essentially the same happens if we look at the six values n = 22, 26, 28, 30, 32, 36
for which the degree of the splitting field F' is 2. It will happen that the dis-
criminant is not a prime, so we will have inner congruences modulo several
primes.

3.3.10 L-values, weak multiplicity one and connectedness

in the previous section we investigated questions regarding the structure of
the integral cohomology as module for the Hecke algebra. We discussed the
denominator of the Eisenstein classes and our experimental data suggested an
answer in terms of special values of L-functions. (See 3.89 and also (5.1.2). )

We briefly mention some results about the questions concerning inner con-
gruences which we contemplated in the previous section. To state these results
we have to anticipate the notion of L— functions attached to a my € Cohi(n)
and we anticipate the theorems on special values. We still localise at a prime p
and we only look at the ordinary part. We apply the results from section 5.1.2 .

Assume we have two elements 7,7} € R, ' (7y) We say that these two
elements are linked if they lie in the same connected component. I refer to
Theorem 5.1.1

Theorem 3.3.4. The Hecke modules my, 7' € Ry (74) are linked if and only
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Z(v)

coh — ) =
A mn+ 1=0) = 5oy < )

A (7' n4+1—v) modp
(3.129)

for allv = 0,1,...,n and where Z(v) = 1 for v # 0,n and Z(0) = Z(n) =
numerator(((—1 —n)) and e(v) = £ depending on the parity of v.

(The factor Z(v) is needed to make the expressions integers) This is a slightly
strengthened version of a theorem of Vatsal ([88]). We do not prove it in this
book, it is not to difficult to prove using the results in ...

We have a second theorem which is due to Hida. We pick a 7y € R, ' (7¢)
and we say that 7y is isolated if {m} is open. Then Hida’s theorem says ([52])

Theorem 3.3.5. The Hecke module 7 € Ry ' (%) is isolated if and only if

At (my, Sym?, 1)
Q+@7mp)Q— @ 75)

Zp (3.130)

3.3.11 p-adic interpolation

The p-adic (-function

Let p be an irregular prime, i.e. p | {(—1 —ng), here we assume 0 < ng < p— 1.
We consider ¢((—1 —n) = (=1 —ng — a(p — 1)) as function in the variable
a € N and we want to find values n = —1 —ng — a(p— 1) such that ((—1—n) is
divisible by higher powers of p. We know that there exist a p-adic (— function
(See [58],[54],[90]) and this function has an expansion

(=1 —=n)=C(~1—=ng —a(p—1)) = (=1 —ng) + alng, 1)ap + a(ng, 2)a?p* ...
(3.131)

where the coefficients a(ng,v) € Z, they are only defined mod p. If now
p /la(ng,1) then we can apply Newton‘s method and we find a converging
sequence o, Qa, ... such that

a, =a,y1 modp” and ((—1—np—a,(p—1)) =0 mod p***  (3.132)

The sequence converges to a zero a, of the p-adic (— function.

It is not always possible to raise the power of p which divides {(— — 1 —
no — a(p — 1)). If for instance p? J¢(—1 — ng) and in addition p|a(ng, 1) then
we never find a higher power of p dividing some ((—1 —n¢ —a(p—1)). Again a
naive probabilistic argument suggests that is an extremely rare event that this
happens, but the argument also suggests that such a prime exists (See section
on the Wieferich Dilemma).
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Again we write n = ng + (p — 1)ae where we assume 0 < ng < p — 1 and
we want to study how the cohomology HY ,(I'\H, M,, ® Z,) varies with n. We

ord
know for instance that the denominator of the Eisenstein class may become

larger. We have seen already that

HY o (VL M) © Z/p'Z <> HY,y(C\H, My, © Z/p") (3.133)

ord
Now we have the following theorem which is due to Hida

Theorem 3.3.6. If n = ng+ (p — Da,n’ = ng+ (p — 1)a/ and a =
mod p"~ !, (i.e. n =n' mod (p— 1)p"~1) then we have a canonical Hecke in-
variant isomorphism

(I)(nv n/)T : Hlord(r\]HL M’ﬂ ® Z/pr) L> Hlord(F\IHL Mn’ ® Z/]f) (3134)
This system of isomorphisms is consistent with change of the parameter o, ' and r.

Proof. See paper on interpolation. O

We find a finite extension F},/Q, such that we have a decomposition into
eigenspaces

H'y(D\H, M, ® F) = @D H! ,,q(T\H, M,, @ F)(rs) & Fe, (3.135)
Tf

where the first summation on the right hand side goes over those my € Cohi(n)
for which 7¢(T}) is a unit in Oy, the ring of integers in F. Let us denote this

set by Coh!(z)rd. Then the full summation goes over the set Coh((frl) = Coh!(?rd U

{r#5}. Intersecting this decomposition with H' ;(T\H, M,, ® Oy) gives us a
submodule of finite index

H'oq(C\H, M, © Op) D @ Hy org(T\H, M, @ Op)(mf) © Ope, (3.136)

G
and this also gives us a Jordan-Hélder filtration as in (3.106).

For 7y € Cohmodp,(n) we define
HY g (\H, My, @ Op){s} i= Hy, org(D\H, M, @ Op){R, )} (3.137)
and then we get a direct sum decomposition

13’!17 ord(F\]HL MTL ® OP) - @H'l, ord(F\H? M" ® OP){ﬁf} (3138)

Tf

and for any 7y we get a decomposition up to isogeny

H! q(D\H, My, @ 075} > @ H pa(T\H, M, @ Oy)(mf) (3.139)
mrER, (%)
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We are mainly interested in the Hecke module H,' 4 (T\H, M,, ® Op){7}*}
how this varies if « varies. Our theorem above implies that the Hecke module

H}' .a(C\H, M,, ® O, /p) does not depend on a.

Let us now assume that ﬁ?is has multiplicity one. Then we know that the

decomposition (3.139) applied to 7’1';23iS has only one summand WE}S, We still
assume that n = ng + (p — 1)«

Theorem 3.3.7. If p*(") | (=1 — n) we have the congruence

7i(Ty) =" +1 mod P Y primes ¢
Finally we get w¢(Ty) € Zy for all primes ¢ and hence we may take Oy = Zy.
We can find a basis fo, f1, fa of H',o(T\H, M) {7} where

a) f1, f2 form a basis of H,l’ ora(D\HL, M,,) and fo maps to a generator of

H(O(TH), M, © Z,)
b)The complex conjugation c acts by c(f;) = (—1)"FLf;

and finally
c) the matriz T, ord ith respect to this basis satisfies

41 0 t®
T, = 0 VAR | 0 mod p% (™
0 0 mtl
Proof. Clear O
Now we assume that p fa(1,ng) and we choose a sequence ag = 0, a1, ..., a,

as in (3.132) then we get Hecke-module maps

H!l,ord (F\]HL M"u+1 ® Zp/pu+1) - H!l,ord (F\H’ Mﬂwrl ® Zp/pu) L> H!{ord (F\H’ M"u ® Zp/pu)
(3.140)

The sequence n,, converges to an p-adic integer n.,, we can form the projec-
tive limit and define

Ha(T\H, My ) = lim Hg (T\H, M., @ Z/p"Z) (3.141)

Under our assumptions HlordJ(F\H,J\;lnm){fr?is} is a free Z,-module of rank
3. The Hecke operators T,° acts on H. ,(T\H, M,,, ® Z/p"Z) by a matrix of
the shape as in theorem 3.3.7, and the eigenvalues on the diagonal are

ettt 4 = grote=Daw 41 mod p?

For ¢ # p we write
P =14ps(0),6,(¢) €N

and then

grot®=bev — gmo (1 4§, (0)p)* = 1" (1 + v, pd,(£) + (a

2>a3p2§p(€)2 e
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We see that we can define ¢m0 (=1 for any a € Zjy, and then clearly lim, o £ =
¢ Hence we see that T,°™¢ acts on H. ,(I'\H, M,,) by the matrix

greetl 4] 0 t®
T, = 0 (et 4] 0
0 0 (et 4

where we have t(*) # 0. (This follows from earlier arguments)

If we drop the assumption that ﬁ?is has multiplicity one then the situation
becomes definitely much more complicated. We believe that this a rare event,
we have seen that for p < 10° this happens only once. But on the other hand our
naive probabilistic argument suggests that it should happen again. But then the
same probabilistic argument suggests that it never happens that m(ﬁlfais) > 2.

Therefore we make the assumption that m(ﬁ'?is) = 2. We look at that the
decomposition ( 3.139) applied to 7y = ﬁ?is. We consider the characteristic
polynomial

det (TF" — TAX | H TV, M @ Z,) {(759)) = (bo(n.p) + b (n,p)X + X2)2.
(3.142)

Our assumption m(77**) = 2 implies that by (n, p),bo(n,p) = 0 mod p. Let us
write

PEiS(T£7n77X) = bo(nvp) +b1(n,p)X +X2 (3143)

If we now find an ¢ such that p? [ bo(n,p), then it is clear that we need a
quadratic extension Fy = Q,[,/ép] (€ a unit in Z) if we want a decomposition
into eigen spaces (3.135). If O, is the ring of integers in F, then we get a
decomposition up to isogeny into two conjugate eigenspaces

H{ (D\H, My, ® Op) {7} D H (T\H, My, © Op)(ms) & Hy (D\H, M ®((9p)(”)7ff)
3.144

where ¢ is the non trivial element in the Galois group of F},/Q,.

Under our assumptions the quotient of the left hand side by the right hand
side is isomorphic to H(T'\H, M®0, /p)(ﬁ'}:is). For all ¢/ we have the congruence
w§(Ty) = “mp(Ty) mod p. We recall that n = ng+a(p—1). It is clear that the

condition p? [bg(n,p) only depends on a mod p. Therefore we should expect
that for a fixed a the ”probability” that p?| ba(n, p) is 1/p. but there may be a
value of a for which this divisibility holds.

We return to our sequence ag, a7, ... see((3.132)). We assume that
p? [ bo(ng + a1(p — 1),p). Then it is easy to see that for v > 1 we have the
decomposition up to isogeny (3.144)
HY(D\H, M,,, ® Op){75*} > H}(D\H, My, ® O,)(n})) @ HY(D\H, M,,, ® Op) (")
(3.145)

We have the inclusion Z,/(p*+)(=n, — 1) < H}(T\H, M,,, ® Z/(p**')) and
tensoring by O, /p("™ Y yields the inclusion

Jpw: Op/132(u+1)(_nl, —1)— _H!1 (F\Hﬂ/\;ln,, ® Op/(p2(u+1)))
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We have H}'(T\H, M, ® O,/(p®"+V))(ms) C H}(T\H, M, @ Oy/(p+*+1))
this is the first step in the Jordan-Holder filtration and the quotient by this first
step is isomorphic to H!(T\H, M,, ® O, /(p©¥+1))(“7s). We repeat the argu-
ment in the proof of Theorem 3.3.2 and we conclude that we have congruences

ﬂ'}y)(Tg) =T +1 mod p(”H) ;7 W}V)(Tg) =Tt +1 mod p(”H)
(3.146)

Again we can pass to the limit H'(I\H, My, ){#%}, this limit has a three
step Jordan-Holder filtration, the top quotient is Z,(—ne — 1) ® O, -this is the
cohomology of the boundary. For the eigenvalues on the middle step and the
bottom we also get the same limit . Hence -if we choose our basis as before, i.e.
we take the action of the complex conjugation into account, then we get for the
matrix of the Hecke operator-restricted to the Eisenstein part-

reotl 4 0 0 0 50
0 et 4] 0 u® 0
T>° = 0 0 (reetl 0 v
0 0 0 et 4] 0
0 0 0 0 et 4]
(3.147)

where the non zero entries are units for a suitable choice of ¢.

In the special case (484,547) the number «; = 100 we have ((—485 — 100
546) = ((—55085) = 0 mod 5472. Earlier we checked 5472 [ by (484, 547) for
the Hecke operator Ty. But how can we ever check 5472 [ by(55084,547)? The
matrices become too big.

Our chances that 5472 | by(55084, 547) are 1/547.

But there is a way out. I think it is possible to prove that we have an
expansion

bo (484 + a546, 547) = bo(484, 547) + a54Th)(484,457) mod 5472,  (3.148)

(This should follow from the general results which we announced in [41] and
which we still hope to prove in a paper with J. Mahnkopf).

Using our program with Gangl for T5 and with the help of A.Weisse we com-
puted 75 mod p? for the cases o = 0, 1,2,the program still works in reasonable
time in these cases. We found ( of course everything mod 5472)

by (484) = 547 x 10
bo (484 + 546, 547) = 547 x 174 = 547(10 + 164), (3.149)
bo (484 + 2 x 546, 547) = 547 x 338 = 547(10 + 2 x 164)

Hence we expect b (484,547) = 164 mod 547 and assuming the above linearity
we get bo(55084, 547) = 547(10 + 100 x 164) = 547 x 16410.

To my great surprise 16410 =2 x 3 x 5 x 547!l
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Perhaps I was just stupid and a closer look shows that there is an obvious
reason that this must be so

Hence we have to compute P¥(Ty, 484 + a * 546, X) mod 5473 for some
small values of a. We computed the zeroes

MTy,a) = a*457 £ /B x 547 mod 5473
of the quadratic factor P¥(Ty, 484 + a x 546, X) for a = 0, 1,2. We found

A(T,0) = 268381 * 547 + /537 % 547 mod 5475
A(Ty, 1) = 189064 * 547 + /251993 % 547 mod 5473 (3.150)

ATy, 2) = 13475 % 547 £+ /169232 * 547 mod 5473

we see that these roots lie in a ramified quadratic extension of Z/(547%). From
the roots we get the coefficients of P¥S(T5, 484 + a * 546, X)

by (484, 547) = (268381 % 547)2 — 537 * 547 = 37406595 mod 5473
by (484 + 546, 547) = (189064 * 547)2 — 251993 x 547 = 135636855 mod 5473
bo (484 + 2 x 546, 547) = (13475 % 547)% — 169232 * 547 = 91742840 mod 5473
by (484, 547) = 2 % 268381 547 mod 5473

by (484 + 546, 547) = 2 189064 % 547 mod 5473
(3.151)

We now hope that in the still to be written paper with J. Mahnkopf we will
show that we have an expansion

bo (484 + ab46, 5AT) = by (484, 547) + b (484)ab4T + b (484)a*547%  mod 5473
(3.152)

where b(,(484), b (484) are numbers mod 547, which we can compute from the
three values above. We easily get

b (484) = 164 ; b (484) = 24 (3.153)

We do the same for by (484 + a * 546) = by (484) + 543 x 547 mod 547%. Now
the discriminant is Discriminant A(a, 547) = —bo(484 + 546, 547) + b1 (484 +
a * 546,457)% and if we believe in the interpolation formula we get

A(100,547) = 286 * 5472  mod 5473 (3.154)
Hence we see that
1
AT, 100) = 547(238096 + 5\/ 286) mod 5473 (3.155)

Now we check easily that 286 is not a square mod 547 and hence we see the
roots now lie in the unramified quadratic extension Z/(547%)[v/2]. Now we put
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again Op = Zs47[V/2] let us put p = 547 then p = (p) We consider the sequence
g, a1,...,q, (see 3.132). As before we get for any v > 1 ( a decomposition up
to isogeny (3.139)

Hgl (F\H7 Mnl ® OP){ﬁ-?is} )
(3.156)
HY(D\H, M, © Op) () ) © HH(T\H, My, © 0p))(7m”).

We argue as before, our embedding Z/p**'(~1 — n,) < HNT\H,M,, ®
Z/(p’*1)) provides the Galois invariant embedding O,/(p**1)(-1 — n,) —
HYT\H, M,,, ® Op/(p"*"). There is a largest number f, < v such that the
submodule p/v O, /p**'(~1 — n,) embeds into the submodule H!(T\H, M,,, ®
(’)p/(p""’l))(wj(fy). But then we get an injection

Op /(P ) (1 — 1)) [p* Op ) (pT) (—1 — ) =
) i (3.157)
H} (D\H, My, ® Op/(p"+1) / HHT\H, M, ® Op) (1)) @ O/ (p 1)

The module in the bottom line is isomorphic to H(T\H, M, ® (’)p)("ﬂ'(u) ®
O, /(p”) and hence we get congruences

WE‘V) (Te) = ™" +1 mod p U?T;V) (T;) = ™+ +1 mod pr+i-/»
(3.158)

Since these congruences are invariant under the action of the Galois group we
get congruences

vt2

W}V)(Tg) =/t 41 modpl=!, UTF;V)(TZ) =/t 41 mod pl

#2)
(3.159)

where [x] denotes the usual Gauss bracket.

The Galois group

Viel ausfiihrlicher It is a fundamental fact that we have an action of the Ga-
lois group Gal(Q/Q) on the modules H'(T'\H, M,, ® Z,/p’), H (T\H, M,, ®
O,), H(T'\H, /\;lnm){ﬁ?is} this action commutes with the action of the Hecke
algebra. Hence we get interesting representations of the Galois group, these rep-
resentations have been studied by many people. (See for instance [65], [74],[36]
or [46]).

We will be explain this matter in a very cursory manner in section 5.1.5.

3.3.12 The Wieferich dilemma
In 1909 the student Arthur Wieferich proved the following

If for a prime p > 2 the equation xP + yP + 2P = 0 has a solution in integers
with xyz Z 0 mod p, then 2P~ —1 =0 mod p?.



150 CHAPTER 3. HECKE OPERATORS

Of course we now that 27~ —1 = 0 mod p but checking a few of small primes
suggests that the residue class w(p) = 21 6d p can just be any number
mod p. Hence we expect that it is a rare event that this residue class is zero,
the ”probability” is %. Later these primes ere called Wieferich primes. At the

present moment it seems that there are only two Wieferich primes < 6.7 x 10°.,

But poor Arthur could not show that he had proved the first case of Fermat
for infinitely many prime exponents p because he could not show that there are
infinitely many non Wieferich primes (and we still do not know it now):

This kind of phenomenon was not new and well known at the time when
Wieferich proved his theorem (Simply Google: The first case of Fermat’s The-
orem) but Wieferich’s case is a striking example because it is so easy to state.
That is the reason why we propose to call it the Wieferich dilemma.

In this book we encounter the Wieferich dilemma at several occasions. If
p|¢(—1 — n) we raised the question whether 7% occurs with multiplicity one.
We saw that this is exactly the case if a1(n,p) Z 0 mod p. Again we may argue
that the probability that p|a; (n,p) is % so we expect this to be a rare event that
ﬁ]]?is occurs with higher multiplicity. Actually we learned from [3] that there is

: 5 : 1
.only one exception fo? p <10 . On the other hand we believe that Zp irreqular
is divergent so there is a certain chance that some larger such a prime exists.

Assume that there is a prime p for which 7' occurs with higher multiplicity.
Then we may ask whether it occurs weakly with multiplicity one and again a
probability argument shows that the probability that this is not so is p%. This
now suggests that it may always occurs weakly with multiplicity one.

Here I want to make a metamathematical statement.

It is very well conceivable that 5% always occurs with weak multiplicity one,
but we will never find a proof. But it is simply true because the probability that
ﬁ?ls occurs with higher weak multiplicity is so small. It is simply “true” without

a proof.

In this chapter 3 we discuss some questions concerning the structure of the
cohomology of arithmetic groups as module under the Hecke algebra. We we ex-
ecute computations and experiments to support and suggest certain hypotheses.
But we only considered a very special example.

But there is much wider range where can ask questions and make hypotheses.

We drop our assumption that we are in the totally unramified situation, this
means that we can replace I'g = Sl3(Z) by a ( normal ) congruence subgroup
I’ € T'y. We choose a free Z— module of finite rank V with an action of T'y/T,
i.e. we have a representation

Py Fo/r — GI(V)

we assume that the matrix —Id acts by a scalar py(—Id) = £Id. The T'y-

modules M,, ® V provide sheaves M/J@/v, here we assume that py(—Id) =n
mod 2.Again we study the cohomology groups and especially we can study the
fundamental exact sequence

& HY(To\H, M,, @ V) = HY(To\H, My, @ V) —" H'(9(To\H), M,, ® V)
(3.160)
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On these cohomology groups we have the action of Hecke operators T'(c, ug).
Here we have to be a little carful. Our group I' contains a full congruence group
I'(N). Then we take the elements a € Gla(Z(y)) and our uq = u! @ uY (See
section 3.1).

We may for instance choose a positive integer N and we consider the congru-
ence subgroup T'g(N) = {(CCL Z) € Sl5(Z)|e=0 mod N}. Let T'y (N) C Tp(V)
be the subgroup where ¢ = 1 mod N then T'g(N)/T1(N) = (Z/NZ)*. We
choose a character y : To(N)/T'1(N) — Z[(n]™ and consider the induced repre-
sentation

V= Ind® y)x = {f: To = Z[(w] | f(y@) = x(7) f(2);7 € To(N),x € To}.

It an interesting task to extend the results and the experimental computa-
tions from the previous chapters to these Hecke modules. It should not be
too difficult to /g_e\lgralise the results in section 3.3.1 for the Hecke modules
H'(8(Tg\H), M,, ® V). Then we can formulate the denominator question again.

In this case the denominator should be related to the L values L(x, —1 —n),
It is certainly interesting to collect some data, which might allow us to formulate
more precise hypotheses. For this purpose one has to extend the algorithm for
T5 to this new situation.

At this point we ignore (or forget) that analytic methods (Eisenstein coho-
mology) also provide some tools to understand the denominator. (see 5.1.2)

I think it is even more interesting to investigate the multiplicity questions.
Now our cohomology groups are Z[(y] modules, let us assume that we have
a prime ideal p|L(x, —1 — n). We assume p /N and let O, = Z[(n], be the
completion at p. Then we can should be able to define the direct summand
(see3.119)

H'(To\H, M,, ©V ® Op){75} ¢ HY 4(T)\H, M, @ V2 0,)  (3.161)

and we want this direct summand as Hecke module. Earlier we have done some
experimental computation in the unramified case (N = 1) and probabilistic
arguments let us make some conjectures. But now the we have many more cases
(vary the character x and the primes involved are much smaller so we have some
chances to falsify the analogous conjectures once we have some ramification.

I think that here is a wide field for interesting experiments.
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Chapter 4

Representation Theory,
Eichler-Shimura
Isomorphism

4.1 Harish-Chandra modules with cohomology

In Chapter 6 we will give a general discussion of the tools from representation
theory and analysis which help us to understand the cohomology of arithmetic
groups. Especially in Chapter 6 section 6.1.5 we will recall the results of Vogan-
Zuckerman on the cohomology of Harish-Chandra modules.

Here we specialise these results to the specific cases G = Gla(R) (case A))
and G = Gly(C) (case B)). For the general definition of Harish-Chandra modules
and for the definition of (g, K ) cohomology we refer to (6.1.2)

4.1.1 The finite rank highest weight modules

We consider the case A), in this case our group G/R is the base extension of
the reductive group scheme G = Gly/ Spec(Z). In principle this a pretentious
language. At this point it simply means that for for any commutative ring R
with identity we can speak of G(R)-the group of Rvalued points- , and that
G(R) depends functorially on R.

153
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( Sometimes in the following we will replace Spec(Z) by Z.) Then GV /7Z is
the kernel of the determinant map det : G/Z — Gy, /Z. We have the standard
maximal torus 7 /Z and choose the Borel subgroup B/Z O T /Z to be the group
of upper triangular matrices. Let X*(T) = X*(T x C) be the character module
This character module is Ze; @ Zes where

€ : (0 t2) =t (4.1)

Any character can be written as A = ny+ddet where y = 252 (¢ X*(T) !),det =
e1 + e2 and where n € Z,d € %Z and n = 2d mod 2. We say that A is /it dom-
inant iif n > 0.

To any such character A = ny + ddet we want to attach a highest weight
module M. We consider the Z— module of polynomials

n
M, ={P(X,Y)| P(X,Y) = ZavX"Y"*V,aV €7}
v=0

To a polynomial P € M,, we attach the regular function (see 1.1.1)

T Y\ _ T Y\\-2+d
rol(l V)= Playden( (V) (42)
then
t1 w T Y\\ _ .n —24d T Y\, L —,[(t1 w Ty
(0 (0 =amee e =y (S Y)
(4.3)
where A~ = —n-y+ddet. On this module of regular functions the group scheme

G/Z acts by right translations:

(& o (s U =m(5 ) (25 (44)

This is now the highest weight module M for the group scheme G/Z. The
highest weight vector is fxn, clearly we have

(s N =a(5 Do =x( ) s

In the following we change the notation, instead of fp we will simply write P.

Comment: When we say that M is a module for the group scheme G/Z we
mean nothing more than that for any commutative ring R with identity we have
an action of G(R) on M, ® R, which is given by (4.2 ) and depends functorially
on R. We can 7evaluate” at R = Z and get the I' = Gl3(Z) module M z.
(Actually we should not so much distinguish between the Gla(Z) module M 7
and M) Of course we have have seen these Gly(Z) modules before, they are of
course equal to the modules M,,[d — %] in section 1.2.2.

Remark: There is a slightly more sophisticated interpretation of this module.
We can form the flag manifold B\G = P!/Z and the character \ yields a line
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bundle £,-. The group scheme G is acting on the pair (B\G, L,-) and hence
on H°(B\G, L) which is tautologically equal to M, (Borel-Weil theorem).

We can do essentially the same in the case B). In this case we start from an
imaginary quadratic extension F/Q and let O = O C F its ring of integers. We
form the group scheme G/Z = Ry /7(Gl2/0O). Again G /7 will be the kernel of
det : G/Z — Z/Z = Roz(Gm). Then G(O) = Glo(0O ® O) C Gl2(0) x Gl2(O).
The base change of the maximal torus T/Q C G xz Q is the product Ty x Ty /F
where the two factors are the standard maximal tori in the two factors Gly/F.

We get for the character module | CHMsplit
X*(T x F) = X*(Tl) ® X*(Tg) = {n1'y1 + dy det} (5] {71272 + dzdét} (4.5)

where we have to observe the parity conditions n; = 2d; mod 2,n, = 2ds
mod 2.

Then the same procedure as in case A) provides a free O- module M) with
an action of G(Z) on it. To get this module and to see this action we embed
the group G(Z) = Gl2(0O) into Gla(O) x Glz2(O) by the map g — (g,g) where
g is of course the conjugate. If now our A = nyvy; + di det; +noys + dodety =
A1+ Az then we have our two Gla(O) modules My, 0, M2, 0 and this provides
the Gl2(O) x Gl2(O)- module My, 0 ® My, 0, our My ¢ is is now simply
the restriction of this tensor product module to G(Z). Sometimes we will also
write our character as the sum of the semi simple component and the central
component, i.e.

A= )\(1) + 6= (77,1"}/1 + TLQ")/Q) + (dldetl + deetg) (46)

The relevant term is the semi simple component, the central component is not
important at all, it only serves to fulfill the parity condition. If we restrict the
representation M) to g<1>/ 7 then the dependence on d disappears. In other
words representations with the same semi simple highest weight component only
differ by a twist, the role played by ¢ is marginal.

At this point we notice that the module M, ¢ is only a module over O. We
may also say that My o ® F' is an absolutely irreducible highest weight module
for the group G ®p F' = Gly x Gly/F, this representation ”is defined ” over F.
But in the special case that \; = Ay we have an action of the Galois group

Gal(F/Q) : If ¢ is the non trivial element in this Galois group then

(3 a, X Y )@ (3B, XHT" ) = (3 elb,) XPY ) (3 efa,) X T™)

m

and for g € G(O), m € My we have
c(g)e(m) = c(gm)
and therefore it is clear that the Z module (M) is a module for G/Z.

We return to Glp/Z. Given A = A1) 4§ we define the dual character as
AV = A1) — 4. For our finite dimensional modules we have

MY ®@Q " My ®@Q (4.7)
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If we consider the modules over the integers the above relation is not true.

We define the submodule | duallambda

M, ={P(X,Y)|P(X,Y)=> (”) a, X'Y"" a, € Z}. (4.8)

v
v=0

This is a submodule of M,, and the quotient M,, /M’ is finite. It is also

clear that this submodule is invariant under Sly/Z. We introduce some notation

e, = X"Y"" and ¢’ := <”> Xy, (4.9)
14

then the e, (resp. €’) for a basis of M, (resp. M®).
An easy calculation shows that the pairing

<, >m: (ey,ei) = 0y (4.10)

is non degenerate over Z and invariant under Sly/Z. We can also define the
twisted (?!?!) actions of G/Z. Of course we can define the twisted modules MY
and then we get a G/Z invariant non degenerate pairing over Z :

<, >M:Mf\v X My —>7Z
In other words
(My)Y = My
We always consider ./\/lg\ as the above submodule of M.

prinseries

4.1.2 The principal series representations

We consider the two real algebraic groups G = Gly/R( case A) ) and G =
Rc/r(Gl2/C) ( case B). Let T'/R, ( resp. B/R) be the standard diagonal torus
(resp. Borel subgroup of upper triangular matrices). Let us put C/R = G,
(resp. Rc/rG,n). We have the determinant det : G/R — C/R and moreover
C/R = center(G/R). If we restrict the determinant to the center then this be-
comes the map z — 22. The kernel of the determinant is denoted by GV /R, of
course GV = Sly, resp. Rc/r(Sl2/C). Let us denote by g,0W ¢, b, 3 the corre-
sponding Lie-algebras.

The Cartan decompositions

In both cases we fix a maximal compact compact subgroup K., C G(l)(R) :

_ _ cos(¢)  sin(¢) _ a B . 3 _
Ko =e(0) = (00 O 0 € Ry and Ko = (Y ) laa+ 55 - 1)
(4.11)

We define extensions Ko, = Z(R)(© K, here of course Z(R)(? is the connected
component of the identity. In both cases the group K, is the group of fixed
points under the Cartan involution ©¢ which is given by

Op:g—tg tresp. gt gt ie @0((a Z)) = (_dl_) E) . (4.12)

c a
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This involution induces an involution on g we can extend it to an involu-
tion acting on g =3 @ g, we let it act trivially on 3. Then the fixed point Lie
algebra £ = 3@ € C 3 ® gV is the Lie-algebra of K.

Here are some arithmetic considerations, they may not be so relevant, but
further down we make some choices of a basis in some of these algebras, and
these choices can be justified by these arithmetic considerations.

We can write our group scheme G/R as a base extension of a group scheme
G/Z,ie. G/R =G xzR. For this we simply take G/Z = Gly/Z in case A). In
case B) we take G/7Z = Rzp/z(Gla/Z[i]). In the case A) this gives a reductive
group scheme over Z, in case B) it is only a flat group scheme, but the base
extension G X7 Z[1/2] is reductive. ( This group scheme over Z is not semi-simple
since Z[i] is ramified at the prime 2.)

Now it is clear that © is actually an automorphism of G/Z and then it
follows that the scheme of fixed points is again a group scheme K/Z. If we
define R = Z[1/2] then K xz R is actually eductive. (If we replace Z]i] by the
ring of integers of another imaginary quadratic extension, we have to modify R
accordingly.)

Consequently we see that the all the above Lie-algebras are defined over R,
hence they actually are free R modules, we denote them by gr and so on.

The Cartan ©¢ involution induces an involution on the Lie algebras gg, gg)

the module decomposes into a + and a — eigenspace

7

gR:%R@pR and gg):ER@pR, (4.13)

The + eigenspaces ¢ 'R, tr are the Lie-algebras of K, K, both summands in the
decompositions are K-modules.
The Lie-algebra by is not stable under O, it is clear that the intersection

br N Oo(br) = tr,
where tg is the Lie-algebra of the standard maximal torus 7/R C G/R. This
torus is a product (up to isogeny) T/R = Z - TW/R.
In case A) the torus T(l)/R - G,,/R and the Cartan involution ©¢ acts
by t ~ t~1. Therefore it acts by —1 on tg%l). We write

) =R (é _01) = RH (4.14)

the generator H is unique up to an element in R*, i.e. up to a sign and a power
of 2.

In case B) the torus 7 /R is (up to isogeny) a product T ’72(1)/R the
Cartan involution ©q acts by ¢ — ¢! on the split component 7'5(1) and by the
identity on 72(1). The Lie-algebra decomposes accordingly into two summands

of rank one:
1 1 0 vt 0\ ,
th —R(O _1) @R(O i = RH & RH,.

In both cases the group scheme K acts on pr by the adjoint action, we can
describe this action explicitly.



158CHAPTER 4. REPRESENTATION THEORY, EICHLER-SHIMURA ISOMORPHISM

In case A) the group scheme K is the following group of matrices

(@ b\ 2 2
K-{a-(_b a>|a +0v* =1}
this is a torus over R which splits over R[i]. We have

0 1

pR—RH®R(1 0

>—RH€BRV

and Ad(a)(H) = (a® — b*)H — 2abV, Ad(a)(V) = 2abH + (a® — b?)V. Since the
torus splits over Z[i] we can decompose p ® R[i] into weight spaces, we introduce
the basis elements

P, =H-V®i, P..=H+V®icp RJi

then
Ad(a)Py = (a+ bi)?Py, Ad(a)P_ = (a — bi)*P_ (4.15)

Hence we get - in case A) -the decomposition

gg):ER@pRzRGl é)@RP+eBRP_:RY@RP+®RP_ (4.16)

where the generators are unique up to an element in R[i]*.

In case B) the group scheme /R is semi simple, it contains 70 /R as maxi-
mal torus. The two /R modules £r and pg are highest weight modules of rank
3, since 2 is invertible in R they are even isomorphic. Again we can decompose
them into rank one weight spaces and give almost canonical generators for these

weight spaces. | basisfkfp | The Lie algebra

ER—RHiGBR(_Ol (1)> @R(? 8) = RH; ® RY @ RF,. (4.17)

We introduce the elements P, =Y — F; ®4i, P._ =Y + F; ® ¢ and then
tr @ R[i] = R[i|H; ® R[i]P.+ & R[i|P._. (4.18)
This is the decomposition into weight spaces under the action of 72(1)/ R, the

element o = (g

2) acts via the adjoint action
Ad(a)P.y = 2*P.; , Ad(a)H; = H; , Ad(a)P._ =z %P._.
Essentially the same can be done for pr ® RJi]. We define

0 4 . 0 < )
Pp7+—V—(_i O>®z, Pp,——V‘F(_i 0)®z

then we get the weight decomposition

pr @ R[i] = R[i|P, 1 & R[i{)H & R[i]P,._ (4.19)
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Rational characters vs continuous characters

Our aim is to to construct certain irreducible (differentiable) representations of
G(R) together with their ”algebraic skeleton” the associated Harish-Chandra-
modules.

For any torus T'/R we consider the group of (continuous) characters Hom(7T'(R),C*),
we write this group multiplicatively, i.e. x1 - x2(x) = x1(2)x2(x). We also have
defined the group of (rational) characters X*(T xg C,G,,) (See Chap. 1, 1.5),
and we have the evaluation map

X*(T xg C,G,,) =% Hom(T(R),C*); ev:vy =g ={zry(x)} (4.20)
Since we wrote the group of (rational ) characters additively we have

(71 + 72)r = YR - V2R

We also introduce the character |y| := {z — |yr(z)|c} where of course
la|c = aa.
We can also introduces the characters v ®@ C we simply put v ® C(z) = |y|?.

4.1.3 The induced representations

We start from a continuous homomorphism (a character) x : T(R) — C*, of
course this can also be seen as a character x : B(R) — C*. This allows us to
define the induced module

Ifx = {f : G[R) = C| f € Cx(G(R)), f(bg) = x(b) f(9), Vb € B(R),g €(G(IR§)}
4.21

where we require that f should be Co. Then this space of functions is a G(R) -
module, the group G(R) acts by right translations: For f € ISx, g € G(R) we
put

Ry(f)(x) = f(zg)

If modify our character x by a character ¢ o det where 6 : Z(R) — C* then the
central character gets multiplied by 62.

We know that G(R) = B(R) - K.. This implies that a function f € IS is
determined by its restriction to K,,. In other words we have an identification

of vector spaces
ng = {f : Koo —C | f(tck) = X(tc)f(k)7tc € Koo N B(R)vk € f{oo} (422)
The center acts by the central character w,, the restriction of x to Z(R).

We put 7. = B(R) N Ko and define y. to be the restriction of y to 7.
Then the module on the right in the above equation can be written as Iﬁ"" Xe-

By its very definition Iﬁ“ Xe is only a K, module. Inside I;:iw Xc we have the
submodule of vectors of finite type

OI:,I:(CC’C xe:={f¢€ I:,I:i"o Xc | the translates Ry (f) lie in a finite dimensional subspace}
(4.23)
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Here it suffices to consider only the translates Ry (f) for k € K, because
Z(R)(© acts by the character wy . The famous Peter-Weyl theorem tells us that
all irreducible representations (satisfying some continuity condition) are finite

dimensional and occur with finite multiplicity in Ii{i >~ Y. and therefore we get

exe= P V" = @ CIr=xel) (4.24)

V€K oo VEK oo

where K is the set of isomorphism classes of irreducible representations of K,
where Vy is an irreducible module of type 9 and where m(¥) is the multiplicity

of ¥ in OI:,{( Xe- Of course °IT * Y. is a submodule I§x, but this submodule is
not invariant invariant under the operation of G(R), in other words if 0 £ f €

OIJI:?’" Xc and g € G(R) a sufficiently general element then R,(f) ¢ °IK°°

We can differentiate the action of G(R) on I§x. We have the well known
exponential map exp : g = Lie(G/R) — G(R) and for f € I§, X € g we define

and it is well known and also easy to see, that this gives an action of the Lie-
algebra on I§, we have X;(Xaof) — Xa(X1f) = [X1, Xa]f. The Lie-algebra is

a K module under the adjoint action and is obvious that for f € OIﬁ‘x’ Xe[Y]

the element X f lies in @y OITI:?” Xc[?¥'] where ¥ runs over the finitely many
isomorphism types occurring in Vy ® g. Hence

Proposition 4.1.1. The submodule OIQI?C‘”XC C ng is invariant under the
action of g.

The submodule OIII:(C‘” X together with this action of g will now be denoted
by J%x. We should think of this module as the algebraic skeleton of I§ .

Such a module will be called a (g, K ) - module or a Harish-Chandra module
this means that we have an action of the Lie-algebra g, an action of K, and
these two actions satisfy some obvious compatibility conditions.

We also observe that °Iﬁ <X is also invariant under right translation R,
for z € Z(R). Hence we can extend the action of K., to the larger group

Koo = Koo - Z(R). Then 3% x becomes a (g, f(oc) module. Finally observe that
in the case A) the element

c= (01 (1)) ¢ Koo, (4.26)

clearly R induces an involution on J%. We could also say that we can en-
large Ko ( resp. Ko ) to subgroups K7, (resp.K * ) which contain ¢ and contain
Ko resp. Ko as subgroups of index two. Then J§x also becomes a (g, K*.)
module.

These (g, K 00 ) modules ’Jg x are called the principal series modules. We have
the following important
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Theorem 4.1.1. For any irreducible Harish-Chandra module(g, Ko) we can
find a x such that we have an embedding of (g, Koo )-modules

itV 3Gy

This is actually a special case of a much more general theorem and applies
mutatis mutandis to all reductive groups over R. In the following we will see,
that in our special cases we only have a very short list of submodules of the Tjg X
and hence we get a complete list of irreducible Harish-Chandra modules.

We denote the restriction of y to the central torus Z = {((t) 2)} by wy.

Then Z(R) acts on 3%y by the central character character w,y, i.e. R,(f) =
wy (%) f. Once we fix the central character, then there is no difference between

(9, Ko) and (g, Ko ) modules. Hence we always assume that w, is fixed.

Unitary induction

In the general theory of representations of real ((-or p-adic groups-) people work
with the so called unitary induction. We introduce the special character

1 u 11
ol (1) = I (1.27)

here the absolute value [t] is the usual absolute value if we are in case A) and
|z| = 2Z for z € C, i.e if we are in case B).
Now we define the unitarily induced module (see4.27).

IndunitGy := I§x - |plr (4.28)

This concept of induction is of course equivalent to the previous one, it has
certain advantages, some statements have a more elegant formulation. But in
this book we are also interested in the ”arithmetic properties” of our modules
and the naive concept of inductions has its own virtues.

The decomposition into K, -types

We look briefly at the K. ,-module OITI?C‘” Xe- In case A) the group

Koo =5002) = {( 500 IO — efe) (1.29

and T, = KL = T(R) N K, is cyclic of order two with generator e(r). Then x.
is given by an integer mod 2, i.e. x.(e(¢)) = (—=1)™. For any n = m mod 2
we define 9, € 3Gy by

Un(e())) = e™? (4.30)
and then

- P o (1.31)

k=m mod 2
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In the case B) the maximal compact subgroup is

U(2) € G(R) = Re/r(Gl2/C)(R) € Gl2(C) x G2(C)
this is the group of real points of the reductive group U(2)/R. The intersection

27
1= KL =T K= (7 ) (@)

The base change U(2) x C = Gly/C and T, x C becomes the standard maximal
compact torus. The irreducible finite dimensional U(2)-modules are labelled by
dominant highest weights A. = ny. + ddet € X*(T, x C) (See section ( 4.1.1),
here again n > 0,n € Z,n = 2d mod 2 and 7.(e(¢)) = e($1-92)/2))

We denote these modules by M _ after base change to C they become the
modules M c.

As a subgroup of G(R) C Gl3(C) x G2(C) our torus is

eQTrigol 0 e—27ri<p1 0 - eQTrigal 0
Tc = {( 0 6271'1'(,02) X ( 0 627ri<p2>} — {( 0 627Ti<'02>}
(4.32)

and the restriction of x to T is of the form

Xc(€(¢)) _ eia¢1+ib¢z — e"’;b(¢1—¢2)€"'2h(¢1+¢2). (4.33)

and this character is (a — b)7y. + “T'H’ det. Then we know

Koo ~
If=xe =3Fx = D M, (4.34)
,uC:k'yc+aT+b det;k=(a—b) mod 2;k>|a—b|

4.1.4 Intertwining operators

Let N(T') the normalizer of T/R, the quotient W = N(T)/T is a finite group
scheme. The in our case the group W (R) is cyclic of order 2 and generated by

(0 1
=10
In case A) we have W(R) = W (C), in case B) we have
G XR(C = (GIQ X Glg)/(c, T XR(C = T1 X TQ ; and W((C) = Z/2 X Z/Q,

where the two factors are generated by s; = (wo, 1),82 = (1,wp). The group
W (R)- the group of real points of the Weyl group- is the cyclic group of order
two generated by (wg,wp). We call this element also wg. The group W (R) acts
on T(R) by conjugation and hence it also acts on the group Hom(T'(R),C*) of
characters, we denote this action by x — x*. We write this group of characters
multiplicatively and we define the twisted action

w-x = (xlpl)" |~ (4.35)
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We recall some well known facts

i) We have a non degenerate (g, K,) invariant pairing
I5x < IEX"lplf — Cwi given by (f1, f2) = / Fi(k) f2(R)dk— (4.36)
Koo

We define the dual jg’vx of a Harish-Chandra as a submodule of Homc(3%x, C),
it consists of those linear maps which vanish on almost all K, types. It is clear
that this is again a (g, Koo )-module. The above assertion can be reformulated

ii) We have an isomorphism of (g, K~ ) modules

IGx(wy o det) ™ = IFV X"l (4.37)

The group T(R) = T, x (R%,)? and hence we can write any character x in

the form

21429
2

t1, 2122 z1ten
X(t) = xe(®) [t [t2] = \;ll = | (4.38)
2
where 21,29 € C. We put z = 21 — 25 and { = z1 + z9. The relevant variable is
z.

For f € 3%x,; g € G(R) we consider the integral

T1°(f)(g) = / F(woug)du. (4.39)
U(R)

It is well known and easy to check that these integrals converge absolutely
and locally uniformly for R(z) >> 0 and provide an intertwining operator

T (x™, z) : IGX" plg = IGxlplR oIz (4.40)

It is also not hard to see that they extend to meromorphic functions in the entire
C2. To see this we recall the decomposition into K, types

I Iole = €D IE=xel] = @D IZACIlEY]
9eK o V€K oo

and our intertwining operator is a direct sum of linear maps between finite
dimensional vector spaces

c(AR°, 2,9) : TG |pl& Y] — IGxIplRlplz V]

The finite dimensional vector spaces do not depend on z and the c(Ag°|pl%, )
can be expressed in terms of values of the I'— function. Especially they are
meromorphic functions in the variable z (See sl2neu.pdf, ). For any zy € C
where we have a pole we can find an integer m > 0 such that

(2 = 20) ™" T (X" 2)|a=20 + IEX™ = IExI0IR

is a non zero intertwining operator and this is now our regularized operator
loc,re w
TOO > g(X 0).
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iii) The regularized values define non zero intertwining operators

T (x", 2) : Igx — I5x"" |pli (4.41)
These operators span the one dimensional space of intertwining operators

Hom g x_y(3Gx, IGwo - X).

Of course we can translate this into the language of unitary induction, then
the intertwining operators map

T 2% () : Indunit$y — Indunity*°. (4.42)
This is definitely a more elegant formulation.

Finally we discuss the question which of these representations are unitary.
This means that we have to find a pairing

V: 3%y x 3Gy = C (4.43)
which satisfies
a) it is linear in the first and conjugate linear in the second variable
b) It is positive definite, i.e. ¥(f, f) > 0Vf € TGy

c¢) It is invariant under the action of K., and Lie-algebra invariant under
the action of g, i.e. we have

For f1, f € 3Gx and X € g we have (X f1, fa) + ¢(f1, X f2) = 0.

We are also interested in quasi-unitatry modules. This is notion is perhaps
best explained if and instead of ¢) we require

d) There exists a continuous homomorphism (a character) n : G(R) —
R* such that for X € g (X f1,9f2) + ¥(f1, X f2) = dn(Xg)(f1, f2), Vg €
G(R), fif2 € IGx.

It is clear that a non zero pairing ¢ which satisfies a) and c¢) is the same
thing as a non zero (g, K )-module linear map

iy IGx = (3§x)Y (4.44)

this means that i, is a conjugate linear map from J%x to (3§x)Y. The map iy
and the pairing v are related by the formula ¢ (v1, v2) = iy (v2)(v1).
Of course we know that (See (4.37))

(3GX)Y — 3Gxwo[pl2 55 (4.45)

and we find such an i, if

X = x“lplady ! or x*°|pl§ = x*|plRox (4.46)
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We write our x in the form (4.38). A necessary condition for the existence of
a hermitian form is of course that all |wy ()| = 1 for € Z(R) and this means
that R(z1 + 22) = 0, hence we write

21:J+i71,22:—0+i72 (447)

Then the two conditions in (4.46) simply say
1 wo
(uny) : 0 = 3 or (ung) : 71 = 72 and x. = X (4.48)

In both cases we can write down a pairing which satisfies a) and c). We still
have to check b). In the first case, i.e. o = § we can take the map iy, = Id and
then we get for f1, fo € 3§x the formula

B(f1, f) = /K F1 () TRk (4.49)

and this is clearly positive definite. These are the representation of the unitary
principal series.

In the second case we have to use the intertwining operator in (4.41) and
write

U(f1, f2) = T8 (f2) (f1) (4.50)

Now it is not clear whether this pairing satisfies b). This will depend on the
parameter . We can twist by a character n : Z(R) — C* and achieve that
Xe = 1,71 = 70 = 0. We know that for o = % the intertwining operator T.°¢ is
regular at y and since in addition under these conditions 3%)( is irreducible we
see that

T¢(x) = a Id with o € R%, (4.51)

o0

Since we now are in case A) and B) at the same time we see that the two pairings
defined by the rule in case (un;) and (uns) differ by a positive real number hence
the pairing defined in (4.50) is positive definite if o = %

But now we can vary o. It is well known that 3% X stays irreducible as long
as 0 < o < 1 (See next section) and since T.1°°(x)(f)(f) varies continuously we
see that (4.50) defines a positive definite hermitian product on 3% as long as
0 < o < 1. This is the supplementary series. What happens if we leave this
interval will be discussed in the next section.

nontriv

4.1.5 Reducibility and representations with non trivial co-
homology

As usual we denote by p € X*(T) ® Q the half sum of positive roots we have
p="(resp. p=71 +72 € X*(T) ® Q) in case A) (resp. B)).

For any character A € X*(T xC) the character Ag provides a homomorphism
B(R) — T(R) and hence we get the Harish-Chandra modules 3GAg, which
are of special interest for us because these are the only ones with non trivial
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cohomology. We just mention the fact that ﬁgx is always irreducible unless
X = Agr for some A. (See sl2neu.pdf, Condition (red)).

We return to the situation discussed in section (4.1.1), especially we rein-
troduce the field F/Q. Then we have X*(T x F) = X*(T x C) and hence
A € X*(T x F). We assume that A\ is dominant, i.e. n > 0 in case A) or
ny1,ne > 0 in case B). Now we realise our modules M) as submodules in the
algebra of regular functions on G/Z : If we look at the definition (See (4.3)) we
see immediately that My ¢ C Jg)\ﬁgo and hence we get an exact sequence of

(g9, Koo) modules
0— Myc — IGAN° 5Dy — 0 (4.52)

Hence we see that JGAR° is not irreducible. We can also look at the dual
sequence. Here we recall that we wrote A = ny + ddet. We consider the dual
sequence. Clearly MX,C = M _2ddet,c, if we twist the dual sequence by det??
then dual sequence becomes

0 — DY @ detd” — (IGAL)Y @ detz” — My c — 0 (4.53)

Equation (4.37) yields (JGAE°)Y @ detz’ — 3% x|p|2 and our second sequence
becomes

0 — DY @ det? — TG |p|2 = My — 0, (4.54)

we put Dyv = DX X det%d.

Now we consider the two middle terms in the two exact sequences (4.52,4.54)
above. The equation (4.41) claims that we have two non zero regularized inter-
twining operators

T (E0) s AL = IGAwlpE 5T Onlpl3) - TG Aeof2 — IEAL
(4.55)

If we now look more carefully at our two regularized intertwining operators
above then a simple computation yields (see sl2neu.pdf)

Proposition 4.1.2. The kernel of T,10%™8(\y°) is My c and this operator
induces an isomorphism

T()\R) : 'D)\ L> 'DX ® detﬁd

Remember \ is dominant.

The kernel of T,lo*8(\g|p|2) is DY @ dets’ and it induces an isomorphism
Of M/\,(C-

The module 3G is reducible if T,1°*8(x) not an isomorphism and this hap-
pens if an only if x = Ar or A\g°|p|3 and X\ dominant. (There is one exception
to the converse of the above assertion, namely in the case A) and o = L and

2
XY # x..) bf Etwas genauery
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Unitarity

For us it is of relevance to know whether we have a positive definite hermitian
form on the (g, Ko )-modules Dy. To discuss this question we treat the cases A)
and B) separately.

We look at the decomposition into Ko-types. (See ( 4.31)) In case A) (See (
4.31)) it is clear that M ¢ is the direct sum of the K, types Cyy; with |I| < n.

Hence

Dyv= P cwe P Cy.=DyaD] (4.56)

k<—n—2,k=d(2) k>n+2,k=d(2)

Proposition 4.1.3. The representations D;,D;\' are irreducible, these are the
discrete series representations. The element c interchanges D;,Dj\', hence D),
is an irreducible (g, K*) module.

The operator T(\g) induces a quasi-unitary structure on the (g, Ko )-module
Dy. The two sets : Koo types occurring in My c and Ko types occuring in Dy
(resp.) are disjoint.

Proof. Remember that as a vector space DY ® det]?{d = DY, only the way how
K acts is twisted by det%{l . .Then the form

hy(f1, f2) = T 5O (£2) (1) (4.57)
defines a quasi invariant hermitian form. It is positive definite (for more details
see sl2neu.pdf). O

A similar argument works in case B).We restrict the Glz(C) x Gl3(C) module
M c to U(2) xU(2) then it becomes the highest weight module My, = My, .®
M, .. (See4.1.1) Under the action of U(2) C U(2) x U(2) it decomposes into

U(2) types according to the Clebsch-Gordan formula

M lv@) = b M,. (4.58)

Mc:k’Ych% det; k=(n1—mn2) mod 2; ni+n2>k>[ni—na|

Hence we get

Dx.lu(e) = &y M, (4.59)

,Ufc:k')'c"!'% det; k=(n1—n2) mod 2; k>n1+n2+2

Again we have

Proposition 4.1.4. The operator T,1°"8(\g°) induces an isomorphism
T(/\R) : Dy = 'D;\/ ® det%d

The (g, Koo) modules are irreducible.

The operator T ¢ 8(\g°) induces the structure of a quasi-unitary module
on Dy if and only if ny = na. This is the only case when we have a quasi-unitary
structure on Dy. The two sets of Koo types occurring in My ¢ and in Dy (resp.)
are disjoint.
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The Weyl W group acts on T' by conjugation, hence on X*(T' x C) and we
define the twisted action by

s-A=s(A+p) —p (4.60)

Given a dominant A we may consider the four characters w- A, w € W(C) =
W and the resulting induced modules JGw - Ag. We observe (notation from
(4.1.1))

S1 (nl'y + dl det +n2’_y + dgﬁ) = (777,1 — 2)"}/ -+ d1 det +n2’_y + dg@)
o o (4.61)
s2 + (n17y + di det +n9¥ + dodet) = nyy + dy det +(—ng — 2)7 + dadet)

Looking closely we see that the K, types occurring in 3%31 - Aor 3%52 - A
are exactly those which occur in D,. This has a simple explanation, we have

exiso

Proposition 4.1.5. For a dominant character A we have isomorphisms between
the (g, Koo) modules

Dy —3%s1 -\, Dy —= %80 - A (4.62)

The resulting isomorphism jgsl AR — 3%32 - AR s of course given by Tégc(sl .
A).

Interlude: Here we see a fundamental difference between the two cases A)
and B). In the second case the infinite dimensional subquotients of the induced
representations are again induced representations. In the case A) this is not so,
the representations ’Df are not isomorphic to representations induced from the
Borel subgroup.

These representation Df\[ are called discrete series representations and we
want to explain briefly why. Let G be the group of real points of a reductive
group over R for example our G = G(R), here we allow both cases. Let Z be
the center of G, it can be written as Zy(R) - Z. where Z, is maximal compact
and Zy = (RZ)%. Let w® : Zy — R be a character. Then we define the space

Coo(Gwr) = {f € C(G) | f(z9) =w O (2)f(g) ;Y2 € Zo,g € G}  (4.63)

and we define the subspace
L2 (Guum) = {F € CalGoton) | | F@T@@(0) 2y <0} (4.4

where of course dg is a Haar measure. As usual L*(G,wg) will be the Hilbert
space obtained by completion. This Hilbert space only depends in a very mild
way on the choice of w(® we can find a character § : G — RX such that
w©§|z, = 1. Then f + f6 provides an isomorphism L?(G,w) = L2(G/Zy).

We have an action of G x G on L?*(G,w®) by left and right translations.
Then Harish-Chandra has investigated the question how this ”decomposes” into
irreducible submodules. Let éw<0> be the set of isomorphism classes of irre-
ducible unitary representations of G.
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Harish-Chandra shows that there exist a positive measure p on Gw(m and a
measurable family H¢ of irreducible unitary representations of G such that

L(Guuwn) = [ He o e uldg) (4.65)
Guy

( If instead of a semi simple Lie group we take a finite group G then this is
the fundamental theorem of Frobenius that the group ring C[G] = ®pVp @ V)’
where Vj are the irreducible representations.)

If we are in the case A), the sets consisting of just one point {Di} have
strictly positive measure, i.e. pu({D¥}) > 0. This means that the irreducible
unitary G x G modules D/\i ® Z)AiV occur as direct summand (i.e. discretely in
L3(@).).

Such irreducible direct summands do not exist in the case B), in this case
for any ¢ € G we have p({¢}) = 0.

End Interlude

We return to the sequences (4.52),(4.54). We claim that both sequences
do do not split as sequences of (g, K )-modules. Of course it follows from
the above proposition that these sequences split canonically as sequence of K,
modules. But one sees easily that complementary summand is not invariant
under the action of g. This means that the sequence provides a non trivial
classes in Ext%g,Km)(DA, M o).

The general principles of homological algebra teach us that we can under-
stand these extension groups in terms of relative Lie-algebra cohomology. Let
€ resp. £ be the Lie-algebras of K, resp. Ko the group Ko acts on g, t via the
adjoint action (see 1.1.4)

We start from a (g, Ko) module 3Gy and a module M, ¢. Our first goal
is to compute the cohomology H*®(g, Koo, IGx ® M, ) which is defined as the
cohomology of the complex (See 6.1.2, (6.3))

H*(g, Koo, IGx ® M) := Homp_(A®(g/),3Gx ® Mag). (4.66)

Here we only assume that x : T(R) — C* is any character, we will see that
there is only one x for which we have non trivial cohomology.

There is an obvious condition for the complex to be non zero. The group
Z(R) C K acts trivially on g/¢ and hence we see that the complex is trivial
unless we have

_1:

OJX /\R'Z(R)(o) (467)

we assume that this relation holds.

We will derive a formula for these cohomology modules. This formula is a
special case of a formula of Delorme. which will be discussed in greater generality
in Chapter 9.

An element w € Hompg (A™(g/®),35x ® My ) attaches to any n tuple

v1,...,U, of elements in g/% an element

W, .., v) € TG @ Mac (4.68)
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such that w(Ad(k)vy, ..., Ad(k)v,) = kw(vy,...,v,) for all k € K.
By construction

W(vy, ... vy) = Zf" ® m, where f, € ’ng7my € Miyc

and f, is a function in Co which is determined by its restriction to Ko (and
this restriction is K finite). We can evaluate this function at the identity
e € G(R) and then

w(v1,...,vn)(eq) = Zf,,(e) ®@m, € Cx @ My c.

The f(oojnvariance (4.68) implies that w is determined by this evaluation at
eg. Let KL = T(R) N Ko = Z(R) - T... Then it is clear that

w* i {v, . nt e w(vg, ., on)(eg) (4.69)
is an element in
w" € Homgr (A"(g/), Cx © My c) (4.70)
and we have: The map w — w* is an isomorphism of complexes. Besser
machen
Hompg (A*(g/8),3%x @ Myc) — Homgr (A*(g/8),Cx ® Myc)  (4.71)
The Lie algebra g can be written as a sum of ¢ invariant submodules
g=b+t=t+u+t (4.72)

in case B) this sum is not direct, we have b NE=tNt=cand hence we get the
direct sum decomposition into KZ -invariant subspaces

g/t=t/cou (4.73)

We get an isomorphism of complexes

Homy (A®*(g/8),I5x © Mxe) = Homgr (A*(t/8),Cx ® Hom(A®(u), Mxc))
(4.74)

the complex on the left is isomorphic to the total complex of the double complex
on the right. The next step is the computation of the cohomology of the complex
Hom(A*(u), My ¢).

Case A). We have u = QFE, where F} = (8 (1)> and our module M g has

a decomposition into weight spaces

v n=n
Mig=Pex"v"= P Q. (4.75)
v=0 p=—n,u=n(2)

t 0

The torus T = {<0 -1

>} acts on e, = X" YY" by

p,\(<8 tol))eu =tle, (4.76)
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We also have the action of the Lie algebra on M g and by definition we get

n—p

d(p2)(Bs)en = Evey = ——eutz (4.77)

Now we can write down our complex Hom(A®(ut), M ¢) very explicitly. Let
EY € Hom(u,Q) be the element EY(E,) = 1 then the complex becomes

n=n
0+ P Qb EB QEY ®e, — 0 (4.78)
p=-—n,u=n(2) p=—n,u=n(2)

where d(e,) = “52EY ® e, 42. This gives us a decomposition of our complex
into two sub complexes

Hom(A® (1), My c) = H® (1, My ) & AC* (4.79)

where AC* is acyclic (it has no cohomology) and

H*(u, Mrg) = {0 = Qe, -5 QEY @e_, — 0}, (4.80)
where the differential d = 0. Hence we get
H*(u, M,\Q) = H*( Hom(A*(u), M)\,Q)) = H*(u, M,\@). (4.81)

We notice that the torus T acts on H®(u, My g) ( The Borel subgroup B acts
on the complex Hom(A®(u), M, g) but since the Lie algebra cohomology is
the derived functor of taking invariants under U (elements annihilated by u) it
follows that this action is trivial on U). Now it is clear that (4.74) yields

H* (ga Kooa ng & M)\,(C) ;> H.(ta KZC, (CX @ H.(ua MA,Q)) (482)

Hence we see that T acts by the character A on Q e, = H%(u, M, g) and
by the character A= —a =wo- A=A -2pon Q EY ® e_,, = H'(u, M, g).
Here we see the simplest example of the famous theorem of Kostant which will
be discussed in Chap. 8 section 7?7

Then our cohomology groups H*(t, KL, Cx ® H*(u, M, g)) are given as the
cohomology groups of the double complex with entries Hompgr (AP(t/t)Cx ®
H?(u, My @) where p = 0,1,¢ = 0,1 and where the differentials in direction ¢
are zero. We have to compute the cohomology of the complexes

0— Hong; (AO(’L/E)’ (CX ® Hq(u7 MNQ)) i> Hong; (Al(t/E% (CX ® Hq(uv M)\,Q)) —0
(4.83)

In this complex we drop the subscript KZ then both spaces in the complex are
one dimensional and the differential is up to a non zero factor multiplication
by dx(H) + d(w - \)(H) and hence we have zero cohomology unless we have
dx(H) + d(w - A)(H) = 0. Hence we see (observe that ¢ = l(w))

H* (4, KL, Cx @ HY(u, M 0)) # 0 = X|T(R)” = (w- N |IT(R).

We now reintroduce the subscript K . Since clearly K2 - T(R)(®) = T(R)
we see that we have non trivial cohomology if and only if x = (w-A)g L Putting
everything together we see
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I(w) . Y : _ )1

H0 (g K 3 8 My ) — J W MA) AN i = (- A);
’ 0 else

(4.84)

Now we tensorize the sequence (4.52) with the dual M v we get an exact se-
quence of (g, Ko, ) modules and we look at the resulting long exact sequence in
cohomology. We know that H'(g, Koo, My ® M,v) = 0 and then we look at the
piece

0— H (g, Koo, IGN @ Myv) = HY (g, Koo, Dy @ Myv) — H?(g, Koo, My ® Myv) — 0
(4.85)

We have seen and we know that the two extreme terms are equal to C and then
we get easily

H'Y(g, Koo, Dy ®@ Myv) =Co C (4.86)

and vanishes in all other degrees.
Of course we can get this last result easily if we look at the complex Hompg__ (A®(g/8), DA®
M) which in this situation collapses to

0 — Homg_ (A'(g//t, Dy @ Myv) =0 — .., (4.87)

in section 4.1.11 we give explicit elements wl € Hompg_ (A*(g/t), Dy @ Myv)

which form a basis for this space.

We discuss briefly the case B). Again we want that our group G/R =
Rc/r(Glz/C) is a base change from a group G//Q denoted by the same letter.
We need an imaginary quadratic extension F'/Q and put G/Q = Rp/q(Glz/F).
We choose a dominant weight A = A\ + Ao = n1y; + dy dety +naoys + dodets
and then My p = My, r ® M, r is an irreducible representation of G xg F' =
Gly x Gly/F. Now we have u® F = FE}r P FE?r Then basically the same
computation yields:
The cohomology H*®(u, M r) is equal the complex
H* (u, My ) = {0 = Fel) @ Felt) -4 FEY @) @it @ FERY @) @ B2V @)
L FEW @) @ B2V @e? -0}

—ni —n2

(4.88)
where all the differentials are zero. The torus T acts by the weights
A in degree 0, s1 - A, s2 - A in degree 1, wyp - A in degree 2 (4.89)

and we have a decomposition into one dimensional weight spaces

H*(u,Myp)= @ H(u,Mxyr)(w-N)
weW (C)

We go back to (4.74) and get a homomorphism of complexes
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Hom,(A®(g/€), Cx ® My c) = Hompg op(A*(t/€), Cx @ H®(u, My ¢))
(4.90)

which induces an isomorphism in cohomology so that finally

H*(g, Koo, 3Gx ® M) — H*( Homg_ (A®(t/), Cx ® H*(u, My c))
(4.91)

and combining this with the results above we get

Theorem 4.1.2. If we can find an element w € W(C) such that x~! = w - Ag
then

H'™ (u, My c)(w - A) © A*(4/8)" = H* (g, Koo, IGX ® Mirc)

If there is no such w then the cohomology is zero.

t 0

Proof. Our torus T(R) = ¢ x {(0 -1

) ; t € RZ,} = ¢ x A. Hence we see that

1 0
0 -1
X! - Ar|c is the trivial character. The second factor A does acts on Cy by the
character x(t) = t* and on H'")(u, My c)(w - A) by ¢ = t™(*). Differentiating
we get for the complex

dim t/% = 1, and the element Hy = < > . Of course we must have that

0 = H'®) (u, My o)(w- ) = Co HY ® H™ (u, Mag)(w-A) =0 (4.92)

where the differential is multiplication by m(w) + z. Hence we see that the
cohomology is trivial unless m(w) + z = 0, but this means Y~ ! = w - Ag. O

4.1.6 The cohomology of the modules M, ¢, D, and the
cohomology of unitary modules

Let Irr(G, K ) be the set of isomorphism classes of irreducible (g, K )-Harish-
Chandra-modules, we are a little bit pedantic, if V is such an irreducible module,
then its isomorphism class is [V]. For any dominant A we define the sets

Coh(\) = {[V] € Irr(G, Koo) | H*(g, Koo, V@ My c) # 0} (4.93)

We also define Coha(A), this are those [V] which in addition are unitary. This
definition makes sense in greater generality (see 6.25). In our special case there
these sets are very small. Remember that we have a fixed central character w.

At first we determine the finite dimensional elements in Coh(A). Of course
M ¢ itself is a Harish-Chandra module and it follows from Wigner‘s lemma
that H*(g, Koo, Mxc)) = 0 unless \() = 0, i.e. M, ¢ is one dimensional. Then
it follows from Clebsch- Gordan that

Proposition 4.1.6. In case A)

HY(g, Koo, Myv.c @ M) = H*(g, Koo, Myv.c @ My ) =C,
(4.94)
H (g, Koo, Mavc®@ My c) =0
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In case B)

H%(g, Koo, Myv.c @ M) = H3(g, Koo, Myv.c @ My ) = C,
(4.95)
H'Y(g, Koo, Mxv.c ® My ) = H*(g, Koo, Mav,c ® M) =0

Here we take notice of a point, which plays a role if it comes to questions
concerning orientability. In case A) we can twist the G(R) module Myv ¢ by
the sign character 7 : g — sgn(det(g)), it has the same central character.
Obviously the twisted module M v ¢ ® n provides the same (g, K )-module.
But this depends on the choice of K., if we replace K., by the larger group
K (see section 4.1.3 ) then the (g, K% ) modules Myv ¢ and Mjv ¢ ® n are
not isomorphic. If we replace in the above proposition Ko, by K7 and Myv ¢
by Myv ¢ ®n, then the cohomology vanishes in all degrees.

Small remark: In general it is sapient to work with a connected K, or Koo
and then keep track of the action of K* on H*(g, Ko,V @ My ).

Again we start from a dominant character A. Then our considerations yield
that in case A)

Coh(A\Y) = {My ¢, Dy, Dy } (4.96)

we even have D), Dy € Cohy(\Y) and M, ¢ € Coha(A\Y) if and only if A = 0.
For some reason we call {D}", Dy } = Coheysp(AY) and { M ¢} = Cohgis(AY)

in case B) we take the tensor product of the exact sequence (4.52) by Myv ¢
and we get a long exact sequence of (g, K, ) cohomology modules (we insert the
values for H*(g, Koo, Mxc @ Myv ¢))

0
0—-C— H0(97Koo,jg)\]§’0 ® ./\/l)\v,(c) T—) HO(Q,KOO,D,\ ®M,\v,(c)(: 0)
1
— 0 — H'(g, Koo, IEAE @ Myv ) — H' (9, Koo, Dy ® Myv c) —

2
0 = H%(g, Koo, IGAR® @ Myv ¢) —— H?(g, Koo, Dr ® My )

T3

- C—= H3(9,Koo7jg)\§0 ®./\/l)\v)(c) — 0
(4.97)

2

The homomorphisms r!,72 are isomorphisms and all the H', H? = C. Hence

we see that in this case

Coh(AY) = {Myc,Dr} (4.98)
and
i 1) =
Cohy(AY) = Mae Da} AT =0 (4.99)
{Dr} ifny =ny >0
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4.1.7 The Eichler-Shimura Isomorphism

We want to apply these facts about representation theory to the study of co-
homology groups H®(T'\X, M) ¢) where now I' is a congruence subgroup of
GIQ(Z) or Glg(@)

We start again from a dominant weight A = ny + ddet € X*(T x C). Every
(9, Koo) invariant homomorphism ¥y : JGw - Az — Co(I'\G(R)) induces a
homomorphism

U, @ Hompg (A'(g/i’),ij AR ® Myv c) = Hompg (A.(g/%)vcm(F\G(R)) ® My c)
(4.100)

We will show in section 6.1.3 Proposition 6.1.1 that the complex on the right is
isomorphic to the de-Rham complex:

Homp _ (A*(g/8),Coo(T\G(R) @ Myv c) == Q*(I\X, Myvc)  (4.101)

This de-Rham complex computes the cohomology and hence we get an homo-

morphism | gkdeR
\I/; : H.(ga Kooa jgw : >\]R X MAV,(C) — H* (F\Xa .A;l)\v,(c) (4102)

We denote by w(®) the restriction of the central character of 3Gw - Ag to the
subgroup Zjy. and we introduce the spaces

ECINw,T) =  Homy . )(IGw - A, Coo(D\G(R),w®)
U (4.103)
ED\w,I) = Homgn)(IGw- A, C& (P\G(R),w®)

where the superscript (?) means square integrable.(See 6.14). It is clear from
the results in Chapter 6 that the spaces £(?) are finite dimensional.

We still have another subspace of Coo(I'\G(R)) namely the space of cusp
forms

CLP(M\G(R)) = {f € COM\GR)];] /F mU(R)f(w) =0} (4104)

here U runs over the set of unipotent radicals of Borel subgroups over Q
and f should satisfy some mild growth condition (see ??). It is well known

that cusp forms are rapidly decreasing and hence we have CéguSp)(F\G(R)) C
C(M\G(R))

For ? = 00, (2), (cusp) we e get maps in cohomology
T &'\ w,T) @ H*(g, Koo, IGw - Ag @ Myv c) — H*(T\X, Myv ¢) (4.105)

Of course the module 5(2)(/\,10,/\) = 0 unless ng - Ar has a non trivial
quotient module which admits a positive definite quasi unitary (g, K ) invariant
metric. This means that £)(\,w-\) # 0 implies that in case B) the coefficients

satisfy

ny = ng, i.e.A =n(y1 + y2) + di det +ds det, (4.106)



176CHAPTER 4. REPRESENTATION THEORY, EICHLER-SHIMURA ISOMORPHISM

we will say that A is unitary if this condition is fulfilled. Then the results in
section (4.1.5) yield that these irreducible quasi unitary quotient modules are
Di in case A) and Dy, in case B) .

Hence it is clear that a ¥y € £2)(\,w - \) must vanish on the finite dimen-
sional submodule M if n > 0 and hence under this condition we have

8(2) ()‘7 w - )‘) = Hom(g,Koo)(D)\a C<(x2':) (F\G(R)a W(O))

We have the fundamental

Theorem 4.1.3. (Eichler-Shimura Isomorphism) For A\ = nvy unitary the map
(I)g?) : 8(2) <)\7 w, F) Y Hq(ga KOOa ID>\ b2 M)\V,C) — qu (F\Xa M)\V,(C) (4107)
is an isomorphism for ¢ =1 in case A) and for ¢ = 1,2 in case B).

This is well known and proofs can be found everywhere in the literature. it
is a special case of theorem 6.1.1. It says a little bit more, it says that the image

of @&2) lies in the inner cohomology and not only in H, ('2). But this is very easy
to see, if we apply our considerations from section 77 to this special case.

We still have the special case llambda") = 0 in this case M is one dimen-
sional and isomorphic to the one dimensional subspace C[\] C Cg)(F\G(R)..
Then and the map

H*(g, Koo, C[\] ® C[\Y]) = H*(T\ X, Myv c ® C) (4.108)
is an isomorphism in degree zero and zero in all other degrees.

For the case A).we want to relate this to the classical formulation. The
group Sly(R) acts transitively on the upper half plane H = Sl3(R)/SO(2). For

g= (CCL Z) and z € H we put j(g,2) = cz + d. To any

® € Homy s ) (DY, CH(T\G(R),w?))
we attach a function fF ,:H — C: We write z = gi with g € Sl(R) and put
holWh
ni2(2) = @(Pni2)(9)i(g,1)" (4.109)
An easy calculation shows that f& "o is well defined and holomorphic (slzweineu.pdf)p.25-

26) and for v = (Z Z) € Sly(Z) it satisfies

Fora(72) = (cz + d)" 2 [0, 5(2) (4.110)

The condition that ®(t,,42)(g) is square integrable implies that f,, 2 is a holo-
morphic cusp form of weight n + 2 = k. It is a special case of the theorem of

Gelfand-Graev that this provides an isomorphism | GelfGraev

Homg k) (Dy, C2(M\G(R)) = S(T) (4.111)
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where of course Si(I") is the space of holomorphic cusp forms for T

We can do the same thing with D, then we land in the spaces of anti
holomorphic cusp forms, these two spaces are isomorphic under conjugation.
Combining this with our results above gives the classical formulation of the
Eichler-Shimura theorem:

We have a canonical isomorphism

Si(T) @ Si(T) = HIT\H, Myv ) (4.112)

Of course the involution c¢(!) interchanges the two summands. It is also clear
that c(1) is the extension of the involution

There is an analogous formulation in case where we have to work with
Bianchi modular forms.

4.1.8 Petersson scalar product and semi simplicity

Earlier in chapter 3 we stated a general theorem 3.1.1 which in this case says
that H!T\H, M,v c) is a semi-simple module for the Hecke algebra, we gave
an outline of the proof. In this case the hermitian scalar product is obtained
from the Petersson scalar product on Si(I"). For two cusp forms f,g € Si(T")
this scalar product is given by

—— pao.dzNdZ
< f.g>= f(2)g(2)y '+2172
'\H Yy

For this metric the Hecke operators are self adjoint, and from this it follows that
Sk(I') is semi simple as Hecke module.
We can decompose into eigenspaces

H(T\H, Myv p) = @ H'(T\H, Myv ) (7f) (4.113)

Tf

where 7y : H — F' is a homomorphism. In this case we know that each =y
which occurs actually occurs with multiplicity 2 (it occurs with multiplicity one
in Si(T") and Sk(T) )

For any embedding ¢ : F' — C we know the Ramanujan-Petersson conjecture,
which says

n+1

For all primes p we have [o(7¢(T,))| <2p 2 (4.114)
and again we can conclude that we get a canonical splitting of Hecke-modules
H'T\H, Myv ) = H'T\H, Myv ) @ F Eis,, (4.115)

where T,( Eis,) = (p"*! + 1) Eis,,. ( The eigenvalue of T, on Eis,, is different
from the eigenvalues of T, on H}!T\H, M v r) (Manin-Drinfeld principle) and

then a standard linear argument gives us the splitting.) Of course we could also
say that the Hecke-module H}T\H, M v r) is complete in H'(T'\H, M v r).
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4.1.9 Local Whittaker models

How do we get such ¥,? In our special situation we get them from Fourier-
expansions of Whittaker functions and this will be explained next. We recall
some fundamental results from representation theory of groups Glz(Q,). Let
F/Q be a finite extension Q. An admissible representation of Gla(Q,) is an ac-
tion of Gl2(Qp) on a F-vector space V which fulfills the following two additional
requirements

a) For any open subgroup K, C Glz(Z,) the space of fixed vectors VE» is
finite dimensional.

b) For any v € V we find an open subgroup K,, C Glz(Z,) such that v € VE».

We say that V is a Glo(Q,) module, we denote the action of Glo(Q,) on V
by (g,v) — gv. In addition we want to assume that our module has a central
character, this means that the center Z(Q,) = Q, acts by a character wy :
Z(Qp) — F*. Such a module is called irreducible if it does not contain a non
trivial invariant submodule.

Again we dispose of a Hecke algebra, given K, we consider the space of
functions

Hi, = {f : GL(Qp) = F | f(zg) = wy'(2)f(g) ; f has compact support( mo)d Z(Qp)}
4.116

this gives as an algebra by convolution and this algebra acts on V%7 by

fxu= / f(z)xvda.
Gl2(Qp)/2(Qp)

We normalize the measure dz such that it gives volume one to K.

We recall - and explain the meaning of - the fundamental fact that each
isomorphism class of admissible irreducible modules has a unique Whittaker

Yy Qp = CX5 ¢yt af/p™ —er™ (4.117)
it is clear that the kernel of v, is Z,. Since we have U(Q,) = Q, we can view
1, as a character ¢, : U(Qp) — C*. We introduce the space

Cy, (Gla(Qy)) = {f : GL2(Qp) = Clf(ug) = ¥p(u)f(9)}

where in addition we require that our f is invariant under a suitable open sub-
group Ky C Gly(Z,). The group Gla(Q,) acts on this space by right translation
the action is not admissible but satisfies the above condition b) .

Now we can state the theorem about existence and uniqueness of the Whit-
taker model

Theorem 4.1.4. For any infinite dimensional, absolutely irreducible admissible
Gl2(Q,) -module V' we find a non trivial ( of course invariant under Gla(Q,))
homomorphism

UV = Cy,(Gl2(Qy)), (4.118)
it is unique up to multiplication by a mon zero scalar.

Proof. We refer to the literature, [55], [32] O
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Spherical representations, their Whittaker model and the Euler factor

An absolutely irreducible Glz(Q,) module is called spherical or unramified if for
K, = Gly(Z,) we have VE» =£ {0}. In this case it is known that (Reference)

dimp (V@) = 1, V@) = ppy. (4.119)
The Hecke algebra Hy, is commutative and generated by the two double cosets

T, = Glo(Zy) (g (1)) Gly(Zy) and Cp = Gly(Zy) <g 2) . (4.120)

The space VE12(Z») is an absolutely irreducible module for # K, hence it is
of rank one, let 1)y be a generator. Our two operators act by scalars on V»,
we write

Tp(h()) = Wv(Tp)ho and Cp(ho) = Wv(Cp)hQ (4121)

The module V' is completely determined by these two eigenvalues, of course

v (Cp) = wy (Cp).

We can formulate this a little bit differently. Let m, an isomorphism type of
our Gl(Q,) module V. Then our theorem above asserts that there is a unique
Gl2(Qp) -module

W(mp) C Cy, (Gla(Qy)) (4.122)

with isomorphism-type equal to 7, xr C. We call this module the Whittaker
realization of m,. If our isomorphism type is unramified then the resulting ho-
momorphism of H,, to F' is also denoted by .

We have the spherical vector hgr? € W(7r,,)Gl2(ZP) which is unique up to a
scalar. Since Gl2(Q,) = U(Q,)T(Qp)Gla(Zy,) this spherical vector is determined
by its restriction to T(Q,). We have a formula for this restriction. First of all
we observe that

1 0 m n—m )
hS,?((PO pm> =m,(Cy )hg;)((p 0 1)), (4.123)

We claim that h&? ( (p 0 (1)

O [ e co I R T

and we can find an element u € Q, such that p~"u € Z, and ¢, (u) # 1, this
implies the claim. We exploit the eigenvalue equation Tp(hgr?) = (Tp)hgr?, we

write the double coset K, (p

)) = 0 if n < 0. To see this we look at the equalities

0 (1)) K, as union of right K, cosets

g0 Nm=U (016 DU )6 ) s

z€Z/pL
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55 96 06 Dy D)
i (G o) (5 1) =mem (™ )

and this implies the recursion formula

(P 0 o (P 0 phi)( 0 ) ifn>0
ﬂp(Tp)hﬂp ( 0 1 ) = Wp(cp)hwp ( 0 1 ) + 0 1)
0 ifn<0

(4.124)

Clearly

10

We can normalize h(o)( <0 1

)) = 1, then the values for n > 0 follow from the

recursion.
There is a more elegant way writing this recursion. For our unramified m,

we define the local Euler factor

1
L(ﬂ-ilh S) =

1 —mp(Tp)p=* + prp(Cp)p=2¢

(4.125)

We expand this into a power series in p~° and an elementary calculation shows

that
L(mp, s Zh(‘” ( ))p”p_”s (4.126)

Whittaker models for Harish-Chandra modules

We also have a theory of Whittacker models for the irreducible Harish-Chandra
modules studied in section 4.1. The unipotent radical U(R) = R resp. U(R) =
C. Again we fix characters 9o, : U(R) — C* we put

e—2miT in case A)
. _ v 4.127
Yoo (T) {6—27”(1‘-*-%) in case B) ( )

and as in the p-adic case we define
Co (GR)) = {f : G(R) = C | f(ug) = Yo f(g), f is Coc}  (4.128)

Then we have again | Whittinf

Theorem 4.1.5. For any infinite dimensional, absolutely irreducible admissible
Gl2(R) -module V' we find a non trivial ( of course invariant under Gly(R))
homomorphism

UV - Cy (G(R)), (4.129)

This homomorphism is unique up to a scalar. The image of V' under the homo-
morphism U will be denoted by V.
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Proof. Again we refer to the literature. [32]. O

Hence we can say that for any isomorphism class ., of irreducible infi-
nite dimensional Harish-Chandra modules we have a unique Whittaker model
W(Ts) C Cy_ (G(R)). In the book of Godement we find explicit formulae for
these Whittaker functions.

Actually it is easy to write down such maps ¥y resp. U explicitly for our
induced modules, we start from a dominant weight A = ny + 0 (resp. ni1vy1 +
naye + 0 where n > 0,n1,n9 > 0. We define

F : 3GAelplz = Cy (G(R))

by the integral

F()g) = . f(wug) oo (—u)du,

there is no problem with convergence as long n > 0,n1,ns > 0. If one of these
numbers is zero then there is a tiny difficulty to overcome, we ignore it. In any
case we get an isomorphism

F:382elolt = 95 Aelolf (4.130)

i.e. we will denote elements or spaces which lie in a Whittaker model by ?%.
We consider the case A). Let n be even. We consider induced module
IGARPE = @uEO(Q) Con,v, (See 4.31we have the exact sequence (See seqd

0— D, @Dy — TG epE — My — 0
We have the Whittaker map
F:360mpk = Cu(GR))

which is defined by

t 0 L o 1 =z t 0 —_ 97z
S N [
We change variables x — —x then the Iwaswa decomposition gives

t T t
(D60 D-CF ) (22 T
0 1 0 1 t 0 2 +22) \ e Tere
and a straightforward computation gives us that we have to evaluate

- £ 0 B t%+1 [’} e27riac d
((b)\,l/)( 0 1 )_ - (_w+ti)n/2+y/2+1(_x_tz')n/27u/2+l X

We apply the Residue theorem. We consider the case t > 0. Let R >> 0 we
consider the path from —R to R on the real line followed by the half arc Cg
in the upper half plane from from R back to g. The integral along this path is
the sum of the residues in the interior of this closed path. On the other hand
it it is easy to see that for R — oo the integral along C'r goes to zero, basically
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because |e/27iz| becomes very small if Im(z) becomes large. Our function has
only one pole in the upper half plane, namely for x = ti and therefore

= L=z [t O\ omiz, _ 241 _ i
/700 Paw(w (O 1 ) <O 1>)e dr =tz Resm:“(fx+t@')n/2+u/2+1(—x—ti)”/Q*"/QH

If we put z := x — ti then our integral becomes

627”2

(22.)771/27”/27:%7”/26727“ Res,_o _ P)\,y(t)eizﬂt,

(1+Qiti)n/2+u/2+1zn/2+u/2+1

where Py ,(t) is a Laurent polynomial in C[t,¢71].
If t > 0 then there is no pole forv < —n — 2 and this implies that F maps
D, to zero. If we restrict to ¢ > 0 our map F induces an injection

IGAm0E /Dy, = Cy(G(R))

this is of course an intertwining operator. The module DY, C 3§GArp3 /Dy it
has ¢ nt2 as a lowest weight vector. We compute F(¢ nt2), then the nasty
factor (1 + ﬁ)”/%”/z“ is equal to one in this case and hence we have up to a
non zero constant

t 0 nil _on
]:((b/\a"+2)(<0 1)) :C/\t2+1e 2mt

If we now restrict to ¢ < 0 then bsidcally the same computation shows that
F sends |Dsm to zero-

In the case A) the we the two discrete irreducible series representations
Dj{v , Dy attached to a dominant weight X. We have their Whittaker model

Fi:DE, = Cy (Gla(R)). (4.131)

The group (Glz(R) has the two connected components Gla(R)*, Glo(R)~,( det >
0,det < 0) and we have

Fi(Df) = D;QT is supported on Gla(R)™, D;@T is supported on Gla (}(li)_ :
132

Under the isomorphism Uy the elements Vi (nt2) (See (4.30) ) are mapped to
functions d’l(n +o- We can normalize U4 such that

t 0 tztle=27t  if >
Vaanl(g 1)>:{ (4133)

0 else

and 1T 5 is given by the corresponding formula.

—n—

We discuss the same issue for the group Gly(C) later in section 4.1.11
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Global Whittaker models, Fourier expansions and multiplicity one

We also have global Whittaker models. To define them we recall some results
from Tate’s thesis ([87]). We introduce the ring of adeles A = Ag, we write it
as a product A = Q, X Ay = R x Ay. The ring of finite adeles contains the
compact subring 7= Hp Z,, of integral adeles.

We define a global character ¢ : U(A)/U(Q) = A/Q — C* as the product

V(Toos - Tpy - - -) :¢m(xm)pr(xp) (4.134)

where the local components v, are as above, we have to check that 1 is trivial on
U(Q). (See [87], "note the minus sign”) For any a € Q we define ¢! (z) = (ax),
so ¢ = 1. In ([87]) it is shown that the map

Q — Hom(A/Q,C*); a s (4.135)

is an isomorphism between Q and the character group of A/Q. Hence we know
that for any reasonable function h : A/Q — C we have a Fourier expansion

h(w) = h(a)y(au) (4.136)

acQ

where h(a) = fA/Q h(w)Y(—aw)du, and where volg,(A/Q) = 1. Then we put

Cy(Gla(R)xGla(Af)/Kf)) = {f : Gla(R)xGla(Af) /Ky — C[f(ug) = ¢ (w)f(g)}

this is a module for Glo(R) x @' H,

Let us start from the Harish-Chandra module 7, = Dj and a homo-
morphism 7; = @'m, : ®H, — F from the unramified Hecke algebra to F.
Here F/Q is a finite extension of Q. We assume it comes with an embedding
t: F — C, i.e. we also may it consider as a subfield of C.

We still assume for simplicity that Ky = Gl (Z) The results on Whittaker-
models imply that we have a unique Whittaker-model

W(m) = W(roo) @ Chl?) C Cyy(Gla(R) x Gla(Af)/Ky) (4.137)

for our isomorphism class ™ = 7, x m¢. Here of course h&o) = ®h7(8)).

We return to Theorem 4.1.3. On the space C2) (T\G(R),w)) we have the
action of the unramified Hecke algebra. To see this action we start from the
observation that the map Glo(Q) — Gla(Ay)/Ky (Chap. IIT, 1.5) is surjective
and hence

Gly(Z)\Gla(R) = Gla(Q)\Gly(R) x Gla(Af) /Ky (4.138)
and hence

CP(Gly(2)\Gly(R)) = C? (Cly(Q)\Gla(R) x Cly(Af)/Ky) (4.139)
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and the space on the right is a Gla(R) x @' H,, module. Now we consider the
T = Teo X Ty isotypical submodule CC(X%)(GIQ(Q)\GIQ(R) x Gl (Af)/Ky)(m) C

CP (G (Q)\GLa(R) x Gly(A)/Ky).
We have the famous Theorem which in the case I' = Sl3(Z) is due to Hecke

[ltone]

Theorem 4.1.6. If Cég)(Glg((@)\Glg(R) x Gla(Ay)/Ky)(m) # 0 then have a
canonical isomorphism

F:W(r) = C(()g)(GIQ(Q)\G12(R) x Gla(Af)/Ky)(m) (4.140)
especially we know that w occurs with multiplicity one.

Proof. We give the inverse of F. Given a function
h € CQ(Gl2(Q)\GL2(R) x Gla(Af) /) (r)

we define
W((grg) = [ hug) 9l (1.141)
U@\U(A)

it is clear that hf (gm,gf) € W(r). It follows from the theory of automorphic
forms that A is actually in the space of cusp forms, this means that the con-
stant Fourier coefficient [, U@\U(A) h(ug)du = 0 and hence our Fourier expansion

yields ((4.136), evaluated at u = 0)

= ug) ! (u)du )
h(g) agx /U @) h(ug)y' (w)du (4.142)

The measure du is invariant under multiplication by a € Q* and hence a indi-
vidual term in the summation is

/U(A)/U(Q)h(<(1) ?)9)1/,(((1) af))d“—/U(A)/U(Q)h(G) a11u>g)¢(((1) ?))du
(4.143)
b )= (0 D66 )

Since h is invariant under the action of G(Q) from the left we find

Now

w0 (W du = B¢ 0 (g a 0 |
/U(A)/U(@)h(J)w (1) h(<0 1>)9°°)hf(f) (0 1) (9o0:g,)) (4.144)

We evaluate at g = (goo, €) then

h*((g (1)) (goo,e))th<(“6° (1)) goo,(%f ?)) (4.145)

For a fixed g, the function g, = hT(Qoo;Qf) is up to a factor equal to
hgfof) = ®;, hgr(i)) and hence we find
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w5 D) e =1 Dameen((y 1) e

Qfo

The recursion formulae ( 4.124),(4.126) imply that h.(,,of)(< 01

a € 7.
We restrict our functions to Gl (R), i.e. we take go, € Glo(R)* and we
remember that our representationm,, is D;\rv. Then we know that for ho, € D;\Q

the value th((aSo (1)> Joos€) = 0 if as < 0 and hence

)) = 0 unless

(@ 0 _ 31/( 00 0 ay 0 B
h((o 1) (gOC;e))_h((O 1)goou<0 1 )—Ounlessa>0,a€Z,
and our Fourier expansion (4.136) becomes

h(g):aiiw(g D) (% 9)) (4.147)

O

We notice that there is never any problem with convergence. The Whit-
taker functions hl_ always decay very rapidly at infinity. We write goo =

1 wu t 0 . .
(0 1) (O 1) k with k € K, then it is easy to see

T t 0 —27t
()l < Pl

where P(t) is a polynomial in ¢. This implies that the series is really very rapidly
converging (See remark below).

Now we choose for the component at infinity the function hl = 1/;n+2 and
we compute the corresponding holomorphic cusp form A® under the Eichler-
Shimura isomorphism. We have the formula (4.109)

1 1 1
. y: o S\ (yr T\ . TEREE S W
h®(2) = h® (a+iy) = b v )i v ) L0 = h( v |y E
0 y 2 0 y 2 0 y 2

and hence our Fourier expansion (4.147) becomes

hq)(Z)—ygliimz((aoy a{”))h;})((g (1))) (4.148)

We have the formula (4.133) for ¢, 42 and then this becomes

(oo}
o _ 24130 (@ 0 2miza
h®(z) = Z:lcw h{ ((0 1>)e (4.149)
This is now the classical Fourier expansion of a holomorphic cusp eigenform of

weight & = n + 2, ([50]). The numbers ¢(7f,a) = a5+1h5?f)(<8 (1)>) are the
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Fourier coefficients and they also the eigenvalues of the operator T, -defined
in by Hecke in [50]- on h®. If we apply the Eichler-Shimura isomorphism and
interpret h® as a cohomology class then it is an eigenclass in H}(T'\H, M,, ® C)
and for any prime p the number c(rns,p) is the eigenvalue of the operator T,
defined in 3.9.

We briefly come back to the question of convergence. Hecke proves in [50]

tha [Fstone]
le(mf,a)| < Ca™tite (4.150)

and with this estimate the convergence becomes obvious.
Actually there is a much better estimate, which will be discussed in the

”probably removed” section.

4.1.10 The L-functions

We still assume that K = Gly(Z) or what amounts to the same that T' = Sla(Z).
We start from an eigenspace H'(T\H, M ® F)(f), now ¢ is simply a homo-
morphism 7y : Hy, — Op. To this homomorphism we attach the cohomological
L-function

LCOh(T(f,S) _ H 1

4.151
. 1— Wp(Tp)pis +p1+n72s ( )
here T}, is the Hecke operator defined in 3.9, it differs from the Hecke operator
defined by convolution by a factor p? in front. If we expand this product over
all primes we get

LMy, s) = © ”f’ (4.152)

a=1

and this is exactly the L-function Hecke attaches to the cusp form provided by
m¢. But we want to stress that this cohomological L-function is defined in purely
combinatorial terms (See section 3.2.1, and Chapter 7).

At this moment this L function is a formal expression, it is a formal Dirichlet
series with coefficients in our field F', which is simply a finite extension of Q. If
we assume that F' C C. then we may interpret s as a complex variable and the
above estimate of the size of the coefficients implies that this series converges
absolutely and locally uniformly for R(s) > n+2 and hence gives a holomorphic
function in this halfspace. But something much better is true. We define the
completed L function

AP 7y, 8) = (l;(;))SLCOh(ﬂf,s), (4.153)

for this completed L-function Hecke proved

Theorem 4.1.7. The function A" (r¢,s) has holomorphic continuation into
the entire complex plane and satisfies the functional equation

AP (g, ) = (~1)FHA (mpm 42 — )
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Proof. We could refer to Hecke, but for some reason we give an outline of the
argument. We have the integral representation (Mellin-transform)

o0 d oo d
A g = [ clrpare = [Ty
| — Y 0 Y

of course here we have to be courageous ( or stupid ) enough to exchange
integration and summation. But since e 2% goes rapidly to zero if y — oo
there is no problem with the upper integration limit co. If R(s) >> 0 the y*
also tends to zero fast enough, so that we do not have a problem with the lower
integration limit. But now we can split the integration into two parts

fooo Xa C(Wf»a)e_%ayysdjy =

Jo 3o elmp,a)e>m vyt W [ elmp, a)e vyt

the second integration is converging for all values of s. To handle the first integral

we observe that h®(—1) = 2"*2h®(z), Hence we can substitute y — % in the

first integral and get

ACOh(’ITf,S) _
- (7s,a 13 (s a (4.154)
Z(@}T)s(;s’)l“(& 27a) + ((271-)124-2—5' a(n_‘g_zf(n +2— s, 27Ta)),

a

Here I'(, ) is the incomplete I" function, which defined by I'(s, A) = fjo e*yysd?y,
it has the virtue that for any given value of s it decays rapidly if A goes to infinity.

Therefore we see that A°(7y, s) can be written as a sum of two infinite
series which are very rapidly converging, hence it follows that A(m,s) is
holomorphic in the entire s plane and the functional equation also becomes
obvious. O

We included the proof of the above theorem, because the above formula also
gives us a very effective procedure to compute the numerical value of A" (7, sg)
with high accuracy. We will come back to this issue in section 5.6.

4.1.11 The Periods
Together with the map F comes the map

F=Id@ F®Id: Homg_(A(g/t),W(r) ® My) —
Homp_ (A*(g/%), Coo(Gl2(Q)\(GL(R) x Gla(As)/Kf) © My)
The purpose of the following computations is to fix a specific choice of basis
elements wl, € Homg (A'(g/t), Dav ToM,) (in case A) wJ{’Q € Homyg (A“*(g/®), D:r\v ®

M) (in case B)) These ”canonical” generators will serve us to define the peri-
ods.
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In case A) we have
=~ 1 0 0 1
g/E—H@(O _1> ®Q<1 0> =QHoQV =p (4.155)

Ifweput P=H+V®i,P=H—-V®icg/t®Q(i) then
g/% ®Q(i) = Q)P ® Q(i)P and e(¢)Pe(—¢) = e??mie p. e(¢)Pe(—¢) = e 22miv p
(4.156)

Let PV, P¥ € Hom(g/t Q(i)) be the dual basis. Then we check easily that

PY(H) = PY(H) = = and PY(V) = —%,PV(V) _ % (4.157)

The module M ®Q(i) decomposes under the action of K, into eigenspaces
under K

My @ Qi) = P QE)X +Y @i)" V(X - Y @i) (4.158)

where
WX +Y @)X -Y ®i)) =" (X +Y @i)" (X - Y ®i)".
Then we define the basis elements

W =PV @Yy e (X-Yo)"; ol =PY®@ip_, 2@ (X +Y @) (4.159)

We still have our involution ¢ € f(;o( See (4.26)) and clearly we have cw! = i"@f
( Remember n =0 mod 2. )

Now we put

1 1
wh = gl +imef) ; Wl = S —imah) (4.160)

then these elements
1 -
wh = 5(&;* +i"ot) € Hompg_ (A'(g/€), Dy @ M)+

and they are generators of these one dimensional spaces. The choice of these
generators seems to be somewhat arbitrary, in [?] we give some motivation for
this choice.

There is an alternative way to select wl. If we evaluate wl on the element
H € g/t =p then

1 . . ;
WL(H) = 1,0 (X —Y @i +i"@!, & (X +Y ®i)") € Dy & My

These are functions on Gla(R) with values in M. We pair these functions
with an M, ® C valued function, more precisely we consider the function g —<
Wl (Ad(g)H)(g). pr(9)X"Y" > |
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We restrict these scalar valued functions to the real points of the split torus
T t 0 t 0 14 n—v J—

< i(wlm((é ?)) ® X -Yei)" ii"win_Q((é ?)) (X +Y @), XYYV > =5+

Now let € be a variable which can take the values 4+, —, then ¢ = +1,—1. Our
formula (4.10) gives us < (X — €Y ® )", X"Y" ™" >= (—€i)" " and combining

this with the explicit formula (4.133 ) for the values of ¢I<n+z> ( (é (1)>) we get

t 0 t 0 _ (—i)n—vizHle2mtp— 34y fort >0
T vy n—rv o« __
<w!/(H ; XYrTY >= n n :
UJe( )((0 1)) p)\(<0 1)) {dny(_t)erleQTrt(_t)erV fort <0

(Here we use that n is even, but with suitable minor modifications we can also

treat the case n odd.) Then a straight forward computation yields

Jreamy < WE(H)(G (1)))7/&((8 ?))X”Y"" >dt =

I'(n+1—v . n__y, 4.161
1 (2(7r)t}r173 if (—1)27" =sg(e) ( )
2

0 else

For each choice of the sign € = £1 one of these equation determines the generator
Ql This formula will be of importance when we discuss the special values of
L-functions.

In case B) we do basically the same, in some sense it is even simpler because
Ko is maximal compact in this case, i.e. Ko = K3 . But on the other hand
we need some very explicit information about the theory of irreducible repre-
sentations of K., and also about the decomposition of tensor products of these
representations. We will also use some explicit formulas for Bessel functions.

A small arithmetic consideration

The quotient g/t is a three-dimensional vector space over Q the group Ko,
acts by the adjoint representation and this gives us the standard three dimen-
sional representation of Ko, = U(2), which in addition is trivial on the center.
(See 4.1.2). This module is given by the highest weight 2-.. We must have
A =n(y+7)+ .., if we want E? (X, w,T) # 0, and then the formulae 4.1.6 and
4.59 imply that for e = 1,2

dime Homg_ (A*(g/), Dl @ Myv) =1 (4.162)

Now we recall that we have defined a structure of a R = Z[%] module on all the
modules on the stage, hence we see that

Homy_ (A*(g/t), Dyv ® Myv) = Homg (A*(g/8)r, Davr ® Myvg) ®C,
(4.163)

here we are a little bit sloppy: The first subscript K, is the compact group and
the second subscript is a smooth groups scheme over R. For both choices of e
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the second term in the above equation is a free R module of rank 1. We choose
generators ~
UJI\’. S HOmKOO(A.(g/E)R,'D)\vR®M)\VR).

These generators wi!, w!? are well defined up to an element in R*.
End of the small consideration

The quotient g/ t is a three-dimensional vector space over Q the group K,
acts by the adjoint representation and this gives us the standard three dimen-
sional representation of K, = U(2), which in addition is trivial on the center.
(See 4.1.2). This module is given by the highest weight 2v.. We must have
A =n(y+7)+ .., if we want £ (\,w,T) # 0, and then the formulae 4.1.6 and
4.59 imply that for e = 1,2

dime Hompg_ (A*(g/8), D, @ Myv) =1 (4.164)

We fix these generators by prescribing values of certain Mellin transforms. To
do this we need a little bit of representation theory. Of course we may replace
K by SU(2) because the action of the center on the different modules cancels
out. The modules g/t ® C, uﬂ);V and M)v ® C extend naturally to Sly(C)
modules and hence we have to find an explicit generator in

HomSIQ(C) (g/E by (C7 D;r\v ® Mnry X Mnfy)

We have an explicit basis for g/¢ ® C (See (4.19), our module M)v = M?W ®
MEW ®e C is given explicitly to us.

Our module D}, € IGArp2, and this last module decomposes into SU(2)
-types (See( 4.34). These SU(2) modules canonically extend to Sla(C)-modules,

we have

I rpz = P Mavy = P IGArri(2v) (4.165)
v=0 v=0

and
(3G epi(2(n +1))T = DL, (2(n + 1))

Now it is clear that we have the problem to select a specific generator in

Homgy, () (/¢ ® C, D}, (2(n + 1)) @ M}, © M’,» ® C).

The modules g/t ® C, M?W, M?LA—/ come with an explicit basis (See 4.19), if we

want to write down a specific generator w’® we have to write down a basis of
DI, (2(n +1)).
Again we start from our exact sequence
0= Dy =34 - My =0 (4.166)

we apply the map F to it and get an exact sequence of Whittaker modules

0—=Dl, = 35T 5 My =0 (4.167)
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We recall the definition of ngRpf{ as an induced representation, the space
of K, invariant vectors is spanned by the spherical function

oot = a5 1) (% )= skl

@
We map the induced representation to its Whittaker model by

F:p—{gr— /¢(w (é * —g zy) 9)e*™ " dxdy} (4.168)

our basis element will be qﬁi o = F(¥x0)- A straightforward computation yields

¢ 0 t O > tn+2 T
ol(o D =Fona (s )= | ey dds

oo

The educated reader knows that this function in the variable ¢ is well known,
we have

¥ t 0\, 27nt2
¢’\’0((0 1)) = thn+l(27rt)

where K, (27t) is the modified Bessel function. Of course
phi:r\’o is a function on G(R) = Glz(C), it is right invariant under K, and of

course 1 0 0
) t i t
¢J)r\,0( (0 v t Zy) (0 1) ) = 627rm¢§,0( (0 1) )

hence it is defined by its restriction to T2(R).

Starting from this function we construct the desired basis of DI, (2(n + 1)).
The Lie-algebra g acts on JEAgp3, we restrict this action to p and it is clear
that under this action

P © IFGARPR(20) = TEARPR (20 +2) © TFARPR(20) © TG ARPR (20 — 2)
and if we extend this action to the tensor algebra we get a map

n+1
i1 P20 @ TGARPR(0) = @D IFNepk (20). (4.169)
v=0

here we may replace n + 1 by any positive integer k.

The group K acts on p®(*+1) by the adjoint action and the above map
is of course a Ko, homomorphism. On the right hand side we can project to
the highest K, type JGArp2(2n +2) = D;v (2(n+1)), i.e. we get a surjective
homomorphism

i1 : p®0 ) ® 3G ARp2(0) — DY (2(n + 1)), (4.170)

again we may replace n + 1 by any positive integer k.

We have the standard surjective homomorphism p®(+1) — Sym™ ! (p), let
us denote its kernel by I,,.. For any f € 3%\gp2 and X', X" € p we have

(X/X// _ X/IX/)f — [X/,X//]f.
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Since the Lie bracket [X7, Xs3] € ¢ it follows easily that II,; vanishes on the
kernel I,,y1. Hence our homomorphism II,, 1 factors over the quotient, i.e.

M1 s Sym™ ! (p) = DI, (2(n + 1)).

We change our notation for the basis of p ® C (see 4.19) and put

x=1((Y H_is _Oz. Z‘);XZLQ( )
G

We have the following proposition

Proposition 4.1.7. The 2n + 3 elements
(X7 Xo X7, XM XXy, X

form a basis of a Ko invariant subspace of Sym™ ' (p) @ C. This subspace is
irreducible, it is isomorphic to Map+o. These basis elements are weight eigen-
vectors for the action of T.

Proof. The representation of the algebraic group K., on p extends to a repre-
sentation of the algebraic group Sly/C on p ® C. As such it is isomorphic to
the symmetric square Sym? (C?) of the tautological representation, i.e. to the
module My of polynomials aU? +bUV + cV?2. We get an isomorphism My —
p ® C by sending U? — X1,UV — X, V? = Xi.. Now Sym*""3(M,) ¢
Sym™ ™! (Sym?(C?)) = Sym™ ™ (p ® C) is an invariant submodule. It has the
basis U2"t2=¥V* and clearly

Unt2ovyy — Xntlr XV if v <n 41 and X7V X
and this implies the assertion. O

This implies that the elements

{1 (X768 ), ot (X0 X700 o) - - Tga (X5 X100 ),

; . - (4.172)
I (X5, ¢§,o)a o1 (X5 X 10) ), - - - 7Hn+1(Xj1¢T\,o)}

form a basis of D;V (2(n +1)).

We change our notation slightly. For m < 0 we put X{* := X" and for
0<v<2n+2wepuwt [v]=vifv<n+land p]=2n+2—-vifv>n+1
Then our above basis can be written as

(o (XX 00 ), o, m2nsa, (4.173)

these are the weight vectors of weight 2(n + 1 — ). We introduce the notation
1 —TII X[V]Xn+17u i
¢A,n+1—u i n+1( 0 1 ¢)\,0)

These functions ¢; ., are Whittaker functions they satisfy

Aul(y “1Y) 0 =eral o)
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They are not K, invariant, but they are weight vectors for the torus, we have

eZﬂ'icp 0

Aula (T 1) =emmieoito (4.174)

ar.1d more generally ¢§7u(gk) =2, a,,ﬁﬂ(k.)fb;u(g) where the a,,,, (k) are the
matrix coefficients of Mas, 2. (above proposition).

We consider the restriction of the functions (;5; ,, to the maximal torus T'(R).
Since 3§ Arp3(2v) has a central character, it suffices to consider the restriction

oL, ol )

we write z = te?™. This means that we map the module JGAgp2 to its Kir-
illow realisation jg’”ARpﬁ C Coo(C*). (See [32] , §2 5.), especially this map is
injective.

We express the restriction of these functions (bf\)y to the torus T%4(R)+ in
terms of Bessel functions. We introduce the notation

k

3G2k] := @D 3G A=z (2v) (4.175)
v=0

For any Whittaker function ¢f € J%[2k]" we have

Hk+1(X1¢T)((é (1))):¢T(((t) (1)>exp(€X1))—¢T(<(t) 2))

€

We write X; = ;((8 (2)> + (8 202> + <(1) _01> + <? _OZ>) the last two

matrices are in £ so they preserve the K, type and

o' (5 1) ete(y o)+ (o 6)m-
otentel(y o)+ (o ) (o p=era(s TG 9

eregt((§ )=o)+
and hence

e xia)((g 3)) =2 1))

2mip .
If ¢t is a weight vector, i.e. QST((te 0 ?)) = e2musa¢1‘(<é (1)>) then X;o¢f
is also a weight vector with weight e27i(#+2)¢,

This gives us

22n+3 2n+3
¢§,n+1((é (1))) = (X{Hl(/b;,o)((é (1))) = I‘(ni7—:—2)tn+2K"+l(2ﬂt)
(4.176)
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Since this function is of weight 2n + 2 we can forget the projection 11, 1.

We have recursion formulas for the Bessel functions

i Kon(t) = =3 (K1 (0) + K (1)

4.177
Kor(6) = Ko a(t) + 2K, (1) (7
A straightforward calculation yields
d
t%t“KV(th) = (u— V)t'K,(27t) — 27tP T K, (2nt) (4.178)

t 0 V] vntl—v t 0
Then ol (g 9)) =T X0 ()0 We et

_, t 0 At n+2+|n+1—v| il
XIH_l ¢1\,n+1(<0 1))) = ()—t1+| +1 |Kn+1(271't)

I'(n+2)
To this we apply X([)”]. The operator Xy is t%, then the above formula gives
V] vt lv of t 0 B - 22n+3ﬂ.2n+3 2
M (0§ 9)) = Tt 22 (om0

(4.179)

where the dots - - - are a sum of those terms which are in the image of Jg’”)\m p3[2n]
hence they vanish under II,, ;. and consequently

i t 0 7 22n+3,ﬂ_2n+3 n t 0
%’“((0 1>)F(n+2)t +2K“((0 1>> (4-180)

where g runs from n 41 to —n — 1 and of course K, = K_,.

Decompositions of tensor products

If A1 = n17y, A2 = noy are two highest weights and if we consider the highest
weight modules M, g, M2, then it is a classical theorem that

M0 @ Mazo = M tna)y.0 ® Mnitns—2)3,0 @ - & Mny —ny)vo - -

where we assume ny > no, we put n = ny + ng. Our next aim is to give an
explicit homomorphism

QM

n27y

: . b b
Jnimna - M(n1+n2)'y — M

niy

(4.181)

in other words we want to write explicit tensors for the images of ez,u =
niy+no,ny +ng —2,...,—ng —ng. Of course we send the highest weight vector

2 imy eil ®" ezu, this vector is the highest weight vector in the direct

summand M?nﬁnz)%(@ C M(ni4n2)y,0 @ - ® M, —ns)y,0- In terms of the
explicit realisation of these modules we can say

e

Xmtnz X" g X2 (4.182)
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0) to it, here we may think of ¢ as an in deter-

. (1
Now we apply the matrix ( P

minant. Then we see
(X 4 tY)mtm2 s (X 4+t 'Y)" @ ("X +t Y )" (4.183)
We expand on both sides and find

ni+n2 (mi+ne\ip yni+ne—puyp
PO ( . VX YH

ni+n L n ny— n ng— no—u
E,ulzo 2 ¢ (EM17#21H1+H2:M (ui)lX 1=Ky ® (Hz)//X 22 ®R"X™ IZNY}M)
(4.184)

We remember the definition of the basis elements ez, the formula above gives
us

. b /b nb
R D DA (4.185)
p1tpe=p

We apply this to the SU(2) -module
(/85 © Moy @1 My,

this module contains a unique copy of M3, 12 We write

g/fﬁ\:/ =F 065 @ F 06'6 e F 0617_27 Mnl—y,F = @F@il, anfy,F = @Fé:m
M1 H2
(4.186)

where of course p; run from n; to —n; and p; = n; mod 2. Then our copy of
M, .5 comes with the basis

b 0b b b
€u = Z €10 ® € ® €z
pot+p1tpe=p

We have the invariant pairing (4.10) and this tells us that we can choose as our

generator cangen

ni+na+2

0 b b b
w; = Z (b;# @ ( Z OeuO ®e,, ® euz) (4.187)
n=0 po+p1t+pz=n+l—p

This generator is only determined up to a scalar.

The ”canonical” choice of the generator

Again we can fix the generator by requiring that certain Mellin transforms have
a prescribed value at certain prescribed arguments.

We do essentially the same as in the case A). We can interpret w’! as a
differential 1- form on G(R) with values in M5 ® C. We can restrict this 1-form
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to the torus T2 (R)~o = {((t) (1)) |t > 0}. We have the "cycles” e,,, ®e,,, € MJ.
We evaluate w'!(Xp) on these "cycles” and get
o t 0 t 0
< w;: (X0)7 6#1 ® 6H2 > ((0 1>) = ¢1,nu1p«2((0 1) )t#1+#2 =
(4.188)
C;Ltn+2+u1+u2Kn_m_u2 (27t)

Later -when we study the special values of L-functions- we need to know the
value

* ° t O dt o n L U dt
/ < wh (X0),€ep, @€y > ((0 1))t = C;z/ gttt QKn—m—M(QWt)?
0 0
(4.189)
We also will need formulas for the Mellin transforms of these Bessel functions.
Here we quote [1] .p.331,334 and recall two of them (the second one for later
use)

o7 K, (2mt)ts 2 = 2572(2m) T (354)T(55)

Jo° Ku@2mt) K, (2mt)ts 4 = 2573 (27) =T (S=4=1 I (S )P (SEa=t (2t ts )
(4.190)

the first one gives us

o dt T(n+1)T(p+1)
n+2+4+p1+p _
/O t VPR K — s (27L) el g (4.191)

We observe that the first factor in front does not depend on p1, pa. So we
renormalise our generator and for 4y = —n — 1, —n,...,n+ 1 we now put | Phi

4am

T n—+2

) = ——=t"" " K11t 4.192
¢>‘7N( ) F(n—l— 1) +1 H( ) ( )
and with this choice of (b;’l, the w’! (4.187) is now our canonical generator.
Now our formula (4.188) becomes

<wh*(Xo), e, @ €4, > (<0 1)) = % (4.193)

Hence we may just choose i1 = o = 0 to nail down w®, it is not clear to
me whether or not it is a ”"miracle” that the above relation holds for all values

of p1, pa.

The definition of the periods

The inner cohomology with rational coefficients is a semi-simple module under
the action of the Hecke algebra (See Theorem 3.1.1). We find a finite Galois-
extension F/Q such that we get a decomposition into absolutely irreducible
modules

H? (D\H, My ® F) = @ H? (T\H, My @ F)(ry) (4.194)

T
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Since we assume that I' = Gly(Z), hence the 7; are homomorphisms 7 : H —
Op. (See see 3.20) In the case A) such an isotypical piece is a direct sum

HY (T\H, My ® F)(ry) = H' (T\H, M) ® F)(rs)+ & H' (T\H, M\ ® F)(my)_
(4.195)
where both summands are of dimension one over F.
In case B) we get

H(D\H, My ® F)(rs) = HY(D\H, My ® F)(r) @ H}(T\H, M ® F)(ry)
(4.196)

and again the summands are one dimensional.

We have defined the module of integral classes H} o (O\H, M5, ® OF) C
H}(T\H, M5 @ F) (See 2.72) and we consider the intersection

HY 10 (D\H, M3 © Op) (m5)e = Hf (D\H, My ® F) () e NHy, 30 (D\HL M3 @ Or)

is a locally free Op -module of rank 1, here ¢ = 4,0 = 1( resp. e = 1,8 € {1,2}).
We assume for simplicity that it is actually free, otherwise the formulation of
the following becomes slightly more complicated. (See below). On the set of 7
which occur in this decomposition we have an action of the Galois group (See
(3.21)) and the Galois action yields canonical isomorphisms

B p i HY i (T\H, M3, ® Op) (T p)e = HY 3 (T\H, M @ Op) (")
(4.197)

We choose generators 7e? (my) and a simple argument using Hilbert theorem 90
shows that we can assume the consistency condition

Do r(e2(7my)) = €2("my) (4.198)
We get isomorphisms
Fo(wh) :W(np) @p C =5 HY(D\H, M) (°7s) @p C (4.199)
which are defined by
Fo (W)t hom, = [F(w! X hox,)], (4.200)

here F(w! X hoy ;) is viewed as a closed My @ C valued differential via the
identification 4.101, and [...] is its class in cohomology.

Since we assume that 7 is unramified everywhere W(7 ;) we have the canon-
ical basis element hg‘-o) = Hp hg;)p where h,(,OTEP is defined by the equality 4.126.
Then we have obviously U(h,@) = hg?p.

Then we define the periods by the relation

Fwh)(hED) = % (e x 7p, )e® (e x ) (4.201)

oy
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These periods depend of course on our choice of the ”canonical” generator w].
We see that the numbers Q°*(77y, €) are well defined up to an element in O5.

If H? int(l"\]l—]l,/\;l'j\ ® Op)(m¢). is not a free O module, then we can find a
covering by two open subsets Uy, Uz of Spec(Op) such that H? ;, (I'\H, M, @
®0p((U;))(e x my) is free. We can apply the above procedure and we get
periods Q(e X my,),Qa2(e x mf), they are well defined up to an element in
Opr(Up)*,0p(Usz)* respectively. The ratio of these periods is an element in
OF(Ul n UQ)X .

Perhaps at this point we should introduce the sheaf P of periods over F.
For any open subset U C Spec(Op) we put P(U) := C*/Op(U)*, this is a
Zariski preasheaf on Spec(Or), the associated sheaf is our sheaf of periods Pp.

Now we can interpret the generators e®(e x m¢) as (the unique) section in
the sheaf of generators modulo O and then the equation (4.201) makes sense
without the assumption on the class number.

These considerations will play a role in the following chapter.

Some little subtleties

We should notice that these periods are defined with respect to the ”small”
sheaves ME\ We have ./\/lg\ C M and therefore the map

HY i (D\HL M3, © Op) () = HY 1y (D\H, My © OF)(my). (4.202)

may not be surjective. (The reader should not be puzzled by the fact that
M‘j\ ® F = M) ® F.) Therefore, if we would work with M instead and define
the periods Q"#(”wf, €) by the same procedure. Then we will get a relation

Q.’#(U’]Tf, €) =d(ms,e)Q°(“my,€)

where d(7,, €) is a non zero factor in Op. The primes in these factors are the
divisors of the binomial coefficients.

But we could also with the module H'(F\H,./\;lg\ ® OF) int,1(7f)e and de-
fine the periods with respect to this module. Again these periods will integral
multiples of the periods Q°(7y,€).

In the following Chapter 5 we will discuss the rationality results (Manin and
Shimura) which relate these periods to special values of the L— function (see
section 5.6). But we also want to discuss this method not only for cuspidal
classes but also for the Eisenstein cohomology classes, therefore we close this
Chapter with a brief account of these Eisenstein classes.

4.1.12 The Eisenstein cohomology class

In section 3.3.6 we claimed the existence of the specific cohomology class Eis,, €
HY(T'\H, M,,). In this section we give s construction of this class on transcen-
dental level, i.e. we construct a cohomology class Eis(w,,) € H*(I'\H, M,, ® C)
whose restriction to the boundary H!(9(I'\H), M,, ® C) is a given class w,,. For
the general theory of Eisenstein cohomology we refer to Chapter 9.

We start from our highest weight module M and we observe that by defi-
nition we have an inclusion
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io : IGARY = Coo (TL\GT(R))
where
r+ = {(tol Z‘) im ezt =+1}.
Therefore we get an isomorphism
HY(g, Koo, IGEAD @ My @ C) =5 HYTE\H, M\ ®C) = HY(J(T'\H), M) ® C)

The inclusion ip sends the module JEGAZ° into a space of functions which are
'Y invariant under left translations. Therefore we get a homomorphism

Eis : IGAE° — Coo (T\SL2(R))
if we make it invariant by summation, i.e. for f € IGAR° we define
Eis(f)(z)= Y fly) (4.203)
rL\Sk(Z)

Of course we have to discuss the convergence of this infinite series. We could
quote H. Jacquet: ”Let us speak about convergence later”, but here is a short
interlude discussing this issue.

Interlude: Here is the point: We twist our module, for any complex number
z € C we consider the induced module

IEAE"[p” C Coo(TL\SL2(R))
and again we write down the Eisenstein series. Now it an elementary exercise

to show that the map
a b
(¢ 0) -

provides a bijection

T\SL(Z) > {(c,d) € Z x Z | (¢, d) coprime }/{£1} = P}(Q).

An element = € Slo(R) can be written as x = ((t) tftl

> k with k € K. Then
for f € IGAL°|p|*

fye,z) =
(0 2o
f<((c2t2 + (cv JBdfl)Z)’l/2 et i dt1)2)1/2>)f(k(7g)k’ ) =

(At + (cv +dt=1)?) 272 f(k(v9)k).
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Since | f(k(v)k)| is bounded the series

Eis(f, z)(x) = Z f(yz, 2)

& \Sl(z)

is converging if $(z) >> 0 and then it is also holomorphic in z. Selberg and
others showed that it can be extended to a meromorphic function in the entire
complex plane, it is now a special case of a theorem of Langlands [61]. If now
the function x — Eis(f, z)(z) is holomorphic at z = 0 then we do not care
about convergence and we simply define

Eis(f)(x) = > f(yx) = Eis(f,0)(x).

L \Sl2(Z)

In our special case it is easy to see that the series is convergent at z = 0 provided
we have n > 0 and this is the only case where we will apply this construction.
End interlude

This provides a homomorphism
Eis® : H'(g, Koo, IGAL° @ My ® C)) — HY(T\H, M) @ C) (4.204)

In 4.80 we wrote down a distinguished generator w,, = EY®e_, € H'(g, Koo, IGAZ°®
M) ® C) and we define
Eis,, = Eis(wy)

Proposition 4.1.8. The restriction of Fis, to H*(O(I'\H), My ® C) is the
class [Y™]

We have a brief look at the Eisenstein cohomology in case B). We refer
to the Final remark at the end of chapter 2. For our imaginary field we take
again F' = Q[i],T" = Slx(Z]i]) and My = M,,, @ M,,,. We assume the parity
condition n; = ns+2 =0 mod 4. In chapter 4 we get from a rather elementary
computation

HY(O(T'\H3), M») ini = Zlileor & Zilexo- (4.205)

If we extend the scalars to C we can represent these classes by differential forms.
To do so we apply the two reflections s1, so to our highest weight A = n1y; +novys
and get the two characters

51 A= (=n1 —2)y1 +n2v2; s2- A =n171 + (—n2 — 2)72

These two characters yield characters s; - v : B(R) — C* and the we have
seen that the two classes Ei’v & e(_12Ll_2 & 6532), 6%11) & Ei’v & e(_27)1_2
differential forms e;,.) and cohomology classes in H! (g, K+, Jgsi “A®@M,) (see
Thm.4.1.2 Since we have 3Gs; - A C Coo(B(Z)\G(R)) we get the two classes

es;-x € HY(O(T\H3), My ® C). Hence we know

provide

Hl(a(F\Hg,),./\;l)\ ®C) = Ces,.x @ Ces,. 0 (4.206)

but a close inspection shows that the eg,.) are equal to the e[z, j].



4.1. HARISH-CHANDRA MODULES WITH COHOMOLOGY 201

Again we invoke the theory of Eisenstein series, we assume n; > no and
define the Eisenstein intertwining operator

Eis : 3551 - A = (8, Koo) oo (B(Z)\G(R))) i {g = f(g} = {9~ D> flag)}
a€B(Z)\G(Z)
(4.207)

It is not difficult to check that this infinite series is convergent (locally uniformly
on compact sets),but we can also define the Eisenstein operator if no > n1 by
analytic continuation.

Hence we get the Eisenstein cohomology class

Eis(es,.») € HY(I'\H3, M, @ C). (4.208)

and if we restrict again to the boundary we get by a standard computation
r((Eis(es;.n)) = €s;.x + ¢(N)es,a (4.209)

where a priori ¢(\) € C. Hence we conclude that dimr(H(I'\Hs, M) ® C) >
1 but then it follows from proposition 2.1.2 that this dimension is equal to
one.Therefore

r(HY(T\Hz, My ® C)) = C - (e5,.x) + c(Nes,.n) = r(H (T\Hz, M) ®qq) C
(4.210)

and then we can conclude that ¢(\) € Q[i) actually it lies in Q.

The computation of the constant term of the Eisenstein series yields an ex-
plicit and very simple formula for ¢()), which we explain next. (see for instance
[?]:

Let Zg() be the group of fractional ideals of Q(i), we can view our characters
5i- A € X*(T x Qi) also as Hecke characters s; - A : Zg) — Q(i)*, where we
exploit the fact that every fractional ideal is principal and define

s1-Ma) = s; - AM(a) = a7 7"2a"2; 55 - Ma) = s - M(a)) = o™ a 22
(4.211)

Here we need the above parity condition.

To these Hecke characters we attach (completed) Hecke L functions

I'(2) 1 I'(2) $i - Aa)
A(s; -\, 2) = = , 4.212
(si- X 2) = 57 11 1 s2®)  (2n)7 2 Ne (4212)
P Np= a
here the p run over all prime ideals and a = (a+bi) runs over all integral ideals in
Z[i] and of course Na = (a? +b?). It is well known that these Hecke L functions
are meromorphic in the entire complex z-plane with possible first order pole at
z=0,-1,...

Then our simple formula for the restriction of the Eisenstein class to the
boundary cohomology is

A(Sl . )\7 —1)

r(H'(D\Hs, My, €)) = C- (653 + F e

€syn) (4.213)
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here we have to observe that the two poles at z = —1 and z = 0 cancel out.

We comment a little bit on this result. We put 4k = ny +ns-+2. and consider
the Hecke character ¢y, : a = (a +bi) — (a — bi)** and the completed Hecke L—
function

A(pg, 2) := [(z) 11 L _ (FQSTZ))Z > del) _ L(z) L(¢n,z). (4.214)

(2m)? a1 — djvki;(apz) N Naz (2m)?

It is well known that the series is converging for R(z) >> 0 and can be analyt-
ically continued into the entire z-plane. It satisfies the functional equation

A, 2) = 2% T2 N (¢, 4k + 1 — 2) (4.215)

In his paper [53] Hurwitz considered the period integral

1
1
Q= / ————dzr = 2.62206.....
o V1—zt
and proved that for all values of k > 0 the number
L(¢x, 4k)
Ey, = W S Q (4.216)

Hurwitz proved many more things about these numbers, his main concern was
an analogue of the von Staudt-Clausen theorem.

We now observe that for for s1 -\ = (—n1 —2)7v; +nays we have the equality
L(¢k,4]€ — ’I’LQ) = L(Sl . )\7()) (4217)
and hence we get

A(Sl . )\, —1) L(Sl . )\, —].) L(¢k,4]€ —1- 712)

=2 =2 4.21
Ao A0 T I T Lo dh—my) €O (218)
and this implies that
VL ¢k,4]€ — UV
%EQfOFV:O,I,...ZU{—Q (4219)

This has been proved by Damerell [24] and is one of the first instances of
Deligne’s conjecture [26].



Chapter 5

Application to Number
Theory

5.1 Modular symbols, L-values and
denominators of Eisenstein classes.

In this chapter we want to restrict to the case I' = Sly(Z) or I' = Sl (O) where O
is the ring of integers of an imaginary quadratic extension. We refer to section
4.1.1 then this means that ' = G(Z). Our coefficient systems will be obtained
from the modules M. We assume that we have d = 0 and hence n = 0 mod 2
in case A), and d; = dy = 0, n; = n; in case B). This has the effect that
AV =

We want to study the pairing

HYD\X, M%) x H\(D\X,d(T'\X),M,) — Z, (5.1)

5.1.1 Modular symbols attached to a torus in Gls.

In a first step we construct ( relative) cycles in C1 (I'\ X, M, ), C1(I'\ X, 9(T'\ X), M, ).
Our starting point is a maximal torus T/Q C G/Q and we assume that it is
split over a real quadratic extension F'/Q. Then the group of real points

T(R) = R* x R*

act on H and H and it has two fixed points r,s € PY(F). There is a unique
geodesic (half) circle ¢ s C H joining these two points. Then T'(R) acts tran-
sitively on C,. s = C. 5 \ {r, s}. We have two cases:

a) The torus 7'/Q is split. Then the two points r, s € P1(Q). Here for instance
we can take r = 0,5 = oo, then the geodesic circle is the line {iy,y > 0} and
the torus is the standard diagonal split torus.

b) Here {r, s} € P}(F)\P!(Q), then r, s are Galois-conjugates of each other.
Our torus T'/Q is given by a suitable embedding

203
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In case a) we can choose any reasonable homeomorphism [0, 1] — [0, co] -
for instance x — x/(1 — x)— and then we get a one chain

0:[0,1] = Crs =R U {0} U{c0},0(0) =r,0(1) = s € 9(H),

and for any m € M we can consider the image of o ® m € Cy(H) ® M in
Cy(T\H, 9(T'\H), M). By definition this is a cycle and hence we get a (relative)
homology class

[Cr,s ® m] € Hl (F\Hv 8(F\H)7M)\)a (52)

it is easy to see that it does not depend on the choice of o.

In case b) we have T(Q) — F*. Then the group T(Q) NT is a subgroup of
finite index in the group of units O = {eo} x {£1}, where € is a fundamental
unit. Hence

FT = T(Q) NI= {GT} X QT (53)

where er is an element of infinite order and p7 is trivial or {£1}. This element
er induces a translation on C, ;. The quotient C, ,/T'r is a circle. If we pick
any point x € C, s then [z,erx] C C,, is an interval and as above we can
find a o : [0,1] = [z,erx],0(0) = z,0(1) = erx, As before we can consider
the 1-chain 0 ® m € Cy(H) ® M. Its boundary boundary is the zero chain
{z} @ m — {epz} @ m. If we look at the images in Co(I'"\H, M) then

O(c@m)=0(0)®(m—erm) =1 ® (m — erm) (5.4)

Hence we see that o ®@m is a 1 -cycle if and only if m = ezm and hence m € M7,
We have constructed homology classes

[Cr.s @m] € Hy(T\H, M,) for all m € M5 = M7 (5.5)

5.1.2 Evaluation of cuspidal classes on modular symbols

The following issue will also be discussed in greater generality and more sys-
tematically in part II-

We start from a highest weight A = n~y for simplicity we assume n to be even
and d = 0. Then A = \V, we consider the two modules M and Mg\ Then we
have the pairings -

HY(D\H, M) x Hy(T\H, M,) - Z
(5.6)
HYT\H, M%) x Hy(T\H, 9(T'\H), M,) = Z

These two pairings are non degenerate if we invert 6 and divide by the torsion
on both sides. (See [book]).
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We have the surjective homomorphism H}(I'\H, ./\;lg) — H}((T\H, MbA) and
over a suitably large finite extension F//Q we have the isotypical decomposition

H ((T\H, M} ® F) = @ H!("\H, M}, ® F)(ry) (5.7)

where the 7y are absolutely irreducible. (See Theorem 5.7, of course here it
does not matter whether we work with My or MK) . We choose an embedding
t: F — C, in section 4.1.11 we constructed the isomorphism

FL(wl) : W(ns) ©r, C — H (D\H, M} @ F)(‘ny) (5-8)

The space W(my) is a very explicit space. Since we want to stick to the case

Ky=K ](CO) it is of dimension one and is generated by the element
hir’]? = HhL’O € HW(?TI,) where h;;o(e) =1 (5.9)
p P

Now we want to compute the value
< FHH(RE), Cr s @m) > . (5.10)

here we assume that the torus is split, i.e. 7, s € P}(Q). Then this expression is
problematic. The argument C;. ; on the left lives in the relative homology group,
hence the argument on the right should be in H}(I'\H, M,, ® C). Of course we
can lift the class F7} (wz)(h;ﬁ?) to a class

e~

Flwh)(hky) € H(T\H, M,, © C).

Then

< Flw! x ht?), ¢ @ m >

makes sense, but the result may depend on the lift. We have

Proposition 5.1.1. Ifd(C,. ,@m) gives the trivial class in Ho(d(T\H), M&C)

then < FHwi)(hE?),Crs @ m > does not depend on the lift, i.e. the value
< ]:11 (wi)(h;[rfo)v Crs ®m > is well defined.

Proof. This is rather clear, we refer to the systematic dscussion in 2.1.10. [

Now we compute the value of the pairing. We realised the relative homol-
ogy class by a M valued 1-chain ¢ @ m. The cohomology class F{ (w!)(h1?)

is represented by F1(w! x hjr’f ). (See 4.101 ,6.4). We consider the pullback

o* (FU(w! x hjr;))), since F1(w! x h;&?) is rapidly decaying if ¢ — 0 or z — 1
this gives us a 1-form with values in My ® C on the closed interval [0, 1].
We claim - under the assumption [9(C,. s ® m)] = 0-that

1
< FL(wh(RE)), Cr s @ m >= /0 < o*(FHw! x hE0),m > . (5.11)
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We have to be a little bit careful at this point. Of course our assumption
implies that the integral class [0(C). s@m)] € Ho(O(T'\H), M) is a torsion class,
Let 6, s(m) be the order of this torsion class, hence we can write

8r.s(M)OC,.s ® m = ey g with ¢, € C1(A(T\E, M,). (5.12)

This 1-chain lies in the boundary of the Borel-Serre compactification (see sec-
tion 1.2.7). We consider the special case that T is the standard split diagonal
torus, this means that {r,s} = {0,00}. We can pull the cycle 6, ,(m)C, s ®
m — ¢ s into the interior I'\H by a simple homotopy, this means we replace it
by 6,.(m)[iyy ", iye] ® m — 30,.(m)(yo) where yo >> 1 and 8, 5(m)(yo) is the
1-chain ¢, s on the level yg. Then

br,s(m) < fll(wi)(hir’f), Crs @m >=< ff(wl)(h;}?), 5T7S(m)[iy0_1,iy0] ®m = crs(yo) > -
(5.13)

where now the value on the right hand side is an integral over the truncated
cycle. Since the differential form F (w])(h1.?) is rapidly decreasing if yo — oo we

get 0, s(m) < .Fll(wi)(hjr’f()), Crs@m >= lim < .Ff(wz)(higfo),5T,S(m)[iy0_1,iyo]®
Yo —r00
m> .

We use the above identification [0,1] = [0, 00] and our 1- chain is given by
the map

a:[O,oo]—)H:tH(é ?)iztiEH, (5.14)

especially o(0) = 0 and o(o0) = ioo. The group T(R) acts transitively on the
open part Cp jo. This action can be used to trivialize the tangent bundle. The
tangent space at ¢ € H is identified to the subspace p C g (see 4.1.11) and g
is a generator of the tangent space of Cp i at one. Using the translations by
T(R) we get an invariant vector field on Cp ;. If we identify Cp ;00 = Rso, an
easy calculation shows that this vector field is t% = D*.

Now an easy calculation (See 6.4) shows that ( here ey is the identity element
in G(Ay))

by §)en=a(("y DFEhaE(y 7)o

and our integral in the formula above becomes

e t=1 0 1/, t H +,0 t 0 dt
/o < pA(( 0 1)).7: (%(5) x hi')( 01 Jef),m > - (5.15)
Our formulas in 4.1.11 give

wl(g) = é(@ﬁnn DX YR+t 2@ (X+Y®i)" (5.16)

this is an element in DF ® M. We apply F* to wl (1) x hi:?) and evaluate at

((é (1)) ,er). Applying F' means that we have to sum over a € Q* but since
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hi;)?) is the Whittaker function attached to the unramified spherical function
only the terms with a € Z can be non zero. Hence get

1 at 0 ~ at 0
3 (v )@ (X =Y @d)" £ ¢ af )® (X +Y ®4)"h0(a)
8 ZZ w2l ( 1) 2 (0 1)

We have seen that inﬁ((%t ?)) = 0 if at < 0 and 1/~)n+2((_(;lt (1)>) =

1;_”_2( (%t (1)>) and therefore our Fourier expansion becomes

% Zzﬁnm((%t ?)) (X -Y@i)"+i"(X+Y ®i)")hi%a)  (5.18)

pal (t; (1)>)((X Y @)X +Y ®6i)") =
(5.19)

n

Z (n)tg’—l/Xuyn—V(in-i-l/ + 7;_”)7
v

v=0

we remember that n is even, then the last factor is equal to i =*((—1)2 ¥ £ 1).
and this is 7" times 2 or 0 or -2, depending on the choices of signs and the
parity of § and v. The elements e, = X”Y" ™" form the dual basis to the basis
(n V) X" ”Y” of M)\, this implies: If we choose m = e, _, in our expression

above then

< m((tg1 ?))((X Y @i)"+i"X +Y @i)"),m>=t3"Y({"V £i )

(5.20)
and hence we have to compute
e R e 0\, n_ dt
/ Z¢n+2 ( 1>)t YR (a) (5.21)
v t 0 241 —27t :
We remember 1, 12( 01 ) = tztle , we exchange summation and
integration and after some innocent substitutions we get
‘n4-v + v o) tnfqul dt oo hir a CL%
: : / Y iy (@)a® (5.22)
8 0 (27T)"_V+1 t a?

a=1
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We refer to the discussion of the L -function attached to 7y and get

o yn—v+l gy o0 h;fr v(a)a% .
| G T e =AM mnt1-p) (5.23)
0 a=1
Of course some question concerning convergence have to be discussed, for
this we refer to the proof of Theorem 4.1.7.

In the case that v # 0,n we know that 0(Cp o ® X" ¥Y") is a torsion
element in H°(9(T'\H, M) and therefore the value of the integral is also the
evaluation of the cohomology class Fi (w!)(h1:?) on a integral homology class.
We get

Y Y

< FHw (M1, Cp oo @ XYY ™7Y) >= <

coh
o) A(mn+1-v) (5.24)
In the factor in front on the right side we have e = +1, this factor is zero unless
we have e = (—1)2 ¥ (see 4.161) and then it is simply +1.
If the class number of Op is one we defined the periods Q(ex ), (see 4.1.11)
we then know that

1 14 -
— hi0) e HY(D\H 2
Q(EXﬂ'f)J:l(we)( ﬂ'f)e ( \ 7M®OF) (5 5)
and hence we can conclude for v # 0,n
do 00(611) ;
AR 1-— o 5.26
e x 1) (myn+ v) e Op (5.26)

If the class number is not one we have to interpret Q(e x 7) as section in the
sheaf of periods and Op has to be replaced by the monoid of integral ideals in
Op. Notice that the term dg oo (e,) has only prime factors < n. We will improve
this term after the following discussion of the cases v = 0,v = n.

This argument fails for v = 0,n because 9(Cpco ® X™) =00 @ (X" —Y") is
not a torsion class in Ho(I\H, M) (See section 3.2.1). We apply the Manin-
Drinfeld principle to show that the rationality statement also holds for v = 0,n
but we will get a denominator.

We pick a prime p then we know that the class [0(Cp,.c®X™)] is an eigenclass
modulo torsion for T, i.e.

T,([0(Co .00 @ X™) = (p" T + 1)[0(Co.00 @ X™)] (5.27)

This implies that (T}, ([Co,c0 ® X™]) — (p" T +1)[(Co,00 ® X™])) is a torsion
class, hence we can apply proposition 5.1.1 and get that the value of the pairing
is equal to the integral against the modular symbol. If we exploit the adjointness
formula for the Hecke operator then we get

< Tp([Co00 ® X™]) = (0" + D[(Co,00 ® X)), Fi (] @ hED) >
= [,7(< Cooo @ X", Fi (W] @ Tp(har,)T0) > (5.28)

(P 1) < Cooo @ X™, Fl(w]) @ ((h10) >)) %
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We have T, p(hj;)?) = aphir’f where a, € Op and hence we get

< Tp([Co,o0 ® X™]) = (p™ ' 4+ 1)[(Co,00 @ X™)), Fi (] @ h10) >
(5.29)
= (ap = (0" + 1)AC" (7,0 + 1)
It is again the Manin-Drinfeld principle that tells us that for almost all primes

p the number a, — (p"™! + 1) # 0. Let (Z(n)) be the ideal in O generated by
these numbers. of these numbers. We will see (Theorem 5.1.2) that

(numerator({(—1 —n))) C (Z(n)) (5.30)

Ribet gives an argument in [74] that yields even equality.

Now we can conclude: Forv=0,n+1

Z(n) h
— 2 A 1-— (@) 5.31
Sy 1) €O (531)
We want to have an estimate of the denominator ideal of
AP (n 41— v)
Q(e X 7Tf)

for all values of v. For v = 0,v = n we have the estimate Z(n). For the
other values of v we have the Jpo0(e,), but we can do much better. No-
tice that this denominator ideal is an ideal in Op. We pick a prime p < n
which then may divide o0 (e, ). We work locally at p and replace Z by Z,
the local ring at p. It follows from proposition 3.3.1 that for 0 < v < n the
torsion element [0(Cph o ® €,/))] is annihilated by a sufficiently high power of
the Hecke operator 7. Hence we see that 7,"(c) can be lifted to an element

—_~—

T(c) € Hl(a(lﬂ\ﬂ-ﬂ),/\;l"A ® Z(p)). Hence we can lift T;"(Co o ® €,)) to an
element T7*(Co,o0 @ €Y)) € Hy(D\H, M} ® Z(;)). We know that

< ]:11 (wi)(hT’O T;”(Co,oo 0y eX)) €O0r® Z(p). (5.32)

7rf7

Again we can use the adjointness property of T}, and we get

m 7T T ” co
BT < FL (. (Coe ©6) >= GLEDA™ (i + 1= 1) € Op .2
(5.33)

We consider the ideal n(p, v, 7) = (60,00(€v), 7 (Tp)™) C OF ® Z(y). This ideal
may be much larger than (0,00 (€,). We put n(v,7¢) = [[, n(p, v, 7¢) for v # 0, n
and for convenience n(n) = n(0) = Z(n)

Then we get the final result: Noch mal genauer diskutieren und vorher
sagen was g o (e,) ist

Theorem 5.1.1. For any my which occurs in (5.7) and any v =0...n the ideal

H(V, 7Tf) Acoh

Qe ) (m,n+1—-v)) (5.34)

is an integral ideal in Op. The primes p dividing n(v,7y) lie over primes p < n.
Furthermore these primes are not ordinary for my, i.e if p divides n(v,7ys) then
m¢(Tp) =0 mod p.
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These rationality results go back to Manin and Shimura, In principle we may
say that also the integrality assertion goes back to these authors, but here we
have to take into account the fine tuning of the periods. (Deligne conjecture?
Later if we speak about motives)

It is clear that this compatible with the action of the Galois group Gal(F/Q),
for o € Gal(F/Q) we have

1

1
U(Q(e X 7Tf)

coh o —
AN (mn+1—v)) A7)

A n+1-v)  (5.35)
There is still a slightly different way to look at the theorem above. For each
choice of ¢ = + we can look at the array of numbers

{AM(mn4+1—v)),...} (5.36)

V:O,A..n;(—l)%H/:e

Since we may assume that n > 10 it is easy to see that not all of the entries
entries can be zero, hence we can project the arrays to a point A(e, 7y) in the
projective space P4en) (C). Then a slightly weakened form of our results asserts

Ale,mp) € PU(F) = PU"(Op) and o(Ale, 7)) = A(o(e,75)))  (5.37)

In this formulation we do not see the period. But now we can fix the period
as a section in the period sheaf: We require that the arrays of ideals

n(v,my)

coh _
{”"Q(EXﬂ'f)A (myn+1-v),...

}u:O,..JL;(—l)%_V:e (538)
is an ideal of integral and coprime ideals. This period is not necessarily equal
to our period we defined earlier, but they may only differ at primes p dividing
n(v,my).

We pay so much attention to the careful choice of the periods because we
conjecture that the factorisation of the numbers S((:X:f )ACOh(w n+1—v)) has
influence on the structure of the integral cohomology of some other groups. We
expect that prime ideals p C O which divide an ideal G2 ((Vxﬂff AN, n+1-v))
will also divide the denominator of an Eisenstein class on the symplectic group.
A prototype of such an assertion has been discussed in [42]. We will resume this

discussion in part 2.

In the following section we discuss another ( simpler ) example, where we
see the relationship between divisibility of certain L-values and denominators
of Eisenstein classes.

5.1.3 Evaluation of Eisenstein classes on capped modular
symbols

In the following we consider cohomology with coefficients in M,,. We have seen

that

H'(P\H, M3 ® Q) = H} ([\H, M} ® Q) ® QEis, (5.39)
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where Eis,, is defined by the two conditions
r(Eis,) = [Y"] and T, (Eis,) = (p"** + 1)Eis,, (5.40)

for all Hecke operators T}, in our special situation it suffices to check the second
condition for p = 2. Earlier we raised the question to determine the denominator
of the class Eisy, i.e. we want to determine the smallest integer A(n) > 0 such
that A(n)Eis, becomes an integral class.

To achieve this goal we compute the evaluation of Eis, on the first homology
group, i.e we compute the value < ¢, Eis, > for ¢ € H;(I'\H, M, ). We have the
exact sequence

Hy (0(P\H), M) — Hy (T\H, M,) — Hy(D\H, d(T\H), M, ) — Hy(8(T\H), M,)

(5.41)

It follows from the construction of Eis, that < ¢, Eis,, >€ Z for all the elements
the image of j. Therefore we only have to compute the values < ¢,,Eis, >,
where ¢, are lifts of a system of generators {c,} of ker(¢).

In our special case the elements Cj o ® e,, where v =0,1...,n form a set
of generators of Hy(T'\H, 9(T'\H), M ). (Diploma thesis Gebertz). We observe:

The boundary of the element Cp oo ® €, (= £Co.oo @ €y) is an element of
infinite order in H°(O(T\H), MbA)’
The boundary of an elements Cp oo ® ¢ with 0 < v < n are torsion elements

in HO(9(I'\H), M?), This implies
Proposition 5.1.2. The elements Cpoo @ m € Hl(F\H,()(F\H),M;) with
0(Co,00 ® m) =0 are of the form

CZCO’OO(X)(

v=n-—1
aye)); witha, €7

—

v

Now it seems to be tempting to choose for our generators above the Cj o ®e,/,
but this is not possible because for §(Cp o ®e,/) is not necessarily zero, it is only
a torsion element. So we see that it is not clear how to find a suitable system
of generators.

To overcome this difficulty we use the Hecke operators. If we want to de-
termine the denominator A(n) we can localize, i.e. for each prime p we have
to determine the highest power p®(™P) which divides A(n). As usual we write
d(n,p) = ordy(A(n)). We replace the ring Z by its localization Z,) and re-
place all our cohomology and homology groups by he localized groups. In other
words we have to check we have to find a set of generators {...,é, ...}, C
Hy(9(D\H), M5, @ Zp) and compute the denominator < é,, Eis, >€ Z).

It follows from proposition 3.3.1 that for 0 < v < n the torsion element
d(c) = 0(Co.oo @ (/="' a,eY)) is annihilated by a sufficiently high power of

v=1
the Hecke operator 7" and hence we see that 7" (c) can be lifted to an element

—_~—

T (c) € Hy(O(T\H), M ® Z(,)). Now

—_~—

m : o m . _ n+1 m :
<Ty(c), Eis, >=< ¢, T,"( Eis,) >= (p""" +1)" < ¢, Eis, > (5.42)
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—~

and hence ord,(< T} (c), Eis, >) = ord,(< ¢, Eis, >). Hence we get

Proposition 5.1.3. If v runs from 1 ton —1 and if T;*(Co,oc @ €) is any lift
of T, (e)) then

d(n, p) = — min(min( ordy(< T(Co.0 @ €Y), Bis, >)),0)
Proof. This is now obvious. O
CMS

5.1.4 The capped modular symbol

Therefore we have to compute < T"(Co o ® €,), Eis, >). At this point some
meditation is in order. Our cohomology class FEis,, is represented by a closed
differential form Eis(w,) (See (?77)) and this differential form lives on I'\H
a hence provides a cohomology class in T'\H. But we know that the inclusion
provides an isomorphism

HY(T\H, M%) — H*(T\H, M})

and since T7"(Co 00 ® €,) € Hy(I'\H, M, ) we can evaluate the cohomology class

Eis(wn,) on the cycle. But we want get this value < 7" (Co o0 ® €,), Eis, > by
integration of the differential form against the cycle. This is problematic because
the cycle has non trivial support in 9(I'\H), and on this circle at infinity the
differential form is not really defined.

There are certainly several ways out of this dilemma. The Borel-Serre bound-
ary is a circle I'oo\R where I'o, = {£Id} x {72} and T, = <é 1) The cycle
is the sum of two 1-chains:

T (Co,00 ® €1) = Co o0 @ My, + [i00, Tagioo] ®@ P,
(recall definition of Borel-Serre construction from earlier chapters) where

0(Cooo@my) =00® (Mmy —wmy) +00® (1 —Te)P, =0

—_~—

One possibility is to deform the cycle T;"(Cp o ® €,) and "pull” it into the

0 1
RZ, to H to a map from [0, c0] — H. We choose a sufficiently large tq € RZ,
and restrict Cp o0 to [tal, to] we get the one chain Cy  (to) @ m,,. The boundary
of this 1-chain is 9(Co,c0(to) @ my) = to ® (M, — wm, ). Now we can do at this
level the same thing as what we do at infinity we get a 1-cycle

. . . . . t .
interior I'\H. Recall that Cy o is the continuous extension of ¢ — ( O) 1 from

—_~—

CO,oo(tO) ®m, = CO,oo(tO) ®m, + [t07 TootO] ® Pv
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—~—

This 1-cycle clearly defines the same class as T,Z"(Co,oo ® e,) and since it is a
cycle in Oy (I'\H, M) we get

—_—

< T (Co,ee ® €,), Eis, >= Eis,, (5.43)

/Co,ec(to)®mu+[toyTto]®Pu

The value of this integral does not depend on ty and we check easily that for
both summands the limit for ¢y — oo exists. We find that

e~

< T (Cooo @ €y), Eis(wy) >=

1
JoS < T (Coe @e)), Eisy > % + lim < [ito,ito + 2] ® P,, Eis, > dx

to—00 0
(5.44)

For the first integral we have

o dt oo dt
/ < Tgn(007w ®6\u/)a Eis,, > ? = (1+pn+1)m/ < C’0700 ®61\//7 Eis,, > 7
0 0

and (handwritten notes page 49)

C(_V)C(V_n) (545)

/OO<C’ ® e, Eis >dt
0,00 v n - =
0 3 ¢(=1—mn)

remember this holds for 0 < v < n.

For the second term we have to observe that it depends on the choice of
P,. We can replace P, by P, +V where VT = V. (This means of course that
V =aX"™) Then [V] € H°((I'\H), M) and

1 1
lim < [ito, tto+2x]®(P,+V), Eis, > dr = lim < [ito, ito+z]®P,, Eis, > dz+ < V,w, > .
to—o0 0 to—00 0
Therefore the second term is only defined up to a number in Z,) but this is ok
because we are interested in the p-denominator in (5.44).

We have to evaluate the expression < [itg, itg+ 2| ® (P, +V), Eis, > . Using

the formula (6.4) we find

ito, i - t . ¢
< [ito,ito+ 2] @ (P, + V), Bis, >=< (g f) n, E1s(wn)(E+)(((‘]) f) .
(5.46)
We know that for ¢ty >> 1 the Eisenstein series is approximated by its constant

term, i.e.

Eis(wn ) (E4)( (tg 31;)) =t,"Y" + O(e ) (5.47)

On the other hand we can write P,(X,Y) = prf)X"’“Y” with pLV) € Z.
Then

t v n
(8 915) P, =topl) X" 4. (5.48)
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and
<( e mseaEa(y D)o e

and hence we see that the limit exists and we get

1
lim | < [ito,ito + 2] ® (P, + V), Eis, > do =p{” = P,(1,0)  (5.50)

to—00 0
and hence we have the final formula

Therefore we have to compute P,(1,0) mod Z,). Recall that for any v, v #
0,n we have to choose a very large m > 0 such that the zero chain 7" (e, ) is
homologous to

+P,(1,0) mod Zg. (5.51)

T;:n(eu) ~ {OO} ®L,= {OO} ® (1 - T)Q,, (5'52)

with @, € M,,. Then we find P, = Q, £ Qpny1—0-
Hence we have to compute T;”(el,). A straightforward but lengthy compu-
tation yields

Z(p) if(p—l)XV—Fl
Q.(1,0) € {pylﬂ +Zy  else (5.53)
p—1

Now we are ready to compute d(n, p) , it is the maximum over all v

((=v)¢(v —n)
TCiom T (@0 +Qnu(1,0)) mod Z).

(5.54)

d(n,p,v) = — ord,(

We analyse this expression. We exploit the old theorems of Kummer and
of von Staudt-Clausen. For an odd positive integer m the number {(—m) is a
rational number. The theorem of von Staudt-Clausen asserts

{C(—m)GZ(p) ifp—1/fm+1

C(=m) + gz €Z¢y  ifp—1m+1 (5.55)
p—1

We distinguish cases.

I) We have (p — 1) fn+2, then ord,({(—1—n)) = ord,(Numerator{(—1—
n)), and p — 1 can divide at most one of the two numbers v+ 1 or n+1 —v.

Ia) Let us assume it divides neither of them. Then in (5.54)

d(n,p,v) = — ordp((C(=¥)C(¥ = n)) + ordp(¢(=1 —n)) (5.56)
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a—1

Ib) Alternatively we assume that p — 1|v + 1 we write v + 1 = p® luy,
with p*~!||v + 1. Then the p-denominator of ((—v) is p®* and v —n = —n — 1
mod (p — 1)p®~!. The Kummer congruences imply

C(v—n)=((=n—1)+p*Z(v,n); with Z(v,n) € Z, (5.57)

and then mod Z(p)

% +(Qu(1,0) + Qn—0(1,0)) =
(5.58)

C(=v)(1+po 221 1 Q,(1,0) = ((—v)pn 2,
This implies that
d(n,p,v) = ord,(Numerator(((—1 —n)) — ord,(Z(v,n),
the factor in front is a unit.

IT) We have p — 1|n + 2. Then p does not divide Numerator({(—1 — n))
and hence we have to prove d(n,p,v) = 0 for all v. This is obvious if p —
1 does not divide v 4+ 1 and hence also does not divide n + 1 — v.

Therefore assume p — 1|y + 1. We write v +1 = (p— D)ap® In+1—-v =
(p — Dyp®*~! with @ > 0,b > 0 and z,y prime to p. We assume a < b and
compute

C(1—(p—Dap 1)1 — (p—Dyp*™)
C(1—(p—1)pr=t(z + yp~—))

mod Z ) (5.59)

For a value ((1 —m) with p — 1|m we write m = (p — 1)ap*~! with (z,p) = 1.
We apply again the von Staudt-Clausen theorem

C1=m)=C¢(1—(p—Daxp*t = —% + Z(x) where Z(z) € Zy,)

In our case this gives -let us assume a < b - for our expression above

— G T Z@) (5 T Z()) (@ +yp" ) (5 + 0" Z(2)) (5 + Z())

G + 2@ ut) T pi(r typt ) Z(x + phoy)
(5.60)

The denominator is a unit, we need to know it modulo p?, the numerator is a
sum of eight terms we can forget all the terms in Z,). Then the above expression
simplifies

L 1 pa_bCEZ(I)

y:ﬂb + p* + Y (5.61)
1+ paZ(z +yp*=*)

1

We want this to be equal to a5 T ﬁ. Hence we have to verify the equality

1 1 p*~bxZ(x) 1 1 b
-+ +— = (—+—)1+p"aZ(z+yp~* 5.62
o T s ezt ) (6562




216 CHAPTER 5. APPLICATION TO NUMBER THEORY

and this comes down to

7 A b—a
pa—bx y(x) Epa_bm(a:—&—yyp) mod Z ) (5.63)

and this means
Z(z) = Z(z+yp®~*) mod p*~®

and this congruence is easy to verify.
Basically the same argument works if ¢ = b. Then it can happen that x4y =
0 mod p. Then we have to write z +y = p°z. Then (5.60) changes into

(o + Z@) (% + 2() (4 2@ + ZW)
L1 Z(2) - 1+ p*ez2(2) - (5:64)

- Zpa+c

We ignore the denominator then the only non integral term is

(@ + )1 1 1 N 1
€T —_ =
yxyp“ xp®  yp®

We see that in case p — 1 | n + 2 the prime p does not divide the numerator
of ((—1 — n) and that the prime p does not divide the denominator A(n).

If p—1 f/n+ 2 then p must be an irregular prime. We look at the maxi-
mal value of d(n,p,v) in (5.54), this means we look for the minimum value of
ord, ((¢(=v)¢(v —n)) for v = 1,3,... 5. We claim that this minimum value
is actually equal to zero. Now it is extremely likely that this is true, because
simply too many random integers have to be divisible by p. But as always it is
not easy to prove.

For our given prime p the index of irregularity of p is the number of even
numbers k with 2 < k < p — 3 such that p|¢(1 — k) = Z&, it is denoted by
i(p). Probabilistic considerations suggest that i(p) = O(log(p)/loglog(p)), but
this can not be proved at the present time. (Again a Wieferich dilemma).
Therefore it seems to be very plausible that always i(p) < %. Then not all of
the % numbers ((—v){(v — n) can be divisible by p. The above assertion that
i(p) < % is certainly true for all primes p < 163577833. (See [20]). In the same
paper the authors assert that for the above set of primes the largest the index

of irregularity i(p) < 7 and 4(32012327) = 7.

There is a way out of this dilemma. In his paper [21] L. Carlitz proves a
very crude estimate for the index of irregularity. This estimate says that

. p+3 log(2)p—1
ilp) < 4 log(p) 4

(5.65)

and this implies that i(p) < 272 — 2 provided p > 100.

If we now assume assume n > p then we see that not all the % numbers
¢(=v)¢(v —n) can be divisible by p and hence we proved d(n, p) = ord,(¢(—1—
n) and hence the theorem below under this assumption.

denomkEis



5.1. MODULAR SYMBOLS, L-VALUES AND DENOMINATORS OF EISENSTEIN CLASSES.217

Theorem 5.1.2. IfI" = Sk(Z) then the denominator of the Eisenstein class in
HY(T\H, Mg) is the numerator of ((—1 —n).

Proof. We have to remove the assumption p < n. We use Hida’s method of
p-adic interpolation, we refer to the approach in [41]. In section 3.3.12 we
explain how the fact p°||A(n) is reflected in the structure of the Hecke-module
HY (T\H, M ® Z/p’Z). In [41] we prove that we have an isomorphism of
Hecke modules
Hlord(F\H’ M& Y Z/p(SZ) ;> Hlord(F\]HL Mb ' ® Z/p(SZ)

provided we have A = X’ mod p° i.e. n =n' mod p°. Hence we can replace n
by an n’ > p and apply the previous argument. O

A slightly weaker version of this theorem has been proved by Haberland in
[33]. Somewhat later C. Kaiser proved a more general version in his Diploma
thesis and in about the same time the theorem was proved in my class.

The above theorem can be generalised: For instance we may pass to con-
gruence subgroups of Glz(Z), then the special values of the (— function have to
be replaced by special values of Dirichlet L functions. Another situation where
the above method might lead to some success is provided by Hilbert modular
varieties, i.e. G/Q = Rp/g(Glz/F) and F//Q a totally real field.

The denominators of the Eisenstein cohomology classes can be studied for
arbitrary semi simple (reductive) groups G/Q. Roughly our general expectation
is that there is a connection between the prime factorisation of certain special
values of L-functions and denominators of Eisenstein classes.

A first example is discussed in [42], where we consider then cohomology
of the group Sp,y(Z) with coefficients in a very specify coefficient system and
we make a conjecture about the denominator of an Eisenstein class. But it
is only a conjecture, our method to determine the denominator (-integrating
the Eisenstein class against a cycle-) seems to fail. Nevertheless we give some
heuristic speculations about mixed Tate motives which support this expectation.

On the other hand we know that the denominators create congruences and
for the special case above and some others these congruences have been checked
experimentally in v.d. Geer’s article in [19]. In many other cases the congruences
have been checked experimentally -for some finite number of Hecke operators-
[6], [8], but they never check the denominators. Later G. Chenevier and J.
Lannes prove the congruences in some cases [22].

If we want to check experimentally the conjectures about the denominators,
we have to broaden our program with Gangl, which we wrote for the operator
T5 and the cohomology of Sly(Z). We have to write algorithms for Spy(Z) or
some other groups, see also [44]. Several attempts have been made, but this
seems to be a very difficult task. Since we believe that know the interesting
values of ¢ we hope that some mod ¢ version might work. (See Chap. 3). .

The case B)

We may discuss the denominator issue also in case B), here the situation is
slightly different. We go back to the end of chapter 4 . Even if we start from
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the integral class es,.n we can not expect that the the restriction of the the
Eisenstein class is integral, simply because the number ¢(A) (see 4.213) may not
be integral. We have to to multiply the Eisenstein class by the denominator §(\)
of ¢()\) and then the restriction r(§(\)Eis(es,.»)) € H'(O(I'\Hs), My). This
class generates a direct summand in the boundary cohomology and it plays now
the role of the class w,, in case A) I think that only now it is a reasonable to ask

What is the denominator D(X) of the class 6(A)Eis(es,.a)? Does this de-
nominator tell us something about the structure of the cohomology as Hecke
module?

. We modify the period Q* by a rational factor Ny, such that the array

v LGk, 4k —v)

{....,ﬂ' W, ---}V:l,../lk*g'

is an array of coprime integers. To simplify the notation we put

ar ™ L(¢g, v
L (¢, v) := szkijl\ffk)

and call this the arithmetic part of the L value. If now
A()\) = gcd(Lar((bk, 4k — ng — 1), Lar(¢k7 4k — ng))

then

5\ = ﬁﬁr(m,% ).

This says that the above restriction is equal to

T(CS()\)EiS(esl.)\)) = ﬁLar(d)k,lﬂf — ng))esl.)\ + ﬁLar((ﬁk,llk — Ng — 1))632.)\
(5.66)

We want to compute (or better estimate) the denominator. We apply the
techniques from case A), namely testing 0(A)Eis(es,.») against certain modular
symbols (see section 5.1.4). We have a certain supply of (capped) modular
symbols MS, these 3 € MS yield homology classes 3 € H;(I'\Hs, M, ® Q),
which have a ”small” denominator n(3), here small means that n(3) is an integer
which in its prime factorisation has only primes p < 4k (here it is very desirable
to have more precise information). We can evaluate for 3 € MS the integral

: _ 6
/gEls(esl.)\) = T (o k=)’ (5.67)

, here £(3) is a number which is given as expression in terms of special L- values.
We formulate an assumption, which can be verified with very high probability
by a quick evaluation of L-value

For any (not too small) prime £ we can find a 5 € MS suchthatl JL(3)

class n(3)3 we get

n(3)
AN

< d0(N)Eis(es;.x),n(3)); > = X unit in Z (5.69)
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and we conclude

AN
n(3)
hence we see again that primes which divide L values also may divide denomi-
nators of Eisenstein classes.

( — (D)), (5.70)

We call a prime £ large (with respect to 4k) if ¢ > 4k, otherwise it is small.
For large primes we know that they do not divide n(3). A highest weight A is
called unitary if ny = na(= 2k — 1). If this is the case the functional equation
(see 4.215) tells us that L*(¢g, 4k — no — 1) = 2 X L* (¢, 4k — na) and hence
we get

For a unitary A we have A(X) = L¥ (¢, 4k — na)) (5.71)

and since the value of the L* function will very large we see a very large
denominator, if £ becomes large.

But if A is not unitary we should not expect ”large” denominators. The two
integers L (¢, 4k —ng — 1), L** (¢, 4k — ng) will become very large if k grows,
but they are not entangled by the functional equation. Hence it should be a
rare event if a large prime ¢ divides both of them. I produced a table of values
A(N) for k=1,...,k =20 and I did not find any large prime ¢ dividing a A(X)
for a non unitary . I found some small primes which divide A(A) but then I did
not investigate the influence of n(3), hence I do not know whether they divide
the denominator.

This leads us to the second half of the question above.

If X\ is not unitary we know that the inner cohomology with rational co-
efficients is trivial, i.e. we have H?(I\Hz, My ® Q) = 0. We will see in the
next chapter that this phenomenon happens quite frequently (see 6.1.1). More
generally we can say that H (I'\X, My ® Q) = 0 if X is not conjugate self dual.
N. Bergeron and A. Venkatesh proposed to look at the torsion of the cohomol-
ogy, and they formulated some conjectures which in a certain sense say that the
torsion of the cohomology becomes very large. In our special case we have a
theorem by W. Miiller and F. Rochon which says

Let T' C SL(Z[i]) a torsion free congruence subgroup, then for any e > 0 we
find an n(e) such that for all ny > n(e) and A = nyy1 we have

vol(T\Hg) 2
5 n

(1 - 6)6 T < #Hgor(r\H?))a M)\) < (1 + 6)6

vol(T'\Hg) nf
ks

(5.72)

This is Thm. 1.11 in [67], the authors claim that they can also prove a similar
result for weights A where also ny # 0. I believe that the assumption of torsion
freeness of ' is not necessary and I expect that #H?(T'\Hs), M A)tors has some
kind of exponential growing in the variable A even for I" = Sla(Z[i]). But these
methods only give some information about the archimedian size of the torsion,
we do not get information about the primes dividing # H?T"\Hs, M A)tors-

Small primes will occur in #H2(I'\Hs), My )tors, €ven with high multiplic-
ity. This is very plausible because, we apply the same arguments as in section
(3.3.1) and get an analogous statement to proposition (3.3.1).This implies that
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H I(G(F\Hg),/\;l Mtors 1s a finite abelian group and its order is only divisible
by small primes. Then the image of H'(9(I'\H3), M Ators under the boundary
operator in the fundamental exact sequence provides a notable contribution to
HCQ(F\H;;,./\;I)\)tOTS. But if the ¢ torsion in HZ(T'\H3)tors is non zero then it is
also non zero in H2(I'\Hs, M )tors.

To get further information we have to analyse the following diagram

H'(9(I'\Hz), M») tors
HY(T\H3, My) Hl(ﬁ(l“\t-]lg),/\;l,\)
B R T O A
Z[i](r(é(A;JEis(esl.A))
Z[| (L™ (¢x, 4kLi n2)Eis(es; 1))

2L H2(D\Hs)

(5.73)

But let us assume we found is a large prime ¢ which divides A()) for a non
unitary A\. We tensorize the above diagram by the local ring Z[i] ® Z). Then
m1 becomes an isomorphism, hence the class [§(\)Eis(es,.x)] is an element in
HY(O(T'\Hs), M) @ Zygy. Then our assumption above implies that

Zgy[il(r(6(N)Eis(es, 1))/ Zo A (L™ (¢r, 4k —n2)Eis(es,.2)) = Z [i]/ AN Zgy [i].-
Therefore the boundary operator §; yields an injection
Zoyli}/ AN Zgy [i] < HZ(T'\Hs). (5.74)
We have constructed a ¢ torsion class, which owes its existence some divisibility
properties of special L— values.

I remind the reader that as long as A is not unitary- for £ < 20 I did not
find an £|A(X) with ¢ > 4k.

The situation changes dramatically if A is unitary. In this case A(A) is will
become very large. For example if we take k = 20 and A unitary. then the two
primes

¢ =27006373, ¢ = 12621663529147 (5.75)

are divisors of A(A). The map 7 i, iS not necessarily injective anymore, and
it can happen, that the image of r i, is larger than just Z[i](L* (¢g, 4k —
ng)Eis(es,.x)). To be more precise we take such a prime ¢ and and localise our di-
agram 5.73 at /£, then the element [r(Eis(6(\)es,.1))] € H'(O(D\Hs), M) ®Zy
has two options

i) The boundary operator 61 maps it to a non zero £ -torsion class.

ii) The boundary operator sends it to zero and hence this class is in the image

of r.
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In case i) we get H}'(T'\Hz), M)) # 0. Our previous discussion in case A)
also yield that we find an eigenclass, which is congruent to the Eisenstein class
mod /.

Now I believe that the case i) almost never occurs. At this point we should re-
turn remorsefully to our algorithm (2.33) and carry out some experimental com-
putations. Actually H. Sengun provides some data in his paper [76] in section
5.1. , he gives a complete list of large primes which divide #H?(I"\Hs, M A)tors
for k =1,...,13 (His large primes may be smaller than ours). A simple compu-
tation using Poincare duality and some simple exact sequences shows that for a
large prime

£|#H2(F\H37 MA)tors — £|#H3(F\H37 M/\)tors-

Now we can compare this list with the list of large prime dividing A(\) and we
see that these two list do not have any member in common. This shows that
for these few values of k we always have option ii). It would be nice if Sengun’s
list could be extended up to k& = 20 his parameter n and our parameter k are
related by 2k =n + 1.

5.1.5 The Deligne-Eichler-Shimura theorem

In this section the material is not presented in a satisfactory form. One reason is
that it this point we should start using the language of adeles, but there are also
other drawbacks. So in a final version of these notes this section will probably
be removed.

Begin of probably removed section

In this section I try to explain very briefly some results which are specific
for Gly and a few other low dimensional algebraic groups. These results con-
cern representations of the Galois group Gal(Q/Q) which can be attached to
irreducible constituents Il in the cohomology. These results are very deep and
reaching a better understanding and more general versions of these results is
a fundamental task of the subject treated in these notes. The first cases have
been tackled by Eichler and Shimura, then Thara made some contributions and
finally Deligne proved a general result for Gly/Q.

We start from the group G = Gly/Q, this is now only a reductive group
and its centre is isomorphic to G,,/Q. Its group of real points is Glz(R) and
the centre G,,(R) considered as a topological group has two components, the
connected component of the identity is G,,(R)©) = RZ%,. Now we enlarge the
maximal compact connected subgroup SO(2) C Gly(R) to the group K. =
SO(2) - G, (R)(®). The resulting symmetric space X = Gly(R)/K,, is now a
union of a upper and a lower half plane: We write X =H,; U H_.

We choose a positive integer N > 2 and consider the congruence subgroup
I'(N) C Gl2(Q)). We modify our symmetric space: This modification may look
a little bit artificial at this point, it will be justified in the next chapter and is in
fact very natural. At this point I want to avoid to use the language of adeles.)

We replace the symmetric space by

X = (H; UH_) x Gly(Z/NZ).
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On this space we have an action of I' = Gly(Z), on the second factor it
acts via the homomorphism Gly(Z) — Gla(Z/NZ) by translations from the left.
Again we look at the quotient of this space by the action of Gly(Z). This quotient
space will have several connected components. The group Gly(Z) contains the
group Sl3(Z) as a subgroup of index two, because the determinant of an element

is +£1. The element ((1) _01> interchanges the upper and the lower half plane

and hence we see
GL(Z)\X = GL(Z)\(H, UH_) x Glo(Z/NZ)) = Sh(Z)\(H, x Glo(Z/NZ),

the connected components of (H; x Gl2(Z/NZ)) are indexed by elements g €
Gl2(Z/NZ). The stabilizer of such a component is the full congruence subgroup

F(N):{y:(ccl Z) la,d=1 mod N,b,c=0 mod N}

this group is torsion free because we assumed N > 2.

The image of the natural homomorphism Slp(Z) — Gl2(Z/NZ) is the sub-
group Sly(Z/NZ) (strong approximation), therefore the quotient is by this sub-
group is (Z/NZ)*.

We choose as system of representatives for the determinant the matrices

tg = (8 (1)> ,a € (Z/NZ)*. The stabiliser of then we get an isomorphism

Sy = GL(Z)\(H x Gl,(Z/NZ)) = (D(N)\H) x (Z/NZ)*.

We consider the cohomology groups H? (Sn, My,), H*(Sny, My,), H*(0Sn, M,,),
again we have the fundamental long exact sequence and we define H; (S, Mn)
as before.

To any prime p, which does not divide IV we can again attach Hecke opera-
tors. Again we can attach Hecke operators

_ 0
T =T (o 1)’“(177" 0)

0 1

these to the double cosets and using strong approximation we can prove the
recursion formulae ( for this and the following see the next chapter 6). We
define H,, := Z[T,]. We also have a Hecke algebra 7, for the primes p|N, but
this will not be commutative.anymore. We get an action of a larger Hecke

algebra
large !
Hy'® = Q) H,y.
P

We apply 3.1.1 and find a finite normal extension F'/Q such that we get an
isotypical decomposition

H? (Sy, My, @ F) = @ HP (Sy, My @ F)(ry) (5.76)

where 7y = ®'m, and the m, are isomorphism types of absolutely irreducible
H, modules. For p /N this H,-module is a one dimensional F-vector space
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H. = F and m, is simply a homomorphism 7, : H, — Op. If p|N then the H,
module is F4™») with d(7,) > 1 and the theory of semi-simple algebras tells us
that the map H,, — End F(Hﬁp) is surjective. Hence we know the isomorphism
type m, once we know the two sided ideal I(m,) of this map.

Now we have some input from the theory of automorphic forms

Theorem 5.1.3. The isomorphism type 7y is determined by its restriction to
the central subalgebra ®, | ynH,. Under the action of the group mo(Glz(R)) =
{1} decomposes into two eigenspaces

HY (S, M, @ F)(my) = H* (Sn, My, @ F) 1 (n5) ® H* (Sy, My, ® F)_(y)
(5.77)

and these two eigenspaces are absolutely irreducible of type w¢. (These assertions
are summarised under ”strong multiplicity one”)

Of course we have the action of the Galoisgroup Gal(#/Q) on the cohomol-

ogy groups H?(Sy, M, @ F') and it is clear that this induces an action on the
isomorphism types m¢. For 0 € Gal(F/Q) we have

o(H?(Sn, My, @ F)(74)) = H? (Sn, My, @ F) (o (my)). (5.78)

I want to discuss some applications.
A) To any isotypical component 7; we can attach an ( so called automorphic)
L function

L(ns,s) =[] L(mp,9)

where for p JN we define

1
1= A(mp)p* + pHw(my) (p)p2s

L(mp, s)

and for p|N we have

Limy,s) — { 1_pn+1w(hf)(p)p,s if m, is a Steinberg module
1 else

This L-function, which is defined as an infinite product is holomorphic for
R(s) >> 0 it can written as the Mellin transform of a holomorphic cusp form
F' of weight n + 2 and this implies that

I'(s)

= o

A(m, s) L(my,s)

has a holomorphic continuation into the entire complex plane and satisfies a
funtional equation

Ay, s) = W(mp)(N(mp)) "t =2 A(mp,n+ 2 — s)

Here W (IIy) is the so called root number, it can be computed from the m,
where p|N, its value is 1, the number N(7f) is the conductor of m¢ it is a
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positive integer, whose prime factors are contained in the set of prime divisors
of N.

Now we exploit the fact, that the disjoint union of Riemann surfaces I'(V)\ X..
is in fact the space of complex points of the moduli scheme My — Spec(Z[1/N]).
This has been explained at several places in the literature. I refer to the second
edition of my book [39] section 5.2.5 where I try to explain that the functor
schemes S — Spec(Z[1/N]) to elliptic curves over S with N-level structure is
representable, provided N > 3, More precisely we have a smooth quasiprojec-
tive scheme My — Spec(Z[1/N]) with one dimensional fibers and we have the
universal elliptic curve with N level structure

&; {61762}
I (5.79)
My

where e; : My — & are sections which yield a pair of generators of the group
of N-division points. The group Gly(Z/NZ) acts on the group of N-division
points, this gives an action of Gla(Z/NZ) on My. We can define the moduli
stack My — Spec(Z) of elliptic curves without level structure. For any N > 3
we have My x Spec(Z[+]) = My /Gly(Z/NZ).

On £ we have the constant /-adic sheaf Z,. For i = 0,1,2 we can consider
the /- adic sheaves R'm,(Z;) on My. We have the spectral sequence

HP(My x Q, Rim,(Z¢)) = H™(€ x Q,Z).

We can take the fibered product of the universal elliptic curve
EM = & xpy EX - Xy €% My

where n is the number of factors. This gives us a more general spectral sequence

Hp(MN X Q,Ran\L*(Z@)) = Hn(g(n) X Q,Ze).
The stalk Ry «(Zs), ) of the sheaf Ry .(Z;) in a geometric point y of

My is the ¢-th cohomology H? (E@Sn),Zg) and this can be computed using the
Kuenneth formula

HUEM, Ze) = @ H™(Ey,Zo) @ H™(Ey, L) - -+ @ H (€, L),

a1,a2...,0n

where the a; = 0, 1,2 and sum up to q. We have H(E,, Z¢) = Z;(0), H*(Ey, Z¢) =
Z¢(—1) and the most interesting factor is H'(&,,Z;) which is a free Z; module
af rank 2.

This tells us that the sheaf decomposes into a direct sum according to the
type of Kuenneth summands. We also have an action of the symmetric group
S, which is obtained from the permutations of the factors in £ which also
permutes the Kuenneth summands. We are mainly interested in the case ¢ = n
and then we have the special summand where a; = as--- = a, = 1. This
summand is invariant under S,, and contains a summand on which S, acts
by the signature character o : S, — {z1}. This defines a unique subsheaf
Ry n(Z¢)(0) C R™7y n(Z¢) and hence we get an inclusion
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HY(My x Q, R"Tu n(Zg)(0) — H"(EM™ x Q,Zy) (5.80)

and we can do the same thing for the cohomology with compact supports.

Now I claim that

A) The restriction of the etale sheaf R"m. n(Z¢)(0) on My x C to the topo-
logical space Sy = My (C) is isomorphic to M,, ® Zy. Then the comparison
theorem gives us

HY(My(C), My, @ Zg) = H' (My x Q, R"7y n(Zg)(0))

B) The Hecke operators T, for p [N are coming from algebraic correspon-
dences T, C My xMpy and induce endomorphisms T, : H'(Myx®Q, R, (Zs)(c)) —
HY(Myx ® Q, R"y 1 (Zs)(0)) which commute with the action of Gal(Q/Q) on
the cohomology.

This gives us the structure of a Gal(Q/Q) x Hr on HY(My(C), M,, ® Zy).

C) The operation of the Galois group on H'(My(C), M,, ®Zy) is unramified
outside N and ¢ therefore we have the conjugacy class @;1 for allp AN as
endomorphism of H'(My(C), M, @ Qy).

We choose our normal extension F//Q and a prime [ above £. Then an iso-
typical component H'(My (C), M, ® Fi)(r¢) is a Galois module. Let H, be a
vector space over I’ which is an irreducible Hr module which is of isomorphism
type mp. Then W (ny) = Homy (H,, ® E, H! (My(C), M,, ® F}) is a Galois
module which is unramified outside N and ¢

We now apply our theorem 2 to the cohomology H,'(My(C), M, ® Z,), as a
module under this large Hecke algebra. Then the isotypical summands will be
invariant under the Galois group.

Theorem 5.1.4. (Deligne) For all primes p {N,p # ¢
(0, W (7)) = Almy), det(@; W (7)) = p™eo()(p)

This theorem is much deeper than the previous ones. The assertion a) fol-
lows from the theory of automorphic forms on Gly and b) requires some tools
from algebraic geometry. We have to consider the reduction My x Spec(Fp)
and to look at the reduction of the Hecke operator 7}, modulo p. I will resume
this discussion in Chap. V.

We conclude by giving a few applications.
A) To our modular cusp form A(z) we attach the Hecke L-function

T g5 @y T(s) 7))  T(s) 1
L(A,S) _/0 A(’Ly)y ? - (27T)S ; ns - (27‘()5 1;[ 1 7T(p)p75 +p1172s

the product expansion has been discovered by Ramanujan and has been proved
by Mordell and Hecke.
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Now it is in any textbook on modular forms that the transformation rule

A(—l) = 212A(2)

z

implies that L(A, s) defines a holomorphic function in the entire s plane and
satisfies the functional equation

L(A,s) = (=1)'¥2L(A,12 — ) = L(A,12 — s).

This function L(A, s) is the prototype of an automorphic L-function. The
above theorem shows that it is equal to a "motivic” L-function. We gave some
vague explanations of what this possibly means: We can interpret the projective
system (M /£"M),; as the /—adic realization of a motive:

M =Sym'" (R (r: £ — 9))

(All this is a translation of Deligne‘s reasoning into a more sophisticated
language.)

Tt is a general hope that “motivic” L-functions L(M, s) have nice properties
as functions in the variable s (meromorphicity, control of the poles, functional
equation). So far the only cases, in which one could prove such nice properties
are cases where one could identify the "motivic” L-function to an automorphic
L function. The greatest success of this strategy is Wiles‘ proof of the Shimura-
Taniyama-Weil conjecture, but also the Riemann (-function is a motivic L—
function and Riemann‘s proof of the functional equation follows exactly this
strategy.

B) But we also have a flow of information in the opposite direction. In 1973
Deligne proved the Weil conjectures, which in this case say that the two roots
of the quadratic equation

a? —7(p)z+pt =0
have absolute value p''/2, i.e. they have the same absolute value. This implies
the famous Ramanujan- conjecture

7(p) < 2p"/?

and for more than 50 years this has been a brain-teaser for mathematicians
working in the field of modular forms.
End of probably removed section

The /-adic Galois representation in the first non trivial case

Again we consider the module M = M;([—10]. We choose a prime ¢ and for
some reason let us assume ¢ > 7. Then we can consider the cohomology groups

HY(D\H, M/" M)
and the projective limit

HY(T\H,M ® Z;) = lim A (I\H, M/I"M).
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We know that
Helt(Ml X Spec(Z) @7 (M/KHM)et) — Hl(P\H,M/an)

On the etale cohomology groups we have an action of the Galois group hence
we get an action

pi"  Gal(Q/Q) — GI(H"(T\H, (M /" M).;)). (5.81)

From Galois theory we get a finite normal extension K §”> /Q which is defined
by Gal(@/Ké")) = ker(p(™). The representation pén) is unramified outside /£,

and this means that the finite extension K én) /Q is unramified outside .

From the fundamental exact sequence we get a diagram

— O

H°(O(T\H), M ® Zy)

<—

0 — HND\H,M® Z)

<—

0 - HTHMZ) —HT\HMZ,) — HY (YO\H,MZ) — 0

O <

(5.82)

the vertical and the horizontal sequence are exact sequences of Heckex Galois
modules. Here we may replace Z; by Z/¢"Z. We computed these Hecke mod-
ules in section 3.3.4, the cohomology Hl(F\H,M ® Zy) is free of rank 3 and
HY(O(T'\H), M ® Zj) is free of rank one. We get the two Galois modules

pr i Gal(Q/Q) — GI(HL(T\H, M ® Z,)), and ps : Gal(Q/Q) — Gl(Zg). |
5.83

The (-adic Tate character oy : Gal(Q/Q) — Z is defined by the rule: For all
o € Gal(Q/Q) and all £™-th roots of unity ¢ € Q we have ¢(¢) = ¢*¢(°). Then
it is not difficult to see ( or well known ) that ps = a!. The representation
po is the £— adic realisation of the Tate-motive Z(—11). (For a slightly more
precise explanation I refer to MixMot.pdf on my home-page). On Zy(—1) =
H?(P! x Q,Z) the Galois group acts by the Tate-character

For the representation p; the above theorem of Deligne gives

det(Id — p(®, " )t|H! (T\H, M ® Z;)) = 1 — 7(p)t + p''¢> (5.84)

We also have det(p(o)) = a}'(0) and we can ask what is the image of
Cal(Q/Q) in CI(H(T'\H, M ® Z;) = Gly(Z). This question is discussed in
[86]. If £ # 691 then the Hecke algebra induces a splitting (Manin-Drinfeld
principle)

HY(D\H,M ® Z;) = H} (T\H, M ® Z;)) & Zq (5.85)
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where T}, acts by multiplication by p™ + 1 on the second summand.
Now Swinnerton-Dyer shows in [86] that for ¢ # 23,691 the image of the
Galois group under p is as large possible, it is the inverse image of (F;)ll

From now on we choose ¢ = 691 and our coefficient system MIO- Then we
get a diagram of Hecke modules

0

!
HO(O(I\H), M ® Z/(Z)

!

0 — HND\H,M®Z/Z)
!

0 - HT\HM®Z/MHZ) — HY (D\H,M®RZ/HZ) — H' (OT\H),MZ/HL) — 0
!
0

(5.86)

We learned in the probably removed section that we have an action of Gal(Q/Q)
on this diagram and this action of the Galois group commutes with the action of
the Hecke algebra. The two modules H°(8(T\H), M ® Z/¢Z), H* ((T\H), M &
Z/lZ) are isomorphic to Z/¢Z and a Hecke operator T}, acts by the eigenvalue
p''4+1 mod ¢. The module H(T\H, M ®Z/{Z) = Z/¢Z®Z/{Z and the Hecke
operator acts by the eigenvalue 7(p).

The Galois group acts on HO(Q(T\H), M ® Z/{Z), resp.H' (O(T\H), M &
ZJUZ) by o resp. a; '', here ay is the reduction of the Tate character mod .
We also know that we have the inclusion of Galois modules

j:ZJL(—11) — HYT\H, M @ Z/I7Z), (5.87)

We want to understand the two Galois modules H!(D\H, M®Z/¢Z) and H'(I'\H, M®
Z/¢7), There is perfect pairing with values in Z/¢Z(—11) between them, hence
we have to study only one of them say H'(I'\H, M ® Z/(Z),
From the above considerations it follows that we have ia basis e, eg,e_1 of
this module such that a o € Gal(Q/Q) acts by the matrix

Ck[(O')ill U12(0') ’LL13(O')
plo) = 0 1 ugs(o) | € B(Z/IZ) (5.88)
0 0 ag(o)™H

We want to describe the image of the Galois group in B(Z/¢Z). Let T™")(Z/(Z)
be the torus

t 00
0 1 0];tez/iz” (5.89)
00 ¢

and let U(Z/{Z) be the unipotent radical in B(Z/¢Z). Then I claim

Theorem 5.1.5. The image of the Galois group is T (Z/VZ) x U(Z/{Z)
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Here are arguments why this must be the case.

The quotient B(Z/(Z)/U(Z/¢Z) = T")(Z/¢Z) and the resulting map Gal(Q/Q) —
TW(Z/07) is surjective. We have to show that the restriction map Gal(Q/Q(¢)) —
U(Z/¢Z) is surjective. The center of U(Z/{Z) is the group Uy 3(Z/(Z) where
u1,2 = ug 3 = 0. Let V(Z/VZ) be the quotient U(Z/lZ)/U1 3(Z/CZ). Tt suffices
to show that Gal(Q/Q(¢)) — V(Z/{Z) , is surjective because the commutators
of the elements in V(Z/¢Z) fill up the elements in Uy 3((Z/¢Z). Then it becomes
clear that it suffices to find a o € Gal(Q/Q) with uj 2(0),u23(c) Z 0 mod ¢
because we still have action of 7" (Z/¢Z) by conjugation on the image of the
Galois group.

Now we apply the Eichler-Shimura congruence relation which says that for
any p we have

p(®p)? = Tpp(®y) +p''Id = 0. (5.90)

and if we are courageous enough to compute with 3 x 3 matrices we find for
c=9%,

0 0 wia(®y)uzs(®p) + (=1 +p"uiz(®,) — ptt®
0 0 0
0 0 0

0. (5.91)

Hence the right upper entry must be zero. If p =1 mod 691 this means that

19 (P, )ug3(®,)—p''tP) = 0 and this implies: If t®) # 0 then uy2(®,) and ugs(®,) #
0. But we have seen that ) = 0 implies the stronger congruence T(p) =pt+1
mod 6912. (See section 3.3.4) But now the prime p; = 6911 is congruent to 1

mod 691 but 7(p1) is not congruent to 691! +1 modulo 691%. Hence u1a(®,,) #

0, u23(®,,) # 0. The claim follows.

By definition K él) /Q is the normal extension of Q such that
Gal(K " /Q) = TW(2,/¢Z) x U(Z/¢Z) := BV (Z./¢2), (5.92)

this extension is unramified outside £. It contains the field of ¢-th roots of
unity, i.e. Q(¢) C Kél). The Galois group Gal(Kél)/Q(Q)) = U(Z/¢Z). This
group has a center Uy5(Z/{Z) = 7Z/¢Z, this is also the center of the larger group
Gal(K{")/Q). We define the subfield K% by requiring that Gal(K\"*/Q) =
Gal(Kél)/Q(Cz))/Um(Z/EZ). Then Kél’o)/(@) is the composite of two cyclic
extensions Ké“/(@((g) .and Kél’a)/(@((g). These two extensions have the faithful
two dimensional representations

UQ3(O')
—11

pr: Gal(K™MY Q) — GI(HNT\H, M ® Z/(Z))
1
—\o

o= po) (o)
(5.93)
po: Gal(KM? Q) — GIHY(T\H, M ® Z/{Z) 7./ (Ze,)

o pao) = (0‘4(‘6)11 U121(0)

Now we invoke the theory of crystalline representations. We consider the re-
striction of the action of Gal(Q/Q) on H}(I'\H, M ® Z,) to the Galois group
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Gal(Q¢/Qg). This representation is crystalline and I think that this implies that
as a Gal(Q¢/Q,) module it has a filtration

{(0)} € Z4(0) ¢ HY(D\H, M ® Z;) with H}(D\H, M & Z;)/Z(0) = Zg(—11)

here Z,(0) = H}(T\H, M & Z)™, where I, is the inertia group. Therefore we
get a direct sum decomposition for the Gal(Q;/Q,) module

HYT\H, M ® Z/I7) = Z.J{Z(0) ® Z/07(—11) (5.94)

and this implies that Kél’!)/(@(g) is also unramified at ¢ hence it is an
unramified extension.

This unramified extension extension has been constructed by Ribet in [74].,
it has also been constructed in [46]. At the end of that paper we raise the
question for a decomposition law. This means that for any prime p we want to
find a rule to determine the conjugacy class of p(®,), p(®,).... Ifp £ 1 mod ¢.
then the two conjugacy classes pi(®,), pa(®P,) are semi simple and determined
by their eigenvalues. But if p =1 mod ¢ then p(®,) is unipotent and here are
several possibilities for the conjugacy class.

Theorem 5.1.6. If p =1 mod ¢ and if the horizontal long exact sequence of
Z[T,) (See 8.97) modules splits then p splits completely either in the field Kél’!)
or in the field Kél’a).

If p=1 mod ¢ and if the horizontal long exact sequence of Z[T,] modules

does not split then both fields Kél’!)/(@(@) and the field Kél’a)/(@((g) are inert
at the primes above p.
The density of primes which satisfy p = 1 mod 691 and 7(p) = p'* + 1

mod 6912 is equal to 238395

For the curios reader: The first such prime is p = 3178601. We leave it as
an exercise for the reader to find out whether it splits completely in K lE“’ or in
KM 1t is the 228759-th prime.

Finally we have a brief look at the action of the Galois group on H{' (I'\H, M
Zy). Again we choose a basis e, eg,e_1 the element e; maps to a generator in
the boundary cohomology and eq,e_; form a basis of H!'(T'\H, M Zy) we as-
sume that this basis reduces mod ¢ to the basis which we denoted by the same
letters. Then

Oé((a')_u U12(O') U13(J)
plo) = 0 a(o) b(o) | € Gl3(Zy), (5.95)
0 le(o)  d(o)

where a(0) =1 mod ¢,d(c) = a~ (o) mod /.
We claim that there is a o with ¢(c) Z0 mod £

For a prime p and the Frobenius ®, we get a(®,)d(®,) — (b(®,)c(®,) = p'!
and 7(p) = a(®,) + d(®,). Now an straightforward calculation shows that for
a prime p = 1 mod ¢ which in addition satisfies ¢(®,) = 0 mod ¢ we must
have 7(p) = p'' +1 mod 2. But p = 1 + 10 % 691 = 6911 does not satisfy this
congruence, hence ¢(®g911) Z 0 mod L.
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The cohomology H*(I'\H, M ® Z;) has the submodule H} (T\H, M ® Z;) ©
deJ{, where 61 = €ff0(see(3.69)) this submodule is determined by T%. Therefore
it is invariant under the action of the Galois group, with respect to the basis
e]i, eo, e_1 the Galois action is given by

ag(o)™ 0 0
pl(o) = 0 a(o) o) | € Gls(Z,), (5.96)
0

where we still have al'l(c) = det((ZC((Ua)) Z((‘; ))

considerations that the image of the Galois group is given by those matrices in
Gl5(Z,) which satisfy the conditions above.

>) It is clear from the above

But we want to know the image of the Galois group with respect to our basis

- T
Toe_1+e;

e1,€p,€—1. For this we write e; = =, and then clearly
ozg(o)*ll c(o)zo (d(U)*aZ(U)_M)IO
plo) = 0 a(o) b(o) € Gl3(Zy), (5.97)
0 le(o) d(o)
We put
a(xg,0) = a3 (o) (ur2(z0, o), ur3(x0, 0))) (5.98)

then o + a(zo,0) is a one-cocycle with values in H!(11) := H}(T\H,M ®
Z¢) @ Ze(11). We compute its cohomology class [v] € H'( Gal(Q/Q, H!(11)).
We start from the exact sequence of Galois-modules

0— H!'(11) — %H}(ll) — %H,l(ll)/H,l(ll) -0 (5.99)

where of course +H!'(11)/H}(11) = HY(T\H, M ® Z/¢Z). This yields a long
exact sequence in Galois cohomology. The element v provides a well defined
element in o € H( Gal(Q/Q, H'(I'\H, M ® Z/¢Z) and clearly §(0) = v.

Now we can say that the image of the Galois group under p consists of the
matrices

T U2 U3
{10 a b |lad—bc=x;lui2 = c;luiz =d—x} C Glg(Z,) (5.100)
0 ¢ d

It is the cocycle condition which makes this to a subgroup. Now it is not
difficult to see that this is the group of Z;,— valued points of a smooth groups
scheme T /Z, C Gly/Z.

We can say that we constructed a Galois-extension K| LSOO) /@ which is un-
ramified outside ¢ and we have an isomorphism

pe: Gal(K\™/Q) =5 10)(z,) (5.101)
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We also consider the finite extensions Kér) (z)0r7) =5 TM(Z/"Z) and for
r =1 we have ZW)(Z/¢7) = BMW(Z/(Z).

Here we see the prototype of a very general strategy to get insight into the
structure of the Galois group Gal(Q/Q). We wee that that value of certain L
functions at a certain special argument (in this case the Riemann ((s)-function
at s = —11) has influence on structure of certain cohomology groups of arith-
metic groups and these Hecke modules contain some information on the struc-
ture of the Galois group, We can construct certain interesting extensions of Q
with controlled ramification. On the other hand we see that there is also a flow
of information from the Galois side back to the structure of the Hecke modules.

This connection between the congruence for the values of 7(p) and the struc-
ture of the Galois group was observed by Serre in his paper [79] and proved later
by Deligne [25]. Later this relationship was exploited by Ribet in [74] and by
many other authors.

Here I want to point out that there is a change of paradigm between our
approach and the approach by the authors mentioned above. These authors
mostly look at the space of holomorphic cusp forms or what essentially amounts
to the same the inner conomology H}(I'\H, M,, ® C). (Eichler-Shimura isomor-
phism).Then these authors get the consequences for the structure of the Galois
group from the congruences.

In our approach we consider the module H'! (F\H,Mn) and exploit our
knowledge of the denominator of the Eisenstein class.

We explain this approach in a more general situation, but we also keep an
eye on the computational aspects. We start from any irregular prime ¢ and
an even integer n > 0 such that 2 || ((—1 — n). In section 3.3.8 we introduced
the Hecke-modules H' (I'\H, M, ® Z/(){z¥} or H*(T\H, M,, @ Z¢){7}*}, and
Deligne’s theorem tells us, that we have an action of the Galois group on these
modules. This action commutes with the action of the Hecke algebra H . More
precisely we have a finite normal extension Qgis(M,, ® Fy)/Q and an injective
homomorphism

pe1 Gal(Qgis (M @ Fy)/Q) = Gly (H'(T\H, M, ® Z/)({7F*}).  (5.102)

We can replace ¢ by higher powers ¢" and get representations p;, and in the
limit we get an injection

pe: Gal(Quis(Mn ® Z¢) /Q) — Gl (H' (D\H, My, ® Zo)({7F°}).  (5.103)

and this is the representation in the above theorem of Deligne. This theorem of
Deligne also asserts that the extensions Qgis(M, ® Z¢) D Qgis(M,, ® Fy) are
unramified outside £. If we want to understand these representations we have to
make some further assumptions, for instance we may assume that m({7}**}) =
1. This is of course true in our example above, we expect it to be true most of
the times but we know that this is not always true (see section 3.3.9). Assuming
that m({7}**}) = 1, then we can proceed as in our example.

We know that H'(I'\H, M,, ® Zg)({fr}?is}) is a free Zy, module of rank 3. We
can find generators ey, eg,,e_1 of this module such that
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a) Z/Pe_ is the submodule in theorem 3.3.1
) (5.104)
b) the two elements e_1,eq generate H}'(T\H, M, ® Z/9)({7F*}).

With respect to this basis the Hecke operator T}, mod £ is of the form

Pt 41 0 t(P)
T, = 0 ptl 41 0 mod ¢° (5.105)
0 0 pn+1 +1

Now we want to understand the representations of the Galois group. In
our argument for above example we needed the that we can find a prime p =1
mod ¢ such that 7(p) # p" T +1 mod 691%. This can not be the right condition
in the general situation because we may have § > 1 Therefore we formulate the
alternative condition

We can find a prime py =1 mod £ such that tP*) 0 mod ¢  (5.106)

This condition is difficult to verify because we have to compute the quantity ¢®)
for a very large prime. Already in our baby example we relied on the tables for
the values 7(p) provided by Mathematica, we can always verify it in principle
but not in practice. We formulate the much weaker condition

We can find a prime po such that tP) £ 0 mod ¢ (5.107)

This assumption is almost certainly always true, but I do not have a proof.
Further down we will explain that - in theory- we can verify this assertion
effectively in a given case. But we will also explain that in practice this such
a verification can be achieved -for small values of n- in a few seconds on the
computer.

Now we explain how we can use the Galois-module structure to verify that
a given Hecke-module H'(I'\H, M, ® Z)({a¥*}) satisfies (5.106). The field
Qgis(M,,®F) has a non trivial intersection with the field Q((,), this intersection
is the fixed field under the action of ug C F;, We denote it by Q((¢)"¢. We
recall that H'(I\H, M,, ® Z¢)({7F"}) has the generators ey, eg, ey such that
the flag Fpre_1 C Fre_1 @ Fyeq is invariant under the action of the Galois group.
Again we get the two representations pi ¢, pg¢ of Gal(Qgis(M,, @ F,)/Q). We
restrict these representations to the subgroup Gal(Qgis(M,, @ F;)/Q(r)H ).
These restrictions are simply homomorphisms

uy 5 ¢ Gal(Qgis(My @ Fe)/Q(Co)H) — Ty
(5.108)
uy 5+ Gal(Qgis(Mn @ F)/Q(Ce)H ) — Fy

If these homomorphisms are non zero, then they are surectves and hence they
provide cyclic field extensions K™™' /Q((o)*, K19 /Q(¢r)" of degree ¢. These
extension are normal over Q and since we assumed that d # 6%1 these extensions
must be disjoint. Then the congruence relation (5.91) implies

Lemma 5.1.1. We find a prime p=1 mod ¢ for which t®) # 0 mod ¢ if and
only if both u} 5, uy 3 are non zero.
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Proof. Of course if one of the homomorphisms is zero then the Eichler-Shimura
congruence relation implies that t?») = 0 mod ¢ for all p # £,p = 1 mod £.
On the other hand we see that t?) = 0 mod ¢ implies that always one of the
two quantities uy 2(®p), uz,3(®,) = 0. Now we apply the famous Chebotareft’s
density theorem to the two extensions K, K2, In this case it says that for
T — oo the following limit exist and is equal to

#Hp<T|p=1 modu;j(®,) =0} 1

A <X} “ween

This limit is called the density of the set {p | p =1 mod 4;u; ;(®,) = 0} and
denoted by d({p | p =1 mod ¥4;u; j(®,) = 0}. Dirichlet’s theorem implies that
the density of the set of primes {p |[p =1 mod ¢} is equal to 1/(¢ — 1). Hence
we know that for 4,7 = 1,2 or 2,3 and very large T' >> 0

1
#Hp<T|p=1l modﬁ;uiyj(<1>p):0}zz#{p§T|pzl mod ¢}
(5.110)

Since we know that ¢ > 37 it follows that we find a p = 1 mod ¢ with
u1 2(®p) and ug 3(®,) # 0. O

Of course this does not give an effective algorithm to find the prime p. We
discuss this further down.

If we now assume that (5.106) is true then we can prove a generalisation of
theorem 5.1.5 for this given prime £. We have to modify the statement a little
bit. In general the homomorphism oz?“ : Z) — F,* will not be surjective,
Hence have to replace the group T(W(Z/(Z) in the formulation of theorem 5.1.5
by TW(Z/¢Z)* where d = ged(n+1,£ —1). From the beginning we left out the
case that £ —1|n+ 1, but from now on we also assume that d # €_71. Then using
the same arguments as in the proof of theorem 5.1.5 we get an isomorphism

Gal(Qgis(M, ® Z/0)/Q) = T D (z./¢) = {| 0 1’2 uii la € (Z/6)*) uij € T/}
0 0 a
(5.111)

Now we will show that this result provides an indication how to verify (
5.107) and then (5.106) . A direct computation shows that the function

A (Z)0) = Fpst iy uiousz+ (—1+a)urs (5.112)

is constant on the conjugacy classes in Z(%). Again we invoke the Chebotareff
density theorem. For v € Z(9)(Z/¢) we denote its conjugacy class by C., and its
centraliser by Z,. Then the theorem says that the density of primes p for which
¢, € C, is 1/#Z,. 1 leave to the reader to analyse the conjugacy classes and to
check that

d({p | @p € Cy; t(y) # 0f = Ld({p | p € Cy 5 t(y) # 0} (5.113)

(This can easily be made more precise) But this suggests that the probability to
find ¢(®,) = t() = 0 is roughly % hence very small. So we must be really very
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unlucky if we do not find a t®) £ 0 for some very small prime p = 2,3,. Since we
can write algorithms which compute 7}, for small values of p we should be able to
verify in practice (in a given case). In the six cases n = 10, 14, 16, 18, 20, 24 the
Hecke module H}'(T'\H, M,,)) is of rank 2 and for any ¢|¢(—1 — n) our program
with Gangl yields ¢(2) Z 0 mod ¢, hence T suffices to verify (5.107) in few
seconds in these cases.

In principle this procedure is effective. In [59]) the authors prove effective
versions of the Chebotareff density theorem, and using these results we can
show, that there is a computable constant ¢(p) such that we find a p < ¢o(p)
t(P) =£ 0 provided (5.106) is true. But this constant is terribly large and not of
practical use.

Now we want to show that there is another way to verify (5.106) in a given
case, which with very high probability also works in practice. We have a
closer look what happens if one of the two homomorphisms u} 5, u5 5 is zero.
This means that one of the two representation in (5.93) factors through a
conjugate of the diagonal torus, Hence we can replace the basis vector e; —
e1 + xeg(resp.eg — eg + ye_1) such that with respect to this new basis we have
uy2(0) = 0, (resp, ug 3(c) = 0) for all o in the matrix for p(o) (see 5.88).The
Hecke operator T, with respect to either of these new basis is still given by

Pt 41 0 t(p)
T, = 0 p"tl 4+ 1 0 mod /£ (5.114)
0 0 pn-‘rl +1

and hence the Eichler-Shimura congruence relation gives us (in both cases)

(=14 p"  urs(®,) = p"+1elP) (5.115)

On the other hand it is clear that under our assumption the map

Ui s: Gal(Qpis(M,, @ F)/Q) — F,
(5.116)
o uy3(0)

is a homomorphism. We define the subfield L C Qg;is(M,,QF,) by Gal(Qgis(M,,®
F;)/L) = ker(Uy,3). Then we get an injective homomorphism

Hence we see that either L = Q or L/Q is a cyclic extension of order ¢ which
is unramified outside ¢. Then class field theory tells us that L/Q is actually the
unique cyclic subfield of degree ¢ in Q((s2). The Galois group Gal(L/Q) = F,
and for any prime p # ¢ the Frobenius is given by a number v;(p) in Fy, and
this number is defined by

p' L =1+ tw(p) mod £2 (5.118)

Hence there is a number A, ; € Fy such that for all p # ¢

u1,3(®p) = An,eve(p) (5.119)
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If we now that we found a prime po(# £) such that t0) % 0 mod /, then
we get for any other prime p the relation

t®) (1 —pu(p)
o) (1 — g e(po)

Then we look at some other small primes and check the relation (5.120). Almost
certainly we will find a small prime such that (5.120) fails and we have verified
that our Hecke module is not degenerated. For small values of n, ¢ this should
be rather effective. Again we need a little bit of luck. I have not yet checked
the six cases n = 10,14, 16, 18, 20, 24 the program with Gangl is not yet written
for T’g7 T5

(5.120)

Clearly these results are just the beginning of a very interesting story, we
are just discussing the first case of a much wider circle of problems.

For instance we can allow some ramifications, this means we pass to congru-
ence subgroups I' C Slp(Z). We have to discuss the denominator issue, in this
more general context some special values of Dirichlet L-functions L(y, —n — 1)
will determine (or closely related to) the denominator of Eisenstein classes.

Here some experimental aspects will become of interest. In the unramified
case the primes ¢ dividing ¢((—1 — n) are large, the smallest are ¢ = 37,59,....
In section 3.3.9 we discussed the multiplicity m(ﬁ'?is), we get higher multiplicity
if two or even more numbers are divisible by ¢. We saw (see [3]) that there is
exactly one number n which is less than 10° such that m(75™*) > 2 But we also
checked that in this case we still have weak multiplicity one. The probability
that in the unramified case we will ever find a case with weak multiplicity > 1

is very small.

But if we allow ramification then we may have a much larger supply of
cases where a reasonably small prime ¢ divides a value L(x, —n — 1) and where
we find cases with weak multiplicity > 1. Some heuristic considerations con-
siderations could suggest to us a probability P(¢) > 0 that in a case where
¢|L(x,—n — 1) (perhaps we should consider only quadratic characters) we have
weak multiplicity > 1. If we now have a finite set X' of triples (¢,n,x) with
| L(x,—m — 1),n < ¢ — 2. If then #X x P({) >> 1 then we can start to look
cases where the weak multiplicity of ﬁ?is is greater than one. It may be of
interest to find out whether the number of these events match our probabilistic
expectations.

The next question we can ask is: If we have higher multiplicity. what can we
prove about the action of the Galois group on H'(I'\H, M,,®Z/¢)? Fortunately
we know a prime -namely ¢ = 547 for which we have multiplicity 2, but we still
have weak multiplicity one. For this case we made some experimental computa-
tions in section 3.3.11 and we made some predictions about the structure of the
Hecke modules H'(I'\H, /\;l4g4+a(g,1) ®7Z/(£?)). In this case it is an interesting
question to consider that case a = 100 and find out what the structure of the
Galois module is, especially describe the image of the Galois group.

But by far the most interesting issue is to generalise this approach to larger
groups. We assume that somebody has written an algorithm which computes
- in a given case - the cohomology groups and the arrows in the long exact
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sequence. Furthermore we assume that the algorithm computes some ”small”
Hecke operators. For instance we can verify the conjecture about the denomi-
nator 41 in [42], basically by the same method as the one we used in chapter 3
for 691.

Then the next task will be to analyse the interplay between the Galois action
on the /—adic cohomology and the Hecke action on the cohomology.
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Chapter 6

Analytic methods

6.1 The representation theoretic de-Rham com-
plex

6.1.1 Rational representations

We start from a reductive group G/Q for simplicity we assume that the semi
simple component G() /Q is quasisplit. There is a unique finite normal exten-
sion F/Q, F C C such that G xg F becomes split. If 7()/Q is a maximal
torus which is contained in a Borel subgroup B/Q, let U/Q be its unipotent
radical. Then the Galois group Gal(Q/Q) acts on X*(T(") xq F). It acts by
permutations on the set of positive roots mg C X*(T(l) xq F') corresponding to
B/Q. This action factors over the quotient Gal(F/Q). Then it also acts on the
set of dominant weights. Since our group is quasi split we find for any dominant
weight A an absolutely irreducible G' xg F- module M.

r:G XQF — GI(M)\)

This representation is characterised by the following two properties. The space
of invariants under the action of U is one dimensional, i.e. M AU = Fe, and the
torus acts on this one dimensional space by the character A, i.e.tey = Aey. We
say that ey is a highest weight vector. Since we assumed that Q ¢ F c Q ¢ C
we get the extension

rc: (GxgF)xpC— GI(M) @p C).

Given such an absolutely irreducible rational representation, we can construct
two new representations. We can form the dual MY - = Homge (M, C) and the
complex conjugate Mc of our module M. On the dual module we have the con-
tragredient representation r¥, which is defined by ¢(rc(g)(v)) = ré(g7) (o) (v).

To get the rational representation on the conjugate module M @ C, we
recall its definition: As abelian groups we have M ®@p C = M @5 C but the
action of the scalars is conjugated, we write this as z -. m = zZm. Then the

identity gives us an identification
End¢(M ®pC) = Endc(./\;b\ ®p C).

239
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Now we define an action 7c on My @ C: For g € G(C) we put

re(g)m = rc(g) e m.

This defines an action of the abstract group G(C), but this is in fact obtained
from a rational representation. Therefore MY and M¢ both are given by a
highest weight.

The highest weight of MY is —wq(\). Here wy is the unique element wy € W,
which sends the system of positive roots AT into the system A~ = —AT,

The highest weight of M, ®pC is ¢(\) where ¢ € Gal(C/R) C Gal(F/Q) is
the complex conjugation acting on X*(T xg F). So we may say: Mo = My.

We will call the module M, - conjugate-autodual or simply c-autodual if

e(\) = —wo(\) (6.1)

If our group G/Q is split then ¢ acts trivially on the character module and
the condition becomes A = —wg(\). If now in addition the element wy acts by
—1 on the character module, the every A is conjugate-autodual.

In the following few sections (until 6.1.6 we will always assume that our local
system (resp. the corresponding representation) are local systems in C-vector
spaces (resp. C-vector spaces M »). Therefore we will suppress the factor @C.

Now we choose an arithmetic subgroup I' C G(R) and we will use transcen-

dental methods to investigate the cohomology H*(I'\ X, M.).

6.1.2 Harish-Chandra modules and (g, K, )-cohomology.

We consider the group of real points G(R), it has the Lie algebra g, inside this
Lie algebra we have the Lie algebra ¢ of the group K,,. We have the notion of
a (g, K ) module: This is a C-vector space V together with an action of g and
an action of the group K.,. We have certain assumptions of consistency:

i) The action of K, is differentiable, this means it induces an action of ¢,
the derivative of the group action.

ii) The action of g restricted to € is the derivative of the action of K.
iii) For k € K, X € g and v € V we have

(Ad(k)X)v = k(X (k™ v)).

Inside V' we have have the subspace of K, finite vectors, a vector v is called
K finite if the C- subspace generated by all translates kv is finite dimensional,
i.e. v lies in a finite dimensional K, invariant subspace. The K, finite vectors
form a subspace V¥~) and it is obvious that V(5~) is invariant under the
action of g, hence it is a (g, K ) sub module of V. We call a (g, K ) module a
Harish-Chandra module if V = V(Fs),

For such a (g, Ko )-module we can write down a complex

Hompg_ (A®(g/t),V) = {0 =V — Hompg_(A'(g/t),V) — Homg_ (A*(g/€),V) — ...

}
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where the differential is given by

dew(Xo, X1, ..., Xp) = X0 o(=1) Xieo(Xo, -, Xiy oo, Xp)+ 62)
Zogi<j§p(*1)l+jw([XiaXj},XOa e ,Xi, g 7Xj, ey

A few comments are in order. We have inclusions
Homy (A®(g/t),V) C Hom(A*(g/t),V) C Hom(A®(g),V).

The above differential defines the structure of a complex for the rightmost
term, we have to verify that the leftmost term is a subcomplex, this is not so
difficult.

We define the (g, K») cohomology as the cohomology of this complex, i.e.

H*(g,K,V)=H*( Homg__(A®*(g/¢),V)) (6.3)
It is clear that the map
H*(g, Koo, V™)) — H* (g, K, V)

is an isomorphism.

If we have two (g, K~ ) modules V1, V5 and form the algebraic tensor product
W = V1 ® V, the we have a natural structure of a (g, K, ) -module on W : The
group K acts via the diagonal and U € g acts by the Leibniz-rule U(v; ®
vg) = Uvi ® v2 + v1 ® Uvg. If both modules are Harish-Chandra modules,
then the tensor product is also a Harish-Chandra module. Of course any finite
dimensional rational representation of the algebraic group also yields a Harish-
Chandra module.

6.1.3 The representation theoretic de-Rham isomorphism

For us the (g, Ko) module Coo (T'\G(R),- this is the space of functions which
are Coo in the variable goo- is one of the most important (g, K ) -modules. On
these functions the group G(R) acts by translations from the right, since our
functions are C,, we also get an action of the Lie algebra g. Hence this is also
a (g, Ko )-module.

If we fix the level see that Coo (T\G(R)) is a (g9, Ko) X Hi, , the Hecke
algebra acts by convolution. We choose a highest weight module M, and apply
the previous considerations to the Harish-Chandra module

V = Coo (D\G(R) @ M.

Notice that we can evaluate an element f € Coo(I'\G(R)) ® M, in a point
9= (9oo; gf) and the result f(g) € M. The Hecke algebra acts via convolution
on the first factor.

Let us assume for the moment that is torsion free. . Then we can define
the sheaf of de-Rham complezxes Q;\X (M,), for any open subset V' C I'\ X the
complex of sections is the de-Rham complex Q7 (V') ® My (See for instance
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[39], 4.10) If V' is small enough a section in Q% (V) ® M can be written as
w =) w,®m, where mi,ma,..., my is a basis of M and then the differential
is given by > dw, ® m,,.

If consider the complex of global sections we drop the subscript and write
Q*(M\X) ® M,.

We have the following fundamental fact:

Proposition 6.1.1. We have a canonical isomorphism of complexes
Homic (A*(g/8),Coo (T\G(R) ® My) = Q*(T\ X, My  C),
this isomorphism is compatible with the action of the Hecke algebra on both sides

This is rather clear. We have the projection map
oo : GR) > GR)/ Ko =X

let g € X be the image of the identity e € G(R). The differential D,(e) maps
the Lie algebra g = tangent space of G(R) at e to the tangent space Tx 5, at
2o X ey. This provides the identification Tx ,, = g/t

An element w € Hompg (AP(g/%),Coo(T\G(R) ® M) can be evaluated on
a p-tuple (Xo, X1,...,X,—1) and the result

w(Xo,X1,...,Xp-1) € Co(T\G(R) ® M.
We want to produce an element & in the de-Rham complex Q*(T'\ X, M,).
Pick a point z x g, € X, we find an element (¢o,) € G(R) x G(Ay) such

that gooxg = x. Our still to be defined form @ can be evaluated at a p-tuple
(Yo, ...,Y,_1) of tangent vectors in = x g, and the result has to be an element

in Mc,. We find a p-tuple (Xo, X1,...,Xp,_1) of tangent vectors at ¢ which
are mapped to (Yp,...,Y,_1) under the differential D, of the left translation

by L. We pu
(Y. Vo) (1) = 0 @(Xor - Xpo1) (9.9, (6.4)

At this point I leave it as an exercise to the reader that this gives the iso-
morphism we want.([16]).) Actually we do not really need that I" torsion free,
If this is not the case then My is only an orbilocal system and we can have to
take suitable invariants under the finite stabilizers, we simply have to modify
the definition of Q®(I'\ X, M)) accordingly.

We recall that the de-Rham complex ([39],sect. 4.8. computes the cohomol-
ogy and therefore we can rewrite the de-Rham isomorphism | BodeRh
H*(T\X, M) = H*( Homg_ (A*(g/¢), Coc(T\G(R) © M) (6.5)

From now on the complex Hompg__(A®(g/t),Coo (T\G(R) ® M) will also be
called the de-Rham complex.
By the same token we can compute the cohomology with compact supports

H(T\X, M) == H*( Homg (A*(9/t),Ce.o0 (I\G(R) ® M) (6.6)
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where C¢ oo (I'\G(R) are the Coo function with compact support. These isomor-
phisms are also valid if we drop the assumption that I' is torsion free..

The Poincaré duality on the cohomology is induced by the pairing on the

de-Rham complexes:

Proposition 6.1.2. If w; € Homg_ (A*(g/t),Co(T\G(R) ® M) is a closed
form and wy € Homg_ (A*(g/t),Coo.c(T\G(R) ® M) a closed form with com-
pact support in complementary degree then the value of the cup product pairing

of the classes [w1] € HP(T\X, M)), [wa] € HI"P(T\X, MY) is given by

<[W1]U[WQ] >:/ <wip Nwg >
r\X

(Reference Book Vol. !)

6.1.4 Input from representation theory of real reductive
groups.

Let us consider an arbitrary irreducible (g, K )- module V. Let Ko be the set
of irreducible continuous representations they are finite dimensional. We also
assume that for any ¢ € ~A{K )oo the multiplicity of ¥ in V' is finite (we say that V'
is admissible). Then we can extend the action of the Lie-algebra g to an action
of the universal enveloping algebra 4(g) on V' and we can restrict this action
to an action of the centre 3(g). The structure of this centre is well known
by a theorem of Harish-Chandra, it is a polynomial algebra in r = rank(G)
variables, here the rank is the absolute rank, i.e. the dimension of a maximal
torus in G/Q. (See Chap. 4 sect. 4)

Clearly this centre respects the decomposition into K, types, since these
K types come with finite multiplicity we can apply the standard argument,
which proves the Lemma of Schur. Hence 3(g) has to act on V by scalars, we
get a homomorphism yy : 3(g) — C, which is defined by

zv = xv (2)v.

This homomorphism is called the central character of V.

A fundamental theorem of Harish-Chandra asserts that for a given central
character there exist only finitely many isomorphism classes of irreducible, ad-
missible (g, Ko )-modules with this central character.

Of course for any rational finite dimensional representation r : G/Q —
GI(M,) we can consider My ® C as (g, Ky )-module. If M, is absolutely
irreducible with highest weight A (See chap. IV) then it also has a central
character x o = -

Wigner’s lemma: Let V' be an irreducible, admissible (g, K )-module, let
M = My, a finite dimensional, absolutely irreducible rational representation.

Then H*(g, Koo, V ® Mc) = 0 unless we have

xv(2) = xmv (2) = xav (2) for all z € 3(g)
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Since we also know that the number of isomorphism classes of irreducible,
admissible (g, K )-modules with a given central character is finite, we can con-
clude that for a given absolutely irreducible rational module M) the num-
ber of isomorphism classes of irreducible, admissible (g, K, )-modules V' with
H*(9, Koo,V ® Mc) # 0 is finite.

The proof of Wigner’s lemma is very elegant. We have M@V = MY ®V and
hence we have H%(g, Koo, M®V) = Hom(MV,V)(®@K=) = Hom, gy (MY, V).
In [16] , Chap.I 2.4 it is shown, that the category of g, K, -modules has enough
injective and projective elements (See [16], I. 2.5) . If T is an injective (g, Koo )-
module then M ® I is also injective because for any g, K..-module A we have
Hom(A, M®I) = Hom(M", ). Hence an injective resolution 0 — V — I —
I' ... yields an injective resolution 0 = M - M ® I - M ®I'... and from
this we get

H(g, Koo, M@ V) = Ext{| 1o

(MY, V).

Any z € 3(g) induces an endomorphism of M and V. Since Ext*® is functo-
rial in both variables, we see that z induces endomorphisms z; (via the action on

M) and 2 (via the action on V) on Ext{, ;- (MY, V). We show that 21 = 2.

This is clear by definition for Ext?gme)(MV,V) = Homy x_)(MY,V) : For
z € 3(g) and ¢ € Homg g (MY, V),m € My we have z1¢(m) = ¢(zm) =
zo(¢(m)). To prove it for an arbitrary ¢ we use devissage and induction. We
embed V into an injective (g, K) module I and get an exact sequence

02V —=I—-1I/V—=0

and from this we get

EXt?;;(m)(MM I/V)= EXt((Jg,KOC)(MA’ V) for ¢ > 0.

Now by induction we know z; = z9 on the left hand side, so it also holds on
the right hand side.

If now xv # Xxmv then we can find a z € 3(g) such that xymv(z) =

0, xv (z) = 1. This implies that z; = 0 and 23 = 1 on all Ext‘(lg,Km)((g, Koo)(My, V).

Since we know that z; = z5 we see that the identity on Ext'(lg Km)(./\/l,\, V) is
equal to zero and this implies the assertion.

On the universal enveloping algebra $4(g) we have an antiautomorphism u —?
u which is induced by the antiautomorphism X +— —X on the Lie algebra g. If
V is an admissible (g, K )-module, then we can form the dual module Vv and
if we denote the pairing between V, V" by <, >y then
<Uv, ¢ >y=<v,'Up >y forallU € U(g),veV,p € V",
If V is irreducible, then it has a central character and we get

xvv(z) = Xv(tz)-

This applies to finite dimensional and to infinite dimensional (g, K )-modules.
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6.1.5 Representation theoretic Hodge-theory.

We consider irreducible unitary representations G(R) — U(H). We know from
the work of Harish-Chandra:

1) If we fix an isomorphism class 9 irreducible representations of K., then
the isotypical subspace dim¢ H(¢9) < dim(99)?, i.e. ¥ occurs at most with mul-
tiplicity dim(¥).

2) The direct sum >y H(J) = HE=) C H is dense in H and it is an
admissible irreducible Harish-Chandra -module.

( WPS call an irreducible (g, K, )-module unitary, if it is isomorphic to such an
HEe),

For a given GG/R and any rational irreducible module M Vogan and Zucker-
man give a finite list of certain irreducible, admissible (g, Ko )— modules A4(\),
for which H*(g, Koo, Aq(A) ® M) # 0 they compute these cohomology group.
This list contains all unitary, irreducible (g, Ko )—modules, which have non
trivial cohomology with coefficients in M.

For the following we refer to [16] Chap. II , §1-2 . We want to apply the
methods of Hodge-theory to compute the cohomology groups H®(g, Koo,V &
M) for an unitary (g, Koo )-module V. This means have a positive definite scalar
product <, >y on V, for which the action of K, is unitary and for U € g and
v1,v2 € V we have < Uvy,ve >y + < vy, Uvg >y=0.

We assume that M is conjugate-autodual. In the next step we introduce for
all p a hermitian form on Hompg_ (AP(g/t), V ® M,). To do this we construct
a hermitian form on M.

(The following considerations are only true modulo the centre). We consider
the Lie algebra and its complexification gc = g ® C. On this complex vector
space we have the complex conjugation = : U ~ U. We rediscover g as the
set of fixed points under ~. We also have the Cartan involution © which is
the involution which has ¢ as its fixed point set. Then we get the Cartan
decomposition

g =t @ p where p is the -1 eigenspace of O.

The Killing form is negative definite on ¢ and positive definite on p, we
have for the Lie bracket [p,p] C €. We consider the invariants under ~ o ©,
this is the Lie algebra g. = £ @ v/—1 ® p. On this real Lie algebra the Killing
form is negative definite and g. is the Lie algebra of an algebraic group G./R
whose base extension G, ®x C — G ®g C and whose group G.(R) of real
points is compact (this is the so called compact form of G). We still have
the representation G./R — Gl(M) which is irreducible and hence we find a
hermitian form < , >, on M, which is invariant under G.(R) and which is
unique up to a scalar.

This form satisfies the equations

< Umy,mo >pm + < mp,Umsg >x=0 for all my,mo € M, U € ¢
this is the invariance under K., and
<Umy,mo >p=<mq,Umsg >, for all mi,mg € M), U € p

this is the invariance under v/—1 ® p.
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Now we define a hermitian metric on V ® M, we simply take the tensor
product < , >y ® <, > =<, >yg) . Finally we define the (hermitian)
scalar product on Hompg_ (A®(g/), V®@M,). We choose and orthonormal (with
respect to the Killing form) basis E1, Es, ..., E4 on p, we identify g/¢ — p.
Then a form w € Hompg_ (AP(g/¢),V ®M,) is given by its values w(E;) € V®
My, where I = {iq,12,...,4,} runs through the ordered subsets of {1,2,...,d}
with p elements. For wy,ws € Hompg_ (AP(g/t),V ® M,) we put

<Wwi,wy >= Z < wl(E]),wQ(E]) >V (67)
L|I=p

Now we can define an adjoint operator
§: Hompg_ (AP(g/t),V @ My) — Hompg_ (AP '(g/€), V@ M,), (6.8)

which can be defined by a straightforward calculation. We simply write a for-
mula for ¢: For an element E; we define Ef(v @ m) = —Ejv @ m + v ® E;m.
Then we can define § by the following formula:

We have to evaluate §(w) on Ej = (E;,, ..., E;,_,) where J = {iy,...,ip_1}.
We put

SW)(Ey) =Y (=DPETHID Bra o,
igJ

where p(i, JU{i}) denotes the position of ¢ in the ordered set J U {i}. With this
definition we get for a pair of forms w; € Hompg_ (AP~ !(g/t),V ® M,) and
wy € Hompg  (AP(g/t),V ® M)) (See [16], II, prop. 2.3)

< dwl, wo >=< wq, 5&)2 > (69)
We define the Laplacian A = §d + dé. Then we have ([16] , II ,Thm.2.5)
< Aw,w >> 0 and we have equality if and only if dw = 0,0w =0  (6.10)

Inside 3(g) we have the Casimir operator C' (See Chap. 4). An element
z € 3(g) acts on V@ M by z®Id via the action on the first factor and by the
scalar x»(z) via the action on the second factor. Then we have

Kuga’s lemma : The action of the Casimir operator and the Laplace op-
erator on. Homg__(AP(g/%),V ® M) are related by the identity

A=C®Id— x\(C).

If the (g, K») module is irreducible, then A acts by multiplication by the
scalar xv (C) = xA(C)

This has the following consequence
If V is an irreducible unitary g, Koo- module and if My is an irreducible
representation with highest weight \ then

0 if xv(C) = xa(C) #0
Homp (A*(g/€),V@My) if xv(C) —xa(C) =0

This only applies for unitary g, K,-modules, but for these it is much stronger:
It says that under the assumption xy (C) = xx(C) we have yy = xa ( we only
have to test the Casimir operator) and it says that all the differentials in the
complex are zero.

H*(g, Koo, VOMc) = {
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6.1.6 Input from the theory of automorphic forms

We apply this to the s90okf square integrable functions on G(Q)\G(A)/Kjy.
Because of the presence of a non trivial center, we have to consider functions
which transform in a certain way under the action of the center. We may assume
that coefficient system M has a central character and this central character
defines a character ( on the maximal Q-split torus S C C. This character can
be evaluated on SY(R) this is the connected component of the identity of the real
valued points of S. The map zoo — (200, 1,...,1,...) € S(A) is an embedding
of S°(R) into G(A). It follows from [14] that the quotient G(Q)S°(R)\G(A)/Ky
has finite volume. We define the space of functions

Co MG(R)CL) (6.11)

to be the subspace of those Co, functions which satisfy f(zeg) = (5 (200) f(9)
for all zo, € SY(R). The isogeny dc : C — C” (see ??) induces an isomorphism
SO(R) == S"O(R), where S’ is the maximal Q split torus in C’. Therefore we get
a character ¢/ : S"9(R) — RZ, and this is also a character ¢/, : G(R) — RZ,.
Its restriction to SO(R) is (. If now f € Coo (T\G(R)(!) then

F(9)¢h(9) € Coo(G(Q)S(R)\G(A)/K) (6.12)

We say that f € Coo (T\G(R)(L!) is square integrable if

f(9)C(9)*dg < oo (6.13)

/(G(Q)S“(R)\G(A)/Kf)

and this allows us to define the Hilbert space L?(T'\G(R)(L!). Since the space
(G(Q)S°(R)\G(A)/K¢) has finite volume we know that

Ch € LXD\G(R)C).-

The group G(R) acts on Coo (T\G(R)¢!) by right translations and hence
we get by differentiating an action of the universal enveloping algebra l(g) on

it. We define by Cg)(F\G(R)C;l) the subspace of functions f for which Uf is
square integrable for all U € $i(g).

This allows us to define a sub complex of the de-Rham complex
Homp (A*(g/8),CE (M\G(R), (L1 © My). (6.14)

We will not work with this complex because its cohomology may show some bad
behavior. (See remark below).

We do something less sophisticated, we simply define H(‘2) (F\X,/\;l)\) -

H*(I'\X, M) to be the image of the cohomology of the complex (6.14) in the
cohomology. Hence H, ('2) (T\X, M) is the space of cohomology classes which
can be represented by square integrable forms.

Remark: Some authors also define L?— de-Rham complexes, using the above
complex (6.14) and then they take suitable completions to get complexes of
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Hilbert spaces. These complexes also give cohomology groups which run under
the name of L2-cohomology. These ~L2—(:ohom010gy groups are related but not
necessarily equal to our H ('2)(F\X ,M3). They can be infinite dimensional.

The Hilbert space L?(I'\G(R), (5}') is a module for G(R) x H, the group
G(R) acts by unitary transformations and the algebra H, is selfadjoint.
Let us assume that H = Hy__ xr, is an irreducible unitary module for G(R) x
H= ®;Hp and assume that we have an inclusion of this G(R) x H-module
j+H < L(T\G(R), ()

It follows from the finiteness results in 6.1.5 that induces an inclusion into the
space of square integrable C,, functions

H) s CQT\G(R), (1)),

We consider the (g, K« )— cohomology of this module with coefficients in our
irreducible module M, we assume xy (C) = xx(C). We have H*(g, Koo, H ®
M) = Hompg_ (g, Koo, HE>) @ M)) and get

H*(g, Koo, HE=) @ Mc) 25 H*(g, Koo, Coo (T\G(R), (1) E=) @ M)

This suggests that we try to ”decompose” Coo(T\G(R), ") H<) into irre-
ducibles and then investigate the contributions of the irreducible summands to
the cohomology. Essentially we follow the strategy of [Bo-Ga| and [12] but in-
stead of working with complexes of Hilbert spaces we work with complexes of
Co forms and modify the arguments accordingly.

It has been shown by Langlands, that we have a decomposition into a discrete
and a continous spectrum

L*(G(Q\G(A)/Kf) = L (T\G(R) & L2, (T\G(R),
where L2

2isc T\G(R) is the closure of the sum of all irreducible closed subspaces
occuring in L?(G(Q)\G(A)/Ky) and where L2 (I'\G(R) is the complement.

cont

2
disc

The discrete spectrum Lz, (I'\G(R) contains as a subspace the cuspidal

spectrum L2, (T\G(R)) :
A function f € L?(I'\G(R)) is called a cusp form if for all proper parabolic
subgroups P/Q C G/Q, with unipotent radical Up/Q the integral

Frw = [ (ug)du = 0.
Up(Q\UPp(A)

this means that the integral is defined for almost all g and zero for almost all
g. The function FF(f)(g), which is an almost everywhere defined function on
P(Q)\G(A)/K; is called the constant Fourier coefficient of f along P/Q. The
cuspidal spectrum the intersection of all the kernels of the .

If our group is anisotropic, then it does not have any proper parabolic sub-
group and in this case we have L2, (I'\G(R) = L3, (T\G(R) = L*(I'\G(R).

cusp
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For any unitary G(R) x H- module H, = H,, ® Hy, we put

WcuSp(ﬂ') = HomG(R)x’H(Hm Lcusp (M\G(R)). (6.15)

We can ignore the H-module structure and define

Wcusp(ﬂ-oo): HomG(]R)(Hﬂ'oo7 Cubp(F\G( )

Then the dimension of Weysp(Too) is the multiplicity meusp(7oo)- It has been
shown by Gelfand-Graev and Langlands that

Meusp(Too) E dim(Wi cusp) < 00.

We get a decomposition into 1sotyplcal subspaces

Lip(M\GR) = P (L2 (N\G(R) (mec x my),

7r(x,®7rf

where (L2, (T\G(R)(7oo X 7f) is the image of Wy cusp ® Hy in L2, (T\G(R).

The cuspidal spectrum has a complement in the discrete spectrum, this
is the residual spectrum L%, ((I'\G(R). It is called residual spectrum, because
the irreducible subspaces contained in it are obtained by residues of Eisenstein

classes.

Again we define Wies(7) = Home(r)xa (Hr, Lo (T\G(R)), (resp. Wies(moo) =

Homg g (Hr,, , LZ,i,(T\G(R)), and it is a deep theorem of Langlands that
Myes (Moo ) = dim(Wies(Too) < 00. Hence we get a decomposition

res(F\G( ) @ ( res F\G( )(WOO X ﬂ’f)
Too T f
If our group G/Q is isotropic, then the one dimensional space of constants
is in the residual (discrete) spectrum but not in the cuspidal spectrum.

Langlands has given a description of the continnuos spectrum using the

theory of Eisenstein series, we have a decomposition
L2, (D\G(R @H* (rs), (6.16)

we briefly explain this decomposition following [Bo-Ga]. The ¥ are so called
cuspidal data, this are pairs (P,7s) where P is a proper parabolic subgroup
and 7y is a representation of M(A) = P(A)/U(A) occurring in the discrete
spectrum Lcusp( (Q\M(A)).

Let M /Q be the semi simple part of M and recall that C'/Q was the center
of G/Q. We consider the character module Y*(P) = Hom(C - MM G,,). The
elements Y*(P)®C provide homomorphisms y®z : M(A)/C(A)M™M(A) — C*.
(See (4.20)). The module Y*(P)®Q comes with a canonical basis Wthh is given
by the dominant fundamental weights 7, which are trivial on M® . We define

As =Y*(P)@iR = {) . ®it,|t, € R}
I
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this is a group of unitary characters. For o € Ay we define the unitarily induced
representation

Indgggﬂg @ (c+pp)=I8rs @0
(6.17)

{f: G(A) = LI (M(Q\M(A))(ms)|f(pg) = (o + |pp|)(p)7=(p) f(9)}

where of course p € P(A),g € G(A) and pp € Y*(P) ® Q is the half sum of
the roots in the unipotent radical of P. This gives us a unitary representation
of G(A). Let dx be the Lebesgue measure on Ay then we can form the direct
integral unitary representations

HP(TFE) :/ Igﬂg ® o dn,o (618)
As

The theory of Eisenstein series gives us a homomorphism of G(R) x H -modules

Eisp(ry) : Hp(ry) — L2, (T\G(R). (6.19)
Let us put
A; = {Z Yu @ itu“u >0}
7
then the restriction
Eisp(ry) : Hf (1s) = /+ IS7s ® 0 dso — L2, (T\G(R). (6.20)
A

=

is an isometric embedding. The image will be denoted by ﬁ; (mx) these spaces
are the elementary subspaces in [B-GJ. Two such elementary subspaces H} (7s), H ;1 (7s,)
are either orthogonal to each other or they are equal. We get the above decom-
position if we sum over a suitable set of representatives of cuspidal data.
Now we are ready to discuss the contribution of the continuous spectrum to
the cohomology. If we have a closed square integrable form

w e Hompg_ (AP(g/t),C P (T\G(R) ® My),

then we can decompose it
W = Wres + Weont

both summands are C2 and closed.

Proposition 6.1.3. The cohomology class [weont] is trivial.

Proof. This now the standard argument in Hodge theory, but this time we apply
it to a continuous spectrum instead of a discrete one. We follow Borel-Casselman
and prove their Lemma 5.5 (See[B-C]) in our context. We may assume that weo
lies in one of the summands, i.e. weont = Eis([f, w"(0)dso) where w"(0) €
Hompg__ (AP(g/t), ISTs ® 0 ® M,)) is the Fourier transform of w,, in the L?.,
(theorem of Plancherel). As it stands the expression || As wY(o)dso) does not
make sense because the integrand is in L? and not necessarily in L'. If we
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choose a symmetric positive definite quadratic form h(o) = 3, by utut, and
a positive real number 7 then the function

(o) = (1+ 7h(o)™) " € I3(As)
and then w" (0)h, (o) is in L' and by definition
lim [ w¥(0)h(0)dso) = / W (0)dso (6.21)
7—0 As As

where the convergence is in the L? sense. Since w,, € Hompg_ (AP(g/€), [Sms®
o ® My) we get get that w (o) has the following property
For any polynomial P(c) = >~ a,t* in the variables ¢, and with real coeffi-

cients the section
wY(0)P(0) is square integrable (6.22)

this follows from the well known rules that differentiating a function provides
multiplication by the variables for the Fourier transform.

The Lemma of Kuga implies
Aw”(0)) = (xa(C) = xa(C))w" (0)

and if 0 = )" v, ® it_p the eigenvalue is
Xo(C) —xa(C) = Zav,utvtu + Z buty + €y — Ca. (6.23)

where cr,, is the eigenvalue of the Casimir operator of M (M) on 7y, If the t,eR
then this expression is always < 0 especially we see that the quadratic form
on the right hand side is negative definite. This implies that for ¢ € Ap the
expression y,(C)—xx(C) assumes a finite number of maximal values all of them
< 0 and hence

Vs = {o|x.(C) — xA(C) = 0} (6.24)

is a finite set of point. This set has measure zero, since we assumed that P was
a proper parabolic subgroup. The of o for which H*(g, Koo, Hay (0) @ Mc) # 0
is finite. We choose a Co, function hx (o) which is positive, which takes value
1 in a small neighbourhood of Vx5, which takes values < 1 in a slightly larger
neighbourhood and which is zero outside this second neighbourhood. Then we
write

Weo = Eis( hs(0)w” (0)dso) + Eis(/ (1 - hx(0))w(0)dso)

AS AL
We have dw" (o) = 0 and hence we get
A((1 = he(0))w” () = d((xe(C) = XA(C)(L = hy(o))dw" (7))

and this implies that

Bis( | _(1-hs(0))u” (0)ds0) = d Eis( | _(1-hs(0))(xa(€)xr(C)) 16" (0)dso)
A A

= =
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It is clear that the integrand in the second term- [+ (1 — hx(0))(xo(C) —
=

XA(C)) 710w (o) still satisfies (6.22) and then our well known rules above imply
that ¢ = Eis(fA;(l — hx(0)) (o (C) = xA(C))Low" (0)ds0) is C2,. Therefore
the second term in our above formula is a boundary.

Weont = / hs(o)w(o)dso + di.
As

This is true for any choice of hy. Hence the scalar product < w—dy,w—dy >
can be made arbitrarily small. Then we claim that the cohomology class [w] €
H*( Hompg_ (AP(g/%), Coo (T\G(R) ® M) must be zero. This needs a tiny final
step.

We invoke Poincaré duality: A cohomology class in [w] € HP(T'\X, M,) is
zero if and only the value of the pairing with any class [w] € HIP(T\ X, MY)
is zero. But the (absolute) value [w] U [we] of the cup product can be given
by an integral (See Prop.6.1.2). Therefore it can be estimated by the norm
< w — dy,w — dp > (Cauchy-Schwarz inequality) and hence must be zero. [

As usual we denote by G(R) the unitary spectrum, for us it is simply the
set of unitary irreducible representations of G(R). Given M, we define

Cohy(\) = {moc € G(R)| H* (g, Koo, Hr, @ My) 0} (6.25)
The theorem of Harish-Chandra says that this set is finite.
Let
Hoonsy = B LicM\GR)(mo x 7)) = B Heo(ry)

T:T oo €Coha () T oo €Coha(N)
(6.26)

the theorem of Gelfand-Graev and Langlands assert that this is a finite sum of
irreducible modules. This space decomposes again into Hg;f; o) © HES N

Then we get the following theorem which is due to Borel, Garland, Mat-

sushima and Murakami

Theorem 6.1.1. a)The map
H*(g, Koo, Hos2 )\ @M = Homge (A (g/8), Hox= )\ @My) — Hey) (D\X, My)
surjective. Especially the image contains HP(T\X, My).
b) (Borel) The homomorphism
H* (8, Koo, Hop$™ @ My) = H*(D\X, M)

s injective.
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In [13] Prop.5.6, they do not consider the above space H(’Q)(F\X,./\;b\) we
added an € > 0 to this proposition by claiming that this space is the image.

In general the homomorphism

H*(g, Koo, HiSS ) © My) — H*(T'\X, M)
is not injective. We come back to this issue in the next section.

If we denote by H2,, (I\X ,M3) the image of the homomorphism in b),
then we get a filtration of the cohomology by four subspaces

Hep (D\X, M) C HF (P\X, My) C H('Q)(F\X,M,\) C H*(I\X, M»).
(6.27)

We get the representation theoretic Hodge decomposition

B Weusp (To0) @ Hoe (8, Koo, Hr,, @ My) 5 Hoo (T\X, M) (6.28)

If we replace the subscript cusp by 1 the corresponding map is still surjective
but may be not injective.

We want to point out that our space (’2) (T\ X, M) is not the space denoted
by the same symbol in the paper [12]. They define L? cohomology as the complex
of square integrable forms, i.e. w and dw have to be square integrable. But then
a closed form w which is in L? gives the trivial class in their cohomology if we
can write w = dy where ¥ must also be square integrable. In our definition we
do not have that restriction on .

The semi-simplicity of the inner cohomology

Now we assume again that our representation M is defined over some number
field F' we consider it as a subfield of C. In other word we have a representation
r: G x F — GI(M,). We have defined H? (I'\ X, M), this is a finite dimensional
F-vector space and Theorem 3.1.1 in Chapter 3 asserts that this is a semi simple
module under the Hecke algebra. The following argument shows that this is an
easy consequence of our results above.

The module H; C L3, .(I'\G(R) can also be decomposed into a finite direct
sum of irreducible G(R) x H, modules

Hl = @ (Hﬂ'oc o2 H‘rrf)ml(ﬂooXﬂf)7
Troo®7'rf€I:I1

this module is clearly semi-simple. Of course it is not a (g, K )-module, but
we can restrict to the K-finite vectors and get

H* (g, Koo, "0 My2C) = () (Homue, (A*(9/8), Hro @ Me)Hy )™ 7770
Tl'oc®7'rf€]:[1

This is a decomposition of the left hand side into irreducible H x, modules. Now
we have the surjective map
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H*(g, Koo, =) © My ® C) — Hpy (T\X, M) @ C)

hence it follows that H(’Q)(I‘\X7./\;l>\ ® C)) is a semi simple Hf, module and

hence also H?(I'\ X, M) is a semi simple Hr, module.

Friendship

We touch upon a question which comes up naturally in this context. Assume we
have a non zero isotypical submodule H?(I'\X, M )(7nf). Then we know that
there is a unitary (g, Ko) module H,__ with 7o € Coh()\) such that we can
embed Hy_ x Hy, into L3 (T\G(R). The interesting question is:

disc
Given my, what are the possible choices for mo?.

We can formulate this differently. We recall that

Wo(moo @ mp) = Homgm)xy, (Hro, © Hry, LF(T\G(R)
where 7 = cusp or = (2) resp. disc then we get the surjective map

P Woroe x 7f) @ Hr, @ Hep — H3(D\X, My)(ry) (6.29)

Too

which is an isomorphism if ? = cusp. The friends of 7y are those 7o, where
Wo (o X 7Tf) #0.

This question may become very delicate and we will not discuss it profoundly.
(As J. Arthur puts it : 7y looks around and asks ”Who is my friend?”) In
principle we give a complete answer to these questions in the low dimensional
cases discussed in section (4.1.5), i.e G/R = Gly/Q and G/R = R¢r(Gl2/C).

In section (6.1.5) we mentioned the Vogan-Zuckerman classification of uni-
tary representations with non trivial cohomology. More precisely Vogan and
Zuckerman construct a family of (g, K ) irreducible modules A4(A) for which
they show H*®(g, Koo, Aq(A) ® M) # 0, and they compute H®(g, Koo, Aq(\) ®
M) explicitly. Moreover they show that any irreducible unitary module V
with H*(g, Koo, V ® M) # 0, is isomorphic to an Aq(N).

We give some very cursory description of their construction. Let T /R be a

maximal torus in K /R. Then it is clear that the centraliser T'/R is a maximal
torus in G/R. In section 1.1.2] we introduced the one dimensional torus S*/R
and we choose an isomorphism iy : S' xgC — G,,,/C. We consider cocharacters
X : SY/R — Tf/R. Such a cocharacter defines a centraliser Z, C G/R and a
parabolic P, /C C G xgr C, this parabolic subgroup also depends on iy. (See
section ??) The Lie-algebra q = Lie(P,/C) is the q in Ay(A). We will denote
these modules also by A, (}), i.e. A, (A) := Aq(N) if x and q are related as
above.

The second datum is a highest weight A € X*(T" xg C), it has to satisfy two
conditions
a) The weight A is c-autodual (see (6.1)) i.e. c(A) = —woA).
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b) The highest weight A is trivial on the semi simple part Z;l) or what
amounts to the same A extends to a character A : P, — G,,/C.

We have two extreme cases. In the first case the cocharacter y is trivial,
then the centraliser is the entire group G xg C/C and then the condition b)
implies that A = 0. This implies that M is one dimensional, q = g and A4(0)
is this trivial one dimensional (g, K )-module.

But on the other hand for A = 0 we do not have any constraint on the Y, i.e.
we get a non trivial irreducible module A, (0) for any x. But it is not known in
general which of these modules are unitary.

In the second case x is regular, this means that Z, =T and P, = B, is a
Borel subgroup, we have no constraint on A. In this case the Aq(\) = Ay () are
the so called tempered representations (see [16], IV, 3.6).

The regular cocharacters x € X, (77) ® R lie in the complement of finitely

many hyperplanes, hence the set (X, (Tl(c)) ® R))(© of regular characters is a
finite union of connected components. It is clear from the description that
the module Aq(\) does not change, if x moves inside a connected component.
Finally we have the action of the real Weyl group W(R) = N(T)(R)/T(R) on
X.(Tf) ® R and again it is clear that the isomorphism type does not change if
we conjugate x by an element in W(R). Hence we can say that the tempered

Ap(N) are parametrised by 7o (XL (T'9) @ R))©) /W (R).

We have a brief look at the case that G(Y) /R has a compact maximal torus
T7,i.e. T =T. This case played an important role in the section on the Gauss-
Bonnet formula. Then

T xg CC KU xg Cc GY xp C,

hence TY is a maximal torus in both reductive groups. We have the two (abso-
lute) Weyl groups Wi = W(R) = Nx__(T)(C)/T(C) and Wg = Ng(T)(C)/T(C)
The big Weyl group W acts simply transitively on the set of connected compo-
nents of (X, (Tl(c)) ®R))(©). Hence we have Wg = ﬂo(X*(Tl(c)) ®R))@) once we
choose a base point [xo] € 7o (X*(Tl(c)) ®@R))(©) and therefore we get a family

{AwXO(/\)}wEWKOO\ch (630)

and the results of Vogan and Zuckerman assert:

These repesentations are unitary, they are pairwise non isomorphic, and they
are the Harish-Chandra modules attached to the discrete series representations
of G(R).

The cohomology groups are given by

C ifqg=3%

6.31
0 else ( )

Hq(gvaawao(A) ® MA) = {

Now it is clear that for a regular highest weight A regular the condition b)
forces the cocharacter x to be regular.
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We come back to the question raised above. Assume A is regular and we
have an isotypical component H®(I'\X, My)(ms). Then the possible ”friends”
are the A, (\) with x regular. Hence we get

H’.(F\X7 M)\)(ﬂ—f) = @’UJGWK\WG H% (g7 KOO7 Aon ()‘) ® MA)m(wXOXFf) =

Doew\we Crmlwxoxms)

(6.32)
where m(wyo x 7¢) is the multiplicity of Ay, (A) X 7. in L3, (D\G(R). (In
Arthurs’ words : If) X is regular then the only friends of a 7y € Coh(H (T'\X, M)
are the wxo.)

If we refrain from decomposing into isotypical subspaces then we get a sim-
pler formula

HM\X,M)= & cmx (6.33)
UJEWK\WG

where of course m(wyy) is the multiplicity of Ay, (A) in L3, (T\G(R). Actually
we know that A,,,(A) must even lie in the cuspidal spectrum (see [?]). In
principle we already used this fact because we tacitly used the theorem of Borel

(see Thm 6.1.1, b).

6.1.7 Cuspidal vs. inner

Now we remember that in the previous sections we made the convention (See
end of (6.1.1)) that our coefficient systems M are C vector spaces. We now
revoke this convention and recall that the coefficient systems M should be
replaced by M ® p C, where F' is some number field over which M is defined.
Then in the above list (6.27) of four subspaces in the cohomology the second
and the fourth subspace have a natural structure of F-vector spaces and they
have a combinatorial definition, whereas the first and third subspace need some
input from analysis in their definition. In other words if we replace M in (6.27)
by M ®p C then (6.27) can be written as

He\p M\X, My ®F C) C H?(T'\X, M) ®p C C Hpy (I\X, My ®@p C) C H*(I'\X, M,) @ C
(6.34)

It is a very important question to understand the discrepancy between the
first two steps. If A is regular then it follow from the results of [64] that in fact

Hyy M\X, My ®p C) = HF (T\X, M) ®p C (6.35)

but without the assumption A regular this is not true for interesting reasons.

Of course we should also take the action of the Hecke algebra into account.
If 7y is the isomorphism type of an absolutely irreducible Hecke module which
is defined over F. Then we can consider

H oy (\X, My @5 ©)(rrf) € HP (P\X, My) ®p C(r) (6.36)
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and compare these two modules. We will say that 7 is strongly inner if we
have equality.
We come back to this issue in part II.

6.1.8 Consequences

Vanishing theorems

If V is unitary and irreducible, then we have that V' =% V'V and this implies
for the central character

xv(z) = xvv(z) for all z € 3(g).

Combining this with Wigner’s lemma we can conclude

If V is an irreducible unitary (g, Koo )-module, My is an irreducible rational
representation, and if

H*(g, Koo, VRO M) #£0

then xany (2) = Xots (22) = X1, (2)

In other words: For an unitary irreducible (g, K )-module V' the cohomology
with coefficients in an irreducible rational representation M vanishes, unless we
have MY — My, or in terms of highest weights unless —wo(A\) = c(\). (See
3.1.1)

If we combine this with the considerations following Wigner’s lemma we get

Corollary 6.1.1. If M is an absolutely irreducible rational representation and
if MY is not isomorphic to My then

Hiy (T\X, My) = 0.

Hence also ~
HP (T\X, M) =0.

We will discuss examples for this in section 6.1.8

The group G/Q = Sl,/Q

Let us consider the group G/Q = Sl/Q. We have tautological representation
Sly — G1(Q?) = GI(V) and we get all irreducible representations of we take the
symmetric powers M,, = Sym" (V') of V. (See 2, these are the M,,[m] restricted
to Sl, then the m drops out.)

In this case the Vogan-Zuckerman list is very short. It is discussed in [Slzwei]
for the groups Sly(R) and Sl (C), where both groups are considered as real Lie-
groups.

In the case Sly(R) we have the trivial module C and for any integer k > 2
we have two irreducible unitarizable (g, K )-modules D,f (the discrete series
representations) (See [Slzwei]|, 4.1.5 ). These are the only (g, Ko )-modules
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which have non trivial cohomology with coefficients in a rational representation.
If we now pick one of our rational representation M,,, then the non vanishing
cohomology groups are

Hq(g7KOO7Mn®(C) :(Cfornzo,q:(LQ
HY(g, Koo, Df @M, @C)=Cforn=Fk—2,qg=1

The trivial (g, Ko )-module C occurs with multiplicity one in L?(I'\G(R)
hence we get for the trivial coefficient system a contribution

H*(g, Koo, C&M,,®@C) = H(g, Koo, C)BH? (g, Koo, C) = Ca&C — Hy (M X, C).

This map is injective in degree 0 and zero in degree 2.

For the modules D;° we have to determine the multiplicities m™® (k) of these
modules in the discrete spectrum of L?(T'\G(R). A simple argument using
complex conjugation tells us m™* (k) = m™ (k). Now we have the fundamental
observation made by Gelfand and Graev, which links representation theory to
automorphic forms:

We have an isomorphism

Hom(g i) (DY, Liise M\G(R)) == Sp(T\H) =

space of holomorphic cusp forms of weight k and level T’

This is also explained in [Slzwei] on the pages following 23. We explain how
we get starting from a holomorphic cusp form f of weight k£ an inclusion

(I)f : DI:_ — Lilsc(F\G(R)

and that this map f +— ®; establishes the above isomorphism. This gives us
the famous Eichler-Shimura isomorphism

Si(D\H) & S(T\H) = H}(T\X, Mj_5).

The group G/Q = Rp/q(Slzy/F).

For any finite extension F'/Q we may consider the base restriction G/Q =
Rp/g(Sla/F). (See Chap-II. 1.1.1). Here we want to consider the special case
the F/Q is imaginary quadratic. In this case we have G ® C = Sly x Sl /C the
factors correspond to the two embeddings of F into C. The rational irreducible
representations are tensor products of irreducible representations of the two
factors My = My, ® My, where again M;, = Sym”(C?). These representations
are defined over F'.

In this case we discuss the Vogan-Zuckerman list in [Slzwei], here we want
to discuss a particular aspect. We observe that

MX L> Mk1 ® Mk27-/\;l>\ = Mkz ® Mkl
and hence our corollary above yields for any choice of Ky

HP (D\X, M) = 0 if ky # k.
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In Chapter II we discuss the special examples in low dimensions. We take
F = Q[i] and " = SIy[Z[i]] this amounts to taking the standard maximal com-
pact subgroup Ky = Slo[Op]. If now for instance k; > 0 and ko = 0, then we get
H?(T\X, My) = 0. Hence we have by definition H®(T'\X, M) = Hp, (T\X, M)
and we have complete control over the Eisenstein- cohomology in this case.
Hence we know the cohomology in this case if we apply the analytic methods.

On the other hand in Chapter 2 we have written an explicit complex of finite
dimensional vector spaces, which computes the cohomology. It is not clear to
me how we can read off this complex the structure of the cohomology groups.

We get another example where this phenomenon happens, if we consider the
group Sl,,/Qif n > 2. In Chap.2 1.2 we describe the simple roots oy, aa, . . ., ap—1,
accordingly we have the fundamental highest weights wy, . ..,w,_1. The element
wp (See 6.1.1) has the effect of reversing the order of the weights. Hence we see
that for A =Y n;w; we have

HP (D\X, M) =0

unless we have —wp(A) = A and this means n; = n,_1_;.

The algebraic K-theory of number fields

I briefly recall the definition of the K-groups of an algebraic number field F/Q.
We consider the group Gl,,(OF), it has a classifying space BG,,. We can pass to
the limit nILH;oGl"(OF) = Gl(OF) = G and let BG its classifying space. Quillen
invented a procedure to modify this space to another space BG™, whose funda-
mental group is now abelian, but which has the same homology and cohomology
as BG. Then he defines the algebraic K-groups as

The space is an H-space, this means that we have a multiplication m :
BGT x BG"™ — BG™ which has a two sided identity element. Then we get a
homomorphism m® : H*(BG',Z) — H*(BGT x BG™,Z) and if we tensorize by
Q and apply the Kiinneth-formula then we get the structure of a Hopf algebra
on the Cohomology

m®: H*(BGT,Q) — H*(BGT,Q) ® H*(BG™,Q)
Then a theorem of Milnor asserts that the rational homotopy groups
7;(BGT) ® Q = prim(H*(BG,Q),

where prim are the primitive elements, i.e. those elements z € H*(BG, Q) for
which

I sketch a second application. We discuss the group G = Rp/q(Gl,/F),
where F/Q is an algebraic number field. the coefficient system My =Cis
trivial. In this case Borel, Garland and Hsiang have shown hat in low degrees
q<n/4

HY(D\X,C) = Hj, T\ X, C).
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On the other hand it follows from the Vogan-Zuckerman classification ([89],
that the only irreducible unitary (g, K, ) modules V, for which H(g, Koo, V) #
0 and ¢ < n/4 are one dimensional.

Hence we see that in low degrees

H(g, Koo, C) = HI(I'\ X, C)

is an isomorphism (Injectivity requires some additional reasoning.)

On the other hand we have H%(g, Ko,C) = Homg__(A®*(g/t),C) and ob-
viously this last complex is isomorphic to the complex Q°(X)¢®) of G(R)-
invariant forms on the symmetric space G(R)/K . Our field has different em-
beddings 7 : F' — C, the real embeddings factor through R, they form the set
Sreal and the pairs of may conjugate embeddings into C form the set SSo™P

Then
X= J] S(®)/SO(Mm)x [] Sl(C)/SU(n).

,Uesreal COTHD

Now the complex Q°(X)®) of invariant differential forms (all differentials are
zero) does not change if we replace the group

IT s@®) x J] s(C)

Jal comp
veSrea S5e

by its compact form G.(R) and then we get the complex of invariant forms on
the compact twin of our symmetric space

Xe= [] SU.(R)/SO(m) x [] (SU(n) x SU(n))/SU(n),

UGSreal S(‘omp

but then
Q(X,)%® = H*(X,,C).

The cohomology of the topological spaces like the one on the right hand side
has been computed by Borel in the early days of his career. Referenz

If we let n tend to infinity, we can consider the limit of these cohomology
groups, then the limit becomes a Hopf algebra and we can consider the primitive
elements

At this point we encounter an interesting problem. We have the three sub-
spaces (See end of 3.2)

H2,p(D\X, My®C) C HP (D\X, My)&C C Heyy(D\X, Ma®C) C H(D\X, My)&C

note the positions of the tensor symbol ®. The first and the third space are only
defined after we tensorize the coefficient system by C, whereas the second and
the fourth cohomology groups by definition F' vector spaces tensorized by C.

Now the question is whether the first and the third space also have a natural
F -vector space structure. Of course we get a positive answer, if the Manin-
Drinfeld principle holds. All the vector spaces are of course modules under the
Hecke algebra and we and we can look at their spectra

E( cusp(F\X M)\ ® (C)) CUSP E(H;‘(F\X,./\El)\ ® (C)) =
S(Hp(D\X, My ®C)) =55 S(H*(T\X, M, ®C)) =



6.1. THE REPRESENTATION THEORETIC DE-RHAM COMPLEX 261

If now for instance Yeusp (X1 \Ecusp) = @ then we can define Hep (T\X, /\;b\) C

H(T\X , M) as the subspace which is the sum of the isotypical components
in Yeusp-

If this is the case we say that the cuspidal cohomology is intrinsically defin-
able and we get a canonical decomposition

HE (D\X, M) = H3p (D\X, M) @ HY oncusp (T\X, M)

The classical Manin-Drinfeld principle refers to the two spectra ¥, C %, if it
is true in this case we get a decomposition

H*(D\X, My) = HP (T\X, M) @ Hi;,(T\X, M3)

the canonical complement is called the Eisenstein cohomology. (See Chap. 2
2.2.3 and Chap 3 section 5.)

6.1.9 Extroduction
We return to our fundamental exact sequence

0— H'(I\X, M) — H*(I\X, M) - H'(N(F\X),M) - .. (6.37)

We know that He(T\X, M) C HEy (DX, M) and we gained some understand-
ing of the latter space using analytic methods, we have seen that classes in
[w] € H, (’2)(F\X ,M ® C) can be represented by harmonic forms w.

We also want to understand the cohomology of the boundary and we want
to describe the image of the restriction map r. This leads us to very difficult
questions, again we have to use analytic tools (Langlands theory of Eisenstein
series ), we will only very superficially touch this subject in this first part of this
book.

If we want to compute H*(N(T\X), M) = H*(d(I'\X), M) we invoke the
spectral sequences (2.63, 2.64), their E5*? term is is the cohomology of the com-

S @ HTRAX M P HUTQ\XM) - (638)
[Pl:d(P)=p+1 (Ql:d(Q)=p+2
We can go one step further and employ the spectral sequence (2.52) and decom-

pose invoke Kostant’s theorem to decompose the cohomology of the fiber into
weight spaces, we explain this briefly in the following subsection.

The cohomology of unipotent groups

We drop the subscript p, we know that the group scheme U/Q is a unipotent
group scheme, let A = A(U) be its affine algebra (see section 1.1.1).. Then U/Q
has a filtration by subschemes Uy = {e} C Uy C Uy C ... Uy -1 C U, such that
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U;/Ui_1 = G,. The subgroup I'y C U(Q) is Zariski dense, more precisely we
know the following: If I'; = U;(Q)NT then I';/T;_y — Z C U;/U;_1(R) — R.

We consider the category of U/Q modules Mody (see 1.1.1.) Then it is clear
that the functor M — MUY is equal to M — MTU. ( Our Z— module M above
is now a Q— vector space, i.e. we consider coefficient systems with rational
coefficients.)

We choose the action of U on A by left translations on A. It follows from
Frobenius reciprocity that the U/Q module A is an injective module in Mody
(See 7?77) This implies that we get an injective resolution of the U/Q -module

Q by
0-Q—=A4A—-(4/QRA—---=0-Q—=1"'>T1"— (6.39)
and hence

HI(U,M) = HI(Ty\U(R), M) = HI(0 — (I' @ M)U > (2@ M)V —...) =

HI((I* @ M)Y)
(6.40)

Since U/Q is the unipotent radical of the parabolic group P/Q, the parabolic
group P/Q acts via the adjoint action on the modules I ® M This action
respects the submodules (I"™ @ M)V and U/Q acts trivially on (I™ @ M)Y,
this implies that the modules I"™ ® M)V are M/Q = (P/U)/Q modules. The
group M /Q is reductive and we know that the category of M/Q modules is semi
simple (777). This implies that we can decompose

(I* @ M)V = H*(U,M) & ACI(I*)Y (6.41)

where the first summand is a complex of M/Q -modules in which all the differ-
entials are zero and the second is an acyclic complex of M/Q- modules. Hence

H*(U,M) = H*(Ty, M) 5 H* (U, M) (6.42)

We get a ”"smaller” resolution from the (algebraic) de-Rham complex of
differential forms. On the smooth affine scheme U/Q we have the sheaves of
differential forms QF, = APQ}; ([40] ,7.5) and we have the de-Rham complex

QU =0—-Q— A— QY U)— Q*U) — ... (6.43)

where QP (U) = QF,(U) is the module of global sections and A = Q°(U). These
modules of differentials are free A modules, hence they are injective. Since our
unipotent group scheme U/Q is isomorphic to the affine space A? (as affine
scheme) we see easily that this complex is exact, hence it provides an acyclic
resolution. As before we get the cohomology by taking the complex (Q7(U) ®
M)V of invariants under the action of U/Q. Since an U/Q- invariant differential
form with values in M is determined by its value at the identity e the complex
of invariants under U/Q becomes

0 — M — Hom(u, M) — Hom(A*u, M) — --- =0 — Hom(A®u, M) (6.44)

and the cohomology of this complex is the cohomology H*®(u, M). We still have
the action of P/Q on u by the adjoint action, hence we get an action of P on
Hom(A®u, M) and we have
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Theorem 6.1.2. (van Est [?])
H®(u, M) = H* (1, M) = (Hom(A®u, M),

Proof. later O

A famous theorem of Kostant yields a description of the M/Q module
(Hom(A®u, M)V, Let A € X*(T) be the highest weight of M, i.e. we have
M = M. The set

WP ={weW|acA}, w'a)eAT} (6.45)

is the set of Kostant representatives for WM\W. For any w € W¥ we define the
element

Wy = AaEAU;w_1a<O u\a/ ® ew (646)

It is clear that this element lies in (Hom(A®u, M))Y and hence it is the highest
weight vector of an irreducible M-module

H'(u,MA)wi,\ C ]HI‘(u,MA)

where w-A=w(A+p) —p
Now the theorem theorem of Kostant says

Theorem 6.1.3.

H*(u, M) = @@ H (uw,M)yr= P H™ (u, M)u.

weWr weWr
where we have to be aware that the summand H® (u, M),,.x sits in degree l(w)
Proof. Rather clear after the preparation. O

Since the differentials in the complex H®(u, M) are zero, the spectral se-
quence degenerates and we get

cohboundstrat

H"(Tp\X(cp), M) = @@ H' ' (Ta\XM (r(cp), HE (4, M)),
e (6.47)

this is the decomposition of the cohomology of the boundary stratum 9p(I'\ X)
into weight spaces. We insert this decomposition into the spectral sequence and
get a more precise description of the E{"? page (6.38):

p—1,q9 D, q
dy dy

— Bpap)=pr1 Puewr HIT (Carp \XMP HIW) (up, M)yn) =

ara —— qrtia
= D@ —p+2 Poewa H (Targ \X Mo, HIY) (ug, M)y.») 1—2 )
6.48
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and it becomes clear that the computation of the cohomology of this complex,
i.e. the computation of the EY"?, and the differentials will become a very delicate
issue, The computation of the higher pages of the spectral sequence will be even
more difficult.

But I am convinced that a thorough study of the deeper pages
and of the map r will be very rewarding. We get interesting applica-
tion to number theory. We can prove rationality results for special
values of L-functions (divided by a well chosen period.) In certain
cases the value of these normalised L— values L* (7y,v) = LQLWZ;) carry
some relevant arithmetic information. It may tell us something about
the structure of some cohomology groups as Hecke-modules (for in-
stance the denominator of Eisenstein classes) and as a consequence

something about the structure of the Galois group.

We have executed this program in some very specific cases in this book. We
discussed the rationality of normalised special L— values in a special situation
at the end of chapter 4 (see (4.219)). For some more general cases I refer to
[45],[47]. In these papers the authors always work on the Eg" page of the
spectral sequence.

In the note [?] I consider the group Sl4(Z) and carry out some speculative
computation which indicate that d3* # 0. Hence we get E3® # E3°, we also get
a rationality relation between special values of the Riemann (- function which
of course will be well known.

The other application is intensively studied in the chapters 3-5 for the case
Sly(Z). We also consider the case Sly(Z[i]) where the answer is less complete
and some experimental computations should be done. I also refer to the papers
[42] and [44], in both papers I produce situations where we expect

The prime £ divides normalised L value —> { divides the denominator of
an Fisenstein class.

But it requires new ideas to prove such an assertions, it seems that at this
moment we should make some numerical experiments.

Finis operis
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