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Preface

Finally this is now the book on ”Cohomology of Arithmetic Groups” which
was announced in my two volumes ”Lectures on Algebraic Geometry I and 11"
[39],[40]. Originally the purpose of these two volumes was to assemble basic
material for this third volume. This applies especially to the chapters I-IV in
the first volume, where we provide the necessary background in homological
algebra.

During the years 1980-2000 I gave various advanced courses on number the-
ory, algebraic geometry and also on ” Cohomology of Arithmetic Groups” at the
university of Bonn. I prepared some notes for these lectures, because there was
essentially no literature covering this subject.

At some point I had the idea to use these notes as a basis for a book.
It was clear that a self-contained exposition needs some preparation, we need
some basic tools from homological algebra. Since the cohomology groups of
arithmetic groups are sheaf cohomology groups, and since the theory of sheaves
and cohomology sheaf is ubiquitous in algebraic geometry some branches grew
out and I wrote the two volumes [39], [40]..

The subject has applications to number theory - actually it is part of num-
ber theory. My main concern is the relationship between special values of L-
functions and the integral structure of the cohomology as module under the
Hecke algebra. We can prove rationality statements for special values (Manin
and Shimura), on the other hand these special values tell us something about
the denominators of the Eisenstein classes. These connections was already dis-
cussed in the original notes for the special case of Sly(Z). and a precise result
(in some sense culminating result in this special case are stated at the end of
Chapter 5 In the probably removed section ( but actually not removed se3ction
) T discus- for a specific example - an application concerning to the structure of
the Galois group. This is really number theory

For other groups than Gls this relationship between special values of L-
functions and the denominators of Eisenstein classes is mainly conjectural. It is
one of the central themes of this book. The conjectures concerning the denom-
inators imply congruences between eigenvalues of Hecke operators on different
groups. It was extremely important for me that these conjectures on congru-
ences got some support by experimental calculations by G. van der Geer and C.
Faber and others. The discovery-or the verification- of these congruences had
great influence on the content of this book.
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The subject has some very interesting computational and experimental as-
pects. In principle there exists an algorithm which verifies the denominator
conjecture in any given case. In Chapter 3 we discuss the basic steps for writing
an algorithm which computes the cohomology and the Hecke endomorphisms
explicitly for any specific example. Hence we can check the conjecture in such
a situation. For the group Sla(Z) such explicit calculations have been done by
my former student X.-D. Wang in his Bonn dissertation and with the help of H.
Gangl I also wrote such an algorithm which is discussed in Chapter 3.

But to the best of my knowledge there are only very few other cases, where
we have such an algorithm, which works in practice. For instance it is very
desirable to have such an such an algorithm in the case of the group GSp,(Z)
to treat the issues raised in Chapter 9.

In the final chapter 9 I talk about the general aspects of Eisenstein coho-
mology, but I also want to point out that there are some very interesting open
questions. The denominator question is not only an interesting problem in it-
self. These denominators allow us to produce non trivial elements in certain
Selmer groups. This means that we can construct elements in various Selmer
groups which owe their existence certain divisibility of special L-values. Such a
connection between L-values and the structure of the Galois group is a central
theme in number theory and starts with Kummer and continues with Herbrand,
Ribet and Bloch-Kato.

I hope that this book can serve as an introduction into the field ” Cohomology
of Arithmetic Groups”, but that it also initiates some interesting research.
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0.1 Introduction

An arithmetic group I is a discrete subgroups of a Lie group G(R) C Gl,(R)
whose matrix entries satisfy certain rationality and integrality condition. The
most basic example of such a group is the group Sl,(Z) C SI,,(R). More gen-
erally we can start from an algebraic subgroup G/Q C Gl,,/Q, for instance
the orthogonal group of a quadratic form. Then we get arithmetic groups
I' ¢ G(Q) € G(R) if we impose certain integrality conditions on the matrix
coefficients of the elements of T'.

For any I'- module M we can define the the cohomology groups H*(I', M) =
&P H 2(T", M). These cohomology groups are abelian groups, which are defined
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in terms of homological algebra, they are the derived functors of the functor
M — MY (= invariants under T'.)

We are mainly interested in the cohomology of a very special class of I'-
modules. We consider rational representations p : G/Q — Mg, where Mg
is a finite dimensional Q-vector space. Then we can find finitely generated Z
modules M such that Mg = M ®z Q which are I'-invariant and hence I'-
modules.

Let Koo C G(R) be a maximal compact subgroup, for example SO(n) C
S1,(R). The quotient X = G(R)/K is a symmetric space, it carries a Rieman-
nian metric which is G(R)— invariant under the left action, it may have finitely
many connected components, each connected component is diffeomorphic to R¢,
hence contractible.

Our arithmetic group I" acts properly discontinuously on X, we can form the
quotient I'\ X, this quotient is an orbifold. We can pass to a suitable subgroup
of finite index I" C T such that IV has no non trivial elements of finite order
(i.e. is torsion free). Then I\ X is a Riemannian manifold, it is a so called
locally symmetric space. The map I"\X — T'\X is a finite covering with some
ramifications. If " has elements of finite order then T'\ X is only a Riemannian
orbifold. These spaces I'\X provide a very interesting class of spaces, which
are of interest for differential geometers, mathematicians interested in analysis
on manifolds and topologists. But they are in a sense of arithmetic origin and
therefore they are of interest for number theorists.

Our T module M endows the space T'\ X with a sheaf M (section 6.2) with

values in finitely generated abelian groups. If I' is torsion free then M is a
locally constant sheaf, or in other words a local system.

We introduce the sheaf- cohomology groups

H*(I\X, M) = @ HI(I'\X, M)

these cohomology groups are ”essentially” the same as the above group cohomol-
ogy groups, these two versions of cohomology become equal, if X is connected
and T' is torsion free. We will see that these cohomology groups are finitely
generated Z— modules.

We have some additional structure on these cohomology groups. In general
the quotient space T'\X is not compact. We have the Borel-Serre compacti-
fication 7 : T\X < I'\X, where i is a homotopy equivalence and I'\X is a
manifold (orbifold) with corners. The difference set (I'\X) := I'\X \ '\ X is
the boundary of the Borel-Serre compactification. Moreover we will construct a

”tubular” neighbourhood N (I'\X) C T\ X of "infinity” (see (1.2.11)). We may
also consider the cohomology with compact supports H? (T'\ X, M). and we get
the fundamental long exact sequence

S HIUT\X, M)~ HIT\X, M) — HIN (T\X), M) =5 HIP(T\X, M) - ...
(1)

We also introduce the ”inner cohomology”

H}(T\X, M) := ker(r) = Im(i.).
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A second structural ingredient is the Hecke algebra. We have an action of a
big algebra of operators acting on all these cohomology groups and the action
commutes with arrows in the fundamental exact sequence.

This is the so called Hecke algebra H( or Hr), it originates from the structure
of the arithmetic group I'. The group I has many subgroups I of finite index,
for which we can construct two arrows

P1
X 3 T\X. (2)
P2

Such a pair of arrows is also called a correspondence between on I'\ X. Such a
correspondence, together with a suitable map u : pj (M) — p5(M), induces an
endomorphism in the cohomology. These endomorphisms act on all the modules

in the exact sequence above and are compatible with the arrows.

The basic objects of interest in this book are the various cohomology groups,
which appear in the fundamental exact sequence, together with the the action of
the Hecke algebra H on them.

It is my intention is to keep the exposition as elementary as possible, the
text should be readable by graduate students. We will need some background
material from algebraic topology and from homological algebra ( cohomology
and homology of groups, spectral sequences, sheaf cohomology). This material
is expounded in the first four chapters in [39], of course it can be found in many
other textbooks.

In the later chapters (starting from chapter 6) we also need results and
concepts from the theory of algebraic groups, the theory of symmetric spaces,
arithmetic groups, and reduction theory for arithmetic groups. Furthermore we
need results from the theory of representations of real semi-simple groups.

This material is somewhat more advanced, but in the in the first five chapters
all these concepts and results are explained in terms in terms of special examples.
Especially the sections on the general reduction theory and the Borel-Serre
compactification (section (1.2.11)) could be skipped in a first reading.

For the the Lie groups Sly(R) and Sl(C) and their arithmetic subgroups
Sly(Z) and Sly(Z[\/—1]) these prerequisite concepts are easy to explain and
we will do so in this book. For instance if I' = Sl3(Z) or more generally a
congruence subgroup of finite index the symmetric space Sla(R)/K is the
upper half plane H = {z € C | S(z) = y > 0} = Sl3(R)/SO(2). The quotient
space T'\H is punctured Riemann surface. In this special case we have the T'
module M,, = {3} a, X"Y" | a, € Z}. We will study the the cohomology
groups H'(I'\H, M,,) and their module structure under the Hecke algebra in
detail. We will prove some very specific results for these cohomology groups.

In Chapter four we discuss results from the theory of representations of the
Lie- groups Sly(R) and Sl3(C), and we explain the impact of these results on
the cohomology. With these results at hand we formulate the famous Eichler-
Shimura isomorphism, and we can sketch its proof. This Eichler-Shimura iso-
morphism also establishes the connection between H'(I'\H, M, ) ® C and the
space of modular forms of weight n + 2. In the second half of this book in Chap-
ter 8 we discuss what is called "Representation theoretic Hodge theory” and
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the Eichler-Shimura theorem becomes a special case of a much more general
theorem.

On the other hand we will show that the results for the special groups
S1(Z), Sly(Z[V/d]), or suitable subgroups of finite index of them, have deep and
interesting consequences. We will discuss the Eisenstein cohomology for these
special groups and explain the interaction between special values of L-functions
and the structure of the cohomology. A prototype of such a result is the formula
for the denominator of the Eisenstein class (Theorem 5.1.2). It is clear that this
result should be a special case of a much more general theorem. At this moment
it is not clear how far these generalisations reach (See section 9.3.1).

In Chapter 5 we discuss some applications of these results to number theory,
and we have to accept some even more advanced topics. We concentrate on the
case that I' C Sl2(Z) and we will use the fact that- with a grain of salt - the
quotient T\H is the set of C-valued points the moduli space of elliptic curves
(with some additional structure). This is also explained in [39],[40].

Then for any prime £ the cohomology groups H'(I'\H, M,,)®Z;) are actually
{-adic etale cohomology groups, especially we get an action of the Galois-group

Gal(Q/Q) on these /— adic cohomology groups. This action commutes with the
action of the Hecke algebra. The insights into the structure of the cohomology
groups as Hecke modules provides insights into the structure of the Galois group

Gal(Q/Q), for instance we discuss the theorem of Herbrand-Ribet ([19], [81])

In Chapter 6 we study the cohomology groups of arithmetic groups in a more
general framework. We start from arbitrary reductive groups G/Q, we assume
some familiarity with the theory of semi -simple real groups and the theory of
symmetric spaces. There will be some overlap with the earlier chapters.

We use the adelic language, our locally symmetric spaces will be double coset
spaces SIG(f = G(Q)\G(A)/KsKy. Here Ky is an open compact subgroup of
G(Ay), it the so called level subgroup. These locally symmetric spaces turn out
to be disjoint unions of the previous ones.

Again define sheaves M on these spaces, this will be sheaves with values
in the category of finitely generated Z-modules. We are interested in the var-
ious cohomology groups Hj (S f,/\;l). in our fundamental exact sequence.(1)
We know that all these cohomology groups are finitely generated Z-modules.
(Raghunathan)

Here we have to work a little bit to define the integral cohomology and to

define the action of the Hecke operators on these integral cohomology groups.

In this context the Hecke -algebra becomes a restricted product of local
Hecke -algebras, this means Hy, = ®; ‘Hp,. The local algebras #H, have an
identity. The level subgroup Ky determines a finite set ¥ = ¥, of ramified
primes. The sub algebra H>) = ®p 5, 18 a central sub-algebra of H . For an
unramified prime p ¢ ¥ the structure of H,, is given by the Satake isomorphism.
(Theorem 6.3.1).

We may pass to the rational cohomology groups Hg(S% - M®Q), these are
finite dimensional Q vector space together with the action of H. We will show
in section 8.1.8 that the action of H on the inner cohomology H (ng ,M®Q)
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is semi simple, i.e. each A invariant submodule has a H-invariant comple-
ment. This implies that we can find a finite (normal) extension F/Q such that
H I‘(ng  MF ) is a direct sum of absolutely irreducible # module. Therefore
we get an isotypical decomposition

HSE Me P = @D H(SE M F)(r)
w5 €Coh (G,K ¢, M)

where the 7y denote isomorphism classes of absolutely irreducible H-modules.
Such an absolutely irreducible Hecke module is the restricted tensor product:
Ty = ®;,7rp. The restriction of 7y to H®) gives us a homomorphism 7 =
®p€2 : H(E) — OF.

After that we discuss some general facts concerning these cohomology groups
(Poincare duality, homology, adjunction formulas for Hecke operators) and we
have a section on the Gauss-Bonnet theorem.

Chapter 7 is somewhat philosophical. We have seen in the previous Chapter
4 and we will also see in Chapter 8 how the cohomology groups after tensoring by
C are related to the space of automorphic forms. In 1967 R. Langlands formu-
lated a visionary program concerning automorphic forms, this is the Langlands
program. In this Chapter 7 we discuss some of the aspects of this program in the
context of cohomology of arithmetic groups. The main player is the Langlands
dual group VG/Q.

The Langlands dual group VG/Q has the following purpose: For any abso-
lutely irreducible 7 which occurs non trivially in the cohomology H7 (8§ . M®
F) and any p ¢ X the theorem of Satake provides a canonical semi-simple con-
jugacy class wy(m,) € YG(F). For any representation r : YG/Q — GI(V) of
the algebraic group VG/Q we can attach an L-function which is defined as an
infinite product

1
L (ns,7,8) = H — = H L(mp, 1, )
pés det(Id — r(wp(mp))p~*|V) s

With some extra effort we can also attach local Euler factors L(m,,r,s) to
the ramified primes p € ¥ and then the L function is defined as L(ms,7,s) =

]_[p L(mp, 1, 8).

A very bold prediction of the Langlands philosophy says that to any abso-
lutely irreducible ¢ which occurs somewhere in the cohomology H7 (S - M
F) and any representation r we can find a motive {M(my,r)} such that we an
equality of L-functions

L(mg,r,s) = L(M(ms,7),5).

It is one of the central themes in this book to investigate the relationship
between the L— functions L(ms,7,s) (analytic properties, special values) and
the structure of the integral cohomology as modules under the Hecke-algebra,
a first instance is theorem 5.1.2.

In Chapter 8 we develop the analytic tools for the computation of the co-
homology. Here we do not use the language of adeles. We assume that the
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I'-module M is a C-vector space and it is obtained from a rational representa-
tion of the underlying algebraic group. In this case one may interpret the sheaf
M as the sheaf of locally constant sections in a flat bundle, and this implies
that the cohomology is computable from the de-Rham-complex associated to
this flat bundle. We could even go one step further and introduce a Laplace
operator so that we get some kind of Hodge-theory and we can express the
cohomology in terms of harmonic forms. Here we encounter serious difficulties
since the quotient space I'\ X is not compact. But we will proceed in a slightly
different way. Instead of doing analysis on '\ X we work on Coo (T\G(R)). This
space is a module under the group G(R), which acts by right translations, but
we rather consider it as a module under the Lie algebra g of G(R) on which also
the group K, acts, it is a (g, K)-module.

Since our module M comes from a rational representation of the underlying
group GG, we may replace the de-Rham-complex by another complex

H*(g, Ko, Co(T\G(R)) ® M),

this complex computes the so called (g, K )-cohomology. The general principle
will be to ”decompose” the (g, K)-module Coo (I'\G(R) into irreducible submod-
ules and therefore to compute the cohomology as the sum of the contributions
of the individual submodules. This is a group theoretic version of the clas-
sical approach by Hodge-theory. Again we have to overcome two difficulties.
The first one is that the quotient T\G(R) is not compact and hence the above
decomposition does not make sense.

The second problem is that we have to understand the irreducible (g, K)-
modules and their cohomology.

The first problem is of analytical nature, we will give some indication how
this can be solved by passing to certain subspaces of the cohomology the so called
cuspidal or better the inner cohomology. The central result is the Theorem 8.1.1.

This result is a partial generalisation of the theorem of Eichler-Shimura, it
describes the cuspidal part of the cohomology in terms of irreducible represen-
tations occurring in the space of cusp forms and contains some information on
the discrete cohomology, which is slightly weaker. (See proposition 8.1.4) We
shall also give some indications how it can be proved.

We shall shall also state some general results concerning the second problem,
we briefly recall the construction of the irreducible modules with non trivial
(g, K») cohomology.

We discuss some consequences of Theorem 8.1.1. It implies some vanishing
theorems in cohomology, it implies that the inner cohomology is a semi simple
module for the Hecke-algebra, and it helps to understand the K —-theory of
algebraic number fields.

In the next section we use reduction theory-or better the description of N
(T\X), M)- to discuss some growth conditions for cohomology classes, basically
we show that cohomology classes which given by a weight can be represented
by differential forms which have essentially the same weight.

In the second half of this chapter we will resume the discussion of modular
symbols.



xvi CONTENTS

In the last chapter 9 we discuss the Eisenstein-cohomology. The theorem
of Eichler-Shimura describes only a certain part of the cohomology, the Eisen-
stein -cohomology is meant to fill the gap, it is complementary to the cuspidal
cohomology. These Eisenstein classes are obtained by an infinite summation
process, which sometimes does not converge and is made convergent by analytic
continuation.

In the beginning of this chapter 9 we recall the Borel-Serre compactification,
we discuss the spectral sequences induced by the stratification of the Borel-
Serre boundary. We continue by recalling the process of constructing Eisenstein
cohomology classes by infinite summations and analytic (or meromorphic) con-
tinuation. We already discussed Eisenstein cohomology in this book for the
the case of the special group Sla(R) in chapter 4. For the group Gly/K over a
number field we refer to [34]. We have the general theorem of Franke [25], but I
think that Franke’s theorem is still far away from a final answer, there are many
questions open and we have to exploit the various possibilities for applications
in number theory. In the rest of this chapter we give an outline of these possible
application, we formulate some results and we also formulate some speculative
ideas.

Under certain conditions (if the Manin Drinfeld principle is valid) these
Eisenstein cohomology classes are actually rational classes ( or classes over some
specific number field). Then we may for instance evaluate on certain cycles and
it happens that the result is a special value of an L-function divided by a period
(See for instance chapter 4. ) Hence we can prove rationality results for these
modified L— values. This allows us to prove rationality results for special L-
values. (See [36], [47]).

The central theme of this book is the understanding of the integral cohomol-
ogy H*® (SI% , /\;l) as a module under the Hecke algebra, for instance we want to
understand the denominators of the Eisenstein classes.

In Chapter 9 we formulate the general principle that under suitable con-
ditions this denominator should be related ( divisible?, equal ?) to a certain
special value of an L-function, which occurs in the constant term of the Eisen-
stein series. The prototype of such a relationship occurs in [42], (actually the
”abelian” case is discussed in chapter 5).

This principle ( or conjecture ) can be verified (or falsified) experimentally,
on the other hand there is a strategy to prove assuming certain finiteness for
mixed Grothendieck motives.



Chapter 1

Basic Notions and
Definitions

1.1 Affine algebraic groups over Q.

A linear algebraic group G/Q is a subgroup G C GL,,, which is defined as the
set of common zeroes of a set of polynomials in the matrix coefficients where in
addition these polynomials have coefficients in Q . Of course we cannot take just
any set of polynomials the set has to be somewhat special before its common
zeroes form a group. The following examples will clarify what I mean:

1.) The group GL, is an algebraic group itself, the set of equations is empty.
It has the subgroup Sl,, C Gl,,, which is defined by the polynomial equation

Sl, = {z € GL,, | det(z) = 1}

2.) Another example is given by the orthogonal group of a quadratic form
n
flar,...,z,) = ZCWC?
i=

where a; € Q and all a; # 0 (this is actually not necessary for the following).
We look at all matrices

a1 .o Qip

ap1 ... Qnn

which leave this form invariant, i.e.

flaz) = f(z)
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for all vectors x = (z1,...,2,). This defines a set of polynomial equations for
the coefficient a;; of «.
These a form a group, this is the linear algebraic group SO(f).

3.) Instead of taking a quadratic form — which is the same as taking a
symmetric bilinear form — we could take an alternating bilinear form

<23y> :<x17"'7x2n7y1a"'y2n> =

n

Z(‘rlyi+n — Tipn¥i) = f(z,y)-

i=1
This form defines the symplectic group:
Spn = {a € GLa, | (az,oy) = (z,9)} .

An Important remark: The reader may have observed tha we did not specify
a field (or a ring) from which we take the entries of the matrices. This is done
intentionally, because we may take the entries from any commutative ring R
which contains the rational numbers Q and for which 1 € Q is the identity
element (this means that R is a Q— algebra). In other words: for any algebraic
group G/Q C GL,, and any Q algebra R we may define

G(R) C GL,(R)

as the group of those matrices whose coeflicients satisfy the required polynomial
equations.
Adopting this point of view we can say that

A linear algebraic group G/Q defines a functor from the category of Q-
algebras (i.e. commutative rings containing Q) into the category of groups.

4.) Another example is obtained by the so-called 1restriction of scalars. Let
us assume we have a finite extension K/Q, we consider the vector space V = K™.
This vector space may also be considered as a Q-vector space Vj of dimension
n[K : Q] = N. We consider the group

GLN/Q.
Our original structure as a K-vector space may be considered as a map
© : K — Endg(W),

and the group GL,(K) is then the subgroup of elements in GLy(Q) which
commute with all the elements of O(z),x € K. Hence we define the subgroup

G/Q = Rk o(GLn) = {a € GLy | & commutes with ©(K)} . (1.1)
Then G(Q) = GL,(K). For any Q-algebra R we get
G(R) = GL,(K ®q R).

This can also be applied to an algebraic subgroup H/K — GL,/K, ie. a
subgroup that is defined by polynomial equations with coefficients in K.
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Our definition of a linear algebraic group is a little bit provisorial. If we
consider for instance the two linear algebraic groups

1 =z
aie = {(5 1)

1 0
Go/Q = 0 1 C GL3

0 0

then we would like to say, that these two groups are isomorphic. They are
two different “realizations” of the additive group G,/Q. We see that the same
linear algebraic group may be realized in different ways as a subgroup of different
GLN’S.

Of course there is a concept of linear algebraic group which does not rely
on embeddings. The understanding of this concept requires a little bit of affine
algebraic geometry. The drawback of our definition here is that we cannot define
morphism between linear algebraic group. Especially we do not know when they
are isomorphic.

We assert the reader that the general theory implies that a morphism be-
tween two algebraic groups is the same thing as a morphism between the two
functors form Q-algebras to groups. In some sense it is enough to give this
functor. For instance, we have the multiplicative group G,,/Q given by the

functor
R — R*

and the additive group G,/Q given by R — R*.
We can realise (represent is the right term) the the group G,,/Q as

Gm/Q = {((t) t91>} c Gl

1.1.1 Affine group schemes

AGS

We say just a few words concerning the systematic development of the theory
of linear algebraic groups. This is not directly used in the next few chapters but
it will be useful in Chapter 8.

For any field & an affine k-algebra is a finitely generated algebra A/k, i.e.
it is a commutative ring with identity, containing k, the identity of k is equal
to the identity of A, which is finitely generated over k as an algebra. In other
words

A= k[xl,xg,...,xn] = k[Xl,XQ,...,Xn]/I7

where they X; are independent variables and where I is a finitely generated
ideal of polynomials in k[X7,..., X,].

Such an affine k-algebra defines a functor from the category of k— algebras to
the category of sets, namely B — Homy (A, B). A structure of a group scheme
on A/k consists of the following data:

a) A k homomorphism m : A - A ®; A (the comultiplication)
b) A k-valued point e : A — k (the identity element)
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c¢) An inverse inv : A — A,

which satisfy the following requirement: For any k-algebra B our homomor-
phism m induces a map

‘m : Homy (A ®y A, B) = Homy(A, B) x Homy(A, B) — Homy (A, B)

and we require that this induces a group structure on Homyg(A, B). We also
require that the k valued point e is the identity and that inv yields the inverse.

We leave it to the reader to figure out what this means for m, e, inv, especially
what does associativity mean (Hint: Choose B = A).

An affine k-algebra A together with such a collection m,e,inv is called
an affine group scheme G/k = (A, m,e,inv). The k-algebra A is the coordi-
nate ring, or the ring of regular functions of the group scheme. We will de-
note it by A(G). The group of B/k valued points will be denoted by G(B) =
Homy (A(G), B). For g € G(B) and f € A(G) ® B we write g(f) = f(g), we
evaluate the regular function at the point g € G(B).

The group G,, has the coordinate ring A(G,,) = k[t,t~1],m(t) = t®t, e(t) =
1,inv(t) = t~! and the coordinate ring of the additive group G, is A(G,) = k[z
and m(z) =z® 1+ 1®z,e(x) =0,inv(z) = —z.

The group scheme Gl,,/k has the coordinate ring

A=kl eyl/(det(ig)y —1); 1<4,5,<n

and the comultiplication is given by
n
m(wig) =Y Tiw ® T, (1.2)
v=1

It is clear what a homomorphism between affine group schemes is. A ho-
momorphism ¢ : G — H is surjective (resp. injective) if the homomorphism
' A(H) — A(G) is injective (resp.) surjective.

A rational representation of G/k is a homomorphism of group schemes p :

G/k = Gl,/k.

If for instance V/k is a vector space of dimension n then we can define
the group scheme GI(V), if we choose a k-basis on V, then we can identify
GI(V)/k = Gl, /k. If G/k is any affine group scheme, we say that V/k is a G-
module if we have a homomorphism p : G/k — GI(V). Hence we know that for
any k -algebra B/k we have a homomorphism p(B) : G(B) — GI(V ® B). Of
course this is functorial in B/k, i.e. a homomorphism 1 : B/k — B’/k induces
a homomorphism G(B) — G(B’).

We may also consider actions of G/k on vector spaces W/k which are not
of finite dimension, here we require a certain finiteness condition. As before we
have an action

pp:G(B)x (W&B) =W ® B (1.3)
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which is functorial in B/k. But now we assume in addition that for any w € W
there is a finite set of elements wi,ws,...,wy such that for any B/k and any
g9 € G(B)

d
pe(g)w = Zwl ® b;(g) with b; € A(G).
i=1

It suffices to check this for the "universal” element Id € Homy(A(G), A(G)) =
G(A(@Q)), this means we have to find wq, wa,...,wq € W such that

d
pae)(Id)w =" h; @ w; with h; € A(G).
i=1

This implies of course that the k-subspace W’ = >~ kw; which is generated by
these w; is invariant under the action p and it contains w. Hence we see that our
k-vector space W is a union of finite dimensional subspaces which are invariant
under the action of G/k.

Therefore we say that a vector space W/k with an action of G/k is a G-
module if it satisfies the above finiteness condition.

The ring of regular functions A(G) is a G X G module: For (g1,¢2) €
G X, G(B) = G(B) x G(B) the action and f € A(G),z € G(B) the action is
defined by
plgr,92)f(2) = flg1 ' wg).

We have to verify the finiteness condition. To do this we write a formula for
o(91,92)f € A(G)®B. We have the comultiplication m : A(G) — A(G)®kA(G),
we apply it to the first factor on the right hand side and get m1 20m : A(G) —
A(G) ®r A(G) ®% A(G). Then

migom(f) = h, ®h,®h
I

Then by definition

plar.g2)f = > hy @ inv () (91! (g2)

and this says that p(g1,92)f lies in the submodule generated by the h,,.

Of course we may restrict the action to each the two factors, we simply
choose g1 = e,-we get the action by right translations- or we choose g2 = e, this
gives the action by left translations.

It is not difficult to show that for an affine group scheme we can find a
collection of elements eg, €1, ...,e, € A(G) such that e? = e; Vi, e;e; =0 Vi # j
such that 14 = ), e; and such that the subalgebras A(G)e; are integral. Then
there is exactly one element (say eg) such that e(eg) = 1. Then A(G)eg is a
subgroup scheme, it is called the connected component of the identity. (See for
instance [40], Chap. 7, 7.2)

A group scheme G/k is connected, if its affine algebra A(G) = A(G)ey is
integral.
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Base change

If we have a field L D k and a linear group G/k then the group G/L = G xj, L
is the group over L where we forget that the coefficients of the equations are
contained in k. The group G xj, L is the base extension from G/k to L.

1.1.2 Tori, their character module,..

A special class of algebraic groups is given by the tori. An algebraic group T'/k
over a field k is called a split torus if it is isomorphic to a product of G, /k-s,

T/k = G

The algebraic group T'/k is called a torus if it becomes a split torus after a
suitable finite extension of the ground field, i.e we have T' x; L — G, /L.

If we take an arbitrary separable finite field extension L/k we may consider
the functor

R — (L& R)*.

It is not hard to see that this functor can be represented by an algebraic
group over k, which is denoted by Ry /i(Gn, /L) and called the Weil restriction
of G,,/L. We propose the notation

Rp/i(Gp/L) = GE/* (1.4)

The reader should try to prove that for a finite extension L /L which is normal
over Q we have } }
GL/* xp L =5 (G /L) M

and this shows that Gﬁ/ ¥ is a torus .

A torus T'/k is called anisotropicif is does not contain a non trivial split torus.
Any torus C/k contains a maximal split torus S/k and a maximal anisotropic
torus C1/k. The multiplication induces a map

m:SxCy—C

this is a surjective (in the sense of algebraic groups) homomorphism whose
kernel is a finite algebraic group. We call such map an isogeny and we write
that C = S - C1, we say that C' is the product of .S and C; up to isogeny.

We give an example. Our torus Ry /(G /L) contains G, /k as a subtorus:
For any ring R containing k we have R* = G,,,(R) C (R® L)*. On the other
and we have the norm map Nz, : (R® L)* — R* and the kernel defines a
subgroup

RY) (G /L) € Rypi(Gom /L)

and it is clear that

m Gm X Ril/)k(GnL/L) — RL/k(Gm/L)
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has a finite kernel which is the finite algebraic group of [L : k]-th roots of unity.
For any torus 1" we define the character module as the group of homomor-
phisms

X*(T) = Hom(T,G,,).. (1.5)

If the torus is split, i.e. T = G}, then X*(T) = Z" and the identification is
given by (ni,ng,...,n,) — {(x1,22,...,2,) — x x5? ...z }. We write the
group structure on X*(7') additively, this means that (y1 +72)(x) = y@)72(z).

It is a theorem that for any torus T'/k we can find a finite, separable, normal
extension L/k such that T Xj L splits. Then it is easy to see that we have an
action of the Galois group Gal(L/k) on X*(T Xy L) = Z". If we have two tori
T,/K,T>/K which split over L

Homk(Tl,Tg) —~+ Hom Gal(L/k)(X*(T2 Xk L),X*(Tl Xk L)) (16)

To any Gal(L/k)— action on Z" we can find a torus T'/k which splits over L
and which realises this action.

A homomorphism ¢ : Ty /k — T5/k is called an isogeny if dim(T}) = dim(73)
and if t¢ : X*(Ty) — X*(T) is injective. Then the kernel ker(¢) is a finite
group scheme of multiplicative type. If Y C X*(7}) is a submodule of finite
index the Y = X*(T5) and the inclusion provides an isogeny ¢ : Ty — T5. The
quotient X*(T1)/Y is a finite constant group scheme and ker() the the dual
of his quotient.

We also define the cocharacter module Hom(G,,,T). If the torus /k = GJ,
then every cocharacter is the form z — (z™,2"2,... 2" It is clear that we
have a pairing

<, >: X.(T) x X*(T) — Z which is defined by ~y(x(t)) = t<X*7> (1.7)

1.1.3 Semi-simple groups, reductive groups,.

An important class of linear algebraic groups is formed by the semisimple and
the reductive groups. (For a general reference [97].) We do not want to give the
precise definition here. Roughly, a linear group is reductive if it is connected
and if it does not contain a non trivial normal subgroup which is isomorphic to
a product of groups of type G,. A group is called semisimple, if it is reductive
and does not contain a non trivial torus in its centre.

A semi-simple group G/k is simple, if it does not contain any normal sub-
group of dimension > 0. Any semi-simple group is up to isogeny a product of sim-
ple groups. Any semi simple group G/Q contains a maximal torus T/Q C G/Q
such a maximal torus is equal to its own centraliser. A semi simple group is
split if it contains a split maximal torus Tp/k, i.e. a maximal torus which is
split. If T'/k C G/k is any (maximal) torus, then there is a finite extension L/Q
such that T xg L is split, and hence G xg L is also split.

For example the groups Sl,, Sp,, are (split) semi simple, the groups SO(f)
are semi-simple provided n > 3. (See next subsection 1.2.8 ). The groups
Gl,, and especially the multiplicative group Gl; /Q = G,,,/Q are reductive. Any
reductive group G/Q (or over any field of characteristic zero) has a central torus
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C'/Q and this central torus contains a maximal split torus S. The derived group
G /Q is semi simple and we get an isogeny

m:GM xC; xS —G

or briefly G = GV . ¢ - S.

If for instance G = Rp,g(Gl,/L) then GV = Ry o(Sl,/L) and C =
R1/0(Gy, /L) and this yields the product decomposition up to isogeny

1
G =GR (Gn/L) Gy (1.8)

For Gl,,/Q the central torus is the group G,,/Q.The center of Sl,,/Q is the finite
group group scheme p, of of n-th roots of unity. The coordinate ring of ., is
the finite algebra A(u,) = Q[t]/(t™ — 1). Of course we may replace Q by any
ring commutative ring R.

We can form the quotient group scheme

PGL,/Q = (Gl,/Gy)/Q — (S1,/Q)/pin (1.9)
this is also the adjoint group of Gl,,/Q and Sl,,/Q, i.e.
Ad(Gl,) =PGl, = Gl,/G,,, = Sl,,/an. (1.10)

We could certainly drop the assumption that a reductive group should be
connected, we could simple say that G/Q is reductive ( semi-simple...) if its
connected component of the identity is reductive (semi-simple...).

Another important class of semi simple groups is given by the quasisplit
groups (see also section 1.2.10. A group G/Q is called quasisplit if it contains
a Borel subgroup B/Q C G/Q. A Borel subgroup B/Q is a maximal solvable
subgroup, it contains a maximal torus 7/Q C B/Q, this torus is also a maximal
torus in G/Q. Then B = U x T is the semidirect product of this torus and the
unipotent radical U/Q. We discuss a special example which is of great relevance
for our subject.

Let L/Q be a quadratic extension, let us denote the non trivial automor-
phism by a — a. Let V/L be a finite dimensional vector space together with a
hermitian form h: V xp V — L, i.e. we have

h(v,w) = h(w,v); h(Au+ po,w) = A(u,w) + ph(v,w) Vu,v,w € V, A\, u € L.

Furthermore we assume that h is non degenerate, i.e. for any v € Vv # 0
we find a w € V such that h(v, w) # 0. Then we can define the group SU(h)/Q :
For any commutative Q -algebra R we have

SU(R)(R) = {g € SV ®q R | h(gv, gw) = h(v,w) and det(g) =1} (1.11)

Then SU(R)/Q is a semi simple group over Q. We can also define the unitary
group U(h)/Q where we drop the condition that the determinant is one and the
group of hermitian similitudes GU(h) where

GU(R)(R) = {g € GI(V @q R | h(gv, gw) = d(g)h(v,w) Vv,w € V ®q fz’/}, :
1.12
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here d : GU(h) — Rp;q(Gn) is a homomorphism, the kernel of d is the group
U(h).

We consider the special case where
VZLel69-~-@Len@(Leo)@Lfn®"'@Lf1

the summand Leg is left out if dimy, V' is even. The hermitian scalar product is
given by

hi(es, fi) = hi(fisei) =1Vi=1,...,n (hi(ep,e0) = 1)

and all other scalar products equal to zero. Then SU(h;) is a quasi split semi
simple group over Q: The elements ¢ € GI(V') for which

t= {t e = tiepst: fl — fiil; (t 1 eg — toeg with t(){o = 1)}

are the Q-valued points of a maximal torus 77 /Q C SU(hy). The vector space
V/L comes with a natural flag

F:={0}CLey C---CP®Ley®---®Le, C(Ley ®...Le, + Leg) C
(Ley®...Le, ® Leg® Lf,) C...(Ley®--- D Le, ®Leg®Lf, ®---DLfo) CV
(1.13)

Now the subgroup B;/Q C SU(h1)/Q which fixes F is a maximal solvable
subgroup in SU(hy).

1.1.4 The Lie-algebra

We need some basic facts about the Lie-algebras of algebraic groups.

For any algebraic group G/k we can consider its group of points with values
in kle] = k[X]/(X?). We have the homomorphism k[e] — k sending € to zero
and hence we get an exact sequence

0—g— G(kle])) — G(k) — 1.

The kernel g is a k-vector space, if the characteristic of k is zero, then its
dimension is equal to the dimension of G/k. It is denoted by g = Lie(G).

Let us consider the example of the group G = SO(f), where f: V xV — k
is a non degenerate symmetric bilinear form. In this case an element in G(k[e])
is of the form Id + €A, A € End(V) for which

F(Ad + eA)v, (Id + eAd)w) = f(v,w)
for all v,w € V. Taking into account that €2 = 0 we get
e(f(Av,w) + f(v, Aw)) = 0,

ie. A is skew with respect to the form, and g is the k-vector space of skew
endomorphisms. If we give V a basis and if f = 3 27 with respect to this basis
then this means the the matrix of A is skew symmetric.
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If we consider G = Gl,,/k then g = M, (k), the Lie-bracket is given by
(A,B)— AB — BA (1.14)
We have some kind of a standard basis for our Lie algebra
i=1 47,047

where H; (resp.E; ;) are the matrices

00 . 0 0 0 0 0 0 0 0
00 . 0 0 0 0 0 0 0 0
0 0 0 0 00 - 1 0
H=1o0 0 1 o0 o|l™PFi=|g0 0 0 o0 o0
00 0 ... .0 00 0 ... .0
00 0 0 0 0 00 0 0 0 0

and the only non zero entries (=1) is at (i,7) on the diagonal (resp. and (i, 7)
off the diagonal.)

For the group Sl,,/k the Lie-algebra is g(*) = {A € M, (k)| tr(4) = 0} and
again we have a standard basis

n—1
09 =@PkH - Hp)o @ kE:, (1.16)
i=1

1,5,i#]

If p : G — GI(V) is a rational representation of our group G/k then it is clear
from our considerations above that we have a ”derivative” of this representation

dp : g = Lie(G/k) — Lie(GI(V)) = End(V) (1.17)

this is k-linear.

Every group scheme G/k has a very special representation, this is the the
Adjoint representation. We observe that the group acts on itself by conjugation,
this is the morphism

Inn:Gx, G—= G

which on T valued points is given by
Inn(g1,92) = g192(g1) "
This action clearly induces a representation
Ad: G/k — Gl(g)

and this is the adjoint representation. This adjoint representation has a deriva-
tive and this is a homomorphism of k vector spaces

Dpag =ad:g— End(g).
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We introduce the notation: For 71,75 € g we put
[Tl, Tg] = ad(Tl)(Tg)
Now we can state the famous and fundamental result

Theorem 1.1.1. The map (T1,T2) — [T1, 1] is bilinear and antisymmetric. It
induces the structure of a Lie-algebra on g, i.e. we have the Jacobi identity

(T, [To, T5]] + (T2, T3, Th )] + [T, [Th, To]] = 0.

We do not prove this here. In the case G/k = GI(V) and Ty, T € Lie(GL(V)) =
End(V') we have [T1,T5] = T1To — ToT; and in this case the Jacobi Identity is
a well known identity.

On any Lie algebra we have a symmetric bilinear form (the Killing form)
B:gxg—k (1.18)
which is defined by the rule

B(Ty,T) = trace(ad(Ty) o ad(T»))

A simple computation shows that for the examples g = Lie(Gl,,) and g0 =
Lie(Sl,) we have

B(Tl,TQ) =2n tI‘(TlTQ) -2 tI‘(Tl) tI‘(Tg) (119)

we observe that in case that one of the T; is central, i.e.= uld we have B(T1,T3) =
0. In the case of g(») the second term is zero.

It is well known that a linear algebraic group is semi-simple if and only if
the Killing form B on its Lie algebra is non degenerate.

1.1.5 Structure of semisimple groups over R and the sym-
metric spaces

We need some information concerning the structure of the group Go. = G(R)
for semisimple groups over G/R. We will provide this information simply by
discussing a series of examples.

Of course the group G(R) is a topological group, actually it is even a Lie
group. This means it has a natural structure of a Co, -manifold with respect to
this structure. Instead of G(R) we will very often write Goo. Let G2 be the
connected component of the identity in Go,. It is an open subgroup of finite
index. We will discuss the

Theorem of E. Cartan: The group G2, always contains a maximal com-
pact subgroup K., C G% and all maximal compact subgroups are conjugate
under G%,. The quotient space X = G% /K, is again a Coo-manifold. It is dif-
feomorphic to an R and carries a Riemannian metric which is invariant under
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the operation of G from the left. It has sectional curvature < 0 and there-
fore any two points can be joined by a unique geodesic. The maximal compact
subgroup K C GY is connected and equal to its own normalizer. Therefore the
space X can be viewed as the space maximal compact subgroups in GY,.

For any maximal compact subgroup K, C G exists an unique automor-
phism ©, with ©2 = e such that K, = {g € G% |©(g) = g}, this is the
Cartan involution corresponding to K,. The Cartan involutions are in one-to
one correspondence with the maximal compact subgroups.

A Cartan involution ©, induces an involution also called ©, on the Lie
algebra gr of G, and we get a decomposition into + eigenspaces

where of course ¢, is the Lie algebra of K,. The differential of the action of
G on G(R)/K, provides an isomorphism D, : p, — T3 (then tangent space
at x). For V1,V5 € p, we have [V1,V3] € £, the map R : p, X p, — &, is the
curvature tensor. The R-vector space g. = & + v—1p, C g ®r C is a Lie
algebra, for Uy + /—1V1,Us + /—1Va € g. we get for the Lie-bracket

(U1 +V=1V1,Us + V=1V3] = [U1, Uz — [V1, Va] +V—=1([U1, Va] + [U2, V1)) € ge

To this Lie algebra g. corresponds an algebraic group G./R which is a R-form
of G/R, the group G.(R) is compact. The group G./R is called the compact
dual of G/R. On G./R we have only one Cartan involution © = Id.

This theorem is fundamental. To illustrate this theorem we consider a series
of examples:

The groups S1;(R) and Gl,(R):

The group Slgz(R) is connected. If K C Slg(R) is a closed compact subgroup,
then we can find a positive definite quadratic form

f:R" >R,

such that K C SO(f,R). since the group SO(f,R) itself is compact, we have
equality. Two such forms f1, fo define the same maximal compact subgroup if
there is a A > 0 in R such that Af; = fo. We say that f; and f2 are conformally
equivalent.

This is rather clear, if we believe the first assertion about the existence of f.
The existence of f is also easy to see if one believes in the theory of integration
on K. This theory provides a positive invariant integral

C(K) — R
w — /go(k)dk
K
with [ > 0 if ¢ > 0 and not identically zero (positivity), [ ¢(kko)dk =

[ p(kok)dk = [ ¢(k)dk (invariance).
To get our form f we start from any positive definite form fy on R™ and put

flz) = /K Jo(k)dk.
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A positive definite quadratic form on R™ is the same as a symmetric positive
definite bilinear form. Hence the space of positive definite forms is the same as
the space of positive definite symmetric matrices

X ={A=(a;) | A="A,A>0}.

Hence we can say that the space of maximal compact subgroups in Slg(R) is
given by
X = X/R%,.

It is easy to see that a maximal compact subgroup K C Sl;(R) is equal to its
own normalizer (why?). If we view X as the space of positive definite symmetric
matrices with determinant equal to one, then the action of Slz(R) on X =
Sli(R)/K is given by

(9,4) — g A'g,
and if we view it as the space of maximal compact subgroups, then the action
is conjugation.

There is still another interpretation of the points x € X. In our above inter-
pretation a point was a symmetric, positive definite bilinear form <, >, on R”
up to a homothety. From this we get a transposition g — ‘=g, which is defined
by the rule < gv,u >,=< v, gu >, and from this we get the involution

0,9~ (g)" (1.20)
Then the corresponding maximal compact subgroup is

Ky = {g € Sln(R)|O4(9) = g} (1.21)

This involution ©, is a Cartan involution, it also induces an involution also
called ©, on the Lie-algebra and it has the property that (See 1.18)

(u,v) — B(u,0,(v)) = Bo, (u,v) (1.22)

is negative definite. This bilinear form is K, invariant. All these Cartan invo-
lutions are conjugate.

If we work with Gl,(R) instead then we have some freedom to define the
symmetric space. In this case we have the non trivial center R* and it is
sometimes useful to define

X = GI,(R)/SO(R) - RZ,, (1.23)
then our symmetric space has two components, a point is pair (©,,€) where ¢
is an orientation. If we do not divide by RZ then we multiply the Riemannian
manifold X by a flat space and we get the above space X.

A Cartan involution on Gl,(R) is an involution which induces a Cartan
involution on Sl, (R) and which is trivial on the center.

Proposition 1.1.1. The Cartan involutions on Gl,,(R) are in one to one cor-
respondence to the euclidian metrics on R™ up to conformal equivalence.

Finally we recall the Iwasawa decomposition. Inside Gl,(R) we have the
standard Borel- subgroup B(R) of upper triangular matrices and it is well known
that

Gl,(R) = B(R) - SO(R) - R%, (1.24)

and hence we see that B(R) acts transitively on X.
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The compact dual of Sl,(R)

If G/R is a semi simple group, then G./R is a R-form of G/R. Therefore we
find a cohomology class & € H!C/(R, Aut(G)) corresponding to G.. It is clear
from the Theorem of Cartan how we get a cocycle representing this class: We
choose a Cartan involution © € Aut(G), the Galois group Gal(C/R) is cyclic of
order 2 let ¢ be the generator (the complex conjugation). Then ¢ — co© yields
a l-cocycle in C1( Gal(C/R), Aut(G)(C)). (Lemma 1.2.1 ) and this 1-cocycle
represents the class &..

This means for the group Sl,,/R that
Ge(R) = {g € SL.(O)le(‘g™") = g}
and if we go back to the usual notion and write c(g) = g then we get
Ge(R) = {g € 81,(C)['gg = 1d} = SU(n)

Here of course SU(n) = SU(h.) where h.(z1,22,...,2n) = Y .y 2% is the
standard positive definite hermitian form on C™.

We know that for G/R = Sl,,/R and n > 2 the Cartan involution © is the
generator of Aut(G)/Ad(G) and hence it is clear that . is not in the image of
H'C/(R,Ad(G)) — H'C/(R, Aut(G@)). This means that in this case G./R =
SU(n)/R is not an inner R -form of Sl, /R, in turn this also means that Sl,,/R
is not an inner R -form of SU(n)/R.

In this context the following general proposition is of importance

Proposition 1.1.2. A semi simple group scheme G/R is an inner R form of
its compact dual G./R if an only if

a) The Cartan involution © of G/R is an inner automorphism of G/R.

b) The group G/R has a compact mazimal torus T./R C G/R.

Give a name to this class of groups 7 Examples?

The Arakelow- Chevalley scheme (Gl,,/Z, ©)

We start from the free lattice L = Zey @ Zes @ - - - @ Ze,, and we think of Gl,,/Z
as the scheme of automorphism of this lattice. If we choose an euclidian metric
<, >on L®R, then we call the pair (L,< , >) an Arakelow vector bundle.
From the (conformal class of) metric we get a Cartan involution ©. on Gl,(R),
and the pair (Gl,,/Z, ©) is an Arakelow group scheme.

We may choose the standard euclidian metric with respect to the given basis,
ie. < e;,e; >= 0;;. The the resulting Cartan involution is the standard one:
B0 : g — (tg)~!. This pair (Gl,/Z, ) is called an Arakelow- Chevalley scheme.
(In a certain sense the integral structure of Gl,,/Z and the choice of the Cartan
involution are ”optimally adapted”)

In this case we find for our basis elements in (1.15)

B@o (HZ,HJ) = —277,61"]' + 2; B@o (Ei’j, Ek,l) = —2%(51"]65%1 (125)

hence the E; ; are part of an orthonormal basis.

We propose to call a pair (L,< , >,) an Arakelow vector bundle over
Spec(Z)U{oo} and (Gl,,, ©,) an Arakelow group scheme. The Arakelow vector
bundles modulo conformal equivalence are in one-to one correspondence with
the Arakelow group schemes of type Gl,.
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The group S1,(C)

We now consider the group G/R whose group of real points is G(R) = Sl;(C)
(see 1.1 example 4)).

A completely analogous argument as before shows that the maximal compact
subgroups are in one to one correspondence to the positive definite hermitian
forms on C™ (up to multiplication by a scalar). Hence we can identify the
space of maximal compact subgroup K C G(R) to the space of positive definite
hermitian matrices

X:{A|A:tZ, A>0, detAzl}.
The action of Sl;(C) by conjugation on the maximal compact subgroups becomes
A—gAlg

on the space of matrices.

The orthogonal group:

The next example we want to discuss is the orthogonal group of a non degenerate
quadratic form

2 2 2 2
f@y, .. xn) =27+ 4o, — T — - — T,

since at this moment we consider only groups over the real numbers, we may

assume that our form is of this type. In this case one has the usual notation

SO(f,R) = SO(m,n —m).

Of course we can use the same argument as before and see that for any maximal
compact subgroup K C SO(f,R) we may find a positive definite form

¥ :R" — R

such that K = SO(f,R) N SO(¥,R). But now we cannot take all forms 1, i.e.
only special forms 1) provide maximal compact subgroup.

We leave it to the reader to verify that any compact subgroup K fixes an
orthogonal decomposition R™ = V; @ V_ where our original form f is positive
definite on V and negative definite on V_. Then we can take a 1) which is equal
to f on V4 and equal to —f on V_.

Exercise 3 a) Let V/R be a finite dimensional vector space and let f be a symmetric
non degenerate form on V. Let K C SO(f) be a compact subgroup. If f is not definite
then the action of K on V is not irreducible.

b) We can find a K invariant decomposition V.= V_ @& V. such that f is negative
definite on V_ and positive definite on V.

In this case the structure of the quotient space G(R)/K is not so easy to
understand. We consider the special case of the form

242l —ak = (@1, Tag).
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We consider in R"*! the open subset
X_={v=(21...2p41) | flv) <0}.
It is clear that this set has two connected components, one of them is
Xt ={ve X_|zp >0}

Since it is known that SO(n, 1) acts transitively on the vectors of a given length,
we find that SO(n, 1) cannot be connected. Let GY C SO(n, 1) be the subgroup
leaving X invariant.

Now it is not to difficult to show that for any maximal compact subgroup
K C GY% we can find a ray R%-v C X which is fixed by K.

(Start from vy € X(_+) and show that RYjKwvg is a closed convex cone in

X", It is K invariant and has a ray which has a “centre of gravity” and this
is fixed under K.)

For a vector v = (z1,...,Zp41) € X(_+) we may normalize the coordinate
ZTp4+1 to be equal to one; then the rays Riov are in one to one correspondence
with the points of the ball

(o)

D,= {(I1,~-~,$n)|ﬂf%+...+xi< 1} Cx(_+).

This tells us that we can identify the set of maximal compact subgroups K C
GY, with the points of this ball. The first conclusion is that GY /K ~ D" is
topologically a cell (diffeomorphic to R™). Secondly we see that for a v € X
we have an orthogonal decompositon with respect to f

R™! = () + (v)",

and the corresponding maximal compact subgroup is the orthogonal group on
(v)*.
Give Cartan Involutions?

1.1.6  Special low dimensional cases
1) We consider the ( semi-simple ) group Sla(R). It acts on the upper half plane
H={z]2z€C,3(z) >0}

by

az+b a b
(9,2) — w1 g= (c d) € Slx(R).

It is clear that the stabiliser of the point i € H is the standard maximal compact

subgroup .
- - cosp  sing
Koo = 50(2) = { (— sing cos np) } ’

Hence we have H = Sl3(R)/K. But this quotient has been realized as the
space of symmetric positive definite 2 x 2-matrices with determinant equal to

one
Y1 1 2

r = —x7=1y1 >0,.

{<fc1 y2)|y1y2 o }
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It is clear how to find an isomorphism between these two explicit realizations.
The map
<y1 IE1> . Z‘JF=’171’
T1 Y2 Y2
is compatible with the action of Sly(R) on both sides and sends the identity
10 L
<O 1) to the point <.
If we start from a point z € H the corresponding metric is as follows: We
identify the lattices (1,2) = {a + bz | a,b € Z} = Q to the lattice Z?> C R?

by sending 1 — () and 2 — (). The standard euclidian metric on C =

1
R? induces a metric on Q C C, and this metric is transported to R? by the
identification Q ® R — R2.

We may also start from the (reductive) group Glz(R), it has the centre
C(R) = {(8 55)) }. Let C(R)(® be the connected component of the identity of

C(R).
In this case we define K., = SO(2) x C(R)(®. Then the quotient

Gl(R)/K =HUH_
where H_ is the lower half plane.

2) The two groups Sly(R) and PSIy(R)(®) = SIy(R)/{£Id} give rise to the
same symmetric space. The group PSla(R) acts on the space My(R) of 2 x 2-
matrices by conjugation (the group Gla(R) acts by conjugation and the centre
acts trivially) and leaves invariant the space

{A € My(R) | trace(A) = 0} = M(R).
On this three-dimensional space we have a symmetric quadratic form
B : M)R)—R

1
B : A~ B trace (A?)

and with respect to the basis

i (0 )= D= (5% ). am

this form is 22 + 23 — 22.

Hence we see that SO(MJ(R), B) = SO(2,1), and hence we have an isomor-
phism between PSly(R) and the connected component of the identity G C
SO(2,1). Hence we see that our symmetric space H = Sl5(R)/ K+ = PSl2(R)/K «
can also be realized (see ........ ) as disc

D = {(z1,22) | x? —l—x% <1}

where we normalized 3 = 1 on X(_+) asin ....... .
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The group Sl;(C)

Recall that in this case the symmetric space is given by the positive definite
hermitian matrices

A—{(yzl ;2) |det(A)—1,y1>0}.

In this case we have also a realization of the symmetric space as an upper half

space. We send
now w1
7 — | —,— | =(2,{) e CxR
(& 2= (20) =0 e xR

The inverse of this isomorphism is given by

0 (5 1)

As explained earlier, the action of Gla(C) on the maximal compact subgroup
given by conjugation yields the action

GR) x X — X,

(ga A) — gAtya

on the hermitian matrices. Translating this into the realization as an upper half
space yield the slightly scaring formula

GX(CXR>0)—>CXR>O,
(az +b) (cz +d) +ac¢? ¢ )

9 =0) = <(cz—|—d) (cz+d)+c@(? (cz+d) (cz +d) + ce ¢

1.3.4. The Riemannian metric: It was already mentioned in the state-
ment of the theorem of Cartan that we always have a G2, invariant Riemannian
metric on X. It is not to difficult to construct such a metric which in many
cases is rather canonical.

In the general case we observe that the maximal compact subgroup is the
stabilizer of the point zo = e+ K € G /K = X. Hence it acts on the tangent
space of zg, and we can construct a K-invariant positive definite quadratic form
on this tangent sapce. Then we use the action of G, on X to transport this
metric to an arbitrary point in X: If x € X we find a g so that x = gxg, it
defines an isomorphism between the tangent space at xy and the tangent space
at x. Hence we get a form on the tangent space at x, which will not depend on
the choice of g € GY..

In our examples this metric is always unique up to scalars.

a) In the case of the group Sl;(R) we may take as a base point o € X
the identity Id € Slz(R). The corresponding maximal compact subgroup is the
orthogonal group SO(n). The tangent space at Id is given by the space

Symg(R) = Tix
of symmetric matrices with trace zero. On this space we have the form

Z — trace(Z?),
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which is positive definite (a symmetric matrix has real eigenvalues). It is easy to
see that the orthogonal group acts on this tangent space by conjugation, hence
the form is invariant.

b) A similar argument applies to the group G, = Slz(C). Again the identity
Id is a nice positive definite hermitian matrix. The tangent space consists of
the hermitian matrices

Ty ={A|A="Aand tr(A) =0},
and the invariant form is given by
A — tr(AA).
¢) In the case of the group G C SO(f) where f is the quadratic form
f@1,. o mpqn) =27+ 42l —al .

We realized the symmetric space as the open ball

o

Dp={(z1,...,2n) |23 +.. . +22 <1}

The orthogonal group SO(n, 1) is the stabilizer of 0 €D,,, and hence it is clear
that the Riemannian metric has to be of the form

h(x? + ... 4 22)(de? +...da?)

n

(in the usual notation). A closer look shows that the metrics has to be

dz? + ... +d2?
VA —]

In our two low dimensional spacial examples the metric is easy to determine.
For the action of the group Sla(R) on the upper half plane H we observe that
for any point zg = x + iy € H the tangent vectors %|ZO, a%|ZO form a basis of
the tangent spaces at zg.

If we take zg = i then the stabilizer is the group SO(2) and for

o) ( cos ¢ sing0>'

—sing cosg

We have
0
e(yp) - (6 |Z> = cos 2y -
0 .
e(p) (ay |Z> =sin2¢p -

Hence we find that 8% |; and a@ |; have to be orthogonal and of the same length.
y

Now the matrix
T
0 1

0 _ 0
p |; + sin 2<pa—y |
0
oz

0
|i + cos way\
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sends ¢ into the point z = x + iy. It sends % |; and a% |; into y - 8% |. and

R a% |-, and hence we must have for our invariant metric

0 0 0 0 1 0 0 1
—_— —_— = 0 M —_— —_— = — —_— —_— = —
<ax |Z’ ay |Z> ’ <6$ |Z7 ax |Z> y2 ) <8y ‘27 ay |Z> y27
and this is in the usual notation the metric
1
ds® = E(de + dy?). (1.27)

A completely analogous argument yields the metric

1
ds® = a (d¢? + dx® + dy?) (1.28)

for the space Hj.

1.2  Arithmetic groups

If we have a linear algebraic group G/Q — GL,, we may consider the group
I' = G(Q)NGL,(Z). This is the first example of an arithmetic group. It has
the following fundamental property:

Proposition: The group I' is a discrete subgroup of the topological group
G(R).

This is rather easily reduced to the fact that Z is discrete in R. Actually our
construction provides a big family of arithmetic groups. For any integer m > 0
we have the homomorphism of reduction mod m, namely

GLn(Z) — GLyn(Z/mIZ).

The kernel GL,(Z)(m) of this homomorphism has finite index in GL,(Z)
and hence the intersection IV = GL,,(Z)(m) NT has finite index in T.

Definition 2.1.: A subgroup I' of T' is called a congruence subgroup, if we
can find an integer m such that

GL,(Z)(m)NT cT” CT.

At this point a remark is in order. We explained already that a linear
algebraic group G/Q may be embedded in different ways into different groups
GL,, ie.

— GLy,
G
— GL,,

In this case we may get two different congruence subgroups

Ty = G(Q) N GLy, (Z),T2 = G(Q) N GLn, (Z).
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It is not hard to show that in such a case we can find an m > 0 such that

I'hoIran GLn2 (Z)(m)
I's DI N GLn1 (Z) (m)

From this we conclude that the notion of congruence subgroup does not
depend on the way we realized the group G/Q as a subgroup in the general
linear group.

Now we may also define the notion of an arithmetic subgroup. A subgroup
I € G(Q) is called arithmetic if for any congruence subgroup I' C G(Q) the
group IV N T is of finite index in IV and I'. (We say that IV and I" are commen-
surable.) By definition all congruence subgroups are arithmetic subgroups.

The most prominent example of an arithmetic group is the group
I' =Sl (2).

Another example is obtained as follows. We defined for any number field K/Q
the group

G/Q = Rk q(Sla)

for which G(Q) = Sly(K). If Ok is the ring of integers in K, then I = Sl;(Ok)
(and also T' = GL,(Ok)) is a congruence (and hence arithmetic) subgroup of
G(Q).

It is very interesting that the groups I' = Sla(Z) and Sly(Ok) for imaginary
quadratic K/Q always contain arithmetic subgroups I'' C T which are not con-
gruence subgroups. This means that in general the class of arithmetic subgroups
is larger than the class of congruence subgroups. We will prove this assertion in
Non Congruence subgroups).

If only the group G(R) is given (as the group of real points of a group G/R
or perhaps only as a Lie group, then the notion of arithmetic group I' € G(R)
is not defined. The notion of an arithmetic subgroup I' C G(R) requires the
choice of a group scheme G/Q such that the group G(R) is the group of real
points of this group over Q. The exercise in 1.1.2. shows that different Q- forms
provide different arithmetic groups.

Exercise 2 If v € Gl,(Z) is a nontrivial torsion element and if v = Id mod m
then m =1 or m = 2. In the latter case the element vy is of order 2.

This implies that for m > 3 the congruence subgroup Gl,(Z)(m) of Gl,(Z) is
torsion free.

This implies of course that any arithmetic group has a subgroup of finite
index, which is torsion free.
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1.2.1 Affine group schemes over Z

There is a slightly more sophisticated view of arithmetic groups. In our book
[40] section 7.5.6 and on p. 50,51 we discuss briefly the general notion of a
group scheme over an arbitrary base scheme S. An affine group scheme over
G/Z is a finitely generated Z-algebra A(G) together with a comultiplication
m : A(G) —- A(G) ® A(G). For any Z -algebra B (commutative and with
identity) the comultiplication m induces a multiplication on the B-valued points

“m: Homgg(A, B) x Homyg(A, B) — Homye (A, B)

and the requirement is that this multiplication defines a group structure on
G(B) = Homaig(A, B). In educated language : G/Z is a functor from the
category of affine schemes into the category of groups.

For instance we can define the group scheme Gl,,/Z. The affine algebra is
A(Gln) = Z[Xll, Xlg, e ,le,“ )(217 e 7Xnn7 Y]/(Y det(Xij — 1)

Then the group Gl,,(Z) of Z-valued points of Gl,,/Z is our group Gl,(Z).
If G/Q c Gl,/Qis asubgroup, then the affine algebra A(G) = A(Gl,,)®Q/I,
where I is an ideal in A(Gl,,)®Q. Since G/Q is a subgroup this ideal must satisfy

mar, (I) C A(GL,) @ Q@I+ 1 ® A(Gl,) ® Q.

Let J = A(Gl,,) NI, then it is easy to check that the comultiplication of A(Gl,,)
satisfies
mai, (J) - A(Gln) @JS+J® A(Gln)

and this tells us that mqi, induces a comultiplication
m: A(Gl,)/J — A(Gl,)/J @ A(Gl,,)/J

which provides a group scheme structure. This means that we have extended
the group scheme G/Q to a group scheme over G/Z. The affine algebra A(G) =
A(Gl,,)/J. This extension depends on the choice of the embedding into Gl,,/Q
and it is called the flat extension. Then the base extension G xz Q = G/Q, this
base extension is called the generic fiber of G/Z.

We now may understand our arithmetic group I' = G(Q) N Gl,(Z) as the
group G(Z) of Z valued points of a group scheme over Z. Since we know what
G(Z/mZ) is we can define congruence subgroups 'y as inverse images of sub-
groups H C G(Z/mZ) under the projection G(Z) — G(Z/mZ).

There is the special class of semi-simple or reductive group schemes. Roughly
speaking an affine group scheme G/Z is semi-simple (resp. reductive) , if its
generic fiber G Xz Q is semi-simple (resp. reductive) and if for all primes p
the group scheme G xz F, ( the reduction mod p) is a semi-simple ((resp.
reductive)) group scheme over F,,.

Of course the simplest example of a semi-simple (resp. reductive) group
(scheme) over Z is the group Sl,,/Z (resp. G, /Z).

We can also construct semi-simple group-schemes by taking flat extensions
of orthogonal (resp. symplectic ) groups over Q, (see sectionl.2.1, example 2)
and 3). Here the symmetric (resp. alternating) form has to satisfy certain
arithmetic conditions (See chap4.pdf).
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1.2.2 I -modules

We consider modules M (i.e. abelian groups) with an action of T', (see [39],
Chap. 2). We want to discuss briefly discuss some special classes of such T'-
modules.

The most important classes of I'-modules are the modules of arithmetic
origin. To construct such modules we realise our arithmetic group as I' =
G(Q) N Gl,(Z). Then we take any rational representation p : G/Q — GI(V),
where V is a finite dimensional Q— vector space. Now we look for finitely
generated submodules M C V such that M ® Q = V which are invariant under
the action of I'. Such a module is a I'-module of arithmetic origin.

It is not to difficult to show that given any finitely generated module M’
which is a full sublattice, i.e. M’ ® Q =V, we can find a congruence subgroup
I'1 I such that Ty M’ = M’. Then

M= () M

~yel' /Ty

is a I' module (of arithmetic origin).

A second class of I' modules are those of congruence origin. To get such a
module we simply pick a congruence subgroup I'(N) C I' and then we simply
look at finitely generated abelian groups V' with an action of T'/T'(N) on V.

We get some important examples of I' modules of congruence origin if we
start from a I'-module M of arithmetic origin. Then we choose an integer N
and consider the I' module M ® Z/NZ. On this module T'(V) acts trivially,
hence this module is a I'/T'(N) module of congruence origin.

We go back to the more sophisticated point of view above, our arithmetic
group is the group I' = G(Z) of Z valued points of the flat extension G/Z.

Now we pick a torsion free finitely generated module M, we know what it
means that M is a G/Z module: It simply means that for any commutative ring
B with identity we have a B-linear action of G(B) on the B-module M ® B, or
in other words we have a homomorphism G(B) — Glp(M ®z B). Of course we
require that this action is functorial in B.

For this book -especially for the first half- the group scheme Gly/Z plays
a dominant role. In this case the irreducible representations of Gly xz Q are
well known. We consider the QQ vector space of homogenous polynomials in two
variables and of degree n

Mg :={P(X,Y)=> a,X"Y" ¥|a, € Q}. (1.29)
v=0
We choose an integer m define an action of Gly(Q):
a b a b\,
") POGY) = PaX + eV, bX +dY)det(( ], (1.30)

this gives us the Gly/Q-module M,, g[m].
But now it is easy to get Gly/Z-modules, we simply define

M, = {P(X,Y) = 3 a,X"Y"a, € Z} (1.31)
v=0
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and then we define the Gly/Z modules M,,[m] by the same formula as above.
If n is even we will sometimes with the module M[—%]. (See following remark).

At this point a small remark is in order. If look at M, [m] only as Gly(Z)-
module then the module "knows” what n is, clearly n = rank(M,,) — 1. But
this Glz(Z)- module does not "know” what m is. The only information we get

IS (_01 _01> P=(-1)"P

and from this we only get the value of m mod 2. But if we consider M,,[m] as
module for the group scheme Gly/Z then the module also knows the value of m

because then we know
(O‘ 0) P=amP
0 «

for any @ € R* in any commutative ring R with identity. If n is even we may
consider the module M, [—%], this is a module for PGly/Z = Glz/G,,.

In section 4.1.1 we discuss the corresponding situation for groups Glo(Z[v—d]).

1.2.3 The locally symmetric spaces

We start from a semisimple group G/Q. To this group we attached the the
group of real points G(R) = G. In G+, we have the connected component G,
of the identity and in this group we choose a maximal compact subgroup K.
The quotient space X = G,/K is a symmetric space which now may have sev-
eral connected components. On this space we have the action of an arithmetic
group I'.

We have a fundamental fact:
The action of T' on X is properly discontinuous, i.e. for any point x € X
there exists an open neighbourhood U, such that for all v € ' we have

YU, NU, =0 or ~vyz=uzx.
Moreover for all x € X the stabilizer
Iy ={y|yz =1}

is finite.

This is easy to see: If we consider the projection p : G(R) - G(R)/K = X,
then the inverse image p~!(U,) of a relatively compact neighbourhood U, of
x = gok is of the form Vi, - K, where V,, is a relatively compact neighbourhood
of go. Hence we look for the solutions of the equation

ywk =0k vy eT,v,v €V, k k' € K.

Since T is discrete in G(R) there are only finitely many possibilities for v and
they can be ruled out by shrinking U, with the exception of those v for which
vz = x. If yx = z this means that ygo K = goK and hence v € T’ ﬂgOKgO_1 this
intersection is a compact discrete set, hence finite.
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If T has no torsion then the projection
m: X —I\X

is locally a Coo-diffeomorphism. To any point # € '\ X and any point & € 71 (=)
we find a neighbourhood Uj; such that

m:Uz—U,.

Hence the space I'\ X inherits the Riemannian metric and the quotient space is
a locally symmetric space.

If our group I' has torsion, then a point £ € X may have a nontrivial
stabilizer I'z. Then it is not difficult to prove that & has a neighbourhood Ujz
which is invariant under I'; and that for all § € Uz the stabilizer I'j; C I';. This
gives us a diagram

Ug — F;;\U;; =U,

| |

X —F 5 T\X

i.e. the point € '\ X has a neighbourhood which is the quotient of a neigh-
bourhood Uz by a finite group.

In this case the quotient space I'\ X may have singularities. Such spaces are
called orbifolds. They have a natural stratification. Any point x defines a I'
conjugacy class [['z] of finite subgroups I'z C T'. On the other hand a conjugacy
class [c] of finite subgroups H C I' defines the (non empty ) subset (stratum)
I\ X ([c]) of those points € '\ X for which I'; € [c].

These strata are easy to describe. We observe that for any finite H C I' the
fixed point set X intersected with a connected component of X is contractible.
Let 29 € X be a point with I',, = H. Then any other point z € X is of the
form z = gxy with g € G(R). This implies that g € N(H)(R), where N(H) is
the normaliser of H, it is an algebraic subgroup. Then N(H)(R) N K = K is
compact subgroup, put I'! = ' N(H)(R), and we get an embedding

M\ X" r\Xx.

This space contains the open subset (T7\ X)) of those x where H € [['z]
and this is in fact the stratum attached to the conjugacy class of H.

We have an ordering on the set of conjugacy classes, we have [c1] < [eg] if
for any H; € [c1] there exists a subgroup Hy € [co] such that Hy C Hs. These
strata are not closed, the closure '\ X ([c]) is the union of lower dimensional
strata.

If we start investigating the stratification above we immediately hit upon
number theoretic problems. Let us pick a prime p and we consider the group
I' = S1,_1[Z] and the ring of p-th roots of unity Z[(,] as a Z-module is free of
rank p — 1 and hence we get an element

gp € SI(Z[CP]) = Slpfl(Z)
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and hence a cyclic subgroup of order p. But clearly we have many conjugacy
classes of elements of order p in I' because any ideal a is a free Z-module. If we
want to understand the conjugacy classes of elements of order p or the conjugacy
classes of cyclic subgroups of order p in Sl,,_1(Z) we need to understand the ideal
class group. In the next section we will discuss some simple examples.

These quotient spaces I'\ X attract the attention of various different kinds of
mathematicians. They provide interesting examples of Riemannian manifolds
and they are intensively studied from that point of view. On the other hand
number theoretic data enter into their construction. Hence any insight into the
structure of these spaces contains number theoretic information.

It is not difficult to see that any arithmetic group I' contains a normal
congruence subgroup I which does not have torsion. This can be deduced
easily from the exercise .... at the end of this section. Hence we see that I\ X
is a Riemannian manifold which is a finite cover of I'\X with covering group
['/T’. The following general theorem is due to Borel and Harish-Chandra:

The quotient T\ X always has finite volume with respect to the Riemannian
metric. The quotient space T\X is compact if and only if the group G/Q is
anisotropic.

We will give some further explanation below.

1.2.4 Low dimensional examples

We consider the action of the group I' = Sl3(Z) C Slo(R) on the upper half
plane
X=H={2|9(z) =y >0} =SL(R)/SO(2).

As we explained in .... we may consider the point z = x+1iy as a positive definite
euclidian metric on R? up to a positive scalar. We saw already that this metric
can be interpreted as the metric on C induced on the lattice Q@ = (1,z). The
action of Slo(Z) on the upper half plane corresponds to changing the basis 1, z
of Q into another basis and then normalizing the first vector of the new basis
to length equal one.

This means that under the action of Sly(Z) we may achieve that the first
vector 1 in the lattice is of shortest length. In other words 2 = (1, z) where now
|z| > 1.

Since we can change the basis by 1 — 1 and z — z 4+ n. We still have
|z + n| > 1. Hence see that this condition implies that we can move z by these
translation into the strip —1/2 < R(z) < 1/2 and since 1 is still the shortest
vector we end up in the classical fundamental domain:

F={z| -1/2 <R(z) <1/2,]2[ > 1} (1.32)

Two points z1, 29 € F are inequivalent under the action of Sl(Z) unless they
differ by a translation. i.e.

1 1
21:7§+it, 22121+1:§+it,
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or we have |z1| =1 and 23 = f%. Hence the quotient Slz(Z)\H is given by the

following picture

>

It turns out that this quotient is actually a Riemann surface, i.e. the finite
stabilizers at ¢ and p do not produce singularities. As a Riemann surface the
quotient is the complex plane or better the projective line P*(C) minus the point
at infinity.

It is clear that the points ¢ and p = +% + % —3 in the upper half plane are
-up to conjugation by an element vy € Sly(Z)- the only points with non-trivial
stabiliser . Actually the stabilisers are given by

= {5 9} {0 D))
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We denote the matrices
0 1 -1 1
s=(% o) m=( o)

The second example is given by the group I' = Sly(Z[i]) C Sl2(C) = G, =
Rc/r(Gla/C)(R) (See(1.1) . Here we should remember that the choice of G
allows a whole series of arithmetic groups. For any imaginary quadratic exten-
sion K = Q(v/—d) with O as its ring of integers we may embed K into C and
get

Sl(Ok) =T C G-

If the number d becomes larger then the structure of the group I' becomes
more and more complicated. We discuss only the simplest case.

We will construct a fundamental domain for the action of I' on the three-
dimensional hyperbolic space Hs = C x Ryy.

We identify H3 with the space of positive definite hermitian matrices

X ={AeM(C)| A=A, A>0,det(A) = 1}.

Q= 2z]i] - <(1)) +7[i) (2)

in C? and view A as a hermitian metric on C? where C/Q has volume 1. Let
ey = () be a vector of shortest length. We can find a second vector €; = ()

B
é

ideal domain. We consider the vectors e}, + ve] where v € Z[i]. We have

We consider the lattice

so that det : ) = 1. This argument is only valid because Z][i] is a principal

(eh +vel,eh +velya = {eh +ve: 1)V a+vie],eh)a+Tley, e))a + vi{e], e])a.

Since we have the the euclidean algorithm in Z[i] we can choose v such that

<e/17 6/1>A'

N | =

1
—§<€/1, eél> < Re<€/1, 6/2>A’ %<€/1, 6/2>A <
If we translate this to the action of Sly(Z[i]) on Hj then we find that every point
x = (z;¢) € Hj is equivalent to a point in the domain

F={(2:0) | — < Re(),3(2) < 552+ 2 2 1},

N =

Since we have still the action of the matrix (é _01) we even find a smaller

fundamental domain

F={(0] —% < Re(2),3(2) < 21274 ¢2 > 1 and Re(2) + S(2) > 0}

DN =

I want to discuss also the extension of our considerations to the case of the
reductive group Gla(C). In such a case we have to enlarge the maximal compact
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subgroup. In this case the group K = Sl (2)-C* = K -C* is a good choice
where C* is the centre of Gla(C). Then we get

Hj = Sly(C)/K = Gly(C)/K

i.e. we have still the same symmetric space. But the group I' = Gly(Z[i]) is still
larger. We have an exact sequence

1-T =T —={i"} > 1.
v 0
0 i) ( The centre Zr has

index 2 in Zf. Since the centre acts trivially on the symmetric space, hence the

The centre Zx of [ is given by the matrices {(

above fundamental domain will be “cut into two halfes” by the action of T the
SV
matrices (ZO ?) induce rotation of v -90° around the axis z = 0 and therefore
it becomes clear that the region
Fo={(2,¢) |0 < 3(2),Re(2) < 5,22+ (* > 1}

is a fundamental domain for T

The translations z — z + 1 and z — z + ¢ identify the opposite faces of F.
This induces an identification on Fj, namely

On the bottom of the domain Fp, namely
(1) ={(z¢) eR|z+ =1}
we have the further identification

(2,¢) — (i%, Q).

Hence we see that the quotient space f\Hg is given by the following figure.
I want to discuss the fixed points and the stabilizers of the fixed points of I.
Before I can do that, I need some simple facts concerning the structure of Gls.
The group Gly(K) acts upon the projective line P*(K) = (K2 \ {0})/K*.
We write
PYK) = (K)U{oc} ; K(ze; +e3) =x,Key = 0.

It is quite clear that the action of g = (: ?) € Glp(K) is given by

ar + f3

T = pompry £

The action of Glz(K) on P*(K) is transitive. For a point x € P!(K) the stabilizer
B, is clearly a linear subgroup of Gly/K. If x = oo, then this stabilizer is the

subgroup
a u
v 0))-
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w9}

It is clear that these subgroups B, are conjugate under the action of Gla(K).
They are in fact maximal solbable subgroups of Gls.

If we have two different points x1, 7o € P(K), then this corresponds to a
choice of a basis where the basis vectors are only determined up to scalars. Then
the intersection of the two groups By, N B, is a so-called maximal torus. If we
choose z1 = Kej, o = Kes, then

B, ={(5 )}

Any other maximal torus of the form B,,, B is conjugate to Ty under Gly(K).
Now we assume K = C. We compactify the three dimensional hyperbolic
space by adding P*(C) at infinity, i.e.

and for x = 0 we get

Hg‘—)ﬁg :H3UP1((C) :(CXRZ()U{OO}.

(The reader should verify that there is a natural topology on Hjs for which the
space is compact and for which Gly(C) acts continuously.)

Now let us assume that a € Glo(C) is an element which has a fixed point on
Hjs and which is not central. Since it lies in a maximal compact subgroup times
C* we see that this element a can be diagonalized

1 a 0 /
a—)goago = 0 ﬁ =a

with a # 8 and |a/8] = 1.
Then it is clear that the fixed point set for a’ is the line

Fix (a’) = {(0,¢) | ¢ € R},

i.e. we do not get an isolated fixed point but a full fixed line.
The element a’ has the two fixed points co, 0 in P}(C), and hence ist defines
the torus Tp(C). Then it is clear that

Fix(a') = {(0,¢) | ¢ > 0} = To(C) - (0,1)

i.e. the fixed point set is an orbit under the action of Ty(C).

1.2.5 Fixed point sets and stabilizers for Gly(Z[i]) =T

If we want to describe the stabilizers up to conjugation, we can focus our atten-
tion on Fj.

If we have an element v € I', 4 not central and if we assume that ~ has fixed
points on Hs, then we know that ~ defines a torus 7', = centralizerg, (v) =
stabilizer of z.,z,, € P*(C). This torus is defined over Q(i), but it is not
necessarily diagonalizable over Q(), it may be that the coordinates of x., z./
lie in a quadratic extension of F'/Q(i). This is the quadratic extension defined
by the eigenvalues of ~.
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We look at the edges of the fundamental domain Fy. We saw that they
consist of connected pieces of the straight lines

141
- 2 }a

and the circles (these circles are euclidean circles and geodesics for the hyperbolic
metric)

Di={(2,0)] 224+ =1,%(2) = Re(2)}, D2 = {(2,0) | 22+ % =1,3(2) = 0},

G ={(=0) 2 =0,G2 = {(5:0) | 2= 51,Gs = {(=.0) |

1
D3 ={(2,¢)| 22+ ¢* =1,Re(z) = 5}
The pair of points (o0, (29,0)) € P}(C) x P(C) has as its stabilizer

re=( )6 56 =0 %)

the straight line {(z9,¢) | ¢ > 0} is an orbit u nder T,,(C) and it consists of

fixed points for
T,.(C)(1) = {({g 20(56— a))

We can easily compute the pointwise stabilizer of G1, G2, G5 in I'. They are

{3 O){6 )

a/ﬁesl}.

o

where in the last case we have to take into account that W € Z|i] for
all v.
Hence modulo the centre Zj these stabilizers are cyclic groups of order 4, 2, 4.

The arcs D; are also pointwise fixed under the action of certain cyclic groups,

namely D, =Fix <((1) é))
porie (1)
b= (1)),

and we check easily that these arcs are geodesics joining the following points in
the boundary

D; runs from Vi to — Vi

D5 runs from i to — 1

1mi

Ds runs frome =¢6 =¢

fuxl
3

to p.
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The corresponding tori are

T =Stab(—1,1) = {(g f)}

Ty =Stab(—Vi,Vi) = {(g f‘)}

Ty =Stab(p, p) = {(5‘55 g) } .

The torus T4 splits over Q(4), the other two tori split over an quadratic extension
of Q(7).

Now it is not difficult anymore to describe the finite stabilizers and the
corresponding fixed point sets. If « € Hs for which the stabilizer is bigger than
Zy, then we can conjugate x into Fy. It is very easy to see that x cannot lie
in the interior of Fj because then we would get an identification of two points
nearby z and hence still in Fy under T.

If 2 is on one of the lines Dy, D5, D3 or on one of the arcs G, G2, G3 but not
on the intersection of two of them, then the stabilizer I'; is equal to Zf times
the cyclic group we attached to the line or the arc earlier. Finally we are left
with the three special points

zr12 =D1NDyNGL = {(07 1)}

T13 =D10D30G3:{<12ﬂ,\g§>}

1 V3
T3 _DQOngGg_{<2,\2[>}

In this case it is clear that the stabilizers are given by

O

1.2.6 Compactification of I'\ X

Our two special low dimensional examples show clearly that the quotient spaces
I'\ X are not compact in general. There exist various constructions to compactify
them.

If, for instance, I' C Sly(Z) is a subgroup of finite index, then the quotient
I'H is a Riemann surface. It can be embedded into a compact Riemann sur-
face by adding a finite number of points. this is a special case of a more general
theorem of Satake and Baily-Borel: If the symmetric space X is actually her-
mitian symmetric (this means it has a complex structure) then we have the
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structure of a quasi-projective variety on I'\X. This is the so-called Baily-Borel
compactification. It exists only under special circumstances.

I will discuss the process of compactification in some more detail for our
special low dimensional examples.

Compactification of Sly(Z)\H by adding points

Let I C Sl2(Z) be any subgroup of finite index. The group I" acts on the rational
projective line P1(Q). We add it to the upper half plane and form

H=HUP'(Q),

and we extend the action of T' to this space. Since the full group Sly(Z) acts

transitively on P*(Q) we find that I has only finitely many orbits on P*(Q).
Now we introduce a topology on H. We defined a system of neighbourhoods

of points £ =r € P}(Q). We define the Farey circles S (c, %) which touch the

real axis in the point 7 = p/q (p,q) = 1 and have the radius ﬁ. For c =1 we
get the picture

am

T ™ T
0 1

~1 _

N=
= A

Let us denote by D (c, %) = U o<er<eS (c’, g) the Farey disks. For ¢ — 0 these

Farey disks D (c, g) define a system of neighbourhoods of the point r = p/q.
The Farey disks at co € P}(Q) are given by the regions

D(T,0) ={2|3(z) > T}.
It is easy to check that an element v € Sly(Z) which sends oo € P1(Q) into the
point r = % sends D(T, 00) to D (%7 %). These Farey disks D(c,r) do not meet

provided we take ¢ < 1. The considerations in 1.6.1 imply that the complement
of the union of Farey disks is relatively compact modulo I', and since I' has
finitely many orbits on P(Q), we see easily that

Yr = I\B

is compact (which means of course also Hausdorff).

It is essential that the set of Farey circles D(c,r) and D (%, oo) is invariant
under the action of I on the one hand and decomposes into several connected
components (which are labeled by the point r € P(Q)) on the other hand.

Hence
\ U D(c,r) = U - \D(e,7;)
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where 7; is a set of representatives for the action of I' on P!(Q) and where T',.,
is the stabilizer of r; in T".

It is now clear that T, \ D(c, r;) is holomorphically equivalent to a punctured
disc and hence the above compactification is obtained by filling the point into
this punctured disc and this makes it clear that Yr is a Riemann surface.

BSC

1.2.7 The Borel-Serre compactification of Sl,(Z)\H

There is another construction of a compactification. We look at the disks D(c, r)
and divide them by the action of I',. For any point y € S(¢/,r) — {r} there
exists a unique geodesic joining r and y, passing orthogonally through S(c/,r)
and hitting the projective line in another point yo, ( = —1/4 in the picture
below)

I T I

0 1

o= 4

If r = oo, then this system of geodesics is given by the vertical lines {y - I + z |
x € R}.. This allows us to write the set

D(c,r) —{r} = Xeor X [c,0)

where X, = P1(R)—{r}. The stabilizer T, acts D(c,r) and on the right hand
side of the identification it acts on the first factor, the quotient I''\ X, is a
circle. Hence we can compactify the quotient

IL'\D(e,r) —{r} = I'\Xe,r X [c,0].

This gives us a second way to compactify I'\H, we apply this process to a finite
set of representatives of P*(Q) mod T
There is a slightly different way of looking at this. We may form the union

HU| X0, =H

and topologize it in such a way that
D(c,7) = Xoop X [¢,0) C Xoor X [c,0] (1.33)

is a local homeomorphism. Then we see that the compactification above is just
the quotient I'\H and the boundary is simply
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OM\H) =T\ |J Xeor (1.34)
reP(Q

This compactification is called the Borel-Serre compactification. Its relation
to the Baily-Borel is such that the latter is obtained by the former by collapsing
the circles at infinity to a point.

It is quite clear that a similar construction applies to the action of a group
I’ C Slx(Z][i]) on the three-dimensional hyperbolic space. The Farey circles will
be substituted by spheres S(c, ) which touch the complex plane {(z,0) | z €
C} C Hj in the point (,0),a € P1(Q(4)) and for o = oo the Farey sphere is
the horizontal plane S(oo, (o) = {(z,(o) | z € C). An element vy € T" which maps
(0,00) to o maps S(00,¢p) to S(c, ), where ¢ = 1/(p. For a given o we may
identify the different spheres if we vary ¢ and for any point a € P}(Q(i)) we
define X o = P1(C) \ {a}. Again we can identify

D(c, ) \{a} = Xoc.a X (0,¢] C D(c, @) \ {a} = O(I\H) = Xoo 0 < [0,¢]

The stabilizer T, acts on D(c, @) \ {a} and again this yields an action on the
first factor. If we choose a = oo then

I = {(g CC_Ll) |¢ root of unity,a € M}

where M, is a free rank 2 module in Z[i]. If { does not assume the value i then
I'oo\ X oo, 00 is a two-dimensional torus, a product of two circles. If ¢ assumes
the value ¢ then I'ao\ Xoo,00 is a two dimensional sphere. If course we get the
same result for an arbitrary a.

Then we get an action of the group I' on Hs = Hs U U D(c,a)\{a}

a€Pl(K)

and the quotient is compact.

The the set of orbits of I' on P*(Q(4)) is finite, these orbits are called the

Cusps.

class

1.2.8 The classical groups and their realisation as split
semi-simple group schemes over Spec(Z)

We will not discuss the general notion of a semi-simple group scheme over a
base S, instead we will discuss the examples of classical groups and explain the
main structure theorems in examples.

The group scheme Sl,,/ Spec(Z)

We consider a free module M of rang n over Spec(Z). We define the group
scheme SI(M)/ Spec(Z): for any Z algebra R we have SI(M)(R) = SI(M ®z R).
This is clearly a semi simple group scheme over Spec(Z) because :

a) The group scheme is smooth over Spec(Z)
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b) For any field k -which is of course a Z-algebra we have
SI(M) X gpec(z) Spec(k) = S(M ®z k)/ Spec(k)

and for any k this group scheme does not contain a normal subgroup scheme,
which is isomorphic to G%/ Spec(k) (hence it is reductive) and its center is a
finite group scheme.

If we fix a basis ey, ea, ..., e, then we get a split maximal torus T/ Spec(Z)
this is the sub group scheme which fixes the lines Ze;, with respect to this basis
we have

th 0 ... 0
0 tp ... 0

T(R) = { | e R J[ti=1 (1.35)
0 0 . 0 :
0 0 0 ¢t

With respect to this torus T'/ Spec(Z) we define root subgroups. This are
smooth subgroup schemes U C G which are isomorphic to the additive group
scheme G,/ Spec(Z) and which are normalized by T Tt is clear that these root
subgroups are given by

Tij - Ga — SI(M) (136)
1 0 0 O
0 1 0 O
ritr— |0 0 z 0 (1.37)
0 0 O -0
0 0 O 0 1

where the entry x is placed in the i-th row and j-th collumn. Let us denote
the image by U,,; .
Then we get the relation

trij(a)t ™ = 7i5((ti/t5)2)
(If T write such a relation then I always mean that ¢,z.. are elements in
T(R),G4(R)... for some unspecified Z— algebra R.)

The root system

The characters

to0 0
0 0 /
Qi . — t;/t
1o o . o0 !
0 0 0 ¢,
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are form the set A of roots in the character module of the torus. We may select
a subset of positive roots
AT = {Oél'j |Z<]}

Then the torus T and the U,,, with a;; C A™ stabilize the flag
F= (0) C Zey C Zey D Zes C --- C M.

The stabilizer of the flag is a smooth sub group scheme B/ Spec(Z). It is so-but
not entirely obvious- that B is a maximal solvable sub group scheme. These
maximal subgroup schemes are called Borel subgroups.

It is clear that the morphism

Tx [ Ua, — B,
a;;,i<j

which is induced by the multiplication is an isomorphism of schemes.

The set AT of positive roots contains the subset 7 C A of simple roots
a; = t;/t;+1. Every positive root can be written as a sum of simple roots with
positive coefficients.

We consider the normaliser N(T') C Sl,, it acts by permutations on the set
of submodules Ze;. The quotient N(T)/T = W is the Weyl group, in this case
it is isomorphic to the symmetric group S,. It is easy to see that we have a

positive definite, symmetric, W invariant bilinear form on X*(T") which is given
by

<o, >=2;< g, 0441 > —1, and < g, 5 >=01if |[i — j| > 1 (1.38)

All these data about the set of roots and simple roots are encoded in the
Dynkin diagram

An—l =0y — Q2 —rr— QOp_1 (139)

The flag variety

It is not so difficult to see that the flags form a projective scheme Gr/ Spec(Z).
From this it follows: For any Dedekind ring A and its quotient field K we have

Gr(K) = Gr(4).

If A is even a discrete valuation ring then we can show easily that the group
Sl (A) acts transitively on Gr(A).

The whole point is, that results of this type are true for arbitrary split semi
simple groups G/ Spec(Z). This is not so easy to explain and also much more
difficult to prove. But we have the series of so called classical groups and for
those these results are again easy to see. ( The main problem in the general
approach is that we have to start from an abstract definition of a semi simple
group and not from a group which is given to us in a rather explicit way like
Sl,, or the classical groups)
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The group scheme Sp,/ Spec(Z)

Now we choose again a free Z module M but we assume that we have a non
degenerate alternating pairing

<, >MxM—7Z

where non degenerate means: If x € M and < &, M >C aZ with some integer
a > 1, then z = ay with y € M. It is well known and also very easy to prove
that M is of even rank 2g and that we can find a basis

{ela"'aegafga"'vfl}

such that < e;, f; >= — < fi,e; >= 1 and all other values of the pairing on
basis elements are zero.

The automorphism group scheme of G = Aut((M, < . >)) is the symplectic
group Sp,/ Spec(Z). Again it is easy to find out how a maximal torus must
look like. With respect to our basis we can take

t1 0 0
0 0
o o ¢ 0
=g o ¢ = . |} (140
0 .0
0 !

We can say that the torus is the stabilser of the ordered collection of rank 2
submodules Ze;, Z f;. We can define a Borel subgroup B/Z which is the stabilizer
of the flag

F=0)CZerC---CZer-&®...Zeg Cley ... Zeg®LfgC---CM

(A flag starts with isotropic subspaces until we reach half the rank of the
module. But then this lower part of the flag determines the upper half, because
it is given by the orthogonal complements of the members in the lower half).

Again we can define the root subgroups (with respect to T')

rootsubgroupt, : G, — Uy C G (1.41)
which are normalized by T'. As before we have the relation
()t = 7(a(t)x), (1.42)

where o € A C X*(T).

Now it is not quite so easy to write down what these root subgroups are,
we write down the simple positive roots in the the case g = 2: We have the
maximal torus

v 0 0 0
0 t 0 O
T={o o 1 ol
0 0 0 ¢t
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and we want to find one-parameter subgroups U, C G which stabilize the flag.
The one parameter subgroups corresponding to the simple roots are

Tay t & — {e1 — e1,ea > eg + zeq, fa = fo, 1 = f1 —xfa}

Tas 1Y > {€1 > €1,e2 = €2, f2 = fo+yes, f1 = fi}
where oy (t) = t1/ta, az(t) = t3. The unipotent radical is then

1 =z v U
01 vy v—2ay
{ 0 0 1 —T }

0 0 0 1

From here it is not difficult to see that for all values of g the simple roots
are a(t) = t;/tiy1 with 1 < i < g and a4(t) = t2. Again we define the Weyl
group W as above, We have a W invariant positive definite, symmetric bilinear

form on X*(T) and for this form we have
<ag,o4 >=2fori < gand <oy, ay >=4, (1.43)
<ag, o4 >=—-1lifi<g—1and <oy_1,ay >= -2 ’

and all other values of the pairing between simple roots are zero.
Agin these data are encoded in the Dynkin diagram

Cphi=0q — g —--—<= a4
See [?]. We will see this Dynkin diagram for g = 3 at the end of this book.

As before it is not so difficult to show that the flags form a smooth projec-
tive scheme X/ Spec(Z) (see also [book], V.2.4.3). Show that for any discrete
valuation ring A the group G(A) acts transitively on X (A4) = X(K). It is also
easy to verify the statements in 1.1.

The group scheme SO(n,n)/ Spec(Z)

We can play the same game with symmetric forms. Let M together with its
basis as above, we replace g by n. But now we take the quadratic form F'

F:M—-Z
which is defined by

Flzier -+ anen + ynfn + - +y1f1) = szyz

and all other values of the pairing on basis elements are zero. We define the
group scheme of isomorphisms but in addition we require the the determinant
is one. Hence

SO(n,n)/ Spec(Z) = Aut(M, F,det = 1).

The maximal torus and the flags look pretty much the same as in the previous
case. But the set of roots looks different. For n = 2 the torus and the unipotent
radical are given by

t7 0 O 0 1 z y —ay
o w0 o0 o1 0 —y
=g o0 g o|PV=o o1 2|
0 0 0 ¢t 000 1
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The system of positive roots consists of two roots ay(t) = t1/ta, aa(t) =
t1ty. This is the Dynkin diagram A; x A; hence there exists a homomorphism
(isogeny) between group schemes over Spec(Z) :

Sly x Sly — SO(2,2).

It is an amusing exercise to write down this isogeny.
Another even more interesting excercise is the computation of the roots for
the torus (here n = 3)

tp 0 0 0 0 0
0 t2 0 0 0 0
0 0 ts 0 0 0
T={lo o o tz1 0 0 s (1.44)
0 0 0 0 t;' 0
00 0 0 o0 ¢t
In this case we have the root subgroups
1 2 000 0 1000 0 0
01 000 O 01 0 0 0
L 00100 0 L0010 0 0
Ta s P09 00010 0f ™" ]oo0o 01 -z 0
00001 —=z 0000 1 0
00000 1 0000 0 1
and
1 000 0 O
010z 0 0
L0010 —2 0
Tag = % 0001 0 O
0000 1 0
0000 0 1
where

al(t) = tl/tg, Oég(t) = tg/tg, Oég(t) = tgtg
Use the result of this computation to show that we have an isogeny

Sy — SO(3,3).

How can we give a linear algebra interpretation of this isogenies?
If we now consider the maximal torus (1.40) and put (1.44) into the middle
then we see that the simple roots are

a;(t) =t /tiyr fori=1,...n—1, and a,(t) = th_1t, (1.45)
which gives us the Dynkin diagram (wird noch korrigiert!)
Qp—1

Dn =1 — Q2 —rr—Qp_92 (146)
Qn
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The group scheme SO(n + 1,n)/ Spec(Z)

Of course we can also consider quadratic forms in an odd number of variables.
We take a free Z-module of rank 2n 4+ 1 with a basis

{61,...’6n7h7fn,...’f1}~
On this module we consider the quadratic form

F:M—=7Z

F(Z wie; + zh + Zyzfz) = Zﬂﬂzyz + 22
From this quadratic fom we get the bilinear form
B(u,v) = F(u+v) — F(u) — F(v).

We have the relation
F(u) =2B(u,u),

hence we can reconstruct the quadratic form from the bilinear form if we extend
Z to a larger ring where 2 is invertible.
We consider the automorphism scheme

G/ Spec(Z) = SO(n + 1,n)/ Spec(Z) = Aut(M, F,det = 1)/ Spec(Z)

and I claim that this is indeed a semi simple group scheme over Spec(Z). To
see this I strongly recommend to discuss the case n = 1.
We have of course the maximal torus

t
T={[0
0

S = O

t—l

It is also the stabiliser of the collection of three subspaces Ze, Zh,Zf, here we
use the determinant condition.
Now one has to discuss the root subgroups with respect to this torus.
From this we can derive that we have an isogeny

Sl, — SO(2,1)

It is also interesting to look at the case n = 2. In this case we can compare
the root systems of Sp, and SO(3,2) they are isomorphic. Now it is a general
theorem in the theory of split semi simple group schemes that the root system
determines the group scheme up to isogeny. Hence we we should be able to
construct an isogeny between Sp, and SO(3,2). Who can do it?

For an arbitrary value of n we get the Dynkin diagram

Bn = Qg — Qo — = => Oy (147)
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The element wy.

Finally we have a short look at the automorphism groups of the Dynkin dia-
grams.

For the Dynkin diagram of type A the group of automorphisms is trivial
if n =1 and for n > 1 the group of automorphism is Z/27Z , the non trivial
element € exchanges the roots «; and a,_1_;.

For the diagrams B,,, C,, the automorphism group is trivial,

For the Dynkin diagram D,, and n > 4 the group of automorphisms is Z/27Z
and the non trivial automorphism e fixes the simple roots a; with 1 <7 <n—2
and interchanges o, _1, a,.

For n = 4 the automorphism group is the symmetric group S3 and it acts
by permutations on the three simple roots a1, as, ay.

The Weyl group W = N(T')/T acts simply transitively on the set of Borel
subgroups B’ D T. Hence there is a unique element wg € W which sends our
Borel subgroup B into its opposite B~ this is the group whose simple roots are
the roots —qy;.

If the automorphism group of the Dynkin diagram is trivial we have wy = —1,
i.e. it ats by multiplication by —1 on X*(T).

For the diagram A, and n > 1 the element wg = —e and therefore not equal
to —1.

For the diagram D,, the element wy = —1 if n is even and equal to —e if n
is odd.

The element wqy will play an important role later in this book.

The dominant fundamental weights

The Weyl group W = N(T')/T acts by conjugation on the character module
X*(T) and there a positive definite symmetric bilinear form <, >: X*(T') x
X*(T) — Q which is invariant invariant under this action.. The Weyl group is
generated by the reflections

2 <y, >

and this implies that 252:%2 € 7. Of course we have o; € X*(T) for all simple

roots, the sublattice @Zaz it is of finite index in X*(T). To this sublattice
belongs a torus 7! and an isogeny v : T — T®d) . The kernel ker(t) = pu is
the centre of our group scheme G/Z and the quotient G/ = G is the adjoint

group.
In X*(T) ® Q we have the elements ~; which are defined by

2 < y,04 >

=8; ; 1.49
< aj,a; > J ( )

these elements are dominant fundamental weights. The lattice €D Z; contains
X*(T) as a sublattice of finite index. It provides a torus TG and an isogeny
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by : T — T. This torus is the maximal torus in a semi simple group scheme
G((9) /7, which admits an isogeny

PGB - G (1.50)

whose kernel is ker(i;) € T®9). The group G©9/Z is the simply connected
cover of G/ Spec(Z).

The abstract group G©° (k)

We want to show that the abstract group G (k) is generated by the groups
Ua (k).

For any root o we can consider the two root subgroups U,,U_,. It is easy
to see -at least in our examples above - that these root subgroups generate a
subgroup H, C G, this is the smallest subgroup which contains U,, U_. This
subgroup is either PSl; or Sly. Then 7@ = H, NT is a maximal torus in H,.

If our group G = G(G°) is simply connected then H, = Sly and we define
define the coroot oV € X,(T¢9)) by a¥ : G,, = T and < a¥,a >= 2. We
have the relation < a¥,~; >=§; ; and this implies that the ;" form a basis of
X, (T©9). This in turn implies that the map given by multiplication

m: Haiv(((}m) s 7o), (1.51)

is an isomorphism.

Now it is easy to see that for any field k the abstract group Sla (k) is generated
by the two root subgroups U, (k), U_, (k). Combined with the observation above
this implies that that 70¢)(k) is contained in the subgroup which is generated
by the subgroups Uy, (k),U_q, (k). Now we recall the Bruhat decomposition.
The unipotent radical U, of B is equal to the product Uy = [],ca+ Ua and
the same holds for U- [[,ca- Ua. The Bruhat decomposition tells us that the
multiplication m : U_ x T®%) x U, — G provides an isomorphism of the left
hand side with an Zariski-open V C G, ( this is the Big Cell). This means that
we get a bijection

U_(k) x T®) (k) x Uy (k) =5 V(k). (1.52)
Our previous arguments imply that V(k) lies in the subgroup generated by the
U, (k). But then it is clear that G (k) is generated by the U, (k).

1.2.9 k-forms of algebraic groups

For the following concepts and results on Galois cohomology we also refer to
[77] and [90].

Exercise: 1) Consider the following two quadratic forms over Q:
f(l’,y,Z) = £E2 +y2 _22 9 fl(xay,z) = .’E2 +y2 _322'

Prove that the first form is isotropic. This means there exists a vector (a,b, c) € Q3\ {0}
with
f(a,b,c) =0.
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Show that the second form is anisotropic, i.e. it has no such vector.

2) Prove that the two linear algebraic group G/Q = SO(f)/Q and G1/Q =
SO(f1)/Q cannot be isomorphic. (Hint: This is not so easy since we did not define
when two groups are isomorphic.)

Here is some advice: In general we call an element e # u € G(Q) unipotent if it is
unipotent in Gl,,(Q) where we consider G/Q — Gl,,/Q. It turns out that this notion
of unipotence does not depend on the embedding.

Now it is possible to show that our first group G(Q) = SO(f)(Q) has unipotent
elements, and G1(Q) does not. Hence these two groups cannot be isomorphic.

3) Prove that the two algebraic groups G Xg R and G1 xg R are isomorphic, and
therefore the two groups G(R) and G1(R) are isomorphic.

In this example we see, that we may have two groups G/k, G1/k which are
not isomorphic but which become isomorphic over some extension L/k. Then
we say that the groups are k-forms of each other. To determine the different
forms of a given group G/k is sometimes difficult one has to use the concepts of
Galois cohomology. For a separable normal extension L/k we have the almost
tautological description

G(k) ={g € G(L)|o(g) = g for all elements in the Galois group Gal(L/k)}.

Now let we can consider the functor Aut(G) : It attaches to any field exten-
sion L/k the group of automorphisms Aut(G)(L) of the algebraic group G x, L.
We denote this action by g — o(g) = g°. Note that this notation gives us the
rule g7 = (¢7)?. A l-cocycle of Gal(L/k) with values in Aut(G) is a map
¢: 0+ ¢, € Aut(G)(L) which satisfies the cocycle rule

Cor = CoC2 (1.53)
Now we define a new action of Gal(L/k) on G(L): An element o acts by

—1
g cs9°c,

We define a new algebraic group G;/k: For any extension FE/k we have an
action of Gal(L/k) on E ®;, L and we put

Gi(BE)={g € G(E®k L)lg=cog’c;'} (1.54)

For the trivial cocycle o — 1 this gives us back the original group.
It is plausible and in fact not very difficult to show that £ — G;(FE) is in
fact represented by an algebraic group G /k. This group is clearly a k-form of

G/kWe can define an equivalence relation on the set of cocycles, we say that
{o ot ~{o—d}
if and only if we can find a a € G(L) such that
¢ =atc,a” for all o € Gal(L/k)

We define H'(L/k, Aut(G)) as the set of 1-cocycles modulo this equivalence
relation. If we have a larger normal separable extension L’ D L D k then we get
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an inclusion H'(L/k, Aut(G)) — H'(L'/k, Aut(Q)). If k, is a separable closure
of k we can form the limit over all finite extensions k C L C ks and put

H* (ks /k, Aut(G)) = li_r>nH1(L/k, Aut(G))

This set is isomorphic to the set of isomorphism classes of k-forms of G/k.

If L/k is a cyclic extension and if 0 € Gal(/k) is a generator, then a cocycle
c¢: Gal(L/k) — Aut(G)(L) is determined by its value g = ¢(o) € Aut(G)(L).
But we have to satisfy the cocycle relation. We have a useful little

Lemma 1.2.1. The assigment o — c¢(o) = g provides a 1-cocycle if and only

if
n—1

Norm(g) =g¢°...¢° =1d

and
H'( Gal(L/k, Aut(G)(L)) = {g € Aut(G)(L)| Norm(g) = Id}/hgh™° ~ g}.

Proof. Straightforward calculation O

We may apply the same concepts in a slightly different situation. A k—
algebra D over the field k is called a central simple algebra, if it has a unit
element # 0, if it is finite dimensional over k, if its centre is k (embedded via
the unit element) and if it has no non trivial two sided ideals. It is a classical
theorem, that such an algebra over a separably closed field kg is isomorphic to
a full matrix algebra M, (ks). Hence we can say that over an arbitrary field k
any central simple algebra of dimension n? is a k-forms of M, (k).

For any algebraic group G/k we may consider the adjoint group Ad(G), this
is the quotient of G/k by its center. It can be shown, that this is again an
algebraic group over k. It is clear that we have an embedding

Ad(G) — Aut(G)
which for any g € Ad(G)(L) is given by
g {x— g zg}.
A Ek-form G1/k of a group G/k is called an inner k-form, if it is in the image of
H (ks /k,Ad(G)) — H"(ks/k, Aut(Q)).

We call a semi simple group G/k anisotropic , if it does not contain a non
trivial split torus (See exercise in (1.2.9)) In our example below the group of
elements of norm 1 is always semi simple and anisotropic if and only if D(a,b)
is a field.

I want to give an example, we consider the algebraic group Glz/Q we con-
sider two integers a, b # 0, for simplicity we assume that b is not a square. Then
we have the quadratic extension L = (@(\/5), let o be its non trivial automor-

phism. The element <? 8

s gheom (0 8)o (Y 6)

defines the inner automorphism
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of the group Glz, Then o — Ad( (? 8)) and Idgaiz/k) = Idaus( gy is a
1-cocycle and we get a Q form of our group.

Hence we get a Q form G; = G(a,b)/Q of our group Gly. It is an inner
form.

Now we can see easily that group of rational points of our above group
G(a,b)(Q) is the multiplicative group of a central simple algebra D(a,b)/Q. To
get this algebra we consider the algebra Ms(L) of (2,2)-matrices over L. We
define

D(a,b) = {& € My(L)|z = Ad((? g))x"Ad(G g>)1}. (1.55)

We have an embedding of the field L into this algebra, which is given by

HuO
v 0 u?

Let u, the image of v/b under this map. We also have the element u, = <(1) g)

in this algebra.
Now I leave it as an exercise to the reader that as a Q vector space

D(a, b) = Q 2] Qub @ Qua 3] @uaub

We have the relation u2 = a,u? = b, uqup = —uptg.

Of course we should ask ourselves: When is D(a, b) split, this means isomor-
phic to M>(Q)? To answer this question we consider the norm homomorphism,
which is defined by

THYyup+2ug Fwaguy = (2+yup+2ugFwagup) (T —yup— 2ug—waguy) = 2 —y*b—2z%a+w3ab.
It is easy to see that D(a,b) splits if and only if we can find a non zero element
whose norm is zero.
If we do this over R as base field and if we take a = —1,b = —1 then we get
the Hamiltonian quaternions, which is non split.
We may also look at the p-adic completions @, of our field. Then it is not
difficult to see that D(a,b) splits over Q, if p # 2 and p | ab. Hence it is clear
that there is only a finite number of primes p for which D(a,b) does not split.
If we consider R as completion at the infinite place, and the Q, as the com-
pletions at the finite places, then we have

The algebra D(a,b) splits if and only if it splits at all places. The number of
places where it does not split is always even.

The first assertion is the so called Hasse-Minkowski principle, the second
assertion is essentially equivalent to the quadratic reciprocity law.
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Construction of division algebras and anisotropic groups

We give some indication how to construct anisotropic groups over Q ( or even
overn any number field). We choose a cyclic extension L/Q of degree n and we
pick a number a € Q*, let A(a) € Gl,(Q) be the following matrix

01 0 ... 0
00 1 ... 0

Ala) = S (1.56)
00 .. 0 1

a 0 0 0 O

Let 0 € Gal(L/Q) be a generator then ¢” — A(a)” mod G, is a homomor-
phism from Gal(L/Q) to PGL,(Q) and since A(a) € Gl,(Q) this is also a
1-cocycle ¢ : Gal(L/K) — PGl,(Q) := {o¥ — A(a)"}. It defines a cohomology
class [A(a)] € HY(L/Q, Ad(Gl,) and hence an inner Q-form G/Q of Gl,,/Q. In
Galois cohomology we have the boundary map

§: HY(L/Q,Ad(Gl,) — H*(L/Q,G) = Q* /Ny o(LX)

and it is clear that
6([A(a)]) = a € Q*/Np (L)

Now it is well known that the Q -form G/Q of Gl,,/Q is anisotropic if and only
if the class a € Q* /Ny o(L*) is an element of order n. We know from algebraic
number theory that there are infinitely many primes p which are inert, i.e. p is
unramified in L and the prime ideal (p) stays prime in the ring of integers Oy,.
Then it easy to see that the order of p € Q* /Ny o(L*) is n. Hence we see that
the set of isomorphism classes of anisotropic Q forms of Gl,,/Q is abundant.

Obviously the group M, (Q)* = Gl,,((Q) and we also know that any auto-
morphism of M, ((Q)* is inner, hence Aut(M,(Q)) = PGI,(Q) Therefore the
isomorphism classes of (Q-forms of M, (Q) are equal to the set H'(Q,PGlL,).
Such a Q-form D/Q is a central simple algebra over Q. The central simple
algebra D defined by the class [A(a)] can be described explicitly:

It contains the field L/Q as a maximal commutative subalgebra and it is
generated by L and another element a, € D which satisfies the following rela-

tions
n

-1 _ . —
Vo € L we have a,za, =o(x); al =a

If we modify a, and put a/, = a,y with y € L™ then the first relation still holds
and the second relation becomes (a,)" = aNp g(y). Hence the isomorphism
class of D is determined by the class a € Q* /Ny o(L*). It is easy to see that
for a = 1 the central simple algebra is equal to the endomorphism ring of the
Q vector space L/Q. (This is the linear independence of the elements o” in

End(L/Q).)

1.2.10 Quasisplit Q-forms

We recall that a semi-simple group G/Q is quasisplit, if contains a Borel sub-
group B/Q. This Borel subgroup contains its unipotent radical U/Q and a max-
imal torus 7'/Q. Two such maximal tori T'/Q, T1 /Q are conjugate by an element
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u € U(Q). Let Go/Q by a split group which is a Q-form of G/Q. We pick a max-
imal split torus 7p/Q and a Borel By/Q D Tp/Q. Then we see that the triple
(G,B,T)/Q is a Q-form of (Go, By, Tp)/Q. Hence it can by constructed from a
1-cocycle representing a cohomology class ¢ € H'(Q, Aut(((Go, Bo,Tp))), where
of course Aut(((Go, By, Tp)) is the subgroup of Aut(Gg) which fixes Ty, By. Ob-
viously we have an exact sequence

1 T8 =5 Aut(((Go, Bo, Tv)) — Autext((Go, Bo, Tp)) — 1, (1.57)

here Autext((Gy, Bo,Tp)) is the very ”small” group of automorphisms of the
Dynkin diagram ®. This is also the subgroup of Aut(X*(Tp)) which leaves
the set AT of positive roots invariant. We could say Autext((Go, Bo,Tp)) =
Aut(X*(Tp), AT))

It is well known- and easy to see in the examples of classical groups- that

this sequence has a section sg : Autext((Go, Bo,To)) — Aut((Go, Bo,Tp)) and
this gives us a map in Galois cohomology

58 HY(Q, Autext((Go, Bo, Tp)) = Hom( Gal(Q/Q), Autext((Go, Bo, Tp))

— HYQ, Autext((Go))
(1.58)

Hence we see that the isomorphism classes of quasisplit Q -forms of Go/Q are
given homomorphisms 1 : Gal(Q/Q) — Autext((Gp). The maximal torus
T/Q C B/Q is not split (unless G/Q is spilt). Hence there is a finite nor-
mal extension Fy/Q such that T xg Fy splits, we assume that Fp/Q is min-
imal. ie. Gal(FpQ) C Aut(X*(T xq Fy),AT). We see that a quasisplit
form of Go/Q is given by a finite normal extension Fy/Q and a injection
¥ Gal(Fy/Q) — Aut(X*(Tp), AT).

In the special case Go/Q = Sl,,/Q with Ty/Q, By/Q being the standard
diagonal torus and the standard Borel subgroup of upper triangular matrices
this looks as follows: We have the element

o o o0 ... 1
0o 0 ... 1 0

wo = SR € S1,(Q) (1.59)
o 1 ... 0 O

£ 0 0 0 O

this element wy conjugates By into its opposite B the group of lower triangular
matrices. The standard Cartan involution © : g —! ¢! does the same and
therefore the composition Ad(wg) o © is an automorphism of Go/Q which fixes
By, Tp. It is an outer automorphism if n > 3 and gives us the non trivial element
of Autext(Gp). Hence we get a 1-cocycle if choose a quadratic extension L/Q
and send the non trivial element in Gal(L/Q) to Ad(wyg) o O.

We leave it an exercise to the reader to show the the Q form obtained from
this cocycle (cohomology class) is isomorphic to the above group SU(h;)/Q.

An important class of quasi split groups is given by the groups G/Q =
Rp,/0(Go) where Fy/Q is a finite extension of Q and Go/Fj is a split group. If
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By/Fy C Gy is a Borel subgroup then B = Rp, ,o(By) is a Borel subgroup in
G/Q. Let F D Fy be a normal closure of Fy then

GxogF= [[ Goxm.F (1.60)
v.Fo—F

where ¢ runs over the set ¥ of maps from Fy to F. The Galois group acts on the
product via the action on 3.

1.2.11 The Borel-Serre compactification, reduction theory
of arithmetic groups

This section could be skipped in a first reading. For the particular groups Sly/Q
or Sly(Z[v/—d) this compactification has been discussed in detail in the previous
sections. A reader who is interested in the specific applications to number theory
which will be discussed in the following chapters 2-5 only needs the results from
section 1.2.7.

The Borel-Serre compactification works in complete generality for any semi-
simple or reductive group G/Q. To explain it, we need the notion of a parabolic
subgroup of G/Q.

A subgroup P/Q — G/Q is parabolic if the quotient variety in the sense of
algebraic geometry is a projective variety. We mentioned already earlier that
for the group Gly/Q we have an action of Gly on the projective line P! and
the stabilizers B, of the points z € P(Q) are the so-called Borel subgroups of
Glp/Q. They are maximal solvable subgroups and

Gly/B, = P!,

hence they are also parabolic.

More generally we get parabolic subgroups of Gl,,/Q, if we choose a flag on
the vector space V =Q" = Qe; & - -- & Qe,. This is an increasing sequence of
subspaces

F:0)={0)}=VwcWVicWhcCc...CcV,=V.

The stabilizer P of such a flag is always a parabolic subgroup; the quotient
space
G /P = Variety of all flags of the given type,

where the type of the flag is the sequence of the dimensions n; = dim V.
These flag varieties (the Grassmannians ) are smooth projective schemes
over Spec(Z) and this implies that any flag F is induced by a flag

Fz:(0)={(0)}=LoCcLiCLyC...CLy=L=2Z" (1.61)

where L; = V; N L, and of course L; ® Q = V;. This is the elementary fact which
will be used later.

If our group G/Q is the orthogonal group of a quadratic form

n
flx1,...,xn) = Zaix?
i=1
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with a; € K*. Then we have to replace the flags by sequences of subspaces
F:0CW, CW,... CcWsg cWi-cV,

where the W; are isotropic spaces for the form f,i.e. f| W; =0, and where the
Wi are the orthogonal complements of the subspaces. Again the stabilizers of
these flags are the parabolic subgroups defined over Q.

Especially, if the form f is anisotropic over Q, i.e. there is no non-zero
vector z € K™ with f(z) = 0, then the group G/Q does not have any parabolic
subgroup over Q. This equivalent to the fact that G(Q) does not have unipotent
elements.

These parabolic subgroups always have a unipotent radical Up which is
always the subgroup which acts trivially on the successive quotients of the flag.
The unipotent radical is a normal subgroup, the quotient P/Up = M is a
reductive group again, it is called the Levi-quotient of P.

We go back to the group Gl,,/Q. It contains the standard maximal torus
whose R valued points are

t 0 0
0 to 0
To(R) ={t= . | ti € R*} (1.62)
00 . 0
0 0 0 ¢t

It is a subgroup of the Borel subgroup (maximal solvable subgroup or minimal
parabolic subgroup) whose R-valued points are

tl U2 --- Ul,n
O tQ “ee u27n
Bo(R) = {b= . | LeRY (1.63)
0 0 - Un—1,n
0 0 0 tn

and its unipotent radical Uy consists of those b € By where all the t; = 1. This
unipotent radical contains the one dimensional root subgroups

1 0 0 0
0 1 0 O
Ui,j = { 0 0 z 0 },l‘ €R (164)
0 0 O 0
0 0 O 0 1

where ¢ < j, these one dimensional subgroups are isomorphic to the one di-
mensional additive group G,. They are normalized by the torus, for an element
t € T(R) and z; ; € U; j(R) = R we have

twi it =t )tz ;. (1.65)

Fori=1,...,n,j=1,...,n,9# j (resp. i < J ) the characters «; ;(t) =
t;/t; are called the roots (resp. positive roots) of Ty in Gl,. We denote these
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systems of roots by AGl» (resp)Afl". The one dimensional subgroups U; j,7 # j
are called the root subgroups.
Inside the set of positive roots we have the set of simple roots

7T=7TG1" = {0&1,2,...,ai7i+1,...,an_17n} (166)

If we pass to the semi-simple subgroup Sl,,/Q then the torus and the Borel-

subgroup has to be replaced by To(l), B(()l), where we have [[, ¢; = 1. The system

Gl Sl

of roots does not change, we have 7 = 7= =7
We change the notation slightly, for ¢ = 1,...,n — 1 we define oy := v i11
then for i < j we get oy j =a; + ... -1, and 7 = {o, 0, . .., 1}

The Borel subgroup By is the stabilizer of the ”complete” flag

{0} CQe1 CQey Qe C - CQe; ®Qea @ -+ @ Qey, (1.67)
the parabolic subgroups Py D By are the stabilizers of ”partial” flags

{0} CQe1®---®Qep, CQe1 &---&Qep, ®Qepy41® - B Qepygn, C--- CQ™
(1.68)

The parabolic subgroup P also acts on the direct sum of the successive quotients

(Qel DD QeTh) @(Qenﬁ-l S D Qeﬂﬁ‘nz) @ s (169)

and this yields a homomorphism
rp, - Py — My = Glnl X G1n2 X .. (170)

hence M, is the Levi quotient of Fy. By definition the unipotent radical Up, of

Py is the kernel of rg. The semi-simole component will be Mél) = S, XS, x. ..
A parabolic subgroups Py D By defines a subset

APO = {ai,j S AGI" | Ui,j C Po}
and the set decomposes int two sets
AMO = {OLiJ | Ui,j and Uj,i C APO}; AUPO = APO \AMO. (171)

Glp,

Intersecting this decomposition with the set 7' yields a disjoint decomposition

7Cln = gMo y 7U (1.72)
where 7V = {an,, Qny 1nys - - -, }- In turn any such decomposition of 7G yields
a well defined parabolic Py D By. We define the index of a parabolic subgroup

this is the number d(P) = #7V. The proper maximal parabolic subgroups are
the ones with d(P) = 1.

If we choose another maximal split torus 77 and a Borel subgroup B; D T
then this amounts to the choice of a second ordered basis vy, vs,...,v, the v;
are given up to a non zero scalar factor. We can find a g € Gl,,(Q) which maps
€1,€a,...,e, to v1,Va,...,v,, and hence we can conjugate the pair (By,Tp) to
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(B1,T1) and hence the parabolic subgroups containing By into the parabolic
subgroups containing B;. The conjugating element g also identifies

i1y, Bo.11,8, + X (To) — X*(T1)

and this identification does not depend on the choice of the conjugating element
g. This allows us to identify the two set of positive simple roots 7» C X*(Tp)
and 7 C X*(T1). Eventually we can speak of the set 7 of simple roots of Gl,,.
Hence we have the fundamental fact

The Gl,,(Q) conjugacy classes of parabolic subgroups P/Q are in one to one
correspondence with the subsets ' = w™. Then number of elements in 7\ 7’ =
U is called the rank of P, the set 7' is called the type of P.

We will denote the unipotent radical of P by Up and the the reductive
quotient of P by Up will be denoted by Mp = P/Up. Then ' = 7Mr. We will
also use a slightly different notation: If P is given then we we also use U(= Up)
for the unipotent radical and M = P/U for the reductive quotient.

We formulated this result for Gl,,/Q but we can replace Q by any field k
and Gl,, by any reductive group G/k. We have to define the system of relative
simple positive roots 7¢ for any G /k (See [B-T]).

The group G/k itself is also a parabolic subgroup it corresponds to 7’ = .
We decide that we do not like it and hence we consider only proper parabolic
subgroups P # G, i.e. ©' # (). We can define the Grassmann variety Grl™1 of
parabolic subgroups of type 7’ This is a smooth projective variety and Grl™] (Q)
is the set of parabolic subgroups of type 7’.

There is always a unique minimal conjugacy class it corresponds to 7’ = {).
(In our examples this minimal class is given by the maximal flags, i.e. those
flags where the dimension of the subspaces increases by one at each step (until
we reach a maximal isotropic space in the case of an orthogonal group)). The
(proper) maximal parabolic subgroups are those for which 7’ = 7\ {a;}, i.e.
7V = {a;}

For any parabolic subgroup P/Q C G/Q we consider the character module
X*(P) :== Hom(P/Q,G,,). Since we do not have any non trivial homomor-
phisms from the unipotent Up to G, we have Hom(P/Q,G,,) = Hom(Mp, G,,).

The reductive quotient Mp = M 1(31) - C'p where Cp is the central torus und
M }(31) the semi-simple part ( the derived group). The quotient Mp/M g) =Cp
is a torus and Cp — C’% is an isogeny. Hence we have

Hom(P/Q,G,,) ® Q = Hom(Mp,G,,) ® Q = Hom(Cp,G,,) ® Q = Hom(Cp,G,,) @ Q
(1.73)

For a maximal parabolic subgroup P of type n’ = {«;} we consider the mod-
ule Hom(P,G,,)®Q C X*(T)®Q. Of course it always contains the determinant
and

Hom(P, Gyn) @ Q = Qy; & Qdet
where ~; is

v=t

%i(t) = ([ tv) det(t) /™. (1.74)

v=1
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These ~; are called the dominant fundamental weights.

If our maximal parabolic subgroup is P/Q is defined as the stabilizer of a
flag 0 ¢ W C V = Qm, then the unipotent radical is U = Hom(V/W,W).
An element y € P(Q) induces linear maps yw, yy,w and hence Ad(y) on U =
Hom(V/W,W). We get a character vp(y) = det(Ad(y)) € Hom(P,G,,) which
is called the sum of the positive roots. An easy computation shows that

ny; =yp (1.75)

We add points at infinity to our symmetric space: We consider the disjoint
union Urnrg GrI™1(Q) and form the space

X=xuJ a(.
' #£0
This is the analogue of or H U P!(Q) in our first example, it is now more
complicated because we have several Grassmannians, and we also have maps

T e GT(Q) = GrI™(Q) if 7y © 7.

Our first aim is to put a topology on this space such that I'\X becomes a
compact Hausdorff space.

In our first example we interpreted the Farey circle D (c, %) with0<e<1
as an open subset of points in H, which are close to the point g, but far away
from any other point in P}(Q).

The point of reduction theory is that for any parabolic P € Gr[”/]((@) (here
we also allow P = () we will define open sets

X (cp,ren) C X (1.76)

which depend on certain parameters c_,,7(c)» The points in XF(c ., 7(c,/))
should be viewed as the points, which are ”very close” to the parabolic subgroup
P (controlled by ¢,,) but "keep a certain distance” (controlled by r(c,/)) to the
parabolic subgroups Q p P. They are the analogues of the Farey circles. We
will see:

a)This system of open sets is invariant under the action Gl,(Z)

b) For P = G the set X%(), o) is relatively compact modulo the action of
Gl,.(Z).

¢) Any subgroup I' C Gl,,(Z) has only finitely many orbits on any Grl™] (Q)

d) For a suitable choice of the the parameters ¢, and 7(c,/) we have :

X = UXP(QW/,T‘(CTF/)) = X%(0,r0) U U X" (e r(car))
P P:Pproper

and if P and P; are conjugate and P # P; then X7 (c_,,7(c,.) )N X1 (c..,(c,/))
0.
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Let us assume that we have constructed such a system of open sets, then c)
and d) impliy that for a given type 7’ we have

F\ U XP(QTFI’T(QTF/)) = U]‘—‘Pi\XPi(g‘fr’?r(gw’))

P:type(n’)=n

where {... ...} = %(m,T) is a set of representatives of Grl™1(Q) modulo the
action of F and Fp1 =T'nNPF(Q).

This tells us that we have a covering

NX =D\X°W,r)u | |J Tr\XP(crr(cn)) (1.77)

740 PES(n!,T)

The philosophy of reduction theory is that T\X%((,r¢) is relatively compact
and that we have an explicit description of the sets Tp\XT (c,,,r(c./)) as fiber
bundles with nil manifolds as fiber over the locally symmetric spaces T pr\X™M.

We give the definition of the sets X (c,.,,r(c,/)). We stick to the case that
G =Gl,/Qand ' C Ty = Gl,(Z) is a (congruence) subgroup of finite index.
We defined the positive definite bilinear form (See 1.22)

~ 1
Be =3, Bo, :gr xgr =+ R
n

x

and we have the identification gr — TéG (R), and hence we get a euclidian metric
on the tangent space T, o ®) at the identity e. This extends to a left invariant
Riemannian metric on G(R), we denote it by dg,s?. Hence we get a volume
form d°z on any closed subgroup H(R) C G(R).

voly

For any point € X and any parabolic subgroup P/Q with unipotent radical
U/Q) we define

pp(P,x) = voly®= (I'y N U(R))\U(R)) (1.78)

_ For the Arakelow-Chevalley scheme (Gl,/Z,0¢) See(1.1.5) we have that
Be,(E; ;) = 1. We have by construction

Ui j(Z)\Ui;(R) =R/Z (1.79)
and under this identification F; ; maps to 8%' Hence we get

d®

voly, , (Uig (Z)\Uij(R)) = 1
and from this we get immediately

Proposition 1.2.1. For any parabolic subgroup Py containing the torus Ty we
have

pp(FPo,0) =1
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Let (L, <, >,) be an Arakelow vector bundle and (Gl,,, ©,) the correspond-
ing Arakelow group scheme (of type Gl,, ) let

]:Z:(O):{(O)}:LOCLlCLQC...CLk:L:Zn

be a flag and P/Z the corresponding parabolic subgroup. Then we have the
homomorphism

i=k
rp: P/ Spec(Z) — M/Z = [ [ GI(L;/Li_) (1.80)
i=1

with kernel Up/Z. The metric <, >, on L ® R yields an orthogonal decompo-
sition

i=k

LR = @Li/LH ®R

i=1
and hence an Arakelow bundle structure (L;/L;_1,(0,);) for all i, and therefore
an Arakelow group scheme structure on M /Z.

Hence we get

Proposition 1.2.2. If (Gl,,0) is an Arakelow group scheme then © induces
an Arakelow group scheme structure ©™ on any reductive quotient M = P/U.

Definition : A pair (Gl,/Z,0) is called stable (resp. semi stable) if for
any proper parabolic subgroup P/Q C Gl,,/Q we have

pp(P,0) > 1 (1.81)

In our example in (1.2.6) the stable points are those outside the union of the
closed Farey circles.

To get a better understanding of these numbers we have to do some com-
putations with roots and weights. Let us start from an Arakelow vector bundle
(L =74 <, >) and let us assume that L is equipped with a complete flag

Fo={0)}=LoC Ly C---CL4g1CLyg (1.82)

which defines a Borel subgroup B/Z. The quotients (L;/L;,—1,< , >;) are
Arakelow line bundles over Z or in a less sophisticated language they are free
modules of rank one and the generating vector €; has a length /< €;,€; >;. This
length is of course also the volume of (L;/L;—1 @ R)/(L;/L;_1).
The unipotent radical U/Z C B/Z has a filtration {(0)} C V1 C ..., Vy-1)/2-1 C

Via(n—1)/2 = U by normal subgroups, the successive quotients are isomorphic to

G, and the torus T = B/U acts by a positive root «; ; and this is a one to

one correspondence between the subquotients and the positive roots. Then it is
clear: If v corresponds to (i,7) then

(Vy/Vis1,0,) = (Li/Li—1,< , >i) @ (Lj/Lj_1,<, >;)"". (1.83)

Moreover the quotients (V,,/V,1+1,0,) depend only on the conformal class
of <, > and hence only on the resulting Cartan involution ©.
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The unipotent subgroup U/Z contains the one parameter subgroup U; ;/Z
and this one parameter subgroup maps isomorphically to (V,,/V,+1). Hence our
construction defines the Arakelow line bundle (U; ;, ©; ;).

If we now define nq, ;(B,z) = vole, ;(U; ;(R)/U; ;(Z)) then it is clear that

pp(B,z) = Hnai‘j(B,x) (1.84)

i<y

If P O B then its unipotent radical Up C U and we defined the set AU? as
the set of positive roots for which U; ; C Up. Then we have

pp(Bx)= [ 7., (B.2) (1.85)

Here it is important to notice the right hand side does not depend on the choice
of BCP.
We follow a convention and put 2pp = Z(i_j)eAUP o j so that pp is the half

sum of positive roots in in the unipotent radical. Formula (1.75) tells us that
for any maximal parabolic subgroup F;,

2pp,, = Z Q5 = NYig- (186)

i<io,j 2i0+1

For any v =Y a;i41 ® z; € X*(T') ® C we define the homomorphism

7 T(R) = C* o] = ¢ = [ [l (8)] (1.87)

Since the numbers n, ; (B, ) are positive real numbers we define for any

J

ny(B,z) = 1:[ Nev (B, ). (1.88)

Here we see that the second argument is a Borel-subgroup B. But if the above
character v : B(R) — RZ extends to a character v : P(R) — RZ, then we can
define

ny (P, z) = n(B,x)

and this number only depends on P and not on the Borel subgroup B C P.
The characters in v € X*(T) for which |y| extend to P(R)are exactly the lin-
ear combinations (See (1.90) below) v = > v ;vi. The characters yp =
Zai cxv Ti7Yi Where the r; > 0 are rational numbers. Let P; be the maximal
parabolic subgroup of type 7 \ {a;} containing P then the above formula im-
plies that

pe(Px)= [[ n.(P2) = T[ pe(Poa)™ (1.89)

a;ent a;enV

This tells us
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The Arakelow scheme (G, /Z,©) is stable if for all maximal parabolic sub-
groups pp,(Fi, ©) = n,, (P, 0)" > 1.

We need a few more formulas relating roots and weights. For any parabolic
subgroup we have the division of the set of simple roots into two parts

x=7aMuntr,
This induces a splitting of the character module
X*NeQ= P Qo P Qv (1.90)
a,emM a;enUP

where 7; is the dominant fundamental weight attached to «; (See (1.74)).
If now a; € wVP then we can project «; to the second component, this
projection

of =ait+ Y cio (1.91)
a,enM
Here an elementary - but not completely trivial - computation shows that

Ciw >0 (1.92)

Since of € & P
is defined.

vp Q; these characters extend to P(R) and hence n,r (P, x)

a; ET
We state the two fundamental theorems of reduction theory
Theorem 1.2.1. For any Arakelow group scheme (Gl,,,©,) we can find a Borel

subgroup B C Gl,, for which

2
Ne,; (B,0,) = ng, (B, z) < 7 foralli=1,...,n—1

V3

Theorem 1.2.2. For any Arakelow group scheme (Gl,,0) we can find a a
unique parabolic subgroup P such that for all o; € TP we have

nor(P,©) < 1 and the reductive quotient (M,0M) is semi stable.

The first theorem is due to Minkowski, the second theorem is proved in [Stu],
[Gray].

This parabolic subgroup is called the canonical destabilizing group. We
denote it by P(z), if (G,z) is semi stable then P(x) = G. This gives us a
dissection of X into the subsets

X = U XPl={ze X |P(z)=P} (1.93)
P: parabolic subgroups of G/Q

Clearly vX[P1 = XP77'1if we divide by the group I the we get

nx= |[J rpx® (1.94)
PePar(T")
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where Par (') is a set of representatives of I' conjugacy classes of parabolic
subgroups of Gl,,/Q. This is a decomposition of I'\X into a disjoint union of
subsets. The subset I'\X[¢!n] is compact, it is the set of semi stable pairs
(z,Gl,), the subsets T'p\ X!l for P # G are in a certain sense ”open in some
directions” and ”closed in some other direction”. Therefore this decomposition
is not so useful for the study of cohomology groups.

Do remedy this we introduce larger subsets. For a real number 7,0 < r < 1

we define
XC(r) = {2 € X[ n,, (P(x),2) > r, for all « € 77P®). (1.95)

It contains the set of semi-stable (Gl,,x) If we choose r < 1 but close to one
then some of the elements in X %! (r) may be unstable but only a ”little bit ”.

Together with the first theorem this has a consequence

Proposition 1.2.3. The quotient XCn(r) = T\X G (r) is relatively compact
open subset of I\ X, It contains the set of semi-stable (Gl,,z).

We start from a parabolic subgroup P and let M = P/Up be its Levi-
quotient. Our considerations above also apply to M/Q. The group P(R) acts
transitively on X and we put (See (1.80))

XM = Up(R)\X and let gp; : X — XM be the projection ,

here XM = M(R)/KM where K is the image of P(R) N Ko, in M(R). Let
S C M be the maximal split torus in the center of M then we define

xMY = MR)/EM . SO(R) (1.96)

where of course S(°)(R) is the connected component of the identity of S(R), For
a simple roots o € 7, a Borel subgroup B C M/Q and a point M = qu ()
we can define the numbers n, (B, 2™) essentially in the same way as before and
clearly

ne(B,z™M) = ny (B, x)
if B is the inverse image of B.

We have to be a little bit careful with the numbers pg (Q, ™) because the
for the inverse image () the unipotent radical Ug is larger than Ug. Therefore
we have to look at the dominant fundamental weights v € @aiewM Qa;, and

M in terms of these vM :

formulate the stability condition for x
The point 2™ is stable, if for all a; € T the inequality Ny M (P, M) > 1
holds. Again we denote the destabilizing group by P(x™).

Hence we see that for a number r); < 1 we can define regions

XM(ry) = {$M|nvg{ (Py,,z™) > 73 whenever P,, > P(z™)} (1.97)

We choose numbers 0 < ¢p < 1, furthermore we choose a number r(cp) < 1
and define

*XP(cp,r(cp)) = {z]| nor(P,z) < cp for all a € 7V7;2M € XM (r(cp))}
(1.98)
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Proposition 1.2.4. For a given r(cp) < 1 we can find numbers cp such that
that for any = € *X ¥ (cp,r(cp)) the destabilising parabolic subgroup P(z) C P.
The same is true in the other direction: For a given 0 < cp < 1 we can findr < 1
such that for x € *X % (cp,r)) the destabilising parabolic subgroup P(z) C P.

To see this we have to look at the destabilising subgroup Q C (M, zy/). Its
inverse image (Q C P is a parabolic subgroup of Gl,. The reductive quotient
(M, xy;) of Q is semi- stable. We want to show that @ is the destabilising
parabolic of (Gl,, z). We have to show that

nee(Q,r) <1V ac e =gV7yrle,

For a € 7Y@ this is true by definition. For o € 77 we have

o =a+ Z o B and a9 = a + Z an 53,

pent ﬂ’ETrM

where a, s > 0. The roots 3 € 7U@ can be expressed in terms of the BQ = B9

BO=B+ Y ajup (1.99)
ﬁ/Gﬂ'M
and hence
a®=a" - 3" aapB+ > capB. (1.100)
BEﬂUQ ,B’GWM

The last sum is zero because a?, a’, 39 are orthogonal to the module D Zp .
We get the relation

nqe (Qvi) = NP (Pafv) : H nge (Qym)_aa’ﬂ. (1101)

BGﬂUQ
Now it comes down to show that
ngr(P,z) < co, ¥V a € 7P and nge(Q,z) >r, VB € nYa
(1.102)

= nee(Pz) < 1;Vaenlr

This is certainly true if either the ¢, are small enough or if r is sufficiently close
to one. In this case we say that (cp,r) is well chosen.
Therefore we define

XP(cp,r(cp)) = {z € * X" (cp,r(cp))|P(z) C P} (1.103)
we have X (cp,r(cp)) = * X (cp,r(cp)), if (cp,r(cp)) is well chosen.
We claim that we can find a family of parameters

(' ] (va T(CP))a s )P: parabolic over Q
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where (cp,r(cp)) only depend on the type of P, such that we get a covering
COV

X = UXP(Cp,r(CP))) (1.104)
P
and hence
N\X =D\ JXP(cp,r(cp)) = |J Tp\X"(cp,r(cp))
P PePar(T")

We change the notation slightly, since these numbers only depend on the type
7/ = M = t(P) we replace cp by ¢, and 7(cp) by r(ca).

To prove the claim we choose a number 0 < ¢y < 1. In this case rq = r(cg)
can be any number. Then we choose a number 0 < r; < ¢y. For any 7; = {a;}
we choose a ¢, < 1 such that (cg,,r1) is well chosen. We continue and chose
0 < ry < ¢, for all ¢ and for any two element subset J C 7 we choose numbers
0 < ¢y < 1 such that (cy,r2) is well chosen. This goes until we reach top
parabolic.

Now we get a covering of X by the open sets X (c.,7(r)). To see this we
pick a point =z € X, we have to show that it lies in at least one of the sets
XP(ep,r(cp)). If it is not in X! (r,_;) then we find a maximal parabolic P;
such that ng, (P, ) < ¢r\(a;}. We project = to the point zi € XM If this
point is in XMi(r,_5) then z € X% (€m\{a;}>Tn—2) and we are done. If not we
apply our argument above to ™ and 7' = 7\ {a;}. We continue the same
reasoning and at latest it stops for 7’ = ().

We have a very explicit description of these sets I'p\ X (cp/,7(cqr)). We
consider the evaluation map

nTup - FP\XP(CW, ’I“(Cﬂ-/)) — HO&EWUP (0, Ca)

(1.105)
T (""no&P(va)a"')OLGﬂ'UP
Of course we also have the homomorphism
™7 | PR) = {...,|a"],.. . Yaemy, (1.106)

and the multiplication by an element y € P(R) induces an isomorphisms of
the fibers

(n™r) " Hey) == (n™Ur) " ey) if |a™VP|(y) -1 = co

where the multiplication is taken componentwise. This identification depends
on the choice of y.

To get a canonical identification we use the geodesic action which is intro-
duced in the paper by Borel and Serre. We define an action of A = (][] RZ,)
on X. This action depends on P and we denote it by

aem\n’

(a,z) »aex (1.107)
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A point z € X defines a Cartan involution ©, and then the parabolic sub-
group PO+ of G x R is opposite to P x R and P x RN P®* = M, is a Levi
factor, the projection P — M induces an isomorphism

G M xR =5 M,. (1.108)
The character o™ induces an isomorphism
5p 0 A5 S, (R)©

where S, is the maximal Hence we S, (R)(® is the connected component of the
identity of the center M, (R) N Sl,(R) and we put

aex=s,(a)x

We have to verify that this is indeed an action. This is clear because for the
Cartan-involution ©,,, we obviously have

PO = pOuee,

It is also clear that this action commutes with the action of P(R) on X
because
ysz(a)r = syz(a)yz for all y € P(R),z € X.

It follows from the construction that the semigroup A_ ={...,a,,...}- where
0 < a, <1 - acts via the geodesic action on X (c,,7(c,,)) and that fora € A_
we get an isomorphism

(™ ") er) > (0P ) Yacy).

This yields a decomposition

Up\_
XP(earyr(e)) = (07 ) 7 (eo) x [ (0,cal
aen’
where ¢g is an arbitrary point in the product.
Since we know that |o™ | is trivial on I'p and since the action of P commutes
with the geodesic action we conclude

Pp\X P (crr,7(cer)) = TP\(m™) " (c0) x [] (0, ¢a] (1.109)

aen’

Let PO(R) = ker(Ja™r|) then the fiber (n™)~(co) is a homogenous space
under P(M(R). We have the symmetric space X attached to M, to be precise
this is

XM = MR)/Ky

We have the projection map pp s : X — XM where XM is the space of Cartan
involutions on the reductive quotient M. Hence we get a map

Prar =ppar x 07 X = XM x T](0,ca (1.110)

aem’
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The geodesic action only acts on the second factor of the product X x
[Ioer(0,ca] , the map Pp s commutes with the geodesic action.

The group Up(R) acts simply transitively on the fibers of this projection,
and hence

qpP,M * Lp\X " (¢, 7(crr)) = T\ XM (r(cp)) x H (0, cal (1.111)

aemn’

is a fiber bundle with fiber isomorphic T'yy\U (R). If we pick a point Ty \ XM (r(cp)) x
[Iocr(0,cq] then the identification of q;,IM() with Ty \U(R) depends on the
choice of a point & € X ¥ (cyr,7(c,,)) which maps to z.

This can now be compactified, we define the closure

TP\XP(car,r(cp) :=Tp\(n™ ") Heo) x [ 10,en], (1.112)
aemg\T
and
O p\XP (crr, Q) =Tp\XF (crr, 0r) \ TR\ X (Cr, Q) (1.113)

this is equal to

OTP\XP (cr,1(cp) = Tp\(n™ ") (eo) x O[] [0, ¢x))

verg\m™

where of course (][, e\ ~[0: ¢x]) C I, crg\[0s cx] is the subset where at least
one of the coordinates is equal to zero.

We form the disjoint union of of these boundaries over the m and set of
representatives of ' conjugacy classes, this is a compact space. Now there is
still a minor technical point. If we have two parabolic subgroups Q C P then
the intersection X% (cp,7(cp) N XQ(QQ, (cq)) # 0. If we now have points

z € O p\XP(cr,r(cp),y € L \XC(cr,(cpr)

then we identify these two points if we have a sequence of points {z, }nen which
lies in the intersection X (¢, 7(cp))NX?(crr,7(cp)) and which converges to x
in Tp\XP(cr,r(cp) and to y in T\ X?(crr, r(cps). A careful inspection shows
that this provides an equivalence relation ~, and we define

orM\X)=|J Orp\XP(ca,r(cp)/ ~ (1.114)

!/, PEPar(T")

and the Borel-Serre compactification will be the manifold with corners

X =T\(XU |J XPleoricp). (1.115)
P:Pproper
We define a ”tubular” neighbourhood of the boundary we put
NO\X) =T\ |J XPle.riep) (1.116)

P:Pproper
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and then we define the ”punctured tubular” neighbourhood as

NOX) =1\ |J XPlerlep) =D\XNNIT\X)  (L117)

P:Pproper

Eventually we want to use the above covering as a tool to understand co-
homology (See section 8.1.9) ) For this it is also necessary to understand the
intersections

XP (e, (e, NN - N X (cry,r(c,)) (1.118)

=y =7y

Our proposition 1.2.4 implies that for any point = in the intersection the desta-
bilizing parabolic subgroup P(z) C P, N---N Py. Hence we see that the above
intersection can only be non empty if Q = Py N---N Py is a parabolic subgroup.
Then 7Y@ = Uk_ 7UP | Let M be the reductive quotient of Q.

Now we look at the product [], . .ve
identify it - using the logarithm - with R%e:

RZ,, here it seems to be helpful to

log: [[ R%, >R (1.119)
aer?Q
We consider the map

N@ : XPl(cmm(gm))ﬁ~~~ﬂXPk(c7rk,r(gﬂk)) — Rie

(1.120)
N9 : 20 (..., —log(nee(Q,x)),. .. )a@erlo

Consider a point x € X" (cx,,7(c, ), for a € 7V we have
- IOg(naPV (PV’ .’E)) 2= log(cﬂ'u>

We can express — log(ng,r, (P,,r)) as a linear combination of the — log(nqe (Q, ),
with @ € 7Y@, This means that the root a € 7UP defines a half space H, («)
in R% and N9(x) C Hf(a) in R,

Now we assume that z is in the intersection (1.118). For the roots a €
7\ 7VPv we have the condition (1.97). For the roots @ € 7Y@ \ 7UPv this yields

—log(nymv (P, 7)) < —log(r(my)).

Therefore we see that the image of N? is contained in the intersection of a
finite number of half spaces, which are obtained from a finite family of hyper-
planes. These hyperplanes depend on the parameters c,, , r(m, ), let us call this
intersection C(c,r), it is a convex -possibly empty- subset of R9<.

We investigate the restriction

N9 X (e (cq,)) N N X (eny s r(es, ) = Cleyr)

We observe that the unipotent radical Ug(R) acts by left translations on the
intersection, we get a diagram

XP (e, r(e)) N N X (Cnyy7(cr,)) = Cler)

2% (1.121)

XM x Rée - Rie
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Now it is clear from the definitions that the image of py; is a set
Im(par) = QY (c,r) x Cle,7)

where QM (c,7) C XM is a subset containing the set X 5! of semi stable points
and is described by certain inequalities as in (1.95). This subset is I'js invariant
and '3/ \QM(c,r) is relatively compact.

Hence we see that we have essentially the same situation as in (1.111). The
map

qar s X (Cry s r(e)) N N X (e, ) = Tar\QY (e, 1) x Cle,r)
(1.122)

is a fiber bundle with fiber isomorphic to I'y, \Ug (R).

In the following we refer to the book of S. Helgason [51].

We mention an important property of the sets X*(c/,r(cp)). We assume
that our symmetric space X is connected, then it is well known that it is convex,
any two points p,q € X can be joined by a unique geodesic [p, g]. We say that
a subset U C X is convex if for any two points p,q € U also the the geodesic

[p,q] C U.

Proposition 1.2.5. Let Q c QM (¢,r) be a conver subset. Then the inverse im-
age py (2xC(c,1)) is a convez subset of X1 (cy,,r(cy, )N -NX T (cry, r(Cr, )

Proof. The assertion is easily reduced to the following:

Let P be a maximal parabolic subgroup, let M be its reductive quotient, let
a be the simple root not in 7 and Q C XMY Then the set for any choice
of We choose a ¢, > 0 and claim that X% (c,,Q) = {z € X | nor(P,z) <
Co ;qm(x) € Q} is convex .

To see this we pick a point z € XF(c,, ), let T2 be the tangent space at
x. The action of G(R) on X gives us a surjective map D, : gr — Tj‘; and this
induces an isomorphism D, : gr /€, — TX, here of course £, is the Lie-algebra
of K. We get the well known Cartan decomposition of the Lie-algebra

gr =t @ p, where p, ={V e gr | 0,(V) = -V} (1.123)

and we get the isomorphism D, : p, — T:X. Starting from our parabolic
subgroup P we get a finer decomposition of p,.

Let Pr be the the Lie algebra of PxR. The intersection PXxR N O, (PxR) =
M, and we get for the Lie algebras m, = m(®) @ a and this gives the finer
decoposition m, = M @ pM= @ g and then

Pz = P(Mm) Dad {V - Gx(v)}VEu (1'124)

where V € ug and a = RY4. We normalise Y4 such that da”(Y4) = 1.Then we
can write a tangent vector T;X as image of

Y=Yy +aYa+(V-0(V));

We know that there is a unique geodesic ¢ : R — X starting at = with ¢/(t) =Y
The theorem 3.3 in Chapter IV in [51] says that this geodesic is ¢(t) = exp(tY) -
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z. A tedious computation using the Iwasawa decomposition and the Campell-
Hausdorff formula shows that

—log(ngr (exp(tY) - ) = —log(ngr(z)) + at — a*q(Ya, V)t (1.125)

where ¢(Ya4,,V) is a positive definite form in V.

If now 71 € X% (cq,Q) is a second point, We find a tangent vector Y =
Yy +aYa + (V — 0(V)) such that ¢t — exp(tY) - x is the geodesic joining x
and z1 = exp(Y) - z. If we project these two points to XMY then the images
Z,21 € Q and exp(t(Ya)Z is the geodesic in XM® and hence for ¢ € [0,1] we
have exp(t(Yas)Z. But now

—log(nar(z)) > —log(ca); —log(ngr(exp(Y)-z) = —log((ner(x1) > —log(cy).

Since the second derivative is always > 0 (see(1.125) it follows that — log(n,r (exp(tY)-
x) > —log(cy) Vit €[0,1].
O

We formulated the main theorems of reduction theory only for Gl,,/Q be-
cause we did not want to much from the theory of reductive groups ( for instance
[9] ). But actually these results extend to general reductive groups, basically in
the same formulation. Especially we get

Theorem 1.2.3. (Borel-Harish-Chandra): If G/Q is an anisotropic reductive
group and I' C G(Q) is an arithmetic subgroup then

N\X = N\G(R)/Kw

18 compact.
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Chapter 2

The Cohomology groups

2.1 Cohomology of arithmetic groups as coho-
mology of sheaves on I'\ X.

We are now in the position to unify — for the special case of arithmetic groups
— the two cohomology theories from our chapter II and chapter IV in [39].

We start from a semi simple group G/Q and we choose an arithmetic con-
gruence subgroup I' C G(Q). Let X = G(R)/K as before. A second datum will
be a I'- module M, in principle this can be any I'- module.

Let M is a T-module then we can attach a sheaf M on T\ X to it, this sheaf
has values in the category of abelian groups. To do this we have to define for any
open subset U C X the group of sections /\;l(U ). We start from the projection

m: X —DI\X

and define
MU) ={f: 771 (U) - M| f is locally constant f(yu) =~f(u)}.  (2.1)

This is clearly a sheaf. For any point € I'\X we can find a neighbourhood
V, with the following property: We choose a point & € 7~ !(x), then 7 has a
convex ['z-invariant neighbourhood Uz, for which yUz; N Uz # 0 < ~ &€ 'z
and then we put V,, = I'z\Uz. We call such a neighbourhood V, an orbiconvex
neighbourhood. It is clear that

M(V,) = Mz,

Since x has a cofinal system of neighbourhoods of this kind, we see that we get
an isomorphism ~ B

gzt M(Vy) = Myp—sM"=,
The last isomorphism depends on the choice of z. If we are in the special case
that T has no fixed points then we can cover I'\ X by open sets U so that M /U
is isomorphic to a constant sheaf M;;. These sheaves are called local systems.
If we have fixed points we call them orbilocal systems.

67
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We will denote the functor, which sends M to M by
shr : Modr — SI‘\Xa

occasionally we will write shr(M) instead of M, especially in situations where
we work with several discrete subgroups.
For the following we refer to [39] Chapter 2

The motivations for these constructions are

1) The spaces I'\X are interesting examples of so-called locally symmetric
spaces (provided T' has no torsion). Hence they are of interest for differential
geometers and analysts.

2) If we have some understanding of the geometry of the quotient space I'\ X
we gain some insight into the structure of I'. This will become clear when we
discuss the examples in ...x.y.z.

3) The cohomology groups H*(I', M) are closely related and in many cases
even isomorphic to the sheaf cohomology groups H*(T'\ X, M) Again the ge-
ometry provides tools to compute these cohomology groups in some cases (see
X.y.2.).

4) If the I'-module M is a C-vector space and obtained from a rational
representation of G/Q, then we can apply analytic tools to get insight (de Rham
cohomology, Hodge theory).

2.1.1 The relation between H*(I', M) and H*(T'\ X, M)

In this section we assume that X is connected.
The functor }
M — HY(T\X, M) = M".

is a functor from the category of I'— modules to the category Ab of abelian
groups. We can write our functor M — M' as a composition of

shp : M — M and H° : M — H(I\ X, M).

We want to apply the composition rule from [39] 4.6.4.
In a first step we have to convince ourselves that shr sends injective I'-
modules to acyclic sheaves.

In [39], 2.2.4. we constructed the induced I' -module Indgl}M, for any I'
module M.This is the module of all functions f : I' = M and ~; € " acts on

this module by (v1f)(y) = f(y71). The map
M f = {7 ) (2.2

is an injective I'— module homomorphism.
In a first step we prove that for any such induced module the sheaf shr ( Indlfl}M).
is acyclic.

We have a little
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Lemma 2.1.1. Let us consider the projection m : X — I'\X and the constant
sheaf M on X. Then we have a canonical isomorphism of sheaves

(M) Indjj, M.

Proof. This is rather obvious. Let us consider a small neighbourhood U, of a
point z, such that 7=1(U,) is the disjoint union of small contractible neigh-
bourhoods Uz for & € 7~ !(x). Then for all points & we have My (Uz) = M
and
m(MOWU) = [ M
zer—1(x)
On the other hand

—_~—

Indl}, M(U,) = {h ;7 (U,) = Ind{y, M | B is locally constant h(yu) = vh(u)}

For u € m~1(U,) the element h(u) itself is a map
h(u) : T — M,

and (yh(u))(v1) = h(u)(y17y) (here 71 € T is the variable.)

Hence we know the function u — h(u) from 7=1(U,) to Indlfl}M if we know
its value h(u)(1) and this value can be prescribed on the connected components
of 771(U,). On these connected components it is constant, we may take its
value at  and hence

h— (..., h(Z)(1),... ):EEﬂ’l(ac)
yields the desired isomorphism.

Now acyclicity is clear.. We apply example d) in [39], 4.6.3 to this situation.
The fibre of 7 is a discrete space and hence

—_~—

T (Mx) = Ind£1}M

and R(m,)(Mx) = 0 for ¢ > 0. Therefore the spectral sequence yields

HI(X,My) = HIT\X,m.(My)) = H? (F\X, Indfl}/\/l) :
and since X is a cell, we see that this is zero for ¢ > 1. O

We apply this to the case that M = 7 is an injective I'-module. Clearly we
can always embed Z — Indgl}I. But this is now a direct summand; hence it

follows from the acyclicity of Ind?l}I that also Z must be acyclic.

Hence we can apply the composition rule and get spectral sequence with Fo
term

HP(I'\X, Ri(shr)(M)) = H*(T', M).

The edge homomorphism yields a homomorphism

H™T\X, shp(M)) — H™(T, M) (2.3)
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which in general is neither injective nor surjective.

We have seen in section (1.2.2) that -under our assumption that G/Q is
semisimple- the stabilisers I';, are finite. This implies hat the stalks R?(shr)(M), =
HY(Tz, M) for ¢ > 0 are torsion groups actually they are anniihilated by #T.
This implies that the edge homomorphism has finite kernel and kokernel.

In this book we are mainly interested in the cohomology groups H™(T'\ X, shr(M))
and not so much in the group cohomology H* (T, M).

2.1.2  Functorial properties of cohomology

We investigate the functorial properties of the cohomology with respect to the
change of T". If IV C T is a subgroup of finite index, then we have, of course, the
functor

Modr — :l\/IOdF/7

which is obtained by restricting the I'-module structure to I'V. Since for any
I'-module M we have MY —s M!" | we obtain a homomorphism

res : H' (I, M) — H'(I', M).

We give an interpretation of this homomorphism in terms of sheaf cohomology.
We have the diagram

X

T N\ 7T
T =TI/ :F/\X — F\X

and a T-module M produces sheaves shp (M) = M and shy (M)=M’ on I"\ X
and T\ X respectively. It is clear that we have a homomorphism

(M) — M.

To get this homomorphism we observe that for y; € I'\X we have 7f(M),, =
Mﬁl(yl), and this is

{f 177 (m(y)) — M| f(7§) = 7f(§) for all y € T, € 7 (m(11))}

and

My ={fg: (@) () = M| f(4'9) =~ f(§) for all y e T, 5 € (x') " (1)},
and if we pick a point § € (7/) "' (y1) C 7~ *(m1(y1)) then
T (M)y, = M M = M
Hence we get (or define) our restriction homomorphism as (see I, ....)

HY(T\X,shp(M)) — H(I'\X, 7} (shp(M)) — H'(I"\ X, shp (M)).

There is also a map in the opposite direction.
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Since the fibres of m; are discrete we have
HY(I'\X, M)~ H T\ X, 711 . (M)).

But the same reasoning as in the previous section yields an isomorphism

71,0 (M)— Indf, M.

Hence we get an isomorphism

HY(T'\X, M)~ H(T'\ X, Indj, M) (2.4)

which is well known as Shapiro’s lemma. But we have a I'-module homomor-
phism
e: Indp M — M

which sends an f: ' — M, in f € IndE,M to the sum

tr(f) =Y _ 7 ()

where the v; are representatives for the classes of IY\I". This homomorphism
induces a map in the cohomology. We get a compositon

T1e: H(T'\X, M) — H I\ X, M).
It is not difficult to check that

meom =[[:T'].

2.1.3 How to compute the cohomology groups H'(I'\ X, M)?
The Cech complex of an orbiconvex Covering

We consider a point € X and an open neighbourhood U; C X. We say that
U; is an orbiconvex neighbourhood of Z if

a) The set Ui, is convex, i.e. for any two points in %1, %y € U;g the geodesic
joining 1 and 2 lies in Uj;.
irgendwo frither was zu Geoditen sagen, )

~ b) We have 'yU_i N U,; = ) unless vZ = Z and in this case we even have
’YUj = U;c.

A family of orbiconvex neighbourhoods {Uf }i=1,...r of points &1, ..., &, will
be called an orbiconvex covering, if

U U Vs, = X. (2.5)
i=1~er

We will show later that we can always find a finite orbiconvex covering of X.

If now {Uf }i=1,....r is an orbiconvex covering we put U, = w([j@.), and then
we get finite covering by open sets

Uuv. =1\x



72 CHAPTER 2. THE COHOMOLOGY GROUPS

We call Ul = {U,,} an orbiconvex covering of I'\ X.

We will see further down that the intersections U; = Uggi1 N Uggi2 n---N Umiq
are acyclic, i.e. H*(U;, M) =0 for k > 0.

This implies that the Czech complex (See [39], Chap. 4)

CU U M) =0 PMU,) 2 @MU, NUL,) — (2.6)
i€l i<j
computes the cohomology.
For the implementation on a computer we need to resolve the definition of

the spaces of sections and the definition of the boundary maps. (By this I mean
that we have to write explicitly

M(Uz) = @ M,

where 1 runs through an index set and M, are explicit subspaces of M and
then we have to write down certain explicit linear maps M, — M,.)

To be more precise: We have to write U; = UU,, as the union of its connected
components, we have to choose a connected component (~]7, in 71'_1(U,7) for each
value of 7, and then the evaluation of a section m € /\;I(Ui) on these Un yields
an isomorphism

®evy, MU;) = @MF”.
n

If we replace U',, by 'yUn then we get for m € /\;l(w(ﬁ,,)) the equality
vevg, (m) = v, (2.7)
Especially the choice of the Z; yields an identification

evy, : M(Uy,,) = MFa (2.8)

z

this gives us the first term in the complex.

The computation the second term is a little bit more delicate. The point is
that the intersections U, N U;; may not be connected. To get these connected
components we have to find the elements v € I" for which

It is clear that this gives us a finite set G; ; of elements v € I'/T;,. We have a
little lemma

Lemma 2.1.2. The images ©(Ugz, N 'y(Ug;J)) are the connected components of
Up, NUy,, two elements v,v1 give the same connected component if and only if
S inyl“xj.

Let F;; C G;; be a set of representatives for the action of I';, on G, ;
this set can be identified to the set of connected components. Of course the
set Ugz, N 'y(f]f,gj) may have a non trivial stabilizer I'; ; , and then we get an
identification

Drer,, V0, g, P MUz, NUL,) = @ MU (2.10)
) ! YEF; ;
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This is now an explicit (i.e. digestible for a computer) description of the second
term in our complex above. We still need to give the explicit formula for dy in
the complex

0 PM= P P Mmoo (2.11)

el 1<j vEF;,;

Looking at the definition it is clear that this map is given by

(coosmy, oo ,my, )= (oo my —ymy,. ) (2.12)

Here we have to observe that v € T'/I';; but this does not matter since m; €

MY%5 . So we have an explicit description of the beginning of the Cech complex.
A little reasoning shows of course that a different choice F; ; of the repre-
sentatives provides an isomorphic complex.

Now it is clear, how to proceed. At first we have to understand the combi-
natorics of the covering 4 = {U,, }ic1.
We consider sets

Gi={v= (&7, +7g) |V € T/Tu;; Uzo O -+~ N 70Uz N YUz, # 0}

on these sets we have an action of I';, by multiplication from the left. Again
let F; be a system of representatives modulo the action of I'y,.
We abbreviate

Ui:l =Uz, N--- ﬂ’Yiﬁ:v”i m’YqUiqa

let T'; , be the stabilizer of Ull

The images 7(U; ) under the projection map 7 are the connected compo-

nents 7(Ui,y) = Uiy C Ui = Uy, N---NUy, N... Uy, . On the other hand each

fEiO
set U; ~ is a connected component in 7! (U; ). We get an isomorphism

P evs,  MU) = MU, 00Uy, N U, ) = @ M2 (213)

leFi leFi

We need to give explicit formulas for the boundary maps

P Moy 5 @ my.

IE ielatl

Abstractly this boundary operator is defined as follows: We look at pairs i €
I‘”l,z(”) € 19 where ;'(”) is obtained from ¢ by deleting the v-th entry. Then we
have U; C U;») and from this we get the resulting restriction homomorphism

Rz‘(u),l‘ : ./\N/[(Ul‘(u)) — M(Ul) Then

q
dq = Z Z(_l)yRﬂ"%z

7 v=0

and hence we have to give an explicit description of R;u) ; with respect to the
isomorphism in the diagram (2.13).
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We pick two connected components m(U; ) C U;) and W(Ui@)’,y, C Usoy,
then we know that N

[NJLZ - Ui(uwl <= dn,, €I such that 77%7/%2 =y, for all p #v

and then the restriction of R;w) ; to these two components is given by

€V
Yi) 41

\I/ R@(V)&‘ ~|/ My, (2'14)

M(7(Uiy)) i MEin

Here the two horizontal maps are isomorphisms, we observe that 7, is unique

up to an element in Fz’“’%w’ and hence the vertical arrow 7,/ is well defined.

Hence we conclude:

Once we have found a a finite orbiconver covering of T\ X, we can write
down an explicit complex, which computes the cohomology groups H® (T\ X, M).

We may also look at this situation from a different point of view: If x € X
is any point and I',, C T its stabilizer, then we define the induced I" module

IndFJZ :={f:T — Z| f has finite support and f(ay) = f(v), Va € T'y,y € T'}
(2.15)

If V, is an open neighbourhood of = which satisfies b) an ¢) then we have
7 Y w(Vy)) = UweF/FI ~V, and

T (M)( U YV,) = Hom( IndIEIZ,M).

’YEF/Fw

We have the covering

= ~O 5 =X
i,’yGF/I‘,—Ei
of the symmetric space. The Czech-complex C* (&L, 7*(M)) computes the coho-

mology groups H?(X,n*(M)) which are trivial for ¢ > 0. Our considerations
above yield

C* (U, 75 (M) =0 — ED Hom( Indy, Z, M) LR ED Hom( Indp. Z, M) L
i=1 i<§,Ei 7

Now it is easy see that the boundary maps are induced by maps between the
induced modules

5 P mdh, 25 @ mdf, z o,

i<j,:i7‘,“7‘ i=1
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where for f € @ IndII:iJZ, in degree v and w € C*~1({l, 7*(M)) the relation
w(8”(f)) = d~1(w)(f) defines §”. We get an augmented complex

P® == @ IndgiJZ e @ Indgi‘

i

T
r
L~ Indp, Z 70
Zg Tij i=1

(2.16)

and since C*® (fl, w*(M)) is acyclic in degree > 0, we get that P*® is an acyclic
resolution of the trivial module Z.

Let N = [],#I'z, and R := Z[+] then the R[I'] module Indgz ® R is a
direct summand in R[I'] and hence a projective R[I'] module. This implies of
course that

P*oR== P Indf, R~ =P Indy, R~ Indr, R=R—0
g Tq, 5 i=1

(2.17)

is indeed a projective resolution of the trivial I' -module R. Therefore we know
that

H*(T,Mpg)=H*0— Homp(@ Indll:ii R,Mpg) — @ Homp( Indgii,j R, Mpg) =)
i=1 ’L‘<j,fi‘j
(2.18)

where now on the left hand side we have the group cohomology.
If we do not tensor by R then the Czech-complex

0 — @ Homp(Indr, Z, M) - P Homp(IndfaiijZ,M) — ... (219
i=1 1<Ji,j

is isomorphic to the Czech complex (2.6) and it computes the sheaf cohomology
H*(T\X, M).

It follows from reduction theory that

Theorem 2.1.1. We can construct a finite covering I'\X = |J;cp Uz, = U by
orbiconvex sets.

Proof. This is rather clear. We start from the covering by the sets XZ'(c.,r(c.)).)
The set of ”almost stable” points X (r) C X is relatively compact modulo T
For any point £ € X we look at the minimum distance

d(#) = min d(&,~i).
(@) o, (Z,77)

since the action of T" is properly discontinuous this minimum distance d(z) > 0.
Let D(,d(%)/2) := {y|d(g,%) < d(&)/2}, (-the Dirichlet-ball around Z- ) then



76 CHAPTER 2. THE COHOMOLOGY GROUPS

D(%,d(z)/2) is an orbiconvex neighbourhood of Z. Then we can find finitely
many points 1, ..., T, such that

s

U U D@ d(@:)/2)) > XE(r).

1=1~el

We have to find a covering for the X (cp,r(cp))). We recall the fibration
(See (1.110))

Piar s X (enr,1(enr)) = XM (r(en)) x TT (0, cal.

aecmn’

We apply our previous argument and find a finite covering

U U D@ d(@)/2) > XM (r(cl)).

i=1~€l

We pick a point ¢y € [, (0, ¢a] then the inverse image (pp, )~ (D (95, d(5:)/2)) %
¢ is relatively compact and we can find an orbiconvex covering {U{Vz, } of this
set. Then the products Vz, x [[,c (0,ca] provide an orbiconvex covering of

XP(cp,r(c,)). Of course these sets are not (relatively) compact anymore.
O

This of course implies the following theorem of Raghunathan

Theorem 2.1.2. If R is any commutative ring with identity and if M is a
finitely generated R — I'— module then the total cohomology

P HU(T\X, shr(M))

q€eN

is a finitely generated R-module

We think that it is a very important problem to have computer programs
which compute the cohomology effectively. One way to get such a software
would be to write a procedure which effectively finds an orbiconvex covering for
which the sets Uz, are big, so that we need only few of them.

A first step would be to find effectively an optimal orbiconvex covering {Us;, }
of the set X (r) of almost stable points. The covering sets must not necessar-
ily be Dirichlet balls. We could proceed and apply this also to the different
XM(r(c,,)) and find orbiconvex covers {Vﬂj\f } for them. Then we may con-

sider the inverse images (pp, )~ (Vi X [Taer (0,¢a]) = XZJIZI This family of

~ M
sets {{7Uz,},.-.»m Voo } provide a covering of X by open sets, hence the
images under the projection provide a covering

W= (Wikier = {{Us,}oo o (VMY )

of '\ X, here the index set I is the union of the 2)7,, ... M Y,
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Of course we have a problem: The sets fo are not acyclic anymore, so

we can not use the Czech complex of this covering for the computation of the
cohomology. But we know that

(7 M M
VM = VM < TT (0,0l

aemn’

is a fiber bundle with fiber U(Z)\U(R), Since the base V;;]X[ X [Toen (0,ca] is
acyclic we know that

H* (V') = H*(U(Z)\U(R), M) (2.20)

and we have a good understanding of the cohomology on the right. If for instance
we tensor by the rationals the Theorem of Kostant (See section 8.1.9) gives us
a complete description of the cohomology H*(U(Z)\U(R), M ® Q).

For i € IP*! we put 20, = W;, N W,;, N--- N Wi, Now we follow [39], 4.6.6,
for any ¢ > 0 write the Czech complexe

C*(W, HY) == [ HW)— ] HW) (2.21)

jelptl jelpt2
and then we know that we get a spectral sequence

HP(C*(W,H?)) = B! — HPTID\X, M) (2.22)

2.1.4 Special examples in low dimensions.

We consider the group I = Sl»(Z)/{£Id} and its action on the upper half plane
H. We want to investigate the cohomology groups H*(I'\H, M) for any module
I-module M. Let p : H — T'\H be the projection. We have the two special
points 7 and p in H they are up to conjugation by I' the only points which have
a non trivial stabilizer. We construct two nice orbiconvex neighbourhoods of
these two points. The stabilizers I';, resp. I', are cyclic and generated by the

two elements
0 1 1 -1
s=(% o) =1 )

respectively.

We begin with i. We consider the strip V; = {z| — 1/2 < R(2) < 1/2}, the
element S maps the two vertical boundary lines R(z) = £1 into geodesic circles
starting from 0 and ending in £2. Then the intersection Ul =V;,NnS(V;) is an
orbiconvex neighbourhood of .

Let us look at p. We consider the strip V, = {z | — 0 < R(z) < 1} and now
we define U, = V, N R(V,) N R%(V,). This is a nice orbiconvex neighbourhood
of p.

Now it is clear that these two sets provide an orbiconvex covering of H, if

U;, = p(f]i), U, =p(U,) then

MN\H=U,UU,. (2.23)
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We have M(U;) = shp(M)(U;) = M, M(U,) = M"» and hence the cohomol-
ogy groups are given by the cohomology of the complex

0= MigoMy 5 M—0 (2.24)

Then HO(T'\H, M) = M = M QM . Since this is true for any ' module
we easily conclude that I' is generated by I';,I',. And we get

HY(Sly(Z)\H, Mz) = M/(M5> ¢ M<F>), (2.25)

and the cohomology vanishes in higher degrees.

Exercise 1: Let IV C T' = Sly(Z)/=£Id be a subgroup of finite index. Prove
ii) We have (Shapiros lemma)

HY(T'\H, Z) = H*("'\H, Indy.,Z).
These cohomology groups are free of rank
L:I—n;—n,+1

where n; (resp. m,) is the number of orbits of I'; (resp. T',) on T'\L'. If I is torsion
free then

1
rank(H'T\H, Indp.,Z) = sl ' +1
The Euler-characteristic of T"\H is %[F IV,

Exercise 2: Let M,, be the Sl5(Z)-module of homogenous polynomials in the two
variables X, Y and coefficients in Z. (See 1.2.2). We have the usual action of Sl3(Z) on
this module by

<i Z) P(X,Y) = P(aX + ¢Y,bX +dY).

these modules define a sheann on T\H, and we want to investigate their cohomology
groups.

Prove:

i) If n is odd, then M,, = 0.
Hence we assume n > 2 and n even from now on.

ii) Forn > 0 we have H*(T\H, M,1) = 0.

iii) If we tensorize by Q , then HY(T\H, M,, ® Q) is a vector space of rank
n—1-2[3] -2[3].
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Hint: Diagonalise the action of I'; and I', on M,, ® Q separately and look at the

. o = . . 0 -1
eigenspaces. To say it differently: Over Q we can conjugate the matrices <1 0 >

-1 0
sition of M, into weight spaces.

1 1 t 0
< > into the diagonal maximal torus (O t_1> , and then look at the decompo-

iv) Investigate the torsion in H'(T'\H, M,,). (Start from the sequence 0 — M,, —
My = My /tM, —0.)
0

v) Now we consider I' = Sla(Z). The two matrices S = <1 01) and R =

-1 0
We take for our module M the cyclic group Z/127, consider the spectral sequence

-1 1 .. . .
< ) are generators of the stabilisers of © and p respectively.

HP(T\H, R?(shr)(Z/127Z)).
Show that HO(I'\H, R*(shr)(Z/12Z) = Z/127Z. Show that the differential
H°(T\H, R*(shr)(Z/12Z)) — H*(T'\H, shr(Z/127))

vanishes and conclude

HY(T,7Z/127) = 7./127.
???7H(T(N), )

The group I' = Sly(Z[i])

A similar computation can be made up to compute the cohomology in the case
of I' = Gly(0). We have the three special points 12,213 and za3 (See(1.2.5),
and we choose closed sets A;; containing these points which just leave out a
small open strip containing the opposite face. If flij is a component of the
inverse image of A;; in Hs, then

Aij = Tij\ Ay
The intersections A;; N Ay o = A, are closed sets. They are of the form
A, =T,\A,

where I',, is the stabilizer of the arc joining x;; and x; ;. The restrictions of
our sheaves M to the A;; and A, and to A = A5 N Asg N Ay are acyclic and
hence we get a complex

0— M-— @PMa, — P Ma, — Ma—0
(4.9)
where the M- are the restrictions of M to ??? and then extended to the space
again.



80 CHAPTER 2. THE COHOMOLOGY GROUPS

Hence we find that our cohomology groups are equal to the cohomology
groups of the complex

1 2
0— PM L PM L M—0
(4,4) v
with boundary maps

d' :(mi2, mig, mag) — (M1a — M1z, Ma3 — M1z, M1z — Ma3)

d2 :(ml,mg,mg) — m1 + Mo + ms.

If we take for instance M = Z then we get H*(T'\Hs, Z) = Z and H*(T'\Hs, Z) =
0 for 7 > 0 as it should be.

Homology, Cohomology with compact support and Poincaré duality.

Here we have to use the theory of compactifications. For any locally symmetric
space we can embed I'\ X into its Borel-Serre compactification

i F\X — F\YBs,

and this process was explained in detail for our low dimensional examples.
Especially we give an explicit description of a neighbourhood of a point = €
A(I'\X pg). If we have a sheaf M on '\ X, we can extend it to the compactifi-
cation by using the functor i,. We get a sheaf

Z*(.A;l) on F\Ygs,

it is clear from the description of a neighbourhood of a point in the boundary,
that 7, is exact. ( This is not true for the Baily-Borel compactification.)

Our construction M — M can be extended to the action of I' on X gg and
clearly

iv(M) = result of the construction M — M on I'\ X gg.
Hence we get from our general results in Chapter I, ..... that
H*(D\X, M) = H*(I'\X ps, i(M)).

But we have another construction of extending the sheaf M from T'\X to
I\ Xps. This is the so called extension by zero. We define the sheaf (M)
on M\ X g by giving the stalks. For « € T\ X gg we put

e M i ze\X
“(M)x_{o if rgT\X’

It is clear that iy is an exact functor sending sheaves on I'\X to sheaves on
M\ X g, and we have for an arbitrary sheaf

H(M\X ps,i1(F)) = HJ(T\X, F)
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where HO(T'\ X, F) is the abelian group of those sections s € H°(I'\ X, F) for
which the support

supp (s) = {z | sz # 0}

is compact.
Hence we define the cohomology with compact supports as

HI(T\X,F) = H(T\X g, i1.F)).

If M is a sheaf on I'\ X which is obtained from a I-module M, then it is quite
clear that
HY(T\X, M) =0,

provided our quotient I'\ X is not compact.

The cohomology with compact supports is actually related to the homology
of the group: I want to indicate that we have a natural isomorphism

Hy(T, M) ~ H}{(I\ X, M)

under the assumption that X is connected and the orders of the stabilizers are
invertible in R.

This is the analogous statement to the theorem .... which we discussed when
we introduced cohomology.

Our starting point is the fact that the projective I'-modules have analogous
vanishing properties as the induced modules.

Lemma: Let us assume that I' acts on the connected symmetric space X.
If P if a projective module then

0 if i#dimX
H(T\X,P) =
Pr if i=dimX.
Let us believe this lemma. Then it is quite clear that

Hl(FaM) = Hg_Z(F\Xa P)a

because both sides can be computed from a projective resolution.

2.1.5 The homology as singular homology

We have still another description of the homology. We form the singular chain
complex
= Ci(X) = Cic1(X) = ... = Cp(X) — 0.

This is a complex of I'-modules, and we can form the tensor product with M.
We get a complex of I'-modules

T XYM 25 C (X)) M — ...
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We define the chain complex
C- (F\X7 M) )

simply as the resulting complex of I'-coinvariants. The homology groups are
defined as

The cosheaves

The symbol M should be interpreted as the cosheaf attached to our I'-module,
this is an object which is dual to the sheaf M. For a point Z € I'\ X costalk M,
is given as follows: As in (2.1) we consider the projection 7p : X — I'\X and
maps with finite support

C(z, M) :={f: Wlfl(:i) — M}. (2.27)
On this module we have an action of I' which is given by
(V) (@) = (f (v ). (2:28)
Then our costalk is given by the coinvariants
M, = C(#, M)r = (&, M)/{f —7f,y € T, f € C(@, M)} (2.29)

We have the homomorphism [ : Mz — M which is given by summation f

ZIEFr_l(i) f(z) and this induces an isomorphism

/ . C(z, M)r <5 M, (2.30)

—T

We pick a point x € wfl(i) and an open neighbourhood U, of z such that
~U, N U, # ( implies v € T';.. We consider the space C(Z, z, M) of those maps,
which are supported in in the point x. This space is of course equal to M and
the composition

0z : C(Z, 2, M) = C(Z, M) — M

induces an isomorphism
bz Mp, — M, (2.31)

If we pick a second point § € 7p(U,) and a y € Wfl(y) N U, then clearly
I'y c I';, and therefore we get a specialization map

rg,z My — M. (2.32)

Now it becomes clear why these objects are called cosheaves. For the sheaf M
we get in the corresponding situation a map in the opposite direction

as a specialization map between the stalks of M. An element J* € M; can be
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represented as an array
=),  leer@ (2.34)
where f(z) € (Mg)r, and f(yz) = ~7f(z).

Now we can give a different description of the group of i-chains C; (IT'\ X, M) :
An i-chain with values in the cosheaf M is of the form oc® f where o : A" — T\ X
is a continuous (differentiable) map from the i dimensional simplex A’ to I'\ X
and where f is a section in the cosheaf, i.e. f, € Ma(m) and where f, varies
continuously. (This means: If o(y) specializes to o(x) then 74y o(2)(fy) = fz-)

Then C;(T'\ X, M) is the free abelian group generated by these i chains with
values in M). Then the boundary maps d; are defined in the usual way and we
get a slightly different description of the homology groups H,(I'\ X, M).

But we may choose for our module M simply the group ring. Then
(C.(X) ® Z[)r ~ C.(X),
and hence we have, since X is a cell, that
H;(T\X,Z[I')) =0 for i>0.
On the other hand we have
Ho(I\X, M) = Mr.
This follows directly from looking at the complex
(C1(X) @ M)r — (Co(X) @ M)r.
First of all we observe that 0-cycles
T R®M—x0@®mMm
are boundaries since X is pathwise connected. On the other hand we have that
To @m —yxg @ ym € Co(X) @ M

becomes zero if we go to the coinvatiants and this implies the assertion.
If we have in addition that the orders of the stabilizers are invertible in R
than it is clear that a short exact sequence of R-I'-modules

0o—M —-M-—M'—0
leads to an exact sequence of complexes
0— C.(I\X, M) — C,(I\X, M) — C,(I\X,M") — 0,
and hence to a long exact cohomology sequence
H,M\X,M') — H,T\X,M) — H;,(T\X,M") — H; (T\X, M").
Now it is clear that

H;(I,M) ~ H;(T\X, M) ~ HH(T\ X, M).

fundex
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2.1.6 The fundamental exact sequence

By construction we have the exact sequence

0 = iy(M) = i (M) = iy (M) /i(M) =0

of sheaves and clearly i.(M)/i;(M) is simply the restriction of i.(M) to the
boundary extended by zero to the entire space. This yields the fundamental
exact sequence

— HI7L(9(T\X), M) = HY(T\X, M) = HY(T\X, M) - HI(O(I\X),M) — ...

We define the “inner cohomology”

HY(T\X, M) := Im(HY(T\ X, M) — HIT\X, M)) = kerHY(T'\ X, M) - HY(J(I'\X), M)
(2.35)

( This a little bit misleading because these groups are not honest cohomology
groups, they are not the cohomology groups of a space with coefficients in a
sheaf. An exact sequence of sheaves 0 - M’ — M — M” — 0 does not
provide an exact sequence for these H) groups. )

In the special case that the underlying group G/Q is anisotropic the funda-
mental exact sequence becomes trivial, in this case the quotient I'\ X is compact
and we have

H*(P\X, M) = H(I\X, M) = H ([\X, M).

Many authors prefer to consider the case of a compact quotient I'\ X, but I think
we loose some very interesting phenomena if we concentrate on this case. On
the other hand we do not need to read the next subsection. Also readers who
are more interested in the low dimensional cases and the more specific results
in these cases may well skip reading the next subsection.

The cohomology of the boundary
We want to have a slightly different look at this sequence. We recall the covering
(See 1.116,1.117)
NX =N\X(r)UN (T\X)=T\X(r)U U Ip\XP(c./,r(c,,)) (2.36)
P:Pproper

where the union runs over I' conjugacy classes of parabolic subgroups over Q

and N (I'"\X) is a punctured tubular neighbourhood of co, i.e. the boundary of
the Borel-Serre compactification.

It is well known (See for instance [book] vol I, 4.5 ) that from a covering
INX =, Vi we get a Czech complex and a spectral sequence with E{"?- term

II =M (2.37)

i={i0,i1.vip}



2.1. COHOMOLOGY OF ARITHMETIC GROUPS AS COHOMOLOGY OF SHEAVES ONT\ X.85

where V; = V;; N--- NV, . The boundary in the Czech complex gives us the
differential

& I HUWVLM) — 11 HY(V;, M) (2.38)

i={i0,i1...,ip} J={josJ1-dp+1}

Here we work with the alternating Czech complex, we also assume that we have
an ordering on the set of simple positive roots. If such a V; is non empty then
it of the form I'o\X%(C(2)).

We return to the diagram (2.39), on the left hand side we can divide by I'¢.
We have the map which maps a Cartan involution on X to a Cartan-involution
on M. Then we get a diagram

fT:X9C@) —  XM(r) x Cuy (o)
1 pg L pm (2.39)
[:TQ\X“(C(@) — Tu\XM(r)x Cu,(©)

where the bottom line is a fibration. To describe the fiber in a point  we
pick a point z € (py, o fT)~1. Then Ug(R) acts simply transitively on the fiber
(Y (f1(2) hence Ug(R) = (1) (f(x)). Then pg : Ug(R) — Ty \Uo(R)
yields the identification i, : Iy, \Ug(R) — f~!(&). If we replace = by y& = x1
with v € T'y,, then we get iy, = Ad(7)oi, where for u € Uy, Ad(vy)(u) = yuy™*
where for u € Ug(R), under this action of I'g.

We have the spectral sequence

HP (DA \XM (), R f(M)) = HPHI(TQ\XV(Cleg,s -+ ¢r,))s M)
and clearly RYf, (/\;l) is a locally constant sheaf. This sheaf is easy to determine.
Under the above identification we get an isomorphism

iy H*(Ly,\Ug(R), M)) — R*(M);.

The adjoint action Ad : I'q — Aut(I'y,\Ug(R)) induces an action of I'q

on the cohomology H*((I'y, \Uq(R)), M). Since the functor cohomology is the
derived functor of taking I'y, invariants it follows that the restriction of Ad to
Iy, acts trivially on H*(I'y, \Uq(R), M). Consequently H*® (T, \Ug(R)), M)
is a I'yy— module. We get

—_~—

R*f.(M) == H*(Ty,\Ug(R), M)

and hence our spectral sequence becomes

HP(Pp\X ™M (r), H* (Tu, \Ug(R), M)) = HPTI(TQ\X?(C(2), M)~ (2.40)

We can take the composition rg o f. Then it is obvious that for any point
co € Cy,(€)) the restriction map

H*(X9(C(2), M) = H*(X((rq o /)" (c0), M) (2.41)
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is an isomorphism. On the other hand it is clear that we may vary our parameter
¢ we may assume that the Cy,(¢) go to infinity. Then we may enlarge the
parameter r without violating the assumptions in proposition 1.2.3. Hence
we get that the inclusion I'o\X®@(C(g)) C I'o\X© induces an isomorphism in
cohomology

H*(Dg\X(C(@), M) = H*(Tg\X, M) (2.42)

We choose a total ordering on the set of I' conjugacy classes of parabolic
subgroups, i.e. we enumerate them by a finite interval of integers [1, N]. We also
enumerate the set of simple roots {aq,...,a4) in our special case o; = @ i41.
For any conjugacy class [P] we define the type of P to be t(P) = 7U? the
subset of unipotent simple roots and d(P) = #7U? the cardinality of this set.
If P,,..., P, are maximal, 4 < i2--- < %4, and if P, N,--- NP =@ is a
parabolic subgroup then we require that t(P;,) < --- < t(P;,).

The indexing set Par(T") of our covering is the I' conjugacy classes of parabolic
subgroups over Q. If we have a finite set [P;,], [P;,],. .., [P ] of conjugacy classes
then we say [Q] € [P, ], [Pi,],---,1 z,,} if we can ﬁnd representatives P; € [P;,]
and Q' € [Q] such that Q' = P/ N---N P’p

Hence we see that the E7'? complex in our spectral sequence (2.38) is given
by

HHq (Do, \ X9 (C( =] II H@Te\X"(C@),M) -
i<j [RIE[@:N(Q;]
(2.43)

this obtained from our covering (1.117). Now we replace our covering by a
simplicial space, i.e. we consider the diagram of maps between spaces

%
Pav := HFQ \X o H [T Te\X— (2.44)
TG [RI€[Q:i]NQ;] —
this yields a spectral sequence with E}'? term
~ d(O) R 1 4
[[E T\ X M) =T [] H@TRX M) (2.45)
i 1<j [R]€[P;]N[Pj]

Our covering also yields a simplicial space which is a subspace of ( 2.44) we get
a map from (2.38) to (2.45 ) and this map is an isomorphism of complexes.

We replace Par by another simplicial complex

p1 —
%
Parmay := H 'p\X ,, H o\ X<+— (2.46)
[Pld(P)=1 (Ql:d(Q)=2 —

We have an obvious projection II : Par — Parmar which induces a homo-
morphism
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- 4(® ~ 4
[ H1(To\X, M) — ILic; igerpynp) HITRAXTM) —
) T
~ 4 R\ d
[p :d(P)=1 HYTp\X, M) — Iz :d(R)=2 HY(Tp\X", M) -
[P] [R]:d(R)
(2.47)

and an easy argument in homological algebra shows that this induces an iso-
morphism in cohomology or in other words an isomorphism of the EL'? terms
of the two spectral sequences.

We had the covering
N = | TeAXP(er(en) (2.48)

P:Pproper
which gives us the spectral sequence converging to H*(N (I'\X), M) with

E'= D D HYTQ\X?(crr, (e ), M) (249)

i<ty <--<ip [Q]G[Pio]ﬂ[Pil]m'“ﬁ[Pip]

Our covering of ./;/' (T\X) gives us a simplicial space QUU(/(f)F\X) and we
have maps

Cov(N (T\ X)) — Par — Parmar. (2.50)
We saw that the resulting maps induced an isomorphism in the EY'? terms of
the spectral sequences. Hence we see that Parmay yields a spectral sequence
EPI= P HITP\X,M)= HI(N (T\X), M)) (2.51)
[Pl:d(P)=p+1

At this point we want to raise an interesting question
Does this spectral sequence degenerate at EY? level?

The author of this book is hoping that the answer to this question is no!
And this is so for interesting reasons! We come back to this question when we
discuss the Eisenstein cohomology.

The complement of N (I'\X) is a relatively compact open set V' C T'\ X,
this set contains the stable points. We define M}, = iy, (M) then we get an
exact sequence

0= My = M= M/M, =0 (2.52)

and M /M, is obviously the extension of the restriction of M to A" (I'\X) and
the extended by zero to I'\ X. We claim (easy proof later) that

H?(D\X, M) = H*(D\X, A1) (2.53)
and this gives us again the fundamental exact sequence

HO YN (T\X), M) — HYT\X, ML) — HIUT\X, M) — HIN (T\X), M) —
(2.54)
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2.1.7 How to compute the cohomology groups H¢(I'\ X, M)

We apply the considerations in 4.8 from the [book]. Again we cover I'\X by
orbiconvex open neighbourhoods U,,, and now we define

My = (iz)iiz (M),

These sheaves have properties, which are dual to those of the sheaves M&
If x = (z1,...,2) and if we add another point ' = (21,...,2s, Ts41) then
we have the restriction M, — M, , which were used to construct the Cech
resolution.

Now let d = dim(X). For the ! sheaves we get (See [book] , loc. cit.) get a
morphism M, — M..Forz = (z1,...,z,) we define the degree d(z) = d+1—s.
Then we construct the Cech-coresolution (See [book], 4.8.3)

— H My == H M;i,mjg)HM;i*)i!(M)*)o.

z:d(z)=q (wi,xj) Ti

Now we have a dual statement to the proposition with label acyc
Proposition: (acyc!)If d = dim(X) then

o ) = {02

Hence the above complex of sheaves provides a complex of modules

i CrE, M) = i ]
= [aate)y—g H Uz, My) = -+ — | (P HY Uy, 2y, My, o) = T, H'(Us,, My,) — 0.
(2.55)

Now it is clear that

HY(T\X,ii(M)) = H}(T\X, M) = HY(C} (4, M)).

Now let us assume that M is a finitely generated module over some commutative
noetherian ring R with identity. Then clearly all our cohomology groups will be
R-modules.

Our Theorem A above implies

Theorem (Raghunathan) Under our general assumptions all the coho-
mology groups HI(T\X, M), HI(T\X, M), H{(T\X, M), H1(Q(T\X), M) are
finitely generated R modules.

2.1.8 Modified cohomology groups

Most of the time our module M will be a finitely generated Z module and
the theorem of Raghunathan says that the cohomology groups are also finitely
generated Z modules. Sometimes we replace Z ring of integers O of a finite
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extension F/Q and then we will even invert some finite numbers of primes.
Hence we our coefficient modules will be finitely generated R-modules where
Or C R C F. In any case these rings R will be Dedekind rings.

Starting from the fundamental exact sequence we have introduced the mod-
ified cohomology groups Hy( ). There is a second process of modification: If

H*( ) is any of these cohomology groups then
H*( )int:=H*( )/Tors=Im(H*( )= H*( )®Q) (2.56)
We have to discuss a minor problem: These two processes of modification
do not quite commute. This is due to the fact that the resulting sequence
— HTY((T\X), MR) int = HIT\X, Mg) iny = HIT\X, Mp) i — HYA(T\X), Mg) ins
is not necessarily exact anymore. Clearly we have H/(T\X, Mg) ins = Im(j)
and if we now define H9T'\ X, Mg) int1 := ker(r) then we have
HY(T\X, MR) it € HIT\X, MR) int1 (2.57)

but this inclusion may be proper. The following proposition is an elementary

exercise in homological algebra. | supgbd

Proposition 2.1.1. The quotient HY(I\X, MRg) i)/ H}(T\X, MR) ins 45 fi-
nite and isomorphic to a subquotient of H1(d(I'\X), Mg)

We will discuss an example in section 3.3.1

This may be a good place to introduce some terminology. If X is a torsion
free, finitely generated R -module and we have a direct sum of submodules
X D @,X, then we say that this direct sum is a decomposition up to isogeny if
the quotient X D /@, X, is a torsion module and if for v the quotient X/X, is
torsion free. Sometimes we also call this a saturated decomposition (see section
6.3.9).

2.1.9 The case I' = Sl,(Z)

In this book we study intensively the special case I' = Slo(Z). In this case we
can formulate and prove some very specific results, especially we understand
the denominators of the Eisenstein classes (Theorem 3.75).

In the following M can be any I'-module. We investigate the fundamental
exact sequence for this special group.

Of course we start again from our covering I'\H = U; UU,. The cohomology
with compact supports is the cohomology of the complex (see 2.55)

0— H*(U; N U, M; ) — H*(U; ,M}) & HA(U,, M) — 0.

Now we have H?(U; N Uy, M} ) = M, H*(U; \M}) = My, = M/(Id —
S)M,H*(U, 7/\;l!p) = Mr, = M/(Id — R)M and hence we get the complex

0= M— Mp, ®Mr, =0
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and from this we obtain

HY(T\H,i;(M)) = ker(M — (M/(Id — S)M & M/(Id — R)M))

and

HO(D\HL (M) = 0, H2(T\H, (M) = M.

We discuss the fundamental exact sequence in this special case. To do this

we have to understand the cohomology of the boundary H*(O(T'\H), M). We
discussed the Borel-Serre compactification and saw that in this case we get this
compactification if we add a circle at infinity to our picture of the quotient. But
we may as well cut the cylinder at any level ¢ > 1, i.e. we consider the level
line H(c) = {z = = + ic|z € H} and divide this level line by the action of the
translation group

ry={(} "Ymezy=((5 ") meze==1}/{=1a}.
0 1 0 e
But this quotient is homotopy equivalent to the cylinder

FU\H ~ FU\H(C)

We apply our general consideration on cohomology of arithmetic groups to
this situation and find

H'(@(F\H>7M) = H.(FU\Ha ShFU (M)) = H.(FU\H(C)7ShFU (M))

This cohomology is easy to compute. The group I'y is generated by the

element T = ((1) 1) . It is rather clear that

H°(Ty\H, shr, (M)) = M HY(T'y\H, shp,, (M)) = Mr, = M/(Id — T)M.

Then our fundamental exact sequence becomes (See( 2.25))

0— M' = MV - ker(M — (M/(Id — S)M & M/(Id — R)M)) —»

MJ(MEi @ MEe) 5 M/(Id = T)M — Mp — 0
(2.58)

Now it may come as a little surprise to the readers, that we can formulate a
little exercise which is not entirely trivial

Exercise: Write down explicitly all the arrows in the above fundamental sequence

We give the answer without proof. I change notation slightly and work with

the matrices
0 -1 1 -1
s=(1 0)m=(0 %)
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1 1
nsor- (1)

Then I' =< S >,I', =< R > . The map

and we have the relation

MM @ M<F>) 5 M/(1d — T)M

is given by
m—m—Sm

We have to show that this map is well defined: If m € M<5> then m — 0. If
m € M<E> then

m—Sm=m—SR 'm=m—Tm

and this is zero in M/(Id — T)M.
The map

ker(M — (M/(Id — S)M & M/(Id — R)M)) = M/(M<5> & M<F>)

is a little bit delicate. We pick an element m in the kernel, hence we can write
it as
m=my —Smy =ms — R 'msy

and send m — m; — mo (Here we have to use the orientation). If we modify
mi,mg to my = my + ny, mhy = ms + ny then mj — m, gives the same element
in M/(M<S> D M<R>).

This answer can only be right if m; — mo goes to zero under the map r, i.e.
we have to show that

mi1 — Mg — S(m1 - mg) € (Id — T)M
We compute
mi —mg — S(my —mg) = m—mg+Smy =m—my+ R mo— R my+ Smy =

—R_lmg + Sme = —T_lSmg + Smoy € (Id — T)M

Finally we claim that the map M<T> — ker(M — (M/(Id—S)M & M /(Id —
R)M)) is given by m +— m — Sm =m — R~'T"'m =m — R~ 'm.

There is still another element of structure. The map ¢: z — —Z induces an
(differentiable) involution of H. We put S; = (01 (1)> then yez = ¢SS 2
and therefore ¢ induces an involution on I'\H. We get an isomorphism of coho-

mology groups

D HYT\H, M) =5 HY(T\H, c.(M)) (2.59)

The direct image sheaf c. (M) is by definition the sheaf attached to the I module
M) This module is equal to M as an abstract module, but the action is

twisted by a conjugation by the above matrix S, i.e.

yxm = S1vS;'m (2.60)
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Now we assume that M is actually a Glz(Z) module. Then the map m — Sym
provides an isomorphism M 1) =5 M and hence we get in involution on the
cohomology groups

¢®: H*(T'\H, M) — H*(T'\H, M) (2.61)

We have the explicit description of the cohomology groups H*(I'\H, M) and
we can compute this involution in terms of this description. We observe that the
matrix S5; fixes the two points i, p and hence the two open sets U;, U, of the
covering. Hence it also fixes M and M'» and therefore the map m + SS;m
induces an involution on M/M i & MT» = HY(I\H, M) and this is our map
M,

The cohomology has a + and a — eigen submodule under this involution,
and

HY(T\H, M) > H'(T\H, M), & H'(T'\H, M)_, (2.62)

the sum of the two eigen modules has finite index which is a power of 2.

Poincare’ duality

We assume that our I' module M is a finitely generated and locally free module
over R , where R is a Dedekind ring or a field. We assume % € R. In section
6.3.11 we discuss Poincare duality in greater generality, here we consider the
pairing (see 6.104)

HYNT\H, M) i x HY(T\H, M) inss — HZ(T\H,R) = R (2.63)

It is clear that the involution ¢ induces multiplication by —1 on HZ(T'\H, R).
On the other hand we have the decompositions of the above cohomology groups
into + eigen modules. The pairings of the 4, + parts and the —, — give zero
and then we get pairings

HNT\H, M) ins 1+ x H(T\H,M") ine1 - — R

3 3 (2.64)
Hl(F\HvM) int,!,+ X H!l(F\Ha Mv) int,— — R
both of them are partially non degenerate.
If we have M = M"Y then we get
rank(H} (D\H, M) 1nt,+) = rank(H(T\H, M) i) (2.65)

Final remark: The reader may get the impression that - at least in the case
I’ = Slp(Z)-it is easy to compute the cohomology, but the contrary is true. In the
case I' = Sl(Z)/£1d we found formulae for the rank of the cohomology groups,
this seems to be a satisfactory answer, but it is not. The point is that in the
next section we will introduce the Hecke operators, these Hecke operators form
an algebra of endomorphisms of the cohomology groups. It is a fundamental
question (see further down) to understand the cohomology as a module under
the action of this Hecke algebra. It is difficult to write down the effect of a
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Hecke operator on a module like M /(M + M), We will discuss an explicit
example in section 3.3.

The situation is even worse if we consider the case I' = Glo(Z[i])/{(3"1d)}.
First of all we notice that it is not possible to read off the dimensions of the
individual groups H*(I'\Hjs, M) from the complex in 2.1.4 ) . Of course we can
compute them in any given case, but our method does not give any kind of
theoretical insight.

We will see later that we can prove vanishing theorems H i(f\Hg}, MC) for
certain coefficient systems Mc by transcendental means. These results can not
be obtained by our elementary methods.
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Chapter 3

Hecke Operators

gelesen bis:

3.1 The construction of Hecke operators

We mentioned already that the cohomology and homology groups of an arith-
metic group have an additional structure: They are modules for the Hecke
algebra. The following description of the Hecke algebra is somewhat proviso-
rial, we get a richer Hecke algebra, if we work in the adelic context (See Chapter
6 ). But the description here is more intuitive.

We start from the arithmetic group I' C G(Q) and an arbitrary I'-module
M. The module M is also a module over a ring R which in the beginning
may be simply Z. More generally is R may the ring of integers in an algebraic
number field, where we also inverted a finite number of primes.

At this point it is better to have a notation for this action

L' x M — M, (y,m) = r(y)(m)
where now 7 : I' = Autg(M).
If we have a subgroup I'' C T of finite index, then we constructed maps
o H(T\X, M) — H*(I"\X, M)
Trre :H(T\X, M) — H*(I"\ X, M)

(see section 2.1.2). We abbreviate r(vy)m = ym.
We pick an element oo € G(Q). The group

Fla™')=a 'TanT
is a subgroup of finite index in I" and the conjugation by « induces an isomor-
phism
inn(a) : T'(a™ ') — T'(a).

We get an isomorphism
j(@) : T(a™)\X — T(a)\X

95



96 CHAPTER 3. HECKE OPERATORS

which is induced by the map x — ax on the space X. This yields an isomor-
phism of cohomology groups

j@)*: H*(D(a™\X, M) — H*(D(@)\X, j(a)«(M)).

_ We compute the sheaf j(a).(M). For apoint z € I'(a)\ X we have j(a).(M), =
Mg where j(a)(z') = 2. We have the projection mp(q-1y : X = (e )\ X,
and the definition yields

My = {s : Wr_(la,l)(x') — M| s(ym) = ys(m) for all v € F(a_l)} (3.1)

The map z — «az provides an identification ﬂ;(la,l)(:lc’) - ﬂ;(la)(a:) in
terms of this fibre we can describe the stalk at x as

(@)s(M)y = {s : 7r1?(1a) (z) = M | s(yv) = a tyas(v) for all y € F(a)} . (3.2)

Hence we see: We may use a to define a new I'(a)-module M(®): The
underlying abelian group of M(®) is M but the operation of I'() is given by
(v,m) — (@ 'ya)m =y x4 m.

Then the sheaf j(a),(M) is equal to M), Then every element
Uy € Homp(a)(./\/l(a),./\/l)

defines a map iy : j(a).(M) = M. Now we get a commuting diagram

H (D0~ N M) 5 B (D(@)\X, (o). (M) 25 H(D(@)\X, M)

In [

H*(T\ X, M) L) H*(T\X, M)
(3.3)

where the operatorin the bottom line is the Hecke operator.

The Hecke operator depends on two data:
a) the element o € G(Q),

b) the choice of uq € Homp(y) (M), M).

It is not difficult to show that the operator T'(a,u,) only depends on the
double coset " a I', provided we adapt the choice of u,. To be more precise if

ap =707, 1,72 €1,
then we have an obious bijection
‘31).“,.72 : Homp(a)(/\/l(o‘),/\/l) — Homp(al)(./\/lal),./\/l)

which is given by
Dy, o (Ua) = Uay = Y1UTY2-
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The reader will verify without difficulties that
T(O[, ua) = T(aly Uy )
(Verify this for H° and then use some kind of resolution (See next section) )

The choice of u, may be delicate in some situations. There is are cases
where we have also a canonical choice of u,. The first case is that our I'-module
M is of arithmetic origin. In this case G(Q) acts upon Mg = M ® Q. Then
the canonical choice of an

Ua,Q * M((@a) — MQ,

is given by uq, : m — am. Hence we can speak of the Hecke-opertor T'(«) :
H*(T\X, Mq) — H*(T\X, Mg).

But if we return to the R-module sheaf M this morphism u.,g will not
necessarily map the lattice M(®) into M. Clearly we can find a rational number
d(a) > 0 for which

d(@) - ta,g : M@ — M and d(@) - ua,g(M®) ¢ bM for any integer b > 1.

Then uy = d(@) - uq,@ is called the normalised choice, and then T'(ov, uy) will
be the normalised Hecke operator.

The canonical choice defines endomorphisms on the rational cohomology, i.e.
the cohomology with coefficients in MQ whereas the normalised Hecke operators
induce endomorphism of the integral cohomology. The normalised choice and
the canonical choice differ only by a scalar factor. We will resume this theme
in section 6.3.2.

In the second case we assume that I' = G(Z), let I'(N) C T' be the full
congruence subgroup mod N. Now we assume that M is a I'/T'(N) module.
1

Then we can pick an element o € G(Z[5;]) where M is any integer prime to NN.

Since we have the homomorphism Z[+;] — Z/NZ and our module M is also a
G(Z[+;]) module. Therefore we can simply choose uq := m +— am. Perhaps it
is reasonable to call such a module a module of finite type. Hence we see that we
have an essentially canonical way to define Hecke operators on tensor products

of modules obtained by a rational representation and modules of finite type.

We see that we can construct many endomorphisms T'(cv, ua) : H*(I'\ X, M) —
H*(T\ X, M). These endomorphisms will generate an algebra

Hp o € End(H*(T\X, M)). (3.4)

This is the so-called Hecke algebra. We can also define endomorphisms T'(cv, u,)
on the cohomology with compact supports, on the inner cohomology and the
cohomology of the boundary. Since the operators are compatible with all the
arrows in the fundamental exact sequence we denote them by the same symbol.

The Hecke algebra also acts on the inner cohomology H/(T'\ X, M). Of course
we may tensorize our coefficient system with any number field L D Q , then we
write My, =M L..

We state without proof the following fundamental theorem :

He-ss
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Theorem 3.1.1. Let M be a module of arithmetic origin. For any extension
L/Q the Hr @ L module H(T\X, Mp) is semi simple, i.e. a direct sum of
irreducible Hr modules.

The proof of this theorem will be discussed in Chapter 8 ( section 8.1.8) it
requires some input from analysis. We give a brief sketch. We tensorize our
coeflicient system by C, i.e. we consider M ®j C = M. Let us assume that T’
is torsion free. First of all start from the well known fact, that the cohomology
H*(I'\X, Mc) can be computed from the de-Rham-complex

H*(D\X, Mc) = H*(Q* @ Mc(T'\X)).

We introduces some specific positive definite hermitian form on Mc and this
allows us to define a hermitian scalar product between two M -valued p-forms

< Wi, w2 >=/ w1 N *wa,
r\X

provided one of the forms is compactly supported. 3
This will allow us a positive definite scalar product on HY (I'\H, M,, ¢), We
apply theorem 8.1.1 , this theorem tells us that we can find representatives

Wi, wh which are harmonic (they satisfy certain differential equations) and then

<fnlfoal >= [ wlased, (3.5)
r\Xx

defines a positive definite hermitian scalar product on H(I'\ X, Mc). Finally
we show that Hr is self adjoint with respect to this scalar product, and then
semi-simplicity follows from the standard argument.

For the groups I' C Sly(Z) and the cohomology groups H!'(T'\H, M,, ® C)
these harmonic representatives are given linear combinations of holomorphic
and antiholomorphic cusp forms of weight n+2 (See 4.1.7). The scalar product
on this space of modular forms is given by the by the Peterson scalar product
(see section 4.1.8.)

3.1.1 Commuting relations

We want to say some words concerning the structure of the Hecke algebra.

To begin we discuss the action of the Hecke-algebra on HO(I'\X, M). We
have to do this since we defined the cohomology in terms of injective (or acyclic)
resolutions and therefore the general results concerning the structure of the
Hecke algebra can be reduced to this special case.

If we have a I'-module M and if we look at the diagram defining the Hecke
operators, then we see that we get in degree 0

ME@TD Ly (M@)D(@) ey pqT(@)

T |

MF T(a,ua) MF
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where the first arrow on the top line is induced by the identity map M —
M@ = M and the second by a map u, € Homap(M, M) which satisfies
Uo ((aya™t)m) = qyuq(m). Recalling the definition of the vertical arrow on the
right, we find

T(a,uq)(v) = Z v - ua (V).

Y€ /T ()

We are interested to get formulae for the product of Hecke operators, so, for
instance, we would like to show that under certian assumptions on «, and
certain adjustment of u,,ug and usg we can show

T(a,uq) - T(B,up) =T(B,ug) - T(ov,uaq) = T(af, uas)-

It is easy to see what the conditions are if we want such a formula to be
true. We look at what happens in H°. For v € M" we get

T(a,ua) - T(Bug)w) = Y yual Y nus(v))

YEr/T(a) ner/T(B)

We assume that the following three conditions hold

(i) for each n we can find an ' € T" such that

/ _
1 OUg = Ua O,

(ii) The elements 7’ form a system of representatives for I'/T'(a3)

(ill) uqug(v) = ugua(v) = uas(v).

Then we get

T(a,uq) T(B,up)(v) = Z Z Y uaup(v) = Z fuap(v) =

Y€ET/T () n'€T/T(B) £€r/T(ap)

T(afB,uap)(v)

We want to explain in a special case that we may have relations like the one
above.

Let S be a finite set of primes, let |S| be the product of these primes. Then we
define I's = G(Z [‘S‘]) We say that o € G(Q) has support in S if « € G(Z [\SI])

We take the group I" = Sly(Z), and we take two disjoint sets of primes Si,
Ss. For the group I' one can prove the so-called strong approximation theorem
which asserts that for any natural number m the map

is surjective. (This special case is actually not so difficult. The theorem holds
for many other arithmetic groups, for instance for simply connected Chevalley
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schemes over Spec(Z). )
We consider the case

al bl
as b2
o = . Erslaﬂ: .. 6FSQ7

aqd bq

where aglag—1 ...|a; and bg|bg—1|...|b1. It is clear that we can find integers n
and no which are only divisible by the primes in S; and S5 respectively, so that

D(n;) C T(a™),T(nz2) C T(B7Y),
where the I'(n;) are the full congruence subgroups mod n;. Since we have
Sly(Z/nZ) = Sla(Z/n1Z) x Sla(Z/n>Z)
we get
L/T(a™7") == T/T(a™) xT/T(57).

On the right hand side we can chose representatives v for I'/T'(a~!) which satisfy
v = Id mod ny and 5 for I'/T(3~!) which satisfy 7 = Id mod n;. Then the
products yn will form a system of representatives for I'/T'(a=1871). But then
we clearly have u,n = nu,, and we see that (i) and (ii) above are true. Then we
can put uag = UqUg.

We consider the case that our module M is a R-lattice in Mg, where Mg
is a rational G(Q)-module. Then we saw that we can write

Uy = d(a) -«

where d(«) will be a product of powers of the primes p dividing n; and an
analogous statement can be obtained for 8 and ns.

Since we have af = o and since clearly d(«)d(8) = d(af) we also get the
commutation relation.

So far we only proved this relation only for the action on H°(I'\ X, M) If
we want to prove it for cohomology in higher degrees, we have to choose an
acyclic resolution

0—M-—3A" A 5  =0—M— A°

and compute the cohomology from this resolution. We have to extend the maps
Uq, Ug to this complex

0— M@ — (4@

o L

0— M— A
and we have to prove that the relation

UaTp = 1 UaUs = N/ Uag
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also holds on the complex. Once we can prove this, it becomes clear that the
commutation rule also holds in higher degrees.

We choose the special resolution

0> M— Ind*(M) =
(3.6)
0 — M — Ind{j; M — Ind{};( Indj;, M/M) —

It is clear that if suffices to show: If we selected the uq,ug in such a way that
we have the condition (i), (ii) and (iii) above satisfied, then we can choose
extensions uq, ug, Uag t0 Indlfl}./\/l so that (i), (ii) and (iii) are also satisfied.
Once we have done this we can proceed by induction.

In other words we have the diagram of I'(«)-modules

0— M — (IndfjM)@

e |
0— M—  IndjjM,

and we are searching for a suitable vertical arrow ?. The horizontal arrows are
given by (as before see (2.2)) by i : m — f,,, : {y — ym}.

We make another assumption concerning our «, 3. We assume that there
exists an automorphism © of G/Q such that O(a) = a=1,0(8) = 7! and
OT = I'. This assumption is certainly fulfilled in the case above, we simply take
O(g) =t g7, i.e. transpose inverse.

We choose representatives &1, ...,&, for I'/T(a™1), then ©&,...,0¢, is a
system of representatives for I'/T'(«). To define the vertical arrow ? = u? we
require

WO (£)(08) = ua(f(&)) Yv=1,...,r

and this yields a unique I'(«)- module isomorphism, for all v € I'(«) we must
have
u (£)(06,7) = ua(f(Ea ya) Y =1,....7.

Iterating this construction gives us the u((;), by construction these morphisms

satisfy (i), (ii), (iii). Since the complex H°(T'\X, Ind(M)) computes the coho-
mology groups H®(I'\ X, M) the commutation rules hold in all degrees.

HSO

3.1.2 More relations between Hecke operators

We look at the algebra of Hecke operators in the special case that G/Z = Gly/Z,
we consider the action on H'(I'\H, M) where T' = Sly(Z), we assume n even
and M = M[—%]. This has the effect that the centre of G/Z acts trivially on
M and this makes life simpler.

We attach a Hecke operator to any coset Tal' where a € G (Q) (i.e.
det(a) > 0, we want « to act on the upper half plane). Then o and Ao with
A € Q* define the same operator. Hence we may assume that the matrix entries
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of o are integers. The theorem of elementary divisors asserts that the double

cosets
[+ My (Z)ger0 - T € Gl3 (Q)

are represented by matrices of the form

G )

where b | a. But here we can divide by b, and we are left with the matrix

a 0
a-(o 1) , a€N.

We can attach a Hecke operator to this matrix provided we choose u,. We see
that a induces on the basis vectors of our module M

XYY"V aufn/2 . XYYy,
Hence we see that we have the following natural choice for u,
U : P(XY) — a™?a- P(X,Y).

(See the general discussion of the Hecke operators)
Hence we get a family of endomorphisms

T (g (1)>u<a o) =T(a) (3.7)

0 1

of the cohomology H*(I'\H, M) We have seen already that we have T,T;, = Ty,
if a, b are coprime.

Hence we have to investigate the local algebra H, which is generated by the

T

— p" 0
Tpr—T (0 1) ,’LL(pT 0)

0 1

for the special case of the group I' = Sl3(Z) and the coefficient system M =
My, [—-5]. To do this we compute the product

p" 0 p 0
ter((§ ) 7((6 o)

where the u/,. are the canonical choices.
Again we investigate first what happens in degree zero, i.e. on H(T'\H, I)
here I is any I'-module. Let o = <€ (1)> & € HY(I'\ X, I) then
Tt )T u)e = (S qua)( 3 nua)(©)

~€Er/T(a) nelr/T(«a)
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We have the classical system of representatives

rren= U (5 e U U (5 D) (G o)ren,

j  mod p” j’ mod pr—1

and our product of Hecke operators becomes

(X G 2 (G D e (540 §)me-

4 mod p” 4’ mod pr—1 j1 mod p

o (o ey )

J mod p”,j1 mod p

N A [ Py et

j' mod pm=1j1 modp

02 (p D (O o)t

j  mod p”

X (G DG o) (O g)ue

j’ mod pr—1

Now we have to assume t u,» satisfy commutation rules

UaqrUq = Ugyr+1

L g1\ _ (1 jip"
tar (0 1) - (0 1 )“0” (3.8)
0 1 0 1
Ugr (_1 O) Ugy (_1 0) = c;(p)ugr—

where ¢y (p) is a non zero integer. If we exploit the first two commutation relation
then we get as the sum in the ﬁrst[. . ]

I j+p"hn
[Zj mod p”,j1 mod p (O 1

1 0 0 1 3.9
Zj’ mod p”—1,5; mod p ((]/ +pr71j1)p 1) (_1 0)]“’(1"’*1 (g)] ( )

= T(pr—i_l7 ua7~+1)(€).

0 1
-1 0
I' and hence we have w& = €. Then the second commutation relation yields for
the sum of the terms in the the second [ . ]

To compute the contribution of second [ .. ] we observe that w = €
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ao X (o 1)+ X (5 (G o) @)

j  mod p” 7’ mod pr—1

r—1

We observe that for j =0 mod p

(¢ om0

r—2

we get

and in case r > 1 for 5 =0 mod p
1 0\/0 1 (0 1 1 2L
(o ) (4 0@ = (0 §)rar (O - )(5

here we used again (3.8) and ¢ € HO(I'\ X, I). In other words in the summation
(3.10) the first term only depends on j mod p"~! and the second only on j’
mod p"~2. For r > 1 this yields for the second term (3.10)

e S (o 1) 2 ()G o) @ =retirer e

7 mod pr—1 3’ mod pr—2

~—

- <_01 é))uar—m
(3.11)

If » = 1 the value for (3.10 ) is ¢;(p)(p + 1)uqo and hence we get the general
formula

Tpr - Ty = Tprir + (p+ €(p))cr(p) Tpr— (3.12)

where €(r) =0if r > 1 and €(r) =1 for r = 1.
This formula is valid for all values of r > 0 if we put T,,-1 = 0.

We want to know what this means for the action on H(I'\H, M), we start
again from our special resolution. (3.6). A simple calculation gives that the

uqr satisfy the relations (3.8) with caq(p) = p™. Hence we get for the action on
HY(T\H, M)

Tyr - Ty = Tyrir + p" T 1 + €(r))p" Tprs (3.13)

where €(r) =0 if r > 1 and €(r) =1 for r = 1.

Interlude

We assume that a majority of the readers has seen Hecke operators in the
context of modular forms and has seen formulas for these Hecke operators acting
on spaces of modular forms, which look very similar to the formulas above.
(See [89], [50]) This is of course not accidental, in the following chapter we will
discuss the Eichler-Shimura isomorphism, which provides an injection of the
space of modular forms of weight k into the cohomology H!(T'\H, Mj,_» @ C)).
(See Thm. 4.1.3). This is a Hecke-module isomorphism and this explains the
relation between the classical Hecke operators and the ”cohomological” Hecke
operators.
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There is a slight difference between the formulas here and in [?], the reason
is that our 7))~ differ slightly from the classical Hecke operators. But we always
have T, defined as above is equal to T}, in (3.1.2).

We want to stress that in this text so far -except in the introduction- there
is no mentioning of modular forms, this is intentional.

End Interlude

This can be generalised. We choose an integer N > 1 and we take as our
arithmetic group the full congruence group I' = I'(N). For any prime p | N
the T'(v, uy) with v € G5 (Z[1/p]) form a commutative subalgebra H,, which is
generated by T},. This is the so called unramified Hecke algebra.

For p|N we can also consider the T(, u,) with a € Gl (Z[1/p]). They will
also generate a local algebra #, of endomorphisms in any of our cohomology
groups, but this algebra will not necessarily be commutative. But if we have two
different primes p,p; then we saw that the H,,H,, commute with each other.
All these algebras H, have an identity element e,, we form the algebra

He = Q) H,
p

where the superscript indicates that a tensor hy = ®p h, € Hr has a a factor e,
for almost all p. (See also further down section 6.3.3) This algebra acts on all our
cohomology groups. We recall that the action of Hr on the inner cohomology
groups is semi-simple (See Thm. 3.1.1). This has important consequences, which
we discuss after a brief recapitulation of the theory of semi simple modules.

3.2 Some results on semi-simple A- modules

We fix a field L and its algebraic closure L, for simplicity we assume that the
characteristic of L is zero, or that L is perfect. We consider an L-algebras A, not
necessarily commutative but with identity. We need a few results and concepts
from the theory on finite dimensional vector spaces V/L with an action of A ,
i.e equipped with a homomorphism A — Endp (V).

Such an A module V is called irreducible if it does not contain an A invariant
proper submodule W C V, i.e {0} # W # V. It is called absolutely irreducible if
A ® L module V ® L is irreducible. We say that V is indecomposable if it can
not be written as the direct sum of two non zero submodules. An irreducible
module is also indecomposable.

We say that the action of A on V is semi-simple, if the action of A ® L
on V ® L is semi simple and this means that any A submodule W C V ® L
has a complement, i.e. we can find an A-submodule W+ C V ® L such that
VeoL=WaeWwt

Then it is clear that we get a decomposition indexed by a finite set F

V®E=@Wi
i€l
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where the W; are (absolutely) irreducible submodules. In general this decom-
position will not be unique. For any two W;, W; of these submodules we have (
Schur’s lemma)

L if they are isomorphic as A -modules

Hom. (W, W) = {0 else

We decompose the indexing set F = E; U Fs U .. U E} according to isomor-
phism types. For any F, we choose an A module W[, of this given isomorphism
type. Then by definition

L ifjekb,
HomA(W[,,], W]) = { .
0 else
Now we define Hj,; = Hom4(W},},V ® L) we get an inclusion Hy,; @ W, —
V ® L. The image X, will be an A submodule, which is a direct sum of copies
of W},j, it is the unique such submodule.

We get a direct sum decomposition

VaL=FB P w.=px

v i€lE,

then this last decomposition is easily seen to be unique, it is called the isotypical
decomposition.

If V' is a semi simple A module then any submodule W C V also has a
complement ( this is not entirely obvious because by definition only W ®r, L
has a complement in V ®7, L. But a small moment of meditation gives us that
finding such a complement is the same as solving an inhomogeneous system of
linear equations over L. If this system has a solution over L it also has a solution
over L.) Therefore we also can decompose the A module V into irreducibles.
Again we can group the irreducibles according to isomorphism types and we get
the isotypical decomposition

Vv=u =p P U =FHv. (3.14)

icE v i€k,

But of course a summand U; may become reducible if we extend the scalars
to L (See examplple below). Since it is clear that for any two A- modules Vi, V4
we have

Hom 4 (V1,V2) ® L = Hom o7 (Vi ® L, Vo ® L)

we know that we get the isotypical decomposition of V' ® L by taking the iso-
typical decomposition of the Y, ® L and then taking the direct sum over v.

Example: Let Li/L be a finite extension of degree > 1, then we put A = L,
and V' = Ly, the action is given by multiplication. Clearly V' is irreducible, but
V ® L is not. If Ly/L is separable then the module is semisimple, otherwise it
is not.

We have a classical result:
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Proposition 3.2.1. Let V be a semi simple A module. Then the following
assertions are equivalent

i) The A module V is absolutely irreducible

it) The image of A in the ring of endomorphisms is End(V)

iii) The vector space of A endomorphisms Enda(V) = L.

This can be an exercise for an algebra class. Where do we need the assump-
tion that V is semi simple?

Let V' be an irreducible semi-simple A -module, which is not necessarily
absolutely irreducible. Let Iy, be the two sided ideal which annihilates V| i.e.
the kernel of A — Endy (V). Let Cr be the centre of A/Iy. This centre is a
field, because any ¢ € Cr, is either zero or an isomorphism, in other words V' is
a Cy, vector space. The Cp-algebra A/Iy is a central simple algebra. There is
a central division algebra D/Cy, such that A/l — M, (D), this is the algebra
of (r,r) matrices with coefficients in D. This algebra has exactly one -up to
isomorphism- non zero irreducible module, this is the module of column vectors
D", the algebra acts by multiplication from the left. Let us denote this module
by X[A/Iy]

Theorem 3.2.1. The extension Cr/L is separable. Let Li/L be a normal clo-
sure of Cr,. Then we have the isotypical decomposition

VerL = @ V ®c, .0 L1 (3.15)

o:Cr,—L1

The Galois group Gal(L1/L) permutes the summands in a simply transitively.
The A/ly ®c, o L1 module V ®c¢, - L1 is isomorphic to the standard module
X[A/Iy ®c, » L1].

Here M, (D) is the Ly algebra of (r,r) matrices with coefficients in D. This
is essentially the classical Wedderburn theorem.

Proposition 3.2.2. For any semi -simple A module V we can find a finite
extension Lo/L such that the irreducible sub modules in the decomposition into
1rreducibles are absolutely irreducible.

Clear, we have to take an extension which splits D.

If V is any A module- not necessarily semi simple but finite dimensional over
L-then there is a finite extension Ly /L and a filtration

{O)cWVicV,C---CV,o1 CV®L Ly

such that the successive quotients V;/V;_; are absolutely irreducible. A very
elementary argument shows that the set of isomorphism types occurring in this
filtrations does not depend on the filtration, let us denote this set of isomorphism
types by Specy (A ® La).

We say that an A- sub module W C V is complete in V if the two sets
Specy, (A ® L2) and Specyy, (A ® L2) are disjoint. We have the simple
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Proposition 3.2.3. a ) If V is a semi simple A-module and if W C V is
complete in V then we have a canonical splitting V=W @& W',

b) If V is not necessarily semi simple but if A is commutative instead then
any W C V which is complete in V also has a canonical complement W', i.e.
V=weW.

Proof. For the second assertion we observe that an absolutely irreducible A
module U is simply one dimensional over Ly and given by a homomorphism
m: A— Lo, ie. it is an eigenspace for A. O

Let us call such a decomposition a decomposition into complete summands.

Let us now assume that we have two algebras A, B acting on V, let us
assume that these two operations commute i.e. for A € A,B € B,v € V we
have A(Bv) = B(Av). This structure is the same as having a A®y, B structure
on V. Let us assume that A acts semi simply on V' and let us assume that the
irreducible A submodules of V' are absolutely irreducible. Then it is clear that
the isotypical summands Y, = @ W; are invariant under the action B. Now we
pick an index 7y then the evaluation maps gives us a homomorpism

Wi, ® Hom 4 (W;,,Y,) = Y,.

Under our assumptions this is an isomorphism. Then we see that we get
V=W, @ Homa(W;,,Y,)
v

where i, is any element in F,, and where A acts upon the first factor and B acts
upon the second factor via the action of B on Y,,.

3.2.1 Explicit formulas for the Hecke operators, a general
strategy.

In the following section we discuss the Hecke operators and for numerical ex-
periments it is useful to have an explicit procedure to compute them in a given
case. The main obstruction to get such an explicit procedure is to find an ex-
plicit way to compute the arrow j®(«) in the top line of the diagram (3.3). (we
change notation j(a) to m(a)).

Let us assume that we have computed the cohomology groups on both sides
by means of orbiconvex coverings U : UjeV,, = D(a™ ')\ X and U : Uje, U, =
D)\ X.

The map m(a) is an isomorphism between spaces and hence m(«a) (%) is an
acyclic covering of I'(a)\ X. This induces an identification

C*(, M) = C* (m(a)(), M)

and the complex on the right hand side computes H*(I'(a)\ X, M@, But this
cohomology is also computable from the complex C"(il,/\/l(a)). We take the
disjoint union of the two indexing sets JUJ and look at the covering m,, () UL
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(To be precise: We consider the disjoint union I =TUJ and define a covering
2; indexed by I. If i € I then W; = m(a)(V,,) and if i € J then we put
W; = U,,. We get a diagram of Czech complexes

= Dicr MW — DBicrin MEO(W,) —

T i
= @icia MW = Bycorr MO (W) — (3.16)
2 {

= @ics s MWL) = Bycyors MDD (W) —

The sets I®, J® are subsets of I* and the up- and down-arrows are the resulting
projection maps. We know that these up- and down-arrows induce isomorphisms
in cohomology.
Hence we can start from a cohomology class & € HY(I(a)\X, M), we
represent it by a cocycle
e € @) M (W),

i€lq

Then we can find a cocycle ¢ € @, j, M@ (W;) which maps to c¢ under
the uparrow. To get this cocycle we have to do the following: our cocycle c¢ is
an array with components c¢ () for i € I9. We have dg(ce) = 0. To get ¢ we
have to give the values é (i) for all i € I9\ I9. We must have

dgée = 0.

this yields a system of linear equations for the remaining entries. We know that
this system of equations has a solution -this is then our ¢ - and this solution is
unique up to a boundary d,_1(¢). Then we apply the downarrow to ¢ and get
a cocycle cg, which represents the same class £ but this class is now represented

by a cocycle with respect to the covering 4. We apply the map a@® : M(® — M
to this cocycle and then we get a cocycle which represents the image of our class
& under T,.

In the following section we discuss the explicit computation of a Hecke op-
erator in a very specific situation. We start from our computation in section
(2.1.4) and write down some H*(I'\ X, M) explicitly. On these modules we give
explicit procedures to compute a Hecke operator. We get some supply of data
and we look for some interesting laws or we try to verify some conjectures (see
(3.75)).

3.3 Hecke operators for Gls:

For the rest of this chapter we discuss a very specific case. The algebraic group
scheme will be Glp/Z. The symmetric space will be

t 0

X = Gly(R)/K where Ko, = SO(2) x {(O )

) [t € R*,t > 0}.
Then the space X is the union of an upper and a lower half plane. We choose
I' = Gl3(Z), then }

MG /Koo =T\H,



110 CHAPTER 3. HECKE OPERATORS

where I' = Sl3(Z) and H is the upper half plane. Earlier we defined the I'-
modules M,,[m] (Seel.2.2 ), in the following we put M = M,,[0].

We refer to Chapter 2 2.1.3. We have the two open sets U;, resp. (~]p C H,

they are fixed under
0 -1 1 -1
S_(l O)andR—(l O)’

respectively. We also will use the elements

11 _ -1 1
T, = (0 1), St=1T_8ST""'= (_2 1) cT$(2)

1 0 _ _ -1 2 _
T:<1 1),51 :T+ST+1:(_1 1>€P0(2)

The elements S;” and S are elements of order four, i.e. (S{)? = (S7)? = —Id,
the corresponding fixed points are # and i+ 1 respectively. Hence S] fixes

the sets ol 1 and Ui+]_7 this is the only occurrence of a non trivial stabilizer.

3.3.1 The boundary cohomology

It is easier to compute the action of the Hecke operator T}, on the cohomology
of the boundary, i. e. to compute the endomorphism

T, : HY(Q(T\H), M) — H*(d(T'\H), M).

We know (see 2.58) that H'(3(T'\H), M) = M/(1— T, )M, we collect some
easy facts concerning this module. For n > k > 0 we define the submodules

M(k:) -7 Xkyn—k e 7, Xk-‘rlyn—k‘—l ) 7, Xn
for k = O(resp. k = n) we have M = M(resp. M = Z X"). These
modules are invariant under the action of T we have (1 — T, )M®*) c ME+D
and M®*) /MFE+D) =5 7 The map (1 — T) induces a map
O M(k)/M(kH) N M(k+1)/M(k+2)
which is given by multiplication with n — k. Hence it is clear that

M/ =T IM=2Z[Y" & MD /1 - T )M

and the second summand is a finite module. The filtration of M by the
M) induces a filtration H'(9(I'\H), M), we put

H'(O(D\H), M)*) .= Im(H (OT\H), M*)) — H'(O(T\H), M)  (3.17)

Then



3.3. HECKE OPERATORS FOR GLs: 111

Proposition 3.3.1. For k > 0 the quotient
H'(O(T\H), M)W /H (O(T\H), M)*TD =5 Z/(n — k +1)Z

The Hecke operator T}, acts on H'(Q(D\H), M)®) / H*(9(T'\H), M)*+1 by mul-
tiplication with p* + p*~*+1. Especially we have

LY" =@ + )Y

Proof. We introduce the polynomials

Q06 ¥) 1= X5 (%~ 1 (5 — ko ) = XIS - ) =k (F) =

x|~

X Ry —X)... (Y —(k—1)X) = X"FYF ... 4 (=1D)FEIX"
Obviously these ex(X,Y') form a basis of M. Pascal’s rule for binomial coefficient

says (%jl) = (%) + (k%l) and this yields

T+€k(X, Y) = Gk(X,X -+ Y) = Ek(X,Y) + kEk_l(X, Y)

and from this we get

0
M/ =T )M =Ze,(X,Y) & @ (Z/(k+1)Z)er(X,Y) (3.18)

k=n—1
this is the first assertion.
We pick a prime p and investigate the action of T}, on H'(d(I'\H), M).

recall the definition of the Hecke operator, we start from the matrix o =

oR =

and we consider the diagram (3.3) adapted to our situation

W
a®

Hl(a(F(T‘l)\H)»M) YR B (D (0)\), 3 (0). (M) 5 B0 (F[a)\H),M
ey T

HYT\X, M) o) H'(9(T\H, M)
(3.19)

The group I'(a™1t) = {( 2) |e=0 mod p}, it acts on P1(Q) and has two

orbits which can be represented by co and 0. The stabilisers of these two cusps
are I'oo = {£Id T%} and I'y = {£Id T""} respectively. Hence we get

HY(O(T(a"HY\H), M) = M/(Id = T )M & M/(1d — T") M (3.20)

We identify H'(d(I'\H, M) = M/(Id — T, )M =% M/(Id — T_)M where the

1) Then

last arrow is induced by the map m — wom with wg = <1 0

70 (m) = (m, C (1)) wom) (3.21)

j=0
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For the composition
ulMoj(e)® : M/Id-Ty) MM/ (1d-TP )M — M/(1d-TP)MSM/(1d-T-) M

is given by ul” 0 ()M (Moo, mg) = (Mo, amyg). and m(1)((Noc, n0)) = Neo +

wong. This yields
p—1 1
_ J
T,(m) = am + woawg ! E . (O 1) m
=

On M® /ME+D) the element <(1) {) acts as identity, « is multiplication by

p* and Wo oWy !is multiplication p™—*. O

Here we encounter a situation where the quotient H*(I'\H, M) int1/H (T\H, M)\ ins
may become non trivial and interesting (see(2.56)). We have to consider the
exact sequence

0 — HY(T\H, M) —» HY(T\H, M) - HY((T'\H), M) (3.22)

Our cohomology groups may have some torsion 7; ¢ H'(I\H, M), Tz C
H'((T'\H), M) and the map r maps the torsion 7; to a submodule 7(77) C Tz.
But it will happen that r(r=1(7z)) is strictly larger than 7(77) this means that
some non torsion elements are mapped to torsion elements under r. By definition

HY(T\H, M) iny = 7~ %(T2) and therefore
H'(T\H, M) it 1/H (T\H, M) i, = (™ (T2)) /T (3.23)
This has been investigated extensively by Taiwang Deng in [21].

Let 7y : H — I\H be the projection. We get a covering T\H = 71 (U;) U
m1(U,) = U; N U,. From this covering we get the Czech complex

0 - MU)eMU,) — MUNU,) =0
| evg & evg, + evgnG, (3.24)
M<S> e M<R> N M =0

and this gives us our formula for the first cohomology

HY(T\H, M) = M/(M<5> & M<E>) (3.25)

We want to discuss the Hecke operator T5. To do this we pass to the sub-
groups

Ty (2) ={

Iy (2)={

|c=0 mod 2}
(3.26)

QU QL

o2 0 2

|b=0 mod 2}
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we form the two quotients and introduce the projection maps 7r2jE cH —
I'Z(2)\H. We have an isomorphism between the spaces

T3 (2)\H = Iy (2)\H

which is induced from the map ms : z — (g (1)> z = 2z. This map induces an

isomorphism

as : HY(TF (2)\H, M) = HY(Ty (2)\H, M), (3.27)

2 0
0 1) m and the com-
position with this map induces a homomorphism in cohomology

We also have the map between sheaves us : m +—>

HY (T (2\H, M) "% 505 (2)\H, M). (3.28)

This is the homomorphism we need for the computation of the Hecke operator;
it is easy to define but it may be difficult in practice to compute it.

Each of the spaces T'§ (2)\H, T (2)\H has two cusps which can be rep-
resented by the points 00,0 € P}(Q). The stabilizers of these two cusps in
['§(2) resp. I'y (2) are

< Ty > x{£Id} and < T? > x{£Id} Cc T (2)
resp.
<T? > x{£ld} and <T_ > x{+Id} C I';(2)

the factor {£Id} can be ignored. Then we get
We know that

HY(9(D¢ (2)\H), M) =5 M/(Id — T )M @& M/(1d - T*)M

HY(0(Ty (2)\H), M) ~> M/(1d - T2 )M & M/(1d — T_)M.

But now it is obvious that o maps the cusp oo to co and 0 to 0 and then it is
also clear that for the boundary cohomology the map

as : M/(Id - T )M M/(1d - T* )M — M/1d - T)M & M/(1d — T_)M

is simply the map which is induced by us : M — M. If we ignore torsion then
the individual summands are infinite cyclic.

Our module M is the module of homogenous polynomials of degree n in 2
variables X, Y with integer coefficients. Then the classes [Y™], [X"] of the poly-
nomials Y™ (resp.) X™ are generators of (M /(Id—T%)M)/tors resp. (M/(Id—
TY)M)/tors where v = 1 resp. 2. Then we get for the homomorphism o3

al [V e [V, 08 ¢ [X7] — 27 [X7). (3.29)
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3.3.2 The explicit description of the cohomology

We give the explicit description of the cohomology H'(T'§ (2)\H, M). We intro-
duce the projections

w5 T
H -2 T§(2)\H; H -2 Ty (2)\H
and get the covering i,

I (\H = nf (03) U (T-0h) Ui (U,) = w3 (03) U (D) U (0)

where we put T_U; = 0# Our set {x,} of indexing points is i, HTl, p, we put
Ut =5 (Us,). Note T_ ¢ T§(2), Ty € T§ (2).

Again the cohomology is computed by the complex
1T+ v T+ 1T+ (17T + > T+ +
0= MU o M(T-UN ) e MU,) = MU NU)) @ M(T-Ui" nU;) =0

we have to identify the terms as submodules of some € M and write down the
boundary map explicitly. We have

MUH) & MUL) @ MUF) - MU NUF) & MUL NUS)

Levy, @ evp g, Sevy, b evgng, @ Vg ar-ig, ® €V gng,

M e MSST> @ M o, MoMaM
(3.30)

where the vertical arrows are isomorphisms. The boundary map dg in the bot-
tom row is given by

(m1,ma,m3) — (my —ms,m; — T;1m37m1 —ma) = (2,9, 2)

We may look at the (isomorphic) sub complex where © = z = 0 and m; = mg =
mg then we obtain the complex

0— M<Sl+> M= 0; mg — mo — T;lmg
which provides an isomorphism
HY(TE (2)\H, M) =5 M/(Id — T H)M<5> (3.31)

A simple computation shows that the cohomology class represented by the
class (z,y, z) is equal to the class represented by (0, yforT_:lz —2z,0) we write

[(z,y,2)] = [0,y —z+ T 'z — 2,0)] (3.32)
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3.3.3 The map to the boundary cohomology

We have the restriction map for the cohomology of the boundary
HY(TE2\H,M) M/(1d = T HM=<ST>
1 rt®dr (3.33)
H'(O(TF(2)\H),M) = M/(Id-T )M M/Id - T?*)M

we give a formula for the second vertical arrow. We represent a class [m] by
an element m € M and send m to its class in in each the two summands,
respectively. This is well defined, for r* it is obvious, while for r~ we observe
that if m =2 — T 'z and Sfo =2 thenm =2 — T'Sfz =2 — T2

Restriction and Corestriction

Now we have to give explicit formulas for the two maps 7*, 7, in the big diagram
on p. 50 in Chap2.pdf. Here we should change notation: The map 7 in Chap.2
will now be denoted by :

F:TH2)\H - I\H (3.34)

We have the two complexes which compute the cohomology H LT E(2)\H, M)
and H'(T'\H, M), and we have defined arrows between them. We realized these
two complexes explicitly in (3.30) resp. (3.24) and we have

MUS) & MUL) & MUF) = MU NUF) & MUL NUF)

(@)1 | (@) (@D 1 | (@) (3.35)

_do, o

M(U;) @ M(U,) MU;NU,)

and in terms of our explicit realization in diagram (3.30 ) this gives

do

MeM5>aM = MeMaeM
(@)@ 1 L (@) 0 (@)1 (=) (3.36)
M<S> ®M<R> ﬂ> M
Looking at the definitions we find
(@3) @ : (m1,ma) = (my, T-m1, my)
(3.37)
(w3 ) (o) : (m1,ma,m3) = (my + Smy +T-'ma, (14 R+ R?)ms)

and we check easily that the composition (w3 ))© (w3 ) is the multiplication
by 3 as it should be, since this is the index of I'g(2)" in I.
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For the two arrows in degree one we find

(wy ) 2 m = (m, Sm, T_m)

(3.38)
(W;)(l) : (mhmz,mg) — (m1 + Sma + lemg)
We apply equation (3.32) and we see that (w3 )" (m) is represented by
[(ww3) M (m)] = [0, Sm + T ' T-m —m — T_m,0] (3.39)

We do the same calculation for I'; (2). As before we start from a covering

L5 (\H = 75 (U) U m (T4 0h) U (Up) = 5 (U3) U (Usen) Uz (U)p)
and as before we put U, = 75 (Uy,). In this case U;pq = T, U; is fixed by

ST = (:1 ?) € I'y (2) and we get a diagram for the Czech complex

MUY & MUL) MU, 2 MU nU;) @ MU, NU;)

1

evg, © evg,,, L Sevg, Vgna, D Vgar-15, ¥ OGN,

MEMSST> @ M o, Mae Mo M
(3.40)

Again we can modify this complex and get
HY Ty (2\H, M) =5 M/(1d — T-HM=51 >, (3.41)
We compute the arrows (w, )*, (wy )« in degree one

(w5 )V :m = (m, Sm, Tym),
(3.42)
(w;)(l) : (m1,mg,m3) = (my + Sma + TJ:1M3).

The computation of as.

We recall our isomorphism a between the spaces and the resulting isomorphism
(3.27). The identity map of the module M and the isomorphism « on the space
identifies the two complexes

M) & MUL,) & M(U) D, MU U & MUL nUS)

_do,

MO (a(Ui)) & MO (a(UfL)) & M@ (a(U})) MO (U NU)) & MO (U, NU))

(3.43)

and if we consider their explicit realization then this identification is given by
the equality of Z modules M = M(® . This equality of complexes expresses



3.3. HECKE OPERATORS FOR GLs: 117

the identification (3.27). We can compute the cohomology H*(T'y (2)\H, M(®))
from any of the two coverings

Iy (2\H = (U V(Ui ) Ua(U)) = Uy, UUy, UU,
and (344)
Ty (2\H = U7 UUS, UU, = Uy, UUy, UUsg,.

We have to pick a class & € H'(T'y (2)\H, M(®)) and represent it by a cocycle

ce @ MO, N

1<i<j<3

(The cocycle condition is empty since U, N Uy, N U, = 0.)
Then we have to produce a cocycle

e P MU, NUL)

4<i<j<6

which represents the same class.
To get this cocycle we write down the three complexes

Dicicj<s MU, N Uz;) — 0
1)

®1§i<j§6 M(a)(Umi NUz;) — @1§i<j<k§6M(a)(UIi NUs, NUs,) (3.45)
1

@4§i<j§6M(a)(Ua:i NUz;) — 0

for our cocycle c¢ we find a cocycle cz in the complex in the middle which maps to
c¢ under the upwards arrow and this cocycle is unique up to a coboundary. Then
we project it down by the downwards arrow, i.e. we only take its 4 <1< 75 <6
components, and this is our cocycle céa).

We write down these complexes explicitly. For any pair ¢ = (¢,5),¢ < j of
indices we have to compute the set ;. We drew some pictures and from these
pictures we get (modulo errors) the following list (of lists):

Fia=10 Fiz={1d,7*} Fa={ld} Fi;={1d,71;%
Fie:={Id,T-"} Fasz = {1d} Fou={1d,T_} Fas = {1d}
Fag = {Id} F3a={1d, 7%} Fss={Id}  Fze={Id, Sy}
Fas=10 Foo={1d,T"'}  Fs={Id}
(3.46)

Now we have to follow the rules in the first section and we can write down
an explicit version of the diagram ( 3.45) . Here we have to be very careful,
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because the sets Us,, Uz, have the non-trivial stabilizer < S > and we have
to keep track of the action of I'z, ; : the set F; ; C I'z,\I'/I'z,. Therefore we
have to replace the group elements v € F; ; by sets I'z;7T'z;. In the list above
we have taken representatives.

Dicicj<sDrer, (Mg 0
T

Dicicj<6 Drer, (MENTin = B iicn<e @Wefiyj,k(M(a))Fi,j,M
1

Bicicjcs Byer, , (M) — 0

(3.47)

Here we have to interpret this diagram. The module M(®) is equal to M as
an abstract module, but an element v € I';(2) acts by the twisted action (See
Chapll, 2.2)

m»—)y*am:ofl'ya*m
here the * denotes the original action. Hence we have to take the invariants
(M(@)isv with respect to this twisted action. In our special situation this has
very little effect since almost all the I'; ; - are trivial, except for the intersection
a((~]i+71) N U; in which case I'; j, =< Sy > . Hence

(M(a))<51_> - MSST>

Each of the complexes in (3.47) compute the cohomology group H'(I'y (2)\H, M)
and the diagram gives us a formula for the isomorphism in (3.27). To get u? in
(3.27) we apply the multiplication ms:m — am to the complex in the middle
and the bottom. Then the cocycle ¢ is now an element in @/\;l(“) and ocg

represents the cohomology class u$,(€) € H'(Ty (2)\H, M).

Now it is clear how we can compute the Hecke operator

Tg :T<2 0 ZM/(M<S> @M<R>) —)M/(M<S>@M<R>)
0 1)

We pick a representative m € M of the cohomology class. We apply (w5 Y1) in
the diagram (3.36) to it and this gives the element (Sm, m,T_m) = cc. We apply

the above process to compute céo‘). Then acéa) = (my, mg, mg) is an element in
MU N U,)® ./\;I(Uijr1 NU, ) and this module is identified with M & M & M
by the vertical arrow in (3.40). To this element we apply the trace

(@y ) (1) (m1,ma, m3) = my +mg + T;lmg,



3.3. HECKE OPERATORS FOR GLs: 119

and the latter element in M represents the class Tz([m]).

We have written a computer program which for a given M = M,,, i.e. for
a given even positive integer n, computes the module H 1(1“\]1-1[7/\;1) and the
endomorphism 75 on it.

Looking our data we discovered the following (surprising?) fact: We consider
the isomorphism in equation (3.27). We have the explicit description of the
cohomology in (3.31)

HY(TE (2)\H, M) > M/(1d — T M<ST>

and
HY Ty (2)\H, M) =5 M/(Id — T=H)(M@))<5r>

We know that we may represent any cohomology class by a cocycle

ce = (0,¢¢,0) € M (5 (a(U)Na(U,)) oM™ (5 (a(Un) (T Up) ) M (my (U )N T Uy )

so it is non zero only in the middle component and then it is simply an element

)

in M. If we now look at our data, then it seems to by so that céa is also non

zero only in the middle, hence
™ € (0,¢,0) € 00 M@ (5 (U; N T=U,)) @0
hence it is also in M(®) and then our data seem to suggest that
e =ce
Hence we see that the homomorphism in equation (3.28) is simply given by
XYY"V e 2V XYV,

Is there a kind of homotopy argument (- 2 moves continuously to 17-)-, which
explains this?

We get an explicit formula for the Hecke operator Tz : We pick an element

m € M representing the class [m]. We send it by (w3 )" to HY(I'g (2)\H, M),
ie.

()Y - m — (m, Sm, T_m) (3.48)

We modify it so that the first and the third entry become zero see( 3.32)

[(m, Sm,T_m)] = [(0, Sm —m + T 'T_m — T_m,0)] (3.49)
. . 2 0 _
To the entry in the middle we apply Ms = (O 1) and then apply (@, )(1) and

get
To([m]) = [S - Ma(Sm —m + T ' T-m — T_m)] (3.50)

Eisn
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3.3.4 The first interesting example

We give an explicit formula for the cohomology in the case of M = Mjy. We
define the sub-module

5
Mtr — @ Zylo—llxu
v=0
and we have the truncation operator

y10-v xv if v <5,

trunc : Y107V XY —
{(_1)v+1YVX10—u else,

which identifies the quotient module M/M<5> to M. To get the cohomology
we have to divide by the relations coming from M<F> ie. we have to divide
by the submodule trunc(M<%>) The module of these relations is generated by

R; = 10Y9X 4+ 20Y7 X3 + Y° X5
Ry, =9Y8X2 —36Y7X3 4+ 14Y0X* — 45Y5X°®
Rs = 8Y7 X3 + 10Y°X°®
and then

5
H'(T\H, M) = @ ZY"*"" X" /{R1,Ra, R} (3.51)
v=0
Discuss complex conjugation
We simplify the notation and put e, = Y X" ™%, Using R; we can eliminate
es = —10eg — 20e7 and then

v=6
HY(T\H, M) = €P Ze, /{~50ey + 9es — 96e7 + 14eg, —100eq — 192¢7}
v=10
(3.52)
introduce a new basis { f10, fo, f3, f7, f6, f5} of the Z module M :
Ji0o = e10; fs = —2es — 3eq; fo = Yes + 1deg
(3.53)
fo = —12e9 — 23e7; fr = 25eg + 48e7; f5 = 10eg + 20e7 + e5
and hence in the quotient we get f5 = 0 and 2f; = fs and therefore
HYT\H,M) = Zfio ® Zfo & Lfs & Z/(4) f7 (3.54)
(If we invert the primes < 12 then we we can work with ejg,eg9,es and in
cohomology eg = 7%68,65 = %69,67 = 7%69.)

If we can apply the above procedure to compute the action of 75 on coho-
mology we get the following matrix for T :

2049 —68040 0 O
0 24 0 0

L=1 0 -2 0 (3.55)
2

0 0 0
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Hence we see that T5 is non trivial on the torsion subgroup. If we divide by the
torsion then the matrix reduces to a (3,3)-matrix and this matrix gives us the
endomorphism on the ”integral” cohomology which is defined in generality by

H? (D\X, M) = H*('\ X, M) /tors ¢ H*(T\ X, Mg). (3.56)

Here we should be careful: the functor H®* — HJ, is not exact. In our case we
get (perhaps up to a little piece of 2-torsion) exact sequences of Hecke modules

0 — Lfo ® ZLfs — Zfi0 ®Zfo ® Zfs — Zfro — 0
| | |

0 — Hilnt,!(r\]HLM) - Hilnt(r\]HLM) — Hilnt(a(r\H)vM) - 0

(3.57)

where Ty(f10) = (2'* + 1) fi0. If we tensor by Q then we can find an unique
element (the Eisenstein class) fi, € HL,(I'\H, M) ® Q which maps to fio and
which satisfies Th( fl‘LO) =21 +1) ffo. This element is not necessarily integral,
in our case an easy computation shows that fT ¢ Hl (I'\H, M). but 691fT €
H} . (T\H, M). This means that 691 is the denominator of fJ,, i.e. 691 is the
denominator of the Fisenstein class ffo.

Hence we see that
Hyy (D\H, M) D Hy (D\H, M) & Z691 f1 (3.58)

the quotient of these modules is isomorphic to Z/6917Z.

The exact sequence Xjo in (3.57) is an exact sequence of modules for the
Hecke algebra H D Z[T3] and hence it yields an element
[X10] € Ext},(Zfr0, Hiny o (T\H, M)), (3.59)
and an easy calculation shows that this Ext® group is cyclic of order 691 and
that it is generated by Xjg.

We look at the action of the full Hecke algebra 7 on these cohomology
groups. It turns out that for any prime p the Hecke operator 7T}, acts by the
eigenvalue p'! + 1 on fig(see proposition 3.3.1). We will also see that a sim-
ple argument using Poincare duality and and the self adjointness of the Hecke
operators shows that T}, acts by multiplication by a scalar 7(p) on the inner
cohomology HL. (I'\H, M). Then we can conclude

int,!

For all primes p we have

7(p) =p** +1 mod 691

3.3.5 Interlude: Ramanujan’s A(z)

We want to stress that the previous considerations are purely algebraic and
combinatorial, no analysis is involved. In the next chapter we will use analytic
methods -especially we will use the results from the theory modular forms- to
obtain some further insight into the structure of the cohomology groups.
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In his paper [79] Ramunujan introduced the function

oo
A(Z) — 2miz H(l _ e2rrinz)24
n=1

this is the unique (up to a non zero scalar ) cusp form of weight 12 for Sly(Z),
(See [89]). We can expand

A(Z) — eQﬂ'iz _ 24647r1'z 4 252667riz 4t anBZnﬂ'iz +..
The coefficients satisfy (conjectured by Ramanujan) the following recursions

Gnyny = Gn,Qn, if M1, N9 are coprime;
(3.60)
_ 11 . . .
apr = ApGpr-1 + pia,r—2 if pis a prime and r > 2

These recursion formulas for the coefficients of the expansion were proved
by Mordell [70] (essentially by using Hecke operators) and later by Hecke in a
more general framework.

In the next section we discuss the Eichler-Shimura isomorphism (see 4.1.7)
which in this special case it implies that for any prime p we have a, = 7(p).
Therefore we define the Ramanujan 7 function by 7(n) = a,,. With this defini-
tion of 7(n) Ramanujan proved the famous congruence 7(p) = p't+1 mod 691.

Ramanujan also made the famous conjecture saying that for all primes p we

have the inequality

11

T(p) <2p=
This inequality implies of course that for all primes p (and especially for
p=2) 7(p) # p'* + 1 and this implies that any Hecke operator T}, provides a
canonical splitting into eigenspaces H!(I'\H, M®Q) = H} (I'\H, M®Q)®Q f1o.
This is the simplest instance where the Manin-Drinfeld principle works.

Other congruences

It is easy to check that H'(P'\H, M) and HZ2(T'\H, M) do not have 5 or 7
torsion. Therefore we have we have (Prop. 3.3.1, see )

Z)10Zeo(X,Y) D Z/5Zes(X,Y) @ Z)TZes(X,Y) Cr(r ' (T2))/T1  (3.61)
and this implies the well known congruences
(p)=p+p=p°+p° mod5; 7(p)=p” +p° mod7 (3.62)

[99] [21] These congruences are called congruences of local origin whereas the
congruence mod 691 is a congruence of global origin.
End of interlude

We can go one step further and reduce mod 691. Since there is at most 2
torsion we get an exact sequence of Hecke-modules

0— Hi (D\H,M ®Feo1) —Hb (D\H, M @ Fg91) — HL (O(T\H), M @ Feo1)
(3.63)

—0.
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The matrix giving the Hecke operator mod 691 becomes

667 369 0
o= 0 667 0 (3.64)
0 0 667

This implies that the extension class [X19 ® Fgg1] is a element of order 691,
and hence 691 divides the order of [Xjo] and hence divides the order of the
denominator of the Eisenstein class.

Of course we may also consider the Hecke operator 7}, then the corresponding
matrix will be

ptt @ 0
T, = 0 7(p) O (3.65)
0 0 7(p)

and we know that (p'! + 1 — 7(p))z = tP) has no solution with € Zgg;). But
then it may happen that the above sequence (3.63) splits as T,,-module sequence,
this happens exactly when we have (") =0 mod 691. But this implies that we
have the stronger congruence

pl+1—7(p)=0 mod 6912 (3.66)

On the other hand it is clear that the sequence splits as T, module sequence if
and only of this stronger congruence holds. For the curious reader we mention
that this happens for p = 3559 and for the first ten thousand primes it happens
13 times and 13 is roughly equal to 10000/691.

Later we will discuss the action of the Galois group on H.. (T'\H, M ® Feg1)
and analyse the consequences of this fact for this action of Gal(Q/Q).

Before we discuss the general case we recall a simple fact from the theory of
finitely generated modules.

3.3.6 The general case

Now we describe the general case M = M,, where n is an even integer. We
define M as above, if n/2 is even, then we leave out the summand Xxn/2yn/2
we get
Mtr _ M/M<S>-
This gives us for the cohomology and the restriction to the boundary coho-
mology

HYT\H,M) = M /Rel
Vo i (3.67)
Hl(a(I‘\H), M) = M/(Id - T)M.
We have the basis

Yyn/2Xn/2 pn/2 odd

en = trunc(Y™), e,_1 = trunc(Y" 1 X), ..., {O X
else
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for MY, Let us put no = n/2 or n/2 — 1. Then the algorithm Smithnormalform
provides a second basis f,, = en, fn—1,. .., fn, such that the module of relations
becomes

dofrn=0,dp_1fn1=0,...,dift =0,...,dp, frn, =0
where d,,|dp, 41| ... |dn. We have d,, =dp,—1 =+ = dp—25 = 0 where 2s +1 =
dim HY(T'\H, M) ® Q and d,,_2s_1 # 0.

Now we have written a computer program which for a given n gives us an
explicit matrix for T, it is of the form

Jj=n2

To(fi) = Y 67 f; (3.68)

j=n

where we have (the numeration of the rows and columns is downwards from n
to n2)

tih =0for v <nand t) € Hom(Z/(d;), Z(dy))

3.69
andtfj):0fori2n—23,j<n—2s ( )

If we divide by the torsion we get for the restriction map to the boundary
cohomology

n—2s
HY(D\H, M)t = €D Zf, — H'(O(D\H), M)y = ZY™" (3.70)

v=n

where f, — Y™ and To(Y™) = (2"*! + 1)Y™. Now we will find that the en-
domorphism Ty — (2" + 1)Id of H{'(D\H, M)yt is injective (Manin-Drinfeld
principle see below and section 4.1.7) and this implies that we can find a vector

v=n-—2s
Eis,, = f, + Z Ty fy, T, €Q (3.71)
v=n-—1
which is an eigenvector for 75 i.e.
Ty( Eis,) = (2" ™! 4 1) Eis,,. (3.72)

The least common multiple A(n) of the denominators of the x, is the de-
nominator of the Eisenstein class, it is the smallest positive integer for which

A(n)Eis,, € HY(T\H, M)ipn. (3.73)

This denominator is of great interest and our computer program allows us
to compute it for any given not to large n. We simply have to compute the z,.
We know that To(f,) = (2" +1)f, + Zzzz:?g t$2), £, and then the z,, are the
unique solution of

v=n—2s
(@™ + 1)0, — tP))ay =t {u=n—1,...,n—2s} (3.74)
v=n—1
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With the help of H. Gangl we carried the computation of the z, and hence
the A(n) and we found for some not too large values of n (roughly n < 150)
that

A(n) = numerator(¢(—1 — n)). (3.75)

Here of course ((s) is the Riemann ¢ function, it is well known that for any odd
positive integer m the value ((—m) is a rational number, hence it makes sense
to speak of the numerator.

Actually this is a theorem, we will give a proof in Chapter 5 (Theorem 5.1.2).

The reader might argue, why do you make such efforts to find out some
experimental evidence for something you know to be true?

There a several reasons for doing this but the main motivation is the fol-
lowing. The Theorem 5.1.2 is hopefully a special case of a much more general
assertion. The problem to determine (estimate) denominators of Eisenstein
classes is ubiquitous in the cohomology of arithmetic groups. And we have
many cases where we have conjectures relating these denominators to special
values of L-functions. (See [42]) But in many of these cases the methods to prove
theorems like Theorem 5.1.2 seem to fail. Therefore it seems to be of interest
to develop algorithms which compute the cohomology and the action of Hecke
operators explicitly in given cases. A general strategy for such an algorithm has
been outlined in section 3.2.1 and H. Gangl and I wrote a toy model program
in the above case.

We are aware that these algorithms may become very slow for more general
reductive groups, and it is very likely that we need clever new ideas to achieve
this task. On the other hand it seems to be very important to collect some ex-
perimental data in order to verify or falsify these conjectures. (See also Chapter
9).

3.3.7 Localisation at a prime /

We will see later the we should not consider the denominator of the Eisenstein
class as a number but rather as an ideal. Hence we are only interested in the
decomposition into prime ideals, i.e. for a prime ¢ we want to know the exact
power of £ which divides A(n). To achieve this we replace in the considerations
above the coefficient system M by ./\;l(l) =M® Zyy, here Zy C Q is the local
ring at £. Then our cohomology modules will be finitely generated Z)-modules
H* (F\H, M(l))

¢ -ordinary endomorphisms

In this subsection we fix a prime ¢ we consider finitely generated modules over
the local ring Z;y C Q. We consider such a module together with an endomor-
phism & : M — M. Then

Proposition 3.3.2. We have a canonical decomposition into ® submodules

M =M org ® Myt such that ® : M ong — M org and () @* (M) = {0}
k
(3.76)
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We call M ,,q the ordinary part with respect to ® and ¢ and we call M ,.q
an f-ordinary ® module. Of course the functor M — M ,.q is exact. Since the
functor X — X it is not exact the surjectivity in (3.70) is problematic, because
H2(T'\H, M) # 0. But if we consider our fundamental long exact sequence

H}(T\H, M) — H'(T\H, My) = H'(9(T\H), My) — Hf(a(F\H),/E;l(Z)))
3.77

and choose for ® the Hecke operator T} then it follows from our computations
in section 3.3.1 that T} acts nilpotently on HZ(8(I'\H), M), and therefore
H? L (O(D\H), M(l)) = 0 and we get the exact sequence

c, ord

Hl ord(F\H7 M(l)) — Hlord(]'—‘\Hv M(l)) — Hlord(a(F\H)v M(l)) —0 (378)

C?

and H® (0(T\H), M(l)) = Z(p)Y". Now we can replace the sequence (3.70) by

this sequence if we want to study the power of £ in A(n).

The Glz/Z module M,, contains the submodule

Mo ={>a, (Z) XYX" | a, € Z} (3.79)

( see 4.1.1) , this is actually the smallest submodule of M,, which contains X™.
Then we consider the cohomology H*®(I'\H, M” ) and again we can ask for the
denominator of the Eisenstein class. Here the method of localising at ¢ provides
a simple answer. We consider the exact sequence of coefficients

0— MEL Q Ly — Mn ®Z(@)) — ./\;[n/./\;lil & Z(g)) — 0.

Now it follows easily from the definition that the Hecke operator T} acts nilpo-
tently on the the cohomology modules H*®(I'\H, — M,,/M?, ® Z ;) and hence
we see that

Hlord,?(F\Ha MEL ® Z(@)) ; Hlord,? (F\]HL M'ﬂ ® Z(f)) (380)

is an isomorphism. This implies that the denominator of the Eisenstein class
does not depend on the choice of the coefficient system.

3.3.8 Computing mod ¢
Of course the coefficients tl(/22L become very large if n becomes larger, hence we
can verify (3.75) only in a very small range of degrees n. Here we can reduce
the computational complexity if we consider the reduction mod ¢. We look at
the two exact sequences

= H g ((O\H My, @ Zg)) - — HY (VL My, @ Zp) = Hiopg (OD\H), My, @ Zigy) - —
: 1 1
= Hog (O\H My @F0) = Hipg C\H M, @F) = HY(0(C\H), M, @ Fy)

(3.81)

_>
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We have ¢|A(n) if the sequence above does not split as modules for the Hecke
algebra for instance for the endomorphism T5. But this is certainly the case if
the sequence mod ¢ does not split. But this is easier to check, we apply the
above algorithm to the computation of the cohomology mod ¢, Then the t,(,2L
and tgL are elements in Fy and these are definitely easier to compute than the
corresponding coefficients in characteristic zero. Hence we can verify ¢|A(n) if

we show that

v=n—2s
> (@ + 1)y — tP))w, =tF), mod £ (3.82)
v=n—1

has no solution.

Of course we have to be careful, it may very well happen that the equation
in characteristic zero has no solution but the equation mod ¢ is solvable. For
instance this happens if tg?,), =0 mod /. But then it may be still less expensive
to replace the Hecke operator by T3,T5,...,T),.... We apply the above con-
siderations to Hecke operator T}, and get an expression for the matrix T}, (see
(3.68)

Jj=ng

Z 1 15 T,(V™) = (" + )Y (3.83)

but of course the computation of t i ) becomes very expensive if p becomes larger.
Then we have to look whether for some small value of p the equation

v=n—2s
S (" 4 Dby — tP))z, = tF), mod £ (3.84)

v=n—1

has no solution and we have verified that ¢|A(n).

Higher powers of /

This reasoning can also be applied if we look at higher powers of p dividing a
numerator¢(—1 — n). Let us assume that p’»( numerator((—1 —n). We have
to show that p (") divides the lem of the denominators of the x, in equation
(3.74 ). This follows if we show that the equation

v=n—2s
Z (2" +1)6,, — t,(fl)t)xl, = p‘sp(")*ltgzt mod p» (™) (3.85)
v=n—1

has no solution. This in turn means that the class
(X ® Z/p"* MW7) € Bxty, (Z/p** ™ Z)(=1 = n), Hiy, ,(\H, M ® (Z/p’* " 7))

has exact order p’»(").
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Interesting cases to check are p = 37,59,67,101... then we have
¢(=31)=0 mod 37; ¢((—283) =0 mod 37% ((—37579) =0 mod 37%; ¢(—1072543) =0 mod 37*
¢(—43) =0 mod 59; ¢(—913) =0 mod 597

Here our computations have a surprising outcome. For ((—283) resp. ¢(—913)
it has been checked that the order of the extension class is 37 resp. 59 so it
is smaller than expected. This is not in conflict with the assertion that the
denominator is of order 372, 592. In fact it turns out that the determinant of the
matrix on the left hand side in (3.85) is (372)? = 37° where the denominator only
predicts 374. Is this always so and is this also true for other Hecke operators?

3.3.9 The denominator and the congruences

For the following we assume that (3.75) is correct. We discuss the denominator
of the Eisenstein class in this special case. In [Talk-Lille] this is discussed in
a more abstract way, so here we treat basically the simplest example of 4.3 in
[Talk-Lille]. Remember that in this section M = M’ i.e. we have fixed an
even positive integer n.

We have the fundamental exact sequence

0 — Hb, (D\H, M) — H;.

int

(T\H, M) — H! (3("\H), M) = Ze,, — 0
(3.86)

and we know that Th(e,) = (2"! + 1)e,. We get a submodule

HL (T\H, M) ® Zé, C H. (T\H, M) (3.87)

int,! int

where &, is primitive and Th¢é, = (2"*! + 1)&,. We have 7(é,) = A(n)e,, and

iy (P\H, M)/ (Hip (P\H, M) © Zn) = Z/A(n)Z (3.88)
Any m € Z/A(n)Z can be written as
., Yy + mé,
m= (7A(n) ) (3.89)

and this yields an inclusion Z/A(n)Z — H}

int,!

(T\H, M) ® Z/A(n)Z.
Hence

Theorem 3.3.1. The Hecke module H. (T\H, M)®Z/A(n)Z contains a cyclic
submodule Z/A(n)Z(—1 — n) on which for all primes p the Hecke operator T,
acts by the eigenvalue p"*1 +1 mod A(n)

This theorem has interesting consequences which will be discussed in the
following.

In section (4.1.9) we will review the famous multiplicity one theorem which
follows from the theory of automorphic forms. This theorem implies that we

can find a finite normal field extension F/Q such that
i o(T\EL M) © F = € Hiy (T\HL M ® F)l] (3.90)
s
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where 7 runs over a finite set of homomorphisms 7y : H — Op, and where
H'.[r¢] is the rank 2 eigenspace for m;. We also have the action of the com-
plex conjugation on the cohomology (See sect. how) and under this action
each eigenspace decomposes into a one dimensional + and a one dimensional
- eigenspace, i.e. H'.[ry] = Hi.[rs] & HL . [rf]. Let us denote the set of
w¢ + H — Of which occur with positive multiplicity (then 2) in the above
decomposition by Coh!(").

Our considerations at the beginning of this section imply that we also have
a decomposition of

HYT\H,M)® F = HY(T'\H, M) ® F @ Fe,

where Tye, = (p"T + 1)e,. Let W}]::is : H — 7 be the homomorphism W?is :
T, = p"tt + 1.
This decomposition induces a Jordan-Holder filtration on the integral coho-

mology

(0) € THWHL, (D\H, Mo,) € THP Hy (T\H, Mo,.) C --- € TH HY, (D\H, Mo,
(3.91)

where the subquotients a locally free O modules of rank 2 and after tensoring
with F' they become isomorphic to the different eigenspaces.

We choose a prime p which divides A(n), let p%»(™||A(n). Let p be a prime
in Of which lies above p. If e, is the ramification index then we have

{0} € Op/p=® (=1 —n) C Hiy (P\H, Mo,.) ® Op /p=» (3.92)

The above Jordan-Holder filtration induces a Jordan-Holder filtration on the
cohomology mod p¢r% (") we have

{0y c THWHL, (T\H, Mo,) ® Op /po™ — JHE . (3.93)

where again the subquotients are free Op /p°»® (") modules of rank 2. A simple
argument shows

Theorem 3.3.2. We can find s 1,7¢2...,7f, in the above decomposition and
numbers f1 > 0, fa > 0,..., fr > 0 such that > fi = e,0,(n) and we have the
congruence

mri(T)) = +1 mod p’t (3.94)
for all primes £.

In the following section we look at this theorem from a slightly different
point of view.
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p-adic coefficients

In the previous section we decomposed the inner cohomology into eigenspaces
under the action of the Hecke algebra. In our special situation - the underlying
group G = Gls- this is also valid for the full cohomology. But our main object
of interest is the cohomology with integral coefficients and our example above
shows that the cohomology with integral coefficients does not split.

To investigate the structure of the cohomology groups H '(F\H,M) we
choose a prime p. This prime will be fixed throughout this section, let Z,y C Q
be the local ring at p. We are interested in the structure of the cohomology
groups H*(T\H, M ® Z(yy) as modules under the Hecke algebra. But now it is
convenient to go still one step further, we tensorize our coefficient systems by
Z,, the ring of p-adic integers. We want to simplify the notation: In this section
we denote by M,, the Z,-module M) ®Z, where A = ny+d det where the value
of d is irrelevant it just has to have the right parity. (Comment? Z,) — Z, is
flat hence it does preserve Ext! groups. )

Let M be any finitely generated Z,-module, let T}, : M — M be an endo-
morphism. Of course X is a topological module, the open neighbourhoods of 0
are the modules p” M. Following Hida we define two submodules

M ga = () Ty M; My = {z € M|T}z — 0} (3.95)
r—00

A simple compactness argument shows that
M =M oq ® Mnilpt (396)

and it is also clear that M — M .4 is an exact functor.
We apply this to our cohomology groups, and we assume that I' = Sly(Z).
We start from the exact sequence of I' modules

0= My =B M, = M, ®F, — 0. (3.97)

Here we want to assume that p > 3 then we get the resulting exact sequence of
sheaves and hence a long exact sequence of cohomology groups

O - (M'rFL) ord ﬁ) (Mg) ord —7 (Mn ® Fp) ord —7
(T\H, M,,) =% H _(T\H, M,,) = H._,(T\H, M,, ® F,) =0

ord

3.98
— H! (3.98)

ord

and we can break this sequence into pieces

0= (M}) ora =2 (M) ora = (M @ Fp)5 g — H'opg (\H, M) [p] = 0
(3.99)

and

0 = H g (T\HL M) [p] = H g (T\EL My) =5 H g (DVH, M) — HY g (D\EL M, @ Fy) = 0

(3.100)

where of course ... [p] means kernel of the multiplication by p and the far most
0 on the right is the vanishing of H?.
We analyze these two sequences and get
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Theorem 3.3.3. The cohomology Hlord(I‘\]H[,Mn) is torsion free unless we
have n. >0 and n =0 mod p(p—1). The cohomology groups H! , ,(T'\H, M.,,)

are always torsion free and Hi org(T\H, M,,) =0

Proof. We consider the polynomial ring in two variables F,[X,Y]. On this ring
we have the action of Sl2(Z). It is an old theorem of L.E. Dickson that the ring
of invariants is generated by the two polynomials

ngfl _ szfl

S 2 _ xb-Dp (p—1)(p—1)yp-1
-1 _yr-1 =X + X Y + ...

(3.101)

fi=XPY — XYP and fo =

r

. . a b
orq 18 @ sum of monomials f{ f7 where a(p +

Now every element in (M,, @ F,)
1)+ bp(p — 1) = n. We see that

up 0 :ua:./\/lgf‘)%./\/ln
(&%)

multiplies f; with a multiple of p and hence we see that all the monomials with
a > 0 are multiplied by a multiple of p. This means that (M, ® Fp)rord # 0 if
and only if n = bp(p — 1). If n = 0 we the map ML = Z, - (M,, @ F,)I' is
surjective if n > 0 we have ML = 0 and hence the theorem.

For the assertions concerning the compactly supported cohomology we have
to recall that H2(I'\H, M,,) = (M,,)r = M,,/IrM,, [book vol I, section 2 and
4.8.5]. We check easily that X", Y™ € It M,, and the assertion is clear. O

We write n = ng + (p — 1)a where we assume 0 < ng < p — 1, we know that

HY JT\H,M,)®Z/p"Z — H' ((T\H, M, @ Z/p") (3.102)

ord ord

we have a second theorem
interpol

Theorem 3.3.4. If n = ng+ (p — Da,n’ = ng+ (p — 1)a and o = o
mod p"~1, (ie. n =n' mod (p— 1)p"~!) then we have a canonical Hecke in-
variant isomorphism

O(n,n'), : HYy(T\H, M, ® Z/p") = H', ((T\H, M, @ Z/p").  (3.103)
This system of isomorphisms is consistent with change of the parameter o, o’ and r.
Proof. See paper on interpolation. O

We find a finite extension F/Q, such that we have a decomposition into
eigenspaces

Hlord(F\Hv M, @ F) = @ Hlord(F\Hv M, ® F)[Trf] ® Fey, (3104)
s

where the first summation goes over those 7y € Coh!(") for which 7 ¢(T}) is a

unit in Oy, the ring of integers in F'. Let us denote this set by Coh!(ﬁld. Then

(n) (n)

the full summation goes over the set Coh, 4 = Cohy 4 U {w?is}. Intersecting
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this decomposition with H! ,(I'\H, M, ® Oy) gives us a submodule of finite
index

H'\ g (D\H, My, ® Op) D @D H',,q(T\H, M,, @ Op)[ms] & Open,  (3.105)

f

and this also gives us a Jordan-Hélder filtration as in (3.91).
We consider the reduction maps

H!l, ord(r\]HL Mn ® Op) - Hll, ord(F\Hv Mn ® F(p))
1 i) (3.106)
ord(F\H M ® OP) - Hlord(F\Hv M’ﬂ ® F(p))
the right hand sides do not depend on o. Any 7y € Coh™ rd we get a non zero
homomorphism 7y = 7¢ xF(p) : H — F(p). The map 7y — 7 is not necessarily
injective: we say that my 5 and 7o ¢ are congruent mod p if w1 ¢(T) = mo ¢ (T2)
mod p for all primes ¢, or in other words 71y = 72 ;. For a given ny let {7/}
be the set of all m; ; which are congruent to the given 7.

H g (D\H, My, @ F(p)){75} = {2 € Hopa(T\H, My, @ F(p))|(Ty — 74 ())& = 0}
(3.107)

provided N >> 0. Then it is easy to see that (See for instance [book,II], 7.2 )
that

ord(F\H M ® IF @H ord F\Hv Mn ® F(p)){ﬁf} (3108)

The kernel mz, of 7y is a maximal ideal, let Hmﬁf be the local ring at mz .
Then the above decomposition can be written as

H',y(D\H, M, ® F(p EBH ord (C\H, M, @ F(p)) @ M, /mE, (3.109)

Now we recall that we still have the action of complex conjugation (See
sect.2.1.7) on the cohomology and it is clear (SEE(??)) that it commutes with
the action of the Hecke algebra. Hence we see that the summands in the above
decompose into a + and a - summand, i.e.

H', g (P\H, My, @ F(p)) @ Moy, /mb, = 69 H ora(D\EL, My @ F(p)) © Hon /e [£]
(3.110)

Now we encounter some difficult questions. The first one asks whether we
have some kind of multiplicity one theorem mod p. This question can be for-
mulated as follows:

1
Are the summands H-,

(T\H, M,, ® F(p)) ® Humy, /mgf [£] cyclic, i.e. are
they - as 'Hm,,rf /mﬁf modules - generated by one element ?
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To formulate the second question we regroup the decomposition (3.104)

Hy(\HM, @ F)=P( @@ HLW\HM, @ F)[ry)) (3.111)

ny mre{ms}
and define

HY (D\H,M, @ Op){7s} =

(3.112)
(@ﬂ‘fe{ﬂ'f} Hlord(r\]HL M’ﬂ ® F)[ﬂ-f]) N Hlord(F\H7 Mn ® OF‘)
and then we get a second variant of (3.110)
B s NV M, 8 07y} = B DH M, 00p) (3123

Now we are interested in the structure of the direct summands H* _;(I'\H, M,,®
Op){7¢}. It is clear that this is a free O, module of rank

H({g)) = {2#{@} if {77} # {7[F*) (3114

2# {7t - )+ 1 if {7} = {7F"}

Again we get a submodule

@ HL\H M, Oy)ny] € HYa(D\H M, © Op) {77} (3.115)

mre{ms}

Our second question is

What can we say about the structure of the quotient
ord(F\H M ® OP){ﬂf}/ @ H ord F\H7 MTL ® OP)[Wf] ?
mre{mr}

For instance we may ask: Is this quotient non trivial if the cardinality of {7s}
is greater than 1 ?

For a subset ¥ C {7} we define in analogy with (3.112)

ord(F\]HI M ® OP){E} -

(3.116)
(D, ex Hora M\H, My, ® F)[ms]) 0 H g (\H, My, @ Op) {75}

and we call ¥ a block if

H g (D\HL My, @ Op){7ip} = (3.117)
H g (D\H, My, @ Op){2} & Hoyq(T\H, My, @ Op){{7;} \ 2} (3.118)

Then a slightly stronger version of our question above asks

Can {7y} contain non trivial blocks?
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These two questions are closely related. We will come back later to these
issues in this book. In the following we outline the general philosophy:

The structure of the cohomology as module under the Hecke-algebra is influ-
enced by divisibility of special values of certain L functions which are attached
to the my.

We have some partial results. ( For this see Herbrand -Ribet , Hida.. ).
If we consider the special case of {ﬁ?is}. Our theorem 3.3.2 implies

plC(=1-n) = {7F"} > 1,

this has been proved by Ribet in [81], he also proves the converse using a theorem
of Herbrand [ ]. Our theorem 3.3.2 is stronger, because it implies higher con-
gruences if ((—1—n) is divisible by a higher power of p. Moreover the existence
of congruences do not imply anything about the denominator.

Of course the next question is: If we have p | {((—1 — n), what is the size of
{ﬁ?is} can it be > 27 Let us pick a 7y € {ﬁ?is} which is not 7'(']]::15. To this 7y we
attach the so called symmetric square L-function L(ms, Sym?, s). (See ...). This
L function evaluated at a suitable ”critical” point and divided by a carefully
chosen period gives us a number

L(rs, Sym?) € O,

here Fy is a global field whose completion at p is our F' above. Now a theorem
Hida says (cum grano salis)

#TFS > 2 = p| L(rg, Sym?) (3.119)

(See later) If we accept these two results then we get

Theorem 3.3.5. If p’»(") | ((=1—n) and if L(r}, Sym?) & p, then the number
r in theorem 3.8.2 is equal to one, i.e. {ﬁ?is} = {Wf,?TJ];:iS) and we have the
congruence

75(Ty) = +1 mod p® ™ Y primes ¢

Finally we get w¢(Ty) € Zy for all primes £ and hence we may take Op = Zy,.
We can find a basis fo, f1, f3 of H,, ,(T\H, M) where
a) f1, fa form a basis of H} ora(C\H, M)
b)The complex conjugation c acts by c(f;) = (—1)*1f;
and
c) the matriz T,°™ with respect to this basis satisfies

| 0 1
T, = 0 LG | 0 mod p°» (™)
0 0 |

Proof. Clear O
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If we drop the assumption £(7f, Sym?) ¢ p then the situation becomes defi-
nitely more complicated. In this case we we have {ﬁ?is} = {ﬁ?is, 1oy T f}
where now r > 1. We apply theorem 3.3.2 to this situation where we replace the
subscript 1iny by ora- We have the filtration which is analogous to (3.91) but
now the last quotient is of rank one and isomorphic to the cohomology of the
boundary. We find a basis fy, f1,e1, f2,€2,..., fr, e, adapted to this filtration

and where ¢(f;) = —f;,c(e;) = e1 Then we get a matrix (we consider the case
r=2)
AR 0 1 0 1
0 Tf1 (Tg) 0 u 0
T, = 0 0 mr1(Ty) 0 v (3.120)
0 0 0 Tf2 (Tg) 0
0 0 0 0 Tf2 Tg)

where u, v are units in Z, and where the diagonal entries satisfy some congru-
ences 7, 1(Ty) = ("1 +1 mod p™ where ny +ng = epdp(n). We come back to
this later.

3.3.10 The p-adic (-function

We return to section 3.3.8. We are interested in the case that p is an irregular
prime, i.e. p | ((—1 — ng). We also assume that also L(ms, Sym?) & p. We
consider ((—1 —n) = ((—1 — ng — a(p — 1)) as function in the variable & € N
and we want to find values n = —1—ng—a(p—1) such that ((—1—n) is divisible
by higher powers of p. We know that that there exist a p-adic (— function and
tells us - provided ng > 0— that

C(=1=n)=C¢(-1—ng—a(p—1)) = (—1—ng) + a(ng, ap + a(ng, 2)a’p? . ..
(3.121)

where the coefficients a(ng,v) € Z,. Now several things can happen.

A) Our prime p does not divide the second coefficient a(ng,2). Then we can
apply Newton‘s method and we find a converging sequence ay, as, ... such that

a, =a,;; modp” and ((—1 —ng—a,(p—1)) =0 mod p**'  (3.122)

If now n, = ng + a,(p — 1) then we can form the system of Hecke-modules
(A Hida family) H, ,(C\H, M, )({7¥"}) and theorem 3.3.4 gives us Hecke-

module morphisms
HY ((T\H, M, 1 ® Z/p"'Z) 2% HY ((T\H, M,,, @ Z/p"Z)  (3.123)

The sequence n, converges to an p-adic integer n,, we can form the projective
limit and define

Hoa(T\H, My ) = lim H g (T\H, M., @ Z/p"Z) (3.124)
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Under our assumptions this is a free Z,-module of rank 3. The Hecke operators
T, acts on HY (T\H, M,,, ® Z/p"Z) by a matrix of the shape as in theorem
3.3.5, and the eigenvalues on the diagonal are

gt 41 = grote—Dew L1 pod p”

For ¢ # p we write /=1 = 14 §(¢)p,6(¢) € N and then ¢ro+P—Dav — ygno(] 4
§(€)p)* and hence it follows that lim, ., £"” = £"> exists. Hence we see that
T, acts on H: (T'\H, M,,__) by the matrix

(et 41 0 1
T, = 0 et 41 0
0 0 (oot 41

B) We have p | ((—=1 —ng);p? [f¢{(—=1—ng) and p | a(ng, 1). In this case we
can not increase the p power dividing {(—1 — n).

C) We have p? | ((—1 —no); p | a(no,1) and p fa(no,2)
We rewrite (3.121)

((-1=n) _{(-1=no) , a(no, 1)

o o ) a+ a(np,2)a® mod p (3.125)

Now we get two numbers a, B such that
C(_l —no — aoo(p_ 1)) =0 ;4(_1 —no — ﬂoo(p_ 1)) =0

but these numbers are not necessarily in Z,, they lie in a quadratic extension
O, of Z, hence they are not necessarily approximable by (positive ) integers.
If we want to interpret these zeros in terms of cohomology modules with an
action of the Hecke algebra we have to extend the range of coefficient systems.
In [Ha-Int] we define ”coeflicient systems” MLO’Q where now is any element in
Oc, - (These coefficient systems are denoted P, in [Ha-Int]).

These coefficient systems are infinite dimensional Oc,— modules, we can
define the ordinary cohomology H*  (I'\H, M, ,). On these (ordinary) coho-
mology modules we have an action of the Hecke algebra and they satisfy the
same interpolation properties as the previous ones, especially we have an exten-
sion of theorem 3.3.4 for these cohomology modules.

If & = a is a positive integer then we have a natural homomorphism

\I,a : M"O#*G(P*l) - MILo,a

and this map induces an isomorphism on the ordinary part of the cohomology

\I](l) : Hlord (F\H7 Mnoﬁ*a(p*l)) ;> Hlord (F\H7 M;rlo,a) (3126)
We now allow any a € O, our coefficient system will then be a system of O,
modules and the cohomology modules will be O, modules. Of course we still
have our fundamental exact sequence (3.86) of O, modules.



3.3. HECKE OPERATORS FOR GLj: 137

— HY g J(O\H, ML ) — HY G(M\H M, ) —— HY G (O(D\H), M, ) = Openga — 0

ord,c ng,o ord no,
(3.127)
This is an exact sequence of Hecke-modules and we still have
T, en) = (0™ (P~ + Deng.a (3.128)

Let p = (wp), we define d,(a) by

@y O[[¢(=1 = ng —alp - 1)).

In a forthcoming paper with Mahnkopf we will (hopefully) show that we can
construct a section

Eisa : Oc, eng,a ® Qp = Hlppg(M\H, M} ) ®Q, (3.129)
which is defined by analytic continuation and that wg‘“(a) is the exact denomi-

nator of EKis,.

If this turns out to be true then we can extend the results for ordinary coho-
mology modules H* (I'\H, M4 (p—1)a)) to the extended class of cohomology
modules H! ,(T'\H, MLO@). Especially if we look at our roots e, fo and as-
sume that they are different then we get a theorem analogous to the theorem
3.3.5 for both of them. If these two roots are the same the situation is not clear
to me.

3.3.11 The Wieferich dilemma

We are still assuming that our group I' = Sl(Z). We get a clean statement if
we are in case A), i.e.

plC(_l_nO)vp /{/a(n0a1)7p X[,(TFf,Sme)

At the present moment we do not know of any prime p| {(—1 — ng) which does
not satisfy A). This is is not surprising: The primes p | {(—1 — ng) are called
the irregular primes and they start with

37| ¢(—1—30),59 | ((—1—42)...

It is believable that for a prime p | ((—1—nyg) the numbers a(ng, 1) and L(ry, Sym?)
are "unrelated” and or in other words the residue classes a(ng, 1) mod p and L(m¢, Sym?)
mod p are randomly distributed. Hence we expect that the primes p | {(—1—ng)
which do not satisfy A) is a "sparsely distributed” see [14].

But this does not say that this never happens, actually depending on the
probabilistic argument you prefer, it should happen eventually. But perhaps we
will never find such a prime.

On the other hand

The Wieferich dilemma: We do not know whether the set of primes which
satisfy A) is infinite.
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We drop our assumption that I' = Sl(Z) and replace it by a normal con-
gruence subgroup of finite index. We choose a free Z— module of finite rank V
with an action of T'y /T, i.e. we have a representation

py Fo/r — GI(V)

we assume that the matrix —Id acts by a scalar wy,(—Id) = £1. We look at the
I-modules M,,®V, we assume that V(—Id) = n mod 2, These modules provide

sheaves M,, ® V and we can study the cohomology groups and especially we can
study the fundamental exact sequence

— HY g J(T\HL M, ® V) — HY ((T\H, M, © V) — HL, (9(T\FI), M,, ® V)
(3.130)

We have to compute H'  (9(T'\H), M,, ® V) as a module under the Hecke al-
gebra and we can ask the denominator question again, provided this boundary
cohomology is not trivial.

We may for instance choose a positive integer N and we consider the congru-

ence subgroup I'g(NV) = {(Z Z) € Sly(Z)|c=0 mod N}.Let I'y(N) C T'y(V)

be the subgroup where a =d =1 mod N then T'g(N)/T1(N) = (Z/NZ)* We
choose a character x : To(N)/T'1(N) — C* and consider the representation
V= Indll:o( mX- In this case the denominator is essentially given by L values
L(x,—1 —n) and these values will be divisible by smaller primes (compared to
37) and our chances to encounter cases of B) and or C) are much better.



Chapter 4

Representation Theory,
Eichler-Shimura
Isomorphism

4.1 Harish-Chandra modules with cohomology

In Chapter 8 we will give a general discussion of the tools from representation
theory and analysis which help us to understand the cohomology of arithmetic
groups. Especially in Chapter 8 section 9.5 we will recall the results of Vogan-
Zuckerman on the cohomology of Harish-Chandra modules.

Here we specialize these results to the specific cases G = Glz(R) (case A))
and G = Gly(C) (case B)). For the general definition of Harish-Chandra modules
and for the definition of (g, K ) cohomology we refer to (8.1.2)

4.1.1 The finite rank highest weight modules

We consider the case A), in this case our group G/R is the base extension of the
the reductive group scheme G = Gly/ Spec(Z). In principle this a pretentious
language. At this point it simply means that we can speak of G(R) for any
commutative ring R with identity and that G(R) depends functorially on R.

139
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( Sometimes in the following we will replace Spec(Z) by Z.) Then GV /7Z is
the kernel of the determinant map det : G/Z — Gy, /Z. We have the standard
maximal torus 7 /Z and choose the Borel subgroup B/Z O T /Z to be the group
of upper triangular matrices. Let X*(7) = X*(T x C) be the the character
module This character module is Ze; @ Zes where

€ : (0 t2) =t (4.1)

Any character can be written as A = ny+ddet where y = 2522 (¢ X*(T) !),det =
e1+eo and where n € Z,d € %Z and n = 2d mod 2. We assume that \ is dom-
inant, i.e. n > 0.

To any such character A = ny + ddet we want to attach a highest weight
module M. We consider the Z— module of polynomials

n
M, ={P(X,Y)| P(X,Y) = ZavX"Y"*V,aV €7}
v=0

To a polynomial P € M,, we attach the regular function (see 1.1.1)

ol V) = Playen( (V) “2)

u v
then

t1 w x Y\\ _ .n _nig T Y\, L —,[(t1 w Ty

(0 (0 =amee e =y (S Y)

(4.3)

where A~ = —n-y+ddet. On this module of regular functions the group scheme

G/Z acts by right translations:

(& o (s U= (5 ) (5 )

This is now the highest weight module M, for the group scheme G/Z. The
highest weight vector is fxn, clearly we have

(s oD =a(G e

In the following we change the notation, instead of fp we will simply write P.

Comment: When we say that M is a module for the group scheme G/Z we
mean nothing more than that for any commutative ring R with identity we have
an action of G(R) on M, ® R, which is given by (4.2 ) and depends functorially
on R. We can 7evaluate” at R = Z and get the I' = Gl3(Z) module M z.
(Actually we should not so much distinguish between the Gla(Z) module M 7
and M) Of course we have have seen these Gly(Z) modules before, they are of
course equal to the modules M,,[d — %] in section 1.2.2.

Remark: There is a slightly more sophisticated interpretation of this module.
We can form the flag manifold B\G = P!/Z and the character \ yields a line
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bundle £,-. The group scheme G is acting on the pair (B\G, L,-) and hence
on H°(B\G, L) which is tautologically equal to M, (Borel-Weil theorem).

We can do essentially the same in the case B). In this case we start from an
imaginary quadratic extension F//Q and let O = Op C F its ring of integers. We
form the group scheme G/Z = Ro/7(Gly/0O). Again GV /Z will be the kernel of
det: G/Z — Z/Z = Rpz(Gm). Then G(O) = Glo(O ® O) C Gl2(0) x Gl2(O).
The base change of the maximal torus T/Q C G xz Q is the product T} x Ty /F
where the two factors are the standard maximal tori in the two factors Gly/F.

We get for the character module | CHMsplit

where we have to observe the parity conditions n; = 2d; mod 2,n, = 2ds
mod 2.

Then the same procedure as in case A) provides a free O- module M) with
an action of G(Z) on it. To get this module and to see this action we embed
the group G(Z) = Gl2(O) into Gla(O) x Glo(O) by the map g — (g,g) where
g is of course the conjugate. If now our A = nyvy; + dj det; +novys + dodety =
A1+ A2 then we have our two Glz2(O) modules My, 0, My, 0 and this provides
the Gl2(O) x Gl2(O)- module My, 0 ® My, 0, our My o is is now simply
the restriction of this tensor product module to G(Z). Sometimes we will also
write our character as the sum of the semi simple component and the central
component, i.e.

A= )\(1) + 0= (’/7,1’)/1 + TLQ"YQ) + (dldetl + deetg) (45)

The relevant term is the semi simple component, the central component is not
important at all, it only serves to fulfill the parity condition. If we restrict the
representation M) to g<1>/ Z then the dependence on d disappears. In other
words representations with the same semi simple highest weight component only
differ by a twist, the role played by ¢ is marginal.

At this point we notice that the module M ¢ is only a module over O. We
may also say that M o ® F' is an absolutely irreducible highest weight module
for the group G ®» F = Gly x Gly/F, this representation ”is defined ” over F.
But in the special case that \; = Ay we have an action of the Galois group

Gal(F/Q) : If ¢ is the non trivial element in this Galois group then

(D an XY )@Y b XY ) = () e(b) XPY (Y elan) XYY )

“w
and for g € G(O),m € M we have

c(g)e(m) = c(gm)
and therefore it is clear that the Z module (M,)() is a module for G/Z.

We return to Glp/Z. Given A = A1) 4§ we define the dual character as
AV = A1) —§. For our finite dimensional modules we have

MY @Q "5 My ®@Q (4.6)
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If we consider the modules over the integers the above relation is not true.

We define the submodule | duallambda

M, ={P(X,Y)|P(X,Y)=> (") a, X'Y"" a, € Z}. (4.7)

v
v=0

This is a submodule of M,, and the quotient M,, /M’ is finite. It is also

clear that this submodule is invariant under Sly/Z. We introduce some notation

e, = X"Y"" and ¢’ := <”> Xy, (4.8)
14

then the e, (resp. €’) for a basis of M, (resp. M®).
An easy calculation shows that the pairing

<, >um: (ey,ei) = 0y (4.9)

is non degenerate over Z and invariant under Sly/Z. We can also define the the
twisted actions of G/Z Of course we can define the twisted modules MY and
then we get a G/Z invariant non degenerate pairing over Z :

<, >M:Mf\v X My —>7Z
In other words
(My)Y = My
We always consider ./\/lg\ as the above submodule of M.

prinseries

4.1.2 The principal series representations

We consider the two real algebraic groups G = Gly/R( case A) ) and G =
Rc/r(Gl2/C) ( case B). Let T'/R, ( resp. B/R) be the standard diagonal torus
(resp. Borel subgroup of upper triangular matrices). Let us put C/R = G,
(resp. Rc/rG,n). We have the determinant det : G/R — C/R and moreover
C/R = center(G/R). If we restrict the determinant to the center then this be-
comes the map z — 22. The kernel of the determinant is denoted by GV /R, of
course GV = Sly, resp. Rc/r(Sl2/C). Let us denote by g,0W ¢, b, 3 the corre-
sponding Lie-algebras.

The Cartan decompositions

In both cases we fix a maximal compact compact subgroup K., C G(l)(R) :

_ _ cos(¢)  sin(¢) _ a B . 3 _
Ko =e(0) = (00 O 0 € Ry and Ko = (Y ) laa+ 55 - 1)
(4.10)

We define extensions Ko = Z(R)(© K., where of course Z(R)® is the con-
nected component of the identity. In both cases the group K, is the group of
fixed points under the Cartan involution ©( which is given by

Op:g—tgtresp. gt g e @0((a Z)) = (_dl_) E) . (4.11)

c a
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This involution induces an involution on g we can extend it to an involu-
tion acting on g =3 @ g, we let it act trivially on 3. Then the fixed point Lie
algebra £ = 3@ € C 3 ® gV is the Lie-algebra of K.

Here are some arithmetic considerations, they may not be so relevant, but
further down we make some choices of a basis in some of these algebras, and
these choices can be justified by these arithmetic considerations.

We can write our group scheme G/R as a base extension of a group scheme
G/Z, ie. G/R =G xz R. For this we simply take G/Z = Glz/Z in case A). In
case B) we take G/Z = Ryj;)/z(Gla/Z[i]). In the case A) this gives a reductive
group scheme over Z, in case B) it is only a flat group scheme, but the base
extension G xzZ[1/2] is reductive. ( This group scheme over Z is not semi-simple
since Z[i] is ramified at the prime 2.)

Now it is clear that ©¢ is actually an automorphism of G/Z and then it
follows that the scheme of fixed points is again a group scheme K/Z. If we
define R = Z[1/2] then K xz R is actually eductive. (If we replace Z[i] by the
ring of integers of another imaginary quadratic extension, we have to modify R
accordingly.)

Consequently we see that the all the above Lie-algebras are defined over R,
hence they actually are free R modules, we denote them by gr and so on.

The Cartan © involution induces an involution on the Lie algebras gg, gg),

the module decomposes into a + and a — eigenspace

gR:ER@pR and gg):ER@pR, (4.12)

The + eigenspaces %ﬁ,ER are the Lie-algebras of K, K, both summands in the
decompositions are K-modules.
The Lie-algebra by is not stable under O, it is clear that the intersection

br N O (br) = tr,
where tg is the Lie-algebra of the standard maximal torus 7 /R C G/R. This
torus is a product (up to isogeny) 7/R = Z - TW/R.
In case A) the torus 7 /R =5 G,,/R and the Cartan involution O, acts

by t ~ t~1. Therefore it acts by —1 on tg). We write

D =R ((1) _01) = RH (4.13)

the generator H is unique up to an element in R*, i.e. up to a sign and a power
of 2.

In case B) the torus 7 /R is (up to isogeny) a product T Tc(l)/R the
Cartan involution ©q acts by ¢ — ¢! on the split component 7'5(1) and by the
identity on Tc(l). The Lie-algebra decomposes accordingly into two summands

of rank one:
) _ 1 0 t 0\ ‘
th —R(O 1) EBR(O z) = RH & RH,;.

In both cases the group scheme K acts on pr by the adjoint action, we can
describe this action explicitly.
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In case A) the group scheme K is the following group of matrices

(@ b\ 2 2
K-{a-(_b a>|a +0v* =1}
this is a torus over R which splits over R[i]. We have

0 1

pR—RH®R(1 0

>—RH€BRV

and Ad(a)(H) = (a® — b*)H — 2abV, Ad(a)(V) = 2abH + (a® — b?)V. Since the
torus splits over Z[i] we can decompose p ® R][i] into weight spaces, we introduce
the basis elements

P, =H-V®i, P..=H+V®icp RJi

then
Ad(a)Py = (a+ bi)?Py, Ad(a)P_ = (a — bi)*P_ (4.14)

Hence we get - in case A) -the decomposition

gg):ER@pRzRGl é)@RP+eBRP_:RY@RP+®RP_ (4.15)

where the generators are unique up to an element in R[i]*.

In case B) the group scheme /R is semi simple, it contains 70 /R as maxi-
mal torus. The two /R modules £r and pg are highest weight modules of rank
3, since 2 is invertible in R they are even isomorphic. Again we can decompose
them into rank one weight spaces and give almost canonical generators for these

weight spaces. | basisfkfp | The Lie algebra

tp=RH; &R (_01 é) ®R (? 6) — RH, ® RY & F,. (4.16)

We introduce the elements P, =Y — F; ®1i, P._ =Y + F; ® ¢ and then
tr ® R[i] = R[i|H; ® R[i]P.4+ & R[i|P._. (4.17)
This is the decomposition into weight spaces under the action of 72(1)/ R, the

element o = (I

0 2) acts via the adjoint action

Ad(a)P.y = 2*P.; , Ad(a)H; = H; , Ad(a)P._ =z %P._.

Essentially the same can be done for pr ® RJi]. We define

0 1 . 0 1 .
Pp7+—V—(_i 0>®Z,P,_—V+(_i O>®z

then we get the weight decomposition

pr @ R[i] = R[i|P, 1 & R[i{)H & R[i]P,._ (4.18)
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Rational characters vs continuous characters

Our aim is to to construct certain irreducible (differentiable) representations of
G(R) together with their ”algebraic skeleton” the associated Harish-Chandra
modules.

For any torus T'/R we consider the group of (continuous) characters Hom(7T'(R),C*),
we write this group multiplicatively, i.e. x1 - x2(x) = x1(2)x2(x). We also have
defined the group of (rational) characters X*(T xg C,G,,) (See Chap. 1, 1.5),
and we have the evaluation map

X*(T xg C,G,,) =% Hom(T(R),C*); ev:vy =g ={zy(x)} (4.19)
Since we wrote the group of (rational ) characters additively we have

(71 + 72)r = V1R - V2R

We also introduce the character |y| := {z — |yr(z)|c} where of course
lalc = aa.

4.1.3 The induced representations

We start from a continuous homomorphism (a character) x : T(R) — C*, of
course this can also be seen as a character x : B(R) — C*. This allows us to
define the induced module

Ifx = {f : GR) = C| f € C(G(R)), f(bg) = x(b)f(9), ¥ b € B(R), g E(G(R;)}
4.20

where we require that f should be C,. Then this space of functions is a G(R) -
module, the group G(R) acts by right translations: For f € I§y,g € G(R) we
put

Ry(f)(x) = f(zg)
If modify our character x by a character 6 o det where 6 : Z(R) — C* then the
central character gets multiplied by 2.

We know that G(R) = B(R) - K. This implies that a function f € IS is
determined by its restriction to K.,. In other words we have an identification

of vector spaces
IgX = {f : Koo —-C | f(tck) = X(tc)f(k)7tc € Koo N B(R)ak € Koo} (421)

The center acts by the central character w,, the restriction of x to Z(R).

We put T. = B(R) N K and define x. to be the restriction of x to T..
Then the module on the right in the above equation can be written as I:,I:i"o Xe-
By its very definition Ifc“’ Xc is only a K, module. Inside I;:i‘” X we have the
submodule of vectors of finite type

OI:,I:(CC’C xe:={f¢€ I:,I:i"o Xc | the translates Ry (f) lie in a finite dimensional subspace}
(4.22)
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Here it suffices to consider only the translates Ry (f) for k € K, because
Z(R)(© acts by the character wy . The famous Peter-Weyl theorem tells us that
all irreducible representations (satisfying some continuity condition) are finite

dimensional and occur with finite multiplicity in Ii{i >~ Y. and therefore we get

exe= P V" = @ CIr=xel) (4.23)

V€K oo VEK oo

where K is the set of isomorphism classes of irreducible representations of K,
where Vy is an irreducible module of type 9 and where m(¥) is the multiplicity

of ¥ in OI:,{( Xe- Of course °IT * Y. is a submodule I§x, but this submodule is
not invariant invariant under the operation of G(R), in other words if 0 £ f €

OIJI:?’" Xc and g € G(R) a sufficiently general element then R,(f) ¢ °IK°°

We can differentiate the action of G(R) on I§x. We have the well known
exponential map exp : g = Lie(G/R) — G(R) and for f € I§, X € g we define

and it is well known and also easy to see, that this gives an action of the Lie-
algebra on I§, we have X;(Xaof) — Xa(X1f) = [X1, Xa]f. The Lie-algebra is

a K module under the adjoint action and is obvious that for f € OIﬁ‘x’ Xe[Y]

the element X f lies in @y OITI:?” Xc[?¥'] where ¥ runs over the finitely many
isomorphism types occurring in Vy ® g. Hence

Proposition 4.1.1. The submodule OIQI?C‘”XC C ng is invariant under the
action of g.

The submodule OIII:(C‘” X together with this action of g will now be denoted
by J%x. We should think of this module as the algebraic skeleton of I§ .

Such a module will be called a (g, K ) - module or a Harish-Chandra module
this means that we have an action of the Lie-algebra g, an action of K, and
these two actions satisfy some obvious compatibility conditions.

We also observe that °Iﬁ <X is also invariant under right translation R,
for z € Z(R). Hence we can extend the action of K., to the larger group

Koo = Koo - Z(R). Then 3% x becomes a (g, f(oc) module. Finally observe that
in the case A) the element

c= (01 (1)) ¢ Koo, (4.25)

clearly R induces an involution on J%. We could also say that we can en-
large Ko ( resp. Ko ) to subgroups K7, (resp.K * ) which contain ¢ and contain
Ko resp. Ko as subgroups of index two. Then J§x also becomes a (g, K*.)
module.

These (g, K 00 ) modules ’Jg x are called the principal series modules. We have
the following important
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Theorem 4.1.1. For any irreducible Harish-Chandra module(g, Ko) we can
find a x such that we have an embedding of (g, Koo )-modules

iV 3%y

This is actually a much more general theorem and applies mutatis mutandis
to all reductive groups over R. In the following we will see, that in our situation
we only have a very short list of submodules of the ﬁgx and we get a complete
list of irreducible Harish-Chandra modules.

We denote the restriction of x to the central torus Z = {(é 2)} by wy.

Then Z(R) acts on 3%y by the central character character w,y, i.e. R,(f) =
wy (%) f. Once we fix the central character, then there is no difference between

(9, Ko) and (g, Ko) modules. Hence we always assume that w,, is fixed.

The decomposition into K. -types

We look briefly at the K .-module OI:,I?C‘” Xe- In case A) the group

Ko =500 = {( B O — (o) (1.20

and T, = KL = T(R) N K, is cyclic of order two with generator e(r). Then x.
is given by an integer mod 2, i.e. x.(e(¢)) = (—=1)™. For any n = m mod 2
we define 9, € 3Gy by

Un(e(9))) = e™? (4.27)

and then

W= @D cow (1.28)

k=m mod 2

In the case B) the maximal compact subgroup is

this is the group of real points of the reductive group U(2)/R. The intersection

T KT TR K= {(C ,0 )=

c— Ny — oo — 0 e?m’tpz - 6(?)}
The base change U(2) x C = Gl/C and T, x C becomes the standard maximal
compact torus. The irreducible finite dimensional U(2)-modules are labelled by
dominant highest weights A\, = ny. + ddet € X*(T, x C) (See section ( 4.1.1),
here again n > 0,n € Z,n = 2d mod 2 and ,(e(¢)) = e (?1-¢2)/2 )

We denote these modules by M _ after base change to C they become the
modules M c.
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As a subgroup of G(R) C Gly(C) x G2(C) our torus is

eQTrigol 0 672772’4,01 0 o eQTrigol 0
TC = {( 0 eQﬂ'igag X 0 e—27ritp2 } { 0 6271'1’@2 }
(4.29)

and the restriction of x to T is of the form

Xc(€(¢)) _ eia¢1+ib¢2 _ eaT_b(¢1—¢2)ea'2b(¢1+¢2). (430)

and this character is (a — b)y. + %+ det. Then we know

o 7Koo
I xe =JIEX = ) M, (4.31)
MC:k"/C-&-“TH’ det;k=(a—b) mod 2;k>|a—b|

4.1.4 Intertwining operators

Let N(T') the normalizer of T/R, the quotient W = N(T)/T is a finite group
scheme. The in our case the group W (R) is cyclic of order 2 and generated by

(0 1
o= l-1 0
In case A) we have W(R) = W(C) in case B) we have
G XR(C = (GIQ X Glg)/(c, T X]R(C = T1 X T2 ; and W((C) = Z/2 X Z/2,

where the two factors are generated by s1 = (wp,1),s2 = (1,wp). The group
W(R) is the group of real points of the Weyl group, the group W = W(C) is
the Weyl group or the absolute Weyl group.

We introduces the special character

ple: ()
p]R~Ot2

here the absolute value |t| is the usual absolute value if we are in case A)
and |z| = 2Z for z € C, i.e if we are in case B). The group W(R) acts on
T(R) by conjugation and hence it also acts on the group Hom(7T'(R),C*) of
characters, we denote this action by x — x*. We write this group of characters
multiplicatively an we define the twisted action

1
| =12
3

to

w-x = (xlp)”lor|™!
We recall some well known facts

i) We have a non degenerate (g, K,) invariant pairing

3G x x IGx|pl2 — (Cwi given by (f1, f2) — f1(k) fa(k)dk (4.32)
Koo
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We define the dual jg’vx of a Harish-Chandra as a submodule of Hom(c(jg X, C),
it consists of those linear maps which vanish on almost all K, types. It is clear
that this is again a (g, Ko )-module. The above assertion can be reformulated

ii) We have an isomorphism of (g, K, ) modules
I (wy o det) ™! = 35X ol (4.33)

The group T(R) = T, x (R%,)? and hence we can write any character x in

the form | char
z1—22 z1t+22

t
X(t) = xe®lr !t = 12277 ftta] 5 (4.34)

where z1,z2 € C. We put z = z1 — 22 and { = z1 + 25 The relevant variable is z.

For f € 3%y, g9 € G(R) we consider the integral
Y (1)) = [ flunug)du (4.35)
U(R)

It is well known and easy to check that these integrals converge absolutely
and locally uniformly for R(z) >> 0 and provide an intertwining operator

T0(x"™, ) : TG |plz — IGxIplRlplR™ (4.36)

oo

it is also not hard to see that they extend to meromorphic functions in the entire
C2. To see this we recall the decomposition into K, types

Gl = €D IE=xel = @ IGAC W)
V€K oo YeK o

and our intertwining operator is a direct sum of linear maps between finite
dimensional vector spaces

c(AE°, 2, 9) : IGx|pla ] — IGx|plR|plg* V]

The finite dimensional vector spaces do not depend on z and the c(Ag°|p|, V)
can be expressed in terms of values of the I'— function. Especially they are
meromorphic functions in the variable z (See sl2neu.pdf, ). For any zg € C
where we have a pole we can find an integer m > 0 such that

(2 — 20)" T2 (X", 2) : IGX™ — IGx|pl3

is a non zero intertwining operator and this is now our regularized operator
loc,re w
T8 (")

iii) The regularized values define non zero intertwining operators

T (¢, 2) < 3 = IEn" ol (437)
These operators span the one dimensional space of intertwining operators

Hom(g,Koc)(ng7 jgwo . X)
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Finally we discuss the question which of these representations are unitary.
This means that we have to find a pairing

Y38y x 3Gy = C (4.38)
which satisfies
a) it is linear in the first and conjugate linear in the second variable
b) It is positive definite, i.e. 1 (f, f) > 0Vf € IGx

c¢) It is invariant under the action of K., and Lie-algebra invariant under
the action of g, i.e. we have

For fi1, fo € jgx and X € g we have (X f1, f2) + ¥ (f1, X f2) = 0.

We are also interested in quasi-unitatry modules. This is notion is perhaps
best explained if and instead of ¢) we require

d) There exists a continuous homomorphism (a character) n : G(R) — R*
such that ¢ (gf1,9f2) = 1(9)¢(f1, f2), Vg € G(R), f1fa € IGx.

It is clear that a non zero pairing % which satisfies a) and c) is the same
thing as a non zero (g, K )-module linear map

iy 35X = (3Gx)Y (4.39)

this means that i, is a conjugate linear map from ﬁgx to (jgx)v. The map iy
and the pairing 1 are related by the formula ¥ (v1, va) = iy (v2)(v1).
Of course we know that (See (4.33))

(3Gx)Y == IGx 0 lpl2oy" (4.40)
and we find such an %, if

X = x“0lplady’ or x*°[pl§ = x*|plRox (4.41)

We write our x in the form (4.34). A necessary condition for the existence of
a hermitian form is of course that all |wy (z)| =1 for z € Z(R) and this means
that R(z; + z2) = 0, hence we write

21:04-1'7'1,2’2:—04-7;7'2 (442)

Then the two conditions in (4.41) simply say
1
(unp) : 0 = 3 or (ung) : 71 = 12 and x. = x2° (4.43)

In both cases we can write down a pairing which satisfies a) and ¢). We still

have to check b). In the first case, i.e. 0 = % we can take the map iy, = Id and

then we get for f1, fo € 3Gx the formula

U(f1, f2) = J1(k) fa(k)dk (4.44)

Koo



4.1. HARISH-CHANDRA MODULES WITH COHOMOLOGY 151

and this is clearly positive definite. These are the representation of the unitary
principal series.

In the second case we have to use the intertwining operator in (4.37) and
write

U(f1, f2) = T (f2) (fo) (4.45)

Now it is not clear whether this pairing satisfies b). This will depend on the
parameter 0. We can twist by a character n : Z(R) — C* and achieve that
Xe = 1,71 = 79 = 0. We know that for ¢ = % the intertwining operator T.1°¢ is
regular at y and since in addition under these conditions 3%y is irreducible we
see that

T%(x) = a Id with a € RZ (4.46)

o0

Since we now are in case A) and B) at the same time we see that the two pairings
defined by the rule in case (un;) and (uns) differ by a positive real number hence
the pairing defined in (4.45) is positive definite if o = %

But now we can vary o. It is well known that jg X stays irreducible as long
as 0 < o0 < 1 (See next section) and since T.1°°(x)(f)(f) varies continuously we
see that (4.45) defines a positive definite hermitian product on 3§ as long as
0 < o < 1. This is the supplementary series. What happens if we leave this
interval will be discussed in the next section.

4.1.5 Reducibility and representations with non trivial co-
homology

As usual we denote by p € X*(T) ® Q the half sum of positive roots we have
p=(resp. p=71+72 € X*(T) @ Q) in case A) (resp. B)).

For any character A € X* (T x C) the character Ag provides a homomorphism
B(R) — T(R) and hence we get the Harish-Chandra modules 3§ \g, which
are of special interest for us because these are the only ones with non trivial
cohomology. We just mention the fact that 3% is always irreducible unless
X = Ar for some A. (See sl2neu.pdf, Condition (red)).

We return to the situation discussed in section (4.1.1), especially we rein-
troduce the field F/Q. Then we have X*(T x F) = X*(T x C) and hence
A € X*(T x F). We assume that A\ is dominant, i.e. n > 0 in case A) or
ny,n2 > 0 in case B). Now we realise our modules M) as submodules in the
algebra of regular functions on G/Z : If we look at the definition (See (4.3)) we
see immediately that My ¢ C 3%)&0 and hence we get an exact sequence of

(9, Ko) modules
0— Myc — TGN 5Dy —0 (4.47)

Hence we see that jg)\ﬁo is not irreducible. We can also look at the dual
sequence. Here we recall that we wrote A = ny + ddet. We consider the dual
sequence. Clearly MX’C = Mi_2ddet,c, if we twist the dual sequence by det??
then dual sequence becomes

0 — DY @ detd — (IGAL)Y @ deti — Myc — 0 (4.48)
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Equation (4.33) yields (JGAL°)Y @ deta’ 5 3G x|p|2 and our second sequence
becomes

0 — DY @ deti — IGAz|pl2 = Mac — 0, (4.49)

we put Dyv := DY @ det3’.

Now we consider the two middle terms in the two exact sequences (4.47,4.49)
above. The equation (4.37) claims that we have two non zero regularized inter-
twining operators

Toeres () - 3G = IDhalplh s TL0 5 Ovapl2)  IGArlplE — TGN
(4.50)

If we now look more carefully at our two regularized intertwining operators
above then a simple computation yields (see sl2neu.pdf)

Proposition 4.1.2. The kernel of T,10¢™8(\y°) is My c and this operator
induces an isomorphism

T()\R) : ’D)\ ;) D;\/ ® detid

Remember X\ is dominant.

The kernel of T 8 (\g|p|2) is DY @ detd and it induces an isomorphism
Of MA,([L

The module ng is reducible if T.1°®™8(x) not an isomorphism and this hap-
pens if an only if x = Ar or Ag°|p|2 and X dominant. (There is one exception

to the converse of the above assertion, namely in the case A) and 0 = L+ and

2
Xe° # Xe-)
Unitarity

For us it is of relevance to know whether we have a positive definite hermitian
form on the (g, K )-modules Dy. To discuss this question we treat the cases A)
and B) separately.

We look at the decomposition into K-types. (See ( 4.28)) In case A) (See (
4.28)) it is clear that M ¢ is the direct sum of the K, types Ci; with |I| < n.

Hence
Dy = P cuwe B Cuu=D;eDf (4.51)

k<—n—2,k=d(2) k>n+2,k=d(2)

Proposition 4.1.3. The representations ’D;,D;\r are irreducible, these are the
discrete series representations. The element ¢ interchanges D;,D;\“, hence Dy
is an irreducible (g, K*) module.

The operator T(Ag) induces a quasi-unitary structure on the (g, Ko )-module
Dy. The two sets of Koo types occurring in My ¢ and in Dy (resp.) are disjoint.

Proof. Remember that as a vector space DY ® detﬂid = DY, only the way how
Ko acts is twisted by det2’. (?7?).Then the form

hy(f1, £2) = T2 (AF") (f2) (1) (4.52)

defines a quasi invariant hermitian form. It is positive definite (for more details
see sl2neu.pdf). O
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A similar argument works in case B).We restrict the Glz(C) x Gl3(C) module
M ¢ to U(2)xU(2) then it becomes the highest weight module M), = My, .®
M, .. (See4.1.1) Under the action of U(2) C U(2) x U(2) it decomposes into

U(2) types according to the Clebsch-Gordan formula

MAC|U(2) = @ M, (4.53)

/LC:]C’YC-"-% det; k=(n1—n2) mod 2; ni+na>k>|ng—na|

Hence we get

Dilue = S, My (454)

,uc:k'yc—&-% det; k=(n1—n2) mod 2; k>nqi+no+2

Again we have

Proposition 4.1.4. The operator T °*8(\g°) induces an isomorphism
T(AR) : Dy = DY ® det??

The (g, K ) modules are irreducible.

The operator T 1°¢*8(\F°) induces the structure of a quasi-unitary module
on Dy if and only if ny = no. This is the only case when we have a quasi-unitary
structure on Dy. The two sets of Koo types occurring in My ¢ and in Dy (resp.)
are disjoint.

The Weyl W group acts on T by conjugation, hence on X*(T x C) and we
define the twisted action by

s-A=sA+p)—p (4.55)

Given a dominant A we may consider the four characters w- A, w € W(C) =
W and the resulting induced modules ng - Ar. We observe (notation from
(4.1.1))

S1 (nyy —+ d1 det +TL2’7 —+ dgﬁ) = (7TL1 — 2)’7 + dl det +n2’_y + dgﬁ)
o o (4.56)
s2 - (n17y + di det +n9¥ + dodet) = nyy + dq det +(—ng — 2)7 + dadet)

Looking closely we see that that the K, types occurring in 3%s;-\ or 3% s5-A
are exactly those which occur in D). This has a simple explanation, we have

exiso

Proposition 4.1.5. For a dominant character \ we have isomorphisms between
the (g, Ko ) modules

Dy 5 3551 - A, Dy — 3555 - A (4.57)

The resulting isomorphism Jgsl A 3’%32)\ is of course given by T'2%(sq - \).
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Interlude: Here we see a fundamental difference between the two cases A)
and B). In the second case the infinite dimensional subquotients of the induced
representations are again induced representations. In the case A) this is not so,
the representations Di[ are not isomorphic to representations induced from the
Borel subgroup.

These representation Df are called discrete series representations and we
want to explain briefly why. Let G be the group of real points of a reductive
group over R for example our G = G(R), here we allow both cases. Let Z be
the center of G, it can be written as Zy(R) - Z. where Z. is maximal compact
and Zy = (RZ)%. Let w® : Zy — R be a character. Then we define the space

Coo(G,wr) == {f €C(GQ) | f(zg) =wO(2)f(g) ;Vz € Zy,g € G} (4.58)

and we define the subspace
Li«1w3w={fecw«1wR>|ﬂ;ﬂw?@ﬂwwww)*dg<cw} (4.59)

where of course dg is a Haar measure. As usual L?(G,wg) will be the Hilbert
space obtained by completion. This Hilbert space only depends in a very mild
way on the choice of w(® we can find a character § : G — RZ, such that

w@§|z, = 1. Then f + f6 provides an isomorphism L?(G,w®) = L2(G/Zy).

We have an action of G x G on L*(G,w®) by left and right translations.
Then Harish-Chandra has investigated the question how this ”decomposes” into
irreducible submodules. Let Gw<0> be the set of isomorphism classes of irre-
ducible unitary representations of G.

Harish-Chandra shows that there exist a positive measure p on éw(m and a
measurable family H¢ of irreducible unitary representations of G such that

(Guwr) = [ He T ulae) (4.60)

( If instead of a semi simple Lie group we take a finite group G then this is
the fundamental theorem of Frobenius that the group ring C[G] = ®pVy @ V)’
where Vjp are the irreducible representations.)

If we are in the case A), the sets consisting of just one point {’Df} have
strictly positive measure, i.e. ,u({Df}) > 0. This means that the irreducible
unitary G x G modules Df ® va occur as direct summand (i.e. discretely in
L3(G).).

Such irreducible direct summands do not exist in the case B), in this case
for any ¢ € G we have p({¢}) = 0.

End Interlude

We return to the sequences (4.47),(4.49). We claim that both sequences
do do not split as sequences of (g, Ko )-modules. Of course it follows from
the above proposition that these sequences split canonically as sequence of K,
modules. But one sees easily that complementary summand is not invariant
under the action of g. This means that the sequences provides a non trivial
classes in EXt%g’KOQ)(D)” M)
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The general principles of homological algebra teach us that we can under-
stand these extension groups in terms of relative Lie-algebra cohomology. Let
€ resp. £ be the Lie-algebras of K, resp. Ko the group K. acts on g,% via the
adjoint action (see 1.1.4)

We start from a (g, f(oo) module ng and a module M ¢. Our first goal
is to compute the cohomology H*®(g, Koo, IG X ® M, ) which is defined as the
cohomology of the complex (See 8.1.2, (8.3))

Hom g (A*(9/€),3%x ® My c). (4.61)

Here we only assume that x : T(R) — C* is any character, we will see that
there is only one x for which we have non trivial cohomology.

There is an obvious condition for the complex to be non zero. The group
Z(R) C K acts trivially on g/¢ and hence we see that the complex is trivial
unless we have

w;l = AR'Z(R)(O) (462)

we assume that this relation holds.

We will derive a formula for these cohomology modules, which is a special
case of a formula of Delorme. which will be discussed in greater generality in
Chapter 9. An element w € Homp (A"(g/¢),IEx ® M, c) attaches to any n

tuple vq, ..., v, of elements in g/E an element
W1, .., v) € TG @ Mac (4.63)

such that w(Ad(k)vy, ..., Ad(k)v,) = kw(vy,...,vy,) for all k € Koo.
By construction

Wi, ..., vp) = Zf" ® m,, where f, € jgx,m,, € Myc
and f, is a function in C which is determined by its restriction to Koo ( and

this restriction is K, finite). We can evaluate this function at the identity
ec € G(R) and then

w(vr,..,vn)(eq) = Y fule) ®@my, € Cx ® My ¢

The f(oojnvariance (4.63) implies that w is determined by this evaluation at
eg- Let KL = T(R)N Ko = Z(R) - T... Then it is clear that

w* i A{vy, . opt e w(vg, . on)(e) (4.64)
is an element in

w" € Hompgr (A"(g/®),Cx @ My c) (4.65)

and we have: The map w +— w™ is an isomorphism of complexes.

Hompy (A®(g/8),I5x © Mxc) = Homgr (A*(g/8),Cx® Myrc)  (4.66)
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The Lie algebra g can be written as a sum of ¢ invariant submodules
g=b+t=t+u+t (4.67)

in case B) this sum is not direct, we have b NE=tNt=cand hence we get the
direct sum decomposition into KZ -invariant subspaces

g/t=t/cou (4.68)

We get an isomorphism of complexes

Homg (A*(g/8),35x ® Mac) — Hom RT (A*(t/%),Cx ® Hom(A®(u), My c))
(4.69)

the complex on the left is isomorphic to the total complex of the double complex
on the right. The next step is the computation of the cohomology of the complex
Hom(A*(u), My ¢).

Case A). We have u = QE, where F; = <8 (1)> and our module M g has

a decomposition into weight spaces

v n=n
Mrg=Pox"v'= P Qe (4.70)
v=0 p=—n,u=n(2)

The torus T = {(é t91>} acts on e, = X" YY" by

t 0
PA((O tl))eu = the, (4.71)
We also have the action of the Lie algebra on M g and by definition we get

n—Hu
d(px)(Eq)ey = Eyey = T Gnt2 (4.72)

Now we can write down our complex Hom(A®(u), M, ¢) very explicitly. Let
EY € Hom(u,Q) be the element EY(E,) = 1 then the complex becomes

u=n p=n
0> P Q.5 P QE!®e,—0 (4.73)

p=—n,u=n(2) p=—n,u=n(2)

where d(e,) = “52EY ® e, 42. This gives us a decomposition of our complex
into two sub complexes

Hom(A* (1), My c) = H* (1, My o) ® AC* (4.74)
where AC*® as acyclic (it has no cohomology) and
H* (1, My g) = {0 = Qe, -5 QEY ®e_,, — 0}, (4.75)
where the differential d is zero. Hence we get

H'(u, M)\Q) = H.( Hom(A'(u), M,\’Q)) =H* (Ll7 MA,Q). (4.76)
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We notice that the torus T' acts on H®(u, M g) ( The Borel subgroup B acts
on the complex Hom(A®(u), My q) but since the Lie algebra cohomology is
the derived functor of taking invariants under U (elements annihilated by u) it
follows that this action is trivial on U). Now it is clear that (4.69) yields

H*(g, Koo, IHx ® Mic) — H*(t, K3, Cx © H* (u, M 0)) (4.77)

Hence we see that 7' acts by the character A on Q e, = H%(u, M, g¢) and
by the character A\~ —a = wo- A=A —2pon Q EY ® e_,, = H'(u, M g).
Here we see the simplest example of the famous theorem of Kostant which will
be discussed in Chap. 8 section 8.1.9

Then our cohomology groups H®(t, KL, Cx ® H®(u, My o)) are given as the
cohomology groups of the double complex with entries Hompgr (AP(t/£)Cx ®
H?(u, My q) where p = 0,1,¢ = 0,1 and where the differentials in direction ¢
are zero. We have to compute the cohomology of the complexes

0 — Homyr (A°(t/€), Cx © H(u, M, q)) — Homyr (A'(t/€), Cx ® H(u, My q)) — 0
(4.78)

In this complex we drop the subscript KL then both spaces in the complex are
one dimensional and the differential is up to a non zero factor multiplication
by dx(H) + d(w - \)(H) and hence we have zero cohomology unless we have
dx(H) + d(w - A)(H) = 0. Hence we see (observe that ¢ = l(w))

H* (4, KL, Cx @ HY (1, M 0)) # 0 = x|T(R)® = (w- N)'|IT(R).

(If x is the infinity component of a global character x on the idele class group
then we will say that X is of type w - A (see section 6.3.8))

We now reintroduce the subscript K% . Since clearly K. - T(R)(®) = T(R)
we see that we have non trivial cohomology if and only if x = (w-A)g ! Putting
everything together we see

H ) (u, My g)) AN (4/8)Yif x = (w- A)g"

H'“(w)(g,Koo,ng ® M,\,Q) —
0 else

(4.79)

Now we tensorize the sequence (4.47) with the dual M v we get an exact se-
quence of (g, K, ) modules and we look at the resulting long exact sequence in
cohomology. We know that H'(g, Koo, M) ® Myv) = 0 and then we look at the
piece

0— H1(97K00a3g>‘w0 ®M)\v) — Hl(gaKooa’D)\ ®MAV) — Hz(gvKoowA/l)\ ®M>\V) -0
(4.80)

We have seen and we know that the two extreme terms are equal to C and then
we get easily

H'(g, Koo, Dy ® Myv) =C @ C (4.81)

and vanishes in all other degrees.
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Of course we can get this last result easily if we look at the complex Hompg_ (A®*(g/t), Da®
M v) which in this situation collapses to
0 — Hompg__(A'(g//&,Dyx@ Myv) —0— .., (4.82)
in section 4.1.11 we give explicit elements wTi € Hompg_(A*(g/t), Dy @ Myv)
which form a basis for this space.

We discuss the case B). Again we want that our group G/R = R¢/g(Gl2/C)
is a base change from a group G/Q denoted by the same letter. We need an
imaginary quadratic extension F//Q and put G/Q = Rp/g(Gl2/F'). We choose a
dominant weight A = A\ + Xy = nyy1 +d; dety +na7yz +dadety and then M)y p =
M, . F @My, r is an irreducible representation of G xg F = Gl x Gla/F. Now
we have u® F' = F Ei e F Ei Then basically the same computation yields:

The cohomology H*®(u, My r) is equal the complex

H® (u, My p) = {0 = Fell) @ Fel) <5 FEYY @) @eld) @ FELY @) @ B>V @ )

s
L FEY o) @ B2V @ -0}
(4.83)

where all the differentials are zero. The torus T acts by the weights

A in degree 0, s1 - A\, 82 - A in degree 1, wq - A in degree 2 (4.84)
and we have a decomposition into one dimensional weight spaces

H*(u,Mar)= P H*(u,Myp)(w-N)
weW (C)

We go back to (4.69) and get a homomorphism of complexes

Hom, (A*(g/t), Cx ® Mac) — Hompg . (A®(t/),Cx @ H*(u, M c)) (4.85)
which induces an isomorphism in cohomology so that finally

H*(g, Koo, 3Gx ® Mic) — H*( Homg_ (A®(t/),Cx ® H*(u, My c))
(4.86)

and combining this with the results above we get

Theorem 4.1.2. If we can find an element w € W(C) such that x~ = w - Ag
then

H.(g, Koov 3%)( & M)\,C) ; Hl(w) (u7 MA,C)(w : )‘) & A.(t/E)v
If there is no such w then the cohomology is zero.

t 0

Proof. Our torus T(R) = ¢ X {(0 -1

) ; t € RZ,} = ¢ x A. Hence we see that

1 0
0 -1
X! Agr|c is the trivial character. The second factor A does acts on Cx by the
character x(t) = t* and on H'®)(u, My c)(w - A) by t — t™(®)_ Differentiating
we get for the complex

0— H'™(u, Myc)(w- ) = C® Hy @ H™ (u, Myc)(w-X) =0 (4.87)

dimt/¢ = 1, and the element Hy = ( ) . Of course we must have that

where the differential is multiplication by m(w) + z. Hence we see that the
cohomology is trivial unless m(w) + z = 0, but this means ! = w - Ag. O
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4.1.6 The cohomology of the modules M, ¢, D, and the
cohomology of unitary modules

Let Irr(G, K ) be the set of isomorphism classes of irreducible (g, K )-Harish-
Chandra-modules, we are a little bit pedantic, if V is such an irreducible module,
then its isomorphism class is [V]. For any dominant A we define the sets

Coh(\) = {[V] € Ir(G, Koo) | H*(g, Koo, V ® My ) # 0} (4.88)

We also define Coha(A), this are those [V] which in addition are unitary. This
definition makes sense in greater generality (see 8.25). In our special case there
these sets are very small. Remember that we have a fixed central character w.

At first we determine the finite dimensional elements in Coh(A). Of course
M ¢ itself is a Harish-Chandra module and it follows from Wigner‘s lemma
that H*(g, Koo, Mac)) = 0 unless 2D =0, ie. M ¢ is one dimensional. Then
it follows from Clebsch- Gordan that

Proposition 4.1.6. In case A)

HY(g, Koo, Myv.c @ M) = H*(g, Koo, Mav.c @ My ) =C,
(4.89)
H' (g, Koo, Myvc @ My c) =0

In case B)

HOY%(g, Koo, Myv.c @ My ) = H3(g, Koo, Mav.c ® My c) =C,
(4.90)
H (g, Koo, Myv.c @ My ) = H*(g, Koo, Mav c @ My c) =0

Here we take notice of a point, which plays a role if it comes to questions
concerning orientability. In case A) we can twist the G(R) module M v ¢ by
the sign character n : g — sgn(det(g)), it has the same central character.
Obviously the twisted module Myv ¢ ® n provides the same (g, Ko )-module.
But this depends on the choice of K., if we replace K., by the larger group
K (see section 7?7 ) then the (g, K% ) modules Mjv ¢ and M v ¢ ® n are not

isomorphic. If we replace in the above proposition Ko, by K7 and Myv ¢ by
Myv c @n, then the cohomology vanishes in all degrees.

Small remark: In general it is sapient to work with a connected K, or Ko
and then keep track of the action of K, on H*(g, K ),V ® My c).

Again we start from a dominant character A. Then our considerations yield
that in case A)

Coh(\) = {Mc, Dy, Dy } (4.91)

we even have D), Dy € Cohy(\Y) and M ¢ € Cohy(\Y) if and only if A(V) = 0.
For some reason we call {D}, Dy } = Coheyusp(AY) and { M ¢} = Cohpis(AY)

in case B) we take the tensor product of the exact sequence (4.47) by Mjv ¢
and we get a long exact sequence of (g, K,) cohomology modules (we insert the
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values for H®(g, Koo, My c ® Myv )

0
00— C— Hg, Koo, IGAE° @ Myv ) —— HO(g, Koo, Dy @ Myv c)(= 0)
1
— 0= H'(g, Koo, IGAE® @ Myv ) — H'(g, Koo, Dy @ Myv c) —

2
0— Hz(gvKooajg)\ﬁgo & M)\V,(C) T_> Hz(gvKoovp)\ ®M)\V,(C)
3
—-C—= Hg(g,Koo,jg)\ﬁo ®M)\v,(c) T—) 0
(4.92)

The homomorphisms r!,72 are isomorphisms and all the H', H> = C. Hence

we see that in this case

Coh(AY) = {Mo.c, Da} (4.93)
and
i (D) —
Cohp(A¥) = { WMre D} HEATE=0 (4.94)
{D»} if ny =ng >0

4.1.7 The Eichler-Shimura Isomorphism

We want to apply these facts about representation theory to the study of co-
homology groups H®(I'\X, M ¢) where now I' is a congruence subgroup of
Gl2(Z) or Gl2(0). (Discuss also quaternionic case- perhaps)

We start again from a dominant weight A = nvy + ddet € X*(T x C). For
every (g, Ko ) invariant homomorphism ¥ : 3Gw - Ag — Coo (T'\G(R)) induces
a homomorphism

Wy : Hompg (A®(g/8), 3Gw - A\ @ Myv c) — Hompg_ (A®(g/%),Coo (T\G(R)) ® Myv )
(4.95)

We will show in section 8.1.3 Proposition 8.1.1 that the complex on the right is
isomorphic to the de-Rham complex:

Hom (A®(g/F),Coc (\G(R) @ Myv c) = Q*(I\X, Myve)  (4.96)

This de-Rham complex computes the cohomology and hence we get an homo-
morphism

WS H*(g, Koo, 35w - Mg @ My ) — H*(D\X, Myv ) (4.97)

We denote by w(®) the restriction of the central character of JGw - Ag to the
subgroup Zy. and we introduce the spaces

ECI(N\w,T) =  Hom ) (3Gw - A, Coo(T\G(R),w®)

U (4.98)
ED(Aw,T) = Homg k. y(IGw - A, C&(T\G(R),w®)
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where the superscript (?) means square integrable.(See 8.14). It is clear from
the results in Chapter 8 that the spaces £) are finite dimensional. We get two
maps in cohomology

7 T\ w, D) @ H*(g, Koo, IGw - Ag @ Myv ¢) — H*(D\X, Myvc) (4.99)

Of course the module £?)(\,w,\) = 0 unless JGw - A\g has a non trivial
quotient module which admits a positive definite quasi unitary (g, K, ) invariant
metric. This means that £)(\,w-)) # 0 implies that in case B) the coefficients

satisfy

ny = ng, e = n(’yl + ")/2) + dl det +d2 det, (4100)

we will say that A is unitary if this condition is fulfilled. Then the results in
section (4.1.5) yield that these irreducible quasi unitary quotient modules are
Df in case A) and Dy, in case B) .

Hence it is clear that a ¥y € £2)(\,w - \) must vanish on the finite dimen-
sional submodule M if n > 0 and hence we under this condition

E@D (N w- ) = Homg g (Dy, CP(T\G(R),w®
In the first two cases we know that

We have the fundamental

Theorem 4.1.3. (Fichler-Shimura Isomorphism) Assume X\ unitary, then in
degree 1 in case A, (resp. degree 1,2 in case B) the map

32 @ (N w,T) @ H*(g, Koo, Dx @ Myv c) = H(T\X, Myvc)  (4.101)

s an isomorphism.

If we are in the third case, i.e. n =0, and if \*|pnz = 1 then Hom(y x_)(C[A], Coo(G(R))
is one dimensional and generated by ®) : 1 — A. The map

CPy ® H*(g, Koo, C[N] ® C[\Y]) = H*(T\X, Myv c ®C) (4.102)
is an isomorphism in degree zero and zero in all other degrees.

For the case A).we want to relate this to the classical formulation The group
Slz(R) acts transitively on the upper half plane H = Sl3(R)/SO(2). For g =

(Z Z) and z € H we put j(g,2) = cz + d. To any
b c Hom(g)Koo)(Dj\‘7 Cg)(F\G(R),w(O)))

we attach a function fF, ,: H — C: We write z = gi with g € Sly(R) and put
holWh

ni2(2) = @(¥ni2)(9)i(9,1)" (4.103)
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An easy calculation shows that f,?, , is well defined and holomorphic (slzweineu.pdf)p.25-

26) and for v = (Z Z) € Sly(Z) it satisfies

Fira(v2) = (2 + )2 £ 5(2) (4.104)

The condition that ®(t,+2)(g) is square integrable implies that f,, 12 is a holo-
morphic cusp form of weight n + 2 = k. It is a special case of the theorem of

Gelfand-Graev that this provides an isomorphism | GelfGraev
Hom(q i) (DY, CE(M\G(R)) = Si(T) (4.105)

where of course Si(T") is the space of holomorphic cusp forms for T

We can do the same thing with D, then we land in the spaces of anti
holomorphic cusp forms, these two spaces are isomorphic under conjugation.
Combining this with our results above gives the classical formulation of the
Eichler-Shimura theorem:

We have a canonical isomorphism

Si(T) @ Si(T) = H!T\H, Myv ) (4.106)

Hier eventuell complexe conjugation Action von 7y() und auch noch
Bianchi

There is an analogous formulation in case where we have to work with
Bianchi modular forms.

4.1.8 Petersson scalar product and semi simplicity

Earlier in chapter 3 we stated a general theorem 3.1.1 which in this case says
that H{T\H, M,v c) is a semi-simple module for the Hecke algebra, we gave
an outline of the proof. In this case the hermitian scalar product is obtained
from the Petersson scalar product on Si(I'). For two cusp forms f,g € Si(T)
this scalar product is given by

— dzANdzZ
< f,g>= f(z)g(z)y"-ﬁ-%iz
I\H Y

For this metric the Hecke operators are self adjoint, and from this it follows that

Sk(T) is semi simple as Hecke module.
We can decompose into eigenspaces

H(T\H, Myv p) = € H (T\H, Myv ) (7f) (4.107)

Tf

where 7y : H — F' is a homomorphism. In this case we know that each 7y
which occurs actually occurs with multiplicity 2 (it occurs with multiplicity one
in Sk(F) and Sk(F) )

For any embedding ¢ : F' — C we know the Ramanujan-Petersson conjecture,
which says

n+1

For all primes p we have [¢(7¢(T}))| <2p2

(4.108)
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and again we can conclude that we get a canonical splitting of Hecke-modules
H'T\H, Myv ) = H'T\H, Myv ) @ F Eis,, (4.109)

where T,( Eis,) = (p"*! 4+ 1) Eis,,. ( The eigenvalue of T}, on Eis,, is different
from the eigenvalues of T, on H}T\H, Myv ) (Manin-Drinfeld principle) and
then a standard linear argument gives us the splitting.) Of course we could also
say that the Hecke-module H'T\H, Myv ) is complete in H'(T\H, Myv_r).

How do we get such ¥,7 In our special situation we get them from Fourier-
expansions of Whittaker functions and this will be explained next.

4.1.9 Local Whittaker models

We recall some fundamental results from representation theory of groups Gla(Qy).
Let F'/Q be a finite extension Q. An admissible representation of Gl2(Q,) is an

action of Glz(Q,) on a F-vector space V which fulfills the following two addi-

tional requirements

a) For any open subgroup K, C Glx(Z,) the space of fixed vectors VEr is
finite dimensional.

b) For any v € V we find an open subgroup K,, C Gla(Z,) such that v € VX».

We say that V' is a Gla(Q,) module, we denote the action of Gl3(Q,) on V
by (g,v) — gv. In addition we want to assume that our module has a central
character, this means that the center Z(Q,) = Q, acts by a character wy :
Z(Qp) — F*. Such a module is called irreducible if it does not contain a non
trivial invariant submodule.

Again we dispose of a Hecke algebra, given K, we consider the space of
functions

Hi, ={f: GL(Qp) = F | f(29) = wy;'(2)f(g) ; f has compact support mod Z(Q,)}

this gives as an algebra by convolution and this algebra acts on V%» by

f*rv= / f(z)zvdx
Gl?(@p)/Z(Qp)

(See also section 6.3.3.) We normalize the measure dz such that it gives volume
one to K.

We recall - and explain the meaning of - the fundamental fact that each
isomorphism class of admissible irreducible modules has a unique Whittaker
model. We assume that F' C C, then we define the (additive) character

2mia

Pp:Qp = C* ¢y, = a/p™ e (4.110)

it is clear that the kernel of ¢, is Z,. Since we have U(Q,) = Q, we can view
1p as a character ¢, : U(Qp) — C*. We introduce the space

Cy, (Gl2(Qp)) = {f : Gla(Qy) — C[f (ug) = vp(u) f(9)}
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where in addition we require that our f is invariant under a suitable open sub-
group Ky C Glz(Z,). The group Gl2(Q,) acts on this space by right translation
the action is not admissible but satisfies the above condition b) .

Now we can state the theorem about existence and uniqueness of the Whit-
taker model

Theorem 4.1.4. For any infinite dimensional, absolutely irreducible admissible
Gl2(Qp) -module V' we find a non trivial ( of course invariant under Gla(Q)))
homomorphism

UV = Cy, (Gl2(Qy)), (4.111)
it is unique up to multiplication by a mon zero scalar.

Proof. We refer to the literature, [55], [27] O

Spherical representations, their Whittaker model and the Euler factor

An absolutely irreducible Gly(Q,,) module is called spherical or unramified if for
K, = Gly(Z,) we have VE» £ {0}. In this case it is known that (Reference)

dimp(VE2Z0)) = 1; vGL@) = ppy, (4.112)
The Hecke algebra H, is commutative and generated by the two double cosets

T, = Gly(Z,) (18 ?) Gly(Z,) and C, = Gly(Z,) (75 2) . (4.113)

The space VE2(Z») i an absolutely irreducible module for # K, hence it is
of rank one, let ¥y be a generator. Our two operators act by scalars on V%,
we write

Tp(ho) = Wv(Tp)ho and Cp(ho) = Wv(cp)ho (4.114)

The module V is completely determined by these two eigenvalues, of course
v (Cp) = wy (Cyp).

We can formulate this a little bit differently. Let 7, an isomorphism type of
our Gl(Q,) module V. Then our theorem above asserts that there is a unique
Gl2(Qp) -module

W(mp) C pr(G12(Qp)) (4.115)

with isomorphism-type equal to 7, xr C. We call this module the Whittaker
realization of m,. If our isomorphism type is unramified then the resulting ho-
momorphism of H,, to F' is also denoted by .

We have the spherical vector h&‘? € W(ﬂ'p)Gl?(ZP) which is unique up to a
scalar. Since Glz(Q,) = U(Q,)T(Q,)Gl2(Z,) this spherical vector is determined
by its restriction to T'(Q,). We have a formula for this restriction. First of all
we observe that

w0 ) =micm (7" )y (4.116)
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0
1

Wio 1) (o S =%y =% V) )

£
)h

We claim that h&o) ( (p 0

P

)) = 0 if n < 0. To see this we look at the equalities

and we can find an element v € Q, such that p™"u € Z, and ¥, (u this

u) # 1,
implies the claim. We exploit the eigenvalue equation Tp(hgr?) mp(Tp 7(T

write the double coset K, (O (1)) K, as union of right K, cosets

p 0 B 1 z\(p O 0 1\ /p O
56 Do= U (D)6 )sUG o) (6 1)
T€ZL/pZ
Clearly

B Y6 DG Do 9
(D) (5 8) (0 O =mene (T, )

and this implies the recursion formula | recurs

n+1
_ (0) 0 -
L n—1 pha,) ) if n>0
mTn@((% D) =micm(7y Y
0 ifn<0

(4.117)

We can normalize h&?( (é (1))) = 1, then the values for n > 0 follow from the

recursion.
There is a more elegant way writing this recursion. For our unramified m,

we define the local Euler factor

1
L<7TP’ S) =

L — 7y (Typ)p=* + pmp(Cp)p~28

(4.118)

We expand this into a power series in p~® and an elementary calculation shows

that | Mellin
- " O n, _—mns
L) = (T ) (1.119)

n=0
Whittaker models for Harish-Chandra modules

We also have a theory of Whittacker models for the irreducible Harish-Chandra
modules studied in section 4.1. The unipotent radical U(R) = R resp. U(R) =
C. Again we fix characters ¢¥» : U(R) — C* we put

e 2mix in case A)
() = o 4.120
Yeo(2) {6_27”('”‘”) in case B) ( )
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and as in the p-adic case we define
Cyoe (GR)) = {[f : G(R) = C|f(ug) = Yoo (u) f(9), fi is Cc}
Then we have again | Whittinf

Theorem 4.1.5. For any infinite dimensional, absolutely irreducible admissible
Gl2(R) -module V' we find a non trivial ( of course invariant under Gla(R))
homomorphism

UV - Cy (G(R)), (4.121)

This homomorphism is unique up to a scalar. The image of V' under the homo-
morphism U will be denoted by V.

Proof. Again we refer to the literature. [27]. O

Hence we can say that for any isomorphism class ms, of irreducible infi-
nite dimensional Harish-Chandra modules we have a unique Whittaker model
W(Teo) C Cy_ (G(R)). In the book of Godement we find explicit formulae for
these Whittaker functions.

Actually it is easy to write down such maps ¥4 resp. U explicitly for our
induced modules, we start from a dominant weight A = ny + ¢ (resp. n1y1 +
nsy2 + 6 where n > 0,n1,n9 > 0. We define

F :3GAzlplf = Cy (G(R))

by the integral

F(Hg) = . fwug)po(—u)du,

there is no problem with convergence as long n > 0,n1,ns > 0. If one of these
numbers is zero then there is a tiny difficulty to overcome, we ignore it. In any
case we get an isomorphism

F:08wlolz = 95 Aelol? (4.122)

i.e. we will denote elements or spaces which lie in a Whittaker model by ?%.
We consider the case A). Let n be even. We consider induced module
TG \rpE = @uzo@) Coa,u, (See 4.28we have the exact sequence (See seqd

0— DY @Dy — IGAepE — My — 0
We have the Whittaker map
F:3GArp2 - Cy(G(R))
which is defined by

Fon(§ V)= [ ot (1) (5 )ermras

We write the Cartan decomposition

t — t
GG DT ) (T
0 1)\0 1 -t —x 0 2 + 22 e VT
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and a straightforward computation gives us that we have to evaluate

t 0 _ngq [e e} e27riz
F(oan)( (0 1>) =t [m (z + ti)"/2Hv /241 (g — ti)n/2—v/2H1 dzx

This can be done by the Residue theorem, we integrate from —R << to R
and then from R >> 0 back to —R along the circle in the upper half plane.
Our function has only one pole in the upper half plane, namely for x = ¢i and
therefore

e 1 =z t 0 i R ' 627Ti:r
[m ¢)\,y(w <0 1) <0 1))6 dr =1tz Resy—t; (3: T ti)”/2+”/2+1(m _ ti)n/Z—u/2+l

If we put z := x — ti then our integral becomes
eQ‘n’iz

(]_ + %)n/2+u/2+1zn/27u/2+1

(27;)—71/2—11/2—115_11/26—27”5 ReSZ:O — JD)\’V(t)e—Q‘n't7

where Py ,(t) is a Laurent polynomial in C[t,t~1]. This polynomial is zero if
v > n+ 2 and this implies that F maps D;\"v to zero.
Therefore our map F induces an injection

3520/ Dfv = Cy(G(R))

this is of course an intertwining operator. The module D}, C jcB:)\Rpfg /D;\Q it
has ¢, _n—2 as a lowest weight vector. We compute

¢F(@x,—n—2), then t he nasty factor (1 + £ )"/?**/2+1 is equal to one in this
case and hence we have up to a non zero constant

F(¢A,n2)(<é (1)>) =yt tle 2t

In the case A) the we the two discrete irreducible series representations
Dj\rv , Dy attached to a dominant weight A. We have their Whittaker model

Fi: Dy, < Cy (Gl2(R)). (4.123)

The group (Glz(R) has the two connected components Glo(R)*, Gl(R)~,( det >
0,det < 0) and we have

Fi(Df) = D;\’V’T is supported on Gly(R)™, D;QT is supported on GIZ(ERIM)

Under the isomorphism W the elements Vi (nt2) (See (4.27) ) are mapped to
functions /lZ:t(n+2). We can normalize ¥4 such that

t 0 tztle=2mt  ifp S
t = 4.125
(g 9)) {0 else (4129

and T _, _, is given by the corresponding formula.
We discuss the same issue for the group Gly(C) later in section 4.1.11
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Global Whittaker models, Fourier expansions and multiplicity one

We also have global Whittaker models. To define them we recall some results
from Tate’s thesis ([100]). We introduce the ring of adeles A = Ag, we write
it as a product A = Q, x Ay = R x A¢. The ring of finite adeles contains the

compact subring 7= Hp Zy, of integral adeles.

We define a global character ¢ : U(A)/U(Q) = A/Q — C* as the product

V(Tooy -y Tpy- -+ ) :woo(xOO)HTZ)p(xp) (4.126)

where the local components 1, are as above, we have to check that 1 is trivial
on U(Q). (See [100], "note the minus sign”) For any a € Q we define ¢%(z) =
Y(ax), so ¢ = M. In ([100]) it is shown that the map

Q — Hom(A/Q,C*); a s 1l (4.127)

is an isomorphism between Q and the character group of A/Q. Hence we know
that for any reasonable function h : A/Q — C we have a Fourier expansion

h(w) = h(a)y(au) (4.128)

acQ

where h(a) = fA/Q h(w)Y(—aw)du, and where volg,(A/Q) = 1. Then we put

Cy(Gla(R)xGla(Af)/Ky)) = {f : Gla(R)xGla(As)/ K — C[f(ug) = 1 (w)f(g)}

this is a module for Glo(R) x @' H,

Let us start from the Harish-Chandra module 7, = ’D;\r and a homo-
morphism 7y = ®'m, : ®H, — F from the unramified Hecke algebra to F.
Here F/Q is a finite extension of Q. We assume it comes with an embedding
t: F— C, ie. we also may it consider as a subfield of C.

We still assume for simplicity that K = Gly(Z).

The results on Whittaker-models imply that we have a unique Whittaker-
model

W(m) = W(mee) ® Ch?)  Cy(Gla(R) x Gla(Af)/Ky) (4.129)

for our isomorphism class m = 7o, X 7¢. Here of course hSP} = ®h$3,).

We return to Theorem 4.1.3. On the space Cg)(F\G(R), w(©)) we have the
action of the unramified Hecke algebra. To see this action we start from the
observation that the map Glo(Q) — Gla(As)/Ky (Chap. IIT, 1.5) is surjective
and hence

Gl2(Z)\Gla(R) — Gla(Q)\Gly(R) x Gla(Af)/ Ky (4.130)
and hence

CP(G1y(Z)\Gly(R)) = C (Cly(Q)\Cla(R) x Gla(As)/K ) (4.131)



4.1. HARISH-CHANDRA MODULES WITH COHOMOLOGY 169

and the space on the right is a Gly(R) x @' #H,, module. Now we consider the
T = To X Ty isotypical submodule Cg)(Glg((@)\Glg(R) x Glo(Afp)/Ky)(m) C

C2 (Gl (Q)\Gly(R) x Gly(Aj)/Ky).
We have the famous Theorem which in the case I' = Sly(Z) is due to Hecke

Theorem 4.1.6. If Cg)(GIQ(Q)\Glg(R) x Glo(Ay)/Ky)(m) # 0 then have a
canonical isomorphism

F:W(n) =5 ¢ (G12(Q)\Gla(R) x Gla(Ays)/Ky)(n) (4.132)
especially we know that w occurs with multiplicity one.
Proof. We give the inverse of F. Given a function
h € C2(Cla(Q)\Cla(R) x Glo(Ay)/Ky) ()

we define
W ((grg) = [ g P (4.133)
U@N\U(A)

it is clear that hT(goo,gf) € W(m). It follows from the theory of automorphic
forms that h is actually in the space of cusp forms, this means that the con-
stant Fourier coefficient |, U@\U(4) h(ug)du = 0 and hence our Fourier expansion

yields ((4.128), evaluated at u = 0)

= ug) ! (v)du )
"o agQ;X /U(A)/U(Q) Alug)d ™ () (4.134)

The measure du is invariant under multiplication by a € Q* and hence a indi-
vidual term in the summation is

/U(A)/U(@)h(<(1) ?)g)w(@ afb>)d“—/U(A)/U(Q)h(<(l) allu) 9)1/1(((1) ?))du
(4.135)
G)=Co D66

Since h is invariant under the action of G(Q) from the left we find

Now

U ] () du = R a O (g a 0 |
L(A)/U(@)hu)w (1) h(<0 1>)g°°)hf(f) (0 1) (9o0:9,)) (4.136)

We evaluate at g = (goo,€) then

i Do Do () awm

For a fixed g, the function g, = hT(goo,gf) is up to a factor equal to
hgf? = ®; h&o) and hence we find

4
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w5 1) e =nt(( )amen@(y 1) s

The recursion formulae ( 4.117),(4.119) imply that h,(TOf) ( (Clof (1)
a € Z.

We restrict our functions to Gl (R), i.e. we take g, € Glo(R)* and we
remember that our representationm, is D;\rv. Then we know that for h, € Djv

the value h'( (ago ?) Joos€) = 0 if as < 0 and hence

)) = 0 unless

ifa O _ i@ O ar 0 _
h((o 1) (9oos€)) h(<0 1>gm7<0 1 ) =0 unless a > 0,a € Z,
and our Fourier expansion (4.128) becomes
S a 0 ar 0
_ f /(&
h(g) = Z_;h ((0 1) (goo,e))hﬂf(< / 1)) (4.139)

We notice that there is never any problem with convergence. The Whit-
taker functions Al  always decay very rapidly at infinity. We write g, =

1 w t 0 . .
(0 1) (O 1) k with k € K, then it is easy to see

T t 0 —27t
() ol < PO

where P(t) is a polynomial in ¢. This implies that the series is really very rapidly
converging (See remark below).

Now we choose for the component at infinity the function hl = 1;7”2 and
we compute the corresponding holomorphic cusp form h® under the Eichler-
Shimura isomorphism. We have the formula (4.103)

hq’<z>=h@<x+z'y>=h<<y; yy%>>j<<y2 w),i)nw:h((y? X >>y—z—1

=

and hence our Fourier expansion (4.139) becomes

= (Y T)(E D) w

We have the formula (4.125) for (in+2 and then this becomes

oo
@ _ 24170 (@ 0 2miza
h®(z) = Z:lcw Ry ((0 1))6 (4.141)
This is now the classical Fourier expansion of a holomorphic cusp eigenform of

weight & = n + 2, ([50]). The numbers ¢(7f,a) = a"£+1h£r°}(<g ?)) are the



4.1. HARISH-CHANDRA MODULES WITH COHOMOLOGY 171

Fourier coefficients and they also the eigenvalues of the operator T, -defined in
by Hecke in [50]- on h®. If we apply the the Eichler-Shimura isomorphism and
interpret h® as a cohomology class then it is an eigenclass in H;' (I'\H, M, ® C)
and for any prime p the number ¢(|pis, p) is the eigenvalue of the operator T,

defined in ?7.
We briefly come back to the question of convergence. Hecke proves in [50]

that [Estone
le(f,a)| < Ca™ e (4.142)

and with this estimate the convergence becomes obvious.
Actually there is a much better estimate, which will be discussed in the

”probably removed” section.

4.1.10 The L-functions

We still assume that Ky = Gl (Z) or what amounts to the same that I’ = Sly(Z).
We start from an eigenspace H!'(I'\H, My® F)(m¢), now 7y is simply a homo-
morphism 7y : Hx, — Op. To this homomorphism we attach the cohomological
L-function

1
LM (s, 8) = (4.143)
it
here T}, is the Hecke operator defined in 7?7, it differs from the Hecke operator
defined by convolution by a factor p* in front. If we expand this product over
all primes we get

o0
L(mp,s) =Y c(ﬂafs’ %) (4.144)
a=1
and this is exactly the L-function Hecke attaches to the cusp form provided by
7. But we want to stress that this cohomological L-function is defined in purely
combinatorial terms (See section 3.2.1, and Chapter 7).

At this moment this L function is a formal expression, it is a formal Dirichlet
series with coefficients in our field F', which is simply a finite extension of Q. If
we assume that F' C C. then we may interpret s as a complex variable and the
above estimate of the size of the coefficients implies that this series converges
absolutely and locally uniformly for R(s) > n+2 and hence gives a holomorphic
function in this halfspace. But something much better is true. We define the
completed L function

I'(s)
(2m)°

for this completed L-function Hecke proved

AP (g, ) = = LNy, 5), (4.145)

Theorem 4.1.7. The function ACOh(ﬂf,s) has holomorphic continuation into
the entire complex plane and satisfies the functional equation

AP (p,8) = (—1) 2 TIACY (mpn 42 — 5)
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Proof. We could refer to Hecke, but for some reason we give an outline of the
argument. We have the integral representation (Mellin-transform)

Acoh 7Tf7 / Zc(ﬂ_f’a 27ray / h<1> Zy
=1

of course here we have to be courageous ( or stupid ) enough to exchange
integration and summation. But since e2"% goes rapidly to zero if y — oo
there is no problem with the upper integration limit oco. If $(s) >> 0 the y*
also tends to zero fast enough, so that we do not have a problem with the lower
integration limit. But now we can split the integration into two parts

— d
i S g apee oy

fO ° 7Tf; ) 72ﬂayys% +f100 ZZO C(ﬂf’a)ef%rayysdyiy

the second integration is converging for all values of s. To handle the first integral
we observe that h®(—1) = 2"*?h®(z), Hence we can substitute y — o in the
first integral and get

ARy, 5) =
- . 4.146)
1 c(ns,a) (-1)3+ c(rs.0) (
;(WTF(S,QWG) =+ (27-‘—)77,4*278 an+275 F(n+2 — S,Qﬂ'a)).
Here I'(, ) is the incomplete I function, which defined by I'(s, 4) = [ e Yyt dy

it has the virtue that for any given value of s it decays rapidly 1f A goes to mﬁmty

Therefore we see that A°!(7y, s) can be written as a sum of two infinite
series which are convergent very rapidly, hence it follows that ACOh(ﬂ'f,S> is
holomorphic in the entire s plane and the functional equation also becomes
obvious. O

We included the proof of the above theorem, because the above formula also
gives us a very effective procedure to compute the numerical value of A" (7, s¢)
with high accuracy. We will come back to this issue in section 5.6.

4.1.11 The Periods
Together with the map F comes the map

F=Ild® F®Id: Homg_(A(g/€), W(r) @ My) —
Homy (A e (g/8),Co0(Gl2(Q)\(Gla(R) x Gla(Af)/Ky) @ M)

The purpose of the following computations is to fix a specific choice of basis
elements w, € Homg (A'(g/?), DyvT®@M,) (in case A) wb € Homy (A"*(g/®), D;v ®
M) (in case B)) These ”canonical” generators serve us to define the periods.
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In case A) we have
T~ 1 0 0 1
g/e—><@(0 1) @Q(l o) =QH®QV =p (4.147)
Ifweput P=H+V®i,P=H-V®ic g/t Qi)
Notation abklaeren V = E, auf S. 123 ?) then

g/t®Q(i) = Q)P & Q)P and e(¢)Pe(—¢) = €™ P;e(¢)Pe(—¢) = e TP
(4.148)

Let PV, PV € Hom(g/¢,Q(i)) be the dual basis. Then we check easily that

PY(H) = PY(H) = % and PY(V) = —%,PV(V) = % (4.149)

The module M, ®Q(i) decomposes under the action of K. into eigenspaces
under K

My 2Q>) =@PQUE)(X +Y ®i)" (X - Y ®i) (4.150)

where
(X +Y )" (X -Y ®i)") =™ (X 1Y @i)" V(X - Y @1i)".
Then we define the basis elements

W =PV @y ®@(X-Y @) &l =PV @i_p 2@ (X +Y ®i)" (4.151)

We still have our involution ¢ € K7 ( See (4.25)) and clearly we have cw! = i"&t
( Remember n =0 mod 2. )

Now we put
1 1

then these elements
1 -
wh = §(wT +i"ot) € Hompg_ (A(g/€), Dy @ M)

and they are generators of these one dimensional spaces. The choice of these
generators seems to be somewhat arbitrary, in [?] we give some motivation for
this choice.

There is an alternative way to select wl. If we evaluate wl on the element

H € g/t =p then
1
WlL(H) = (Whpe (X -Y e +i"@, ;o (X +Yoi)") €D} oM,
These are functions on Gla(R) with values in M. We pair these functions

with an M ® C valued function, more precisely we consider the function g —<
wh (Ad(9)H)(g), pr(9)X"Y" > |
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We restrict these scalar valued functions to the real points of the split torus
T t 0 t O 1% n—v J—
<wi(H)(<0 1))70)\((0 1 )X Y >=

< i(i/’lm((é ?)) X -Yei)" ii”lﬂ_n_Q(((t) (1)>) ® (X +Y @i)"), XVyn—v > =5 +v

Now let € be a variable which can take the values 4+, —, then ¢ = +1,—1. Our
formula (4.9) gives us < (X —eY ®4)", X¥Y" ¥ >= (—¢i)" ¥ and combing this

with the explicit formula (?? ) for the values of w:(n+2)( (8 ?)) we get

t 0 t 0 _ (—i)n—viztle2mt— 54y for t >0
T vy n—U
<w!(H , X"y >= n n .
we( )((O 1)) p/\((o 1)) {Einy(_t)2+162ﬂ't(_t)2+y fOI‘ t < O

(Here we use that n is even, but with suitable minor modifications we can also
treat the case n odd.) Then a straight forward computation yields

ray <15 D oon((§ Q)prvnr s 4=

ntl—v . n_, 4.153
f g(ﬂ)t1172 if (_1) 2 = sg(e) ( )
2
0 else

For each choice of the sign € = %1 one of these equation determines the generator
wl. This formula will be of importance when we discuss the special values of
L-functions.

In case B) we do basically the same, in some sense it is even simpler because
Ko is maximal compact in this case, i.e. Ko = K} . But on the other hand
we need some very explicit information about the theory of irreducible repre-
sentations of K., and also about the decomposition of tensor products of these
representations. We will also use some explicit formulas for Bessel functions.

Probably removed paragraph

The quotient g/t is a three-dimensional vector space over Q the group K
acts by the adjoint representation and this gives us the standard three dimen-
sional representation of K., = U(2), which in addition is trivial on the center.
(See 4.1.2). This module is given by the highest weight 2-.. We must have
A=n(y+7)+ .., if we want E@ (X, w,T) # 0, and then the formulae 4.1.6 and
4.54 imply that for e = 1,2

dime Hompg._ (A*(g/8),Dl, @ Myv) =1 (4.154)

Now we recall that we have defined a structure of a R = Z[%} module on all the
modules on the stage, hence we see that

HOII’IKOO (A'(g/%),D,\v X M,\v) = HOIHKOO(A.(Q/E)R,'D)\VR ® M}\\/R) X (C,
(4.155)

here we are a little bit sloppy: The first subscript K, is the compact group and
the second subscript is a smooth groups scheme over R. For both choices of e
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the second term in the above equation is a free R module of rank 1. We choose
generators

whe e Hompg (A'(g/%)mD)\vR ® Maxvg).

These generators wt!, w!? are well defined up to an element in R*.
End of removed paragraph

The quotient g/ t is a three-dimensional vector space over Q the group K,
acts by the adjoint representation and this gives us the standard three dimen-
sional representation of K., = U(2), which in addition is trivial on the center.
(See 4.1.2). This module is given by the highest weight 2v.. We must have
A =n(y+7)+ .., if we want £ (\,w,T) # 0, and then the formulae 4.1.6 and
4.54 imply that for e = 1,2

dime Hompg _(A*(g/E), DL, @ Myv) =1 (4.156)

We fix these generators by prescribing values of certain Mellin transforms. To do
this we need a little bit of representation theory. Of course we may replace K,
by SU(2) because the action of the center on the different modules cancels out.

The modules g/t ® (C,Df\v and M)v ® C extend naturally to Sly(C) modules
and hence we have to find an explicit generator in

Homgy, (c)(9/¢ ® C, D}y ® My, @ M),

We have an explicit basis for g/¢ ® C (See (4.18), our module Mv = ./\/l';,y ®
M?W ®e C is given explicitly to us.

Our module D;v C 3% Arp2, and this last module decomposes into SU(2)
-types (See( 4.31). These SU(2) modules canonically extend to Sla(C)-modules,
we have

3Gt = P Mavy = P IGAepi (20)

v=0 v=0

and
(3GAzp% (2(n + 1)) = DL (2(n + 1))

Now it is clear that we have the problem to select a specific generator in

Homgy, (c)(g/¢ ® C, D (2(n + 1)) ® M}, @ M;,; @ C).

The modules g/t ® (C,/\/l‘jl,y,/\/li’fy come with an explicit basis (See 777), if we

want to write down a specific generator wh® we have to write down a basis of
D, (2(n+1)).

Again we start from our exact sequence
0— Dy =35 = My —0 (4.157)

we apply the map F to it and get an exact sequence of Whittaker modules

0-Dl, - 35T 5 My —0 (4.158)
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To get such a basis we start from a basis element @) € BEARpIQR(O). We
recall the definition of J§Agp2 as an induced representation, the space of K,
invariant vectors is spanned by the spherical function

onal®)) =vnoh((5 1) (% 2)) =m0

a
We map the induced representation to its Whittaker model by

Fip={g— /w(w <(1) v Jg zy) g)e*™ dxdy} (4.159)

our basis element will be (bi[\’o = F(¢xr0). A straightforward computation yields

t ot 0Y, _ t 0y, [~ 2 v
Aol D =Fnal(y )= [ oo g o

o0

The educated reader knows that this function in the variable ¢ is well known,
we have

7Tn+2
‘I’,\((é ?)) = F?TJFQ)HQH(QW)

where K, (27t) is the modified Bessel function. Of course @, is a function on
G(R) = Glz(C), it is right invariant under K, and of course

1 ) 0 ; 0
oty 1) (6 D)=t (h )

hence it is defined by its restriction to T%4(R)~.

Starting from this function we construct the desired basis of D1, (2(n + 1)).
The Lie-algebra g acts on JEAgp2, we restrict this action to p and it is clear
that under this action

P © IGARPR(20) — TEAepR (20 +2) ® IGARPR (20) © TEAwpi (20 — 2)
and if we extend this action to the tensor algebra we get a map

n+1
o1 p20D @ 3G AR5 (0) = D IF AP (20). (4.160)
v=0
here we may replace n + 1 by any positive integer k.

The group K acts on p®(+1) by the adjoint action and the above map
is of course a K, homomorphism. On the right hand side we can project to
the highest K, type 3§\gp3(2n +2) = Df\v (2(n+ 1)), i.e. we get a surjective
homomorphism

I,y p20F) @ 3G ARpE(0) — DL, (2(n + 1)), (4.161)

again we may replace n + 1 by any positive integer k.

We have the standard surjective homomorphism p®(+1 — Sym™ ™! (p), let
us denote its kernel by I, 1. For any f € 3GAgp2 and X', X" € p we have

(XIX// _ XI/X/7)f — [X/,Xll]f.
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Since the Lie bracket [X7, X3] € ¢ it follows easily that II,; vanishes on the
kernel I,, 1. Hence our homomorphism II, 7 factors over the quotient, i.e.

M,y : Sym™ ! (p) = Dl (2(n + 1)).

We change our notation for the basis of p ® C (see 4.18) and put

x=1(" Noig _Oi Z.);X=%(1 o)
2 (;(1)> ;(<(1)(é> f?@ (0_02 éf))(o 1) (4.162)

We have the following proposition

Proposition 4.1.7. The 2n + 3 elements
(X7 Xo X7, X XXy, XY

form a basis of a Ky invariant subspace of Sym”“(p) ® C. This subspace is
irreducible, it is isomorphic to Maynyo. These basis elements are the weight
eigenvectors for the action of T..

Proof. The representation of the algebraic group K., on p extends to a repre-
sentation of the algebraic group Slo/C on p ® C. As such it is isomorphic to
the symmetric square Sym? (C?) of the tautological representation, i.e. to the
module My of polynomials aU? +bUV + cV?2. We get an isomorphism My —
p ® C by sending U? — X,UV — X,,V? = X;.. Now Sym*"*3(M,) c
Sym™ ! (Sym?(C?)) = Sym™ ™' (p ® C) is an invariant submodule. Tt has the
basis U2"t2=¥V* and clearly

Untryy = XpHr XY if v <n 4 1and X)X
and this implies the assertion. O

This implies that the elements

{1t (X708 o)y st (X0 XT0 o), - - T (XE X1 6] ),

- | - (4.163)
1 (X 68 0)s Mot (XEX 10 o), - n (X1 00 o)}

form a basis of DI\V (2(n+1)).

We change our notation slightly. For m < 0 we put X{* := X~ and for
0<v<2n+2wepuwt [v]=vifv<n+4+land y]=2n+2-vifv>n+1.
Then our above basis can be written as

{~ - aHn-i-l(X(gy]X{HliV(é;,o)v s }V:0)~~-7l/:2n+2> (4-164)

these are the weight vectors of weight 2(n + 1 — v)y. We introduce the notation
1w = s (X5 XT 770 )

These functions (;5:[\ ., are Whittaker functions they satisfy

Aul(y “T7) 0 =emol o)
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They are not K, invariant, but they are weight vectors for the torus, we have
627ritp 0 i
919 ( o 1)) ="l () (4.165)

and more generally ¢T\7V(gk) =2, a,,’u(k)d\# (9) where the a, (k) are the
matrix coefficients of Ma, 9. (above proposition).

We consider the restriction of the functions ¢! to the maximal torus T'(R).
Since 3GArp2(2v) has a central character, it suffices to consider the restriction

o oG )

we write z = te2™%. This means that we map the module JG\gp2 to its Kiril-
low realisation jg’”ARpﬁ C Coo(C*). (See [27] , S 2 5.), especially this map is
injective.

We express the restriction of these functions ‘ﬂ,u to the torus T%¢(R)s¢ in
terms of Bessel functions. We introduce the notation

k

IG2k] := @D 3G Ampi (2v) (4.166)
v=0

For any Whittaker function ¢! € JG[2k]" we have

M (a0 ?))fw(é (Dexp(d:l))_w(é )

We write X; = (<8 g) T <8 202> n <(1) —01> N <(Z) _OZ)) the last two

matrices are in £ so they preserve the K, type and

o'y 1) ete(y o)+ (o 6)0-

sten() 6)+ (3 o) (s ‘f)) (s T (G 9
emar((o =ot((§ §)aie)

i (X16) ( )—2t¢><<0 ?))

27\"LLP )
= e2mine gt ( ((t) (1))) then X;¢f

and hence

If ¢t is a weight vector, i.e. ¢f (

is also a weight vector with weight 2”1(’”2”

This gives us

22n+3 2n+3
(i D)= rmiolo(§ 1)) = Hg Ko 2m0)
(4.167)
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Since this function is of weight 2n + 2 we can forget the projection I, 4.

We have recursion formulas for the Bessel functions

LK (t) = =2 (Kn-1(t) + Kn41(1))

4.168
Kaa (1) = K1) + 20K (1) (4169
A straightforward calculation yields
d
%t“KV(Qme) = (u — V'K, (27t) — 27tP LK, (2nt) (4.169)

t 0 V] yntl-v t 0
Then (b;,n—o—l—y((() 1)) = Hn+1(X([) }Xl A (b;,n—#l((o 1))) We get

9 n+2+|n+1—v|
XIH_I_VQST ((t 0) )) — (ﬂ-)—t1+‘n+17V|Kn+1(27Tt)-

A,n+1 0 1 F(’I’L 4 2)
To this we apply X([)V]. The operator Xy is t%, then the above formula gives
y il t 0 22n+37.(.2n+3 N
M (X5 X4 ¢5J,r\(<0 1))) =i (- + Wt 2K p1-0(27t))

(4.170)

where the dots - - - are a sum of those terms which are in the image of jg’”)\Rpf{ [2n]
hence they vanish under II,,;;, and consequently

22n+3 2n—+3
¢§,u((8 (1)))%12)15%2;@((8 (1))) (4.171)

where p runs from n 41 to —n — 1 and of course K, = K_,.

Decompositions of tensor products

If A1 = n17v, Ao = navy are two highest weights and if we consider the highest
weight modules M, g, M2, @ then it is a classical theorem that

M@ ® Mazo = My tna)7.0 ® Mnitna 23,0 @ - & Mny —na)y0- -

where we assume n; > no, we put n = ny + ne. Our next aim is to give an
explicit homomorphism

; b b b
Jnama P Mn fngyy = Mo, @My, (4.172)

in other words we want to write explicit tensors for the images of ez,u =
ny + no,n1 +ng — 2,...,—ny1 — ny. Of course we send the the highest weight

vector € — eil ®" 622, this vector is the highest weight vector in the

ni+nsg
direct summand M?n1+n2)"/,Q C Mni4n2)r,0 @ ® M(ny—ny)y.0- I terms of
the explicit realisation of these modules we can say

Xmitne XTI xne (4.173)
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0) to it, here we may think of ¢ as an in deter-

Now we apply the matrix (1 1

minant. Then we see
(X +ty)mtm2 s (X +t'Y)" @ ("X +t"Y)" (4.174)
We expand on both sides and find

Zn1+n2 (n1+nz)tan1+n27uYM —
pn=0 o

ZZ;B?M tu(z,ul,,uQ:y1+,ug:u (Zi)/anfm/Y/h ® (Zz)//anfﬂz ® //anfuzl/yln)
(4.175)

We remember the definition of the basis elements ez, the formula above gives
us

. b b
D DA (4.176)
p1tpe=p

We apply this to the SU(2) -module
(g/?)]}/ ® Mn'y QF Mn"yy

this module contains a unique copy of Mgn 12 We write

g/?¥ = Foeb2 ®F 06% ®F 06'7—27 M’ﬂl’Y:F = @F@E“’ Mn2’YvF = @Félbl«z
H1 H2
(4.177)

where of course p; run from n; to —n; and u; = n; mod 2. Then our copy of
M%,HQS comes with the basis

b Z 0 b b
€= €10 ® € ® €z
Hot+H1+H2=H

We have the invariant pairing (4.9) and this tells us that we can choose as our
generator

ni+nz+2

. b ~
whe = Z (;5;7“ ® ( Z Oeﬂo ® eZl ® e;btg) (4.178)
=0 po+p1+pe=n+l—p

This generator is only determined up to a scalar, it is fixed once we choose
a generator cnqﬁ el

The ”canonical” choice of the generator

Again we can fix the generator by requiring that certain Mellin transforms have
a prescribed value at certain prescribed arguments.

We do essentially the same as in the case A). We can interpret w’! as a
differential 1- form on G(R) with values in M3 ®C. We can restrict this 1-form to
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the torus T24(R)sq = {( > [t > 0}. We have the "cycles” e, ®e,, € MY).

t 0
0 1
We evaluate w'!(X) on these "cycles” and get
t t
<t (Xohew @ > ([ I) = 0§ ) et =
0 1 m—pi—p2\\ () 1
(4.179)
c;t”+2+#1+#2 Koy — o (2t)

Later -when we study the special values of L-functions- we need to know the
value

< L] t 0 dt > n A s
/0 <wh (Xo), ey ® €y > ((0 1>)t = C:I/O gt Ky —py (271)

ﬂ
t
(4.180)
We also will need formulas for the Mellin transforms of these Bessel functions.
Here we quote [1] .p.331,334 and recall two of them (the second one for later
use)

o~ B (2mt)to 4 = 2272 (2m) T (43T (+5)

JoT K (2mt) K, (2mt)t* 9 = 2573 (27r) =T (S=4=2 ) (S=4t ) (2Ha=2 )P (2t )
(4.181)

the first one gives us

o0 dt T(n+1)T(p+1)
n+2+p1+p2 —
A t Ky (21t)— = =~ g (4.182)

We observe that the first factor in front does not depend on 1, 2. So we
renormalise our generator and for y = —n —1,—n,...,n+ 1 we now put | Phi

4aT

T n+2

= — 2Rt 4.183
¢/\,y,( ) F(?’L+ 1) +1 M( ) ( )
and with this choice of ¢;’V the w’! (4.178) is now our canonical generator.
Now our formula (4.179) becomes

< wT’ (X0)76,u1 X 6#2 > (<0 1>) = ﬁ (4184)

Hence we may just choose p1 = o = 0 to nail down w*, it is not clear to
me whether or not it is a ”miracle” that the above relation holds for all values

of 1, pa.

The definition of the periods

The inner cohomology with rational coefficients is a semi-simple module under
the action of the Hecke algebra (See Theorem ??). We find a finite Galois-
extension F/Q such that we get a decomposition into absolutely irreducible
modules

HY(D\H, M, @ F) = @ H? (T\H, My @ F)(y) (4.185)

Tf



182CHAPTER 4. REPRESENTATION THEORY, EICHLER-SHIMURA ISOMORPHISM

Since we assume that I' = Gly(Z), hence the 7y are homomorphisms 7y : H —
Op. (See 777) In the case A) such an isotypical piece is a direct sum

HY (D\H, My ® F)(rf) = H (T\H, M\ ® F)(s)1 ® H!(T\H, M\ ® F)(mf)-
(4.186)
where both summands are of dimension one over F.
In case B) we get

H?(T\H, My @ F)(ry) = HY(D\H, My ® F)(rf) @ H}(D\H, My ® F)(ry)
(4.187)

and again the summands are one dimensional.

We have defined the module of integral classes H}' o (O\H, M5 @ Op) C
H}(T\H, M @ F) (See 2.56) and we consider the intersection

H 11 (D\HL, M3 @ Op) (my)e = HP (T\H, My ® F)(m) N Hy 3 (D\HL M3 © OF)

is a locally free O -module of rank 1, here e = +, 0 = 1( resp. e = 1,0 € {1,2}).
We assume for simplicity that it is actually free, otherwise the formulation of
the following becomes slightly more complicated. (See below). On the set of 7
which occur in this decomposition we have an action of the Galois group (See
(6.62)) and the Galois action yields canonical isomorphisms

‘I)U,T : H'., int(F\H7 ME\ ® OF)(Uﬂ'f)e — H'. int(F\Hv M& ® OF)(TTFf)e
(4.188)

We choose generators 7e? (my) and a simple argument using Hilbert theorem 90
shows that we can assume the consistency condition

Oy (e2(“ms)) = e2("mr) (4.189)
We get isomorphisms
F(wh) :W(np) @p C =5 HY(D\H, Myv)(°7s) @ C (4.190)
which are defined by
F'(wi) hog, []-'(wi X hor )], (4.191)

here F(w! X hor,) is viewed as a closed M ® C valued differential via the the
identification 4.96, and [...] is its class in cohomology.

Since we assume that 7 is unramified everywhere W(ns) we have the canon-
ical basis element h}o) = Hp hg,(:r)p where hff%, is defined by the equality 4.119.
Then we have obviously U(h,(r(i)) = h((,(;)p.

Then we define the periods by the relation

.F(w!)(h(f’o)) =Q%(ex my,))e® (e x my) (4.192)

oy
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These periods depend of course on our choice of the ”canonical” generator w].
We see that the numbers Q°(77y, €) are well defined up to an element in Oj.

If HY it (D\H, M ® Op)(7f). is not a free O module, then we can find a
covering by two open subsets Uy, Uy of Spec(OF) such that H? ;  (I'\H, M, ®
®@0p((U;))(e x my) is free. We can apply the above procedure and we get
periods Qq(e X 7y, ), Qa(e x ms), they are well defined up to an element in
Or(U1)*,0p(Us)™ respectively. The ratio of these periods is an element in
OF(U1 N Ug) X,

Perhaps at this point we should introduce the sheaf P of periods over F'.
For any open subset U C Spec(Op) we put Pr(U) := C*/Op(U)*, this is a
Zariski preasheaf on Spec(Op), the associated sheaf is our sheaf of periods Pp.

Now we can interpret the generators e®(e x my) as (the unique) section in
the sheaf of generators modulo O and then the equation (4.192) makes sense
without the assumption on the class number.

These considerations will play a role in the following chapter.

Some little subtleties

We should notice that these periods are defined with respect to the ”small”
sheaves /\/l';\ We have /\/l';\ C M, and therefore the map

H 1o (D\HL M3, © Op)(mg)e = H 10t (D\HL My © Op)(m5). (4.193)

may not be surjective. (The reader should not be puzzled by the fact that
/\/lg\ ® F = M) ® F.) Therefore, if we would work with M instead and define
the periods Q"#(UWf, €) by the same procedure. Then we will get a relation

Q.’#(Uﬂ'f7 €) =d(ms,e)Q° (T, €)

where d(7,,€) is a non zero factor in Op. The primes in these factors are the
divisors of the binomial coefficients.

But we could also with the module H'(F\H,./\;l';\ ® OF) int,1(7f)e and de-
fine the periods with respect to this module. Again these periods will integral
multiples of the periods Q°(7y,€).

In the following Chapter V we will discuss the rationality results (Manin
and Shimura) which relate these periods to special values of the L— function
(see section 5.6). But we also want to discuss this method not only for cuspidal
classes but also for the Eisenstein cohomology classes, therefore we close this
Chapter with a brief account of these Eisenstein classes.

4.1.12 The Eisenstein cohomology class

In section 3.3.6 we claimed the existence of the specific cohomology class FEis,, €
HY(T'\H, M,,). In this section we give s construction of this class on transcen-
dental level, i.e. we construct a cohomology class Eis(w,) € H(I'\H, M,, ® C)
whose restriction to the boundary H'(9(T'\H), M,, ® C) is a given class w,,. For
the general theory of Eisenstein cohomology we refer to Chapter 9.

We start from our highest weight module M and we observe that by defi-
nition we have an inclusion
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io : IGAE = Coo TL\GT(R))
where
It = {<t01 Z’“) Im e Z ity = +1}.
Therefore we get an isomorphism
HY(g, Koo, IGA @ My @ C) =5 HYT L\ M) ® C) = HY((T\H), M) ® C)

The inclusion iy sends the module JEAR° into a space of functions which are
I'L invariant under left translations. Therefore we get a homomorphism

Eis : IGAE° — Coo (T\SL2(R))
if we make it invariant by summation, i.e. for f € IGAL° we define

Eis()@)= Y. f(Ow) (4.194)

rL\Slz(2)

Of course we have to discuss the convergence of this infinite series. We could
quote H. Jacquet: ”Let us speak about convergence later”, but here is a short
interlude discussing this issue.

Interlude: Here is the point: We twist our module, for any complex number
z € C we consider the induced module

IEAE [p” C Coo(TL\SL2(R))
and again we write down the Eisenstein series. Now it an elementary exercise

to show that the map
a b
(¢ 0) -

provides a bijection

I2\SL(Z) = {(c,d) € Z x Z | (¢, d) coprime }/{+1} = P1(Q).

An element z € Sl3(R) can be written as ¢ = <é tfb1> k with k € K. Then

for f € IGAR° |p|?

flyz,2) =
(Y B)ea-
i ((02t2 + (cv q(u)chrl)Q)*l/2 s e . dt1)2)1/2) ) (k(vg)k, 2) =

(Pt? + (cv 4+ dt=1)?) 7272 f(k(v9)k).
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Since |f(k(y)k)| is bounded the series

Eis(f, z)(x) = Z [y, 2)

ri\Sly(z)

is converging if $(z) >> 0 and then it is also holomorphic in z. Selberg and
others showed that it can be extended to a meromorphic function in the entire
complex plane, it is now a special case of a theorem of Langlands [66]. If now
the function = — Eis(f, z)(x) is holomorphic at z = 0 then we do not care
about convergence and we simply define

Eis(f)(z) = Y f(yz) = Eis(f,0)(x).
LS (2)

In our special case it is easy to see that the series is convergent at z = provided
we have n > 0 and this is the only case where we will apply this construction.
End interlude

This provides a homomorphism
Eis® : H'(g, Koo, I\ @ My ® C)) — HY(T\H, M) @ C) (4.195)

In ??? we wrote down a distinguished generator w,, € H*(g, Koo, JGAR" ®
M, ® C) and we define
Eis, = Eis(wy,)

Proposition 4.1.8. The restriction of FEis, to H'(O(I'\H), My ® C) is the
class [Y"]

discuss the Biancji case?
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Chapter 5

Application to Number
Theory

5.1 Modular symbols, L-values and
denominators of Eisenstein classes.

In this chapter we want to restrict to the case I' = Sly(Z) or I' = Sl (O) where O
is the ring of integers of an imaginary quadratic extension. We refer to section
4.1.1 then this means that ' = G(Z). Our coefficient systems will be obtained
from the modules M. We assume that we have d = 0 and hence n = 0 mod 2
in case A), and d; = dy = 0, n; = n; in case B). This has the effect that
AV =

We want to study the pairing

HYD\X, M%) x H\(D\X,d(T'\X),M,) — Z, (5.1)

5.1.1 Modular symbols attached to a torus in Gls.

In a first step we construct ( relative) cycles in C1 (I'\ X, M, ), C1(I'\ X, 9(T'\ X), M, ).
Our starting point is a maximal torus T/Q C G/Q and we assume that it is
split over a real quadratic extension F'/Q. Then the group of real points

T(R) = R* x R*

act on H and H and it has two fixed points r,s € PY(F). There is a unique
geodesic (half) circle ¢ s C H joining these two points. Then T'(R) acts tran-
sitively on C,. s = C. 5 \ {r, s}. We have two cases:

a) The torus 7'/Q is split. Then the two points r, s € P1(Q). Here for instance
we can take r = 0,5 = oo, then the geodesic circle is the line {iy,y > 0} and
the torus is the standard diagonal split torus.

b) Here {r, s} € P}(F)\P!(Q), then r, s are Galois-conjugates of each other.
Our torus T'/Q is given by a suitable embedding

187
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In case a) we can choose any reasonable homeomorphism [0, 1] — [0, co] -
for instance x — x/(1 — x)— and then we get a one chain

0:[0,1] = Crs =R U {0} U{c0},0(0) =r,0(1) = s € 9(H),

and for any m € M we can consider the image of o ® m € Cy(H) ® M in
Cy(T\H, 9(T'\H), M). By definition this is a cycle and hence we get a (relative)
homology class

[Cr,s ® m] € Hl (F\Hv 8(F\H)7M)\)a (52)

it is easy to see that it does not depend on the choice of o.

In case b) we have T(Q) — F*. Then the group T(Q) NT is a subgroup of
finite index in the group of units O = {eo} x {£1}, where € is a fundamental
unit. Hence

FT = T(Q) NI= {GT} X QT (53)

where er is an element of infinite order and p7 is trivial or {£1}. This element
er induces a translation on C, ;. The quotient C, ,/T'r is a circle. If we pick
any point x € C, s then [z,erx] C C,, is an interval and as above we can
find a o : [0,1] = [z,erx],0(0) = z,0(1) = erx, As before we can consider
the 1-chain 0 ® m € Cy(H) ® M. Its boundary boundary is the zero chain
{z} @ m — {epz} @ m. If we look at the images in Co(I'"\H, M) then

O(c@m)=0(0)®(m—erm) =1 ® (m — erm) (5.4)

Hence we see that o ®@m is a 1 -cycle if and only if m = ezm and hence m € M7,
We have constructed homology classes

[Cr.s @m] € Hy(T\H, M,) for all m € M5 = M7 (5.5)

5.1.2 Evaluation of cuspidal classes on modular symbols

The following issue will also be discussed in greater generality and more sys-
tematically in chapter 8.2.1.

We start from a highest weight A = n~y for simplicity we assume n to be even
and d = 0. Then A = \V, we consider the two modules M and Mg\ Then we
have the pairings -

HY(D\H, M) x Hy(T\H, M,) - Z
(5.6)
HYT\H, M%) x Hy(T\H, 9(T'\H), M,) = Z

These two pairings are non degenerate if we invert 6 and divide by the torsion
on both sides. (See [book]).
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We have the surjective homomorphism H}(I'\H, ./\;lg) — H}((T\H, MbA) and
over a suitably large finite extension F//Q we have the isotypical decomposition

H ((T\H, M} ® F) = @ H!("\H, M}, ® F)(ry) (5.7)

where the 7y are absolutely irreducible. (See Theorem 5.7, of course here it
does not matter whether we work with My or MK) . We choose an embedding
t: F — C, in section 4.1.11 we constructed the isomorphism

FL(wl) : W(ns) ©r, C — H (D\H, M} @ F)(‘ny) (5-8)

The space W(my) is a very explicit space. Since we want to stick to the case

Ky=K ](CO) it is of dimension one and is generated by the element
hir’]? = HhL’O € HW(?TI,) where h;;o(e) =1 (5.9)
p P

Now we want to compute the value
< FHH(RE), Cr s @m) > . (5.10)

here we assume that the torus is split, i.e. 7, s € P}(Q). Then this expression is
problematic. The argument C;. ; on the left lives in the relative homology group,
hence the argument on the right should be in H}(I'\H, M,, ® C). Of course we
can lift the class F7} (wz)(h;ﬁ?) to a class

e~

Flwh)(hky) € H(T\H, M,, © C).

Then

< Flw! x ht?), ¢ @ m >

makes sense, but the result may depend on the lift. We have

Proposition 5.1.1. Ifd(C,. ,@m) gives the trivial class in Ho(d(T\H), M&C)

then < FHwi)(hE?),Crs @ m > does not depend on the lift, i.e. the value
< ]:11 (wi)(h;[rfo)v Crs ®m > is well defined.

Proof. This is rather clear, we refer to the systematic discussion in 6.3.11. [

Now we compute the value of the pairing. We realised the relative homol-
ogy class by a M valued 1-chain ¢ @ m. The cohomology class F{ (w!)(h1?)

is represented by Fl(w! x h;rr’fo ). (See 4.96 ,8.4). We consider the pullback

o* (FU(w! x hjr;))), since F!(w! x h;&?) is rapidly decaying if ¢ — 0 or z — 1
this gives us a 1-form with values in My ® C on the closed interval [0, 1].
We claim - under the assumption [9(C,. s ® m)] = 0-that

1
< FL(wh(RE)), Cr s @ m >= /0 < o*(FHw! x hE0),m > . (5.11)
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We have to be a little bit careful at this point. Of course our assumption
implies that the integral class [0(C). s@m)] € Ho(O(T'\H), M) is a torsion class,
Let 6, s(m) be the order of this torsion class, hence we can write

8r.5s(m)0C,. s @ m = dc,. s with ¢, s € C1(9(T\H, My). (5.12)

This 1-chain lies in the boundary of the Borel-Serre compactification (see sec-
tion 1.2.7). We consider the special case that T is the standard split diagonal
torus, this means that {r,s} = {0,00}. We can pull the cycle 6, s(m)C, s ®
m — ¢ s into the interior I'\H by a simple homotopy, this means we replace it
by 6,(m)[iyy ", iye] ® m — 3,.(m)(yo) where yo >> 1 and 8, 5(m)(yo) is the
1-chain ¢, s on the level yg. Then

0r,s(m) < FL(WD)(RL)), Crs @ m >=< FLWI)(RLY), 6,5 (m)iyg ' iyo] @ m — ¢ s (yo) > -
(5.13)

where now the value on the right hand side is an integral over the truncated
cycle. Since the differential form F} (WD(hir,?) is rapidly decreasing if yy — oo we

get s (m) < J %(WI)(hIrfo)a Crs@m >= li_r>n <Fi (wz)(hir7?)76T73(m)[iyal7iy0]®
Yo o0
m>.

We use the above identification [0,1] = [0, 00] and our 1- chain is given by
the map

J:[O,oo]%H:tr—)((t) ?)itiGH, (5.14)

especially 0(0) = 0 and o(c0) = ¢oo. The group T(R) acts transitively on the
open part Cp jo. This action can be used to trivialize the tangent bundle. The
tangent space at ¢ € H is identified to the subspace p C g (see 4.1.11) and %
is a generator of the tangent space of Cp i at one. Using the translations by
T(R) we get an invariant vector field on Cp jo0. If we identify Cp ;00 = Rso, an
easy calculation shows that this vector field is t% = D*.

Now an easy calculation (See 8.4) shows that ( here ey is the identity element

in G(Ay))

el Qen=nm((’y rean () V) e

and our integral in the formula above becomes

> 78 0\ 1, i Hy oy [t 0O dt
[T <oy Pty 1) enms o 6
Our formulas in 4.1.11 give

WL(g) = é(%m®(X—Y®i)”ii_n_2®(X+Y®z‘)" (5.16)

this is an element in DF ® M. We apply F* to wl (1) x hi:?) and evaluate at

((é (1)) ,er). Applying F' means that we have to sum over a € Q* but since
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hi;)?) is the Whittaker function attached to the unramified spherical function
only the terms with a € Z can be non zero. Hence get

1 at 0 ~ at 0
3 (v )@ (X =Y @d)" £ ¢ af )® (X +Y ®4)"h0(a)
8 ZZ w2l ( 1) 2 (0 1)

We have seen that inﬁ((%t ?)) = 0 if at < 0 and 1/~)n+2((_(;lt (1)>) =

1;_”_2( (%t (1)>) and therefore our Fourier expansion becomes

% Zzﬁnm((%t ?)) (X -Y@i)"+i"(X+Y ®i)")hi%a)  (5.18)

pal (t; (1)>)((X Y @)X +Y ®6i)") =
(5.19)

n

Z (n)tg’—l/Xuyn—V(in-i-l/ + 7;_”)7
v

v=0

we remember that n is even, then the last factor is equal to i =*((—1)2 ¥ £ 1).
and this is 7" times 2 or 0 or -2, depending on the choices of signs and the
parity of § and v. The elements e, = X”Y" ™" form the dual basis to the basis
(n V) X" ”Y” of M)\, this implies: If we choose m = e, _, in our expression

above then

< m((tg1 ?))((X Y @i)"+i"X +Y @i)"),m>=t3"Y({"V £i )

(5.20)
and hence we have to compute
e R e 0\, n_ dt
/ Z¢n+2 ( 1>)t YR (a) (5.21)
v t 0 241 —27t :
We remember 1, 12( 01 ) = tztle , we exchange summation and
integration and after some innocent substitutions we get
‘n4-v + v o) tnfqul dt oo hir a CL%
: : / Y iy (@)a® (5.22)
8 0 (27T)"_V+1 t a?

a=1
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We refer to the discussion of the L -function attached to 7y and get

o yn—v+l gy o0 h;fr v(a)a% .
| G T e =AM mnt1-p) (5.23)
0 a=1
Of course some question concerning convergence have to be discussed, for
this we refer to the proof of Theorem 4.1.7.

In the case that v # 0,n we know that 0(Cp o ® X" ¥Y") is a torsion
element in H°(9(T'\H, M) and therefore the value of the integral is also the
evaluation of the cohomology class Fi (w!)(h1:?) on a integral homology class.
we get

Y Y

< FHw (M1, Cp oo @ XYY ™7Y) >= <

coh
o) A(mn+1-v) (5.24)
In the factor in front on the right side we have e = +1, this factor is zero unless
we have e = (—1)2 ¥ (see 4.153) and then it is simply +1.
If the class number of Op is one we defined the periods Q(ex ), (see 4.1.11)
we then know that

1 14 -
— hi0) e HY(D\H 2
Q(EXﬂ'f)J:l(we)( ﬂ'f)e ( \ 7M®OF) (5 5)
and hence we can conclude for v # 0,n
do 00(611) ;
AR 1-— o 5.26
e x 1) (myn+ v) e Op (5.26)

If the class number is not one we have to interpret Q(e x 7) as section in the
sheaf of periods and Op has to be replaced by the monoid of integral ideals in
Op. Notice that the term dg oo (e,) has only prime factors < n. We will improve
this term after the following discussion of the cases v = 0,v = n.

This argument fails for v = 0,n because 9(Cpco ® X™) =00 @ (X" —Y") is
not a torsion class in Ho(I\H, M) (See section 3.2.1). We apply the Manin-
Drinfeld principle to show that the rationality statement also holds for v = 0,n
but we will get a denominator.

We pick a prime p then we know that the class [0(Cp,.c®X™)] is an eigenclass
modulo torsion for T, i.e.

T,([0(Co .00 @ X™) = (p" T + 1)[0(Co.00 @ X™)] (5.27)

This implies that (T}, ([Co,c0 ® X™]) — (p" T +1)[(Co,00 ® X™])) is a torsion
class, hence we can apply proposition 5.1.1 and get that the value of the pairing
is equal to the integral against the modular symbol. If we exploit the adjointness
formula for the Hecke operator then we get

< Tp([Co00 ® X™]) = (0" + D[(Co,00 ® X)), Fi (] @ hED) >
= [,7(< Cooo @ X", Fi (W] @ Tp(har,)T0) > (5.28)

(P 1) < Cooo @ X™, Fl(w]) @ ((h10) >)) %
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We have T, p(h};’?) = aphir’f where a, € Op and hence we get

< Tp([Cooo ® X™]) — (0" + 1)[(Co00 ® X™]), Fl(wl @ hE0) >
(5.29)
= (ap — (P + 1)A(mp,n + 1)

It is again the Manin-Drinfeld principle that tells us that for almost all primes
p the number a, — (p" ' + 1) # 0. Let (Z(n)) be the the ideal in O generated
by these numbers. of these numbers. We will see (Theorem 5.1.2) that

(numerator({(—1 —n))) C (Z(n)) (5.30)

Ribet gives an argument in [81] that yields even equality.

Now we can conclude: Forv =0,n+1
Z(n)

coh o
er g A mn+1- 1) €O (5.31)

We want to have an estimate of the denominator ideal of
Qe x mp) AP (m,n +1—v)

for all values of v. For v = 0,v = n we have the estimate Z(n). For the
other values of v we have the Jpoo(e,), but we can do much better. No-
tice that this denominator ideal is an ideal in Op. We pick a prime p < n
which then may divide o0 (e,). We work locally at p and replace Z by Z,
the local ring at p. It follows from proposition 3.3.1 that for 0 < v < n the
torsion element [0(Co oo ® e, )) is annihilated by a sufficiently high power of
the Hecke operator 7. Hence we see that 7,""(c) can be lifted to an element

—~—

T(c) € Hl(a(f‘\ﬂ-ﬂ),/\;l"A ® Z(p)). Hence we can lift T;"(Co o ® €,)) to an
element T77*(Cp,o0 @ €))) € Hy(D\H, M} ® Z(;)). We know that
< FHwhH(rL), T (Co.0o @ €))) € Op @ Zy. (5.32)

Again we can use the adjointness property of T}, and we get

m , 7Tf(jj )m co
7y (Tp)™ < Fll(wi)(hjr;)v (Coo ®ey))) >= Q(TPW)A Mmn+1—v)€Op ®Zg)

(5.33)

We consider the ideal n(p, v, 7s) = (d0,00(€v), 75 (1Tp)™) C OF ® Z(y,). This ideal
may be much larger than (do,oc (€,). We put n(v,7¢) =[], n(p, v, 7¢) for v # 0,n
and for convenience n(n) = n(0) = Z(n)

Then we get the final result:

Theorem 5.1.1. For any m¢ which occurs in (5.7) and any v =0...n the ideal

n(V7 7Tf) coh Tn — v
Aer o (m,n+1— 1)) (5.34)

is an integral ideal in Op. The primes p dividing n(v,7y) a lie over primes p < n.
Furthermore these primes are not ordinary for my, i.e if p divides n(v,7y) then
m¢(Tp) =0 mod p.
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These rationality results go back to Manin and Shimura, In principle we may
say that also the integrality assertion goes back to these authors, but here we
have to take into account the fine tuning of the periods. (Deligne conjecture?
Later if we speak about motives)

It is clear that this compatible with the action of the Galois group Gal(F/Q),
for o € Gal(F/Q) we have

1

1
U(Q(e X Tf)

coh _ _
A (mn+1—-v)) 7@(6)(7’[']")

A (T n+1—v))  (5.35)
There is still a slightly different way to look at the theorem above. For each
choice of € = + we can look at the array of numbers

(AP (m,n+1—v)),... (5.36)

}V:O,...n;(fl)%fuze
Since we may assume that n > 10 it is easy to see that not all of the entries
entries can be zero, hence we can project the arrays to a point A(e, 7y) in the
projective space P4en) (C). Then a slightly weakened form of our results asserts

Ale,mp) € PUE(F) = PUm(Op) and o(A(e, 7)) = A(a(e,75)))  (5.37)

In this formulation we do not see the period. But now we can fix the period
as a section in the period sheaf: We require that the arrays of ideals

11(1/, 7Tf)

coh .
Q(exwf)A (myn+1—-v),...}

L. (5.38)

u:O,...n;(fl)%fl':e

is an ideal of integral and coprime ideals. This period is not necessarily equal
to our period we defined earlier, but they may only differ at primes p dividing
‘ﬂ(l/, 7Tf).

We pay so much attention to the careful choice of the periods because we
conjecture that the factorisation of the numbers gr2"tx ((:Xﬁff)ACOh(ﬂ n+1-v)) has
influence on the structure of the integral cohomology of some other groups. We
expect that prime ideals p C O which divide an ideal & - ((”X“ff)ACOh(W n+1-v))
will also divide the denominator of an Eisenstein class on the symplectic group.
A prototype of such an assertion has been discussed in [42]. We will resume this

discussion in section 8.3.5.

In the following section we discuss another ( simpler ) example,, where we
see the relationship between divisibility of certain L-values and denominators
of Eisenstein classes.

5.1.3 Evaluation of Eisenstein classes on capped modular
symbols

In the following we consider cohomology with coefficients in M,,. We have seen

that

H'(P\H, M3 ® Q) = H} ([\H, M} ® Q) ® QEis, (5.39)
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where Eis,, is defined by the two conditions
r(Eis,) = [Y"] and T, (Eis,) = (p"** + 1)Eis,, (5.40)

for all Hecke operators T}, in our special situation it suffices to check the second
condition for p = 2. In section 7?7 we raised the question to determine the
denominator of the class Eis,, i.e. we want to determine the smallest integer
A(n) > 0 such that A(n)Eis, becomes an integral class.

To achieve this goal we compute the evaluation of Eis, on the first homology
group, i.e we compute the value < ¢, Eis, > for ¢ € H;(I'\H, M, ). We have the
exact sequence

Hy (0(P\H), M) — Hy (T\H, M,) — Hy(D\H, d(T\H), M, ) — Hy(8(T\H), M,)

(5.41)

It follows from the construction of Eis, that < ¢, Eis,, >€ Z for all the elements
the image of j. Therefore we only have to compute the values < ¢,,Eis, >,
where ¢, are lifts of a system of generators {c,} of ker(¢).

In our special case the elements Cj o ® e,, where v =0,1...,n form a set
of generators of Hy(T'\H, 9(T'\H), M ). (Diploma thesis Gebertz). We observe:

The boundary of the element Cp oo ® €, (= £Co.oo @ €y) is an element of
infinite order in H°(O(T\H), MbA)’

The boundary of an elements Cp oo ® ¢ with 0 < v < n are torsion elements
in HO(9(I'\H), M?), This implies
Proposition 5.1.2. The elements Cy @ m € Hy(I'\H, 0(I'\H), ./\;lg) with
0(Co,00 ® m) =0 are of the form

CZCO’OO(X)(

v=n-—1
aye)); witha, €7

—

v

Now it seems to be tempting to choose for our generators above the Cj o ®e,/,
but this is not possible because for §(Cp o ®e,/) is not necessarily zero, it is only
a torsion element. So we see that it is not clear how to find a suitable system
of generators.

To overcome this difficulty we use the Hecke operators. If we want to de-
termine the denominator A(n) we can localize, i.e. for each prime p we have
to determine the highest power p®(™P) which divides A(n). As usual we write
d(n,p) = ordy(A(n)). We replace the ring Z by its localization Z,) and re-
place all our cohomology and homology groups by he localized groups. In other
words we have to check we have to find a set of generators {...,é, ...}, C
Hy(9(D\H), M5, @ Zp) and compute the denominator < é,, Eis, >€ Z).

It follows from proposition 3.3.1 that for 0 < v < n the torsion element
d(c) = 0(Co.oo @ (/="' a,eY)) is annihilated by a sufficiently high power of

v=1
the Hecke operator 7" and hence we see that 7" (c) can be lifted to an element

—_~—

T (c) € Hy(O(T\H), M ® Z(,)). Now

—_~—

m : o m . _ n+1 m :
<Ty(c), Eis, >=< ¢, T,"( Eis,) >= (p""" +1)" < ¢, Eis, > (5.42)
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—~

and hence ord,(< T} (c), Eis, >) = ord,(< ¢, Eis, >). Hence we get

Proposition 5.1.3. If v runs from 1 ton —1 and if T;*(Co,c @ €) is any lift
of T (ey) then

d(n,p) = — min(min( ord,(< T];"(C/’O—’:QO ey), Bis, >)),0)

Proof. This is now obvious. O

5.1.4 The capped modular symbol

Therefore we have to compute < 7"(Co o ® €,), Eis, >). At this point some
meditation is in order. Our cohomology class FEis, is represented by a closed
differential form Eis(w,) (See (??7)) and this differential form lives on I'\H
a hence provides a cohomology class in T'\H. But we know that the inclusion
provides an isomorphism

HY(T\H, M%) — H*(T\H, M})

and since T (Co 00 ® €,) € Hy(I'\H, M, ) we can evaluate the cohomology class

Eis(wn) on the cycle. But we want get this value < 7" (Co o0 ® €,), Eis, > by
integration of the differential form against the cycle. This is problematic because
the cycle has non trivial support in J(I'\H), and on this circle at infinity the
differential form is not really defined.

There are certainly several ways out of this dilemma. The Borel-Serre bound-

ary is a circle I'oo\R where I'no = {£Id} x {72} and T = <(1) 1) The cycle

is the sum of two 1-chains:
T;"(C/o,\oo/@) ey) = Cooo @My, + [i00, Taoioo] @ P,
(recall definition of Borel-Serre construction from earlier chapters) where
0(Cooo ®@my) =00® (My —wmy) +00® (1 —Teo)P, =0

—_~—

One possibility is to deform the cycle T;"(Cp o ® €,) and "pull” it into the

0 1
RZ, to H to a map from [0, o0] — H. We choose a sufficiently large tq € RZ,
and restrict Cp oo to [tal, to] we get the one chain Cj  (to) @ m,. The boundary
of this 1-chain is 9(Co,c0(to) @ my,) = to ® (M, — wm,, ). Now we can do at this
level the same thing as what we do at infinity we get a 1-cycle

. . . . . t .
interior I'\H. Recall that Cy  is the continuous extension of ¢ — ( 0) 1 from

CO,oo(tO) Qmy, = CO,oo(tO) @ my + [t07 TootO] ® P,

This 1-cycle clearly defines the same class as T"(Cp o ® €,) and since it is a
cycle in C1(T'\H, M) we get

—_~—

< T];”(C(),oo ®e,), Eis, >= Eis,, (5.43)

/Co,oo(to)®mu+[t07Tto]®Pu
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The value of this integral does not depend on ty and we check easily that for

both summands the limit for ¢y — oo exists. We find that

—_~—

< T;;W(C(]’oo ® 6},/)7 Eis(wn) >=

1
I < T (Co,00 @ ey), Eis, > a4 tlim < [ito,ito + ] @ P, Eis,, > dz

0 00— 00 0
(5.44)

For the first integral we have
> m v . dt n+1lym > 4 i dt
< T (Come ®ey), ElSn>?=(1+p ) < Cpoo®e,, ElSn>7
0 0

and (handwritten notes page 49)

((=v)¢(v=n)

Ty (5.45)

/ < Co.0o ®e), Eis, > a _
O ’ t
remember this holds for 0 < v < n.

For the second term we have to observe that it depends on the choice of
P,. We can replace P, by P, +V where VI = V. (This means of course that
V =aX") Then [V] € H°((I'\H), M) and

1 1

lim < [itg,ito+x]®(P,+V), Eis, > dx = lim < [itg,ito+x]@P,, Eis, > dz+ < V,w, > .

to—00 0 to—00 0

Therefore the second term is only defined up to a number in Z,) but this is ok
because we are interested in the p-denominator in (5.44).

We have to evaluate the expression < [itg, ito+ 2| ® (P, + V), Eis,, > . Using
the formula (8.4) we find

< [ito, ity + 2] ® (P, + V), Bis, >=< (tg gf) Py, EiS(wn)(E”((t(;) f) ”

(5.46)

We know that for ¢ty >> 1 the Eisenstein series is approximated by its constant
term, i.e.

Eis(w,) (B, )( <t§ f)) = 13"V + O(e 1) (5.47)

On the other hand we can write P, (X,Y) = Zp,(f)X"_“Y“ with pLV) € Z.
Then

t V) wvn
(8 "’1”) P, =tpl) X" 4. (5.48)

and

<(§ e mseaEa(§ D)=l voen G
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and hence we see that the limit exists and we get

1
lim | < it ity + 2] ® (P, + V), Eis, > dao =p{”) = P,(1,0)  (5.50)

to—o0 0
and hence we have the final formula

< Ty (Coe @ ), Eis, >= W

Therefore we have to compute P, (1,0) mod Z,). Recall that for any v, v #
0,n we have to choose a very large m > 0 such that the zero chain 7" (e, ) is
homologous to

+ Py(l, O) mod Z(p). (551)

Tm(eu) ~ {OO} ®L,= {OO} ® (1 - T)QV (5'52)

p

with @, € M,,. Then we find P, = Q, £ Qpny1—0-
Hence we have to compute T;”(el,). A straightforward but lengthy compu-
tation yields

Z(p) if(p—l)*y-i-l
1

p:?i + Z(p) else

Q.(1,0) € { (5.53)

Now we are ready to compute d(n,p) , it is the maximum over all v

C(_V)C(V - n) + (QU(17 0) + Qn—u(L O)) mod Z(p)).

d(n,p,v) = — ordp(w .
5.5

We analyse this expression. We exploit the old theorems of Kummer and
of von Staudt-Clausen. For an odd positive integer m the number ((—m) is a
rational number. The theorem of von Staudt-Clausen asserts

{q7mez@ ifp—1//m+1

¢(—m) + pmﬁ € Zp) ifp—1m+1 (5.55)
p—1

We distinguish cases.

I) We have (p — 1) fn+2, then ord,(¢(—1—n)) = ord,(Numerator{(—1—
n)), and p — 1 can divide at most one of the two numbers v +1orn+1—v.

Ta) Let us assume it divides neither of them. Then in (5.54)

d(n,p,v) = — ordp((C(=¥)C(v = n)) + ordp(¢((~1 —n)) (5.56)

a—1

Ib) Alternatively we assume that p — 1|v + 1 we write v + 1 = p®~ iy,
with p®~1||v + 1. Then the p-denominator of ((—v) is p® and v —n = —n — 1
mod (p — 1)p®~t. The Kummer congruences imply

C(v—n)=C((-n—1)+p*Z(v,n); with Z(v,n) € Z, (5.57)
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and then mod Z(p)

S 4 (Qu(1,0) + Qny(1,0)) =
(5.58)

C(=)(1+p* 241 + Qu(1,0) = ((—w)p Ak
This implies that
d(n,p,v) = ord,(Numerator(¢(—1 —n)) — ord,(Z(v,n),

the factor in front is a unit.

IT) We have p — 1jn + 2. Then p does not divide Numerator({(—1 — n))
and hence we have to prove d(n,p,v) = 0 for all v. This is obvious if p —
1 does not divide nu + 1 and hence also does not divide n + 1 — v.

Therefore assume p — 1|v + 1. We write v+ 1= (p— D)ap®tn+1—-v =
(p — V)yp®~! with @ > 0,b > 0 and z,y prime to p. We assume a < b and
compute

C(1—(p—Dap* 1)1 = (p—Dyp*")
C(1—(p—1)pr=Y(x + ypb~))

For a value ((1 —m) with p — 1|m we write m = (p — 1)xp*~! with (z,p) = 1.
We apply again the von Staudt-Clausen theorem
1
Cl=m)=C1—(p—Dap' = o + Z(x) where Z(x) € Z)

In our case this gives -let us assume a < b - for our expression above

—Gpr 2@~ + Z() (@ +yp" ) (5 + 0" Z(2)) (5 + Z())

*m + Z(z +ypb=a) 1 +p*(x + yp*=*) Z(x + p>—y)
(5.60)

The denominator is a unit, we need to know it modulo p®, the numerator is a
sum of eight terms we can forget all the terms in Z,). Then the above expression
simplifies

i 1 pa—sz(I)

w e T (5.61)
1+ paZ(z +yp*=*)

1

We want this to be equal to ﬁ Hence we have to verify the equality

Tp®”
1 1 p*~lxZ(z) 1 1 b
-+ 4 = (= 4+ 14 p*zZ(z+yp’~* 5.62
L (R R ER I S Y

and this comes down to

7 7 b—a
a=v? y(x) _ b ?Z@ ) —Z/yp ) mmod 2, (5.63)

p
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and this means
Z(x)=Z(x +yp"*) mod p*~*

and this congruence is easy to verify.
Basically the same argument works if « = b. Then it can happen that x4y =
0 mod p. Then we have to write z + y = p°2. Then (5.60) changes into

(—r + Z@)(—55 + Z() 2L+ 9 2(2)) (5 + Z(y))
7ﬁ +Z(2)) T 1+ patezZ(z) . (5.64)

We ignore the denominator then the only non integral term is

(z+ )1 1 1 1
€T —_ =
Y ryp*  xp®  yp®

We see that in case p — 1 | n + 2 the prime p does not divide the numerator
of ((—1 — n) and that the prime p does not divide the denominator A(n).

If p—1 fn+ 2 then p must be an irregular prime. We look at the maxi-
mal value of d(n,p,v) in (5.54), this means we look for the minimum value of
ord,((((=v)¢(v —n)) for v = 1,3,... 5. We claim that this minimum value
is actually equal to zero. Now it is extremely likely that this is true, because
simply too many random integers have to be divisible by p. But as always it is
not easy to prove.

For our given prime p the index of irregularity of p is the number of even
numbers k with 2 < k < p — 3 such that p|¢(1 — k) = %, it is denoted by i(p).
Probabilistic considerations suggest that i(p) = O(log(p)/loglog(p)), but this
can not be proved at the present time. (Again a Wieferich dilemma). Therefore
it seems to be very plausible that always i(p) < %. Then not all of the %
numbers {(—v)((v —n) can be divisible by p. The above assertion that i(p) < %
is certainly true for all primes p < 163577833. (See [14]). In the same paper
the authors assert that for the the above set of primes the largest the index of
irregularity i(p) < 7 and (32012327) = 7.

There is a way out of this dilemma. In his paper [15] L. Carlitz proves a
very crude estimate for the index of irregularity. This estimate says that

p+3 log(2)p—1
4 log(p) 4

i(p) < (5.65)

and this implies that i(p) < % — 2 provided p > 100.

If we now assume assume n > p then we see that not all the % numbers

¢(=v)¢(v —n) can be divisible by p and hence we proved d(n, p) = ord,(¢(—1—
n) and hence the theorem below under this assumption.

denomEis

Theorem 5.1.2. IfI" = Sk(Z) then the denominator of the Eisenstein class in
HY(T\H, M&) is the numerator of {(—1 —n).
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Proof. We have to remove the assumption p < n. We use Hida’s method of
p-adic interpolation, we refer to the approach in [41]. In section 3.3.11 we
explain how the fact p°||A(n) is reflected in the structure of the Hecke-module
H (T\H, M} ® Z/p°Z). In [41] we prove that we have an isomorphism of
Hecke modules
H opq (C\HL M3, @ Z/pZ) = H g (P\HL M}, ® Z/p°Z)

provided we have A = X mod p° i.e. n =n' mod p’. Hence we can replace n
by an n’ > p and apply the previous argument. O

I slightly weaker version of this theorem has been proved by Haberland in
[31]. Somewhat later C. Kaiser proved a more general version in his Diploma
thesis and in about the same time the theorem was proved in my class.

This theorem is a paradigm for a much larger assemble of statements, which
are still mostly conjectural. Roughly my general expectation is that there is
a connection between the prime factorisation of certain special values of L-
functions and denominators of Eisenstein classes. Examples for these conjectural
statements will be discussed in Chapter 9.

Of course we can generalise the above theorem if we pass to congruence
subgroups of Gly(Z), then the special values of the (— function have to be
replaced by special values of Dirichlet L functions.

Another generalisation where the above method might lead to some success
is the case of Hilbert modular varieties, i.e. G/Q = Rp/g(Gl2/F) and F/Q a
totally real field.

The Deligne-Eichler-Shimura theorem

In this section the material is not presented in a satisfactory form. One reason is
that it this point we should start using the language of adeles, but there are also
other drawbacks. So in a final version of these notes this section will probably
be removed.

Begin of probably removed section

In this section I try to explain very briefly some results which are specific
for Gly and a few other low dimensional algebraic groups. These results con-
cern representations of the Galois group Gal(Q/Q) which can be attached to
irreducible constituents Il in the cohomology. These results are very deep and
reaching a better understanding and more general versions of these results is
a fundamental task of the subject treated in these notes. The first cases have
been tackled by Eichler and Shimura, then Thara made some contributions and
finally Deligne proved a general result for Gly/Q.

We start from the group G = Gly/Q, this is now only a reductive group
and its centre is isomorphic to G,,/Q. Its group of real points is Glo(R) and
the centre G,,(R) considered as a topological group has two components, the
connected component of the identity is G,,(R)(®) = RX,. Now we enlarge the
maximal compact connected subgroup SO(2) C Glz(R) to the group Ko, =
SO(2) - G, (R)(©). The resulting symmetric space X = Gly(R)/K is now a
union of a upper and a lower half plane: We write X =H,; U H_.
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We choose a positive integer N > 2 and consider the congruence subgroup
I'(N) C Gl2(Q)). We modify our symmetric space: This modification may look
a little bit artificial at this point, it will be justified in the next chapter and is
in fact very natural (see section ?? .At this point I want to avoid to use the
language of adeles.)

We replace the symmetric space by

X = (H; UH_) x Gly(Z/NZ).

On this space we have an action of ' = Gly(Z), on the second factor it
acts via the homomorphism Gly(Z) — Glz2(Z/NZ) by translations from the left.
Again we look at the quotient of this space by the action of Gla(Z). This quotient
space will have several connected components. The group Gly(Z) contains the
group Sly(Z) as a subgroup of index two, because the determinant of an element

is =1. The element ((1) _01) interchanges the upper and the lower half plane

and hence we see
GL(Z)\X = GL(Z)\((H, UH_) x Gly(Z/NZ)) = Slo(Z)\(H, x Clo(Z/NZ)),

the connected components of (H; x Glz(Z/NZ)) are indexed by elements g €
Gl2(Z/NZ). The stabilizer of such a component is the full congruence subgroup

F(N):{y:(ccl Z) la,d=1 mod N,b,c=0 mod N}

this group is torsion free because we assumed N > 2.

The image of the natural homomorphism Slp(Z) — Glz2(Z/NZ) is the sub-
group Sly(Z/N7Z) (strong approximation), therefore the quotient is by this sub-
group is (Z/NZ)*.

We choose as system of representatives for the determinant the matrices

tg = <g (1)> ,a € (Z/NZ)*. The stabiliser of then we get an isomorphism

Sy = GL(Z)\(H x Gl5(Z/NZ)) = (T(N)\H) x (Z/NZ)*.

We consider the cohomology groups H2 (Sy, M,,), H*(Sy, M,,), H*(0Sn, M,,),
again we have the fundamental long exact sequence and we define H? (S, Mn)
as before.

To any prime p, which does not divide IV we can again attach Hecke opera-
tors. Again we can attach Hecke operators

_ p" 0
Tpv‘ = T (O 1) , U pT. 0
0 1

these to the double cosets and using strong approximation we can prove the
recursion formulae ( for this and the following see the next chapter 6). We
define H,, := Z[T,]. We also have a Hecke algebra #, for the primes p|N, but
this will not be commutative.anymore. We get an action of a larger Hecke

algebra
large !
Hy'® = (X) Hyp.
P
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We apply 3.1.1 and find a finite normal extension F'/Q such that we get an
isotypical decomposition

H? (Sy, My, @ F) = @@ H? (Sn, My @ F)(ry) (5.66)

where 7y = ®'7m, and the 7, are isomorphism types of absolutely irreducible
‘H, modules. For p /N this #,-module is a one dimensional F-vector space
Hy, = F' and m, is simply a homomorphism 7, : H, — Op. If p|N then the H,
module is F¥™») with d(m,) > 1 and the theory of semi-simple algebras tells us
that the map H, — Endp(H,,) is surjective. Hence we know the isomorphism
type 7, once we know the two sided ideal I(m,) of this map.

Now we have some input from the theory of automorphic forms

Theorem 5.1.3. The isomorphism type wy is determined by its restriction to
the central subalgebra @y nH,. Under the action of the group mo(Gla(R)) =
{1} decomposes into two eigenspaces

HY (Sy, My ® F)(m5) = HY (Sn, M @ F) 4 (mf) @ HY (Sy, My @ F)_(7y)
(5.67)

and these two eigenspaces are absolutely irreducible of type w¢. (These assertions
are summarised under ”strong multiplicity one”)

Of course we have the action of the Galoisgroup Gal(F/Q) on the cohomol-
ogy groups H?(Sny, M,, ® F) and it is clear that this induces an action on the
isomorphism types 7y. For 0 € Gal(F/Q) we have

o(H? (Sn, My @ F)(14)) = H? (Sn, My, @ F)(o(my)). (5.68)

I want to discuss some applications.
A) To any isotypical component 7 we can attach an ( so called automorphic)
L function

L(my,s HL Tp, S

where for p JN we define

1
1 — Amp)p=* + p"Hlw(my) (p)p=2°

L(?Tp, 3) =

and for p|N we have

- L — if m, is a Steinberg module
L(Trpa 3) = {lp +1‘*1)(Hf)(p)l7 elszp )

This L-function, which is defined as an infinite product is holomorphic for
R(s) >> 0 it can written as the Mellin transform of a holomorphic cusp form
F of weight n + 2 and this implies that
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has a holomorphic continuation into the entire complex plane and satisfies a
funtional equation

Ay, s) = W(mp)(N(mp)) " "2 A(mp,m 42— s)

Here W (IIy) is the so called root number, it can be computed from the m,
where p|N, its value is £1, the number N(7;) is the conductor of 7y it is a
positive integer, whose prime factors are contained in the set of prime divisors
of N.

Now we exploit the fact, that the the disjoint union of Riemann surfaces
P(N)\X is in fact the space of complex points of the moduli scheme My —
Spec(Z[1/N]). This has been explained at several places in the literature. I
refer to the second edition of my book [39] section 5.2.5 where I try to explain
that the functor schemes S — Spec(Z[1/N]) to elliptic curves over S with
N-level structure is representable, provided N > 3, More precisely we have
a smooth quasiprojective scheme My — Spec(Z[1/N]) with one dimensional
fibers and we have the universal elliptic curve with N level structure

&; {617 62}
I (5.69)
My

where e; : My — & are sections which yield a pair of generators of the group
of N-division points. The group Gly(Z/NZ) acts on the group of N-division
points, this gives an action of Gla(Z/NZ) on My. We can define the moduli
stack M7 — Spec(Z) of elliptic curves without level structure. For any N > 3
we have M; x Spec(Z[+]) = My /Gl (Z/NZ).

On & we have the constant f-adic sheaf Z,. For i = 0,1,2 we can consider
the (- adic sheaves Rim,(Z;) on My. We have the spectral sequence

HP(My x Q, R'm,(Zy)) = H™(E x Q, Zy).

We can take the fibered product of the universal elliptic curve
g(n) :gXMN(‘:X~-~ XMN(‘;'&MN
where n is the number of factors. This gives us a more general spectral sequence

Hp(MN X Q,Ran\L*(Z@)) = Hn(g(n) X Q,Zg).

The stalk Ry «(Zs), ) of the sheaf Ri7my .(Z;) in a geometric point y of

My is the g-th cohomology H? (Sén),Zg) and this can be computed using the
Kuenneth formula

HUEM, Zy) = @ H™(Ey,Zo) @ H™(Ey, L) - -+ @ H (€, L),

a1,a2...,0n

where the a; = 0, 1,2 and sum up to q. We have H°(E,,Z,) = Z¢(0), H*(&,, Z¢) =
Z¢(—1) and the most interesting factor is H'(€,,Z¢) which is a free Z, module
af rank 2.
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This tells us that the sheaf decomposes into a direct sum according to the
type of Kuenneth summands. We also have an action of the symmetric group
S,, which is obtained from the permutations of the factors in £ which also
permutes the Kuenneth summands. We are mainly interested in the case ¢ = n
and then we have the special summand where a; = as--- = a, = 1. This
summand is invariant under S, and contains a summand on which S5,, acts
by the signature character o : S, — {£1}. This defines a unique subsheaf
R (Z¢)(0) C R"7y n(Zg) and hence we get an inclusion

HY(My x Q, R"Tu n(Zg)(0) — H"(EM x Q,Zy) (5.70)

and we can do the same thing for the cohomology with compact supports.

Now I claim that

A) The restriction of the etale sheaf R"my ,,(Z)(0) on My x C to the topo-
logical space Sy = My (C) is isomorphic to M,, ® Zy. Then the comparison
theorem gives us

HY(Mn(C),M,, ® Z¢) — H"(My x Q, R"7,..n(Z¢)(0))

B) The Hecke operators T,, for p [N are coming from algebraic correspon-
dences T, C M x My and induce endomorphisms T, : H'(My®Q, R, »(Z¢)(0)) —
HY(Myx ® Q, R*yn(Z¢)(0)) which commute with the action of Gal(Q/Q) on
the cohomology.

This gives us the structure of a Gal(Q/Q) x Hr on H'(My(C), M,, @ Zy).

C) The operation of the Galois group on H'(My(C), M,,®Zy) is unramified
outside N and £ therefore we have the conjugacy class <I>g1 for allp /N as
endomorphism of H*(My(C), M,, @ Qy).

We choose our normal extension F//Q and a prime [ above £. Then an iso-
typical component H'(My (C), M, @ Fi)(ry) is a Galois module. Let H, be a
vector space over I’ which is an irreducible Hr module which is of isomorphism
type mg. Then W(ny) = Homy (Hn, ® Ei, H' (My(C), M, ® F9 is a Galois
module which is unramified outside N and /¢

We now apply our theorem 2 to the cohomology H{'(My(C), M, ® Z,), as a
module under this large Hecke algebra. Then the isotypical summands will be
invariant under the Galois group.

Theorem 5.1.4. (Deligne) For all primes p [N,p # £

(@, [W () = Almy), det(®, W (7)) = p™* () ()

This theorem is much deeper than the previous ones. The assertion a) fol-
lows from the theory of automorphic forms on Gly and b) requires some tools
from algebraic geometry. We have to consider the reduction My x Spec(F))
and to look at the reduction of the Hecke operator 7}, modulo p. I will resume
this discussion in Chap. V.

We conclude by giving a few applications.



206 CHAPTER 5. APPLICATION TO NUMBER THEORY

A) is a function on the upper half plane H = {2|S(z) > 0} and it satisfies

az+b
A
(cz +d
and this means that it is a modular form of weight 12. Since it goes to zero
if z =1y — oo it is even a modular cusp form.
For such a modular cusp form we can define the Hecke L-function

) = (cz + d)*A(2)

T Apie @ D) () T(s) 1
L(A,s) _/0 A(iy)y y = (27)* ; ns (271-)5 1;[ 1—7r(p)p— T pli-2s

the product expansion has been discovered by Ramanujan and has been proved
by Mordell and Hecke.
Now it is in any textbook on modular forms that the transformation rule

1
A(==) = 212A(2)
z
implies that L(A, s) defines a holomorphic function in the entire s plane and
satisfies the functional equation

L(A,s) = (=1)'¥2L(A,12 — s) = L(A,12 — s).

This function L(A, s) is the prototype of an automorphic L-function. The
above theorem shows that it is equal to a ”motivic” L-function. We gave some
vague explanations of what this possibly means: We can interpret the projective
system (M /€M), as the /—adic realization of a motive:

M =Sym"(R(r: & = 9))

(All this is a translation of Deligne‘s reasoning into a more sophisticated
language.)

It is a general hope that “motivic” L-functions L(M, s) have nice properties
as functions in the variable s (meromorphicity, control of the poles, functional
equation). So far the only cases, in which one could prove such nice properties
are cases where one could identify the "motivic” L-function to an automorphic
L function. The greatest success of this strategy is Wiles* proof of the Shimura-
Taniyama-Weil conjecture, but also the Riemann (-function is a motivic L—
function and Riemann‘s proof of the functional equation follows exactly this
strategy.

B) But we also have a flow of information in the opposite direction. In 1973
Deligne proved the Weil conjectures, which in this case say that the two roots
of the quadratic equation

22 —7r(p)r+p =0

have absolute value p''/2, i.e. they have the same absolute value. This implies

the famous Ramanujan- conjecture

7(p) < 2p''/?
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and for more than 50 years this has been a brain-teaser for mathematicians
working in the field of modular forms.
End of probably removed section

2.2.5 The /(-adic Galois representation in the first non trivial case
Again we consider the module M = M;¢[—10]. We choose a prime ¢ and for
some reason let us assume ¢ > 7. Then we can consider the cohomology groups

HY(T\H, M /" M)
and the projective limit

H (T\H,M ® Z;) = lim A (T\H, M/ M).

We can define etale torsion sheaves (M /£"M).; on the stack M; and we
know that

Helt(Ml X Spec(Z) @v (M/gn/\;l)fit) ; HI(F\H,M/ERM)

On the etale cohomology groups we have an action of the Galois group hence
we get an action

pi" Gal(Q/Q) — GI(H(T\H, (M /" M).;)). (5.71)

From Galois theory we get a finite normal extension K é") /Q which is defined
by Gal(@/Ké")) = ker(p(™). The representation pén) is unramified outside ¢,
and this means that the finite extension K 5") /Q is unramified outside .

From the fundamental exact sequence we get a diagram

<— O

HO(H(D\H), M ® Z;)

<—

0 —» HND\H,M®Z)

<—

0 - HTHMZ,) —HT\HMZ) — HY C\H),MZ) — 0

O <

(5.72)

the vertical and the horizontal sequence are exact sequences of Heckex Galois
modules. Here we may replace Z; by Z/¢"7Z. We computed these Hecke mod-
ules in section 3.3.4, the cohomology H'(T'\H, M & Z;) is free of rank 3 and
H'(9(T'\H), M ® Zy) is free of rank one. We get the two Galois modules

pr: Gal(Q/Q) — GIHNI\H, M ® Z;)), and py : Gal(Q/Q) — Gl(Zg)- )
5.73
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The (-adic Tate character oy : Gal(Q/Q) — Z is defined by the rule: For all
o € Gal(Q/Q) and all £"-th roots of unity ¢ € Q we have ¢(¢) = ¢*¢(?). Then
it is not difficult to see ( or well known ) that psp = aj'. The representation
po is the {— adic realisation of the Tate-motive Z(—11). (For a slightly more
precise explanation I refer to MixMot.pdf on my home-page). On Z¢(—1) =
H?(P' x Q,Z) the Galois group acts by the Tate-character ay

For the representation p; the above theorem of Deligne gives

det(Id — p(®@, ")t H! (T\H,M & Z;)) = 1 — 7(p)t + p''¢* (5.74)

We also have det(p(c)) = «}'(0) and we can ask what is the image of
Gal(Q/Q) in GI(H(T"\H, M ® Z;) = Gly(Z). This question is discussed in
[99]. If £ # 691 then the Hecke algebra induces a splitting (Manin-Drinfeld
principle)

HY(T\H, M ® Z;) = H(T\H, M ® Z)) & Z, (5.75)

where T}, acts by multiplication by p'! + 1 on the second summand.
Now Swinnerton-Dyer shows in [99] that for ¢ # 23,691 the image of the
Galois group under p is as large possible, it is the inverse image of (IF;)11

From now on we choose ¢ = 691 and our coefficient system M. Then we
get a diagram of Hecke modules

0

!
HO(H(I\H), M ® Z/{Z.)

!

0 — HND\H,M® Z/IZ)
!

0 — HO\HMeZ/MHZ) — H (T\H,MQZ/IZ) — HYI\H), M QZ/IZ) — 0
!
0

(5.76)

We learned in the probably removed section that we have an action of Gal(Q/Q)
on this diagram and this action of the Galois group commutes with the action of
the Hecke algebra. The two modules HO(9(I'\H), M ® Z/¢Z), H' (d(T\H), M ®
Z/lZ) are isomorphic to Z/¢Z and a Hecke operator T}, acts by the eigenvalue
p''4+1 mod ¢. The module H(T'\H, M ®Z/{Z) = Z/¢Z® Z/{Z and the Hecke
operator acts by the eigenvalue 7(p).

The Galois group acts on H(O(I\H), M ® Z/(Z), resp.H'(O(T\H), M &
Z/UZ) by o resp. a; ', here ay is the reduction of the Tate character mod ¢.
We also know that we have the inclusion of Galois modules

j: ZJ0Z(—11) — H}(D\H, M ® Z/{Z), (5.77)

We want to understand the two Galois modules H!(D\H, M®Z/(Z) and H'(I'\H, M®
Z/UZ), There is perfect pairing with values in Z/¢Z(—11) between them, hence
we have to study only one of them say H'(I'\H, M ® Z/{Z),
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From the above considerations it follows that we have ia basis 1,9, e—1 of
this module such that a o € Gal(Q/Q) acts by the matrix

ap(0)™ upa(o)  uiz(o)
plo) = 0 1 uzs(o € B(Z/¢7) (5.78)
0 0 ag(o)*u

We want to describe the image of the Galois group in B(Z/¢Z). Let T (Z/(Z)
be the torus

S O o+

0 0
1 0|:tez/ez” (5.79)
0 t

and let U(Z/¢Z) be the unipotent radical in B(Z/¢Z). Then I claim
Theorem 5.1.5. The image of the Galois group is T (Z/Z) x U(Z/V7Z)

Here are arguments why this must be the case.

The quotient B(Z/0Z)/U(Z/IZ) = T™M (Z/¢Z) and the resulting map Gal(Q/Q) —
T (Z/0Z) is surjective. Then it becomes clear that it suffices to show that for
any pair i, jj of indices we have to find a ¢ € Gal(Q/Q) such that u; j(o) # 0.
Now we apply the congruence relation which says that for any p we have

p(®p)? = Tpp(®y) +p''Id = 0. (5.80)

and if we are courageous enough to compute with 3 x 3 > matrices for o = ¢,
we find

0 0 wa(®p)ugs(®y) + (=14 p')us(®y) — p'Ht®
0 0 0.  (5.81)
0 0 0

Hence the right upper entry must be zero. If p = 1 mod 691 this means that
u12( P, )uz3(P,)—tP) = 0 and this implies: If £ # 0 then uy2(®,) and ugs(P,) #
0. But we have seen that for p =1 mod 691 that t(?) = 0 implies the stronger
congruence 7(p) = p*'+1 mod 6912. But now the prime p; = 6911 is congruent
to 1 mod 691 but 7(p;) is not congruent to 6911 + 1 modulo 6912. Hence
u12(®p,) # 0,u23(Pp,) # 0. But then also uyz(®,, ) or ugs(®2 ) is no zero.

The claim follows.

By definition K él) /Q is the normal extension of Q such that
Gal(KY /Q) = TW(z/02) x U(Z/¢Z) := BV(Z/07), (5.82)

this extension is unramified outside ¢. It contains the field of ¢-th roots of
unity, i.e. Q(¢) C K. The Galois group Gal(K\"/Q((s)) = U(Z/Z). This
group has a center Uy3(Z/lZ) = Z/VZ, this is also the center of the larger group
Gal(Kél))/Q). We define the subfield Klgl’o) by requiring that Gal(Kél’O)/@) =
Gal(Klgl)/Q(Q))/Ulg(Z/EZ). Then Kél’o)/Q) is the composite of two cyclic

extensions Klgl’!)/(@((g) and Kél’a)/(@(@). These two extensions have the faithful
two dimensional representations
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pr: Gal(K{"" /Q) — GI(H}(T\H, M ® Z,/(Z))
o5 pi(o) = (é ajfjg‘i)n)
(5.83)
po: Gal(KM? Q) — GI(HY(T\H, M ® Z,/(Z) 7./ ZLe; )

o ol = (24 izl

The extension K| él’!) /Q(¢,) is unramified, it is the extension which has been
constructed by Ribet in [81].

This unramified extension extension is also discussed in [46]. At the end
of that paper we raise the question for a decomposition law. This means that
for any prime p we want to find a rule to determine the conjugacy class of
p(®,), p1(®p).... This clear if p # 1 mod ¢. in this case the two conjugacy
classes p1(®p), pa(P,) are semi simple and determined by their eigenvalues. But
ifp=1 mod ¢ then p(®,) is unipotent and here are several possibilities for the
conjugacy class.

Theorem 5.1.6. If p =1 mod ¢ and if the horizontal long exact sequence of
Hecke modules (5.76) splits then p splits completely either in the field Kél’!) or
in the field K",

If p=1 mod ¢ and if the horizontal long exact sequence of Hecke modules
(5.76) does not split then both fields Kél’!)/Q(@) and the field Kél’a)/(@((g) are
inert at the primes above p.

The density of primes which satisfy p = 1 mod 691 and 7(p) = p'* + 1
mod 6912 is equal to m

For the curios reader: The first such prime is p = 3178601. We leave it as
an exercise for the reader to find out whether it splits completely in K f”’ or in
KM Tt is the 228759-th prime..

Finally we have a brief look at the action of the Galois group on H'(T'\H, M
Zy). Again we choose a basis e, eg, e_1 the element e; maps to a generator in
the boundary cohomology and eq, e_; form a basis of H}(T\H, M & Z;) we as-
sume that this basis reduces mod ¢ to the basis which we denoted by the same
letters. Then

ap(0)™t upa(o)  wuis(o)
plo) = 0 a(o) b(o) | € Gl3(Zy), (5.84)
0 le(o)  d(o)

where a(oc) =1 mod £,d(c) = a~ (o) mod ¢.
We claim that there is a o with b(c) Z0 mod £

For a prime p and the Frobenius ®, we get a(®,)d(®,) — (b(®,)c(®,) = p'!
and 7(p) = a(®,) + d(®,). Now an straightforward calculation shows that for
a prime p =1 mod ¢ which in addition satisfies ¢(®,) = mod ¢ we must have
7(p) = p'' +1 mod £2. But p = 1 + 10 * 691 = 6911 does not satisfy this
congruence, hence ¢(®g911) Z 0 mod L.
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The cohomology H*(I'\H, M ® Z;) has the submodule H} (T\H, M ® Z;) ©
deJ{, where 61 = €ff0(see(3.58)) this submodule is determined by T%. Therefore
it is invariant under the action of the Galois group, with respect to the basis
e]i, eo, e_1 the Galois action is given by

p(o) = 0 a(o) (o) | € Gls(Zy), (5.85)
0 le(o) d(o)
where we still have a'l(o) = det( < ) It is clear from the above

considerations that the image of the Galms group is given by those matrices in
Gl3(Z,) which satisfy the conditions above.

But we want to know the image of the Galois group with respect to our basis

Toe—_1+e;

e1, €, e—1. For this we write e; = ———" and then clearly
054(0')711 c(o)zo (d(a)*aé(ﬂ)_ll)xo
plo) = 0 a(o) b(o) € Gl3(Zy), (5.86)
0 Le(o) d(o)
We put
a(zo,0) = aj' (o) (u12(z0, 0), u13(z0, 0))) (5.87)

then o — a(xg,0) is a one-cocycle with values in H!'(11) := {III(F\H7./\;I ®
Zy) @ Z¢(11). We compute its cohomology class [v] € H'( Gal(Q/Q, H!(11)).
We start from the exact sequence of Galois-modules

0— H}'(11) — %H}(ll) — %H,l(ll)/H,l(ll) -0 (5.88)

where of course +H'(11)/H}(11) = HY(T\H, M ® Z/¢Z). This yields a long
exact sequence in Galois cohomology. The element v provides a well defined
element in ¥ € H°( Gal(Q/Q, HY(T'\H, M ® Z/{Z) and clearly 6(7) = v

Now we can say that the image of the Galois group under p consists of the
matrices

T U2 U3
{{0 a b |l|ad—bc=ux;luiz =c;luss=d—zx} C Gls(Z;)  (5.89)
0 ¢ d

It is the cocycle condition which makes this to a subgroup.
Clearly this is the group of Z;,— valued points of a smooth groups scheme
W /7 C Gly/Z.

We can say that we constructed a Galois-extension K éoo) /Q which is un-
ramified outside £ and we have an isomorphism

pr Gal(K ™ /Q) > 70)(z) (5.90)

We also consider the finite extensions KéT))(Z/ETZ) = 70(Z/0"7Z) and for
r =1 we have T (Z/07) = BY(Z /(7).
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Chapter 6

Cohomology in the adelic
language

6.1 The spaces

6.1.1 The (generalized) symmetric spaces

Our basic datum is a connected reductive group G/Q. Let G(l)/Q be its de-
rived group and let C'/Q the connected component of the identity of its centre.
Then G /Q is semi simple and C'/Q is a torus. The multiplication provides a
canonical map

m:GY x C = G, (6.1)

it is is an isogeny, this means that the kernel pe = CNG™ of this map is a finite
group scheme of multiplicative type. (A finite group scheme of multiplicative
type is simply a finite abelian group together with an action of the Galois group
Gal(Q/Q) on it.) If we have such an isogeny as in (6.1) we write G = C - G(1).

Let S/Q be the maximal Q -split torus in C/Q. Up to isogeny we have
C = (4 - S where ( is the maximal anisotropic subtorus of C/Q. We have an
exact sequence

155G 5620,

the quotient C” is a torus. The restriction of dc to C' is an isogeny. It is also
called dg : C — C'.

If G /Q is the simply connected covering of G (see section (1.2.8), then
we get an isogeny

m:G=GY xC =@ (6.2)

Let g, g(M, ¢, ¢1,3 be the Lie algebras of G/Q,GM /Q, C/Q,C,/Q, S/Q, then
the differential of m induces an isomorphism

D ig— gV @@ (6.3)

213
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On g we have the Killing form B : g x g — Q it is defined by the rule (See
1.18). For Y7,Y5 € g we have

(Y1,Y5) — trace(ad(Y7) o ad(Y3)) (6.4)

Actually the Killing form is a bilinear form on g = g/(¢;®3) and the restriction
B :gM x g — Q is nondegenerate (see chap2 and chap4).

An automorphism 0 : G xg R — G xg R is called a Cartan involution
if ©2 = Id and if the bilinear form

Be(Y1,Ys) = B(Y1,0(Y2)) (6.5)

on g ® R is negative definite.
If © is a Cartan involution then it induces an automorphism -also called ©-
on the Lie algebra gr = g ® R and decomposes it into a + and a — eigenspace

gr=t®Hp (6.6)

and then clearly the + eigenspace ¢ is a Lie subalgebra and [p, p] C €. The Killing
form is negative definite on ¢ and positive definite on p. This explains the above
assertion on Bg.

If G is split and if T() is a split maximal torus (see section 1.2.8) then
find a Cartan involution ©y which induces the map ¢ — ¢t~ and which induces
on the little subgroups i, : Hy, — Sly (See 1.2.8) the involution g +—* g1
(provided we chose the obvious identification i,,)

The topological group of real points G(l)(R) is connected, if G is split this
follows from the fact that G*)(R) is generated by the groups U, (R). (see sction
1.2.8) We have the classical theorem

Theorem 6.1.1. The fized group K&l)) = G'(l)(R)@ is a mazimal compact sub-
group and it is also connected. The Cartan involutions are conjugate under the
action of GV(R), and therefore the mazximal compact subgroups of GM(R) are
conjugate.

The group Ké};) is obviously the group of real points of a reductive group,

which is also called K é}) /R, so at this point we do distinguish between the group
of R-valued points and the algebraic group.

We introduce the space XM of Cartan involutions on GW xg R, it is a
homogenous space under the action of G(l)(R) by conjugation and if we choose

a © or Kéé) then

XM = cOmR)/KkY (6.7)
This is the symmetric space attached to G(V) xg R.
Proposition 6.1.1. The symmetric space XV = é(l)(R)/fol;) is diffeomor-

phic to R, where d = dimp, it carries a Riemannian metric which is G(l)(R)
imvariant.
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At this point it seems to be appropriate to introduce the compact dual group
of G x R. Our Cartan involution © provides a homomorphism Gal(C/R) —
Aut(GM x R) simply by sending the complex conjugation ¢ to ©. This is also
a 1-cocycle and hence this gives us a class [0] € H'(C/R, Aut(G™) x R)). This

class gives us a R-form a /R (see section 1.2.9). The group
GM(R) = {g e GV(C)|®oc(g) = g} (6.8)

c

We consider the group RC/R(G“) x C) its group of real points is GV (C), on
this group we have two involutions namely ¢( resp co®) and G (R)( resp. atM (R)) C
R@/R(G(l) x C)(R). The Lie-algebra of RC/R(G(” x C) is the real vector space
g ® C and the Lie-algebras of our two groups

g@R =t+presp. Lie(G/R) =t i®p. (6.9)

Since the Killiing-form is negative definite on g &7 ® p it becomes clear that
Gg)(R) is indeed compact.

We consider the special case that G x R is split and T(l)/R is a split
maximal torus. Let Oy be a Cartan involution which induces ¢t — ¢~! on TW.
Then this torus provides the maximal torus Tc(l) C Ggl). This torus is compact,
ie. Tc(l)(R) = (SY)" where r = dim(7T(). In a certain sense we can say that
GW/R and Ggl) /R share a maximal torus. This observation turns out to be
useful if we want to compute the factor ko (G) in (6.108). We also see that
the little subgroups H, are invariant under ©g, hence we also have the little
H.n C G, the group H:o(R) = 0(3) or SU(2).

Of course GM(R) can be compact, in this case © = Id is the identity. Then
GO(R) = K and our symmetric space is a point.

We return to our reductive group G/Q. We compare it to G via the homo-
morphism my in (6.2). Let K be the connected component of the identity
of the maximal compact subgroup in C;(R) and let Z’(R)(®) be the connected
component of the identity of the group of real points a subtorus Z’ C S. Then
we put

Koo =mi(KY x K x Z/(R)®)
This group K, is connected and if we divide by Z’(R)(® it is compact, more
precisely we can say that K., /Z’(R)(© is the connected component of a maximal
compact subgroup in G(R)/Z'(R)(). The choice of the subtorus Z’ is arbitrary
and in a certain sense irrelevant. We could choose Z' = S then we call K,
saturated , this choice is very convenient but it certain situations it is better to
make a different choice, for instance we may choose Z’ = 1.

To such a pair (G, K) we attach the (generalized) symmetric space
X=GR)/Ks.

Here are a few comments concerning the structure of this space. (see also
Chap II. 1.3) We observe that by construction K., is connected, hence we
have that K., C G(R)°. So if as usual mo(G(R)) denotes the set of connected
components, then we see that

mo(X) = mo(G(R)).
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The connected component of the identity of G(R) maps under m; to the
connected component of he identity of G(R), i.e.

GR) = GV(R) x C1(R)° x S(R)® — G(R)°

and if we divide by KL%) x K$ x Z'(R)©), resp. K., we get a diffeomorphism
with the connected component corresponding to the identity

GHOR)/KY x C1(R)/KS x S(R)/Z'(R) = X, C X.

We want to describe the other connected components of X. It is well known that
we can find a maximal split torus S; € G x R which is invariant under our
given Cartan involution ©. The homomorphism m; maps G (R) — GM(R).
The fixed group G(U(R)e is a compact subgroup whose connected component

of the identity is the image of Kéé) under m;. Our torus S sits as the first
component in the maximal split torus

SQ = 5’1 X Cfplit x S
Then it is clear that © induces the involution ¢t — t=1 on S;. Let S5 be the
image of So under m,. We have the following proposition

Proposition 6.1.2. a)The group of 2-division points So[2] normalizes K.
b) We have an exact sequence

— 55[2] = S5[2] = mo(G(R)) — 0

c¢) If KO, is the image of KO x K& then KO, - S5[2] is a mazimal compact
subgroup of G(R).

Proof. Rather obvious, the surjectivity of r requires an argument in Galois
cohomology. (Details later) O

Now we can write down all the connected components. We choose a system
= of representatives for S2[2]/S2[2] and for any £ € = we get a diffeomorphism

GOR)/KY x ¢y (R)?/KS x S(R)?/Z'(R) — Xe C X
(6.10)

g 98
We may formulate this differently

Proposition 6.1.3. The multiplication from the left by S2[2] on G(R) induces
an action of S2[2]/S52(2] on X and this action is simple transitive on the set of
connected components.

Let zp = K, € X. For any other point z € X we find an element g € X
which translates zy to z. Then the derivative of the translation provides an
isomorphism between the tangent spaces

Dg:TT/O:p%TI.

This isomorphism depends of course on the choice of g. ( This will play a role
in section (8.1)). But we apply this to the highest exterior power and get an
isomorphism

D, Al(p) 5 AUT)
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which does not depend on the choice of g because the connected group K. acts
trivially on A%(p). Hence we can say that we can find a consistent orientation
on X : We chose a generator in A%(p) the D, yields a generator in A(T}).

As a standard example we can take G/Q = Gly/Q, then the connected
component of the real points of the centre is R, and in this case we can take
Ko = S0(2) - RZ, C Glz(R)). In this case the symmetric space is the union
of an upper and a lower half plane. It we choose for our split torus S;/R the
standard diagonal torus, then S;[2] is the group of diagonal matrices with entries
+1 and this normalizes K.

6.1.2 The locally symmetric spaces

Let A be the ring of adeles, we decompose it into its finite and its infinite
part: A =R x Ay. We have the group of adeles G(A) = G(R) x G(Ay). We
denote elements in the adele group by underlined letters g,h... and so on. If
we decompose an element ¢ into its finite and its infinite part then we denote
this by goo X g 5 Let K be a (variable) open compact subgroup of G(Af). We

always assume that this group is a product of local groups Ky = Hp K,.

To get such subgroups we choose an integral structure (explain at some other
place) G/ Spec(Z). Then we know that we have K, = G(Z,) for almost all p.
Furthermore we know that G x Spec(Z,)/ Spec(Z,) is a reductive group scheme
for almost all primes p.

If G/ Spec(Z) and Ky are given, then we select a finite set ¥ of finite primes
which contains the primes p where G/Z, is not reductive and those where K,
is not equal to G(Z,). This set X will be called the set of ramified primes.

The general agreement will be that we use letters G, T,U,... for group
schemes over the integers, or over Z, and then their general fiber will be
G, T,U,....

Readers who are not so familiar with this language may think of the simple
example where G/Q = GSp,,/Q is the group of symplectic similitudes on V' =
Q™ =Qe1 ®---®Qe, ® Qf1 @ --- ® Qf,, with the standard symplectic form
which is given by < e;, f; >= 1 for all ¢ and where all other products zero.
The vector space contains the lattice L = Z?" =Ze1 ® - ® Zen, D Zfr, D -+ D
Zf;. This lattice defines a unique integral structure G/Z on G/Q for which
G(Zy) = {g € G(Qp)|9(L ® Zp,) = (L ® Zy)}. In this case the group scheme
is reductive over Spec(Z). This integral structure gives us a privileged choice
of an open maximal compact subgroup: Within the ring A, of finite adeles
we have the ring 7 = liin Z/mZ of integral finite adeles and we can consider

K} = (2) = [1,9(Zp). This is a very specific choice. In this case the set
Y =0, we say that Ky = K? is unramified.

Starting from there we can define new subgroups K; by imposing some
congruence conditions at a finite set ¥ of primes. These congruence conditions
then define congruence subgroups K, C KS. This set X of places where we
impose congruence condition will then be the set of ramified primes.(See the
example further down.) Then we define the level subgroup

Kr= ][] &> x [] 9(z). (6.11)

peEX pgY
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The space (G(R)/K~) x (G(Af)/Ky) can be seen as a product of the sym-
metric space and an infinite discrete set, on this space G(Q) acts properly dis-
continuously (see below) and the quotients

SE, =G\ (GR)/Ku x G(Af)/Ky)

are the locally symmetric spaces whose topological properties we want to study.
We denote by

m: G(R)/ K x G(Ay)/Kp — S, = GQ)\ (G(R)/ Koo x G(Af)/Ky),

the projection map.

To get an idea of how this space looks like we consider the action of G(Q)
on the discrete space G(Ay)/Ky. It follows from classical finiteness results that
this quotient is finite, let us pick representatives {ggf)}izlwm. We look at the
stabilizer of the coset ggf)K /Ky in G(Q). This stabilizer is obviously equal to

(4) . .
rfr = GQ)n ggf)Kf(gSf))’l which is an arithmetic subgroup of G(Q). This
subgroup acts properly discontinuously on X (See Chap. II, 1.6).
()
Now we call the level subgroup K neat, if all the subgroups 'Y+ are torsion

free. It is not hard to see, that for any choice of Ky we can pass to a subgroup
of finite index K }, which is neat. Then we have

conncomp

Proposition 6.1.4. For any subgroup K the space ng is a finite union of

() ()
quotient spaces T21" \ X where X = G(R)/K., and the T; = %" are varying
arithmetic congruence subgroups. If Ky is neat, these spaces are locally sym-
metric spaces. If Ky is not neat then we may pass to a neat subgroup K} which

s even normal in Ky: We get a covering SIG(} — SIfo which induces coverings
AX — T\ X, where the T, are torsion free and normal in I';. So we see that

in general the quotients are orbifold locally symmetric spaces. For any point
Yy E SIGW we can find a neighbourhood V,, such that w=(V,) is the disjoint union

of connected components Wy, x = (:z:oo,gf) en(y), and V, =T, \ng, where

Ty, is the stabilizer of xo intersected with s,

We will consider the special case where G/Q is the generic fibre of a split
reductive scheme G/Z. In that case we can choose Ky =[], G(Z;), this is then
a maximal compact subgroup in G(Ay). Then K is unramified we will also say
that the space ng is unramified. If in addition the derived group GV /Q is
simply connected, then it is not difficult to see, that G(Q) acts transitively on
G(Ay)/Ky and hence we get

S, = G(Z)\X.

The homomorphism G(Z) — m(C’(R)) is surjective we can conclude that
G(Z) acts transitively on mo(X) and if T'g is the stabilizer of a connected com-
ponent X° of X then we find

Si, = To\X?
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especially we see that the quotient is connected. We discuss an example.

We start from the group G/ Spec(Z) = Gl,,/ Spec(Z) then we may choose
Ko = 8S0(n) x R, C Gl,(R). and X = Gl,(R)/K is the disjoint union of
two copies of the space X of positive definite symmetric (n X n) matrices up to
homothetie by a positive scalar (or what amounts to the same with determinant
one). If we choose Ky as above then we find

Si, = Sl(Z)\X.

We have another special case. Let us assume that G/Q is semi simple and
simply connected. The group G xR is a product of simple groups over R and we
assume in addition that there is at least one non compact factor. Then we have
the strong approximation theorem ([63],[76])) which says that for any choice of
K the map from G(Q) to G(As)/K; is surjective, i.e. any 9, € G(Ay) can be

written as 9, = aky,a € G(Q),k; € Ky. This clearly implies that then
S, =T\G(R)/Kx (6.12)
where I' = Ky N G(Q).

There is a contrasting case, this is the case when G/Q is still semi simple
and simply connected, but where G(R) is compact. In this case our symmetric
space X is simply a point * and

SK, = GQ\(x x G(Ay)/Ky).

This means that our topological space is simply a finite set of points, hence
it looks as if this is an entirely uninteresting and trivial case. But this is not so.
To determine the finite set and the stabilizers is a highly non trivial task. Later
we will construct sheaves and discuss the action of the Hecke algebra on the
cohomology of these sheaves. Then it turns out that that it is not only the set
of points and the stabilizers that is of interest but also the ”interaction” among
these points is of interest. Then it turns out that this case is as difficult as the
case where I'\ X becomes an honest space.

We give a few examples of such spaces

In the choice of our group K, a subtorus Z’ C S enters. The choice of this
subtorus has very little influence on the structure of our locally symmetric space
ng. Remember that the isogeny m in (6.1) induces an isogeny C' — C’ and
this isogeny yields an isogeny from S to the maximal split subtorus S’ C C’.
This homomorphism induces an isomorphism S(R)? — S’(R)°. If G (R) is the
inverse image of the the group of 2-division points S’[2] then we get from this
isomorphism that G(R) = G1(R) x S(R). If we now consider the two spaces
ng and (S[G(f)T, the first one defined with an arbitrary torus Z’ the second one
with Z’ = S then the arguments above imply that

S, = (SE,)T x (S(R)°/Z'(R)*) (6.13)

the second factor on the right hand side is isomorphic to R? and since we are
interested in the cohomology group of this space, ihe second factor is irrelevant.
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In certain situations we encounter cases where it is natural to choose a
subgroup K., which is slightly larger and not connected. If this is the case we
denote the connected component K. &1)) and we get two locally symmetric spaces
and a finite map

G(@\ (GR)/KY x Gay)/K;) = GQ)\ (GR)/ K x Glhy)/Ky)
(6.14)

This map is a covering if Ky is neat and the space on the right is a quotient
of the space on the left by an action of the finite elementary abelian [2]-group
Koo/ K.

In accordance with the terminology in number theory we call the space SIG(f

narrow if K&l)) = K, and in general we call the space on the left the narrow
cover of G(R)/Koo x G(Ay)/Ky.

6.1.3 The group of connected components, the structure
of o (ng)

If we keep our assumptions that G/Q is reductive and G)/Q is simply con-
nected and satisfies strong approximation. We choose a level subgroup K; C

G(Ay) and we put do/ (Koo x Ky) = K9 x KJ(;W. Then we claim that under

these conditions

mo(8E,) — o (sf{;co, Il (6.15)

To see this we need a theorem of Tate which says that the map C'(Q) —
7o(C’(R) is surjective. This implies that 7o(S¢ e = C”(Q)(O)\C’(Af)/KfC ,
s

K<

where C'(Q)(® C C’(Q) are the elements whose image lies in C'(R)(®). Now we
need a little argument from Galois cohomology. The map G(Ay) — C'(Ay) is
surjective because for all primes p H'(Q,, GM) consist of the trivial class only.
(Kneser and Bruhat-Tits ([13]). ) This implies the surjectivity: For the injec-
tivity assume z,y € C’(A;) and there is an element a € C(Q)(©) with az = y.
Then we need to find a lift of a to an element b € G(Q). Again we invoke the
standard argument from Galois cohomology. We have the exact sequence

G(Q) — C'(Q) = HY(Q,GY)

the obstruction to find b is an element 6(a) € H*(Q, G™M). We have the Hasse
principle H1(Q,GW) = HY(R,GM) ([?]) but since a € C'(Q)© it follows
that the image of §(a) € H'(R, GM) is trivial, hence §(a) is trivial.

We have seen in the previous section that we can choose a consistent orien-
tation on X = G(R)/K provided K is narrow. Then it clear this induces
also a consistent orientation on ng.

[Bsci]
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6.1.4 The Borel-Serre compactification

In general the space ng is not compact. Recall that in the definition of this

quotient the choice of a subtorus Z’/Q of S/Q enters. This If Z' # S then the
quotient will never be compact. But this kind of non compactness is ”uninter-
esting”. In the following we assume that Z/ = S.

In this case we have the criterion of Borel - Harish-Chandra which says

The quotient space S[Céf is compact if and only if the group G/Q has no
proper parabolic subgroup over Q.

If we have a non trivial parabolic subgroup P/Q then we add a boundary
part 8PSIG(f to S}Céf it will depend only the G(Q)-conjugacy class of P. We will
describe this boundary piece later. We define the Borel-Serre boundary

a(SIC(if) = UﬁPSIG(f’
P

where P runs over the set of G(Q) conjugacy classes of parabolic subgroups.
We will put a topology on this space and if Q C P then 3@81% will be in the

closure of 8p8gf. Then
5%, = 5§, Uo(sE,)
will be a compact Hausdorff-space.

We describe the construction of this compactification in more detail, more

precisely we describe a tubular neighbourhood N (9S§ f) of the boundary. To
achieve this we simply translate the considerations in section ?? into the adelic
language. Let P/Q be a parabolic subgroup and let Sp be a maximal split
torus of P then Hom(P,G,,) ® Q = Hom(Sp,G,,) ® Q. For any character
v € Hom(P,G,,) we get a homomorphism v4 : P(A) = G,,(A) = Ip, the
group of ideles. We have the idele norm | | :  — |z| from the idele group to
R%, and then we get by composing || : P(A) Loy RZ,. It is obvious that we
can extend this definition to characters v € Hom(P,G,,) ® Q, for such a v we
find a positive non zero integer m such that mvy € Hom(P,G,,) and then we
define

1
vl = (ImAl)™.
Later we will even extend this to a homomorphism Hom(P,G,,) ® C — C* by
the rule

y® 2z |y (6.16)

If we have a parabolic subgroup P/Q and a point (x,gf) € X xG(Ay)/Ky
then we attach to it a (strictly positive) number

p(P,(2,9,)) = vola,u(U(Q) Ng Krg "\UR)). (6.17)

This needs explanation. The group U(Q) N ngngjl = FUgf is a cocompact

discrete lattice in U(R), we can describe it as the group of elements v € U(Q)
which fix g fo, so it can be viewed as a lattice of integral elements where
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integrality is determined by g - The component = defines a positive definite
bilinear form Bg, on the Lie algebra g ® R, and this bilinear form can be
restricted to the Lie-algebra up ® R and this provides a volume form d,u on
U(R). Then the above number is the volume of the nilmanifold FU,gf \U(R) with
respect to this measure.

These numbers have some obvious properties

a) They are invariant under conjugation by an element a € G(Q), this means
we have

pla~ Pa, (z,9,) = p(P.a(r.g,)) (6.18)

b) If p € P(A) then we have

p(PaB(xan)) :p(Pv (‘r’gf))|pP|2 (619)

Here p,, is of course again the half sum of positive roots in the unipotent radical
Up.

If we are in the special case that G = Sly/Q and K; = Sly(Z) then a
parabolic subgroup P is a point r = £ € PY(Q) (or o). Then p(P,(z,1)) is
small if z lies in a small Farey circle D(c, L) (see section 1.2.6 ). If r = oo and

z =iy then p(oo, (iy,1)) = %

The G(Q) conjugacy classes of parabolic are in one to one correspondence
with the subsets 7 of the set relative simple roots mg :The minimal parabolic
corresponds to the empty set, the non proper parabolic subgroup G/Q corre-
sponds to m = 7 itself. In general m = my, is the set of relative simple roots
of the semi simple part M of the reductive quotient of the parabolic subgroup
P/Q. For a parabolic subgroup P corresponding to 7 we put d(P’) = #(ng \ 7).

As in section 1.2.11 we want to define the sets X (cp,r(cp)) := {(m,gf) C
X x G(Ay)/ Ky, again these will be the sets of point which are very close to the
boundary stratum Op (Slcéf) but keep a certain distance to lower dimensional
strata.

For any i € ¢\ 7 we denote the maxima parabolic group attached to wg\{i}
by P;/Q. Then Hom(P;,G,,) is of rank one and generated by the fundamental
character v; : P; = G,,,. The 2pp, = f;77; with some integer f; > 0 and for any
parabolic subgroup P C P; we put

no (P, (2.9,)) = p(P,, (2.9,)) /" (6.20)

Now we extend this definition to any character v = > r;7; € Hom(P;,Gp,) @Q
by

n~ (P, (z, gf Hn% (z, 'y ). (6.21)

We have the relative roots ol € Hom(P;, G,,) ®Q (see 1.91)and hence we have
defined the numbers n,r (P, (x,gf)) for ay; € mg \ 7.

We have a finite coset decomposition
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G(As) = P(ApErKy,

&

for any {f put Kf (E ) =PA)yNE Kff . Then we have a disjoint union

PQ\X x G(Ay)/Ky = UP NX x P(Af) /K[ (¢ e

If Up C P is the unipotent radical, then M = P/Up is a reductive group.
For any open compact subgroup K; C G(Ay)(resp. for Koo C G ) we define
K(&5) € M(Ag)(resp. K5I C My) to be the image of KP(§f) in M(Ay)
(resp. My, ). We put

Siwe,y = MQ\M(8) /KL K (&y). (6.22)
and get a fibration
Tpg, : P(Q\X x P(Af)/Kji(gf) =S¥ ey (6.23)

Now we apply reduction theory to the group M/Q. For any real number 0 < r
which is smaller than a suitable number 7y < 1 we can define open, relatively

compact subsets SM f)(r) - Slj‘é(gf) such that the inclusion is a homotopy
equivalence and Ur>o Kf(gf)( r)= S}‘é] )" (The points in S¥ (s 4(r) are those
which have a certain distance -controlled by r - to 9(SM K (es) ) ) (See [?]) Now

we define as in section 1.2.11 the sets

XP(cp,r(cp)) ={(z,g,) € X x G(Af)/K; |

6.24
ngr (P (z, gf))<0p, for a; € mg \ 7 and TPg, (x, gf)GSKf Ef)( r).} (6.24)

Now proceed as in section 1.2.11: We assume that the number (cp,rp) are
well chosen, then I'p\ X (cp,7(cp)) is an open subset of SF . (If (z.9,) and y(z,g,)) €

XP(cp,r(cp)) then v € P(Q).)
We define the punctured tubular neighbourhood:

N (S§,) = U PQ\X"(cp,r(cp)) C S, - (6.25)

P mod G(Q):P#£G
Here we do not have the parameters (cp,r(cp)) on the left hand side, the
reason is that their actual value rather irrelevant, we should also think of /(/

(51%) as a family of punctured neighbourhoods of 8(8;%).

Again we we have a finite double coset decompositions M (Ay) = Unf M(Q)np K M

and P(Ay) = P(Q)n?Kf where the 7} are lifts of the 7y (the unipotent radical
satisfies strong approximation). Then we get again

PQ\X x P(ag)/KF = JTM\x ; 8} = o x™ (6.26)
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and our fibration can be restricted to the open subsets
I\ x - T\ XM (6.27)

We have a closer look at this fibration, We are in the same situation as in
section 1.2.11 for the convenience of the reader we basically repeat the reasoning
here. The symmetric space is X = G(R)/K, the Iwasawa decomposition gives
us G(R) = P(R) - K, hence we get

X = P(R)/K. N P(R) = P(R)/KE (6.28)

If Up is the unipotent radical of P, then the reductive quotient M = Up\ P,
then XM = Up(R)\X. The group KL maps isomorphically to a compact sub-
group KM < M(R). The group K} is not necessarily connected but its con-
nected component of the identity is a maximal compact connected subgroup,
hence XM = M(R)/K is a symmetric space attached to M. We introduce the
homomorphism

P M(R) = (RZ)™) ymoe = (.., af (Meo)s - - - Yasene\n (6.29)

Let MM (R), PM(R) be the kernel of o Then clearly Fg}) c PM(R) and Fg\zf) C
MM (R). Then

Pan\ XM = T \M D (R)/ KL x (RZ,)") (6.30)
We choose a section s : M/Q — P/Q we identify M with its image . Then
P =Upx M and X = Up(R) x (MDD (R)/KX) x (RZ,)“P). Our fibration
(6.27) becomes
Lp\(Up(R) x (MM (R)/KL)) x (R
L ox1d (6.31)
Do \(MD(R)/KN) x (RX) 4
If T’y is torsion free then 7 is a locally trivial fibration, if not it is only an

orbi-fibration: For any point € T'y/\((M®(R)/KM)) we consider its inverse
image py/ (z) € MMW(R)/K and then

it (@) = {f 03 (2) = Tu \Up(R)| f(yara’) = Ad(nan) f(2')}  (6.32)

We restrict this fibration to N/ (SIG(f) > Ip\XP(cp,r(cp)) C SIG(f then we
get the neighbourhoods at infinity then our fibration looks like

Lp\(Up(R) x (MM(R)/K3))(rp) x (cp,0))*")
L xId (6.33)
Ca\(MO(R)/KS))(rp) x (cp,0)*F)

where ther 7p describes a relatively compact open subset in (MM (R)/KM))
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which is homotopy equivalent to T'p/\ (MM (R)/KM). We may take the closure
of this open subset in 8(ng) and this means we allow the numbers af (m)
to go to zero. our fibration extends to

Pp\(Up(R) x (MM (R)/KL))(rp) x (cp, )™ < SF,
L xId (6.34)
Dar\(MO(R)/KX) (rp) x (cp, 0]

The intersection T'p\(Up(R) x (MM(R)/KM))(rp) x (cp, 0])*F) ma(ng con-
sists of those points where some of the coordinates in (cp,0])4") are equal
to zero. More precisely we can say that for a parabolic P1 D P a point
z € Tp\(Up(R) x (MM(R)/KX))(rp) x (cp,01%") lies in 9p, (SF,) if and

only if exactly those coordinates in (cp, 0]4")

Of course eventually we put N(ng) N (ng) U 8(51%)

are zero for which «; € 7 \ 1.

6.1.5 The easiest but very important example

If we take for instance G/Z = Gly/Z and if we pick an integer N then we can
define the congruence subgroup K¢(N) = [[, K,(N) C G(Z). It is defined by
the condition that at all primes p dividing N the subgroup

Kp(N)={y€G(Z)y=1d mod p"}

where of course p"» is the exact power of p dividing N. At the other primes we
take the full group of integral points. For the discussion of the example we put
K;(N)=K;. As usual let G/Q be the generic fiber.

If we consider the action of G(Q) on G(Ay)/K; then the determinant gives
us a map

GQ\G(Af)/ K — Gp(Af)/Q 8N

where Uy is the group of unit ideles in Iy y = G, (Af) which satisfy u, =1
mod p™». This map is a bijection as one can easily see from strong approxima-
tion in Sly, and the right hand side is equal to (Z/NZ)*/{+1}. At the infinite
place we have that our symmetric space has two connected components, we have

X =Gl(R)/SO(2)=C\R=H, UH_
where H are the upper and lower half plane, respectively. We have a complex
structure on X which is invariant under the action of G(R) and we consider the
space SIG(f = G(Q)\X x G(/Ay)/Ky. The fibers of the map
S, = m0(X) X G (Af)/Q Uy (6.35)

are exactly the connected components of ng and these components are

T(N)\ (tao (1)) H, x (tg (1)> K (N) (6.36)
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where ¢ runs through a set of representatives of Io/Q*R% Uy = (Z/NZ)*. and
where of course I'(N) C Slz(Z) is the full congrunce subgroup modulo N.
These connected components are Riemann surfaces which are not compact.
They can be compactified by adding a finite number of points, the so called
cusps. These are in one to one correspondence with the orbits of I'(V) on
PY(Q).
If now P is the parabolic subgroup corresponding to r = % € P1(Q) then

the X (cp,r(cp)) are small Farey circles touching the real axis in the points 7.
(See section 1.2.6)

6.2 The sheaves and their cohomology

6.2.1 Basic data and simple properties

Let Mg be a finite dimensional Q-vector space, let
r:G/Q — Gl(Mg)

a rational representation. This representation r provides a sheaf M on SIG(f
whose sections on an open subset V C SIG(f are given by

Mo(V) = {s: 7 1(V) = Mgls locally constant and s(yv) = (v)s(v),y € G(Q)}.

We call this the right module description of /\;IQ.

We can describe the stalk of the sheaf in a point y € Sﬁf, we choose a point
T = (xoo,gf) in 771(y) and we choose a neighbourhood Vj, as in 1.2.1. Then

we can evaluate an element s € Mq(V,) at z and this must be an element in
MU= | this means we get an isomorphism

ex t (Mg)y —= Mg™.

By definition we have e, = yeg.

In our previous example such a representation r is of the following form: We
take the homogeneous polynomials P(X,Y") of degree n in two variables and
with coefficients in Q. This is a Q-vector space of dimension n + 1, we choose
another integer m and now we define an action of Glz/Q on this vector space

(4 5) Poey) = Plax + x savyaa (2 H)e

This Gly module will be called M,,[m]g and it yields sheaves M, [m]g on our
space Slcéf.
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Integral coefficient systems

We assume again that we have a rational representation of our group G/Q, the
following considerations easily generalize to the case of an arbitrary number field
as base field. We want to define a subsheaf Mz C Mg. To do this we embed
the field Q — Ay and we consider the resulting sheaf of A j-modules M Ay,
We consider the diagram

GR)/Ke x (G(Ay)/Kf

)

= ) T
%
)

G(R)/Koo x G(Ay) S%,

—

GQ\G(R)/Ko x G(Af
(6.37)

this means that the division by the action by Ky on the right and by G(Q)
on the left (this gives II) is divided into two steps: In the lower diagram the
projection II; is division by the action of G(Q) and then II, gives the division
by the action of Ky on the right.

The sheaf Mg ®g A can be rewritten. For any open subset V C Sﬁf we
consider W = II-}(V) and by definition

Mg @Ap(V) ={s: TI"1 (W) = Mg ®¢ Apls(Y(oo, g,k y)) = Y(5(To0s 1)),

where these sections s are locally constant in the variable x,. For any s €
M@ Af(V) we define a map §: W — M ® Ay by the formula

5(%0& ):gils(xooag Kf)a
! f !

this makes sense because M @ Ay is a G(Ay)— module. For v € G(Q) we
have §(W($m7gf)) = §((xoo,gf)) hence we can view § as a map

5: GQ\G(R)/ Ko x G(Af) = M ®g Ay.

We consider the projection

Iy : GQ\G(R)/ Koo x G(Af) = GQ\G(R)/ Koo x G(Af) /Ky = S,
and then it becomes clear that M ® A ¢ can be described as

M@ AHV) = {5: (ITH(V) = M g Ayl

5 locally constant in 2, and é((xoo,gfkf)) = E;lé((xoo,gf))}.
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Hence we have identified the sheaf M ®g A ; which is defined in terms of the

action of G(Q) on M to the sheaf M ®g Ay which is defined in terms of the
action of Ky on M ®q Ay.

Now we assume that our group scheme G/Q is the generic fiber of a flat
group scheme G/ Spec(Z) (See 1.2). We choose our maximal compact subgroup
Ky =], Kp such that K}, C G(Zp) and with equality for all primes outside a
finite set X. We can extend the vector space M to a free Z module My of the
same rank which provides a representation G/ Spec(Z) — Gl(Mz).

As usual Z will be the ring of integral adeles. Then it is clear that Mz ®Z C
M ®q Ay is invariant under Ky and hence we can define the sub sheaf

Mz®Z C Mog Ay,

this is the sheave where the sections § have values in Mz @ Z. We put

Mz =Mz®ZNM,
of course it depends on our choice of My C M. We get two exact sequences
of sheaves

P

0 - Mz — M - M®(Q/Z) =0
L ! Iy
0 - MQ®Z — M@JAf — M®(Af/Z)—>O
The far most vertical arrow to the right is an isomorphism, the inclusions
Z — 7 and Q — A, are flat. Writing down the resulting long exact sequences
provides a diagram

L] ~ ‘] () -
-~ H (ng,/\/lz) EAN H (ng7M) —
\L ZZ/—\_/ \I/ ZQ

— H*S{, . M®L) 5 HY(SE , Megh;) -
The above remarks imply that the vertical arrows are injective, the horizontal
arrows in the middle have the same kernel and kokernel. This implies
Proposition 6.2.1. The integral cohomology

H*(SE,, Mz)

consists of those elements in H*® (Sfcéf,./\/l ® Z) which under ja go to an element
in the tmage under ig or in brief

H*(S§,, Mz) = j, *(im(ig))

Highest weight modules

We assume that G/Q is a quasisplit group over Q. This generalizes to the case
where we have a representation r : G x F' — Gl(M) where M is a vector space
over F. If our group scheme is an extension of a flat group scheme G/ Spec(OF)
then can find a lattice Mo, which yields a representation of G — Gl(Mp,.).
Then we can define the sheaf Me » and define the cohomology groups

H* (8%, Mo,)
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Sheaves with support conditions

We can extend the sheaves to the Borel-Serre compactification. We have the
inclusion

;. G ;G

(2 SKf — SKf

and we can extend the sheaf by the direct image functor . (M). It follows easily
from the description of the neighbourhood of a point in the boundary (see 77)
that R%.(M) = 0 for ¢ = 0 and hence we get that the restriction map

H*(SF,,i(M)) = H*(SF,, M)

is an isomorphism.
We may also extend the sheaf by zero (See [Vol I], 4.7.1), this yields the

sheaf iy(M) whose stalk at z € ng is equal to M, and whose stalk ist zero in
points x € 381%. Then we have by definition

H(SE,, M) = H* (8§, (M)
this is the cohomology with compact supports.

We are interested in the integral cohomology modules H*® (ng ,Mz), H? (SIG(f ,Mz).

We introduced the boundary OS¢ of the Borel-Serre compactification then we
have a first general theorem, which is due to Raghunathan.

Raghunathan

Theorem 6.2.1. (i) The cohomology groups Hi(SICéf,./\;lz), Hi(@ng,/\;lZ) and
Hi(ng,/\;lZ) are finitely generated.

(ii) We have the well known fundamental long exact sequence in co-
homology

N Hi—l(asgf,/\;tz) _ Hé(gf(f,/\;lz) — Hi(SICéf,MZ) AN Hi(aS;G(f,./\;lz) —.

We introduce the notation H7(SIG{f,/\;lZ) meaning that for 7 = blank we
take the cohomology without support, for 7 = ¢ we take the cohomology with
compact support and for 7 = 9 we take cohomology of the boundary of the
Borel-Serre compactification. Later on we will also allow 7 =! this denotes the
inner cohomology. The above proposition 6.2.1 holds for all choices of ?.

Let ¥ = {Py,..., Ps} be a finite set of parabolic subgroups, we assume that
none of them is a subgroup of another parabolic subgroup in this set. The union
of the closures of the strata

U U 8o(s%,) = 0s(5%,)

i QCP;
is closed . We have the inclusions
jo i 8§, = S§,\02(SE,), 57 : SE, \ 0s(S%,) — SE,-

The inclusion ¢ : ng — S[G(f is the composition i = j* o jy we define the

intermediate extension | suppcond

i1 (M) = G 0 ji . (M), (6.38)
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this means that the stalk ix; . 1(M), at a point y € (’92(51%) is zero. Now we
can define the cohomology with supports H'(ng,ig,*,y(/\;l)). If 3 =  then
H (%, ,(M),) = H'(S[G(f,./\;l) and if ¥ is the set of all maximal parabolic
subgroups then H*(%, *,!(M),) = H’(CSI%,/\;!).

For these cohomology groups coefficients in sheaves with intermediate sup-
port conditions we can also formulate assertion like the one in the above theorem.
Hence we get filtrations on the cohomology

WoH®(S§,, M) = HP (S, M) C Wy H*(SF , M) C --- C H*(SE,, M)
(6.39)

on the cohomology, the bottom of this filtration will be the inner cohomology
and the filtration steps will the images cohomology with intermediate supports.

Functorial properties

The groups have some functorial properties if we vary the level subgroup Kjy.
If we pass to a smaller open subgroup K } C Ky then we get a surjective map

WKf,K} : SIG;} — ng,
whose fibers are finite. This induces maps between cohomology groups

T e,y HI(SE,, Ma) = H3(SE,, M),

for 7 = ¢ we exploit the fact that the fibers are finite.

We construct homomorphisms in the opposite direction. We exploit the
finiteness a second time and find that the direct image functor (WK% Ky )« 18
exact and hence

H3 (S, Mz) = H7 (SE ., (7x 1, )« (Mz)).
We define a trace homomorphism (ﬂ'K},Kf)*(./\;lz) — My: A section s €
(ﬂ'K})Kf)*(./\;lz)(V) is amap §: II"1(V) = M, ® Z such that
§(’y(xoo,gfﬁ})) = (k})_1§((xoo,gf)) for all £} € K.

This is a section of My if and only if the corresponding section s takes values
in M. Then we define

tr(g)(%o,gf) = Z 5;1§(xooagf)

§,€K /K
and this now satisfies
tr(é)(’y(moo,gfkf)) = k]?1§((xoo,gf)) for all ky € Kjy.

and since the corresponding section tr(s) takes values in M we see that tr(s§) €

Mz (V).
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Remark: It may happen that this trace map is not the optimal choice, it can
be the integral multiple of another homomorphism between these two sheaves.
This happens the intersection C'(Q) N Ky is non trivial.

Then the homomorphism between the sheaves induces

TK!' K

H (G, Mz) = H (S, (i, x,)- (M2)) =" HI(SE,, (M2)).

Later on our maps between the spaces will be denoted 7, 7,... and the
notation simplifies accordingly.

6.2.2 Rational systems of coefficients

We will decompose the cohomology into smaller pieces under the action of the
Hecke-algebra. For this we have to pass to finite normal extension F/Q. Then
we should require that the G-modules M should be absolutely irreducible., but
we also want them to be QQ-vector spaces. There is no problem to construct
such modules if the semi simple component G()/Q is split and the central
torus satisfies a very mild condition. But we will show that we may also work
with absolutely irreducible modules M which are defined over F/Q, and if we
keep track of the Galois- conjugate modules “ M then we still can formulate
rationality statements over Q.

We start again from a quasisplit reductive group scheme G/Q, let B/Q a
Borel subgroup and 7/Q C B/Q a maximal torus. Then we find a normal ex-
tension Fy/Q such that T x g Fp is split If we choose Fi minimal then Gal(Fy/Q)
acts faithfully on X*(T xq Fp), it acts by permutations on the set of positive
roots. To any dominant A € X*(T xq Fy) we can define the absolutely irre-
ducible highest weight representation M. This representation is defined over
the field Fy[A], where Gal(Fy/Fy[A]) is the stabiliser of A. This means that M
is an Fy-vector space and the representation is a representation of G xq Fy[A].
For any 0 € Gal(Fy/Q) we can consider this highest weight “\ and the re-
sulting highest weight module M) = Mo ,. It follows from the construction
of these modules that there is an obvious o-linear map ®, : My = M. The
map P, is a o linear isomorphism between the modules, we have

For g € G(Fy[\],m € My we have @,(gm) = o(g)P,(m). (6.40)
These semi-linear maps satisfy the cocycle relation
P.0d, =D, . (6.41)
Then we will call the collection
{ s Mox, @4, }oe Gal(Fo/Q)

a rational system of representations (see also [40], 6.2.8).

From this rational system of representations we also get a rational system of
sheaves {..., Mox, &, ... Yoe Gal(Fy/0) and from this we get a rational system
of cohomology groups

{ H3 (SR, Mox), @3, Yoe Gal(r/0)-



232 CHAPTER 6. COHOMOLOGY IN THE ADELIC LANGUAGE

We can construct a flat extension G/Z, which is semi simple outside the set
of primes which ramify in Fy. For any A € X*(T xg Fp) we can construct
a locally free, finitely generated G xz Op,nj module My o, , such that after
tensoring with Fy[\] we get M. This module is unique if we invert some finitely
many primes. Then we can arrange these data such that the maps ®, induce
isomorphism ®,, : MA,OFO = MGA,OFO. The we may call the collection

{ o Mo 0g, Pos- - - foe Gal(r/Q)

an integral rational system of representations .

6.3 The action of the Hecke-algebra

6.3.1 The action on rational cohomology

In this section we assume that our coefficient systems are obtained from rational
representations of a reductive group scheme G/Q hence they are Q vector spaces.
We consider the rational cohomology groups

H;(ng7MQ) = HZ(ng7MQ>7 Hi(‘S‘IG{faMQ)a H"(a(ng),M@),

These cohomology groups are finite dimensional Q-vector spaces and they are
related exact fundamental sequence. We can pass to the direct limit

HY(SY Mg) = lim Hi(SE ., Mg).
Ky f
GAF

Proposition 6.3.1. On these limits we have an action of the group mo(G(R)) x
G(Ay). We recover the cohomology with fized level K by taking the invariants
,under this action, i.e. we have

H{(8%, Mo)™7 = Hi(SE,, Mq)

To define this action we represent an element in 7o(G(R)) by an element
koo in the in the normalizer of Ko in G(R). An element z = (koo,z;) €
G(R)xG(Ay)) defines by multiplication from the right an isomorphism of spaces

mg : GQN\X x G(Ag)/Ky — GQ\X x G(Ay) [} Kya.
It is clear from the definition that m, yields a bijection between the fibers
m1g),5 € GQ\X x G(Ay)/Ky and 7' (m,)(g) and since the sheaf is de-
scribed in terms of the left action by G(Q) we get m,, (M) = M. Passing to the

limit gives us the action on Hi(S%, Mg). The second assertion is obvious, but
here we need that our coefficients are Q vector spaces, we need to take averages.

We introduce the notation G(A) := mo(G(R)) x G(Ay) and then we denote
this action by

pitg + G(A) X HI(SE,, Mo) — HY(SE, . Mq).
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The interesting component of this representation is of course the action of the
finite component G(Ay), it is simply the action which is induced by the right
translation action of G(Af) on S.

Now we fix a level Ky C G(Ay) The Hecke algebra Hg, consists of the
compactly supported functions h : G(Ay) — Q, which are biinvariant under the
action of Ky, we also write Hx, = C.(G(Ay)//Kf, Q). An element h € H, is
simply a finite linear combination of characteristic functions h = > Ca;XKfa, Ky
with rational coefficients Ca,- The algebra structure is given by convolution
with respect to the Haar measure on G(Ay) which gives volume 1 to K. This
convolution is given by

hi * hg(gf) = /G(A )h1(£f)h2@f_1gf)d§f~
!

With this choice of the measure it is clear that the characteristic function of Ky
is the identity element of this algebra.
The action of the group G(Ay) induces an action of Hg, on the coho-

mology with fixed level Hg(ng,./\;l@),Hi(ng,J\;lQ), .-+ : For an element v €
Hi(S%, Mg) we define

Th(v) = /G(A )h(gf)gfvdgﬁ
s

where the measure is still the one that gives volume 1 to K. Clearly we have
Thyshy = Thy Th,-

(Actually the integral is a finite sum: We find an open subgroup K } C Ky
such that v is fixed by K } and then it is clear that

1
R N T o, Xicyay ) (€6 0
ey [KfZK}];ifeG(XA;)/K} B

This makes it clear why we need rational coefficients .)
It is clear that T}, (v) € Hi(SE ;»M) and hence T}, gives us an endomorphism

of H% (SIG(f,/\;l). We will show later that we also get endomorphisms on the
cohomology of the boundary and therefore H also acts on the fundamental long
exact sequence (Seq) .

If our function h is the characteristic function of a double coset Kz fK ¥
then we change notation and write T, = ch(z;). We give another definition
of the Hecke operator ch(gf) in terms of sheaf cohomology. We imitate the
(Ef)

construction of the Hecke operators in Chapter 3, 3.1. We put Kf =K;N
x fK fgjjl and consider the diagram
My
SC., —4 S¢
Kf:ﬁ K@f )
4 (6.42)
N\ T T2

el
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where m, . is induced by the multiplication by z; from the right. This yields
in cohomology

’"LEf,*

H-(sgf,MQ)LH-(sﬁ@f),MQ) - H-(si(ﬁgl),mgf,*(/\?t@)) (6.43)
f f

Since we described the sheaf by the action of G(Q) from the left and the map
mg, by multiplication from the right we have m, .(Mg) = Mg, this yields an
isomorphism i§f~ Since w9 is finite we have the trace homomorphism

To.e H'(SG

(zg)™
Ky

17/\;1@) - H.(SIG(]HMQ)

and the composition is our Hecke operator

T, 0y, 0 Mg, « 07 =ch(zy): H'(ng,ﬂ;l@) — H’(ng,ﬂ;l@).

This is simpler than the construction Chap.II 2.2. because we do not need
the intermediate homomorphism u,. But we we do not get Hecke operators on
the integral cohomology.

6.3.2 The integral cohomology as a module under the Hecke
algebra

We resume the discussion of the integral Hecke algebra acting on Hg (S¢ o MZ)
from Chapter 3. Inside the Hecke algebra we may also look at the sub algebra
of Z -valued functions. This is in principle the algebra which is generated by the
characteristic functions ch(z ;) of double cosets Kz ;K. These characteristic
functions act by convolution on the cohomology H '(ng,./\;lQ) but this does
not induce an action on the integral cohomology. Our next aim is to define
a fractional ideal n(z;) C Q or more generally n(z;) C F such that for any
a € n(z;) we can define an endomorphism

a-ch(z;): H'(S[G(f,./\;lz) — H'(ng,./\;lz )

and if we send this to the rational cohomology then on H'(Sﬁf,/\/l@) this will
be the convolution endomorphism induced by ch(z ;) multiplied by a.

This ideal will depend on z; and on A and further down we compute it in
special cases.

(iv) These endomorphisms a - ch(z;) generate an algebra 'H(Z)‘) acting on
the integral cohomology and the arrows in the fundamental exact sequence above
commute with this action.

v) Moreover, we have an action of mo(G(R)) on the above sequence and this
action also commutes with the action of the Hecke algebra. Hence we know that

our above sequence is long exact sequence of mo(G(R)) x "H(Z)‘)'

We come to the definition of the ideal.
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If we are in the special case that our group has strong approximation then
we have

N\X = GQ\X x G(Af) /Ky

(See (6.12)). We pick an element o € G(Q). In Chap. 3, 3.1. we defined the
Hecke operator T'(a, u,) where u, : M(®) — M is the canonical choice. Let us
denote the image of a in G(Ay) by a;. We just attached a Hecke operator to
the double coset Kra f.K ¢. We have the diagram of spaces

D(a)\X ———————G(Q\G(R)/Kx x G(Af)/K}' (6.44)
l(a™h) r(ay)

D0 NX ——————> G@\G(R)/ Koo x GlAg)/KS

Here the horizontal arrows are the isomorphisms provided by strong approxi-
mation, the arrow I(a~!) is the isomorphism induced by left multiplication by
a~! and r(gf) by right multiplication by a ;. These two maps enter in the def-
inition of the Hecke operators T'(a™ !, u,-1) and ch(a;) and a straightforward
inspection of the sheaves yields

ch(a;) =T(a " ug-1).

Hence we can conclude that under this assumption our newly defined Hecke
operators coincide with the Hecke operators defined in Chap.3. This also tells us
what we have to do if we want to define Hecke operators on integral cohomology.

Here we want to point out that we can interpret the above diagram as a
correspondence, it defines a ”finite valued” map from T'(ay) : "I X — '\ X.

To define the action of the Hecke algebra on the integral cohomology without
the assumption of simple connectedness we have to translate their definition into

the right module description. Then our sheaf M ® A is described by the action
of Ky on M @ Ay and this allows us to define the sub sheaf My @ Z. We look

at the same diagram. But now the sheaf m, (M ® Ay) is the sheaf described

-1
by the the K%f) module (M ® Af)(ﬁf). This module is M ® Ay as abelian

-1
group, but 9, € K](%f) acts by my = gfggflmf. The map my — Tymy

—1
induces an isomorphism [z ;] between the two K](}f " modules (M ® Ay)es)
and (M ®A). We now consider the diagram (6.42) and replace in the sequence
of maps the homomorphism i, ; by the map [g;] induced by the isomorphism
[z] between the sheaves. Then we can proceed as before and get an operator

P1« o [Ts]® omy 4 0p5 = ch(zy).
It is straightforward to check that this operator is an extension a4 0 iy, ©
Mg, .07} to H’(SIG(f,/\;l Q@ Aj).
Our right module sheaf contains the submodule sheaf M) ® Z, we can write
the same diagram but now it can happen that [gf] does not map Mz ® Z into



236 CHAPTER 6. COHOMOLOGY IN THE ADELIC LANGUAGE

itself. This forces us to make the following definition
n(z;) ={a€Q|laz;]: Mz®Z C Mz @ L}

Then we can again go back to our above diagram and it becomes clear that
we can define Hecke operators

a-ch(z;): H*(SF,, Mz) = H*(SF,, M) for all a € n(z;). (6.45)

It is clear that the same construction also works for the cohomology with
compact supports. But of course we also can define the action of the Hecke
algebra on the cohomology of the boundary. We recall that for a suitable punc-

tured tubular neighbourhood we have Hi((’)(S[G(f),./\;lZ) = H'(N (S[G{f),/\;lz).
If we take this tubular neighbourhood sufficiently small then we can find an-

other slightly larger tubular neighbourhood N (SI%), such that the "mul-
tivalued map” T'(ay) restricted to N (SIG(f) values in N 1 (S[G(f). Since now

o ~
Hi(N; ng,./\/lz) is also isomorphic to the cohomology of the boundary we
have defined an action of the Hecke algebra on the cohomology of the boundary.
It is clear that the fundamental long exact sequence is an exact sequence of
Hecke modules.

The case of a split group

We want to discuss this in the special case that G/ Spec(Z) is split reductive, we
assume that the derived group G / Spec(Z) is simply connected, we assume
that the center C/ Spec(Z) is a (split)-torus and that C N G() is equal to the
center Z(M) of G, This center is a finite multiplicative group scheme (See 6.1.1).

Accordingly we get decompositions up to isogeny of the character and cochar-
acter modules of the torus

XHT) = X (TH) @ X*(C) X (TW) & X, (C) — X.(T) (6.46)

they become isomorphisms after taking the tensor product by Q. We numerate
the simple positive roots I = {1,2,...,r} = {a1,a2,...,a,} C X*(T) and we
define dominant fundamental weights v; € X*(7)q which restricted to 7() are
the usual fundamental dominant weights and restricted to C are trivial. Then
a dominant weight can be written as

A=Y ami+5=2Y 43, (6.47)
el

where § € X*(C) and we must have the congruence condition

AN +6)zW =1 (6.48)

We can construct a highest weight module M) 7. We pick a prime p, we
assume that is unramified (with respect to Ky), this means that K, = G(Z,).
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Any element t, € T(Q,) defines a double coset K,t,K,. Of course only the
image of t, in T(Q,)/T (Z,) matters and

T(Qp)/T(Zp) = X, (T)

we find x € X, (T') such that x(p) = t,. We take a y in the positive chamber,
i.e. we assume < x,« >> 0 for all a. We can produce the element

x =01, x(p),1...,1,...) € T(Ay)

and the Hecke operator
H(x,) : H*(SF,, M®Q) —» H*(SF,, M2 Q)
We have to look at the ideal of those integers a for which

a 'H(Xp)(/\/l)\yz & Zp) C (M)\,Z X Zp).

This is easy: We have the decomposition into weight spaces

M)\,Z = @/,LM)\,Z(/J‘)

and on a weight space the torus element H(Xp) acts by
— o <XH>
H(Xp)xu =p~NHmy.

We get the smallest exponent if we choose for i, the lowest weight vector.
We denote by wg the longest element in the Weyl group, which sends all the
positive roots into negative roots. The the element —wg induces an involution
1 — 1’ on the set of simple roots. Then this lowest weight vector is

A= U}O()\) = — Z a;y; + 9. (649)

We say that our weight is (essentially) self dual if we have a; = a;s. In this case
A= -2 44
Hence we see that our ideal is the principal ideal is given by

(p_<X’w°’\(1)>_<X’6>) or if A self dual (p<X”\(l)>_<X"s>). (6.50)
Hence we have defined the Hecke operator

Tyo0 = pmsxwerzm<xo> “H(x,) : H*(SF,, Mrz) = H*(SE,, M»z)
(6.51)

We introduce the notation c(w, \) :=< —y, woA— < x,d >>, the number — <
x, woA() > is the relevant contribution in the exponent (let us call this the
semi-simple term), the second term — < x,d > is a correction term ( the
abelian contribution) and it takes care of the central character. It only serves
to fulfill a parity condition. We come back to this in section 7.1.3.
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Modules of congruence origin and Hecke operators

We also can define an action of the Hecke algebra if the coefficient system is
of congruence origin. Our assumptlions are as above and we consider a finitely
generated G(Z/NZ)— module V. The finite group G(Z/NZ)— is of course a
quotient of G(Z) = Ky and hence we can define the sheaf V by the action of
K. This is now a sheaf of congruence origin in the adelic context.

We consider the subalgebra ’H%Vf) = CC(G(A}N))//K}N),Z) where A&N) is
the partial adele ring where we take the restricted product over all primes not
dividing N. If Z(y) C Q is the semi local ring of rational numbers which are
integral at p| N then we have a surjective homomorphism Zyy — Z/NZ. Hence
we can view V as a G(Zy)) module.

We apply the usual procedure to construct a sheaf V on ng, but here V is

not a G(Q) module but a K; = G(Z) module. If we want to attach a Hecke
operator T}, to the double coset Kz Ky with Zy € G(A(N)) we have to define

amap oy, i my, (V) = V. Let K(N) be the kernel of G(Z) — G(Z/NZ). We
have to make an assumption

The map mn : G(Z(ny) — G(Ay)/K;(N) is surjective

( This assumption is certainly true if the group G/Q is semi simple and
simply connected. ) Our assumption says that we can find an u, ; € G(Zny)

with ﬂ'N(ugf) =y

6.3.3 Excursion: Finite dimensional H—modules and rep-
resentations.

In the following we start from a a flat group scheme G/7Z, we assume that the
generic fiber G/Q is reductive. Let Ky = Hp K. be an open compact subgroup
in ®G(Qp) this means that for almost all primes p we have K, = G(Z,) and
K, C G(Qp) is open for all primes p. For any prime p let C.(G(Q,)//Kp)
the space of Q valued functions h on G(Qp) which have compact support and
which are biinvariant under K, i.e. h(k1gk2) = h(g). These functions form an
algebra under convolution (See 6.3) and the characteristic function e, of K, is
the identity element.
The Hecke algebra is the restricted tensor product

H=Q) Hy = Q) CG(Q,)//K,)

As the notation indicates we take the tensor product over all finite primes.
This tensor product has to be taken in a restricted sense: for an element of the
form hy = ®h, the local factor h,, is equal to the identity element e, for almost
all primes p (here e, is the characteristic function of K,). All other elements are
finite linear combinations of elements of the form above. We have the obvious
embedding

Hp, — H we simply send hy, = ®...ep @hp Depry. ... (6.52)
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The subalgebras H,, commute with each other.

We say that prime p is unramified ( with respect to Ky ) if Gx3zZ,, is reductive
and K, = G(Z,), At unramified primes the local factor H, is commutative, its
exact structure is given by the Satake isomorphism (See 6.3.5).

HWe define the ideal I}Q to be the kernel of the action on HY? (SIG(f,/\;l,\@),

then H/ I;(f = A is a finite dimensional algebra. It is known- and will be proved
later (8.1.8)- that H (ng7./\;l>\,<@) is a semi simple module.

A central subalgebra

Let ¥ be the set of ramified primes. For p ¢ ¥ the algebra #, is finitely
generated, integral and commutative.
The subalgebra

HE =R o (6.53)
p

is commutative and lies in the centre, and therefore its image HE) € H lies in
the center of H. Since Hy (ng,MA,Q) is semi simple H(*) is a direct sum of
fields and hence we have orthogonal system of idempotents {e;} such that

HE) = @ ’H(Z)ei

%

gives a decomposition of H*) into a direct sum of fields. Hence we get a
decomposition into isotypical modules

H? (SE,, Mag) = @ el (SE,, Mag) (6.54)

7

We can decompose further, if F' C Q is a finite normal extension which ” contains

” the field H*e; then

eiH!'(SIG(f,./\;l)\,F) = @ eiH;(SIG(f,./\;l)\,F)[U]. (6.55)
o HEe; - F

The composition 7 (e;,0) : H®) — e,H) L5 F is a homomorphism

el
HE) T F and

eiHY (SF,, My r)lo] = H (S, Mo p) (w1 (i, 0))

is the eigenspace with eigenvalue 7(*) = 7(*)(¢;, ¢).. Hence we can rewrite the
decomposition (6.55) as

H!.<SIG(‘f’M>\yF) = @H'.(ng7MA,F)(7T(E)) (656)

w(2)

where now the set of {7(*)} = {n(e;,0)}. We have seen earlier that 7(*) =
[1,¢x mp, Where 7, : H;, — F.
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We change our notation slightly instead of SpeCH<:>(H!’(SIC§f,M>\7Q)) we
define the set

Cohy™ (8%, Mag) ={- e}, (6.57)

this is the set of isomorphism classes of irreducible A®) modules which occur
non trivially in H, (SIG(f , M, ), and

Coh{™(8E,, My q) = {.... 7™, ..} (6.58)

this is the set of isomorphism classes of absolutely irreducible A®) modules
which occur non trivially in Hf(SIG(f,/\/l 1,0)- We have the projection map

Coh{™(8E,, M, g) — Coh{™(SE,, Miq): (es,0) e, (6.59)

the fibers of this map are the orbits of the action of the Galois group Gal(Q/Q)
on Cohl(z)(ng , /\;l,\@).

We have a canonical way to realise an isomorphism type 7). resp. Tp.
We consider the subfield F resp.F[p|Q which is generated by the values of
7 resp. mp. Then H_ ) = F and A®) acts on F via 7). Since F is a
field we have a canonical generator, this is given by the element 1 € F. We may
do the same for 7, and define H,, this by definition is a one dimension vector
space over F[p]. But if we remember that 7, is the local components of )
then we modify our definition and define Hy, = Hy, @p[p) F.

Then we can say that H (=) is the restricted tensor product

/!
H, s = (X) Hr,. (6.60)
pgY
Here on the right hand side we only allow tensors ®a, ® -+ ® aq ® ... where

for almost all p* the local factor a,- = 1.

Most of the time we are only interested in the unramified part of the ac-
tion of the Hecke algebra. But of course we may also consider the action of
the entire Hecke-algebra H. We define H (5 = HPE2 ‘H,, this algebra acts on
H? (ng,./\;h,F) and respects the decomposition (6.56). Hence we have to look
at the action of Hx) on H (ng,/\;lA,F)(w(Z)). We denote the analogous of the
ideals I}(f by J, C Hp and put A, = H,/I,. Then an absolutely irreducible
module for Hx is of the form ®p€2 Vi, where V. is an absolutely irreducible
A,- module. The structure of these modules has been described in the previous
section, they are standard irreducible modules over full matrix algebras with
entries in an extension L;/Q. These matrix algebras are quotients of A, ® Lq
by a two sided ideal.

The finite dimensional H ® L; modules form a category Modygr,, this
is not a set. We can define the set [Mod, | of isomorphism classes. The
elements in this set will be denoted by 7. We introduce the same notation
for the elements 7, in the set [Mody, gr,] . If H, is commutative and 7, is
absolutely irreducible then 7, is a homomorphism 7, : H, — L;. In general
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mp is a quotient H, ® L,/J(mp), where J(m,) is a two sided ideal such that
Hp/J(mp) = M, (L1), and 7, is the standard absolutely irreducible module over
Hp/J(mp). If we denote an ( absolutely irreducible) H, ® L; -module by Hr,
then this means that the isomorphism class of this module is 7. If we have an
absolutely irreducible H ® L; module which occurs in H, (ng7/\;l A, F) then its

isomorphism type is
Ty = H?Tp x () =H7rp
peEX P

On the cohomology H, (S]G(f , M) we still have the action of the group 7o (G(R)),
this action commutes with the action of the Hecke algebra. (See (6.3.9) This
is an elementary abelian 2- group and we may decompose further according to
characters € : mo(G(R)) — {£1}. Hence we get finally that after choosing a
suitable finite (normal) extension F'/Q we have an isotypical decomposition

H? (S, My r) = @D HY (SE,, Mi.r)(e x 7p) (6.61)

EXTf

As before we denote by Cohy(S% . M x,0) the set of isomorphism classes of abso-
lutely irreducible H modules. On this set we have an action of the Galois group
Gal(Q, /Q), this action factors over Gal(F/Q). On the other hand Gal(F/Q)
acts upom H!’(ng,./\;lA7F) via the action on F' and clearly for o € Gal(F/Q)
we have

o(HP (SR, Mar)(e x 7)) = Hf (SE |, Mar)(a(e) x o(mp)) (6.62)

6.3.4 Representations and Hecke modules

For p € ¥ the category of finite dimensional modules is complicated, since the
Hecke algebra will not be commutative in general.

Let F be a field of characteristic zero, let V be an F-vector space. An
admissible representation of the group G(Q,) is an action of G(Q,) on V which
has the following two properties

i) For any open compact subgroup K, C G(Q,) the space VEr of K
P P P
invariant vectors is finite dimensional.
ii) For any vector v € V' we can find an open compact subgroup K, so that
p
v € VE» in other words V = limg, VE».

An admissible G(Q,) -module V is irreducible if it does not contain an
invariant proper submodule.
It is clear that the vector spaces VX» are modules for the Hecke algebra

Proposition 6.3.2. If V # (0) is a irreducible G(Qp) modules, and if K, is
an open compact subgroup with Vv = (0). Then VE» is an irreducible Hi,-
module.
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Proof. To see this we take the identity element eg, in our Hecke algebra, it
induces a projector on V and a decomposition

V=vVKraV =eg Ve (l-—ek,)V.

Let assume we have a proper H g -invariant submodule W C VE» Now we con-

vince ourselves that the G(Q))-invariant subspace W generated by the elements
gw is a proper subspace. We compute the integral

J,

The first integral gives us the projection to V%7, the second integral is the
Hecke operator, hence the result is in W. We conclude that e, W C W and tis

shows that (0) # W # V. O

kgwdk = / klgkgwdkgdkl.
K, x K,

P

Now it is not hard to see, that the assignment
V- Ve

from irreducible admissble G(Q,)-modules with VE» =£ (0) to finite dimen-
sional irreducible H ,-modules induces an bijection between the isomorphism
classes of the respective types of modules. If we start from V%» we can recon-
struct V' by an appropriate form of induction.Refenrenz Godement ?7?

The dual module

Let us assume that V is a finite dimensional F-vector space with an action of
the Hecke algebra H (we fix the level). We have an involution on the Hecke
algebra which is defined by

‘h(zs) = h(z}")

a simple calculation shows that thy * thy =t (hg * hy).
This allows us to introduce a Hecke-module structure on VV = Hompg(V, F)
we for ¢ € VVwe simply put

Tn(9)(v) = ¢(Ten(v))

for all v e V.

Unitary and essentially unitary representations

Here it seems to be a good moment to recall the notion of unitary Hecke mod-
ules and unitary representations. In this book we make the convention that a
character is a continuous homomorphism from a topological group H — C*, we
do not require that its values have absolute value one. If this is the case we call
the character unitary. Our ground field will now be F' = C, let V' be a C vector
space. We pick a prime p. We call a representation p : G(Q,) — GL(V') unitary
if there is given a positive definite hermitian scalar product <, >V xV — C
which is invariant under the action of G(Q,).
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If our representation is irreducible then it has a central character ¢, : C(Q,) —
C*. In this case the scalar product is unique up to a scalar. A necessary con-
dition for the existence of such a scalar product is that |(,| = 1, in other words
(p is unitary.

If this is not the case then our representation may still be essentially uni-
tary: We have a unique homomorphism [(¥| : C'(Q,) — RZ,, whose restriction
to C(Qp) under do (see 1.1) is equal to |(y|. Then we may form the twisted
representation p* = p ® |C;\_1. Then the central character of p* is unitary. We
say that o is called essentially unitary if p* is unitary.

If our representation is not irreducible we still can define the notion of being
essential unitary. This means that there exists a homomorphism |(}| : C'(Q,) —
RZ,, such that the twisted representation p* = p ® |C;§|_1 is unitary.

The same notions apply to modules for the Hecke algebra. A (finite dimen-
sional) C vector space V with an action 7, : H, — End(V) is called unitary, if
there is given a positive definite scalar product <, >: V x V — C such that

< Th(w),w >=<v,Tep(w) > (6.63)

Recall that we always assume that our functions h € H, take values in Q, hence
we do not need a complex conjugation bar in the expression on the right.

The restriction of 7, to C'(Q,) in induces a homomorphism (r, : C(Q,) —
C*. We call m, isobaric if this action of the center is semi simple - and therefore
a direct sum of characters (r, = > Cy, - and if all these characters have the
same absolute values |(} | = |(r,[. This means that we can find |7 | as above.
Then we call m, essentially unitary if the Hecke module 7, = m, ® \C;prl is
unitary.

These boring considerations will be needed later, we will see that for an
irreducible coefficient system M the H?(S% . M) ®@C is essentially unitary (see
8.1.7).

Abelian representations

Let us assume that the derived group G(l)((@p) has non proper normal sub-
group of finite index (this is true in most of the cases, for instance for G =
Gl,,/Q,, then it is easy to see that a finite dimensional, admissible and abso-
lutely irreducible representation is one dimensional and given by a character

Xp * G(@p)/G(l)(QP) — C*.

6.3.5 The Satake isomorphism

In the formulation of this theorem I will use the language of group schemes,
the reader not so familiar with this language may think of Gl,, or the group of
symplectic similitudes GSp,,. Since we assumed that for p € 3 the integral struc-
ture G/Spec(Z,) is reductive it is also quasisplit. We can find a Borel subgroup
B/Spec(Z,) C G/Spec(Z,) and a maximal torus T /Spec(Z,) C B/Spec(Z,).
Then our torus 7 /Spec(Z,) splits over an unramified extension E,/Q, and
the Galois group Gal(E,/Q,) acts on the character module X*(7 x E,) =
Hom(7T x E,,Gy,). Let {a1,a9,...,0;} C X*(T x Ep) be the set of positive
simple roots, it is invariant under the action of the Galois group. Let W (Z,) be
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the centraliser of the Galois action in the absolute Weyl group W. We introduce
the module of unramified characters on the torus this is

Homynram (7(Qp), C*) = Hom(T(Qp)/T(Z,),C*) = A(T). (6.64)
Since we have T(Qp) = B(Q,)/U(Q,) the character n, € A(T) yields a char-
acter 0, : B(Q,) — C*. We write the module structure additively, i.e. (91, +
M2,p)(%) = M1,p(2)02,p().

The group of (rational ) characters Hom(7,G,,) = X*(T) “(Fr/Q) ig a
subgroup of A(T) : An element v € X*(7) G21(Fr/Q) defines a homomorphism
T(Qp) — Q, and this gives us the following element z — |y(z)|, € A(T)
which we denote by ||,. Here of course |a|, is the usual p-adic absolute value of
a € Q,. We can even do this for elements v ® + € X*(T) ® Q, then y® +(z) =

1/n
(@)™ € R

Our open compact subgroup will be K, = G(Z,). Since we have the Iwasawa
decomposition G(Q,) = B(Q,)G(Z,) = B(Q,)K, we can attach to any n, €
A(T) a spherical function

Pn, (9) = &n, (bpkp) = 11p(bp) (6.65)

We introduce the induced representation

d5&)n, = { : G(Qy) = C|f(bg) = ny (b) f(9)} (6.66)

(see 6.70) It is clear that ( Indgggzgnp)KP = C¢y,, We call these representations
spherical representations.
Since Indgggz %77,, is also a module for H,, it follows that spherical function

is of course an eigenfunction for H, for h, € H,

/ b, (97)hp () = (1), (9) (6.67)
G(Qp)

and &(n,) : hy — hy(1,) is an algebra homomorphism from #,, to C, hence
S(np) € Homayg(Hy, C). Of course the measure dz gives volume 1 to G(Z,) =
K,.

The subgroup W(Z,) of the absolute Weyl group acts on X*(T") and hence
on A(T), we denote this action by (w,n,) — sn,. We also define the twisted
action by

(w,mp) = w17 2= (wip) (Jwp = ply, (6.68)
here p € X*(T') is the half sum of positive roots.

The theorem of Satake asserts:

Theorem 6.3.1. The map G is invariant under the twisted action, i.e we have
S(w-np)) = &(np) and

AT)/W(Zy) -S> Homag(H,,C)

is an tsomorphism.



6.3. THE ACTION OF THE HECKE-ALGEBRA 245

The Hecke algebra is generated by the characteristic functions of double
cosets Kpt, K, where t, € T(Q,) and where for all simple roots o € m we have
la(tp)]p <1, 1ie. t, € T4(Q,). Then the evaluation in (6.67) comes down to the
computation the integrals

/ b, (92 = Ty (1), (9) (6.69)
KptpKp

We discuss this evaluation in (7.1.2)
Admissible basis +ramified induced rpps

6.3.6 Spherical representations

Now we assume that Let ' C C be a finite extension of Q and let V/F be
a vector space. We choose K, = G(Z,), i.e. p is unramified. An admissible

representation (i.e. for any open subgroup K}’7 the space VEs of invariants is
finite dimensional and V = UV %»)

7t G(Qp) — GL(V)

is called spherical if V» # 0, and this space is a module for the Hecke algebra.
If the representation is absolutely irreducible, then it is well known (Refer-
ence) that dimp VE» = 1, this is a one dimensional module for Hk,, i.e. a
homomorphism 7, : Hg, — F. The G(Q,)— module V' is determined by the
Hk,- module VE»_ Then it is well known that we can find a finite normal ex-
tension Fy/F and an 7, € Hom(A(T), F{*) such that V ® F} is isomorphic to
a subquotient of the induced representation

IndZe" i, = {f : G(Qy) = Filf(bg) = 1p(b)f(9)} (6.70)

where f satisfies the (obvious) condition that there exists a finite index subgroup
K, C K, such that f is invariant under right translations by elements &’ €
K. In general the induced representation will be irreducible and then it is
isomorphic to the representation V ®@p F.

6.3.7 Intertwining operators

G(Qp
Ind BEngnp

( Indggg‘; gw -np)E» are isomorphic. We give a proof of this fact, since we need
it later in Chapter 9 when we discuss the Eisenstein cohomology.

The theorem of Satake implies that the two Hecke modules ( )&» and

We only discuss the case that G/Z, is split, at the end we say something
how to modify the argument for quasisplit groups, We change our standpoint
slightly, we introduce the field Fi[[q]] of Laurent power series

Fillg] :={P(q) = > avq”|a, € F1}.
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For any character v € X*(T) we define a homomorphism v — Z. It de-
fined by the requirement that for any cocharacter xy € X,.(T) we have the
relation y(x(t)) = t<¥7> ( See 1.1.2). Now we consider characters 7, ® v :
T(Q,)/T(Z,) — Fi[[q]]* which are given by z — 1, (z)q" ). :

As before (6.70) we define the induced representation

IndZ(&")n, @ 4 = {f : G(Qy) — Fullgl] | £(bg) = mp(®)a” ® f(9)}  (6.71)

The vector space Ind ng‘"gnp ® v can be identified to the vector space of

F1[[g]] valued functions f on G(Q,)\G(Q,) = B(Z,)\G(Z,), which are invariant
under right translations by elements of a suitable open sub group K } (depend-
ing on f). Then it is clear that this space has a countable basis fo, f1,...
consisting of F; valued functions which are invariant under smaller and smaller
open compact subgroups. If g € G(Q,) we have Ry(f;) = > a; ; fy where only
finitely many of the matrix coefficients a; ; are zero.

We analyse how an element g € G(Q,) acts on Ind EQ”gnp ® v. We know

that IndB(Q Vo @7 = Uk ( Indgggpgnp ® ,Y)K; where K, runs over all open

compact subgroups. Then the right translation by g maps

—1 gt
Ry (Indg(n, )% = (d(Eln, @) %5 (672)

The functions in these induced modules are determined by their restriction to
K, = G(Z,). We can find a basis {fo, f1,f2..., ft} given by functions f; :
B(Zy)\G(Zp)/ K, — F1 Then the right translation by an element g € G(Q,) is
given by

Ry: f={z— f(z)} = {z— f(zg)}; here x € G(Z)) (6.73)

then we use the Iwasawa decomposition and write

g = b(zg)k(zg) = n,(b(xg))q” ® f(k(xg)).

We have B(Q,)\G(Q,) = B(Z,)\G(Z,) and the right multiplication by g is given

by x — k(zg). If now choose a basis f§, f7, fa, ..., f; as above for ( IndBEQ gnp®

~7)9" K39 then it becomes clear that

(fi) = aijf;

where the matrix coefficients a; ; € Filq,¢7'].

Now we describe the well known process to write an explicit intertwining op-
erator. This operator is discussed at many places in the literature, but there the
basic field for the vector spaces is always C. Here we are in an arithmetic con-
text and our representations are defined over a number field F' or over F[g]] and
this requires some algebraic arguments. But in principles there is no essential
change.

Under the assumption that 7 is in the positive chamber (see below) our
intertwining operator is given by an integral
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G(Q, T (w,np®7) G
T(w,np ®7) : IndBE%‘;gnp@’y BN InnggZ;w-np®w~’y
(6.74)
f(g) = fU(w)(Qp) f(wu.g)du
This needs some explanation. Here U™ is the product of all the one parameter
subgroups Ug C U for which w™!3 < 0. Then it is clear that for any uy € U(Q,)

/ f(wuugg)du = / flwug)du.

U (Qp)

Moreover we see that for an element ¢ € T(Q,)

fmw)(@p) f(wutg)du = fU<w>(Q,,) fwtww= " utg)du = wn, @ ((t) =

= H,@EA(w) ﬂ|p(t) fU(w)(Qp) f(wug)du

and it is rather obvious that the factor in front is w- (1, ® ). Hence we see that
indeed the image of T'(w, n, ® ) lands in the right space.

We have to discuss the ”convergence” of the integral. For this we consider
the special case that w = s; the reflection at a positive simple root «; Then the
two unipotent groups Uy, /Z and U_,,/Z generate a three dimensional semi-
simple subgroup H,,. We have a surjective homomorphism h,,, : Slo/Z — H,,
which induces isomorphisms of Uy /Z — U,,/Z. Then we can say

/U ai(@p)f(siuai@duai: ., f(hax(o1 D (é 11‘)>g)du (6.75)

Since we assumed that f is right invariant under some open compact subgroup

K, ,ie. f(gky) = f(g) for k, € K, we can an integer mo > 0 (depending on

g suchahat 7k, (1) (5“7 P =1tk (( 5) (5 5o o

v € p™o. Hence our integral becomes

Jep sy Fa (5 1) (o 1 )porin

0 1 1 u
Zn>mof<p"zp\p"HZp)/pmozpf(hai((1 1) (0 1>)g)d“

For each summand the integral is a finite sum. For n > 0 we write u = p~

then
0 1 1 wu n v )
(—1 0) (0 1) = (po p’n,))kp with k, € Slx(Z,).

We introduce the cocharacter o : ¢ — hq, ( (é t91>) then

(6.76)

e

Flay (0" kp(e)g) = mp(a) ()" g7 f(kp(e)g)
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We assume that v is in the positive chamber, i.e < oY,y >> 0 then it becomes
clear that our integral in (9.4.2) yields an honest Laurent power series in the
variable ¢, and hence we see that the integral provides an intertwining operator
in the case w = s,

We have a closer look at the case fo = ¢, In (9.4.2), we choose g = 1 and
mo = 0. Then the integral simplifies to (the right hand side becomes)

1—p(oy (p))g=" 7>
L= mp(a) (p))pg=ei">

- v
L ) S ol )<t =
n=1

We observe that this last expression is a rational function in the variable q.
This has simple consequences for the intertwining operator on the entire induced
representation.

It is well known that the induced module Indgggignp ® 7y is irreducible,

therefore the translates Rgy(fy) generate this module. Then we can conclude
that y
1 — np(ey (p))g=* 7>
1 —1p(ay (p))pg=* 7>
and this means that the matrix coefficients of the intertwining operator are
ratios of Laurent polynomials in ¢q,¢~! with coefficients in F; divided by the
polynomial 1 — 7, (c;’ (p))pg=ei >,

Then it is clear that we can replace the assumption < o,y >> 0 by <
a),y ># 0, we also constructed the operator T'(sq,, Sa;, (1, ® 7).

T(s0,,mp @7)(Ry fo) = (Rg fo)

Now it is easy to understand the general intertwining operator T'(w, n, ®y).
We denote by A(f) the set of positive roots 3 for which w=!3 < 0,( then our
subgroup U™ = HBGA(“’) Up). If it is not empty (i.e. if w # e), then it contains

+

a simple root 1 = a;,. Then w = s,, w; and Ag_w;) = SailAS:U) \ {—a, }.

’
. w . . . .
This set ASF 1) again contains a simple root a;, = Sq,; S2. This way we get an
expression as a product of reflections w = sq,, e Sa this expression is of

shortest length. This also gives us an ordered listing A(f’) ={B1, B2, -, Biw) -
Then we get for our intertwining operator

T(w,m, @) =T(s w” - (p®7))---0 T(Saiz ySag, (np ®7)) © T(Sail s (p ®@7))

(6.77)

ail(w)7

We look at the intermediate expressions w = S, ... Sq, W, = wyw!, and
1 v

consider T'(sa; Wy - (Np ® 7)), we look at its effect on the spherical function

L—w, 2 - (np ®7)(a). (p))
L—puw,ty - (np @) () (p)

v

T(Saiu ) w;_ll . (np ® 7))¢w;711(np®ﬂy)) = )d)w;l(np@-y)
(6.78)

Now it is easy to see that

w, - (p@) (@), (p) = w, (@) (), () [wy, 2y p—plp = (@) (B (p))p~*P)F!

where s(3,) is the sum of the coefficients if we write 8 as the sum of simple
roots. Hence we finally get
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Hence we get

l(w)—1
1 — (1, ©7)(B) (p))p—* P+

T = || w- 6.79
ot @)oo = L T, @) (5 ) et (619

We get the following

Proposition 6.3.3. The matriz coefficients of the intertwining opemtor are
rational functions in q. More precisely the become polynomials in q,q~ " if we

multiply them by Hl(w) 1( p(n, @) (BY (p))p —s(Bu)+1y,

Now we can specialise ¢ — 1 provided Hf,(:())_l(l—pnp(ﬁ,y (p))p~sB)+1) £ 0.
Hence we get an intertwining operator
G G
T(w,mnp) : IndBEg” np — IndBE%”)w Tp (6.80)
This implies that we get an intertwining operator between the one dimensional
Hecke modules
T Ind (") 1,) 7 — (Indfe7 w - ,) % 6.81
(T'(w,mp) : (In )77;0) %(HB(anp) (6.81)
which is an isomorphism provided the numerator evaluated at ¢ = 1 in (6.79) is
non zero. This shows the that the Satake map & is invariant under the twisted
action of the Weyl group, i.e we have h(w - n,) = h(np) in (6.67) , but still
under the proviso that the numerator and the denominator in (6.79) are non
zero for the given 7, and ¢ = 1. But it is easy to see that we can drop this
assumption. To see this we look at an individual factor T'(sa, ,w, ;- (17, ®7)).
If the denominator evaluated at ¢ = 1 is zero we normalise by multlplymg by
the denominator and then clearly the normalised operator evaluated at ¢ = 1
yields an isomorphism

1—pw, 2y - (np @) (), (0)T (sa,, - w2ty - (Mp @ 7)) |g=1 :

G G
(Indger w,ymp)Ke = (Tnd e wyt - ,) K

It the denominator is non zero but the numerator 1— (n,)(8Y (p))p~*#)+1 =0,
then we apply the same considerations to the operator in the opposite direction

G(Q,p G(Qp
T(sa,,w, " (5 @)+ (Indgiewy " -y ©9) = (IndGS" wyym, ©7)
(6.82)

and now an easy Calculation shows that we get an isomorphism of Hecke modules

(Indggg”g <) K (Indggg"g w;, ' m,) K7, This shows that the Hecke

algebra modules ( Indggg”)w . np) » are all isomorphic, so we almost proved

Theorem 6.3.1.
The orbit

{ps oy w -, Fwew = w(np)

will be called the Satake parameter of the representation Ind ngpgnp (If it is
irreducble). We come back to this in the next chapter.
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If irg is the spherical representation attached to the Satake parameter 7, 1

then we have a pairing | dualSat

Hﬁ—p X Hﬁr; — C
(6.83)
f1 X fa= pr f1(kp) fa(kp)dky

This tells us that the dual module to H,, = H ;I; ? has the Satake parameter
U L. The representations Hz, are called the representations of the unramified
principal series.

We may consider the case that 7, is a unitary character, this means that
N+ T(Qp)/T(Zy) — S'. Then we have n, ' (t) = 7,(t) and our above pairing
defines a positive definite hermitian scalar product

<, >: Hﬁ-p X Hﬁp — C (684)

which is given by
<o fo o= / £1 ) o (), (6.85)
KP

If we allow for f € Hj, all the functions whose restriction to K, lies in L*(K),)
then Hz becomes a Hilbert space and the representation of G(Q,) on Hz, is a
unitary representation.

These representations are called the unitary principal series representations.
It is not the case that these representations are the only unramified principal
series representations which carry an invariant positive definite scalar product.

(See [Sat]).

6.3.8 Back to cohomology

The case of a torus and the central character

We consider the case that our group is a torus 7'/Q. This case is already dis-
cussed in [34]. Our torus splits over a finite normal extension F/Q, here we
choose F' C C. Our absolutely irreducible representation is simply a character
v : TxgF — Gy, it defines a one dimensional T'x g F'— module F[y]. where F[v]
is simply the one dimensional vector space F' over F' with T xg F' acting by the
character v. We now choose an open compact subgroup K? C T(Ay) and con-

sider the cohomology H* (8%, F[]). Since in this case the group T'(A) is abelian
7

these cohomology groups are modules under the group T(A) = (T (R))xT'(A )
and we want to understand the cohomology groups as such. For the following
see also [34] 2.6.

We consider the map p : Sk — mo(Skr) and we see easily that m(Skr) =
s s 7
T(Q)\7mo(T(R)) x T(Af)/K7 is a finite abelian group, it is a generalised ideal

class group. The fibre of this map is E(T)\(T(R)(?)/KL) where E(T) = T(Q)N
{e} x Ky, this is some kind of group of units. Our torus contains a maximal
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anisotropic sub torus 7™ /Q and E(T) C T (R)®). The torus T(*™ x R
again contains a maximal anisotropic sub torus 7(“"*) and by construction we
have KZ = T(em#)(R), this is a product of circles. The quotient 7@ xR /T(@"x)
is split over R. This implies that 7@ x R/T(@)(R)(©) = (R, ¢x)* = R* where
t = dim (7)) —dim(T(*"®)). The group E(T) is a lattice in R* and the quotient
E(T)\T) x R/T@)(R)®) = (S)! is a product of circles. If T(*P)/Q is
the split component of 7/Q then T¢P)(R)(®) = R* and hence we see for the
cohomology of the fibre (the connected component)

H*(B(T\T(R)V /KL, F)]) = A*(E(D)) © F[1]

We recall the notion of an algebraic Hecke character of type v. We assumed
F C C, then 7 induces a homomorphisms T'(C) — C*. The restriction of this
homomorphism to T'(R) is called v : T(R) — C*.

A continuos homomorphism

¢ = QSoo X HpQSp = ¢<><1 X d)f : T(@)\T(A) — C*

is called an algebraic Hecke character of type 7y if the restrictions to the connected
component of the identity satisfy

PoolTo)(R) = Voo |70 (R)-
The finite part ¢5 : T(Ay) — QX is trivial on some open compact subgroup
K}F C T(Ay). We also say that a homomorphism )y : T(Af)/K}F — Q* is an
algebraic Hecke-character, if it is the finite part of an algebraic Hecke character
Y = oo X ¢ which then is uniquely defined.
If this character ¢ is of type 7 then clearly ¥ |E(T) = 1 and we can say

that our character v with type(y)) = «. must be trivial on the Zariski closure of
E(T). This Zariski closure does not depend on the level K}F and it is is a sub

torus T(C™ < T'/Q. We also define the CM (complex multiplication) component
T(CM) = T/T(nCM)

We summarise:
Proposition 6.3.4. A charactery € X*(T' X E) is the type of a Hecke character
¢ if and only if v € X* (T x E). If KJT s given then the algebraic Hecke
characters of type v form a torsor under the group of Dirichlet characters

X : T(Q\(mo(T(R)) x T(Ag)/Kf — C*,

i.e.. if ¢g is a Hecke character of type v then the others are the characters ¢ox

In [34], 2.5.5 we explain that the cohomology H ‘(S};T, F[v] vanishes ( for
f

any choice of K? ) if 7y is not the type of an algebraic Hecke character. Hence

we assume that v € X*(T(“™M x E), then it is easy to see that there is a
finite normal extension F; C F' - depending on the level K]?— such that for all

characters ¢ : T(Af)/K? — C* the values are in F}*. for Now we give the
complete description of the cohomology in [34], 2.6:

H'(SITq,F[WD ®F = o, A*(E(T)) ® Fi[¢y]. (6.86)
o5 T(Ap)/KT)=Fi:type(os)=n
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If we return to our group G/Q and if we start from an absolutely irreducible
representation G xg F — GI(M) then its restriction to the center C/Q is a
character (yq. Our remark above implies that this character must be the type
of an algebraic Hecke character if we want the cohomology H7 (SIG(f,./\;l) to be
non trivial. (Look at a suitable spectral sequence).

In any case we can consider the sub algebra Cx, C H, generated by central
double cosets Kyz Ky = Kyzp. with 24 € C(Ay) This provides an action
of the group C’(Af)/KJ? on the cohomology H;(Sﬁf,/\;l). Then the following
proposition is obvious

Proposition 6.3.5. Let Hr, be an absolutely irreducible subquotient in the
Jordan Hdélder series in any of our cohomology groups. Then C(Af)/K]? acts
by a character Cr, on Hy, and (x, is an algebraic Hecke character of type (.

Note that (y is the restriction of the abelian component § in A = AV 4§
to the center.

The cohomology in degree zero

Let us start from an absolutely irreducible representation r : G x F' — Gl(M),

we want to understand H°(S% f,/\/l): To do this we have to understand the

connected components of the space and the spaces of invariants in M under the
discrete subgroups T'?s in 1.2.1. We assume that the groups I'Yysr N GM(Q) are
Zariski dense in G(). Then it is clear that we can have non trivial cohomology
in degree zero if M is one dimensional and G acts trivially. Hence M is given
by a character § : C' x F — G,,, x F.

To simplify the situation we assume that the assumptions in (6.1.3 ) are
fulfilled and we have a bijection

mo(S%,) = mo(SS, (6.87)

K¢ foC’)
where K OCO/ and KJ?, are the images of the chosen compact subgroups respec-
tively. With these data we define SIC(,C, and we can view M as a sheaf on SIC<,C,,

;oo f
in our previous notation it is the sheaf F[d].

Then we get for an absolutely irreducible G x F' module M -and under the
assumption that the T2r N G (Q) are Zariski dense in GM- that (See ?7?)

0 if dim(M) > 1

. (6.88)
®¢f:type(¢f):§ Fi¢ if M= F[)]

HO(SE,, M®F) = {

The density assumption is fulfilled if GV)/Q is quasisplit. We also observe
that we have the isogeny do : C — C' (See (1.1). Then it is clear that the
composition d¢ o d is the character (o in section ??7. Remark on Poincare
duality

6.3.9 The Manin-Drinfeld principle

We return to the general situation. We start from a rational (preferably ab-
solutely irreducible) representation p : G xg Fy — Gl(Mp,) where Mg, is a
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finite dimensional Fj vector spaces. We have an action of H on our cohomol-

ogy groups H3(S¢ f,/\/l F,)- Most of the time we will consider the restriction of

this action to the central sub algebra H () We choose a finite normal extension
F/Q, F D F, such that all irreducible subquotients are absolutely irreducible.

We introduced the sets Coh(Hs (ng ,M)), Coh(z)(H; (SIG{f,M)).

We say that for a cohomology groups Hi(ng,/\;lF) (resp. Hc'(ng7/\/~lF)
satisfy the (strong) Manin-Drinfeld principle, if

Coh® (H{ (8§, M) N Cob® (H'((SE, ). M) = 0

(resp

Coh® (H{(S§,, Mr) N Coh™ (H'"1(0(SF,), MF) = 0.
An equivalent formulation is: The H*) module H !i(ng,.A;l F) is complete in
H' (SIG(f ) MF)
If the Manin-Drinfeld principle is valid we get canonical decompositions

HI(SE,, My) = Tm(H(SE,, My) — HI((SE,), Mr)) @ Hi(SE,, Mp)

HU(SE,, M) = Tm(H=Y(0SE,, My) — HI(SE,, M) & Hi(SE,, Mu).
(6.89)

which is invariant under the action of the Hecke algebra. ~
In the first case we can consider the module Hy, (ng ,Mp) C Im(H (Slcéf Mp) —

Hi(a(SIG(f), M) as a submodule in Hi(SIG;f , M) and this submodule is called
the Eisenstein cohomology. In the second case we will call the above image of the
boundary cohomology the Eisenstein subspace or compactly supported Eisen-
stein cohomology and denote it by

Im(H' 1 (OSE . Mp) — HU(SE,, Mr)) = H. 5is(SK,, Mr).
Therefore we get the decompositions

3 5 5 (6.90)
HZ(SIG(vaF) :H!l(SIGQvMF)@Hé,EisS}G(f’MF)

We could also speak of the weak Manin-Drinfeld principle where we replace
H ) by the full Hecke algebra.

If we know the Manin-Drinfeld principle we can ask new questions. We re-
turn to the the integral cohomology H3 (ng , Mo, ) and map it into the rational

cohomology, then the image is called H? (S]Céf7./\;loF) int C HJ (S}Céf,./\;lp) this
is also the module which we get if we divide Hy (SIG(f,./\;loF))) by the torsion.
(This may be not true for ? =!.(see??))

We introduce some terminology. Let R be any Dedekind ring, let K be its
quotient field. We consider finitely generated modules over R. If X is a finitely
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generated R-module then we have the map X — X ®pr K. The kernel of this map
is the module X 4,5 of torsion elements, the image is called X j, it is a locally
free R-module and equal to X/X tors. If we have a decomposition submodules
XK =U®YV then we consider U int, Vint C X int and we get a decomposition
up to isogeny

Xint DU int @ Vi with X int/(Uint D Vint) finite

where the term up to isogeny is a synonym for the finiteness of the quotient
on the right. At this point we notice that the quotients X int/U int, X int/Vint
are torsion free. We call a submodule Y C X i saturated , if X /Y is
torsion free. Therefore we will call the above decomposition up to isogeny also
a decomposition into saturated submodules.

For instance the Manin-Drinfeld decomposition above yields ( a decomposi-
tion up to isogeny

H{(SE,, Moy) int ® H'yis(SE,» Moy) e C H'(SE,, Mog) ints

It is one of the central questions discussed in this book to understand the quo-
tient

H'(SE,, Moy) ine/(H] (SR, Moy ) int ® H'gio(SE,, Moy) i) (6.91)

In the earlier chapters 3-5 we discuss this problem in a very specific case.
Our group is G/Z = Gly/Z, the open compact subgroup is Ky = [[, Gl2(Z,).
Then S;G;f = Sly(Z)\H, our coefficient system is the module M? (See section
[?]) and we give an answer to the above question.

I am convinced that there are many more cases in which the above question
is interesting and has an interesting answer. The structure of the quotient
should be related to the arithmetic of special values of L-functions which are
attached to Hecke eigenclasses in H®(9S§ . M) ( See Chapter 9) This is highly
conjectural but the experimental data are very convincing.

The same applies to the decomposition of H{ (ng , M) int 1N isotypical sum-
mands. We put

H'Z(SIG(f7M)(7Tf) N H!i(SIG(f7MOF) int = H'Z(SIG(f’Mop) int(ﬂ-f)'
Then we get an decomposition up to isogeny
P HI(SE, Mo,.) mi(7y) C HI(SE,, Moy) int- (6.92)
Tf

It is a very interesting question to learn something about the the structure
of the quotient of the right hand side by the left hand side. The structure of
this quotient should be related to the arithmetic of special values of L-functions.

(See [52]).

The action of 7y(G(R))

We have seen that we can choose a maximal torus T/Q such that T(R)[2]
normalizes Ko,. We know that T(R)[2] — mo(G(R)) is surjective and that
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T(R)[2] N GM(R) C K. This allows us to define an action of mo(G(R)) on
the various cohomology groups and this action commutes with the action of
the Hecke-algebra. Therefore we can decompose any isotypical subspace in a
cohomology group into eigenspaces under this action

H3(Sg, M) (ny) = @ H? (S, M) (s X exc) (6.93)

and for the integral lattices we get a decomposition up to isogeny

D HI(SE, Moy) mi(ms x €xc) C H{(SE,s Moy) int (6.94)

TfX€oo

6.3.10 Some questions and and some general facts
Homology

We may also define homology groups Hi(S[G(f,MA) and Hi(SIG(fﬁS[G(f,M/\),
here M, is a “cosheaf”. The “costalk” Mz,x is obtained as follows: We consider

7~ (z) and
@ ng)\a

g:ngfo/K‘f

and the action of G(Q) on this direct sum. Then M, , is the module of coin-
variants. If we pick a point y =y x ngf/Kf, which maps to = € ng then we

get an isomorphism

M, =~ (ng,\)F@f)-
Y
We define the chain complex
Ci(SF,  M,)

and the above homology groups are given by the homology of this complex.

If we assume that Sﬁf is oriented (ref. to prop 1.3) then we know (Chap. II
2. 1. 5) that we have isomorphisms which are compatible with the fundamental
exact sequence

Hi—l(éstcg'f,/\%) - Hd—i(a;[C%YWM/\)
Hg(Sﬁt,/\;lA) — Hdi(Siéf?M)\)
H%S}i,/\%) —  Ha-i(S§, agsgf’/\/l,\)
Hi(aséf,/\?m = Hg-i-1(9S% , M,)

i 4

poincdu
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6.3.11 Poincaré duality

We assume that SIG(f is connected. If we denote the dual representation by
MY = M,y (we choose the right lattice My C Mg)) we have the canonical
homomorphism ®y : My ® MY — Z and the standard pairing between the
homology and the cohomology groups yields pairings

HI(SGE,, My) x Hi(SE 08¢ . MY) — H(SE MyoMY) — H(SE . Z)
3 T ! 2
HI(SE M) x Hi(SE , Myv) = HUSE MyoMY) — HSE ,7Z)

This pairing is of course compatible with the isomorphism between homology
and cohomology and then the pairing becomes the cup product. We get the
diagram

HI(SE,, M) x HT(SE MY)  — HUSE MyoMY) — HISE.Z)
1 T 1 !
HY(SE,, My) x HIT(SE M) — HI(SE, , Mao M) — HI(SE,.7)

We know that the manifold with corners 88;% ”smoothable” it can be ap-
proximated by a C— manifold and therefore we also have a pairing <, >g on the
cohomology of the boundary. This pairing is consistent with the fundamental
long exact sequence (Thm. 6.2.1). We write this sequence twice but the second
time in the opposite direction and the pairing < , > in vertical direction:

o HNSE, My s HPOSE, M)
X X
— HIP(SE My) = HEPTHOSE M) e (6.95)

1<, > 1<, >
HYSG,.Z) &S HEY0SE,.Z)

then we have: For classes £ € HP(SIGQ,./\;I,\),U € Hd_p_l(ang,/\;lAv) we have
the equality ' '

<&,6(n) >=da(<7(£),n>0) (6.96)

Non degeneration of the pairing

The spaces ng and BSI% are not connected in general. Let us assume that we
have a consistent orientation on ng. Then each connected component M of ng

is an oriented manifold which is natural embedded into its compactification M.
It is obvious that the cohomology groups are the direct sums of the cohomology
groups of the connected components and that we may restrict the pairing to the
components

HP (M, My) x HI"P(M, Myv) — HI(M,Z) = 7. (6.97)

We recall the results which are explained in Vol. I 4.8.4. The fundamental
group (M) is an arithmetic subgroup T'p; C G(Q) and My, M v are Ty
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modules. For any commutative ring with identity Z — R the I'j; modules

M) ® R, Mv ® R provide local systems M) ® R, ij\_ég R, and we have the
extension of the cup product pairing

HP (M, My ® R) x HP(M, Myv @ R) — HY(M,R) = R

Proposition 6.3.6. If R =k is a field then the pairing is non degenerate. .
If R is a Dedekind ring then the pairing then the cohomology may contain
some torsion submodules and

HP(M, My ® R)/Tors x HYP(M, Myv @ R)/Tors — HY(M,R) = R
s non degenerate.

(See Vol. T4.8.9)

We want to discuss the consequences of this result for the cohomology of
H3 (ng , M)). Before we do this we want to recall some simple facts concerning
the representations of the algebraic group G/Q. We consider two highest weights
A, A1 € X*(T x F) which are dual modulo the center. By this we mean that we
have (See 6.46)

A=Y 45 A = —wo(A\Y) + 6, (6.98)

Then § + 47 is a character on X*(C’ x F') and yields a one dimensional module

for G x F, of course the action of G(!) on this module is trivial. Then we get a
G invariant non trivial pairing

Mg X My, 7 — Noox,
which induces a pairing
HY{(SF,, Map) x H(SE , Mo, 1) = HY(SE,, Naox,);

this only a slight generalization of the previous pairing.
Now we recall that (under certain assumptions) we have the inclusion 7o (S}Cf-f) —

7'('0(56”

Kg;’foC') and then we get

H((:i(SICgf?N)\o)\l) C HO(S[C(OCO’XKfC”NAokl) = @ FX/
x/:type(x’)=Xox

The character x’ has a restriction to C'(A) let us call this restriction x.

The group C(Ay) acts on the cohomology groups and this action has an
open kernel Kfc. Hence we can decompose the cohomology groups on the left
hand side according to characters

H(SE, Mar)= @  HIASE Mar)C)  (6.99)
¢ritype(¢y)=6
HYHSE,, My, r) = ) HYUSE,, Mo p)(CLy). (6.100)

C1,p:type(¢n, 5)=51

With these notations we get another formulation of Poincaré duality.
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Proposition 6.3.7. If we have three algebraic Hecke characters CfaCl,faX/f of
the correct type and if we have the relation (5 - C1,y = X5 then the cup product
induces a non degenerate pairing

H{(SE,, Mor)(Cp) x HITHSE My p) (Cry) = FX/

This is an obvious consequence of our considerations above. Fixing the
central characters has the advantage that the target space of the pairing becomes
one dimensional over F', The field F' should contain the values of the characters.

We return to the diagram (6.95) and consider the images Im(r?)(¢;) =

Im(Hg(SIG(f,./\;l)\,F)(Cf) — Hg—q—l(asgf,MxF)((f) and Im(rV-4=271). Then
the following proposition is an obvious consequence of the non degeneration of
the pairing and (6.96)

Proposition 6.3.8. The images Im(rP(C¢)) and Im(rV-2=P=1)((y.¢) are mu-
tual orthogonal complements of each other with respect to <, >p .
The pairing in proposition 6.5.7 induces a non degenerate pairing

H{(SF,, Mxr)(Gp) x HTHSE,, Ma, 1) (Crp) = FX.

Proof. Let n € Hd_p_l(CLf) Then we know from the exactness of the sequence
that n € Im(rV 3 P=1)(¢ ;) <= 6(n) =0 <= < &(n), >=0forall ¢ €
HP(SE,, M))(Gy) == < n,r(€) >= 0forall € € HP(SE ,My)(() <= <
n,& >p=0 for all & € Im(r?)((y).

The second assertion is rather obvious. If we have { € Hf (S[GQ S MN)(Cr) 6 €
H!d_p(ng,/\;l,\v)(Cf) then we can lift either of these classes - say &;1- to a class
£ € Hf(SIG(f,./\;l,\)(Cf) and then < &,& >=< £1,& > . It is clear that the
result does not depend on the choice of class which we lift. It is also obvious
that the pairing is non degenerate. O

Of course we also have a version of proposition 6.3.8 for the integral coho-
mology. Since we fixed the level we have only a finite number of possible central
characters (y, (1,5 of the required type. The values of these characters evaluated
on C(Ay) lie in a finite extension F//Q and of of course they are integral. If we
now invert a few small primes and pass to a quotient ring R = Op[1/N] then we
get the decomposition (6.99 ) but with coefficient systems which are R-modules:

Hé(ngaMMR) = @ Hé(ng,./\;l,\)R)(Cf) (6.101)
Critype(¢s)=o
Hd_i(SIG{f’MAl,R) = @ Hd_i(SIG(pM)\l,R)(CLf) (6'102)
CrrtypPe(Cr r)=61
Then it becomes clear that we get an integral version of proposition 6.3.7 where

replace the F-vector space coefficient systems My r by R -module coefficient
systems. We get a pairing (See [39] 4.8.4 )

H(SE,, Mxr)(Cr)/Tors x H*(SE, My, r)(C1p)/Tors — R’ (6.103)

and this pairing is non degenerate. (See [39] Thm. 4.8.9. The finiteness as-
sumptions are easy consequences of reduction theory)
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We recall the notion of non degenerate. Our ring R is a Dedekind ring and
all our cohomology groups are finitely generated R modules. If we divide any
finitely generated R-module by the subgroups of torsion elements then the result
is a projective R-module and it is locally free for Zariski topology. An element
£ e Hé(Sﬁf,/\;l,\ﬂ)(Cf)/Tors is called primitive if the submodule R¢ is -locally
for the Zariski topology- a direct summand or what amounts to the same if
Hi (Slcéf , M.r)(Cy)/Tors/RE is torsion free. Then the assertion that the above
pairing is non degenerate means:

For any primitive element n € HZ(ng,/\;l,\ﬂ)(Cf)/Tors we find elements
£1,69,...,& € Hd_i(SIG(f,/\;l,\hR)(Cl,f)/Tors such that the ideal generated by
<&L,m>,<&,n>, ..., < &,n > is equal to R.

We want to formulate an integral version of (6.96). Here the statement is
not quite symmetric. It is clear from 777 that we get a pairing

H{(SF,, Mar) () ine X HYH(SE, Moy r)(Crp) et = RX'. (6.104)
It is also clear from proposition (6.3.6)
Proposition 6.3.9. This pairing is partially non degenerate. For any primitive

element 1 € Hd_i(SIG{f,./\;l)\hR)(CLf) int,l we find elements

£1,62,...,& € Hf(S;C?f,MA,R)((f) int

such that the ideal generated by < n,§1 >, < n,& >,...,< 1, > is equal to
R.

Here we see that the possibility that
H'(SE,, M, R)(Cr,p) et/ HI (SE s Mo ) (Cr) ine # (0)

plays a role.

Inner Congruences

We choose a highest weight A = \(*) 4-dd and the dual weight A = —wq()\) —dd.
Let us also fix a central character (y whose type is equal to the restriction of dd
to the central torus C.

We look at the pairing in prop. 6.3.8 where we assume in addition that
Cr = Cf_l and we take the action of the Hecke algebra into account, i.e we look
at the decomposition into eigenspaces (see(??)). Then we get a non degenerate
pairing between isotypical subspaces

H{(SE,, My p)(7p) x H ™ (SE, Myv ) (nf) = F

where we assume that the central characters of the summands are (y, C;l.
If we try to extend this to the integral cohomology. In this case the above
decomposition yields decompositions up to isogeny

H{(SE,, Mxr)/Tors > @, H{(SE,, Mx )/ Tors(ry)

- : - : 6.105
H (ng,MAvvR)/Tors >, H (S%f,M,\vyR)/Tors(wly) ( )
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where we should fix the central characters as above. We choose a pair 7y, w}/.
Then our non degenerate pairing from the above proposition induces a pairing

H{(S8F,, Mxr)/Tors(ns) x H(SF,, Myv g)/Tors(wy) - R (6.106)

and this pairing is non degenerate if and only if both modules are direct
summands in the above decomposition up to isogeny.

But it may happen that the values of the pairing generate a proper ideal
A(my) C R, and in this case the above submodules will not be direct summands
and this implies that we will have congruences between the Hecke-module 7y
and some other module in the decomposition up to isogeny. This yields the
inner congruences.

The ideal A(my) should be expressed in terms of L-values, in the classical
case this has been done by Hida [Hi].

6.3.12 The Gauss-Bonnet formula

Of course we can be more modest we may only ask for the dimension of the
cohomology groups H Z(SIG( . MQ) This question can be answered in some cases,
for instance we gave the answer Sly(Z) in section 2.1.4, and we will give the
answer in some more cases further down.

If we are even more modest we can ask for the Euler characteristic

VH(SE,. Mg)) = S (~1)! dim(H'(SE, . Mq))
K3

This question has an answer. We assume for the beginning that the subgroup
K¢ is neat (See 1.1.2.1) and we also assume that K, is narrow. Then ng is
a disjoint union of locally symmetric spaces on we can choose- in a consistent
way- an orientation on 8¢ . On these spaces exists a differential form of highest
degree, which is obtained from differential geometric data, this is the Gauss-

Bonnet form w®?. Then the Gauss-Bonnet theorem yields that

X(H*(S§,, Mg)) = dim(Myg) / wCB (6.107)

sg,
(See [32], [96],[84]).

We have a closer look at this formula. We can compute the differential form
wB explicitly.. The connected components of S]C(:f are of the form I';\ X where

X = G(R)/K. Then the top degree form w%? is a G(R) invariant form on
the symmetric space X. Since this form is G(R) invariant it is determined by
its value on A%(p). On p we have the euclidian metric given by the Killing form
and we chose an orientation. These two data provide a second top degree form
Wi on A(p), and hence an invariant form also called w® on X. These two

forms are proportional, i.e. we have
WG = koo (KM, (6.108)

the proportionality factor can be computed from the curvature tensor ( See [32],
2.2 Kobayashi-Nomizu) We have the following
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Proposition 6.3.10. The factor ko (G) is non zero if and only if G xgR is an
inner form of its compact dual G./R or in other words G xg R has a compact

mazimal torus. If it is non zero then it is a real number and its sign is (—1)%

We remember that G/R = G xg R, the Lie-algebra g is a Q-vector space.
The Killing form B : g x g — Q is non degenerate and hence defines a top degree
form wp on A% g. If we use the decomposition g ® R = Lie(Ky,) @ p then we
find wg = wgm A wHi and hence

/ wp = vol_ e (Koo )™ (6.109)
Koo B

The top degree form wp which is defined over QQ also provides invariant
measures wg,, on all the groups G(Q,) and also an invariant measure wg ~ on
G(R). We can multiply these measures and get the Tamagawa measure

W& = wB oo X [ [wp = w00 X WE (6.110)

p

this product is absolutely convergent and provides an G(A)-invariant measure
on G(A). This is the Tamagawa measure on G(A). It is an important fact,
that this measure does not depend on the choice of the top degree form wg.
If we multiply wp by a non zero number a € Q* then the local measures get
multiplied by |a|s at infinity and |a|, at the finite places. Hence we see that
wp and awp yield the same Tamagawa measure. The number

/ wgam —_ T(G)
GQ\G(4)

is called the Tamagawa number.

If we have written the Tamagawa measure as a product as in (6.110) we say
that the Tamagawa measure is represented by wg. The remark above tells us
that we may replace wg by any non zero invariant top degree form.

Now a miracle occurs

Theorem 6.3.2. If G/Q is simply connected then

/ wgam =7(G)=1
GQ\G(A)

This theorem was conjectured by Weil, he ..... For a general semi simple
G /Q we can consider the universal covering by a simply connected 7 : G*¢/Q —
G/Q, then 7(G) is a rational number which can be expressed in terms of Galois
cohomology data of the finite kernel of 7.

This gives us a way to compute the integral in (6.107). We recall that
SIG(f =, Ti\\GR)/K =, T\G(R) /Ko x2;K¢ /Ky (prop. 6.1.4) and hence

fs;gf w =3, fri\x WP = koo (G) 3, fri\x Wil =

Koo (G) _ Koo (G) Tam
W i fri\x wp = VoL i6oc (Koo) Vol (K ) fG(Q)\G(A) wa
(6.111)
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Hence we see that for a neat Ky

Koo (G)
VolwgOQ (Koo) VOlwgfom (Kf)

X(H®(S%,, Mq)) = dim(Mg)7(G)  (6.112)

We study the factor in front. We assume that the level group K is a product

over local factors. i.e. we assume Ky =[] ... Kp. Then clearly

1 1
VOlwg?fm (Kf) o ]; VOle,p (Kp) ’

the message is that the factor in front is a product over local contributions at
the places of Q, i.e. a local contribution at infinity and a local contribution at
each prime.

We study the local factors voly,, ,(K,). Of course we have to tell what K,
should be. To define such a subgroup K; we choose a flat integral structure
G/Z (See section 1.2.1) of G/Q and define K, a congruence subgroup of G(Z,).
We know that there is a finite set ¥ of primes such that for p € ¥ the following
is true

a) The group scheme G X Z,/7Z,, is semi simple and K, = G(Z,)
b) The top degree form wp, on A% (g ® Z,) is non zero mod p.

We think that it was Tamagawa who pointed out that under these conditions,
i.e. p € 3 we have

voly, , (I,) = p~ "9 #G(F),) (6.113)

For the following we refer to the lectures of R. Steinberg [98]. We recall the
well known formula for #G(F,). For the moment we assume that G/Q is an
inner form of the split Q -form, hence G x I}, is a split Chevalley group. Then
it is well known that

g _ 1,1 1 1. T 1

P HGE,) = (1= oy TI+ 4+ ) =T - ) (6114)

i=1 =1

where 7 is the rank of G/Q ( the dimension of a maximal tOI'Ub) and the m; are
so called exponents (See [?], [?] ,,,). The expression (1 — ﬁ) Cp(m;+ 1)1
where (;(s) is the local Euler factor of the Riemann-zeta function at p.

Hence we get

HHz 1 G ml+1 H<m1+1 (6.115)

VO] Tcmn Kf VO]

Hence we are left with the computation of vol,,  (K}) at the finitely many

ramified places p € . Of course vol,,, ,(Kp) = %

of vol,, ,(G(Zy)) may become tedious depending on how badly ramified the
group scheme G x Z,, at p € ¥ wilfre know that for » >> 0

The computation

voly,, ,(G(Zy)) = #G(Z, /p")p o)~ dmAr (6.116)
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where a(wpp) is an integer depending on the choice of wgam. Therefore it is
clear that vol,, ,(Kp) is a non zero rational number. For a very special case
we discuss this computation further down

Therefore we can sum up and get for a split and simply connected G/Q the
final formula

Koo (G) ( H:=1 Cp(mi + 1)~*

VOlwgoo (Koo) voly, , (Kp) ) dim(Mg) H ¢(m; +1)

i=1

(6.117)

Formulas of this kind have been proved by C. L. Siegel, I. Satake ([96] [84]
) and others. For the case of general semi simple groups this is in [32]. The
numbers m; in [32] are the numbers m; + 1 here.

X(H*(SE,, Mq)) =
peEXS

We also discuss the case that G/Q is not an inner form of the split form
Go/Q, we assume that Go/Q is simple, let ® be its Dynkin diagrams. It is
one of the form A,,n > 2,D,,n > 4 or Eg. In this case there is a unique
normal extension L/Q and a faithful action of Gal(L/Q) on @, in other words
an inclusion j : Gal(L/Q) < Aut(®). For these above diagrams the group of
automorphisms is of order 2 except we are in the case Dy, in this cases it is the
symmetric group in three letters ( See for instance [98] , Chap. 10, p.85).

Again we find a finite set ¥ of primes such that for p ¢ ¥ the group G x F,
is semi simple, but possibly only quasisplit,.assume we are in the case that
[L : Q] = 2, this is certainly the case if Go/Q is not of type Dy. If now p ¢ &
and p splits, then the formula (6.114) is still valid. If p is inert in L, i.e.
Or/pOr, = F,2 then we get from [98] the recipe how to modify the right hand
side in (6.114).

a) In case Go/Q is of type A,,, D,, and n odd or Eg then we have to replace
the factor (1 — Zﬁ) by (1+ ﬁ) in case m; is even.

b) In the case D,, and n even then m; = n — 1 occurs twice and we have to
replace the factor
1 1 1
1——)?by (1 -—)(1+—).
(1= 25)" by (1= 22) (1 + )
Finally we come to the case Dy and Gal(L/Q) is cyclic of order 3 or the
symmetric group in three letters. Let 8 be a prime ideal in Of, which lies over
p. Then Op /P = Fp,Fp2 or Fps. The first two cases are handled by b) . In the

third case we have to replace (See[98], Table on p. 105)
T R N R S Ha-Gp !
(*I;) Y +E+E—(*Czp )L =Gp™)

where (3 is a third root of unity (# 1.)

Now it is clear how we have to modify the formula (6.117). If [L : Q] = 2
we have the character xp g corresponding to this extension For p ¢ ¥ we have
xz,0(p) = —1if and only if p does not split in L. Attached to this character we
have the Dirichlet L- function

L(XL/st) = H

p

1
1—xro@p=
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This means that in formula (6.117) we have to replace the factors ¢(mq +1)
mi+1

by L(XT’/"al,mi + 1). If we agree that for m; + 1 even L(XL/Q ,8) = ((s) then
(6.117) in case [L : Q] = 2 becomes
VH(SE,, Mg)) =
= (G i Lp(Xe(mi)vmi+1)71 . r e(m;
W (Hpez : voleB/ZQD(KP) ) dim(Mo) [T;—, L(XL(/Q)7 m; + 1)
B )

(6.118)

here we have to say what e(m;) is.

a) If Go/Q is of type A, Eg or D,, with n odd then €(m;) = 0 if m; is odd
and e(m;) = 1 if m; is even.

b) If Go/Q is of type D,, with n even then the exponent n — 1 = m,, /5 =
My, /241 Occurs twice. In this case e(m;) = 0 for i # 5 or § 4+ 1 and €(my,, /o) =
0, €(my,/241) = 1 (Hence we wee that in the case D,, we have exactly one genuine
Dirichlet L- function in the product.)

c¢) Finally we look at the case D4y and assume Gal(L/Q) is the symmetric
group in three letters or cyclic of order three. In this case we have an irreducible
representation ps 1 Gal(L/Q) — Gla(Q). to this representation we attach the
Artin-L- function. Then it is clear that we have to replace the factor ((4)? by
the factor L(p2,4).

This implies of course, that for a covering SIG(} — SIGQ, where K } C K¢ and

both groups are neat,we get
X8, M) = X(H* (S, MK - K],

a fact which also follows easily from topological considerations.
This leads us-following C.T.C. Wall- to introduce the orbifold Euler charac-
teristic for a not necessarily neat K by

Nor(H*(SE,, X)) = Mnsﬁ}m (6.119)

where K } C Ky is a neat subgroup of finite index. The orbifold Euler char-
acteristic may differ from the Euler characteristic x(H '(ng,./\;l)) by a sum of
contributions coming from the set of fixed points of the I'; on X (See 1.1.2.1).

Hence the formulae (6.117) and (6.118) remain valid without the assumption K
neat once we replace X(Sg},M) by Xorb(H'(ng,M)) on the left hand side.

The Gauss-Bonnet formula implies that the orbifold Euler characteristic is
linear in dim(Mg). But this is an obvious consequence of our considerations
in section 2.1.3. We compute the cohomology from the Cech complex given by
an orbiconvex covering. If our group K is neat then all the terms M(U;) in
(27 are of the form Q(U;) ® M where of course Q is the sheaf obtained from

the trivial one-dimensional representation. The differentials in the complex are
only acting on the first factor and hence

C* (U, M) =5 C* (U, Q) @ M.

Since x(S%,, M) = x(C* (&, M)) = x(C*(4,Q)) x dim M the linearity follows.

f?
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Gauss-Bonnet and the special values

We discuss some arithmetic consequences of the Gauss-Bonnet formula. By
definition Xorn(H*® (ng,M)) € Q, hence we can conclude that the right side
must a rational number. This argument gives us non trivial consequences for
the special values ¢(m; + 1), but only if the curvature factor koo (G) # 0. We
analyse this condition.

Remember that we want to assume that G/Q is absolutely simple, We con-
sider the base extension G Xg R, then the complex conjugation c induces an
involution on ®. Now it is known

Proposition 6.3.11. The Dynkin diagrams is of the form A1, By, Cyn, E7, Es, Fy, Gy
have trivial automorphism groups and G Xg R is an inner form of its compact
dual. The Dynkin diagram D, has non trivial automorphisms. In this case
G xg R is an inner form of its compact dual if

a) the complex conjugation c acts trivially on ® if n is even.

b) the complex conjugation c acts non trivially on ® if n is odd.

In the remaining cases G xgR is an inner form of its compact dual if c acts
non trivially.

In the cases where c acts trivially all the m; are odd.

e(m;)

Now we have a look at the numbers {(m; + 1) and L(XL/Q ,m; + 1) on the
right hand side. Euler has shown that
¢(m)

For even integers m > 2 the numbers —
T

€Q. (6.120)

We also know that the matching answer for L(x 1 q,m) depends on the parity

p(xz/0) of X1/0, where p(x1/q) = 1if Lo = Cand 0 else. If we write L = Q[V/4d)
we have p(xz,q) = 1 if and only if d < 0. Then we have the more general result

L(XL/va)

For integers m > 0 and m + p(xr/q) even the numbers a
ﬂ-m

€Q
(6.121)

The values ((m) for m = 2,4,... or L(xy /g, m) for m > 0; m+p(xr,q) =0
mod 2 are the so called special values of the Riemann ( function or more
generally Dirichlet -L function.

For the following we refer to [73] Chapter VII. We still have the functional
equation. We introduce the Euler-factor at infinity

d|

s+p(xr/0)
Loo(XL/0,8) = (? SO

jin(t Y,

where I' is the Gamma-function and here we also assume that d is squarefree.
We define the completed L-function

A(XL/0,5) = Loo(XL/058)L(XL/0) 5) (6.122)

If x1,/q is not trivial then A(xz, /g, s) is holomorphic in the entire complex plane,
if X1/ is the trivial character then we get the completed Riemann ¢ function

A(s) = (1;(:)/2/)2 (s). It is meromorphic function in the entire complex plane and
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has two simple poles at s = 1 and s = 0. For this completed L function we have
the functional equation (See [73], Chap. VII, Theorem 2.8)

Alxr/g:8) = WOOAM XL/ 1 = 9) (6.123)

where in this special case W () is an integral power of i = v/—1 and we observe
that xr,/q is real.

This tells us something about the special values at negative integers: For
m > 0;m +p(xz/0) =0 mod 2 we get

Lo (XL/Q» m)
Loo(X1/0)1 —m)

L(xrjg,1 —m) = L(xL/q,m). (6.124)

Using the functional equation for the I'-function and I'(1)) = /7 we get for
ratio of the two Euler factors at infinity
|d|m_; F(m-«-p(;@/@)))
— 9~ & 7
1-m— Q
e F( 127(XL/\¢) )

14|

™

vr _T(m)

e

)m
and if we insert this in (6.124) we get

F(m) L(XL/Q7 m)

N

L(xr/g,1—m)=|d™ € Q* (6.125)

Finally we have understand the contribution from the infinite place, i.e. the

term % This term has been computed in [32] in the case of split

groups G/F, where F is a totally real number field. In our case F' = Q this
gives

Koo (G)

VO1wgoo (Kwo)

¢ iy (mi +1)! (e
Z - A2
2 H#Wg nrtoiami  griliam (6.126)

- (-1)

here Wg__ is the Weyl group of K and ax(G)) is an explicitly computable
rational number.Hence equation (6.117) becomes

Xorn (S8, ) = 0 (G)a(G. ;) dim(Mg) [ <L)

ﬂ-mi—&-l
i=1

with (G, Kf) € Q*,
(6.127)

the non zero rational number a(G, K) can be explicitly computed.

The formula becomes much nicer if we apply the functional equation for the
(-function and look at the special values at the negative arguments.

If Go/Z is split semi simple and simply connected and if we choose K; =
[1, Go(Zy) then the computation in [32] p. 452-453 gives

- W, r
Xoro(H*(SF, M) = 50— dim(Mo) [ ¢(-m) (6128)
o i=1
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Now we see that the Gaus-Bonnet formula reproves Euler’s rationality re-
sults. We consider the split groups schemes of type A; and B,, or C,,. In these
cases the exponents are the odd numbers 1,3,...2n — 1. (See [12] , Planche II,
I11) If we apply the formula for A; we get ((2)/7? € Q*. Applying it for By or
Cy gives ((2)/m? x ((4)/7* € Q* hence ((4)/7* € Q*. Clearly we get Euler’s
result by induction.

We also get the corresponding rationality results for the Dirichlet- L functions
attached to quadratic characters xr,q. We consider absolutely simple groups
G/Q with non trivial action of Gal(L/Q) on their Dynkin diagram ®. If L/Q
is real quadratic, i.e. p(xz,//q) = 0 then the situation is the essentially same as
in the case of a trivial character.

If L = Q[v/d] is imaginary quadratic we choose a group G/Q of type A,
with n > 2, or D,, with n odd, or Eg. In these cases the Gauss-Bonnet formula
becomes

Xorb(H*(S%,, M) = a0e(G)a(G, K p) dim(Mg) [ [ LG5, —ma) - (6.129)

=1

Hence see that for an imaginary quadratic extension L/Q we can start from
groups G/Q of type A, for n =2,3,4... to prove (?7?).

Of course we can also consider the case that G(R) is compact. (See ?7) in
this case the Gauss-Bonnet theorem is a tautology, the quotient

SK, = G(Q)\ * xG(Af) /Ky
is a finite set. If K is neat then
X(Sg,, M) = dim H(SF,, M) = #(G(Q)\ * xG(As)/K) dim(Myg).

If K? C G(Ay) is not then we choose a normal neat subgroup Ky C KJQ,
and we consider the diagram

7TKf

G(Ap)/Ky — GQ\G(Ay)/Ky = SE,
q | . @l (6.130)
Gan)/K) = G@\G(An)/KS = S,

We want to compute the orbifold Euler characteristic

. 1 .
G - - G
Xorb(SngM) - [Kg . Kf]X(SKva)
to do this we have to understand the fibers of ¢;. For a point z € SIG(O we pick
¥
a point y € WI_{(lJ (z). Then we choose a point y, € qo_l(y), now we can identify
Y 0 Y Y
qal(yl) = K}Q/Kf by ks — y ks If we apply 7, to the fiber qo_l(yl) we get
the fiber ¢ !(y). Now two points ylkf,glklf map to the same point in ¢; ' (y)

if there is a v € G(Q) such that vglka? = ylﬁ}K?. Since Ky was a normal
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subgroup this means that 'yglﬁlfkgl € glK? and hence v € glK?gfl. Since K
is neat we get an injection

Ly =GQ Ny Kpy 'y, Ky, b=y, Ky )y Kpy ' — K/E.f

Now it is easy to see that the conjugacy class of the finite subgroup I'y C
K ? /K _f only depends on z € S¢ K and not on the choices y or y, . Therefore all
the Fy are isomorphic and we put #I'y = #I‘

Now we see

Xorb (Sg?’ M) KO Kf Z Z dlm@(M)) ( Z

ZESK? x,E€q, (x) wesgg

1
#Fg) dim(Mg)

(6.131)

We see that the orbilocal system M enters only by its dimension. This changes

if we look at the Euler characteristic itself. Then we get obviously

Ko, M) = > dim(Mg?) (6.132)

ze8¢,

and we notice that G-module structure of M matters. Since in general %’:’l)@) #*
dim(M?T =) we see that we should expect xorn (SKO M) # x(SKO , M) in general,
! !

for instance if M = Q. Of course the formulas (6.117), (6.118) also apply in this
situation. But here we have the advantage that the curvature factor ko (G) = 1.

There are cases where G/Z is semi-simple and simply connected and G(R)
is compact. In this case the computation in [32] gives us a variant of equation
(6.128)

T

1
Xorb(SK ;> Q) = 5 HC —m;) (6.133)

To give an example we consider n-dimensional unimodular lattices. An uni-
modular lattice L is a free Z - module, which is equipped with a symmetric
bilinear form F' : L x L — Z which has the following properties

a) It is positive definite, i.e. F(z,z) > 0 for all x # 0

b) For any saturated (See (?7?)) x € L we find ay € L such that F(z,y) = 1.

¢) The values F(x,x) are even.

Then we know that n = 0 mod 8 (See ??7) and the group SO(F')/Z is indeed
a semi simple. (If we consider the base extension SO(F') xz Z, for any prime
p the group scheme is isomorphic to SO(% 2% 2)/Z,). This group scheme is not
simply connected we have a degree 2 covering G/Z = Spin(F)/Z — SO(F)/Z.
Then equation (6.128) yields

1l - ¥

LESG

#r (6.134)
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We do this for n = 8. In this case the root lattice (Ls, Fg) of Es (See [?], or
infinitely many other references) satisfies the conditions a), b), ¢) above and we
get

L Cne3)e(=3)c(-5) = Z

1
24 696729600 (6.135)

#r

This implies that ng = G(Q)\ * xG(Ay)/G(Z) consists of one element,
namely the identity z; and

T, =G(Z) = 6(Q) NG(Z).

We have the homomorphism G(Z) — SO(F')(Z) its kernel is the group pe =
{£1}, and a simple calculation shows that the cokernel is also {£1}, Since
(Ls, Fg) is the root lattice of Eg we get that SO(F3)(Z) is the Weyl W (Ej)
group of Eg. The order of the Weyl group of Eg is 696729600, hence we have
verified equation (6.128) in this particular case.

If we play the same game for n = 16 then we start from the lattice Lg @ Lg.
The automorphism group of this lattice is 'y x I'y x Z/27Z, we may flip the
two summands. Then

1 2 = 1
3 (GBS =DE0-1G(-19) = 3 o

(6.136)

On the right hand side we have the summand m we subtract it and

get
1 1

L. 1) -
28 o 2 % 6967296002 685597979049984000

Hence we see that ng consists of exactly two elements, we have the lattice
Lg @ Lg and still another one. This has been discovered by E. Witt in [107]. In
the same paper Witt mentions that he has found more then 10 different lattices
for n = 24.

The case n = 24 was solved by Niemeier in [74], he showed that there exactly
24 different lattices, one of them is the famous Leech lattice (See editors note
to the paper [107]).

Unimodular lattices are studies intensively in the the book of G. Chenevier-J.
Lannes [17].

We get also get (semi)- simple group schemes G/Z with G(R) compact if
start from a Dynkin diagram for which the simply connected group has trivial
center. This follows from the Hasse principle. Hence we can find such a G/Z of
type Eg. Then we get

35 C(=1)C(=T)C(=11)¢(=13)¢(~17)¢ (= 19)¢(~23)¢(—29) =

2155741910416889170788798426985697 Z 1 (6.137)
154705492508859411569049600000 e #I'y
zESK,
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The comparison

If we have two semi simple groups G/Q,G’/Q which are inner forms of each
other, then for both groups the product of L— values in (6.129) is the same.
Hence we see that the ratio o (S% M)/ Xorb(Sg},M’ ) of the Euler charac-

teristics is a number which can be computed from comparing local data at a
finite number of primes, this is sometimes called the Hirzebruch proportionality
principle.

We want to be a little more precise. We need to find a way to compare the
groups Ky and K } To make such a comparison possible, we use the ideas of
Bruhat-Tits.

We start from any extension of G/Q, G’'/Q to a smooth group schemes over
Z. (See section 1.2.1). For all primes p outside a finite set ¥ these two extensions
will be semi simple at p. Then we get semi simple extensions G*/( Spec(Z) \ ¥)
and *G’/( Spec(Z) \ ¥). At the primes p € ¥ we choose extensions G/Q,G'/Q
to flat, smooth Bruhat-Tits group schemes G xz Z, and G’ xz Z,. We require
that the two group schemes G xz Z, and G’ Xz Z, are locally isomorphic for
the etale topology. In less educated language this means that we can find a
finite unramified extension Fy, /Q, such that G xz, Or, and G’ xz, O, become
isomorphic. Then we can use these extensions to extend *G,* G’ to flat, smooth
group scheme G/Z,G’ /7 (We will give an example further down).

Now we may choose K, = G(Z,), K}, = G'(Z,) and Ky = [[, Kp, K} =
Hp K. At a finite set of primes we may modify our choice and take full con-
gruence subgroups K, = G(Z,)(p"), K,, = G'(Z,)(p"). This makes it clear that
-up to a power of p -the ratio

voly,, , (Kp) 5,(G,G) #G(Fp)
Vohony (Bp) _ s #9(E) 6.138
volo, (K1) 7 #G'(F) (0:43%)

the exponent §(G,G’) is explicitly computable, and the orders of the finite
groups follow from Bruhat-Tits. The computation is basically straightforward
but not completely trivial.

We discuss an example. Let G/Q = Sly/Q, we choose a prime p =3 mod 4
and we consider the division algebra D(—p,—1) (see section 1.2.9) and put
G'/Q = DM (—p,—1) the norm one group of this division algebra. We put
L = Q[v/—1] then we get (see (1.55))

G'(Q) = {z e Slo(L) |z = (‘1) ‘Op> () ((1’ ‘Op) _1} (6.139)
and with z = (‘é Z) this means

G’(Q)—{@ Z) = (pfl(;zb) o J(C)>} (6.140)

and hence

G'(Q) = {<—aa(b) JIEZ)) | ao(a) + pbo(b) = 1; a,b € L} (6.141)
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We choose extensions G'/Z and G/Z of of our groups, For any prime ¢ we
require that

G'(Zy) = {(;L(b) 0?2)) | ac(a) 4+ pbo(b) = 1; a,b € Zy[i]}

For £ # 2 or £ # p it is easy to see that G/Zy —~+ Sly/Z, and hence semi simple.
For ¢ = 2 we have to use p =3 mod 4 and hence —p € Ny, /q(Z[i]*). Then it
is again easy to see that G’'/Z, must be semi-simple. It remains the case ¢ = p.
In this case p does not split in Z[i] and hence Z[i]/(p) = F,2. Hence we see that
the reduction mod p gives us

g/(]FP) = {(_OC_L(b) O'?a)) | GU(G)) =1la,be FPQ}

Now we see that G’ xz F, is not semi-simple, it has a non trivial unipotent
radical, which is isomorphic to RIsz /5, (Ga). We get #G'(Fp,) = (p+ 1Dp2.
It is clear that this extension of G'/Q to G'/Z is ”optimal”.

Now we extend Sly/Z to G/Z, for any prime ¢ # p we choose the obvious
extension Sly/Z,. For p we choose an Iwahori -Bruhat-Tits group scheme G/Z,,
it is smooth and flat and

a b
62 = {(% 1) losbe.d e Zyai—phe=1).

The reduction mod p gives G xz F, = G, X (G4 X Gy). It is clear that G x Z,
and G’ x Z,, are locally isomorphic in the etale topology.

Hence we see that we can choose for our set 3 = {p} and we get

#Q(Fp) _ p—1
#G'(Fp)  p+1

We still have to discuss the factor p‘SP(G’Gl) and the contribution from the
infinite place. We must go back to the definition of the Tamagawa measure.
Since G/Z and G'/Z are smooth the Lie algebras of these group schemes are
free Z- modules, they are given by

0 —i -1 0 i 0
(6.142)

Lie(g)ZH@ZpE+@ZE_;Lie(g')Z(i 0)@2(“ p>®Z<O pi>.

To define the Tamagawa measure we have to choose top degree non zero
invariant differential forms, in this situation we gauge them by requiring

i 0 0 0 pi
wQ(H/\pE+/\E_):1; wg/((o —i)A(—l g>/\(Z %)):1.

For any prime ¢ these linear forms provide invariant measures wg ¢, wg ¢ on
G(Qp), G'(Qr) and wg 00, Wg’ 0o at the infinite place, the product of these local

measures gives the Tamagawa -measures wgam, wgfﬁ‘m. We recall that these two



272 CHAPTER 6. COHOMOLOGY IN THE ADELIC LANGUAGE

measures do not depend on the choice of wg, w’g, but the local factors do. In a
sense the choice of these two forms is optimal with respect to the ” arithmetic
aspects”.

With this product realisation of the Tamagawa measure we get for the local
factor at p in formula (See 6.117)

G%(2)
Volwgarn,f (Kp)

i 6@ 1o
—p(p+1)’ volwga;mff(KzG) p(p V

We have to consider the contributions at the infinite place. We have to compare
the measures wg o0, Wy’ 00 to the measures defined by the Killing form, and we
have to compute the factor ko (G).

We consider the cases G = Sl /Q first. Then we have the decomposition
g=QY o QH®QV =tdp

this is an orthonormal decomposition for the Killingform B and B(Y,Y) =
—8,B(H,H) = 8,B(Y,Y) = 8. and now we replace B by %B. This normalised
Killing form defines a top differential wp which satisfies wg(Y, H,V) = 1 this
differential is of the form wg > Aw|pB, here w)yp is a 2-form on p, it is normalised
by wjps(H,V) = 1.

We have to compare wp and wg. We must express Y, H,V as linear combi-
nation of H,pE,, E_ and then we get easily

wp = :I:gwg
Now it is well known that in this case w8 = f%me (ie. kolG) = f%)
(See ?77) and hence finally
G _ . P
w”? =+-—wg (6.143)

47

Now we represent the Tamagawa number by wg. We get

1 :/ @ Tam :/ WB,00 X / WwB,f = LC(QY1 X / WG, 00
GQ\G(A) G(Z\G(R) K; p+1 G(Z)\G(R)
(6.144)

For the last factor we have

2
/ WG 00 = if/ WB, 00 (6.145)
G(2)\G(R) P Jg@)\G(R)

Koo _
Now fKoo wp > = 27 and hence

47 872
wGB

/ WB,00 = £— Wp,B = t—— (6.146)
G(Z\G(R) P Jgznx P Jgz)\x

and this finally results in

. GB _ _
Norb(G(Z)\X) = + /g = (6.147)
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Here we recollect that G(Z) = Ty(p) := {(CCL Z
X = H the upper half plane.

We do the same calculation for G’. The group

) € Sly(Z)|e =0 mod p} and

’ _ x pry _1.
6@ =1(_%, M) leo@) o) =1 sy ec)

and we get the well known isomorphism

d:G'(R) =5 P CC%d: (_f(y) 0%) — (2,\/PY) (6.148)

The identity element eg, € G'(R) is mapped to (1,0) € C*(” = ”(1,0,0,0) €
R*). The tangent space to the sphere at this point is iR @ C. The Lie algebra
g’ @ R is the tangent space of G'(R) at eg: and the derivative Dg maps

i 0 Ce (0 p (0 pi .
<0 Z) — (4,0)” =7(0,1,0,0); (1 0) — (0,/D); <z 0) — (0,/p i),
we see that the images of our three basis vectors are orthogonal to each other.
Hence the euclidian volume form evaluated at the triple of these three vectors
gives

W ((,0), (0,v/p), (0,v/p i) = p

The volume of the 3-sphere with respect to the euclidian volume form is 472.
2

Hence we get vol,, (K.) = 4%. If we perform the same computation as in

the first case we end up with

p—1

(2 =" (6.149)

p—1
472

Xorb(slg{/}v-/\;l/) =

6.3.13 Some (philosophical) remarks

Of course the Gauss-Bonnet theorem only gives an alternating sum of dimen-
sions of cohomology groups, we do not have any control of the possible cancella-
tion. This is especially bad in the case when we have ko, (G) = 0. We have seen
that in the case where G(R) is compact the space ng is of dimension zero and
hence all the cohomology sits in degree zero and there is no cancellation. In this
case the differential geometric subleties also disappear, i.e. we have k. (G) = 1.

We still may ask: How do the cohomology groups behave once we vary
the level K¢ or the coefficient system M. What happens if K; gets smaller
and smaller? If our coefficient system is a highest weight module M) where
A = > m;7v;, what happens if all the n; — co?

)

Let us fix a neat reference level K J(co , and the reference coeflicient system Q.

Then we have seen that for Ky C K](co) and any M, we have

X(SE M) = (K Kg] X X(SFi0, @) x dim(M)
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We consider the case koo (G) # 0, then the dimension d = dim X is even. In
this case one might expect that in a certain sense

X(SZ, . M) ~ (-1) dim H?(S§,, M). (6.150)

This expectation can be verified and also made precise in a few cases and it is
also supported by experimental data.

If the highest weight X is regular, i.e. if n; > 0 Vi then it has been shown
by J. S. Li -J. Schwermer in [?] and L. Saper in [?] that H”(S[G(f,J\;lA) =0

for v < %. Moreover it can be shown that all the cohomology H ”(Slcé f,/\;l 2)

with v > % is Eisenstein cohomology (see section 9.2), and this gives us some
confirmation of the statement above.

We drop the assumption on A and vary Ky, then we have results by Liick
and ...that

1 - 0 if v # ¢
lim ——— HY (8% M) = , 2 6.151
K —e [K}O) L K] (S&;» M) {Xorb(ng,M) if v=14 ( )

This is another piece of evidence for the above principle.
This last formula makes also sense if ko (G) = 0.

6.3.14 The topological trace formula

The Gauss-Bonnet formula is a special case of the topological trace formula (See
[4],128],[45]). The topological trace formula is a tool to compute the trace

tr(Th | H*(SF,, M) =Y (=1)" tx(Ty|H*(SE,, M)) (6.152)

v

of a Hecke operator T, (See section 6.3). If we choose for h the characteristic
function of K then this trace is equal to xorb (ng,/\;l). The topological trace
formula gives a formula for the traces of Hecke operators on the cohomology in
terms of orbifold Euler characteristics of fixed point sets. These fixed point sets
are again locally symmetric spaces and hence again can be computed using the
Gauss-Bonnet theorem.

We come back to our two groups G/Q,G’'/Q and we assume that we have
chosen compatible extensions G/Z and G'/Z as above. Again ¥ will be the set
of places where G,G’ are not semi simple. Then we can identify the central
sub algebras H(*) = Qs Hp = HOE) = &, H,p- This means that we can

compare the H®>) - modules H'(ng,./\;l) and H’(Sg;f,./\/l’).

To get such a comparison we can invoke the topological trace formula,
We have to make some clever choices of Hecke operators h = h(x) x SIS
[Les Hp x H® and B = hig) x b € T M), x H.

Now we compute the traces on the two cohomology groups using the topo-
logical trace formula

tr(Th ‘H. (SIG{f ) M) = Zg:ﬁxed point Thg

/ (6.153)
tr(Th, |H. (S}C{;} ) M/)) = Zg’:ﬁxed point Thlgl
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where the numbers T}z, T}z’ are local contributions, they are Euler character-
istics of fixed point sets times so called orbital integrals.

Now we try to establish a correspondence between the two sets of fixed
points such that for two corresponding points z <> z’ we have adapted our
Hecke operators such that Tz = Tj,/z’ In case we do not find a corresponding
point 2’ to a given z we must have Tpz = 0. If we are lucky-and in fact we are
in a few cases- we can show that the right hand sides in ( 6.153) are equal.

This comparison between the cohomology groups attached to two different
groups has been executed in some detail in [45] for a pair G = Glz/Q and the
multiplicative group G’/Q of a division algebra. We also discuss the much more
subtle of comparing Sly/Q and where G’/Q is the norm one group of a division
algebra. (See also [64],)

Arthur-Selberg trace formula vs. topological trace formula

In Chapter 8 we will discuss the description of the cohomology H*®(S¢ f,MC)
in terms of automorphic forms. In the theory of automorphic forms we also
can compare the spaces of automorphic forms for a pair of groups which are
inner forms of each other. This occurs the first time in the fundamental book of
Jacquet and Langlands [55] for the two groups Gls and the multiplicative group
of a division algebra. The result is the Jacquet- Langlands correspondence,
which plays a predominant role in the theory of modular forms, The Jacquet
-Langlands correspondence implies the above results on cohomology.

The main tool to prove the Jacquet-Langlands correspondence is the Arthur-
Selberg trace formula, J. Arthur and many other people have developed this
instrument to the case of general reductive groups. As an application they get
results which allow a comparison of spaces of automorphic forms (See Arthur’s
papers) on different groups. The formulation and the proof of the Arthur-
Selberg trace formula are peppered with enormous analytical difficulties, which
make it difficult to apply it. The problem is the non compactness of Sﬁf,
one encounters situations in which certain infinite sums or certain integrals are
divergent and one has to renormalise them.

These subtle analytical problems disappear if we use the topological trace
formula instead. In this context we encounter the problem how to treat the
"fixed points at infinity”, this is discussed and solved in [4] in the rank one case
and in [28] in greater generality. It should be possible to prove many of the rele-
vant consequences of the Arthur-Selberg trace formula by using the topological
trace formula, provided we restrict our attention to the ”cohomological part”
of the space of automorphic forms. This applies especially to the comparison
of the cohomology of to different groups and to questions of endoscopy. The
proofs would dramatically simplify. On the other hand the problems with the
stabilisation of the trace formula remain the same.

In section 3.2.1 we gave a general strategy how to write an algorithm to
compute -at least in principle- cohomology groups H*® (SG M) and in addition
to compute the action of a Hecke operator TS5 (??) on it. Together with H.
Gangl we wrote such an algorithm in a baby case (3.3), and we used this to
verify an assertion about denominators of Eisenstein classes experimentally.
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We come back to this algorithm and discuss it in the case that G(R) is
compact. In this case SI% = xXG(Ay)/Ky is a finite set, let A(xxG(Ay)/Ky,Z)
be the module of Z— valued functions on this finite set, it is of course equal to
HO(S[GQ ,Z). The space A(x x G(Ay)/ K[, C) is also called the space of algebraic
modular forms. We have a basis given by the delta functions d,, where z runs
through the points in A(x x G(As)/Ky,C).

We recall the definition of Hecke operators in this special situation. We pick
an element z;, € G(Q,) we extend it to an adelic point z,, = (1,1,...,2p,...1,...)
We consider the group K(z,)s := Ky N ngfggl and the projection map
1 GQ\ * xG(Ay)/K(z,)s — GQ)\ * xG(Ay)/Ky. If we multiply by z,
from the right we get a map

mlz,) : C(Q)\ * xCAg)/K(z,); — GO\ * xClAy)/K(z;")

m(z,) :y — yz,

Now the Hecke operator T'(z,,) : HO(ng7Z) — HO(SI%,Z) does the fol-
lowing: We choose a set uy,...,u, for Ky/K(z,); We pick an z € G(Q)\ *
xG(Ay)/K; and represent by & € G(Ay). We consider the fiber 7 '(z) the
points in the fiber are represented by zu,,i = 1...t. A point y € 71';1(2)
comes with a multiplicity m(y) , the number of times it is represented by a
Zu,;. The map m(z,) maps the points Zu; to G(Q)\ * xG(As)/K(z,")s. To
this set of points (with multiplicities) we apply the projection m_ : G(Q)\ *
xG(Ay)/K(z,")y = G(Q)\xxG(Af)/Ky. We get a finite set of points T'(z, z,) C
G(Q)\ * xG(Ay)/Ky, where each point z € T'(z,z,) comes with a finite mul-
tiplicity a, .(z,), this is the number of times it is hit by a 7_(m(z,)((Zy;))).
Hence a, ,(z,) is an integer > 0 for z € T'(z,z,), we put a,.(z,) = 0 for
2 & T (x, gp) Then

T(z,)(b:) = > ta,:(2,)0: (6.154)
2EG(Q\*xG(Ay)/Ky

The computation of this incidence matrix (a, ;(z,)) may become very diffi-
cult. In a slightly different context such computations are carried out in [72] and
their results are presented in [17]. Even in the case of the group Spin(Lg @ Lg)
where we have only two elements in S]Cif the computation of the incidence ma-
trix is by no means trivial. In [17] the authors define a Hecke operator T5 using
”Kneser Neighbors”, this is essentially a T'(z,) as described above. And they
give the resulting matrix

20025 18225
= (12870 14670) (6.155)

(One of the reasons we give this matrix here is the following observation:
The difference of the two eigenvalues is divisible by 691 !) In [17] the authors
also discuss T for the lattice Lg @ Lg ® Lg but they do not write the resulting
(24 x 24)— matrix.

On the other hand there are formulas in [17] which can not be obtained
simple from a computer program, for instance Theorem A in section 1.2. on
Kneser neighbors.
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Of course we may also do this if we have a non trivial coefficient system M.
In case we need to know the incidence matrix but in addition we also have to
keep track of the linear maps between the stalks of sheaves. Then even the case
of the 8 dimensional lattice Lg becomes non trivial.

It seems to be an interesting exercise to consider the the two groups G'/Z =
Spin(Lg)/Z and G/Z = the split Chevalley group of type D4. Now we look at

the unramified cohomology, i.e. we take K; = G(Z), K} = Q”(Z) and compare
the Hecke modules

H*(8F,, M) and HO(SIC;; M) (6.156)
The result should be compared to the results of Arthur.

This is perhaps the right moment, to discuss another minor technical point.
When we discuss the action of the Hecke algebra Hy, = C.(G(Ay)//Kf, Q)
on H '(ng,/\;l) then we chose the same K for the space and for the Hecke
algebra. We also normalized the measure on the group so that it gave volume
1 to Ky. But we have of course an inclusion of Hecke algebras Hx, C H K}

Therefore H, also acts on H*® (Sg},/\;l). This contains H '(SIG(j,,/\;l) but then

the inclusion is not compatible with the action of the Hecke algebra. We there-
fore choose a measure independently of the level, if we are in a situation where
we vary the level. In such a case a measure provided by an invariant form wg
on G (See 2.1.3) is a good choice. If we now define the action of the Hecke op-
erators by means of this measure. With this choice of a measure the inclusion
Hi, CH A is compatible with the inclusion of the cohomology groups.

Then we see the new Hecke operator T,S“)G), and the old one are related by

the formula
1 (wa)

T, = ———T,
Vol‘wc‘(Kf) h

The reader might raise the question, why we work with fixed levels and why
we do not pass to the limit. The reason is that for some questions we need
to work with the integral cohomology, and this does not behave so well under
change of level.



278 CHAPTER 6. COHOMOLOGY IN THE ADELIC LANGUAGE



Chapter 7

The fundamental question

Let X be a finite set. Of course any product V = ®/ H, of finite dimensional
absolutely irreducible modules for the H,, for which #,, is spherical for all p ¢ &
gives us an absolutely irreducible module for the Hecke algebra.

We may ask: Can we formulate non tautological conditions for the irreducible
representation V' or for the collection {mp }p.prime, Which are necessary or (and)
sufficient for the occurrence of ®;,m, in the cohomology

This question can be formulated in the more general framework of the the-
ory automorphic forms, but in this book we only consider ”cohomological” (or
certain limits of those) automorphic forms. This restricted question is difficult
enough. A speculative answer is outlined in the following section

7.1 The Langlands philosophy

Let us start from a product V' = @H,,. For the primes outside the finite set X
the module Hy, is determined by its Satake parameter wy,.

7.1.1 The dual group

There is another way of looking at these Satake parameters w,. We explain this
in the case that G/Z,, is a split reductive group. We choose a maximal split torus
T over Z and a Borel subgroup B/Z. For any commutative ring with identity
ring R we have a canonical isomorphism X, (7)® R* — T(R), which is given
by x ® a + x(a). Then T(Q,)/T(Zy) = X.(T) @ Q) /Z) = X.(T). We apply
this to the maximal split torus 7 /Z, C G/Z,. Then A(T) = Hom(X,.(T),C) =
X*(T)®C* =TV(C) where TV is the torus over Q whose cocharacter module
is X*(7). This torus over Q is called the dual torus. There is a canonical
construction of a dual group “G/C, this is a reductive group with maximal torus
TV such that the Weyl group of TV in this dual group is equal to the Weyl group
of T C G (See also (7.1.5)). This dual torus sits in a Borel subgroup *B c’ G.
Recall that we have a canonical pairing

<> Xu(T) x X*(T) = Z, yox(x) s <X, (7.1)

279
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The positive simple roots in X*(T"V) in the dual YG/C are the cocharacters
oy € X, (TW) defined by

< Oé;/,’yj >= (51‘73'. (72)

We define a coroot o for any root a: Let T(® the subtorus on which « is
trivial, this torus is of codimension 1. Then the centraliser H, is a reductive
subgroup whose semi simple component Hél) is the group Sl or PSl;. In any
case H,gl) NT =T, is a one dimensional torus. The the coroot oV : G,,, — T is
the unique cocharacter which factors through 7,, and satisfies < a¥,a >= 2.

The fundamental weights in G are the cocharacters x; defined by
< Xis 0 >= 04,5,
The dominant weights in X*(T") are the linear combinations
X (T ={x= Znixi\ni €Z,n; >0}

To any x € X*(TV)" we attach a highest weight module &, the representation
is denoted by 7.

We can interpret w, € A(T) = X*(T) @ C* = TV(C) as a semi simple
conjugacy class in “G(C). Remember that wyp is only determined by the local
component 7, up to an element in the Weyl group, hence we only get a conjugacy
class.

Let 7y € Cohi(G, K¢, A) be absolutely irreducible and defined over a finite
extension E/Q. Hence we see that our absolutely irreducible 7; provides a
collection of conjugacy classes {w(m,) = wp }pgs: in the dual group LG(E).

A rather vague formulation of the general very bold Langlands philosophy
predicts:

The wsotypical components under the action of the Hecke algebra, namely the
Hf(ng,M)(Wf), should correspond to a collection {M(my,ry )}, of motives
(with coefficients in E). The correspondence should be defined via the equality
of certain automorphic and motivic L-functions.

This formulation is definitely somewhat cryptic, we will try to make it a
little bit more precise in the following sections.

One may think of such a motive could in principle be a ”direct summand” in
the cohomology H*(X) of a smooth projective scheme X/Q, which in a certain
sense is cut out by a projector (see also Mix-Mot.pdf). In some cases, where
the space Sg, ”is a Shimura variety”, these motives have been constructed, we
will discuss tfliS issue in Chap. V. 777777777777777
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The cyclotomic case

We consider the special case that G = G,,/Q, we choose K, = RZ, and
Ky = Hp K, C 7% = Hp Z,; an open compact subgroup. The space Sg_, is
a finite set, actually it is a finite abelian group. It is a generalised ideal class
group. The representation G,, — Gl;(Q) providing the coefficient system is
given by the character [n] : z — 2™, the G,,— module is denoted by Q(n). We
study the cohomology

H(SZ,,Qn)).

On these cohomology groups we have an action of the Hecke algebra. In this
case this Hecke algebra is simply the group ring Z[G,,(As)/K/]. If we include
the real place the cohomology H° (S]C(;f ,Q(n)) becomes a m(R*) x G, (As) /K
module. We decompose into irreducible modules (see 6.3.8)

HY(SF ,Q(n)) = P Q(®) (7.3)
[

Here Q(®) is a finite extension of Q, and @ : G,,(Q)\G,,(A)/K; — Q(®)* is a
homomorphism. The field Q(®) is generated by the image of ® and it is even
generated by the image of ®¢. Hence it is a cyclotomic extension. If we extend
our field to Q we get a decomposition

H(SE,,.Qm))= @ Q)

¢:type(¢)=[n]

The Tate character o : G, (Q)Gy (A) = RSy, : & — |z] is an algebraic Hecke
character of type [—1], therefore the general algebraic Hecke character of type
[—n] is of the form ® = o™ - x where X : Sﬁf — Q% is a Dirichlet character.

We can attach two different kinds of L-functions to our isotypical component
®; namely an ”automorphic” L-function and a ”"motivic” L-function. It turns
out that these two L-functions are the same, this is the Artin-reciprocity law
for cyclotomic extensions.

Actually we get a collection of such L-functions which are labelled by the
embeddings ¢ : Q(®) — Q C C. Such an embedding yields an algebraic Hecke
character

(,255:) =10 (I)f : G(Af) = I@_’f — @X
and
61 = 10 : G(Q)\G(A) = Q*\Ig — C*

and to any of these Hecke characters we attach the (the automorphic L-function)
namely

L(¢W,s) = [[(1 =6V (p)p~) " (7.4)

p

where ¢ ) (p) = ¢ W(1,1...,p,...) at unramified primes and zero at ramified
places , i.e. those places where K, # Z, . The #) are Hecke characters of type
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Now we can attach a motive M(®) to our isotypical component. To do this
we assume first Ky = Z, i.e. we are in the unramified case. Then Q(®) = Q,
Then we have

Po(z) =g(z) =]z |™"

This is an algebraic Hecke character of type [n] : z — 2.
We attach the motive

Z(—n) = H*(P",7)

to this Hecke character. At this moment we do not need to know what a motive
is. The only thing we need to know is that it provides a compatible system of
¢ -adic representations

pne: Gal(Q/Q) — GI(H*™(P" xq Q,Z) = Z[

of the Galois group (see ?? ) In this case this representations are easy to describe.
For a given ¢ we consider the field Q({y~), this is the cyclotomic extension
which is obtained from adjoining all £*-th roots of unity. Then we have the
homomorphism 7, : Gal(Q/Q) — Gal(Q(¢r=)/Q) = Z,. Now my(0) = x € Zy
acts on Z; (—n) by the rule

pn(o) ={y = 27"y}

is a module for the Galois-group Gal(Q/Q). This Galois -module Z,(—n) is
unramified outside ¢ and for any prime p # £ we have an action of the Frobenius
element F,, and this action is given by the multiplication by p".

We define the local Euler factor

1 1
B det(1 — F;1|Zg(—n)p—5) 1 —pnps’

Ly(Z(—n), s)

The local Euler-factor does not depend on ¢ as long we avoid the case ¢ = p.
(This is the compatibly of the system of Galois modules). This leads us to define

Lz(-n).s) =]

P

1
det(1 — Fp ' |Zg(—n)p~?)

=((s —n), (7.5)

this is now the motivic L - function attached to Z(—n). But it is also equal to
the automorphic L function in 7.4, where ¢} = o™,

In the general case we observe that a Hecke character ¢ of type [n] is of the
form a” - x where x is a Dirichlet character, i.e. x : ng — Q. The reciprocity
law implies that there is a finite abelian extension F'x ; /Q such that we have the
reciprocity isomorphism

Art : S Gal(Fk, /Q).

Hence we see that our Dirichlet character x can be viewed as a character
Gal(Fg,/Q) — Q. The finite extension Q(x) of Q which is generated by
the values of x is contained in Fi,. Hence we get for any prime [ in OFKf a
representation

pn @ x : Gal(Q(Ce~ ) Fi,/Q) — O;fo
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and this is a compatible system of [ -adic representations.

We attach a motivic L-function to this system of representations. It is a
product over local Euler-factors and for a prime p (I # p) which is unramified
in Q(x) this local Euler-factor is

1
~ det(1 - X(F)F; ' [Or, (—n)p~>)

Ly(pn @ X, )

and this is exactly the local Euler-factor for the automorphic L-function.

At a prime where x is ramified the local Euler-factor of the automorphic
L-function is 1. But this is also the case fro the motivic L function. In this case
the action of the inertia group I, C Gal(Fg,/Q) on OFKf is non trivial and
hence the module of invariants is zero. Hence the local Euler-factor is 1. Now
it is clear that the two L functions are the same.

The situation becomes more complicated once we replace G,,/Q by an ar-
bitrary torus 7'/Q. The process to attach a motive to an algebraic Hecke char-
acter is intricate, we illustrate this in a specific example. We consider the field
K = Q(v/—1) and our torus T = Rg/q(Gy,). In this case X*(T' xq K) = Z® Z.
We construct algebraic Hecke characters ¢, ¢ of type (1,0),(0,1) and hence of
any type (a,b). To do this we choose a level subgroup Ky C Hp T(Zp) : For
p # 2 we choose K, = Z,[i]* and for p = 2 we choose Ky = {x € Zs[i] |z =1
mod (1 +4)3}. We define ¢ : T(Q)\T(A)/K; — C* : Any z € T(A) can be
written uniquely as z = y(7oo, k) with k; € K. (For this we use that Z[i] is a
principal ideal domain and {i} = Z[i]*.) Then we define

o(z) = a); dlz) =7

We can check easily that this gives us Hecke-characters of type (1,0), (0,1). Let
I k(2) be the group of divisors prime to 2. If p C Z[i]; p # (1+4) and if p = (7p)
and

m,=(L1...,m,1,...) € GA)
then we put ¢(p) := ¢(m,). We see that ¢ also yields a homomorphism 7 (2) N
K.

Now we attach motives to these Hecke characters. This is 19-th century
mathematics. We consider the elliptic curve € = {(x,y, 2)|2y? — 2%z + 2% = 0}.
This is a smooth elliptic curve over Q. We get a compatible system of Galois-
representations

pe + Gal(Q/Q) — GI(H' (€ xq Q,Z)) (7.6)

We know that H'(E xg Q,Z¢) = Z2. Moreover we know that the curve & xg K
has an automorphism of order 4, namely i : (z,y) — (—=,4y). (The curve has
complex multiplication by Z[i]). This automorphism induces an automorphism
of order 4 on H'(€ xg Q,Z;) and if we extend the coefficients from Z;, to Z[i]
we get two eigenspaces

HY = {¢ € HY(ExqQ,Z[i))| i = i¢}; H: = {¢€ € HY(ExqQ, Ze[i])| i€ = —i€}.
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The restriction of the Galois action to Gal(Q, K) commutes with i and hence
this restriction respects this decomposition, Finally we see easily that this elliptic
curve has good reduction at all primes p > 2., hence for any prime p > 2 we
get a Frobenius pg(F,) € End(Z2). We distinguish the cases p is inert ,i.e.
p = 3 mod 4 and p split, i.e. p = pp. Then the classical results on complex
multiplication (Weber , Kronecker,..) imply

Theorem 7.1.1. For any prime p C Zli],p # (1 + i) the invers Frobenius
pe(Fy 1) acts by multiplication with ¢(my)( resp ¢(my) on HL resp. HL.
The characteristic polynomial of pg(Fgl) is

1—(o(p) + o(p)t + N(p)t* if N(p)

=p
1+ pt2 ifp = (p)

det(Id—tpe (F, ') H' (ExqQ, Z¢) = {

This can be made very explicit:

If p is inert, i.e. if p =3 mod 4 then the first half of the theorem says that
pe(Fp2 acts by multiplication with —p hence the eigenvalues of pg(F),) should
be \/jv *\/jp-

If p splits then we solve p = a? + b = (a + bi)(a — bi) and T, = a + bi. Now
the condition 7, =1 mod (14 4)> means b=0 mod 2 and a =b+1 mod 4.
Under this condition the solution is unique and we the characteristic polynomial
becomes

det(Id — tpe (F, ') [ H (€ xq Q, Z¢) = 1 — 2at + pt*
We know of course (see []) that the value at t = 1 gives us the number of points
of th e curve over F,, hence we get for any odd prime p

p+1 ifp=3 mod4

. (7.7)
1—2a+p ifp=1 mod4

#E (IFP) = {
and in this formulation this was known to Gauss (see []).

Now we can say that H}F and H! are motives attached to the two Hecke
characters ¢ and ¢. Actually these motives are only defined over K because
we restricted the Galois group action to Gal(Q/K) We should also say that
these motives have coefficients in K, because the Galois modules are Z, ® Ok
modules.

Actually it should be possible to verify the above prediction of the Langlands
philosophy for any torus 7'/Q. Here we can only give a very general reference
to the work of Shimura and Langlands own contribution [67].

7.1.2 The (non abelian) L-functions

We return to the general case, we consider primes p for which , is unramified
and define local Euler factors.

Let us choose a cocharacter x : G, — T, we assume that it is in the positive
chamber, i.e. we have < x,a; >> 0 for all positive simple roots. It yields an
element x(p) € T(Q,), and let &, the highest weight module for GV provided

by x. For w, € A(T') we consider the two expressions | EVTchi
Sy(wp) = p=xr> ZwGW/WX wp(w(x(p))
(7.8)
Chy(wp) = p=XP= tr(ry (wp)|Ey)
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These two terms are related by

Chy(wp) = Sy(wp) + Z a(x; X") Sy (wp) (7.9)

X EXH(TV)Tix!<x

where X’ < x means that x — x’ € X*(TV)T and the coefficients a(x,x’) are
positive integers. Here we have to use that < x — x/, p >> 0. We get a formula

W (zg)dg = b( Syt wp )Py 7.10
A<X(p>>¢P(g)g (Sx@p)+ 3 506 X) Sy, ), (2) (7.10)

X' <x

where the coefficients a(x, x’) € Z. The expression on the right hand side is
invariant under W and hence only depends on w, modulo W (see [?])

The number < x, p > is a half integer, hence p<X:*> may not lie in a fixed
number field if p varies. But for those x’ which may occur in the summation
we have < x — x/, p >€ Z. The theorem of Satake yields that we can define a
Hecke operator S, € H, such that S, *¢,,, = Sy(wp)dw, and the formula ( 7.10
) tells us that we get another recursion

+ 3 b06 X M) (7.11)
X' <x
where again b(x, x') € Z.

Since we assume that our absolutely irreducible module V., 7y = ®'m, oc-
curs in Cohy (G, Ky, A), the Hecke module is a vector space over a finite extension
F/Q. We can conclude that the eigenvalue of the convolution operator H(x) is
in F' and it follows that

Sy(wp) € F

for any cocharacter x.
The local Euler factor at unramified primes p is given by

1
det(Id — ry (wp)p~*|Ey)

Ly(mp,ry,8) = (7.12)

In this book we do not discuss the local Euler-factors at ramified primes. This
is a very subtle issue, and in the general case the definition is only conjectural.
Here we assume that we have a consistent consistent definition for L, (7, ry, s)
at the ramified primes too. We may also assume that our m; are unramified
everywhere, or have only some very mild ramification. The problems which
we discuss in Chapter 9 do not become easier if we make this assumption on
ramification.

Then we define the (automorphic) L-function: We put

Limgrys) = [] Lo, s Hdet Id
peEXS

HL 7Tf,7“X,

(7.13)

7TX

The restriction of 7y to the center is the (central) character (r, : C'(Ay) —
C*. We say that 7 is unitary if this central character takes values in the unit
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circle S'. In this case it follows from theorem 8.1.1 that we can construct a
positive definite Hermitian scalar product <, >: Vi, x Vi, — C, for which the
algebra of Hecke operators is selfadjoint. We also have some estimates for the
eigenvalues of ry(w,) which imply that the infinite product is absolutely and
locally uniformly converging in a half plane R(z) > Tj. Therefore L(my,ry, s)
is a holomorphic function in that half plane. It is a deep conjecture that these
L-functions have meromorphic continuation into the entire complex plane. If
7y is the complex conjugate module then it is also conjectured that we have a
functional equation

Loo(2)L(my, 7y, 2) = (7, 2) Loo(1 — 2)L(Tf, 7y, 1 — 2) (7.14)

where €(7s, z) is an exponential factor and L. (2) is the local Euler factor at
infinity, it is essentially a product of I" factors.

This conjecture is proved in very few cases, we come back to this later. We
discussed it for the group Glp/Q in section (4.1.10).

The isogeny d¢ induces a homomorphism d' : C(Q)\C(A) — C'(Q)\C'(A)
and it is well known that this map has a compact kernel. We compose (.
with the the norm | | : C* — RZ,, this composition is trivial on the kernel of
d’. Therefore we find a homomorphism |(|* : C'(Af) — RZ, which satisfies
| [oCr = |Cx|*od'. We look at the finite components of these characters and put
as in (6.3.4)

7 =5 @ (1G] (7.15)

This module has a unitary central character. It is easy to see how the Satake
parameter changes under the twisting. We have the homomorphism T(A) —
C'(A) and therefore (|¢-|*) ™" induces also a homomorphism from T'(Af) to RZ,,.
Then it is clear that we get for the Satake parameters the equality

w(mp @ (6= l5) ™) = w(mp) (6= 15) ™ (7.16)

Let us assume that 77 occurs as an isotypical subspace in some H '(SIGQ_ , My ®

C), where A = XM + 6. The element § is an element in X*(C’) ® Q. To an
element 7 € X*(C") ® R we have attached an element |1 and since ¢, is of type
6 odc we have

(G~ =18
We also have the cocharacter x : G,, — T then it is clear that the composition
(|¢x]*)~! o x induces a homomorphism G,,(Q)\G,,(A) — RZ, which is of the
form

(G o x)a s z s Ja| <07, (7.17)
Then we have

L(7}, 7y, 8) = L(mp,ry, 54+ < X, 0 >) (7.18)

The cohomological L-function

We still have another L function which is attached to a Hecke module 7y which
occurs in the cohomology, this is the cohomological L function. Let us decom-
pose the representation £y into weight spaces



7.1. THE LANGLANDS PHILOSOPHY 287

5x = @&w = @ @ 5x7w(l/)

veX, +(T) weW/W,

then we get with m(v, x) = dim(&, (,)). Such a weight vector space is zero
unless we have v < x.

det(Id — ry (wp)p™°1Ey) = H H (1 — wy(w(v))p=5)mEx)

vEX. (T) weW/W,
For a given v we expand the inner product
I[I O-wpe)pr)=1-( Y wlww)p™....
weWw/W, weEW/W,
Now we recall that
p<X’)‘(1)>7<X’6>H(X) _ S>(<)‘)

is an operator on the integral cohomology (See (6.51)). Then our recursion
formula ( 7.11) implies that

p<x,>\(1>>—<x,5> S
is an operator on the integral cohomology, we simply have to observe that <

AN > > < ) AD > From this it follows directly that for v € X, 4 (T)
which occurs as a weight in 7, we have

(1) _
p<X7/\ +p>—<x,6> Z wp(w(y)) €Op
weW/W,

because < x, A > > < v A > | Then the right hand side in the above
formula can be written

1— p<X,/\<1)>7<x,5>( Z wp(w(1/)))p787<x’>‘(1)+p>+<x’5> o

weW/wW,
We introduce the new variable s’ = s+ < x, \() > — < x,§ > and put

oA =< x, AV > — <y, 6> (7.19)

’

[T @=p NV, (w@)p=) =1-p N 3" wy(ww)p™ ...

weW/W, weW/W,
(7.20)
Hence we define the cohomological local Euler factor at p
coh 1
Ly (g, 7y, 8) (7.21)

- det(Id — pcCNry (w,)p=*)

We look at this local Euler factor from a slightly different point of view.
Our 7y is an absolutely irreducible module which occurs in the cohomology
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H? (Sﬁf , MA®F), where F//Q is an abstract (normal) finite extension of Q. For
an unramified prime p the local factor is simply a homomorphism 7, : H, — E.
The previous computations show that the denominator is equal to a polynomial
in the ”variable” p~° and with coefficients in Op, i.e.

det(Id — pXNr (w,)p™*) = 1 — A1 (p, A\ X)(mp)p ™% + Az (p, A, X)(mp)p ™25 -+ € Opp™°]
(7.22)

where the A;(p, A, x) are certain explicitly computable elements in ’H(Z’\). (We
showed this only for A4;(p, A, x) but the same kind of reasoning gives it for the
other A;(p, A, x).) In the expression of the right hand side the Satake parameter
does not enter.

The cohomological L function is defined as

1
Dy A, X)(ﬂ-p)p_s + Az(l% A, X)(Wp)p_2s L
(7.23)

Lt (mg 1y, 8) = H Lg)h(”pﬂ"ms) H 1— Al
pEX pgE !

Again we do not discuss the factors at the primes in X.

In the definition of the automorphic L function the Satake parameter is an
element in “G(C) or in other words wy(v) € C* and La™ (7, 7y, s) is an honest
analytic function in the complex variable s for R(s) >> 0.

If we want to compare the cohomological L-function to the automorphic L
-function we have to pick an element ¢ € I(F,C), then ¢ o w¢ is an absolutely
irreducible Hecke module over C. To ¢ o 7, belongs a Satake parameter w, and
then

det(Idr e, }p 0N = 1-a(Ax (. A, X)) () P+ An(ps A0 (b9~

and this tells us that we have

L%omp,ry,8) = L(toms,ry, s — c(x, ) (7.24)

7.1.3 Invariance under twisting

We remember that we introduced the quotient ¢’ = T /7 and the isogeny
de : C — C'. (See 6.1.1). The map d¢ in 1.1 induces a map from our locally
symmetric space
q der oc
SKf - SKgcf xK§'
We assume that K, is connected and then Kg; is also connected.
We can modify our system of coefficients if we replace A by A + ¢; with

d1 € X*(C'). Then §; provides a local coefficient system Z[d;] on Sf(lc, . o and
o X K

. . .
since K< is connected we get a canonical class

es, € HO(Sing?,,Z[&])
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which generates the rank one submodule of type |§ f\*l in the decomposition
(6.86). We pull this back by d, and we get a class in

es, € H(SE,, Z[b1]) (7.25)

(see section (6.3.8)). We have the isomorphism M, 7 ® Z[§1] — M4, z and
then the cup product with e, yields an isomorphism

~ Ue ~ ~
HP(SE,, Miz) =35 HP(SE,, Moys, 2) (7.26)

This isomorphism is compatible with the action of the integral Hecke algebra
provided we choose the right identification

MY — P

which is given by a - ch(z;) — peh(zs) 01> ch(z;).

If we extend the coefficients to F then this cup product yields an isomorphism

H*(SE,, Mxr)(mp) = H*(SE s Moy, ) (mp @ [01,5]71) (7.27)
Then our cohomological L-function has the property
LM @ |61, 6|7, 7yy 8) = LM (g, 7y, 8) (7.28)

This invariance under twists is of course also a consequence of the definition
in terms of the automorphic L-function.

We may interpret this differently. Our A is a sum of a semi-simple component
A plus an abelian part & We can use the isomorphisms in (7.27) to define a
vector space

H.(SIG(faM)\(1>+?,F){7Tf}7 (7.29)

this vector space has a distinguished isomorphism to any of the H*® (ng , Mois, 7)(T®

|61,7171), we could say that it the direct limit of all these spaces. By {r} we
understand the array

{miy={ .. 7@ 101417 Yo ex (-
Using (7.28) we have now defined LM ({ms}, 7y, s).

For any pair x € X, (T), A € X*(T), where x is in the positive chamber and
A a dominant weight we define the weight

wi,A) =2 <, A\ 4 p>. (7.30)

Here we observe that x provides a highest weight representation r = 7, of Lag
and A a highest weight representation of G so we could also write

w(x,A) = w(ry, My) = w(r, M). (7.31)

This means that we may consider the weight as a number attached to a pair of
irreducible rational representations of “G and G. It also depends only on the
semi simple part of A.

Functional equation (7.32)
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A different look

We could look at the previous discussion from another point of view. Given our
coefficient system M where A = A(Y) 4§ and an absolutely irreducible module
mp € Cohi(G, A, Ky). As explained above we get X*(C”) torsor (A+6', 7y @[0%])
of such objects. If we choose a ¢ : I’ < C then we can think of ¢ o 7y as the
finite part of an automorphic representation m. Then we get a second torsor
for the above group = = X*(C’) ® R. The inclusion X*(C’) — = yields an
interpolation of the first torsor into the second one. To any element m ® & we
defined the automorphic L function L*"¢(som $®&f, 7y, s). Now the unitary and
the cohomological L-function are defined as the automorphic L function of a
specific point in the torsor, i.e. a specific trivialization.

To define the unitary L function we choose the specific point for which the
central character is unitary, for the cohomological L -function we choose the
”optimal” point my @ [0%| for which we have

LMy @ |8 ],ry, 8) " € Op[p~™]. (7.33)

If we are investigating analytic questions concerning automorphic forms the
unitary L is the right object, but if we want to capture the integral structure of
the cohomology we prefer to work with the cohomological L function.

7.1.4 The motives

We consider an isotypical submodule Hy (Slcéf7/\;l A7) (my) in the inner coho-
mology. The Langlands philosophy predicts the existence of a collection of pure
motives over Q with coefficients in F.

{M(m s, 75) by

which has certain properties. We will not be absolutely precise in the follow-
ing but we list certain properties this motive should have. We should assume
that 7; is not some kind of exceptional Hecke module (for instance it should
not be endoscopic), and I can not give a precise definition what that means. We
will make it more precise later when we discuss the case that our group is Gl,.
This motive should be invariant under twists, i.e. we want that

M(my @ [0¢],7y) = M(7s,7y)

First of all this motive has a Betti-realization M(7, ) g, which is simply an
F vector space of dimension dim(r, ). Such a motive has a de-Rham realization
M(ﬂ'f,?‘x)dRh, this is another F-vector space of the same dimension. It has a
descending filtration

M(m, 7y )arn = FOM(7 5,7y )de—rn) D F(M(mp, 7y )de—Rn) D - .-

D FY(FO (Mg, 7y )arn) D FYTHFO(M(ms, 7y )arn) = 0.

The number w = w(7y, x) is the weight of the motive it is equal to w(x, \).
Furthermore we have a comparison isomorphism

Ig_a4rn : M(ﬂ'f,’l"X)B ® C = M(ﬂ—farx)dRh ® C,
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this yields periods and these periods should be related to 7, this is rather
mysterious.

For any prime ¢ and any prime [|¢ in F we get a Galois representation

p(rr.x): Gal(@Q/Q) — GL(M(my, 7y )5 ® Fi)
which is unramified outside ¥ U {i} and for any such prime we have

det(ld - p(ﬂ-fa X)((I);l)pisa M(ﬂ-fa TX)B ® F[) = LZC10h(7Tf7 x> S)ila
or in other words we expect that the semi-simple conjugacy classes

p(m s, X) (@, 1) ~ pNr (wp) (7.34)

and hence we want
LCOh(Wf’TXv 5) = L(M(7s,7y), 5)

The existence of these hypothetical motives has a lot of consequences. Once
we have established such a relation

LCOh(ﬂ-f’ X 3) = L(M(ﬂ-f’ ’I“X), 5)

then we can exploit this in both directions. We have a certain chance to prove the
conjectural analytic properties and the conjectural functional equation for the L-
function of the motive M(7, ry), provided we can prove this for L (7rs, 7y, 5).
On the automorphic side we know many cases in which we can prove these
properties of the L-function using the theory of automorphic forms.

In the other direction we have Deligne’s theorem concerning the absolute
values of the Frobenius. This implies Ramanujan (more details later)

We seem to be very far away from proving these conjectures, but there are
many instances where some parts of this program have been established and
there are also some very interesting cases where this correspondence has been
verified experimentally.

Deligne’s Conjectures on special values

7.1.5 The case G = Gl,

Notations for the dual group “G

We want to verify formula (7.10) in the special case G = Gl,,/Z. In this
case t we have the cocharacters x; which send ¢ to the diagonal matrix ¢ —
diag(t,...,t,1...,1) where ¢ is placed to the first ¢ dots. They satisfy <
Xi,aj >=0;5 for 1 <4 <n,1 <j<n—1 They are uniquely determined by
this condition modulo the cocharacter x, which identifies G,,, with the center.
For 1 <7 < mn —1 the cocharacter y; determines a maximal parabolic subgroup
P; O T whose roots Ap, = {a| < x;,@ >> 0}. The parabolic subgroup P;” will
be the opposite parabolic subgroup.

Let ¢; : G,, — T be the cocharacter which sends ¢ to ¢ on the i— th spot on
the diagonal and to 1 at all others. If we identify the module of cocharacters
with the character group of the dual torus TV c’ G = Gl,, then the differences
€; — €; will be the roots, the simple roots are ¢; — €;41 and the fundamental
i e(l)).

dominant weights are the semi simple components (3 :_; €,
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Formulas for the Hecke operators

We consider the homomorphism r : K, = Gl,,(Z,) — G, (F,) then we check

easily that the intersection K, Ny;(p)Kpxi(p)~! = K,(,Xi () is the inverse image

of the parabolic subgroup P; (F,) under r.
We want to evaluate the integral

/ bu, (x)dx
Kpxi(p)Kp

We write choose representatives £ for the cosets of K,/ Kz(,x’i @) and write K, =

UE§K£Xi(p)). We observe that ¢, is constant on the cosets fK,(,X"'(p)). Hence we
see that

/pri(p)Kp G, (2)dr = g P, (EXi(P))) (7.35)

The Bruhat decomposition gives us a nice system of representatives for K,/ K ;,Xi ®) —

Gl (Fp)/P; (Fp). Let Wy, be the Weyl group of the standard Levi subgroup
M; = PN P and we choose a system of representatives WP for W /Wy, Then
we get a disjoint decomposition

Gln(Fp): U UB(Fp)wpi_(Fp)v
weWPi

here Up is the unipotent radical of the standard Borel subgroup. The function
¢w, is constant on the double cosets. If we write a representative in the form
& = uw then the factor w is determined by £ but the factor w is not. This factor

is only unique up to multiplication from the right by a factor u € Uj(gw’_)(Fp) =
Ugp(F,) NwP, w1 (F,). Hence we may choose our u in the subgroup

Uy (F,) = II Ua (Fy) (7.36)

aEAT|<x;,wla>>0

and our sum in (7.35) becomes

Z Z bu, (uwxi(p))) = Z Py, (wyi(p)w™))  (7.37)

weWPi ueUf;”’“(IFp) weWPi
where [(w) is the cardinality of the set {a € AT| < x;,w™ta >> 0}. We recall
the definition of the spherical function and get for our integral

Y P uwwxie)eT Dol (wxi)w) = Y0 pTETw, (wxa) (p)
weW/ Wy, weW /W,

(7.38)

Now one checks easily that p!(®)—<xiw™'r> — p<Xir> and hence we get the
desired formula

/pri(p)Kp b, (x)dx = p=XiP=> Z wp((wx:)(p)) (7.39)

wGW/WMi
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This is the formula (7.10) for the group Gl,, and the special choice of the cochar-
acters x = x;. The only cocharacter x’ < x; is the trivial cocharacter, in our
situation its contribution to (7.10) is zero.

Let us have a brief look at an arbitrary reductive (split or may be only
quasisplit) group G/Q, let us assume that the center is a connected torus C/Q.
We choose a maximal torus T/Q which is contained in a Borel subgroup B/Q.
We have the homomorphism to the adjoint group G — Gaq it maps T to Toq =
T/C. Again we may also define the fundamental cocharacters x; : G, — T
which satisfy < x;,; >= 9; ;. They are only well defined modulo cocharacters
X : G,, = C but this does not matter so much. Our above method to compute
the eigenvalue of H(x;) still works if the cocharacter y; is ”minuscule” which
means that < x;,; >€ {—1,0,1}. In this case the formula (7.39) is still valid,
again there is no contribution from the trivial character.

We return to G = Gl,, and to our speculations about motives. We choose
a weight module My where A = >, a;v; + dJ, where the v; are the funda-
mental weights and § is the determinant. The a; are integers and we have the
consistency condition Y ia; = nd mod n. Let us pick an isotypical submodule
H* (ng,/\/l,\ ® F)(ns). In section 6.3.2 we define the Hecke operators

TN H (SE,, My) = H3 (SE,, My)
and these endomorphisms induce endomorphisms
TyMA s HE o (SE, Ma ® F)(mp) = HE 300 (SE . Ma ® F)(7y)

Let my = ®m, be an irreducible Hecke module and at an unramified place p
let w, be the Satake parameter. Our Satake parameter is determined by the
n-tuple of numbers

wp(ni(p)) =wip fori=1,...,n

The cocharacter x,, : G,, — T identifies G,, with the center of Gl,. Our
Hecke-module 7y has a central character and this provides a Hecke character

ﬁfOXn:Gm(Af)ZIQﬁf—)FX

The restriction of My to G,, is the character wy : t — t"® and the type of
m¢ o Xp is of course wy.

Our cocharacters y; define representations of the dual group which is again
Gl,, and in fact x; yields the tautological representation ry : Gl, — GI(V).
Then y; yields the representation r; = A(ry) : Gl, — GI(A*(V)). For any
subset I C {1,2,...,n} we define

Wip = H Wi,p

iel

and then our formula (7.39) in combination with the formula (6.51 ) in section
6.3.2 and the observation that < x;,d >= 1 yields

TR () — pxi AV tp>—id Z wrp (7.40)
I#I=i
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and by the same token we get for the cohomological L-function

1
LCOh(ﬂ-faruvs) = LCOh(ﬂ-fvrivs) ( ) : ) )

(7.41)

Here we see in a very transparent way the independence of the twist: If we
modify A to A+ rd then we have to modify 7y to 7y ® |d¢|~". This means that
the wr, get multiplied by p*” and the modifications cancel out.

We assume that 7y € Coh(H? (SIG(f,./\;l,\)), then we will see in section 8.1.6

that 7, is essentially unitary. The central character of My is z + z™¢ and

hence we get that 7} = 7 ® [0 #|? is unitary. Then the Satake parameter of T
is given by

wi, =wipp “fori=1,....n (7.42)

where the factor p=? = |p|g and we observe that these numbers are also invariant

under twists by a power of |d¢|.

Since the operators T;?h*A operate on the integral cohomology it follows that
the numbers T;?h’)‘(ﬂ' ) are algebraic integers. We easily check that for all i <n

i(< x1, AP 4+ p > —d) >< x5, NV + p> —id

and this implies that the numbers

<x1, AP 4p>—d
DR 1 e

I:#I=ivel

are algebraic integers and hence we can conclude
The numbers

~ _ o<xa AP 4p>—d _ o<xa AP 4>k
Dip=p N P20 p = Xt Zwr, (7.43)

are algebraic integers

Observe that these numbers are invariant under twists by a power of |d|.

We want t make few remarks about the relationship between the automor-
phic and the cohomological L-functions, especially we comment the shift in the
variable s.

For the automorphic L -function we assume that we are over C, we have
chosen an embedding ¢ : F' — C. If our isotypical Hecke module 7 is cuspidal
(see Thm. 8.1.1) then the considerations around this theorem show that 7 is
essentially unitary. The center C' = G,,, the quotient C’ = G,,, and the isogeny
do :x+— z™.

We come back to the Langlands philosophy. It predicts that for our a
"cuspidal” 7y and the cocharacter x; we should be able to attach a motive
M(mg,r1) = M(7s, x1) with coefficients in F. This motive provides a compati-
ble system of [- adic Galois representations

pu(ms,x1) : Gal(Q/Q) — Gln(Fy) = GI(M(mrs, x1)er,1) (7.44)
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which are unramified outside {I} U .S and for p ¢ S U {I} we should have

s —s A s s
det(Id — pi(mf, x1)(®, )p~°) = [[(1 = p= " H0> 74w, p=2)  (7.45)

and this means that up to the local factors at the bad primes we should have
LmOt(M(ﬂ-faX1)aS) = LCOh(ﬁfv)(laS) (746)

The existence of the compatible system of Galois representation has been
shown by Harris - Kai-Wen Lan -Taylor and Thorne and by P. Scholze.

Once we have the motive for the cocharacter x; we easily get it the other x;
we simply have to look at the exterior powers A*(M(my, x1)).

Now we see that that numbers @, , can be interpreted as the eigenvalues of
the Frobenius on Mg ((7¢, x1). Under the assumption that 7 is ”cuspidal” we
expect that the motive M(m¢, x1) is pure of weight w(x1,\) we get

w(x1,\)
2

|w,p| = p

and this is the Ramanujan conjecture. We will explain in the section on
analytic aspects, that for cuspidal 7y the Ramanujan conjecture says that for
any embedding ¢ : F' < C we have

ltow, | =1

This suggests that we call the array @, = {@1,p,...,0n,p} the motivic Satake
parameter (with respect to the tautological representation r; .) Of course it can
always be defined, independently of the existence of the motive.

We will see in the next section that the inner cohomology is trivial unless our
highest weight is essentially self dual, this means that A(Y) = —wg(A(D). Let us
assume that this is the case. If 7 is the dual of the tautological representation
then the eigenvalues of 7y (wj) are by

r (wp) = {wl_,;,...,w;;) .

The highest weight of ry is the cocharacter —n,, = Z:-:ll n; — det (This has to
be read in X*(TV)) Then

=1y N) =< x1, —wo(AV) > +d
and under our assumption that A is essentially self dual we know

A
<, —wo(AY) >=<xa, A >= %

This implies that the motivic Satake parameters with respect to the dual
representation ry are the numbers

<x1 AV >4ds, 1 <x1, AP >4ds 1
{p=x Wy pye ey DN Whp (7.47)



296 CHAPTER 7. THE FUNDAMENTAL QUESTION

In the following section on Poincaré duality we will see that for any isotypical
module H} (SIC(;f , /\/l,\yljﬂ)(wf) the dual module 7} appears in H!dﬂ(ng ,Mov p).
Then we get an equality of local Euler factors

LM (7, 1y 8) = L"Oh(w;}/, r1,S) (7.48)

The concept of motives allows us to define the the dual motive. If our motive
has weight w(M) then Poincaré duality suggests that we define the motive

MY = Hom(M, Z(—w(M)) (7.49)
The [ adic realization as Galoismodule gives us

Mt\é/t,[ = Hom(Mé“, Zi(—w(M))

If {o, ..., am} are the eigenvalues of &' on Mgy, then {a7 pWO) o tpw (M)

are the eigenvalues of @ on My, .
Therefore we can say: If we find a motive M(ns, x1) for 7y the we also find
the motive for 7y and we have

M(7, x1) = M(ms, x1)"



Chapter 8

Analytic methods

8.1 The representation theoretic de-Rham com-
plex

8.1.1 Rational representations

We start from a reductive group G/Q for simplicity we assume that the semi
simple component GV /Q is quasisplit. There is a unique finite normal extension
F/Q,F C C such that GV xg F becomes split. If 7" /Q is a maximal torus
which is contained in a Borel subgroup B/Q then the Galois group Gal(Q/Q)
acts on X*(T(l) xq F). It acts by permutations on the set of positive roots
7o C X*(T™W xgF) corresponding to B/Q. This action factors over the quotient
Gal(F/Q). Then it also acts on the set of highest weights. Since our group is
quasi split we find for any highest weight an absolutely irreducible G xq F-
module M.
r:G XQF — Gl(./\/l)\)

whose highest weight is A. Since we assumed that Q C F € Q C C we get the
extension

rc: (G XQF) XF(C—> Gl(M,\ ®F(C)
Given such an absolutely irreducible rational representation, we can construct
two new representations. At first we can form the dual My » = Homc(My,C)

and the complex conjugate Mc of our module My. On the dual module we
have the contragredient representation 7V, which is defined by ¢(rc(g)(v)) =

ré(g71)(9)(v). .

To get the rational representation on the conjugate module M ®@p C, we
recall its definition: As abelian groups we have M @z C = M ®p C but the
action of the scalars is conjugated, we write this as z -. m = Zm. Then the
identity gives us an identification

Endc( M ®@p C) = End(c(./\;l,\ ®F C).

Now we define an action 7 on My @ C: For g € G(C) we put

rc(g)m = rc(g) e m.

297
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This defines an action of the abstract group G(C), but this is in fact obtained
from a rational representation. Therefore M and M both are given by a
highest weight.

The highest weight of MY is —wq(\). Here wy is the unique element wy € W,
which sends the system of positive roots AT into the system A~ = —AT,

The highest weight of M, ®p C is ¢(\) where ¢ € Gal(C/R) C Gal(F/Q) is
the complex conjugation acting on X*(T xg F). So we may say: Mo = Mj.

We will call the module M- conjugate-autodual or simply c-autodual if

e() = —wo(\) (8.1)

If our group G/Q is split then ¢ acts trivially on the character module and
the condition becomes A = —wg(\). If now in addition the element wy acts by
—1 on the character module, the every A is conjugate-autodual.

In the following few sections (until 8.1.6 we will always assume that our local
system (resp. the corresponding representation) are local systems in C-vector
spaces (resp. C-vector spaces M »). Therefore we will suppress the factor @C.

8.1.2 Harish-Chandra modules and (g, K, )-cohomology.

Now we consider the group of real points G(R), it has the Lie algebra g, inside
this Lie algebra we have the Lie algebra £ of the group K.,. We have the notion
of a (g, K») module: This is a C-vector space V together with an action of g
and an action of the group K.,. We have certain assumptions of consistency:

i) The action of K, is differentiable, this means it induces an action of ¢,
the derivative of the group action.

ii) The action of g restricted to ¢ is the derivative of the action of K.
iii) For k € K, X € g and v € V we have

(Ad(k)X)v = k(X (k~10)).

Inside V' we have have the subspace of K finite vectors, a vector v is called
K finite if the C- subspace generated by all translates kv is finite dimensional,
i.e. v lies in a finite dimensional K, invariant subspace. The K, finite vectors
form a subspace V=) and it is obvious that V(5=) is invariant under the
action of g, hence it is a (g, K ) sub module of V. We call a (g, Ko ) module a
Harish-Chandra module if V = V(Fs),

For such a (g, Koo )-module we can write down a complex

Hompg_ (A®(g/),V) = {0 =V — Hompg_(A'(g/t),V) — Homg_ (A*(g/€),V) — ...

where the differential is given by

dw(Xo,Xl, ce 7Xp) = on(—l)iXiw(Xo, ce ,Xi, N ,Xp)—‘r
i+ ([ X % > (82)
ZO§i<j§p(_1) w([XZ‘7X]‘ ,)(()7 e ,Xi, gee 7)(j7 ey
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A few comments are in order. We have inclusions
Homp (A®(g/t),V) C Hom(A*(g/t),V) C Hom(A®(g),V).

The above differential defines the structure of a complex for the rightmost
term, we have to verify that the leftmost term is a subcomplex, this is not so
difficult.

We define the (g, K) cohomology as the cohomology of this complex, i.e.

H*(9,K»,V) = H*( Homg__(A*(g/¢),V)) (8.3)
It is clear that the map
H* (g, Koo, V=) — H*(g, Koo, V)

is an isomorphism.

If we have two (g, K~ ) modules V7, V5 and form the algebraic tensor product
W =V, ® V5 the we have a natural structure of a (g, K, ) -module on W : The
group K acts via the diagonal and U € g acts by the Leibniz-rule U(v; ®
vg) = Uvi ® ve + v1 ® Uvg. If both modules are Harish-Chandra modules,
then the tensor product is also a Harish-Chandra module. Of course any finite
dimensional rational representation of the algebraic group also yields a Harish-
Chandra module.

8.1.3 The representation theoretic de-Rham isomorphism

For us the (g, K ) module Coo (G(Q)\G(A)/Ky),- this is the space of functions
which are Co in the variable go.- is one of the most important (g, K, ) -modules.
We may also consider the limit over smaller and smaller levels K¢ we get the
space Coo (G(Q)\G(A)), which consists of those functions on G(A), which are
left invariant under G(Q), right invariant under a suitably small open subgroup
Ky C G(Ay) and which are C in the variable go.. On these functions the group
G(A) acts by translations from the right, since our functions are C., we also get
an action of the Lie algebra g. Hence this is also a (g, Ks) X G(Af)-module.

If we fix the level see that Coo (G(Q)\G(A)/Ky)) is a (9, Koo) X Hi, , the
Hecke algebra acts by convolution. We choose a highest weight module M and
apply the previous considerations to the Harish-Chandra module

V =Coo(GQN\G(A)/Kf) © M.

Notice that we can evaluate an element f € Coo(G(Q)\G(A)/Kf) ® My in a
point g = (goo,gf) and the result f(g) € Mx. The Hecke algebra acts via
convolution on the first factor.

Let us assume that our compact subgroup K; C G(Ay) is neat, ie. for
any g = (goo,gf) € G(A) we have g7 (Ko x Ky)g N G(Q) = {e}. In this
case we know that M is a local system and we can form the de-Rham complex
Q‘(ng,./\/l A)-

We have an action of the Hecke algebra on this complex and we have the

following fundamental fact:
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Proposition 8.1.1. We have a canonical isomorphism of complexes
Hom (A*(9/%), Coo (GIQ\G(A) /K ) © My) = Q*(SE . My @ C),
this isomorphism is compatible with the action of the Hecke algebra on both sides

This is rather clear. We have the projection map
q: G(R) X G(Af) — G(R)/KOO X G(Af)/Kf =X X G(Af)/Kf

let 9 € X x G(Ay)/Ky be the image of the identity e € G(R). The differential
D,(e) maps the Lie algebra g = tangent space of G(R) at e to the tangent

space Tx z, at zo x ef. This provides the identification Tx ,, — g/t
An clement w € Hompg_ (AP(g/8), Coo(G(Q)\G(A)/K ) @ M) can be eval-
uated on a p-tuple (Xo, X1,...,X,—1) and the result

w(Xo, X1,..., Xp_1) € Cao(GQ\G(A)/Kf) @ M.
We want to produce an element w in the de-Rham complex 2° (S[G(f,./\;l A)-
Pick a point x x 9, € X x G(Ay)/Ky, we find an element (goo,gf) € G(R) x

G(Ay) such that gooxo = x. Our still to be defined form @ can be evaluated at
a p-tuple (Yp,...,Y,_1) of tangent vectors in x x g, and the result has to be

an element in Mc,. We find a p-tuple (Xo, X1,...,Xp—1) of tangent vectors
at xo which are mapped to (Yo, ...,Y,—1) under the differential Dy_ of the left

translation by Dy . We put
5(Yo, . Yoo) (@ x 9,) = g0 @(Xor - Xpo) (0crg,)). (84)
At this point I leave it as an exercise to the reader that this gives the iso-
morphism we want.(Ref ?77)

We recall that the de-Rham complex (Reference Book Vol. !) computes the
cohomology and therefore we can rewrite the de-Rham isomorphism | BodeRh

H*(S§,, Mx) — H*( Homg_ (A*(g/8), Coo (G(Q\G(A)/Ky) ® M) (8.5)

From now on the complex Hompg  (A®(g/),Coo(G(Q)\G(A)/Ky) ® M) will
also be called the de-Rham complex.
By the same token we can compute the cohomology with compact supports

HE(S, My) = H*(Hompe (A*(9/8), Ceooe (G(Q\G(A)/K ) © M) (86)

where C oo (G(Q)\G(A)/K ) are the Coo function with compact support. These
isomorphisms are also valid if we drop the assumption that K is neat.

The Poincaré duality on the cohomology is induced by the pairing on the

de-Rham complexes:

Proposition 8.1.2. Ifw; € Homg_ (A*(g/t),Co(G(Q\G(A)/Ky) QM) is a
closed form and wy € Homp_(A®(g/t),Coo,c(G(Q\G(A)/Ky) @ MY) a closed
form with compact support in complementary degree then the value of the cup
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product pairing of the classes |wq] € Hp(ng,./\;lA), [wa] € Hg*p(Sﬁf,/\;lX) is
given by

<[w1}u[w2] >:/ < w1 ANwg >
ng

(Reference Book Vol. !)

8.1.4 Input from representation theory of real reductive
groups.

Let us consider an arbitrary irreducible (g, K )- module V. We also assume that
for any 9 € K. the multiplicity of ¢ in V' is finite (we say that V is admissible).
Then we can extend the action of the Lie-algebra g to an action of the universal
enveloping algebra $4(g) on V and we can restrict this action to an action of
the centre 3(g). The structure of this centre is well known by a theorem of
Harish-Chandra, it is a polynomial algebra in r = rank(G) variables, here the
rank is the absolute rank, i.e. the dimension of a maximal torus in G/Q. (See
Chap. 4 sect. 4)

Clearly this centre respects the decomposition into K, types, since these
K types come with finite multiplicity we can apply the standard argument,
which proves the Lemma of Schur. Hence 3(g) has to act on V' by scalars, we
get a homomorphism yy : 3(g) — C, which is defined by

zv = xv (2)v.

This homomorphism is called the central character of V.

A fundamental theorem of Harish-Chandra asserts that for a given central
character there exist only finitely many isomorphism classes of irreducible, ad-
missible (g, Ko )-modules with this central character.

Of course for any rational finite dimensional representation r : G/Q —
Gl(M,) we can consider My ® C as (g, Ko )-module. If M, is absolutely
irreducible with highest weight A (See chap. IV) then it also has a central
character y a1 = x-

Wigner’s lemma: Let V' be an irreducible, admissible (g, K )-module, let
M = My, a finite dimensional, absolutely irreducible rational representation.
Then H*(g, Koo, V ® Mc) = 0 unless we have

xv(2) = xmv (2) = xm,v (2) for all z € 3(g)

Since we also know that the number of isomorphism classes of irreducible,
admissible (g, K )-modules with a given central character is finite, we can con-
clude that for a given absolutely irreducible rational module M, the num-
ber of isomorphism classes of irreducible, admissible (g, K )-modules V' with
H*(9, Ko,V ® Mc) # 0 is finite.

The proof of Wigner’s lemma is very elegant. We have M@V = MY ®V and
hence we have H%(g, Koo, M®V) = Hom(M",V)(@K=) = Homgy g (MY, V).
In [10] , Chap.I 2.4 it is shown, that the category of g, K, -modules has enough
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injective and projective elements (See [10], I. 2.5) . If T is an injective (g, Koo )-
module then M ® I is also injective because for any g, K. -module A we have
Hom(A, M ®I) = Hom(M,I). Hence an injective resolution 0 — V — 1% —
I' ... yields an injective resolution 0 - M — M ® I° - M ®I'... and from
this we get

HY(g, Koo, M @ V) = Ext!

(g7K®)(MV,V).

Any z € 3(g) induces an endomorphism of M and V. Since Ext*® is functo-
rial in both variables, we see that z induces endomorphisms z; (via the action on
M) and z (via the action on V') on Ext] ;- (MY, V). We show that 21 = 25.
This is clear by definition for Eth,Koo (MY, V) = Homg g (MY, V) : For
z € 3(g) and ¢ € Homg g, (MY,V),m € My we have z1¢(m) = ¢(zm) =
z2(¢p(m)). To prove it for an arbitrary ¢ we use devissage and induction. We
embed V into an injective g, K, module I and get an exact sequence

0=V —>1—-1/V—=0

and from this and Ext] . (M., 1) for ¢ > 0 we get

Ext? (g, Koo, M, 1/V) = Ext?(g, Koo, My, V) for ¢ > 0.

Now by induction we know z; = 29 on the left hand side, so it also holds on
the right hand side.

If now xv # xmv then we can find a z € 3(g) such that xmv(z) =
0, xv(z) = 1. This implies that z; = 0 and 2o = 1 on all Ext?(g, Koo (M, V).
Since we know that z; = zo we see that the identity on Ext?(g, Koo (M, V) is
equal to zero and this implies the assertion.

On the universal enveloping algebra $/(g) we have an antiautomorphism u —?
u which is induced by the antiautomorphism X +— —X on the Lie algebra g. If
V is an admissible (g, K )-module, then we can form the dual module Vv and
if we denote the pairing between V, V" by <, >y then

<Uv,¢ >y=<0v,'Up >y forall U € U(g),v € V,p € V".

If V is irreducible, then it has a central character and we get

xvv(z) = Xv(tz)-

This applies to finite dimensional and to infinite dimensional (g, K )-modules.

8.1.5 Representation theoretic Hodge-theory.

We consider irreducible unitary representations G(R) — U(H). We know from
the work of Harish-Chandra:

1) If we fix an isomorphism class 9 irreducible representations of Ko, then
the isotypical subspace dim¢ H () < dim(99)?, i.e. ¥ occurs at most with mul-
tiplicity dim(9).

2) The direct sum ) 5o H(J) = H) c H is dense in H and it is an
admissible irreducible Harish-Chandra -module.



8.1. THE REPRESENTATION THEORETIC DE-RHAM COMPLEX 303

We call an irreducible (g, K )-module unitary, if it is isomorphic to such an
HE),

For a given G/R and any rational irreducible module M, Vogan and Zucker-
man give a finite list of certain irreducible, admissible (g, Ko,)— modules Aq(A),
for which H*(g, Koo, Aq(A) ® M) # 0 they compute these cohomology group.
This list contains all unitary, irreducible (g, Ko )—modules, which have non
trivial cohomology with coefficients in M.

For the following we refer to [10] Chap. IT ,S 1-2 . We want to apply the
methods of Hodge-theory to compute the cohomology groups H®(g, Koo,V &
M.,) for an unitary (g, Ko )-module V. This means have a positive definite scalar
product <, >y on V, for which the action of K, is unitary and for U € g and
v1,v9 € V we have < Uvy,vo >y + < wvi,Uvy >y = 0.

Now we e assume that M, is conjugate-autodual. In the next step we
introduce for all p a hermitian form on Hompg,__(AP(g/),V ® M,). To do this
we construct a hermitian form on M.

(The following considerations are only true modulo the centre). We consider
the Lie algebra and its complexification gc = g ® C. On this complex vector
space we have the complex conjugation ~ : U ~ U. We rediscover g as the
set of fixed points under ~. We also have the Cartan involution © which is
the involution which has ¢ as its fixed point set. Then we get the Cartan
decomposition

g = €@ p where p is the -1 eigenspace of O.

The Killing form is negative definite on ¥ and positive definite on p, we
have for the Lie bracket [p,p] C €. We consider the invariants under ~ o ©,
this is the Lie algebra g. = £ ® v/—1 ® p. On this real Lie algebra the Killing
form is negative definite and g, is the Lie algebra of an algebraic group G./R
whose base extension G, ®x C —+ G ®g C and whose group G.(R) of real
points is compact (this is the so called compact form of G). We still have
the representation G./R — Gl(M,) which is irreducible and hence we find a
hermitian form < , > on My, which is invariant under G.(R) and which is
unique up to a scalar.

This form satisfies the equations

<Umqi,mo >pm + < mq,Umg >,=0 for all m;,mg € M,,U €t
this is the invariance under K., and
<Umyi,mgo >p=<my,Umsg >, for all mi,me € My, U € p

this is the invariance under v/—1 ® p.

Now we define a hermitian metric on V ® My, we simply take the tensor
product < , >y ® <, >\=<, >yg) . Finally we define the (hermitian)
scalar product on Hompg__ (A®(g/t), V@M,). We choose and orthonormal (with
respect to the Killing form) basis Ey, Es, ..., E4 on p, we identify g/€ — p.
Then a form w € Homg_ (AP(g/t),V ® M) is given by its values w(FE;) € V®
My, where I = {iq,12,...,4,} runs through the ordered subsets of {1,2,...,d}
with p elements. For wi,wy € Hompg (AP(g/t),V ® M,) we put
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<wiwy>= Y <wi(Er),wEr) >vex (8.7)
L|Il=p

Now we can define an adjoint operator
§: Homp_(AP(g/€),V @ My) — Hompg_ (AP~ (g/€),V @ M,), (8.8)

which can be defined by a straightforward calculation. We simply write a for-
mula for ¢: For an element E; we define Ef(v®@m) = —E;v @ m+ v Q Eym.
Then we can define § by the following formula:

We have to evaluate §(w) on Ey = (E; E;, ) where J = {i1,...,ip_1}.
We put

19

S(w)(Ey) = Z(—l)p(i’JU{i})EZW.Ju{i},
igJ
where p(i, JU{i}) denotes the position of ¢ in the ordered set J U {i}. With this

definition we get for a pair of forms w; € Hompg_ (AP~!(g/t),V ® M,) and
we € Hompg_(AP(g/¢),V @ M) (See [10], 11, prop. 2.3)

< dwl, wo >=< wq, 5&)2 > (89)
We define the Laplacian A = §d + dé. Then we have ([10] , II ,Thm.2.5)
< Aw,w >> 0 and we have equality if and only if dw = 0,0w =0  (8.10)

Inside 3(g) we have the the Casimir operator C' (See Chap. 4). An element
z € 3(g) acts on V@ M by 2 ®1d via the action on the first factor and by the
scalar x(z) via the action on the second factor. Then we have

Kuga’s lemma : The action of the Casimir operator and the Laplace op-
erator on. Homg__(AP(g/%),V ® M) are related by the identity

A=C&Id—x\(C).

If the (9, Ks) module is irreducible, then A acts by multiplication by the
sealar xv(C) = xA(C)

This has the following consequence
If V is an irreducible unitary g, Koo- module and if My is an irreducible
representation with highest weight X then

. _JO if xv(C) —xa(C) #0
H* (8, Koo, VOMe) = { Homc.,(A(8/8), VO M) if xv(C) = xa(C) =0

This only applies for unitary g, K,-modules, but for these it is much stronger:
It says that under the assumption xy (C) = xx(C) we have yy = xa ( we only
have to test the Casimir operator) and it says that all the differentials in the
complex are zero.



8.1. THE REPRESENTATION THEORETIC DE-RHAM COMPLEX 305

8.1.6 Input from the theory of automorphic forms

We apply this to the spaces of square integrable functions on G(Q)\G(A)/Kjy.
Because of the presence of a non trivial center, we have to consider functions
which transform in a certain way under the action of the center. We may assume
that coefficient system M has a central character and this central character
defines a character ( on the maximal Q-split torus S C C. This character can
be evaluated on SY(R) this is the connected component of the identity of the real
valued points of S. The map zoo — (200, 1,...,1,...) € S(A) is an embedding
of S°(R) into G(A). It follows from [8] that the quotient G(Q)S°(R)\G(A)/Ky
has finite volume. We define the space of functions

Coo(GQ\G(A) /K, ¢ (8.11)

to be the subspace of those Cy functions which satisfy f(2009) = (! (200) f(9)
for all 2o, € SY(R). The isogeny dc : C — C’ (see 6.1.1) induces an isomorphism
S9(R) — S"O(R), where S’ is the maximal Q split torus in C’. Therefore we get
a character ¢ : S"°(R) — RZ, and this is also a character ¢/, : G(R) — RZ,,.
Its restriction to S°(R) is (. If now f € Coo(G(Q)\G(A)/Ky, (") then

F(9)Ch(9) € Coo(G(Q)S (RN\G(A)/K ) (8.12)

We say that f € Coo(G(Q)\G(A)/K ¢, (L") is square integrable if
/ 179Gk lg)Pdg < o0 (13)
(GQS(RI\G(A)/Ky)
and this allows us to define the Hilbert space L*(G(Q)\G(A)/Ky,(L'). Since
the space (G(Q)SY(R)\G(A)/K) has finite volume we know that
(e € LHGQ\G(A) /Ky, (1)

The group G(R) acts on Coo (G(Q)\G(A)/K s, (") by right translations and
hence we get by differentiating an action of the universal enveloping algebra

$1(g) on it. We define by Cg)(G(Q)\G(A)/Kf, ¢l the subspace of functions f
for which U f is square integrable for all U € $l(g).

This allows us to define a sub complex of the de-Rham complex

Homp (A*(8/8),CE (GQ\G(A)/Kf, (L) ® My). (8.14)

We will not work with this complex because its cohomology may show some bad
behavior. (See remark below).

We do~something less sophisticated, we simply define H ('2)(S}G( f,M A) C
H* (SIG(f,MA) to be the image of the cohomology of the complex (8.14) in the

cohomology. Hence H(.z) (SIG{f,./\;l A) is the space of cohomology classes which
can be represented by square integrable forms.

Remark: Some authors also define L?— de-Rham complexes, using the above
complex (8.14) and then they take suitable completions to get complexes of
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Hilbert spaces. These complexes also give cohomology groups which run under
the name of L2-cohomology. These ~L2—cohomology groups are related but not
necessarily equal to our H ('2)(8%,,/\/1 »). They can be infinite dimensional.

The Hilbert space L?(G(Q)\G(A)/Ky, (5} is a module for G(R) x H, the
group G(R) acts by unitary transformations and the algebra H, is selfadjoint.

Let us assume that H = Hy__ xr, is an irreducible unitary module for G(R) x
H= ®;Hp and assume that we have an inclusion of this G(R) x H-module

j:H <= LA(GQ\GA) /K, ().

It follows from the finiteness results in 8.1.5 that induces an inclusion into the
space of square integrable C,, functions

HE=) 5 O (GQ)\G(A) /Ky, () ).

We counsider the (g, K )— cohomology of this module with coeflicients in our
irreducible module M, we assume xy (C) = xA(C). We have H*(g, Koo, H ®
My) = Hompg_ (g, Koo, HE=) @ M) and get

H*(g, Koo, HE=) @ Mc) 5 H*(g, Koo, Coo (GIQ\G(A) /K 1, ¢ EX) @ M),

This suggests that we try to ”decompose” Coo(G(Q)\G(A)/K, (! Fee)
into irreducibles and then investigate the contributions of the irreducible sum-
mands to the cohomology. Essentially we follow the strategy of [Bo-Gal] and [6]
but instead of working with complexes of Hilbert spaces we work with complexes
of Co, forms and modify the arguments accordingly.

It has been shown by Langlands, that we have a decomposition into a discrete
and a continous spectrum

LA(G(Q\G(A)/Ky) = Liiee(GQNG(Af) /K p) & Loy (GQ\G(Af)/Kyp),

where L3, .(G(Q)\G(Ay)/Ky) is the closure of the sum of all irreducible closed
subspaces occuring in L?(G(Q)\G(A)/Ky) and where L2 (G(Q)\G(Af)/Ky)

is the complement.

The discrete spectrum L3, (G(Q)\G(Af)/Ky) contains as a subspace the

disc
cuspidal spectrum L2, (G(Q)\G(Af)/Ky) :
A function f € L?(G(Q)\G(Af)/Ky) is called a cusp form if for all proper
parabolic subgroups P/Q C G/Q, with unipotent radical Up/Q the integral

Fr(f)g) = f(ug)du =0,

/UP(Q)\UP(A)
this means that the integral is defined for almost all g and zero for almost all
g. The function F¥(f)(g), which is an almost everywhere defined function on
P(Q)\G(A)/Ky is called the constant Fourier coefficient of f along P/Q. The
cuspidal spectrum the the intersection of all the kernels of the F¥.

If our group is anisotropic, then it does not have any proper parabolic sub-
group and in this case we have L2, (G(Q)\G(Ay)/Ky) = L3, (GQ\G(Ay)/Ky) =
LX(G@Q)\G(A7)/K).
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For any unitary G(R) x H- module H, = H,, ® Hy, we put

WCHSp(T) = HomG(R)XH(Hﬂ"LCuSp( (Q)\G(Af)/Kf)) (8~15)

We can ignore the H-module structure and define

Weusp(moo) = Home g (Hr.. Liusp (G(Q\G(Ay) /Ky)).

Then then dimension of Weysp(Too) is the multiplicity mcusp (o). It has been
shown by Gelfand-Graev and Langlands that

mcusp Too) E dim(Wy cusp) < 00.

We get a decomposition into 1sotyp1(:al subspaces

L (GQ\G(Af)/Kf) = @D (L2 (GQ\G(Ag) /K ) (oo x ),
Too®T s
where (L2, (G(Q\G(Af)/Kf)(mo x my) is the image of Wi cusp @ Hr in
Lgusp( ( )\G(Af)/Kf)

The cuspidal spectrum has a complement in the discrete spectrum, this is
the residual spectrum L2, ,((G(Q)\G(Af)/Ky). It is called residual spectrum,
because the irreducible subspaces contained in it are obtained by residues of
Eisenstein classes.

Again we define Wies(m) = Homgryxp (Hr, Lo (G(Q)\G(Af)/Ky)), (resp.
Wies(Too) = Homg gy (Hr,, , L2, (G (Q)\G(Af)/Kf)), and it is a deep theorem
of Langlands that myes(moo) = dim(Wies(7oo) < 00. Hence we get a decomposi-

tion

L (GQ\G(Af)/Kp) = P (LE(GQ\G(Af)/Ky)(mo X my).

Too®Tf

If our group G/Q is isotropic, then the one dimensional space of constants
is in the residual (discrete) spectrum but not in the cuspidal spectrum.

Langlands has given a description of the continuos spectrum using the theory

of Eisenstein series, we have a decomposition
Lot (GQ\G(Af)/Ky) = @ (8.16)

b

we briefly explain this decomposition following [Bo-Ga]. The X are so called
cuspidal data, this are pairs (P,7s) where P is a proper parabolic subgroup
and 7y is a representation of M(A) = P(A)/U(A) occurring in the discrete
spectrum Lcubp( (Q\M(A)).

Let M /Q be the semi simple part of M and recall that C'/Q was the center
of G/Q. We consider the character module Y*(P) = Hom(C - MM G,,). The
elements Y*(P)®C provide homomorphisms y®z : M(A)/C(A)M™M (A) — C*.
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(See (6.16)). The module Y*(P)®Q comes with a canonical basis which is given
by the dominant fundamental weights v, which are trivial on M (1), We define

As =Y*(P) @ iR = {) v, @it,|t, € R}
13

this is a group of unitary characters. For o € Ay we define the unitarily induced
representation

Indgggﬂg ® (o +pp) = IICJ;Wg Q0o
(8.17)

{f 1 G(A) = LI (M(Q\M (4))(m)| f(pg) = (o + o) (p)7=(p) f(9)}

where of course p € P(A),g € G(A) and pp € Y*(P) ® Q is the half sum of
the roots in the unipotent radical of P. This gives us a unitary representation
of G(A). Let ds be the Lebesgue measure on Ay then we can form the direct
integral unitary representations

Hp(’l'rg) :/ Ig’l'rg ® o dno (818)
As

The theory of Eisenstein series gives us a homomorphism of G(R) x H -modules
Eisp(ms) : Hp(ms) = Lion (G(Q\G(Ay)/Ky). (8.19)

Let us put

A-'E— = {Z Yu @ itu“u 2 0}
o

then the restriction

Bisp(ms) : Hj (15) = / I © 0 dso — L2 (GQ\C(A))/Ky). (8:20)

Ag

is an isometric embedding. The image will be denoted by H;(7s) these spaces
are the elementary subspaces in [B-G]. Two such elementary subspaces Hp (7x), H ;1 (rs,)
are either orthogonal to each other or they are equal. We get the above decom-
position if we sum over a suitable set of representatives of cuspidal data.
Now we are ready to discuss the contribution of the continuous spectrum to
the cohomology. If we have a closed square integrable form

w € Homg (AP(g/t),C3(G(Q\G(A)/Ky) @ My),

then we can decompose it
W = Wres T Weont

both summands are C2, and closed.

Proposition 8.1.3. The cohomology class [weont) s trivial.

Proof. This now the standard argument in Hodge theory, but this time we apply
it to a continuous spectrum instead of a discrete one. We follow Borel-Casselman
and prove their Lemma 5.5 (See[B-C]) in our context. We may assume that ws
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lies in one of the summands, i.e. weons = Eis([, w"(0)dso) where w”(0) €
Hompg__ (AP(g/t), IS7s ® 0 ® M,)) is the Fourier transform of w., in the L?.,
(theorem of Plancherel). As it stands the expression |[ As wY(o)dso) does not
make sense because the integrand is in L? and not necessarily in L!. If we
choose a symmetric positive definite quadratic form h(c) = >, b, ,t.t, and
a positive real number 7 then the function

v,

he(o) = (14 7h(o)™) ™! € L?(Ay)
and then w"(0)h, (o) is in L' and by definition
lim [ w¥(0)he(0)dso) = / ¥ (0)dso (8.21)
T—0 As As

where the convergence is in the L? sense. Since w,, € Hompg_ (AP(g/€), [Sms®
o ® M) we get get that w (o) has the following property
For any polynomial P(c) = >~ a,t* in the variables ¢, and with real coeffi-

cients the section
wY (o) P(0) is square integrable (8.22)
this follows from the well known rules that differentiating a function provides

multiplication by the variables for the Fourier transform.

The Lemma of Kuga implies

Alw”(0)) = (xo(C) = xa(C))w (o)

and if 0 = )", ® it_p the eigenvalue is

Xo(C) = xa(C) = " avptuty+ Y buty + cay — . (8.23)

where cr,, is the eigenvalue of the Casimir operator of M ) on 7y, If the t, €R
then this expression is always < 0 especially we see that the quadratic form
on the right hand side is negative definite. This implies that for ¢ € Ap the
expression . (C)—xx(C) assumes a finite number of maximal values all of them
< 0 and hence

Vs = {o|x.(C) — x2(C) = 0} (8.24)

is a finite set of point. This set has measure zero, since we assumed that P was
a proper parabolic subgroup. The of o for which H*(g, Koo, Hay (0) @ Mc) # 0
is finite. We choose a Co, function hx (o) which is positive, which takes value
1 in a small neighbourhood of V5, which takes values < 1 in a slightly larger
neighbourhood and which is zero outside this second neighbourhood. Then we
write

Weo = Eis(/A+ hs(0)wY (0)dso) + Eis(/ (1 - hx(o))w(0)dso)

A
We have dwV(0) = 0 and hence we get

AL = hs(0))w” (0) = d((xo (C) = XA(C))(L = ho))0 ()
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and this implies that

Bis( | (1=hs (o)) (7)dno) = d Bis( | (1=hs()) (6, (C)—xa(C))710 (7o)

+
] AE

It is clear that the integrand in the second term- [,+(1 — hx(0))(xs(C) —
=

XA(C))7LowY (o) still satisfies (8.22) and then our well known rules above imply

that ¢ = Eis([,+(1 — hx(0))(xo(C) — xA(C))1owY (0)dso) is CZ,. Therefore
b

the second term in our above formula is a boundary.

Weont = hs(o)w(o)dso + di.
As

This is true for any choice of hy,. Hence the scalar product < w—dy, w—dy >
can be made arbitrarily small. Then we claim that the cohomology class [w] €
H*( Hompg_ (AP(g/%),Coo(G(Q)\G(A)/Ky) ® M) must be zero. This needs a
tiny final step. ~

We invoke Poincaré duality: A cohomology class in [w] € HP (SIG(f,M A) is
zero if and only the value of the pairing with any class [we] € Hgfp(ng,./\;lX)
is zero. But the (absolute) value [w] U [wa] of the cup product can be given

by an integral (See Prop.8.1.2). Therefore it can be estimated by the norm
< w —dp,w — dp > (Cauchy-Schwarz inequality) and hence must be zero. O

As usual we denote by G(R) the unitary spectrum, for us it is simply the
set of unitary irreducible representations of G(R). Given M, we define

Coha(\) = {7ee € G(R)| H*(g, Koo, Hr. ® My) # 0} (8.25)
The theorem of Harish-Chandra says that this set is finite.
Let
Hoony = P Lac(GQ\G(Ap)/Ef)(rooxmy) = P Heo(wy)

T oo €Coha (X) T oo €ECoha (A)

the theorem of Gelfand-Graev and Langlands assert that this is a finite sum of

irreducible modules. This space decomposes again into Hé‘:hp( N ®HES 0

Then we get the following theorem which is due to Borel, Garland, Mat-

sushima and Murakami

Theorem 8.1.1. a)The map
H*(g, Koo, HE=) @ My) = H (A*(g/8), HE=) @ My) = HS (S, M)
8, Kooy 1 gop, (1) ©MA OME e (A 8/Y) H on, (1) 71N @)K VI
surjective. Especially the image contains H? (Sﬁf,J\;lA).
b) (Borel) The homomorphism
H* (g, Koo, HSSPK<) 0 My) — H*(SE,, M
(9, 0os 1 Gon, () ® )\)_> (Kfv )\)

s injective.
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In [7] Prop.5.6, they do not consider the above space Hp,) (Sf?f,/\;l)\) we
added an € > 0 to this proposition by claiming that this space is the image.

In general the homomorphism

H* (g, Koo, Hyog) @ M) — H°(51G<f,/\;l,\)
is not injective. We come back to this issue in the next section.

If we denote by HC‘USP(SI% M) the image of the homomorphism in b), then

f’

we get a filtration of the cohomology by four subspaces

Hoo (SR, M) C HY (SE,, M) C HYypy (SE,, M) C H*(SE,, M»). (8.26)

We get the representation theoretic Hodge decomposition

@ WCUSP(TFOO) ® Hc.usp(g7K007HTfoo ® MA) ;> Hc.usp(SIC{;f“A;l/\) (827)

If we replace the subscript ¢usp by 1 the corresponding map is still surjective
but may be not injective.

We want to point out that our space H (’2) (ng‘ . M ) is not the space denoted

by the same symbol in the paper [6]. They define L? cohomology as the complex
of square integrable forms, i.e. w and dw have to be square integrable. But then
a closed form w which is in L? gives the trivial class in their cohomology if we
can write w = dy where b must also be square integrable. In our definition we
do not have that restriction on .

The semi-simplicity of the inner cohomology

Now we assume again that our representation M is defined over some number
field F' we consider it as a subfield of C. In other word we have a representation
r:GxF — Gl(M)). We have defined H (ng , M), this is a finite dimensional
F-vector space and Theorem 3.1.1 in Chapter 3 asserts that this is a semi simple
module under the Hecke algebra. The following argument shows that this is an
easy consequence of our results above.

The module H; C L3 .(G(Q)\G(Af)/Ky) can also be decomposed into a
finite direct sum of irreducible G(R) x H g, modules

H, = @ (Hfroo ® I_[Trf)m1('rroo><rrf)7
Tl'oo®7Tf€H1

this module is clearly semi-simple. Of course it is not a (g, K )-module, but
we can restrict to the K-finite vectors and get

H*(g, Koo, H{"oM\@C) = P  (Homg_ (A*(g/8), Hr ®Mc)@H,, )™ 7>
TI'OC®7Tf€Hl

This is a decomposition of the left hand side into irreducible H x, modules. Now
we have the surjective map
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H* (g, Koo, H") © My © C) — Hiy (S, Mr @ C)

hence it follows that H{,) (S}G;f,./\;l,\ ® C)) is a semi simple H g, module and

hence also H? (8§, M) is a semi simple Hc, module.

Friendship

We touch upon a question which comes up naturally in this context. Assume we
have a non zero isotypical submodule H? (ng,./\/l A) (7). Then we know that
there is a unitary (g, Ko ) module H,__ with 7o € Coh()\) such that we can
embed Hy_ x Hy, into L3, (G(Q)\G(Af)/Ky). The interesting question is:

disc
Given ¢, what are the possible choices for m7.

We can formulate this differently. We recall that
Wo(moo @ mp) = HomG(R)XHKf (Hy ® H,rf,L?;(G(Q)\G(A)/Kf)
where ? = cusp or = (2) resp. disc then we get the surjective map

@ng(ﬂ'oo X 71'f) ®H7Too ® Hﬂf — H;(SIG(f,/\;l)\)(Wf) (8.28)

oo

which is an isomorphism if 7 = cusp. The friends of 7¢ are those mo, where
W7(7TOO X 7Tf) 7& 0.

This question may become very delicate and we will not discuss it profoundly.
(As J. Arthur puts it : 7y looks around and asks ”Who is my friend?”) In
principle we give a complete answer to these questions in the low dimensional
cases discussed in section (4.1.5), i.e G/R = Glp/Q and G/R = R¢r(Gl2/C).

In section (8.1.5) we mentioned the Vogan-Zuckerman classification of uni-
tary representations with non trivial cohomology. More precisely Vogan and
Zuckerman construct a family of (g, K ) irreducible modules A4(\) for which
they show H*(g, Koo, Aq(A) ®M,) # 0, and they compute H*(g, Koo, Ag@M,))
explicitly. Moreover they show that any irreducible unitary module V with
H*(9, Koo,V ® M) # 0, is isomorphic to an Aq(X).

We give some very cursory description of their construction. Let 77 /R be a
maximal torus in K. &13) /R. Then it is clear that the centraliser T/R is a maximal
torus in G/R. In section 9.4.3 we introduce the one dimensional torus S /R and
we choose an isomorphism iy : S* xg C — G,, /C. We consider cocharacters
X : S!/R — T¢/R. Such a cocharacter defines a centraliser Z,, C G/R and a
parabolic P, /C C G xgr C, this parabolic subgroup also depends on iy. (See
section 9.4.3) The Lie-algebra q = Lie(P, /C) is the q in Aq(\). We will denote
these modules also by A, ()), i.e. A, () := Aq(A) if x and q are related as
above.

The second datum is a highest weight A € X*(T" xg C), it has to satisfy two
conditions
a) The weight A is c-autodual (see (8.1)) i.e. c(A) = —woA).



8.1. THE REPRESENTATION THEORETIC DE-RHAM COMPLEX 313

b) The highest weight A is trivial on the semi simple part Z;l) or what
amounts to the same A extends to a character A : P, — G,,/C.

We have two extreme cases. In the first case the cocharacter y is trivial,
then the centraliser is the entire group G xg C/C and then the condition b)
implies that A = 0. This implies that M is one dimensional, ¢ = g and A4(0)
is this trivial one dimensional (g, K, )-module.

But on the other hand for A = 0 we do not have any constraint on the ¥, i.e.
we get a non trivial irreducible module A, (0) for any x. But it is not known in
general which of these modules are unitary.

In the second case x is regular, this means that Z, =T and P, = B, is a
Borel subgroup, we have no constraint on A. In this case the Aq(\) = Ay (\) are
the so called tempered representations (see [10], IV, 3.6).

The regular cocharacters x € X, (7T7) ® R lie in the complement of finitely
many hyperplanes, hence the set (X,(T\”) @ R))© of regular characters is a
finite union of connected components. It is clear from the description that
the module A4(X) does not change, if x moves inside a connected component.
Finally we have the action of the real Weyl group W(R) = N(T)(R)/T(R) on
X.(Tf) ® R and again it is clear that the isomorphism type does not change if
we conjugate x by an element in W(R). Hence we can say that the tempered

Ay(X) are parametrised by mo((X, (T{”) ® R))©)/W (R).

We have a brief look at the case that G(!) /R has a compact maximal torus
T7,i.e. T =T. This case played an important role in the section on the Gauss-
Bonnet formula. Then

T xg CC KO xg Cc GM xx C,

hence TY is a maximal torus in both reductive groups. We have the two (abso-
lute) Weyl groups Wi = W(R) = Nx__(T)(C)/T(C) and Wg = Ng(T)(C)/T(C)
The big Weyl group W¢ acts simply transitively on the set of connected compo-
nents of (X, (Tl(c)) ®R))(©). Hence we have Wg = Wo(X*(Tlc)) ®@R))©) once we
choose a base point [xg] € mo (X*(Tl(c)) ®@R))(©) and therefore we get a family

{wao()‘)}wGWKoo \We > (8.29)

and the results of Vogan and Zuckerman assert:

These repesentations are unitary, they are pairwise non isomorphic, and they
are the Harish-Chandra modules attached to the discrete series representations
of G(R).

The cohomology groups are given by

C ifqg=3

8.30
0 else ( )

H(g, Koo, Auxo (A) @ My) = {

Now it is clear that for a regular highest weight A regular the condition b)
forces the cocharacter x to be regular.
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We come back to the question raised above. Assume A is regular and we
have an isotypical component H*®(S% f,/\/l A)(ms). Then the possible ”friends”
are the A, (\) with x regular. Hence we get

H!.(ng,/\;()\)(ﬁf) = @wGWK\WG H%(g7 KOO7AwX0 ()‘) ® M)\)m(wXOXﬂ—f) =

@’WEWK\WG (CM(wXO xms)

(8.31)
where m(wxo X7 ) is the multiplicity of Ay, (A\)x7s.in L3, (G(Q)\G(Ay)/Ky).

(In Arthurs’ words : If) A is regular then the only friends of a 7y € Coh(H? (S;G;f , M)
are the wxo.)

If we refrain from decomposing into isotypical subspaces then we get a sim-
pler formula

H(SE, My = P cmlvx) (8.32)

weEWr\Wg

where of course m(wy) is the multiplicity of Ay, (A) in L3, (G(Q)\G(As)/Ky).
Actually we know that A,,,(\) must even lie in the cuspidal spectrum (see
[102]). In principle we already used this fact because we tacitly used the theo-
rem of Borel (see Thm 8.1.1, b).

8.1.7 Cuspidal vs. inner

Now we remember that in the previous sections we made the convention (See
end of (8.1.1)) that our coefficient systems M are C vector spaces. We now
revoke this convention and recall that the coefficient systems M should be
replaced by M) ® p C, where F' is some number field over which M is defined.
Then in the above list (8.26) of four subspaces in the cohomology the second
and the fourth subspace have a natural structure of F-vector spaces and they
have a combinatorial definition, whereas the first and third subspace need some
input from analysis in their definition. In other words if we replace M in (8.26)
by M) ®p C then (8.26) can be written as

Hc.usp(SICéfaM)\ ®F (C) C H!.(nga-/\;l)\) ®F C - H(.2)(SIG{f7M)\ ®F C) - H'(ng’_/\;l)\) ®F C
(8.33)

It is a very important question to understand the discrepancy between the
first two steps. If A is regular then it follow from the results of [69] that in fact

H(:usp(SIC(;faM)\ QF C) = HI.(SIC(;faM)\) ®rC (834)

but without the assumption A regular this is not true for interesting reasons.

Of course we should also take the action of the Hecke algebra into account.
If ¢ is the isomorphism type of an absolutely irreducible Hecke module which
is defined over F. Then we can consider

Heop(SE,, My @p C)(nf) C HP (SE,, M) ®p C(y) (8.35)
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and compare these two modules. We will say that 7 is strongly inner if we
have equality.
We come back to this issue in Chapter 9 after stating proposition 9.2.1.

A formula for the Poincaré duality pairing

We assume that —wg(A) = c¢(A). We have the positive definite hermitian scalar
product on Hompg __(A®(g/%), Hggﬁ‘a) ® M) (See(8.7)). On the other hand we
have the Poincaré duality pairing

H{(SE,, Mx)(wy) x HI 7 (SE , Mav)(wf) = C (8.36)

where wy-wy, 5 = 1. To relate these two products we recall the Hodge *-operator.
(See for instance Vol. 1. 4.11) This operator yields an isomorphism

Homp, (AP(g/€),Coo (G(Q\G(A)/Ky) @ M) '
We can use the * operator to define the adjoint § = (—1)?®+D+1 % dx and hence
the Laplacian A (See (8.8). Especially the * operator yields an identification
between the Co-functions and the C, differential forms in top degree.

We consider two differential forms

wi,wp € Homp (AP(g/t),C3(G(Q\G(A)/Ky) @ M)

which are square integrable, then we defined the scalar product (See(8.7) <
w1, ws > of these two forms. By definition this scalar product is an integral over
a function

< wi,ws >:/ {w1,wa}.
SG

Ky
If we have two closed forms w; € Hompg_ (AP(g/t),CL(G(Q)\G(A)/Ky) ®
M), ws € Homp_ (A?P(g/€),C2 (G(Q)\G(A)/Kf)®@M,yv) and if one of these
forms has compact support -say wo-then they define cohomology classes [wq] €
Hp(ng,./\;lA), [we] € Hg*p(ng,/\;lAv) and the cup product [wy U[wz] is defined
and given by an integral (See proposition 8.1.2) over a form in top degree. Now

we check easily - and this is the way how the * operator is designed that for
wi,wy € Homg_ (AP(g/€),C% (G(Q)\G(A)/K¢) ® M) the integrand

{W1,WQ} =< wi N *wg > .

Now we can formulate the

Proposition 8.1.4. If wy,ws € Homg,_, (Ap(g/E),Héfﬁ‘(’;) ® M) and if both
classes [w], [*wa] are inner classes, i.e. can be represented by compactly sup-
ported forms, then

< wip,we >= [w1] U [*ws]

Proof. Here we give only a sketch of the proof, for some details we refer to
section 8.1.10. Of course we have to recall that the right hand side is defined
since we have proposition 6.3.8, we need that both classes are inner classes. We
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write w1 = @y + dip where w1 has compact support. Then the value of this cup

product is equal to

n] U [rws] = /S 1 A . (8.38)

G
Ky

We have compact subsets S}C(;f (¢), (See ?7) we can choose a ¢ > 0 such that
the support of @, lies in ng (¢). Then we get

J

For ¢ — 0 the left hand side converges to < wi,ws >, hence we have to show
that

Wi A *wy = / (@1 + d) A *wae = [w1] U [*wa] +/ wy A dy
%@ Sg, @ S,

(8.39)

lim w1 Adyp =+ lim wiAY=0 (8.40)
c—0 81(<;f (C) c—0 a(sgf (C))

We know of course that the limit at the right hand side exists. We invoke section
8.1.10 , there we will show that we can take i to be square integrable and then
it follows that the limit is zero.

O

This proposition is delicate. If the quotient S[G{ is compact, then it is of
course a consequence of Hodge theory. But if this is not the case we really need
that both classes are inner. In fact we have the standard example which shows
that this assumption is needed. If take w; = wsy to be the form in degree zero
given by the constant function 1. Then the left hand side is non zero but the
class *1 is the volume form which is trivial if ng is not compact, and therefore
the right hand side is not zero.

The proposition has the following nice corollary

Corollary 8.1.1. Ifw € Homg_, (Ap(g/é),Héfg‘zg\) ® M) is non zero and if

the restriction of xw to the boundary is zero then [w] # 0.

This last Corollary could be useful if we want to understand the kernel of
the map

Homyc (A*(9/8), Hogriry ® M) = HH (S, M), (8.41)
but a closer look tells us that this may not be so easy, because the restriction
the cohomology to the boundary is not so easy to understand.

8.1.8 Consequences.

Vanishing theorems

If V is unitary and irreducible, then we have that V' =% V'V and this implies
for the central character

xv(z) = xvv(z) for allz € 3(g).
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Combining this with Wigner’s lemma we can conclude

If V is an irreducible unitary (g, Koo )-module, My is an irreducible rational

representation, and if
H*(g, Koo, V@ M) #0

then xamy (2) = xanx (') = ot (2)

In other words: For an unitary irreducible (g, K )-module V' the cohomology
with coefficients in an irreducible rational representation M vanishes, unless we
have MY — My, or in terms of highest weights unless —wo(X\) = c(\). (See
3.1.1)

If we combine this with the considerations following Wigner’s lemma we get

Corollary 8.1.2. If M is an absolutely irreducible rational representation and
if MY is not isomorphic to My then

HYy) (SE,, My) = 0.

Hence also R
H?(SE,, My) =0.

We will discuss examples for this in section 8.1.8

The group G/Q = Sl,/Q

Let us consider the group G/Q = Sl/Q. We have tautological representation
Sly < G1(Q?) = GI(V) and we get all irreducible representations of we take the
symmetric powers M,, = Sym" (V') of V. (See 2, these are the M,,[m] restricted
to Sl, then the m drops out.)

In this case the Vogan-Zuckerman list is very short. It is discussed in [Slzwei]
for the groups Sly(R) and Sly(C), where both groups are considered as real Lie-
groups.

In the case Sl3(R) we have the trivial module C and for any integer k > 2
we have two irreducible unitarizable (g, K )-modules ’D,:f (the discrete series
representations) (See [Slzwei]|, 4.1.5 ). These are the only (g, Ko )-modules
which have non trivial cohomology with coefficients in a rational representation.
If we now pick one of our rational representation M,,, then the non vanishing
cohomology groups are

Hq(gvKOO7Mn®(C) =Cforl:07q:0,2

HY(g, Koo, DE @M, @C)=Cforl=k—2,g=1

The trivial (g, K )-module C occurs with multiplicity one in L*(G(Q)\G(A)/Ky)
hence we get for the trivial coefficient system a contribution

H*(g, Koo, COM,®C) = H%(g, Koo, C) H?(g, Koo, C) = COC — Hfy) (SE,, C).

This map is injective in degree 0 and zero in degree 2.
For the modules D,f we have to determine the multiplicities m™ (k) of these
modules in the discrete spectrum of L*(G(Q)\G(A)/Ky). A simple argument
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using complex conjugation tells us m*(k) = m™ (k). Now we have the fun-
damental observation made by Gelfand and Graev, which links representation
theory to automorphic forms:

We have an isomorphism

Homg k. (Dyf, L (GQ\G(A) /K ) = Sp(G(Q\H x G(Af)/Ky) =

disc
space of holomorphic cusp forms of weight k and level Ky
This is also explained in [Slzwei] on the pages following 23. We explain how
we get starting from a holomorphic cusp form f of weight k£ an inclusion
Os: D) = L (GQ\G(A)/Ky)

and that this map f — ® establishes the above isomorphim. This gives us the
famous Eichler-Shimura isomorphism

Sk(G(Q\H x G(Af)/Kr) ® Sk(GQ\H x G(As)/Ky) = H{' (SF,, Mi—2).

The group G/Q = Rpq(Sly/F).

For any finite extension F'/Q we may consider the base restriction G/Q =
Rp/g(Sla/F). (See Chap-II. 1.1.1). Here we want to consider the special case
the F/Q is imaginary quadratic. In this case we have G ® C = Sly x Sl /C the
factors correspond to the two embeddings of F into C. The rational irreducible
representations are tensor products of irreducible representations of the two
factors My = My, @ My, where again M;, = Sym”(C?). These representations
are defined over F'.

In this case we discuss the Vogan-Zuckerman list in [Slzwei], here we want
to discuss a particular aspect. We observe that

MY — My @ My, My = My, @ My,

and hence our corollary above yields for any choice of Ky

HY (8%, M) = 0if ky # k.

In Chapter II we discuss the special examples in low dimensions. We take
F'=Q[i] and ' = Sl3[Z]i]] this amounts to taking the standard maximal com-
pact subgroup Ky = Sl3[Op]. If now for instance k1 > 0 and ko = 0, then we get
HI'(SI%,M)\) = 0. Hence we have by definition H®(S$ , M) = HﬁiS(SIG(f,/\;l)
and we have complete control over the Eisenstein- coflomology in this case.
Hence we know the cohomology in this case if we apply the analytic methods.

On the other hand in Chapter 2 we have written an explicit complex of finite
dimensional vector spaces, which computes the cohomology. It is not clear to
me how we can read off this complex the structure of the cohomology groups.

We get another example where this phenomenon happens, if we consider the
group Sl,,/Qif n > 2. In Chap.2 1.2 we describe the simple roots oy, aa, . .., ap—1,
accordingly we have the fundamental highest weights w1, ...,w,_1. The element
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wo (See 8.1.1) has the effect of reversing the order of the weights. Hence we see
that for A = Y n;w; we have

HY (S, My) = 0

unless we have —wg(\) = A and this means n; = n,_1_;.

The algebraic K-theory of number fields

I briefly recall the definition of the K-groups of an algebraic number field F/Q.

We consider the group Gl,,(OF), it has a classifying space BG,,. We can pass to

the limit lim Gl,,(Of) = GI(OF) = G and let BG its classifying space. Quillen
n—oo

invented a procedure to modify this space to another space BG™, whose funda-

mental group is now abelian, but which has the same homology and cohomology
as BG. Then he defines the algebraic K-groups as

The space is an H-space, this means that we have a multiplication m :
BGT x BGT™ — BG™ which has a two sided identity element. Then we get a
homomorphism m® : H*(BG1,Z) — H*(BG' x BGT,Z) and if we tensorize by
Q and apply the Kiinneth-formula then we get the structure of a Hopf algebra
on the Cohomology

m®: H*(BGT,Q) — H*(BGT,Q) ® H*(BG™,Q)
Then a theorem of Milnor asserts that the rational homotopy groups
1;(BGT) ® Q = prim(H*(BG,Q),

where prim are the primitive elements, i.e. those elements z € H*(BG, Q) for
which

I sketch a second application. We discuss the group G = Rp/q(Gl,/F),
where F'/Q is an algebraic number field. the coefficient system My =Cis
trivial. In this case Borel, Garland and Hsiang have shown hat in low degrees
g <mn/4

H(SE,.C) = HY, S%,.C).

On the other hand it follows from the Vogan-Zuckerman classification, that
the only irreducible unitary (g, Ko,) modules V, for which H(g, K, V) #
0 and ¢ < n/4 are one dimensional.

Hence we see that in low degrees

H(g, Koo, C) — HY(SE,,C)

is an isomorphism (Injectivity requires some additional reasoning.)

On the other hand we have H%(g, Koo, C) = Hompg__(A®*(g/t),C) and ob-
viously this last complex is isomorphic to the complex Q*(X)¢®) of G(R)-
invariant forms on the symmetric space G(R)/Ko. Our field has different em-
beddings 7 : F' — C, the real embeddings factor through R, they form the set
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Sreal and the pairs of may conjugate embeddings into C form the set SSo™P

Then
X= [] S(®)/SO(Mm)x ] Sl(C)/SU(n).

= Sleal Comp

Now the complex Q°(X)“®) of invariant differential forms (all differentials are
zero) does not change if we replace the group

IT s.@®) x [] sl(C

vE Sreal (‘Olnp
oo

by its compact form G.(R) and then we get the complex of invariant forms on
the compact twin of our symmetric space

Xe= [[ SU.®R)/SO(m)x [] (SU(n) x SU(n))/SU(n),
UeSreal Scomp

but then
Q(X)%® = g*(X,,C).

The cohomology of the topological spaces like the one on the right hand side
has been computed by Borel in the early days of his career.

If we let n tend to infinity, we can consider the limit of these cohomology
groups, then the limit becomes a Hopf algebra and we can consider the primitive
elements

At this point we encounter an interesting problem. We have the three sub-
spaces (See end of 3.2)

Hp (8, MABC) C HE(SE,, My)SC C HY (SF,, MreC) € HY(SE,, My)eC

note the positions of the tensor symbol ®. The first and the third space are only
defined after we tensorize the coefficient system by C, whereas the second and
the fourth cohomology groups by definition F' vector spaces tensorized by C.

Now the question is whether the first and the third space also have a natural
F -vector space structure. Of course we get a positive answer, if the Manin-
Drinfeld principle holds. All the vector spaces are of course modules under the
Hecke algebra and we and we can look at their spectra

Z( cusp(SKvaA ® (C)) CUSP E(HI.(SICgfvj\%lA ® (C)) =
S(H(SE, MA@ C)) =%  S(H*(SE,, MrA©C)) =%

If now for instance Ycusp N (X1 \ Eeusp = @ then we can define Heyp (ng , /\;b\) -
He(S$ K M) as the subspace which is the sum of the isotypical components in

cusp-
If this is the case we say that the cuspidal cohomology is intrinsically defin-

able and we get a canonical decomposition
H’.(SIG(vaX) cubp(SKf’MA)@H‘ noncusp(SKJMMA)

The classical Manin-Drinfeld principle refers to the two spectra ¥, C X, if it
is true in this case we get a decomposition

H*(SE,, M») = Hf (SE,, M») @ Hi (S, My)
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the canonical complement is called the Eisenstein cohomology. (See Chap. II
2.2.3 and Chap IIT 5.)

8.1.9 Growth of cohomology classes
The fundamental exact sequence yields a short sequence

0 HP(SE,, M) — H* (S, M) — H*(N(SZ,), M) (8.42)

and we gained some understanding of Hy (ng , M) using analytic methods. We

have seen that classes in [w] € H (’2()816(; f,M) can be represented by harmonic
forms w. Of course the condition that w is square integrable implies some
restriction on the growth of w. It is our goal in this section to find criteria which
imply that a closed form w or a class [w] is square integrable.

To attack this kind of question we study the ”asymptotic behavior” of the

cohomology at infinity, this means that we have to study H?(N (ng), M). We

apply reduction theory (See section 1.2.11) and start from the covering (See
1.117)

NSE) = | TRAXP(en () (8.43)

P:Pproper

Of course we know: The form w is square integrable if and only if its restriction
to the open sets in this covering are square integrable.

We start by describing the cohomology of the open sets in the covering, i.e.
we consider the cohomology H®*(XF (c,/,r(7")), M) we recall that we have the
spectral sequence (2.40)

—_~—

HP(Ca\XM (r), H1((Tu, \Up (R)), M)) = H'* (T p\X"(C()), M)

and the first step is to get more information on the M- module H*(I'y,,\Up(R), M).

The cohomology of unipotent groups

We drop the subscript p, we know that the group scheme U/Q is a unipotent
group scheme, this means that U/Q has a filtration by subschemes Uy = {e} C
U CcUyC...Uyn_1 C Uy, such that U;/U;_; —+ G,. The subgroup I'y C
U(Q) is Zariski dense, more precisely we know the following: If I'; = U;(Q) N T
then FZ‘/FZ‘,1 =7 cC Uz/szl(R) =R

We consider the category of U/Q modules Mody (see sectionl.1.1). Then
it is clear that the functor M — MV is equal to M — MU, ( Our Z module
M above is now a Q— vector space, i.e. we consider coefficient systems with
rational coefficients.)

We choose the action of U on A by left translations on A. It follows from
Frobenius reciprocity that the U/Q module A is an injective module in Mody.
(See 777) This implies that we get an injective resolution of the U/Q -module
Q by

0Q—-2A-(A/QRA— - =0-Q—-1°=>T1' - (8.44)
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and hence

HIY(U,M) = HI(Ty\U(R), M) = HI(0 — (I' o M)U > (2@ M)V = ...) =

HI((I* @ M)Y)
(8.45)

Since U/Q is the unipotent radical of the parabolic group P/Q, the parabolic
group P/Q acts via the adjoint action on the modules I"™. This action respects
the submodules (I"™)Y and U/Q acts trivially on ()Y, this implies that the
modules (I™)Y are M/Q = (P/U)/Q modules. The group M/Q is reductive
and we know that the category of M/Q modules is semi simple (?77). This
implies that we can decompose

(1°)Y = H* (U, M) & ACI(I*)Y (8.46)

where the first summand is a complex of M/Q -modules in which all the differ-
entials are zero and the second is an acyclic complex of M/Q- modules. Hence

H*(U,M) = H* Ty, M) =5 H* (U, M) (8.47)

We get a ”"smaller” resolution from the (algebraic) de-Rham complex of
differential forms. On the smooth affine scheme U/Q we have the sheaves of
differential forms Qf, = APQJ; ([40] ,7.5) and we have the de-Rham complex

QU =0—-Q— A= U)— Q*U) - ... (8.48)

where QP (U) = QF,(U) is the module of global sections and A = Q°(U). These
modules of differentials are free A modules, hence they are injective. Since our
unipotent group scheme U/Q is isomorphic to the affine space A? (as affine
scheme) we see easily that this complex is exact, hence it provides an acyclic
resolution. As before we get the cohomology by taking the complex (QP(U) ®
M)V of invariants under the action of U/Q. Since an U/Q- invariant differential
form with values in M is determined by its value at the identity e the complex
of invariants under U/Q becomes

0 — M — Hom(u, M) — Hom(A?u, M) — --- =0 — Hom(A®u, M) (8.49)

and the cohomology of this complex is the cohomology H*®(u, M). We still have
the action of P/Q on u by the adjoint action, hence we get an action of P on
Hom(A®u, M) and we have

Theorem 8.1.2. (van Est [?])
H® (u, M) = H*(u, M) = (Hom(A®u, M))Y,
and therefore H®(u, M) is a M/Q module.
Proof. later O

A theorem of Kostant yields a description of the M/Q module (Hom(A®*u, M))Y,
it gives us the decomposition into highest modules. Let A € X*(T') be the high-
est weight of M, i.e. we have M = M. The set

WP ={weWw |w(a) e AT} (8.50)
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is the set of Kostant representatives for WM\W. For any w € W we define the
element

W = Maeayw-1a<0 Uy @ ey (8.51)

Proposition 8.1.5. This element w,, lies in H® (1, M) and it is a highest weight
vector for the action of M/Q, the weight is w-A = wA+wp—p =w(A+p)—p.

Proof. This is an easy computation. O

This highest weight vector provides an irreducible highest weight module
M. for M/Q and we have the famous theorem of Kostant

Theorem 8.1.3.
H*(u, M) = @ Muali(w)]

wewr

where the summand M. 5 sits in degree [(w) =7.
Proof. Rather clear after the preparation. O
Since the differentials in the complex H®(u, M) are zero, the spectral se-

quence degenerates and we get | cohboundstrat

H'(Dp\XP(C@), M) = @) ™0 (T a\ XM (ep), IO (u, M) - A)),
weWwr

(8.52)

this is the decomposition of the cohomology of the boundary stratum into weight
spaces.

The cohomology groups H*(T'p\ X (C(¢)), M ® C) can be computed as the
cohomology groups of the de-Rham complex

HP(Tp\XT(C@),MaC) = HP(Q* (Tp\XT(C@E),MaC)  (853)

here Q*(I'p\ X7 (C() is the complex of those Co, differential forms which extend
to a Cs form into a small open neighbourhood of X (C(g). We want to use
the decomposition of the cohomology into weight spaces to establish a ”much
smaller” sub-complex

Ql.og(FP\XP(O(é))vM ® (C) — Q.(FP\XP(C(Q))a M ® (C)

such that the inclusion induces an isomorphism in cohomology. We recall the
map

gpas i TPAX T (crr,7(ce)) = T\ XM (r(cp)) x [ (0, cal (8.54)
aem’
it provides a map
gpar: QT \XM (r(cp)) x [] (0, cal) @ H® (u, M) = Q°(Tp\X " (C(2)) ©@ M)

aemn’

(8.55)
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This map is defined as follows. Let
W @l € PN (r(ep)) x [T (0, cal) @ H(u, M)
aecmn’
p+q

For a point z € T'p\XF(cp,7(c,/)) we have to give the value of qp g (WP @

w{;)(z). Hence we to determine the value of qf,ﬁ& (WP @ wi;)(x) at a p+ ¢- tuple

of tangent vectors. We choose p tangent vectors ¢ ... ,t;” arbitrarily, they
map to tangent vectors 1, ..., ¢, under gp rs. Then we choose ¢ tangent vectors
u1,...,uq which are tangent to the fiber. The fiber is identified to I'y\U(R)
and hence uq,...,u, € u¥. With m = (my, a) = gp,m) we get

qf;r]g[(wp Qwi)(x) = wP(t1, ..., tp) (M1, a))wh(u1, ..., uq) (8.56)

and (8.52) implies that g3 5, induces an isomorphism in cohomology.
The image under this map is not yet what we want. Again we can consider
the sub complex

QT \XM (r(cp)) ® Q*(T] (0,¢a])) € Q*Car\XM (r(cp) x T] (0, ca]).

this inclusion induces an isomorphism in cohomology. We pick an element w €
WP and consider the complex

Q*(Ta\XM (r(cp))) © (T (0, cal)) @ H'™ (u, M) [w - X)), (8.57)

aemn’

this complex still computes the cohomology H? (T p\XF (C(2)), MRC)[w-\]. We
look look for a suitable small sub complex of Q*(I],, ¢ (0, ca])) @H! ™) (u, M) [w-
Al). We embed [],c,(0,¢a]) C [l er RSg = Arr, we have the restriction

aemn’

Q° (Ar) @ ') (u, M)[w - A) “53 Q*( ] (0, cal)) @ H) (u, M) [w - A)).

aer’

Then HY ™) (u, M)[w - \]) is a A~ module, the action is given by the restriction
of w- A to Ay Let a be the Lie-algebra of A7 then

Q*(Ap) @ H@ (u, M)[w - A]) = Hom(A®*(ap), Coo(Ar) @ H™ (4, M) [w - N]).

Of course we know that the cohomology of this complex sits in degree zero, our
small sub complex hence our small sub complex must have the same property.

We look at the degree zero, for an element w = f @ u € Coo(Ar) ®
H®) (4, M)[w - A] and an element H € a we have

df@u)(H)=Hf@u—dw-AH))®u
and we have dw =0 <= f = cw - A, this means that
HO(Q*(Ar) @ H' ™) (u, M) [w - A]) = H™) (u, M)[w - A\]) ® Cw - A
as it should be. We consider the subspace

Prog(Ar) = {f € Coo(Ar)|f is a polynomial in log(z,),a € ©'}
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and define

dxa dzap
log {Z f - U = } (858)
where I = {a1,...,a,} and fr € Pog(Ax). Observe that dlog(z.) = % and
hence it is clear that the inclusion

O, (Ar) @ H) (u, M) [w - A]) = Q°(Arr) @ H) (u, M) [w - Al

induces an isomorphism in cohomology. If we now define Qf (], (0,¢ca])) ®
HX®) (u, M)[w - A]) to be the image of Qp e (Ar) @ 1) (w, M)[w - A]) under the
restriction then it is clear that

2 (O \XM (r(ep))) © Uy ([T (0. cal)) © HO (1, M) - A])
O (D \ XM (1(cp))) © O ([Taerr (0, cal)) © HO (u, M) - A])  (8.59)

< Q@ (T p\ X P (r(cp), cp), M C)
induces an isomorphism in cohomology.

We define a global subcomplex € (I'\X') ® Mc, it consists of those forms
whose restriction to I'p\ X (r(cp),cp)) lie asymptotically in the log sub com-

plex, this means for a suitable choice ¢» < cp the restriction to I' p\ X' (r(cp), cp))
lies in Ql'og(f‘p\XP7 (r(ep),cp))) ® Mc. Then

Proposition 8.1.6. The inclusion
e (M\X) @ Mc = Q*(I'\X) ® Mc
induces an isomorphism in cohomology.

Proof. We pick a closed form w € QP(T'\X) ® Mg, we restrict this form to
the sets XZ(rp,cy) where B runs through a set of representatives of Borel
subgroups (or more generally minimal parabolic subgroups) . These sets are
contained in slightly larger subsets X B (r/;,c.). They are disjoint for different
B. We can find a C function hp € C(I'\X) which is constant equal to one on
XB(rp,cy) and zero outside of the larger set X B (1, c/). Now we can find a
form ¢p € QP~H(T'g\XE(rp,c)) ® M¢ such that

w|XB('rB cl) ~ dw S Qlog(XB(’I“/B,C;))

The form wy = w—d(hpt) extends to I'\ X and satisfies the condition for being
asymptotically in (s with respect to the subgroups B.

For a given Borel subgroup B we look at the different parabolic subgroups
P O B whose rank drops by one, i.e. the next to minimal ones. We apply
the same procedure to the restriction of w; to X¥(rp,cp) and we get a form
wo = wi—Y_ p dYp whose restriction to the X ¥ (rp, cp) is asymptotically in Qg
We have to be a little bit careful since have modified w; also on the X2 (rp,cp)
but it is clear that also wo restricted to XZ(rp,cp) is asymptotically in Qe
This goes on and stops if we have reached the maximal parabolic subgroup G
and then being in (., becomes an empty condition.

This proves at least that the map in proposition 8.1.6 induces a surjective
map in cohomology. O
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We introduced this sub complex because now we can say something about
the growth of cohomology classes or the asymptotic behavior. We consider
this behavior on the different sets X*((r(cp),cp)). The restriction of a form
w € Mog(T\X) ® M to Tp\XF((r(cp),cp)) is asymptotically of the form
ZwEWP Wap -

Lot & = wy € P(Ta/\X™ (r(cp))) ® Uy (T (0, cal)) © H (ut, M) -
A]), we study the ”growth” of the value of this form. We evaluate it at points
z = (z1,0) € Ty \XM(r(cp))) % [Toer (0,ca]), this means we pick tangent

vectors t1, ... ,téw at my The tangent bundle on A, is trivialized by translation
invariant vector fields. An i-tuple ¢4, ... 7tiA € LieA, gives an i-tuple t£, . .. ,tf‘

of tangent vectors in the point a. Now we consider the value

W (T)(x) := wM () (M, ... 7tZJ,VI)cuA((JL)(t‘147 St e HE (w, M) [w - N]).

w

We have a hermitian scalar product < , > on H!) (u, M)[w- \]) and we are
interested in the value
<wu(D)(@),wu(D)(2) >= llwy (@) (0, )Pl (@ - )

w

The variable z; runs through a compact set, hence value the first factor is
bounded. The term w(a)(t{,...,t1) € C(w - A\)Piog(A,) and this implies

< W (T)(2), ww(T)(z) > < C(2w - N)(a)a™¢

where e >0 and a™° = [[ o 25°.
Now we can formulate a criterion to decide whether w,, is square integrable.
We have to evaluate the integral

/ e o) Pl (8.0
Cp\XP(r(cp),cp))

The measure dp is of course the restriction of the invariant measure on I'\ X,
it is of the form 2pp(a)dudadm. The differential form is invariant under left
translations under U(R) and hence we have to evaluate

/ ) Pl @) 2p) @)dmda (3.61)
Tam\XM(r(cp)X([Taeqr (0,ca]))

The integral over I'y;\ XM (r(cp)) is finite hence we are left with
/ I (@)*20p(a)da (5.62)
Haeﬂ—’ (Oaca]

Of course we assume that w,, # 0 and then we can find a constant C' > 0 and
an € > 0 such that

C2(w(r + p) — p) + 20p) (@) < |lwi(@)|[*2pp(a) < C2(w(A+ p) - ) : 2pp)><a>a-6
8.63

Since pla_, = ppla_, we get

C2(w(A + p))(a)a® < |lwi(a)l[*2pp(a) < CRwA+p))a™ . (8.64)
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The relative roots o’ form a basis for X*(S), any character u € X*(S) can be
written as linear combination =3 .. ru o with 7, o, € Q. We say that p
is in the positive cone (with respect to the roots) if 7, o > 0 for all & € 7/, we
write 4 >p 0. Then

wh+p)(a) = wA+p)({... Ta,... }) = [zt

aem’
and come to the conclusion

Proposition 8.1.7. a)The integral (8.62) is finite <= w(A+ p) >p 0.
b) A closed differential form w € Qlog(F\X) ® M is square integrable if and
only if for all parabolic subgroups P and and the resulting decompositions

w| X (r(c Z W

weW?P
the components wy, = 0 if w(A+ p) 2p 0.
We are now able to show

Proposition 8.1.8. If w € QP(I'\X) ® M be a closed square integrable form
and if the class [w] € H!(T\X, M) then we can find a square integrable ¢ €
QP~HT\X) ® M such that w — di has compact support

Proof. We know that we can find a form wy € Qlog(I‘\X ) ® M which represents
the same class. Our previous arguments show that w; is again square integrable.
O

8.1.10 Franke’s Theorem

The theorem 8.1.1 tells us that we have the very small sub complex

Hom e (AP (9/¢), Hoarry ® M) € Hompe (AP(g/8), Coo (T\G(R)) @ M)
such that this induces a surjective map in cohomology

H (9. Koo, Higii )y © M) 254 Hey (T\X, M),
if '\ X is not compact the map j. is not necessarily an isomorphism, the kernel
can be computed in principle by using Proposition 8.1.4.
By definition
HE)) = {f € L3 (D\G(R)|2f = xx(2)f V= € 3(g}.

A. Borel proposed to replace H, ((J }j‘(’;\) by a larger space

AA(T\G(R)) := {f € Co(T\G(R))| 3N such that (z — xr(2))V f =0} (8.65)

where f also satisfies a growth condition. Borel conjectured the following theo-
rem which was proved by Franke
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Theorem 8.1.4. ( Franke [25]) The inclusion Ax(T\G(R)) C Cx(T\G(R))
induces an isomorphism in cohomology

H*(g, Koo, AA(T\G(R)) © My) = H*(SE , M)

The main tool for proving this theorem is again the theory of Eisenstein
series. As in section 4.1.11 we start from certain induced J%o x |pp|® where P
runs over the conjugacy classes of parabolic subgroups, o is a (cuspidal) coho-
mology class on locally symmetric space attached to the the reductive quotient
M/Q of P, and z € C" We can write down Eisenstein series which yield an
embedding

Eis( ,2) : 30 x [ppl* = Co(GQG(A))

these series are absolutely and locally uniformly converging if R(z;) >> 0. In
[66] Langlands proves that these Eisenstein series have a meromorphic contin-
uation into the entire C". If we now ”evaluate at z = 0” then we get functions
in Ay(T'\G(R)). But now the process of evaluation may become delicate, be-
cause the Eisenstein series may be singular at z = 0. So we may have to take
residues and derivatives of such Eisenstein series which the will give us the space

ANM\G(R)).

8.2 Modular symbols

8.2.1 The general pattern

We start from a flat group scheme G/ Spec(Z) whose generic fiber G/Q =
G x Q is reductive. We assume that the derived group GV /Q is quasi split Let
F/Q be a finite normal extension, let Op be its ring of integers. We choose
a highest weight, which is defined over F' and consider a representation p) :
G xOp — Gl(Mop,.) which after tensorization by F' becomes the highest weight
representation Mg x. In the following we write M = M., if we change the
ring of scalars we write Mg := M ®p, R. Let K](co) =G(Z) and K C KJ(CO) be
an open subgroup.

We want to describe a general method to construct homology classes in
G ~ } G G v
Hy(Sg,, M) resp. relative homology groups Hy(SE ,,0SE ., M),

which are obtained from (reductive) subgroups H C G, these classes will be the
modular symbols. In Chapter 5 we discussed the construction of such classes in
a very special case and here we treat a more systematic way to construct such
classes.

Let H/Q be a (reductive) subgroup of our ambient group G/Q, we also
consider the flat closure H/Z. We assume that its derived subgroup H") is
simply connected and satisfies strong approximation. The quotient H/H W =

C’ is a torus. Let Kg’(l) be the connected component of the identity of a
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maximal compact subgroup of H(R) we put X = H(R)/Kfi’(l). We have the
two spaces

SK, = GQ\X x G(Ag)/Ky, Sy = HQ\X" x H(As)/ K.
and it follows from the considerations in section 6.1.3 that

mo(Sh) — m(sg%, ). (8.66)

From the inclusion ¢ : H — G we will get maps between these locally sym-
metric spaces
- H G
](‘Toovgf) : SKJ{{ - SKf

which depend on the choice of "pin points” (xoo,gf) € X x G(Ay). These pin
points have to be chosen with some care:

a) The point zo, € X can be viewed as a Cartan involution 0, _ on G(R)
and O,_ should fix H(R). Hence it is also a Cartan involution on H and we

require that it is the identity on our chosen K oho”(l). Let us denote this subset of
X by

XHEZD) — (2 € X|0,(H(R)) = H(R); O, = identity on K1},
Let N be the subgroup of the normalizer of H/Q which also normalizes K g’(l).

Then N(R) acts on XHEZM) T think that this action is transitive and the
orbits under the group N (R)(l) are the connected components.

b)The element g P has to satisfy a similar condition:
Kf'g K;=ygK; (8.67)
we say that g f is adapted.

(Recall that we always have to make careful choices of the level once we deal
with integral cohomology.) Such a pin point (2o, g f) provides a map
(oo, g,) s HQN\H(R)/KZ x H(Ap)/Kf — S, (8.68)

which is defined by

(h007hf) = (hooxomﬁfgf)'

We restrict the representation M to H/Z then we can decompose the rational

module M)\ ® F = M;jl EBM,\II}[(U, where the first summand is the direct sum
of irreducible modules of dimension > 1 and the second summand is the module
of H® invariants. We define the module of H() coinvariants

MA7H(1) = M)/ My ﬂ./\/bjﬂl.

This module of coinvariants is now a module for C’ we assume that our field F'
is large enough so that we can assume that C’ x O is a split torus. We get
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that My o) = ®H€X*(C/XOF) My g [p]. Then My gy [p] is a projective
OFr module of finite rank on which C’ x O acts by the character u. We assume
for simplicity that My g [1] is actually free, hence we can write it as a direct
sum of modules Ore,, ; where we chose a generator for each summand ( in our
examples this module is always of rank one). Let O, be the Op— module Op
(with canonical generator 1) and with the action of C” by the character p, then
of course Ore,, ; — O, . Any C’ homomorphism ¢,, : My gy — O, provides
a homomorphism of H modules

b My — O, (8.69)

we denote it by the same letter. This induces a homomorphism of sheaves

Syt §(T50,9,) (Mx) = Oy (8.70)

especially any of the e, ; gives us such a homomorphism.
Then these data provide a homomorphism for the cohomology groups

O 0 (00,9 ,))" : H*(SK, M) = H*(Siin, Op). (8.71)

We are interested in this homomorphism in degree dg = dim SII'(IH.
¥
Let us assume for a moment that Sg u is compact. We have an orientation
¥

on Sg i because we chose the compact subgroup K to be narrow. Therefore

we sce that the cohomology group H% (S, 0,) is the sum of cohomology

KH>
¥
groups over the connected components, and hence( See 6.1.4)

1 (St 0,) > @) HY (1L (O (8.72)

By

where we sum over characters ji; of type y on C”(A)/K?' (See (6.3.8)). The
eigenspaces are projective O- modules of rank one let us assume that they
are free and that we have chosen generators cz,. We will call such generators
modular symbols.

We still have the variable g o it has to satisfy the above condition b). We

have to fix the level because we want to work with integral cohomology groups.
But once we tensorize our coefficient systems with F' ( the quotient field of O )
then we can consider the limit

lim H*(S$ , Mp) = H*(S%, Mp),
K; f

and this limit is now a G(A)— module (Section 6.3). Doing this also with Sy

¥
we can forget the constraint on g f’ the condition b) is certainly fulfilled for some
choice of levels.
We recall the definition of an induced representation, we have

G(A o 2 ¢ H F
maS®) [ (S7, ) = (@2 G(a) » B (87, E,)
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where @ satisfies ®(hg) = pr, (h)®(g) for all h € H(A)),g € G(A) and where ®
is right invariant under some open compact subgroup K}. The map

T(B) € 79, 05(,9,)(€) (8.73)

yields an intertwining operator between G(A) = mo(G(R)) x G(Af) modules

J(pp) : H(SG Mp) — Indg((i)))HdH (S, F,) (8.74)

On the right hand side we can decompose further. We have seen that

~ G(A RN N
a( ST E)= @ Wdf) HU ST E)a)= @ Fliyl
fiptype(fif)=p figtype(fif)=p

(8.75)

here we have to take into account that we have to enlarge our field F' so that it
contains the values of fi;(C’(A)).

We project to the fif component and get intertwining operators

<\ pgdp(eG A G(A) rrdm/cH B\(r \ _ G(A) ~
8.76

Again the question arises to compute this intertwining operator. We have
to explain what this means. At this point we only give a first approximation of
what it means to compute this operator.

Assume we have an ”explicitly given” absolutely irreducible G(A) module
Vexn/F, here € x 7y is a isomorphism type of an absolutely irreducible rep-
resentation of G(A) on a F-vector space. The infinite component of such a
representation is simply a character € : 7o (G(R)) — {£1}.

Now we also assume that we have an embedding ®(7f) : Vexr, < H (8%, M),
ie. V(my) is a F-model space (see further down). We also choose a character
fiy of type i, we assume that the values of fiy are in F. Then H (SH| F,)[jis]
is of rank one and our intertwining operator gives us an G(A) -module homo-
morphism
G(A)

J(Purfig) o ®(7s) s Vesen, — IndH(A))ﬂf.

(8.77)

Now we will see further down that we encounter situations where the space of
these intertwining operators is of dimension one. Moreover we will be able to

identify an explicit non zero such operator I'°¢: V(e x ms) — Indg((i))) fiy. (See
(8.94)) Then we get

J(ppus fiy) 0 ®(mp) = Ly, fiy) 1 (8.78)

and computing the intertwining operator means to compute the number L(7s, fif).
Since all our vector spaces on stage are defined over F' we get the rationality
result

ﬁ(?rf,/lf) eF (8.79)
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We will make this more precise later.

The passage to the to the limit has the technical advantage that we are
dealing with representations of G(Ay) instead of Hecke-modules, for the repre-
sentations certain issues are easier to handle. Especially it is easier to compute
dimensions of spaces of intertwining operators.

We drop the assumption that SII"(I;, is compact, and we go back to the case

of a fixed level.
In this case we study the extension of j(2, g f) to the compactification

N oG
](Imagf) S[I—(I;‘I %SKf

We recall the construction of sheaves with intermediate support conditions
(See(6.38)). Let us assume that we can find a ¥ such that the image of 9(Sys)
¥

factors through Oy (51%). Then our homomorphism r together with a choice of
a ¢, yields a homomorphism between sheaves (see ( 6.38))

ro, 3(@.g,) (s (M) = it(O). (8.80)

and hence we get a homomorphism in cohomology

(rh, 0 3((w,g )™« H (SE, i cs(M)) — H" (S, in(0,)  (881)

and now the left hand side is again of the form the composition J (¢, fif)o®(7y).
On the right hand side we can decompose again

HU (St 1(0,)) = HE (St 0) > @D HI (St Oulig),  (8:52)

and the summands are locally free O modules of rank one. If we project
to the jiy component we get an operator

I s iy) = Py 0 (S0 (@, g )™« H™ (S iman(M)) = Ind3) iy,
(8.83)

We are in the same situation as before, we have to find absolutely irreducible
modules defined over F' and an embedding

® () : Ve, = H¥ (S iz wn(Mr).

and then we can try again to investigate the operator J(¢, fif) o ®(my).

Here we have to discuss a subtle point. Let us consider the case that X%
is the set of all maximal parabolic subgroups, then H9# (ng,iz’*’!(./\/lp)) =

Han (ng,/\;l r). We have the exact sequence

HU Y O(SE,), Mp) = HI(SF,, Mp) — H" (SF,, Mp) — 0.
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Sometimes it is easier to construct homomorphisms @ : V(exmy) < H/" (ng , Mp).
and we would like to form again in a canonical way the composition (TE% o
i((@.g,)) o0 ®.

We have two different instances, when this is possible. We look at the
homology, then we have the boundary map

Hay (i, O(S{), Fu) = Hay—1(9(S{ln), Fy) (8.84)
and from the target we have map
HdHfl(a(Sjb([‘f)’ﬂ) s Hgy 1 (8(S%,)s Mp) (8.85)
Hence we get a map
J0 Oy = Hay (St 0SH), F)lig) = Hay 1(0(SE,), M) (386)

Now we have the following

Proposition 8.2.1. If the map jo0d;, = 0 then the homomorphism J (¢, 7y, fif)
vanishes on HdH—l(a(ng),MF) and hence it factors over the quotient

(s fig) - H (S, Mp) = H{™ (S )]

The second instance that may be satisfied is the Manin-Drinfeld principle
applies to the exact sequence above, i.e. we have an isotypical decomposition

Hifi (SR, Mr) ® H" (S, MF). (Mz)
Then we may restrict J(¢,, fif) to the second summand. We get

~ . d G ~ G(A‘f) ~
J!(qblhuf) : H! H(SKfaMF) — Indf[(Af) Ky,
and this intertwining operator is defined over F.
We used both arguments already in section 5.6 in a very special case.

8.2.2 Model spaces

We want to find the modules Ve, and operators ®(7y). We introduce some
abstract concept of the production of cohomology classes and the evaluation
of these intertwining operators on these classes. For this purpose we introduce
model spaces.

We assume that we have a family of smooth and admissible representa-
tions {Vx,} of G(Q,) where v runs over all places. At this moment the V.,
are C-vector spaces. For almost all finite places p the representation {V;, }
should be an unramified irreducible principal series representation. We assume
that V__ is an irreducible Harish-Chandra module with non trivial cohomology
H* (9, Koo, Va, ® Mc) # 0. We denote m = moo x m¢. Furthermore we assume
that we have an intertwining operator of (g, Ko) X G(Ay)

V() : Ve, ® Q) Vi, — Coo(G(Q)\G(A)). (8.87)

p
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At this point a comment is in order. We should think of the spaces V., as
very specific spaces of C valued functions on G(Q,) on which G(Q,) acts by
right translations. In all cases known to the author the operator ¥(r) is given
by an infinite summation , i.e if f =[] f, € Vo, ® ®p V., then

U(m)(f)lg)= > flag) (8.88)

a€H(Q)

where for instance H/Q is a subgroup or a quotient of a subgroup by another
subgroup. In any case it is clear that the construction of these ¥(w) will be a
transcendental process.

This induces of course an intertwining operator ¥ ()

H(8, Koo, Vee @ M) @@, Viy 8 H*(g, Koo, Coo(GQ)\G(A)) @ M)

= H*(S% Mc)

We introduce a subspace of Coo (G(Q)\G(A)). We consider the subspace of func-
tions of moderate growth and inside this space we consider the space of functions
which are cuspidal along the strata Op(S%) for the parabolic subgroups P € ¥,
i.e. which satisfy

/ flug)du=0
Ur(@\UR(A)

for these parabolic subgroups. Let us call this subspace e )(G(Q)\G(A)). We
assume that our intertwining operator factors through the subspace of ¥ cusp-
idal functions

V() : Ve, ® Q) Vi, — CO(GQ\G(A)). (8.89)

P

We have an action of mo(G(R)) on H*(g, Koo, Vir., @ Mc) let € : mo(G(R)) —
{#£1} be a character and let w, be a differential form representing an eigenclass
[we]. In [34] we explain how a Hecke character fiy extends uniquely to a char-
acter ﬁ;l =eX fiy : mo(H(R))H(Ay) — {£1}. We have the homomorphism
mo(H(R)) — mo(G(R)) and we require that yoo = €.

We get a diagram

H (g, Koo, Ve, ® Me)(€) © @, Vi,

1w (r)
H (g, Koo, (N (GQ\G(A) @ M) T3 He# (86, M C)
T i eC
() = T(purfiy) ; Y
Ind it o C EE H (S, i (M) @ C

Proposition 8.2.2. The image of dRh is contained in the image of idEH ®C
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Proof. We do not give the proof of this general assertion here, it is a careful
analysis using reduction theory and the considerations in ?7??. We simply men-
tion the case of a compact SHH then we may choose ¥ = ) to be the set of all

maximal parabolic subgroups bnd zz ® C is the identity and hence the propo-
sition is obvious in this case. On the other hand if ¥ is the set of all maximal
parabolic subgroups. Then the image of idEH ® C is the inner cohomology and
since in this case the functions in Cg)(G(Q)\G(A)) are cuspidal the assertion

follows from Theorem 8.1.1.
O

We put Hg“{ (8¢, M) = i (H 1 (SC ix 1 (M))) and we assume that one of
the conditions above is satisfied, i.e. either we can apply proposition 8.2.1 or we
have Manin-Drinfeld. We have the action of the mo(G(R)) on H*(g, Koo, Vi, ®
M C), we decompose into eigenspaces according to characters e.

We get an arrow

o oUH (exm
H*(g9, Koo, Vi, @ Mc)( ®®Vﬂp J(Ppriiy) dRh TeH (ex) In df,ﬁi))“l o C.

’ (8.90)

We choose an element w. € Hompg (A% (g/t),Vy. ® Mc)le] then this
provides a homomorphism of G(A f)-modules

T, fig) 0 T (we x 7)) ®vﬂp - Indg((i)“l ®C (8.91)

For an element v € ®p Vz, this map is given by the formula

TGpeiig) o W o m)Wr)lay) = [ 0 @ ogg e X )iy gy,
Y (8.92)

here dh is the invariant measure on H(Ay) which has value one one K J{{ .

We still have the problem to compute this operator. But now the situation
has changed, we can be a little bit more precise in formulating what we mean
by computing this operator. The source and the target of the operator

J((buaﬁfvﬂfvwe) = J((b#aﬁf) O\IldH (wE X ﬂ—f)) (893)

are restricted tensor products of local representations. So a necessary condition
for J(¢,,my, iy, we) # 0 is that for all primes p the vector space

G(Qp) ~—
Homeg,) (Vi IndH((%) 1y £ 0. (I,)
Therefore we assume that this condition is fulfilled.

If the local condition () is satisfied for all primes p, we can formulate a
much stronger condition
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. G(Qp) ~—
dim Homgg,)(Vr,, Indfe) i) =1 (Ip)

We assume that the representations V. are somehow given to us as very
concrete representations and (I,,,) is true for all primes p. Moreover we assume
at each prime p we see some natural choice of a generator

1,2 € Homg(g,)(Vr,, Indi @) i)

(This will be discussed in our examples.) We can define a local intertwining
operator

loc __ loc G(Q ) ~—1
Uiy _®Iﬂp € HomG(Af)(®V7rpv Ind " iy ) (8.94)

p p

and now we can formulate the following basic question:

The operator J(¢,,7f, fif,we) is a multiple of Iﬂlf"cand the problem of com-
puting this intertwining operator comes down to compute a number namely the
proportionality factor in

~ loc

'](d)uv Tfs fufs We) = L(?Tf, ,u) gy o bquest

The general philosophy says that this proportionality factor should be ob-
tained from the data 7, jiy for instance it should be essentially a special value
of an L-function attached to 7y = ®p Tp, We will see in the examples in the
section below that this is indeed sometimes the case.

8.2.3 Rationality and integrality results

Now go back to the situation where we fix a finite level K¢, we also assume that
3. is the set of all maximal parabolic subgroups, and we assume that proposition
777 applies (this depends on the choice of p. see (?7). Hence we have the map

jxr
o0 (2,9, )™+ HYSE M) = H™ (Sgu, Fy)) (8.95)

We assume that our finite extension F/Q is large enough so that we get an
isotypical decomposition

H" (8§, Mrp) = @@ H™ (SE,, Mp)(rs)
w5

where the 7y are isomorphism types of absolutely irreducible modules for the
Hecke algebra. Of course we may also require that F//Q is normal.

On our isotypical subspace we still have the action of mo(G(R)) which com-
mutes with the action of the Hecke algebra. Since this group of connected
components is an elementary abelian 2 group we get a decomposition

(SR, Mp)(mp) EBH (SR, Mp)(ex my)
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where € runs over the characters of € : mo(G(R)) — {£1}.
We intersect H# (ng , M) (7 ¢) with the integral cohomology H®" (SIGQ ,Moy)

and get the submodule H!dH (SIG(f,/\;lF)(Wf) int C H# (SIG(f,/\;l)F) int- We have
seen in 777 that we may alternatively define the submodule

HU(SE Moy ) () ey C H(SE,, (Moy.) int (8.96)
and we recall that the quotient
H" (SE,, Moy )(ms) et/ H™ (SE,, Mo ) (f) ine = T(rp) (8.97)

is a torsion module which is isomorphic to a sub quotient of the torsion module
of Hér (G(Sf(f), Mo,).

The isomorphism type (e x 7¢) occurs with a non zero multiplicity m(e x 7¢)

in or in H!dH (81%,/\;11:). We assume that Mg belongs to a rational system of

coefficients, then 7 (ex7 ;) occurs with the same multiplicity in H* (ng 7 Mp).

Rationality of the model space

We also assume that all the local components V7 =~ of our model space are also
defined over F. For a finite place p this means that Vi is a vector space over F
with an action of G(Q)). If we choose an open compact subgroup K, C G(Q,)

then Vé” is a finite dimensional F' vector space with an action of the Hecke
algebra Hy, on it. This action is absolutely irreducible if , is absolutely
irreducible. If our underlying flat group scheme G/Z is reductive at the prime
p and K, = G(Z,) (some people say that K, is hyperspecial) then Vé” is of
dimension one (or zero). The Hecke algebra module is given by a homomorphism

h + mp(h) from Hp, — F. We say that 7, is spherical if dim VWI:” =1and K,
is hyperspecial. We require that 7, is spherical for almost all primes p and we

also require that for all spherical VWI:" we have chosen a generator hz(,o) € Vﬂf”.
Then we can define

/
V7rf = ® V’ﬂ'p (898)

where the restricted tensor product means that at almost all components p the
factor is h]([,o).

Furthermore we assume that our local model spaces come as rational systems
of representations, i.e. we have the families of o-linear isomorphism <I><(Tp )
Vz, = Vor, satisfying the cocycle condition. Of course we also require that

0)y _ (0
@ (h{") = nl" (8.99)
and then get the rational system of model spaces

oot Vo 5 Vo, (8.100)

We discuss the concept of rationality for V. Our group G/Q is defined
over Q we choose the Cartan-involution © which provides K, also defined over
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Q. Hence the Lie algebras g and ¢ are defined over Q, i.e. they are Q-vector
spaces. Our module M is obtained from an absolutely irreducible highest weight
representation py : G xg F — Gl(Mp), If we choose a basis {..., f;,...} and
a € G(Q) then px(a)fi = > a; ;f; with a; ; € F. The same applies for the action
of g on X, __, this module has a countable basis {...,g;,...} and for X € g we
get again X f; = > a, ;f;,a;; € F and where the sum is finite, i.e. only finitely
many a; ; 7 0.

We assume that F' C C, and assume that we have the intertwining operator
U (7 ® Ve )®C) = H (8¢ Mp)(e x 15) @ C (8.101)

these are 1somorphlsms over C between absolutely irreducible G(Af) modules
which are defined over F'. Hence we can find numbers (the periods) Q(e x w¢) €
CX

dp
@ () ) = T I

_ dy ( QG
Qe x my) ®pr = H" (89, Mp)(e x 7f) (8.102)

is an isomorphism over F.

But we can do better. We may also assume that after fixing a level we have an
integral structure on our model space, i.e we have chosen lattices VKT’OF - Vﬁfp.

For almost all p this lattice is of rank one and V;JffOF =Q, Trp" 0, is a (locally)
free module of finite rank. We require that our periods satisfy

V() ) o i L
Qex ) (@ Vilo,) = H¥ (SF,, Mo (e x ) i (8.103)

and we require that this choice of periods is optimal, i.e.

if a € F and
\IldH o -
€><7Tf ®V OF CH (SKf’MoF)(EXﬂ—f) int (8104)
then a € Op.

This pins down the periods up to an element in OF.

If now proposition 8.2.1 applies we can then we can form the composition

W () (w G(A) it
(b xy) © Qexrr) ®v o, = Indyrt.
Now we assume that the condition (I,,,) is satisfied and we assume that our local
intertwining operators I;)OC are defined over F.. We define as above I}{’fc = I,
and again we get a formula

i (1) (w
J(@ps fif) 0 W = L(m @ x, w)1;5° (8.105)

Of course there is still the unknown quantity £(7 ® x, i) but we can say
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Proposition 8.2.3. If proposition 8.2.1 applies or if we have Manin-Drinfeld
then L(m ® x, ft) € F

But we want to do better. On the left hand side we have the integral
structure and if we evaluate at an adapted argument g P ie. g ; satisfies (8.67)

then we get for ¢y € V;;fOF
- Wi () (we oc
Py o0, (e )" o Gr ) = £ e x (1))
(8.106)

If we can apply proposition 8.2.1 then the left hand side is an integer in
OF hence we know that the right hand side £(7 ® x;, u)IXI;’C(z/}f)(Qf) is also an

integer. To get information about the denominator of L(7 ® fif, 1) we have to
optimize the numerator of 1 ﬁlﬁ’c(zﬁ 7)(g f)'

We have to choose ¢y € ®p Vgp”, and we choose 9, such that ngfK{ =
ngf)). The first choice provides an integral cohomology class in H# (ng s Mog)(my).

But this class is not necessarily the image of an integral class under ry this
will be the case if we multiply it with A(my). Once we have done this we get

P (we)

g ma) (e g X Am)ey) = M) Llr © DL () (g, e,
(8.107)

is a number in OF.
Then we have to optimise the choice of g I this means that we have to keep

the numerator of 1 ﬂl;)c(qlzf)(g f) small. Then we get an integrality result for the
L-value.

Galois action

Then it is clear that for any o € Gal(F/Q) we can define the conjugate
(9, Koo)— module Vo, and the conjugate G module M. In this sense we
can say that the system (Vo,_,” M) is a rational system over Q. We also get
the system of conjugate cohomology groups

{..., !dH(SIG(f,UMF)(UG XU’/Tf),...}ae Gal(F/Q)-

We made the assumption that the model space V(7) and the embedding | Phi(m)
are somehow canonically given to us (see the next section) and we assume that
that these ®(m) behave nicely under the action of the Galois group. More
precisely we assume that the following diagram commutes

U () (we) (@, Vi) ®C) = H(S Mp)(ex 7p) ©C
L omed @1 12 ®1 (8.108)

W (1) (Twe) (@, Vor,) ®C) = H¥ (S, Mp)(Te x7 mp) © C
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If we now have chosen Q(e x 7m¢) then we choose (7¢ x? my) such that the
following diagram is commutative

W (1) (we) , et
Aexny | Ve HIST Mr(exm)

L agt L5 (8.109)
Pdu (071')((4}6) ) , di ol . i
m b, Vor, & HP(SY, MFp)(%e x7 7y)

8.3 The special case Gly/Fj

Let Fy/Q be an algebraic number field, we consider the algebraic group G/Q =
RFO/Q(GIQ/Fo). We embed Gm X Gm = T() into GlQ/FQ by

t1 O
(tlatQ) — <0 ﬁg)

the diagonal G,,, C G, xG,,, maps to the center Cy/Fy. Let By D Tp be the stan-
dard Borel subgroup of upper triangular matrices and Uy its unipotent radical.
Then T/Q = Rp,/q(To), B/Q = Rr,jo(Bo), U/Q = Rp,/q(Us) and C/Q =
R, /g(Co)-

We want to apply our above considerations to the following two cases

M1)
H =T = Rp,/o(To) C Rr,/o(Gl2/Fo)

and

M2)
H = RFO/Q(GIQ/FO) cG= RFO/Q(GIQ/F()) X RFO/Q(GIQ/FO)

where the embedding is the diagonal one.

8.3.1 The spaces

Let X be the set of embeddings ¢ : Fy < C, on this set we have the action
of complex conjugation c. The set of embeddings ¢ : Fy — R is the set of
elements the fixed under conjugation, this is also the set of real places. The
other embeddings come in pairs ¢, ct. Let So, be the set of equivalence classes
under this action, then S, is the set of archimedian places of Fjy and

@R = H F,=R"™ x C

VESo

of course F,, = Rresp. C, if v is a real (resp. complex) place, hence G(R) =
G12(F X ]R) = HUESDO GlQ(Fv) Let

K, = S0(2) x C"(F,)( resp. U(2)) x C*1(F,)) ¢ Gly(F,)
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be the ess. maximal compact subgroups (See (4.1.2)). We completely neglegt
the contributions from the center. Our symmetric spaces

X= [] GL(K,)/EK,= [] X.. (8.110)

VES oo VE S0

Let Op, be the ring of integers in Fp, let @Fo C Ap, be the ring of integral
adeles, we consider the group scheme G/Z = Ro,. ,/z(Gl2/OF). We choose an

open compact subgroup K C G(Op). With these choices we define again
S, = GQ\X x G(hq)/K; (8.111)

The Lie-algebra g ® R of G’ xg R is the direct sum g ® R = ®ycs._gv, our
standard Cartan involution is the product of the involution ©,. (See4.1.2). Then
we get the corresponding Cartan decomposition

g =€®p where t = Dyes t , P = Bres,, Po- (8.112)

8.3.2 The highest weight modules, the sheaves and their
cohomology groups.

Let Q the subfield of algebraic numbers of C, then the maps ¢ € X factor

through Q. Let F; C Q be the subfield generated by the ¢(Fp), this is of course

the normal closure of Fj (see also section 6.2.2 the field F; here is the fiield Fj
there). In (4.1.1) we gave a description of the character module of Ty /F, it is

X*(T'x Q)= Hom(T x Q,Gy) = [[ X*(To xp. Q) (8.113)
10:Fo—Q

and hence an element A\ € X*(T x Q) is an array (see section 4.1.1)
A={...,ny+d,det,... }ex. (8.114)

We call A dominant if n, > 0 for all ¢ € ¥. The Galois group Gal(Q/Q) acts
on X*(T x Q,G,,), this action factors over Gal(F;/Q).Let F[\] C F; the be
stabilizer field, i.e. Gal(Q/F[}]) is the stabilizer of ).

We can obviously extend our constructions in (4.1.1) to this situation and
construct a G module ME\ of highest weight A. This is a free Op, module, for

the extension ./\/lg\ ® Of we have a canonical isomorphism

M, @ 00, —> QM 4, der (8.115)
LEX

The tensor product Mg@) r[a) P is of course isomorphic to the standard highest
weight module M p. We recall the explicit realization

n,

b n, n,—my m
M i an = (PEGY) = 3 a (M) X0 0 € Op). (8110)

m=0

We apply the considerations of section (6.2) to these modules. We get get
sheaves MbA on Sﬁf. If the field F{) has at least one real place the sheaves M& are
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zero unless all the coefficients d, are all equal, i.e. d, = d. (See [34]). Therefore
we require that this is always so. The parameter d is actually rather irrelevant it
only serves to fulfill the parity condition. If the n, are even then we may choose
d = 0. We also require that )\ is unitary, this means that for all the complex
embeddings we have n, = nco, (See Thm. 4.1.2.). Of course, if F is totally real
then )\ is always unitary.

We want to investigate the cohomology groups and the fundamental exact
sequence

— HSE, M3 25 HY(SE, M) = HY (N SE, M) = (8.117)

as modules for the Hecke-algebra in this special case. As usual we also introduce
the inner ”cohomology” H, (ng7./\/lg) = ker(r) = Im(j.).

The Galois group acts on the set of dominant highest weights and is easy to
see that the Mo a form a rational system of coefficient systems, the ®, simply
act on the a; in (8.116).

For the following see [34]. We have two cases - If A1) # 0 In this case it is
easy to see that

H,op (S, M3) = HY (S, M3) (8.118)

If A\ = 0 then Mg is one dimensional, all the d, are equal to an even
number d. The restriction to G(!) is trivial. Each algebraic Hecke character
Xoo X Xf Of

d
typexfzgz{...,0—|—§det,...}bez

yields an embedding C[xo * Xf| = Coc(G(Q)\G(A)KKy). and hence a ho-

momorphism
H*(g/t, Clxoo X x7] © M3) = H*(SF,, M)) (8.119)

The direct sum of images is a complete ( different eigenvalues of Hecke)
submodule and hence the Manin-Drinfeld principle gives a decomposition

BESSER MACHEN

D H(a/t,CoM}) © Ho(SE, Ma) = HEy (S, My)  (8.120)

Xoo XX f

The classes @, ., H*(g/t.C® ./\;l'i) are residual Eisenstein classes, the form
a submodule of total Eisenstein cohomology and hence we get a splitiing t two

decompositions | deco-eis-cusp

H;(Sicéfv-/\;b\ ® Q) - H(:usp(SIG{JMM)\ ® Q) @ Hc.,Eis(SIG(f7M>\ ® Q)
(8.121)

H.(SIG(faMA(gQ) :Hc.usp(SIC(;'f7M)\®Q)@H];)iS(SIG( MA@Q)

f’
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Of course this may not give a decomposition over Z, the reason for this are the
”denominators of the Eisenstein-classes”. We get a decomposition into saturated
modules

Hc. ('SIG( M&) int 2 Hc.usp (SlcévabA) int B H(:Eis (‘SIG(vabA) int

f’

(8.122)
H* (Slgf?MbA) int 2 Hc.usp ('SIG(faMbA) int B HE)IS(S]C;:JMM&) int

The quotients left side/right side are related to the denominators of Eisenstein
classes. We have studied them in a very special case in Chapter V, but we are
convinced that theorem 5.1.2 is a special case of a much more general theorem
(See also Chapter 9).

8.3.3 The modular symbols

We apply the strategy outlined in section 8.2.2 for the case M1). The reader will
realise that carrying out the different steps is quite elaborate. The final result
is the Theorem 8.3.1 and Corollary 8.3.2. In Chapter 5 we discuss a special case
of these computation where a lot of simplifying assumptions are fulfilled. But
in essence the computation is the same. For the archimedian component of our
pin point we choose oo = [[, Ky (resp. zoo = [[, (Ky x Ky)).

In the next step we compute the restriction of M to H, we do it separately
for the two cases. The action of the torus H/Q = T'/Q on M, is semi simple
and it is clear from (8.115) that the restriction to T'/Q decomposes into free

rank one modules | restr

M, =P Ox,e, (8.123)

©

where p = {...,m,y, +ddet,...} where —n, <m, <n,,n, =m, mod 2 and

where
n
e =11 ( L)X?L”@LY:"L
- ml»

L
is a generator. The homomorphism ¢, will be the projection to the summand

Oebﬁ. The space
Sier = T@\(T(R)/ K, % C(R)Y) x T(As) /KT,

it has several connected components, each of these components is isomorphic to

(Styrtr2=l x RX, the dimension is dr = r1 + ro. Our data so far provide a

homomorphism

GO0 (oo, g,) s HPF2(SE M) — H T (Sker> OFen) (8.124)

This homomorphism factors over the quotient H, (8¢ f’MbA) if propo-
sition 8.2.1 applies. If this proposition does not apply, then we have Manin-
Drinfeld instead then we only get a homomorphism

0h 0 J(ocrg,) s HI'T2 (S, My @ F) = HPV(SEy, Fdey). (3.125)
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Of course we want that the cohomology H2 (ST OFM eu) # 0. A necessary

KT’
condition for this to be the case, is that u is pure of wézght w(w). This means that
for the real embeddings all the numbers m, = w(p) and for the pairs of complex
embeddings we have m, + m¢, = 2w( ). If our field F; has a real embedding
then we even know that always m, = m¢, = w( ). for all embeddings.

The module HZ .t (SG M) is semi simple, we can find a finite (normal

over Q) extension F/F) buch that we get an isotypical decomposition

HIE2(SE, My @ F) = @D HE2(SE,, My @ F)(e x mf)

EXTf

where € x 7y is an isomorphism class of a (finite dimensional) F-vector space
with an irreducible action of mo(G(R)) x H on it.
For the integral cohomology we get a decomposition up to isogeny

Hr2(8G, My © Op) o @ Hub= (8%, My © Op)(e x ).
EXTf

We can also decompose the right hand side of (8.124). We have seen in
(6.3.8) that we have a decomposition

+ T F _
Hye (SKfTvF/\eu) = @ Fey,
Bytype(fis)=p
and over the integers this gives us
]‘ITIJH‘2 (SKT’ Oeru) D @ Opegf
¢:type(@)=p
and this gives us the projection map Py, : it (S};T,

Hence we see: If we restrict to the € X ¢ component on the left hand side and
project to the jiy component on the right hand side, then we get a homomor-

phism

Py © (oo, g e x mp) : HLE™ (SE M3 ® Op)(e x 7) = Opég,
(8.126)

OF,\eu) — Opéﬂf .

Recall that this only works if proposition 8.2.1 applies. But if we tensor our
coefficient system with F' then we can invoke the Manin-Drinfeld principle. We
can change the level and go to the limit over smaller and smaller K;. We get a
mo(G(R)) x G(Af)— module homomorphism

J(bure X mp, fig) - HPE2 (SR My @ F)(ex mp) > Indp /iyt (8.127)

which is defined by
&gy = Py o duojltoo, g,) (e x ) }(E). (8.128)

This is now the situation where we can try the strategy outlined in section
8.2.2. In the following section we find a model space Vi, = Hp Vz, together
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with an isomorphism ®, : V,(r) — H/* ™" (ng,/\;b\ ® F)(exmy). We get the
composite

- G(Ays) ~—
J(Pp e X mp, fip o @ Ve(myp) — IndT((A;;,ufl. (8.129)

Now the G(Af)— modules are product of local G(Fp ,)— modules and we find

some "natural” local operators I‘lf’c Vo, & Ind%}?gx")) ftp. Our final goal is to

find an explicit formula for the factor £(e x 7y, fiy) in the comparison

J(qbu,gxﬂf,ﬂf)oq):ﬁ(gXﬂf,ﬂf)HIéoc. (8.130)
p

The Whittaker models

We assume that 7y is a representation which occurs in the decomposition of
Hbre (SIG(f,/\;l,\ ® Op). Let Too = Qpes.. Ty an isomorphism class of Harish-
Chandra modules with m, € Coha(A,). Then the isomorphism type moo ® 7y
occurs in L2, (G(Q)\G(A)), we have to find model spaces Vr, , Vr... We proceed
as in section 4.1.9.

The adele ring A = Ap, is the restricted product

A=(FReR) x [[(Fe) =[] Fox]]F.

VESso P

The trace map trp, g : Fo — Q induces a homomorphism trp, o : A/Fy —
Ag/Q which is of course the product ], trg, /q,. We compose trg, o with the
character 91 : Ag/Q — C* in (4.126) and get a character ¢ = 1) otrp, /g : A —
S'. This character is of course a product [loes. ¥v x Hp Py.

The character 11, : Q, — S* has a trivial "additive” conductor, this means
that ¥1,,(Z,) = 1 and 1/’1,;9(%2;)) # 1, or in other words %1 : %Zp — Stis
a non trivial character. For any prime p which lies above p there is a largest
integer d(t)(¥) > 0 such that trg, | /g, (b~ W Op, ) C Z,. Then it is clear
that d(v,)(1) is the largest integer such that 1, : p~ W) WOg , — S is
the trivial character. The ideal p?¥»)(¥) and sometimes also simply d(t)(¢))
is the ”additive ” conductor of 1. Of course we have d(1,)(¢) = 0 for almost
all p, the ideal ¥p, = Hp pd¥»)(¥) is the different of Fy,. The character 1 is
trivial on Fy C A hence ¢ € Hom(A/Fy, S). It is in some sense a distinguished
element: It is obtained by a canonical construction fro ;. All other characters
in Hom(A/Fy, S!) are of the form

Yl = 2 — Y (az) with some a € Fp,

hence we can say Hom(A/Fp, S') = Fp.

Now we know that for any place v (finite or archimedian) and any -not one
dimensiional- irreducible representation m, we have a Whittaker model, this
means that we have an unique subspace

Wm e € (7 Gl(R) » €1 (5 §)a=wi@)  13)
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which invariant under right translations and isomorphic to m,. This Whittaker
model depends of course the choice of 1, which in the following will always be
the v-local component of the distinguished . At some instances we have to use

the fact that we have an isomorphism

Ra, i W(y, 1) = Wiy, 1™

0

s~ 1y ) (8132

At the archimedian places these are the modules Dy,. We can form the tensor
product

W(WJ/J)C = ®W(7Tv;1/}v)(: (8133)

and these spaces will be our V , V.

Our level subgroup should be a product Ky = Hp K, then
K K
W(Wf Tp)c = HW(WP " p)e
p

is a module for the Hecke algebra Hgf.
The Fourier expansion gives us an isomorphism

F1: W(m, ¢)e = A(Gla(F)\Glz(A)) ()

@ =4 fo. -} = Xuer o f(ag)

this will be our intertwining operator ¥ () in (8.89). We get an isomorphism

(8.134)

Fir o @ H (80, Ko Dy @ My,) @ QW(my ® ) = HILE (SR, Mo ® F)(mp) @ C
VESoo p
(8.135)

A well known consequence is that HZi172(S% My @ F)(e x m7) ® C occurs

cusp

with multiplicity one. Therefore HZi 5™ (S, MARF)(exmy) is a F- vector space
with an absolutely irreducible G(Af) module structure, hence we can also say

that we realized 77 over F. We can write H1572 (8% My @ F)(exf) = @' Vi,

cusp

Rational and integral strutures on the Whittaker model.

At a finite place p we can realise our local representation V., as a subspace
Wg(mp, ¥p))g in the space of Q-valued functions

wotw = {16 =T (5 ) an) = vatunsian |

We briefly sketch how we get this realisation. We choose a no zero linear
form Lg : Vi, — F and then we define a second linear form L : V; — Q by the
integral

soy= [ n(y )G,



8.3. THE SPECIAL CASE GLy/F; 347

here is a minor issue with convergence, this will be discussed later. This linear
mapy is non zero because we know that a Whittaker model exists. Then it is

clear that L(((é “f))h) — L(h)p(up) and

h = {gp = L(px, (95) (1)} (8.136)
is a Gla(F}) - isomorphism of this Vz, with a subspace in Wg(my, 1p) C Wgg(¢y).

On the space Wg(¢)y) we define an action of the Galois group: The values
1y (up) are p™-th roots of unity, we have the reciprocity homomorphism

a: Gal(Q/Q) = Gal(Q(¢)/Q) — Z;.
For f € Wg(ty)) and 0 € Gal(Q/Q) we put

oo (1(("" %)),

If we take an element o € Gal(Q/Q) then it conjugates the representation
into 7m, and we get a map

Wa(mp,p))  —= We(Tmy, ¥p))

f = 7f

This map is a semilinear isomorphism and Q(m,) is the number field for
which Gal(Q/Q(my)) is the stabilizer of W@(ﬂ'p, 1y). The space W@(wp, Py)) is
the union of finite dimensional Q - modules W@(ﬂ';{ ",1p) where K, runs over
the open compact subgroups. The space of functions in W(ﬁf ", 1y) which are
invariant under Gal(Q/Q(,) is a Q(my,) vector space W(wf ",1p)) on which
H(G(F,)//K,) acts absolutely irreducibly. Of course W(my,1,)) is the union
of the 1/\/(71';(p ,¥p) and clearly W(my, 1p)) ®Q(r,) Q= W@(ﬂ'p, Py).

Of course Q(mp) C Q(my), let O(my) C Q(ns) be the ring of integers. We
have the action of H5°" (See 1.2.1.(ii)) on the cohomology and hence we get
an action of the algebra H(G(F,)//Ky)z on W(my,1p) and this gives us a
finitely generated O(my,)- module of endomorphisms. Hence we can find invari-
ant lattices W@(Wp)(ﬂ'é{” s Up)o(my)- If we invert a few more primes then we can
achieve that two such choices just differ by an element a € O(m,). We as-
sume that such a choice of lattices has been made at all primes p. If we are in
the unramified case then we will make a very particular choice later. We put

Wor) (T 1p) = @y Won,) (T, thy) ( See 2.2.7).

The Newvector
For any integer n > 0 we define the congruence subgroups

Kyo(p™)) = {(ﬁ Z) lc=0 mod p"} C Gl2(Op)

K, 1(p™)) = {<(CZ Z) lc=0 modp”) and a=1 mod p'(™)} C Glx(Oy)
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. a 0
Clearly the quotient Ky o(p™))/Kp1(p")) = {<0 a) Yae(o, /pmyx = C(Op/p7))-
A theorem of Casselman and Novovorskii([?]) implies that there is smallest
integer f(my,) > 0 such that Weg(my, wp))KP‘l(pfw)) = 0 and it also says that the

b
d) € Ky o(pf™))

acts by multiplication the central character ¢, (a) on this one dimensional space.
The ideal p/ (™) is the conductor of Tp-

dimension of this space is actually equal one. An element (Z

We introduce the subtorus T4 (Fy) = {( é (1) )} = F, of T(F,). We
restrict the functions in W(m,,1,) to T1(Fp) this restriction map is injective
([27]). The space of these restrictions is the Kirillow model K(m,) hence we may
consider K(7,). as a space of functions on Ty (Fp) = Fy*.

We recall the definition of the Schwartz-spaces S(F})- this are the locally
constant Q valued functions with compact support-, and S(F,), this is the
space of those functions in S(F,) which vanish at 0. This is of course equal
to the locally constant Q valued functions on F,* with compact support. The
Schwartz space S(F},) C K(m,) and it is of codimension 0,1 or 2(see[27]). Of

course it is clear how B(F}) acts upon the Kirillow model, it follows from the
definition that for h € K(mp)

7Tp(<to1 Z))h(t):Cp(tz)h(tltglt)qpp(tllt). (8.137)

The following lengthy computation serves to find an explicit formula for a
generator h;o) € K(mp) Ko™
The purpose of following somewhat lengthy computations is to discuss the

. This is the newvector.

conditions (I, Ipp) and to find an explicit expression for a new vector hSﬁ). This
will help us to nail down the local intertwining operator I};’C.

The Principal Series

To see what is going on we consider the special case that m, is a principal series
representation. This means that

tl *
Xp ( 0 to > HXPyl(tl) 'XPQ(tZ)

is an unramified character and , is the induced representation from x,, i.e. we
consider the space of functions

mafiihe = {7:6E) >l (4 ) )) = watwataio ],

Since we want the representation to be admissible the function f must be right
invariant under some open subgroup K {g.

Let us denote the restriction of y, to the subtorus 7™M (F,) = { <é t91> It €

F} =F} by X;(al)~
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Proposition 8.3.1. i) The induced representation Indggzgxp s irreducible
unless Xl(al) = 1( the trivial character) or | |, (the normalised p-adic absolute value)

i1) Ifxg,l) =1, the the one dimensional space of functions g — a x1,,(det(g))
form an invariant subspace, the quotient by this subspace is irreducible. This
quotient is called the Steinberg module St(x,).

i) If Xl(gl) =| |, the integral

Sl2(0y)

defines an invariant linear form, the kernel is irreducible and isomorphic to
St(xp)-

See [27]
In this case we have an obvious option for an intertwining operator to the
Whittaker model:

G(F,
Rp N IndBEF‘;;XP — W(ﬂ-p(xp)awp)a

it is given by

B0y =1, (1) (5w

where w = ( ? Bl ) , and du is the additively invariant measure that gives

volume one to OF,. After a small substitution the integral becomes

[t]px2,p(t) /U(F)f(w (é ?))wp(tu)du. (8.138)

Our integral can be written as an infinite sum

L)y ) 3 1 u
/OFom f(w (0 1> )"/}p(tu)du ’ ; /WpVOF()«F\WPV+IOF0,P f(w (0 1) )wp (tU)du
(8.139)

As usual N(p) = #(Opg, p/p is the number of elements in the residue field.
We choose a local uniformizing element @, and write any element u € Fofp as
u = wy, "¢ with € a unit and of course v = ord(¢;)(u). Then the v-th summand

becomes
v 1 b U\ T
N(p) / f(w (o wpl )W,(twp u)du (8.140)
OFOvF\wFOFo,P

Now we apply the Iwasawa decomposition and get
1wy u), _ @, w bt -1 1 0
f(w (0 1 >)_f(< 0 @, u) \wpu™! 1 )

@@ w0 (e 1))
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(e =15 )

hence we have to study the expression

Gltw,” xS wp) = / XSV () Yoy (teyp V) . (8.142)
Or, p\wpoFop

For v large enough

These expressions are Gaussian sums and these Gaussian sums are computed
in any textbook on algebraic number theory. we refer to [73]. We recall the
results.

We also have the multiplicative conductor f(x,) = f(xél)). This is the small-
est non negative integer such that X,(gl) is trivial on the subgroup (’)go(??)) =

Fxe

{u € 0;0,p|“ = 1 mod w, )}. Then the Gaussian sum is zero unless the

"additive” conductor of u ~— 1y, (tw, “u) is equal to the conductor f(Xl(Jl)) ie.
the Gaussian sum is zero unless

ordy (t) — v + d(ty) = f(xi"). (8.143)

If this equality holds then a well known computation yields

G(tw;”",xl,m wp)G(tw;”‘% X1,ps 7vbp) = N(p)f(XI’p)

From this it follows that the infinite sum in (8.139) is actually a finite sum,
hence there is no problem with convergence. Furthermore it is clear that for

a t with ord,() << 0 we have Rp(f)(<é ?)) = 0. and this means that

R ) tes i S5,
t

Looking at these computation we easily see that the functions ¢ — Ry, (fo)( 0

have a simple asymptotic behaviour. For |t| — 0, the computations yield
0
R 3))~ altlxas(®) + braalt) (3.144)

G(Fy)

We want to pin down a specific generator fj € ( IndB(F e )Kp,l(Pf(vrp>)( resp.

St(xp)KPvl(”fw))). We look at the double coset decomposition
GL(0y) = | BONEK, 0 (p1™)) (8.145)
§

It is easy to see that a system of representatives for these double cosets is given

by the matrices
1 0 0 -1
{(w; 1) }V:L...,f(ﬂ'p) U {<1 0 )} (8146)

The space ( Indgg‘“)x )Kw(pf(wp)) is spanned by functions
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fe s B(Op)EKp (1)) — Q
which are supported on B(O,)¢K, 1(p"™)) and satisfy

Fe(bi€k) = xp(01)f(€) ¥V b € B(Op), k € Ky (p1™).

This is a very restrictive condition if we want f¢ # 0, actually it follows from the
definition of f(m,) and the above theorem of Casselmann and Novovorskii( that
there is exactly one double coset &y for which we find a function fe¢, = fo # 0.
We have several cases.

a) If f(m,) = 0 then K, 1(p'™)) = Glz(Of,,) and the character x, is
unramified. In this case we choose for the function fy the spherical function
which has value one at the identity element.

b) We have f(m,) > 0. Assume our double coset isi represented by & =

1 0
<w§0 1) . For any ¢ € le?o,p we have

fol( e D =tl(p ) (o 1)-(6 D) =@t O]
(8.147)

For e =1 mod p/("»)=%0 the far most left term does not depend on & hence we
can conclude that x2 ,(¢) =1 or what amounts to the same

f(x2,p) = f(mp) — 0.

On the other hand for any v € OF,,, we have the equality

fg((wlgo ?))—fg((wlgo (1)> <é 7{)) (8.148)
and

10\ /1 v\ _ [((1+vwe)? * Lo
wy 1)\0 1)~ 0 (1 +vwp?) 13;‘3,0 1
P

Therefore we get

1 0 _ 3 1 0
f5<( v 1)) — il vao)f£(<wgo 1)) (8.149)
and this implies f(x1,p) < vo. Hence we see that vy must satisfy

fx1.p) = v0 > §(mp) — F(x2,p)

If on the other hand v satisfies this inequality we can write down a non zero
function f;,. But since the v is unique we find that actually

f(mp) = f(x2,0) + f(x1,p) and vo = f(x1,p)- (8.150)
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Therefore we normalise the generator fy so that fo( (wl,,o ?)) =1
p

We still have the double coset £y = w. Then

futw) = Jaw (5 P =rul(§ 1)) = xip(Eute)

and this implies x1 () = 1. We normalise f,,(w) = 1. We are still in the case
b) ie. f(x2,p) = f(mp) > 0.

Now we consider the case that our induced representation is reducible, this

means that X'(Jl) = 1( resp. =] |,). In this case Ind EFpgxp has the Steinberg

module m, = St(xp) as quotient (resp. submodule). Then f(m,) = 1 and the
Bruhat decomposition Gl2(0,) = B(O,) | B(Op)wK, o(p) gives us

(Td§) )50 ® = Qf, + Qfu, (8.151)

here f. resp. f,, are the characteristic functions of B(O,) resp. B(Op)wK, o(wy).

The element f. + f,, spans the one dimensional kernel of Ind BE r ;Xp — St(xyp),

hence the image of f. spans St(x,)%»o®). If we realise St(y,) as kernel of

Indgg‘;g| |po_1 — Q| |pX;;1 then fo:= fo — %fw can be chosen as generator of

St(Xp)Kp,o(P).

fi(
At this point we have chosen a specific element f; € VKF o(p™7))

is an induced representation or a Steinberg module. It is known that these
representations are exactly those representations for which KC(my)/S(F}y) # (0).

if m,

For these representations we define a distinguished newvector thj) = Ry (fo).
The remaining representations are the supercuspidal representations, for
those we chose a distinguished h&% further down.
We resume the computation of the R, (fo) after equation (??) we start with
the case x, is unramified. Let f be any linear combination of these two functions,

for v > 1 we have f((wl,lg_l (1)>) = f(<(1) (1))) and (?7?) becomes
p

(g §)) = lyxa(® x [£0) Ly, Tolridut
(8.152)
< > Z N(p)” (1) (wy) /o;om Yy (twy, V) dul
If we write t = wpord”(t) then

- if ordy(t) > v +d(iy)
/ox Upltmy "w)du == § —xgy il ordp(t) =v+d(gp) —1  (8.153)
Fo.p 0 if ordy(t) <v+d(vp) —1
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and therefore

(g )= lxap(p) "0 x [0) fo,, , BylEuldu

ordy (t)—d(typ)

+H(©)1 = ) N XD (@y)") = N(p) O Ox amy) o 041]
v=1

(8.154)

We consider the special case fo = f. + fi, then a simple manipulation gives

us
IR

(1= X8 () )N (p) = o O (32,278 D7) (N (p) 1 ()Y X2, (7p) O (D =

(1= x5 () (N (P) X () (32,287 D7) ) (o) (N ()™ e (7)) P (=)=

(8.155)

We look back to section 4.1.9. There p was a rational prime p and we introduced
the spherical Whittaker function h,(r? € W(mp, wp)Gb(Zl’) we normalised it so it
takes value one at one, its values on the torus 77(Q,) were encoded in formula
(4.119).

Essentially the same is true in this more general situation. In the above
special case we had d,, = 0, here we may hay have d(¢,) # 0.

Assume x, is unramified and IndGEI;Z;Xp is irreducible, we define hSP,) by

the equation (recall that IndB(F yXp irreducible <= xP(wp) #1or|lp)

B(g 1))= 0 @D sl (1)) 6150

We get the following identity of formal power series in the variable ¢

d(vy)
© 0y, 1
Zh ( 1>)q (1= x1,p(@p)g) (L = N(p)~tx2,p(mp)q)

(8.157)

If ijl) 1 then IndB( F )Xp is reducible and R, (fo) = 0, the function

fo generates the kernel of R, The quotient Ind BE?’ Xp/F fo is the Steinberg

module. Now we go back to (8.152) and we evaluate R, at the function f,,. Then
0 1

got [PsSt
(fw>((0 (1))) N(p)~ Wy, () e ™) /O Pp(tu)du  (8.158)

Fo,p

1 . .
fw(( O)) = 0 and the terms in the summation over v are zero. Therefore we
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We choose as canonical generator

h‘(n'?a) = N(P)d(wp)XZp(wp)fd(wp)Rp(fw)~ (8.159)
and again we get an identity for power series

d(ty) 1
(0)¢ 0\y,» —
Z Al < 1>)q S e (8.160)

Now we consider the case that x, is ramified. We compute the value Ry (f¢),
for £ running through the elements in (8.146). We begin with the case that x1
is unramified, we can take £ = w. Then all the terms in the summation over v
are equal to zero (?7 ), we normalise f,,(w) =1 and get

Bt (g 1)) = tnas® [ wplurian (3161)

0P

Consequently we define in this case
t 0 t 0
(o 1) =N eOmE() 1) s

We see that in all cases the support of the restriction of hsr(l) to Th (Fy) = Fy°

in the set {t | ord,(tpsi) > —d(tp)} and the value of h&‘? on w;d(w") is 1 (or
at least a unit).

1
@y’ 1
summation in formula (8.139) the only (possibly) non zero term is v = 1. Hence

the value of the sum is

Balfe (o 1)) = eV G [l
R (8.163)

We look at the case §,, = , we normalise fe, (§y,) = 1. In the

Here a short discussion about normalisations of measures is in order. Our mea-

sure du is additively invariant on Fy, and volg,(Or,,p) = 1 The measure d—““p

is a multiplicatively invariant measure on FOXp7 for the volume of the group of
units we have

1
X _ -
VOl‘s/rp (Of,p) = (1 (p))
We define the local Tamagawa measure on T'(Fp ) by (1 — —N%p) )_1—‘;15": it gives

and we define the Tamagawa measure

- 1, dt
dTamtf - 1;[(1 N N(p)) ‘t|P .

volume one to O} Foup?

Then we have by definition volg,, fT(@;O)) =1
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Any residue class = + wL(Xl'”) has volume (N( ))f(Xl ») for the measure du

and therefore we can say that the Gaussian sum is equal to

Gty X1p: ) = S Xip (€)Wt e). (8.164)

c€(Org.p/ (h 1P)))x

if (8.143) holds and zero otherwise. Then it is clear that the Gaussian sum is
an algebraic integer. If we replace t by tn with n € F;mp then clearly

G(tnw, ™, X1, ¥p) = X1,p (MG (tw, ™, X1,p, ¥p) (8.165)

This tells us that in this case hg?((o 2)) is supported on the annulus

d(shp)— . ..
w;’°+ (W) le’”OIX;O P and again we can normalise by requiring

I/-‘rd’([)
h(O)(( ordle) =T 0)):1.
0 1

We still have the supercuspidal representations my,, these are the represen-
tations for which the Kirillow-model is S(Fy",), we follow the argumentation in
[Cas]. Let ng = f(mp,) and let hy be a generator of the one dimensional vector

o

space H(wp)KP'l(p%)). We consider the element W (p™) = 01 w% (the
Atkin-Lehner involution), it conjugates Ky 1(p™°) into K, ;(p™°) where the con-
ditiona =1 mod p™ isreplaced by d =1 mod p"°. Therefore m, (W (p™°)h1) =
ho will be a generator of H(ﬂ'p)K;’ 17" We look at the restriction of h; to the
annuli wyOp . It is clear that hy(wpe) = hi(wy)(p(e). Let us assume that

d(¢y) = 0 then it is also clear that hl(wg) = 0 if v < 0. The computations in
[Cas] yield

v

woerm((T5° V) =com(Ty )

The right hand side is zero if —v < 0 hence we see that the values of hq, hs
on an annulus @y Oléo,p is zero unless v = 0. Hence we we define the generator

hﬁﬁ) by the requirement that it assumes the value 1 at the identity element. If
d(1p) >= 0 we use the isomorphism in equation 8.132. It tells us that

(@ "0 [—d(p)]
= hi( 0 1) 9) EWlmp, vy ) (8.166)

and since ¥[=%//P]) has additive character 0 we conclude that ¢ hgr?,) ( (w

is supported on the annulus (’);O}U. Therefore we can normalise h&‘?

—d
RO (( e w0 )= 1.
™ 0o 1

For any irreducible m, we introduce the number e¢(e,), this is the smallest

( »)
0 1
that this value is actually equal to 1. It does not depend on the choice of the
generator

by requiring

integer for which the value h(o)(< >) # 0 and the we normalise such

;d(d’p)t 0

1

)0
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Periods again

Now that we have chosen a generator h,(%) at all finite places we choose generators

in ®,cs. H'(gs, Ky, Dx, ® M,,) and of course these generators will be tensor
product of the generators in the factors.

If v € Sy is real, then the maximal compact subgroup K containing K, is
not connected. As before we denote the Whittaker realisation of Dy, by Dy, .
The module ﬁxv is a sum of two copies which are switched under the action of
K} /K,. The space

Hl(gv; KU715/\U ® M)\U) = Hoqu; (Al(g/E%ﬁAU b MA@)

is the direct sum of a + and a — eigenspace, both of dimension 1. In (4.152) we
wrote down generators of these one dimensional spaces

1 1
wh = §(wT +i"al); Wl = iw —i"wh (8.167)

The choice of these generators depends on the choice of several specific basis
elements. To justify the selection of these basis elements we can put a Z—
module structures on D,, g/¢, (See [43]). The module M), has a Z -module
structure by definition and the choices become natural.

We do essentially the same for a complex place v, we have seen that for
i = 1,2 the space Hompg__ (A*(g/¢)r, Dy ® Myv) is of dimension one. For the
elements e, in (??7) we can choose tensor product of monomials X"~ "Y" ®
X"=7Y7_ Then we require that our generator w' ' in degree one satisfies
I'2n+2)

* 1,1 n Vo~
< S H®X X" >=
/0 (< w; ® ® (2n )22

(8.168)

In degree two we use the isomorphism x : A'(g/t) — A?(g/€) we define
Wt =t (Wb,

Let v=1or 2 and e =[] €, be a character

VE S ,real

e:m(GR) =[] K;/K,—C*
VE S, real
then
wy't € Homg, (A"F772(g/t), DS © My)
will be the product over the v € S, where the local factor is WI,, for a real place
and w®)1. for a complex place.

Now we have constructed an isomorphism between absolutely irreducible
G(Ay) modules

FwlD) s QW 1) ® C — HH72(SE My)(e x m4) ® C),
p

the two vector spaces W(ms,v5), HH"2(S% M, ) (e x mp) are Q(my) vector
spaces. and hence we can define a complex numbers Q(e x 77) such that
1 (L), 1y . ~ ritvrs (oG
m']:l (wé).@Wo(ﬂ-f)(ﬂ'f,’(/Jp)—)Hl 2(8 ,M)(gXﬂ'f),

(8.169)
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these numbers are well defined modulo an element in Q(7s)*

But we can do better. We choose a level subgroup, actually we chose Ky =
11, K, 1(p7(™)), this is in a sense the optimal level for 7;. Then

H 2 (SE L M@ Op)(e X mp)ing C H 2 (SE M ® Op)(e x 77)

is a locally free O module of rank 1. Let us assume for the moment that it is
actually free Hence

H 72 (8§, M® Or) () = Ore,.

On the other hand we have chosen specific generators hq(r(i,) € W(TF;( " )
and hence hgr(? € W(W?f ,%r). Then we can define periods by requiring

1
m? 1we x W) = ey (8.170)
these periods are now well defined up to an element of O}, hence we may view
Qe x 7y) as an element Qe x 75) € C*/OF.

If the class number of F' is not one then it is perhaps a good idea to introduce
the sheaf Pr of periods over F. This is the Zariski sheaf of Spec(Op) which
is obtained from the presheaf U — C*/O(U)*. Then we can define the period
as a section Q(e X 7¢) € Pr(Op) and then (8.170) holds locally in the Zariski
topology.

Let us assume that we have an isotopical component H,* 7" (S, M(\é(ﬂf))(wjr%
then we can consider the composition

1

TG X1 1) Gy

G(A -
‘7:1( wE ® WO (myf) (Wpawp) — IndH((Af) !

Since we will see in the following subsection that the condition (Ip,) is satisfied
and since we have some natural choices for the local intertwining operators, this
comes down to the computation of a number and this number is expressible in
terms of L-values, this is our ultimate goal.

The local intertwining operators

Next issue is to investigate the space of intertwining operators, i.e. we have to
check (Ip) and (I,,) and to study the space

F ~_
Homg g, (W(mp, ¢p) IndT(F”§ b )

Of course we need to assume that the central character ¢, is equal to the
character fi, restricted to the centre. We restrict the functions in W(m,,¢,) to
T (F,) the space of these restrictions is the Kirillow model K(7,) this restriction
map is injective ([27]) We introduce the subtorus

={( )
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of T(F,). Of course a function in K(my,) is determined by its restriction to
T1(Fy), hence we may consider k(7). as a space of functions on T} (Fy) = F,*
The restriction fi, to this subgroup Ti(Fy) is also called fi,, since the cen-
tral character is given, this restriction determines fi,. For t € F,*, we denote
by [t] the matrix [t] = ( (t) (1) ) . The space of Schwartz-functions S(Fy*) is
of codimension 0,1 or 2 in K(m,), The action of T'(Fy) on K(mp), is given by
mp([t])(f)(z) = f(tz), hence it is clear that the space S(F},) invariant under
this action. Therefore we have an intertwining operator I, from S(Fy*) to F|fip]
which given by

L (f) ([to]) = /T . Sl (e,

this operator is unique up to a scalar. Here d*¢ is (momentarily ) the multi-
plicatively invariant measure which gives value one to O,. We apply Frobenius
and see

(Fy) ~— ~—
HomG(Fp)(W(va¢p) ’ IndT(Fp)) pl) - HomT(Fp)(W(ﬂ-pawp) y My 1)'

If m, is supercuspidal this is our choice of a local intertwining operator I}JOC
at p up to a normalisation of the measure

If m, is not supercuspidal we have to discuss the question whether this op-
erator has a (unique) extension to IC(mp,1),). Our representation , is either a

»)

induced representation Ind BE F.)Xp OF it is a Steinberg representation. In both
cases we can consider the quotient (See (8.144))

~ | F|t t)y®d F t) if m, is induced
’C(?Tp)/S(Fp) adN | |X27P( )@ XLP( ) 1 Tp ?S 1 TJ.CG (8171)
|t] if m, is Steinberg.
We consider the exact sequence
G L
0 — Homr, (g, (K(mp) /S(Fy), Flitg 1) = Homy, (o) ( Ind 5 () Fxy, Fli ') =

5 Homg, (e (S(F), Fliig ) = Bxth, (o (K(my) /S(Fy), Fliiy ).
(8.172)

Now it is easy to see that the abelian groups
Hom, () (K(mp) /S(Fyp), Ffiy ') and Bxty, o) (K(mp)/S(Fy), iy 1) = 0
are both trivial unless we have
Xuplth = fiptor xaplt| ™" = Ap " (pole)

Hence we see: If (pole) is false then

G(F, - __
HomTl(FpX)( IndBEFSXmF[Mp ) = HomTl(FpX)(S(FpX)a Fla, ) (8.173)
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is an isomorphism, our intertwining operator has a unique extension. We want
a formula for this extension and consider the expression

/ F(ltto] g (1)) (8.174)
T1(Fy)

for all functions in f € K(m,). Of course as it stands it does not always make
sense. But given f we can find an integer Ny > 0 such that

T € Ti(Fp)lltly < N() ) = altlxap(t) + bxau(0). (8.175)

Let us put co = N(p) =™ and let T1(F,)(< o) be the above neighbourhood of
0. Then our above expression becomes

Jrocmyy P AR (BNt = [, () (5c0) S ([E0])in ([E])d™
(8.176)
+ le(Fp)(ch) f([tto]/lp([t])dxt-

The first term is well defined, we have to assign a value to the second term.

Let n, : F,° — F* be any (continuous ) character ( which is the local
component of an algebraic Hecke character). We consider the formal power
series ( in the variable q)

o0

> / np(t)d*t)q". (8.177)
=0 JEX(t=N(p)=")

This power series is identically zero if 1, is ramified and if 1, is unramified
each summand is n,(w,)”¢” and hence the power series sums up to m.
We attach the usual local Euler factor to 7, :

1 . . .
L(npa S) = 1—=np(w@p)N(p)~*" lf p ?S unr%mlﬁCd (8178)
1 if n, is ramified
and then
L 0) " [ (e (8.179)
F ((Zco)

is a finite sum and has a well defined value.

We return to our representation which is m, = Indggigxp or m, = St(xp)-

For any fi, : T(F,) — E* as above we define

L(my X fin, 5) = L(| [y X1,pftps $)(L(X2,pfip, s)  if 7p is induced (8.180)
P L(| 5 " x1,pfips 8) if m, is Steinberg

The above 7, are those irreducible representations for which hSﬁ) does not
have compact support. For the other representations and especially for the
cuspidal then we put L(mp ® fip,s) = 1.
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Hence we define the (provisorial) local intertwining operator

Klocalintop

oc G(Fy -
10 Ky, p) = Indgy (i)

£ o Ly  figs 07 [y ) S ([1])d¥t

We recall that we want to study the integral cohomology, therefore a level
subgroup KpT is given to us, it has to satisfy the condition b) above. In this

(8.181)

case our function f and i, are invariant under K )7; and then we renormalise our
operator and define

[11(Op, ) : Ky'] _
I°¢(f)(g) = ob/ P / F([tlg) i ([t])d*t, 8.182
) = S [ S (5.152)
here the measure d*t = drant. Then the right hand side of i
I°(f)(9) = L(my x 1y, 00" > f(eq)iig(e) (8.183)
SGTl(FpX)/KZI

s actually a finite sum, if rearrange the terms.

From this we conclude that the local intertwining operator I, fj"c is defined over
Q(mp, Xél), fip.) If the conductur d(,) = 0 it transforms the spherical function

thf,) into the spherical function in the induced module which also takes value
one at the identity element.

We come to the final computation, we choose our pin point ., X 9, =

oo X [], gp and we have a level subgroup K} =[], K, which satisfies b) with
respect to this pin point. We know that the Manin-Drinfeld principle is valid
in this case. Hence ( see also the argument further down)

< g, )P s W)y =

N w
Ty (Or, :KTl/ < F( 2t X hO)(tg,), iy > too X dramty =
T(Or,) - K7 TLQ\T: (A) Qe x7y) U, s !

T1(Or,) : KT1] / (
T1(Q\T1(A)

w,
e SN S 7 dTamt.
Q(Exﬂ_f) X ﬂf(aﬁf)7uf > dTaml
a€T(Q)

(8.184)

Now we allow ourselves to interchange summation and integration (same argu-
ment as in (4.146), then the last expression becomes
We

Ty(OF,) : K1 ————— x h)[tg ], iy > dramt =
10n) KT [ (< ey < Big s > d

1 / 1 ~ 1 (0)
_ <wlie, >dlty | | L(mp X i, 0)1°°(hy ) (g,)
Q(g » 7Tf,) vg T (F) iz ]_;[ p f Py

(8.185)
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For the archimedian places v we denoted the Whittaker model of the repre-
sentation m, by Di, for real places, D, for complex places. We have the local
Euler factor

T'(s)

Ly(my,8) = and Loo(Too, 8) = [ Lu(ms,s) (8.186)
(27T)S VES
We define the completed L- function
A(m,s) = Loo(Teo, $)L(7y, 5) (8.187)

Now we see from the definition of the generators w] we get

L1+ w(w))

T *

<wl, ey, >d'ty = —7-75- 8.188)
/Tl(FU) " (27T)1+w(/‘) (

and hence we get the final formula

< (2.9, ) P e W) =

(8.189)
1

Q(TM‘)A(W ® ft, O)Iloc(hgrof) (99))

This is now exactly the expression we want to see. We have identified the
factor L(m ® x, i) in (8.106),(8.107) a special values of an L-function. We have
to interpret this formula.

It is clear from our computations above that for all places p where xy, fip
are unramified and where ty, € T1(Op,) we have Iéoc(hgr?)(tup) = 1. Hence it
is clear that in the infinite product I'°¢ (h,(%))([sz]) =11, Iéoc(hgr?)(to,p) almost
all factors are equal to one.

It is also clear that I,°¢(hn, ([to,s]) € F(fiy), this was the field extension of F
which was generated by the values of jiy. We may evaluate the local intertwining

operator at any function A ;= T hz, where hn, = hﬁf{) for almost all p we

can find an element . such that L (har, ([to,p]) # 0,7 for all p. We apply our
formula above to this function then we can conclude

Corollary 8.3.1. The number m[\@r ® [1,0) € Flig], For any element
o€ Gal(F(fif)))/Q) we have

1 1

(oA ®fy,0) = QCexo 7))

AT @ fiy,0
Q(gxﬂ_‘f’) <7T® luf7)

Of course we also get an integrality statement. We are stiil working with our
level subgroup Ky =], Ky 1(p?™)), but we choose a pin point (xoo,gf) and a
level subgroup K}T € T(Ay) such that ngfo = ngf -this is our condition
b) above. We get the maps

J(oesty) s SKr = S8, 3(woes )+ HIT(SE,, MP@OR) = HI'™(SEr, Opcy),
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it follows from the definition of the periods that the cohomology class

o Lwd (0) rAra (GG AP
F (e g % ) € HP SR, M @ OF) (e X )i

Hence we can lift this class to a class ]:.(Q(::}rf) X hSPf))* in HI1trz (S[G(f M ®

Opr) and the restriction
i( F* & 1(0) H 28T, 0 ~
Jxoov ) ( (Q(GXTFf) X 7rf) € ( KT’ F®/J’f)
gives us the number
. . ° [WC] (0)y*
< (](xoo,ij) (‘.F (m X h'ﬂ'f) 76;&)" >

which is the number in the top line in (8.184). But this number may depend on
the lift. We still have proposition 8.2.1 which says that this number does not
depend on the lift if j o d,, = 0.and hence we can say

Theorem 8.3.1. If jod;, = 0. then

< (j(@o0r g )" (F* iy x ), iy >i=< (300, g,)* (F* (el x WD) ey >=

We

<F( 50— x WO (t(z xg,) en, >d't=
/T1<@>\T1<A) Qe x ) > .

Q(TW)A(W ® [, O)Iloc(hgr?)(gf)

where d*t; has volume 1 on K?. As far as j o 0y, = 0 is concerned we have

Proposition 8.3.2. The class jod,, = 0 unless A is of parallel weight, i.e. all
the n, are equal to the same number m.
If A is of parallel weight we still have j o Oy, = 0 unless 1 = A, woA.

Proof. Postponed O

If we are in the exceptional case that jod,, # 0 we use the Manin-Drinfeld
argument. We can find Hecke operators C’ in ( the central subalgebra ) of the
Hecke algebra which annihilate j o d,, # 0 and act by multiplication by a non
zero algebraic integer my(T),) € Op on H['t" (ng,/\/lb ® Op)(my) (See [?]).
We consider the ideal generated by all these numbers 7¢(T},) € Op and we
assume for simplicity that it is a principal ideal A(7y, 1). Then we can apply
proposition 8.2.1 and get

. ® We 0 . ° ° We 0)\x%
< (7o g,)* (F (Q(Exﬂf) x W), Tyl >i=< (7(o0rg ) (F (gl x hOy*, T, xl) >=

(exmy)
w
< F( o xmpy(T)hD)(g,), fig > d*t =
/Tl«@)\Tl(A) Qexmp) 7 2p) 1
Trf(Th) ~ loc(7,(0)
ALV I
Qe x 17) (7@ f1,0)1°%(hy )(gf)

(8.190)



8.3. THE SPECIAL CASE GLy/F; 363

This formula is a supplement to the theorem above if the proposition 8.2.1 does
not apply directly. We have used this argument already before in section 5.6.

Corollary 8.3.2. If jod,, =0 then

A(Tr ® /1’ 0) IIOC

(0) _
Q(g « 7Tf) (hﬂ'f )(Qf) € OF[/,L]

and if this is not the case then we get the weaker result

A(ﬂ- ® /17 0) Iloc

A(nyﬂ) Q(g < 7Tf)

(hg'rof))(gf) € Op[a)

oc 0 oc 0
We look at the numbers I' (h;f))( ) I, £y Il°¢(h i))(gp). They are alge-
braic integers, of course our goal must be to arrange the data such that the
number IIOC(hSPF )(g ) # 0 and to keep the ( the number of) prime divisors
”small” . Given our pln point g, we compute

[T(Oro) : K] 1,y P ([t)90 )it p (] dramty =

. (8.191)
(1On) s KV i [ 15 ) i Elerme

X
nez OFO P

We have the freedom to choose gy, of course we always want condition b).
wp°

0 1
n+mg n+mo
we know hg?(( P 0 ¢ (1)>) = (p (e)h&‘?((mpo ?)) and hence the right

hand side in (8.191) becomes

We start with the choice g, = [to] = ( , since h,(r(i) is the new vector

n+mo
> ()" ,:33((%0 2)) /O  G@pe)de (8.192)

nez Fo,p

This is of course only useful if , /i1, is unramified, i.e. (/i1 p(e) = 1. We assume
that this is the case, then our pin point g, does not put any constraint on KpT .
Hence we may assume that K 0Ty (Fy,) = Of, . and the integral is simply
equal to 1.

Again we have to discuss different cases. We have seen that hgr[l)( (é (1)))

is supported on an annulus if 7, is a principal series representation and xip is
ramified, or if 7, is a discrete series representation. Hence we can choose mg
so that in the summation the only surviving term is the term n = 0 and hence
under these conditions we can achieve
1 0
1 (h9)(g,) = 1.
0
O 1
putations above show that we can find a mg such that

If the function h&ﬂ ( )) is not supported on an annulus, then our com-
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oc w’rno 0
e (% V)=
We come to the case where (pji1,p is ramified, we have to choose a different

pin point. We take
wp® 0\ (1 @,
Jp =
0 1/ \0 1

where vy > 0. This imposes some restriction on the choice of our level KT, if
we want condition b) ( for K, = K, 1(p™°)) we must have:

tl O T ti: Vo
(0 t2>er = t2_1 mod p

We compute the value
n+mgo —v0 —vo+n+mo n+mo
), @p e 0\ (1 =, _ 0 (1 ey w, e 0
h””(< 0 1) <0 1 )= hay ( 0 1 0 1 )
h)

( wg"'mo 0 )¢( —votntmo
» 0 1 E)wp(gwp )

and hence our expression in (8.191) becomes

100 K51 S5 ) [ sl @iseane

nez Fg,p

The integral is a Gaussian sum, the conductor §({yfi1,) > 0 and we know that
the Gaussian sum is zero unless the additive character u — 1, (c, 70" 70y)
restricted to Op, , has conductor §(¢,fi1,p). Hence the Gaussian sum is only non
zero if

—vo + 1+ f(Cpfirp) = —d(1yp).

o) (w; AW g

We have normalised hr, 0 1)) = 1 hence we have to choose vy =

f(CP,[LLp) and we find

IXe(h)(g.) = G(Cofinp, tp) (8.193)
The Gaussian sum only depends on the restriction of (i1 p to the units T(Op, p),
The values of pjiy , on the units are (N (p) —1) x N (p)"¢»#1.0) — th roots of unity,
the values of 9, are also N (p)fC /1) — th roots of unity. Hence the number
G(Cpfin,p,vp) is an algebraic integer, it lies in the field Q[Cn(p)—1, CN(p)f(gngp]
In factorisation of this integer into prime ideals only primes lying above p occur.

).

p

Hence we have control over the numbers I IOC(hgro))(g
p P /Ly

The numbers /&%&g are of arithmetic interest, for instance the factorisa-
tion into primes contains information about the structure of the cohomology
(see further down). For instance we can ask whether they are integers them-
selves, or if not what are the denominators. This amounts to the study of the

numbers A(m¢, 1) and IIOC(hgrOf))(gf) =11, IIOC(hgri))(gp).



8.3. THE SPECIAL CASE GLy/F; 365

The number A(my, ) is of global nature, it should be a denominator of
the Eisenstein class. We determined this denominator in a very special case in
Chapter V Theorem 5.1.2; in this case G/Z = Gly/ Spec(Z) and the level was
Ky = G(Z). 1t is certainly not to difficult to extend this result to the case of
congruence subgroups.

I believe that it is very interesting problem to study the numbers A(my, 1)
if Fy/Q is a non trivial extension of Q, for instance simply a real quadratic
extension.

8.3.4 Poincare duality and modular symbols.

We consider the second example where can apply the strategy which we outlined
in section 8.2.1. We start from an arbitrary quasi split group H/Q. Let F/Q a
minimal normal extension which splits H/Q. Let T/Q C B/Q a maximal torus
in a Borel sub group B/Q. Let us denote the center of H/Q by Cr/Q C T/Q,
for any A € X*(T xg Q) the restriction of A to C is denoted by A, .

We take G/Q = H x H/Q for our ambient group and we embed H/Q —
G/Q diagonally. We follow the steps in 8.2.1. We choose a level subgroup
Kf C H(Ay) and put Kf X Kf = KfG. Then we have S]I'(If X S]I'(If = S]C(:f. We

choose the base point eg € H(R)/KXZ = X and x¢ = (eq, €o). From this we get
the map

J(wo,ep) s Stp = H(Q\H(R)/ K x H(Ap)/Kf' — SE,. (8.194)

An irreducible representation of G/Q is of the form My = My, @ M,,,
where A1, Ay are dominant weights in X*(T xg F'), we view them as modulss
over OrWe choose a one dimensional representation p : H/Z — Opu. We have
to understand the module of H-homomorphisms Hompg (M, Op). We know

Proposition 8.3.3. The module Homp(My,Op). is free of rank

L ia® — @) and A D —
dA,;L — { Zf 1 'LUO( 1 ) an 1,Cy + 2,Cy HCy (8195)

0 else

here of course wy is the element in the Weyl group which sends all positive roots
mto negative roots.

Proof. This is obvious from the theory of representations of algebraic groups.
O

We assume now that d , = 1 and choose a generator 7y , € Hompg(My, Op).
We get a homomorphism (See 8.95)

J(esegsman) s HIH(SE,, My) = H (Sthy, Op).

We know that the Manin-Drinfeld principle is valid, this means that we get a
canonical splitting for the Hecke modules

HE (S, My ® F) = Im(H" 1 (O(SF,), Ma @ F)) @ H" (S, My ® F)
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Hence we can restrict our homomorphism
Hier ist etwas mit int and int zu klaren

Hanes e a, )i+ H (S, Mo @ F) — HU (S{Ly, Fp).

We want to discuss the integral cohomology. We start from the exact sequence
and get a diagram

HOn=YQ(SE), My = HIn(SE, My = HM(SE, My =0
i { {
HO 1 0(SE ), My, 2 H(SE M) e — H(SE, My) e — 0

(8.196)
and the Manin-Drinfeld principle gives us a splitting up to isogeny
HE(SE, M) ine D HHO(SE,), My it ® H(SE,, My) it (8.197)

the reader should pay attention to :che difference between~ the subscripts jnt and jug
we have an inclusion H!dH (ng,MA)int - H,dH (ng,MA) int the quotient is a
finite module, which may be difficult to understand. There is a non zero number
Ay € O such that AyH{" (S, My) ine C H™ (8§, My)int. Then it is clear

that j(zso, ey, Q,#)!d“’ induces Hecke invariant homomorphisms

J(@oorep, )l - H™ (SR, My)ine = H'™ (S, Op)
(8.198)
(@oos e, rap)™ s H(SE,, M) e = 2 H (S, On)

Assume that the argument, which I have in my mind, is correct, then we
may even apply proposition 8.2.1 and then we can take Ay = 1.

We can produce classes in H!dH((ng,J\;lA). For any 0 < r < dyg we have
the Kiinneth homomorphism

HY (SfL, M) % HE 7 (St M) - B (SF,, M)
and taking the composition with j(z, ey, Qyu)in we get

- _T - 1
() + HY (Siis M) x HI (S, Mag) = 3=H{™ (Sii, O) - (8:199)

It is clear from the definitions that this homomorphism is the cup product.
If necessary we enlarge our field such that we get decompositions ( up to
isogeny) into absolutely irreducible Hecke modules

Hr(SII—(I;I’MX1) ) @T(Lf HI”‘(SI}(I;“M)Q)[WLJ‘]
H{ 7 (Sl M) D @, B (]l M) o

!UlH (Sf(l;“ Op) > @ﬁ:type(ﬁ):# Ofi.
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Hence we have to compute the pairing

} . - 1
H((S%,,MM)[MJ] x H# (sf(f;,?MAQ)[wQ,f] — KO” (8.200)

This pairing is zero unless m , w2 ¢ are essentially dual, i.e. dual up to a twist.
discussion in ?7?)

But we still have to go one step further, we to take into account the action
of mo(G(R)) on the different cohomology groups, our pairing becomes

1

i (8.201
A, O (8.201)

H' (Siy, May)lex x ) x H 7 (S, Mo )leo x mag) —

and the consistency rule €1e5 = [io, should be satisfied.

Here we described a very general situation, it seems to be a very difficult
problem to compute this pairing, at the end of section 8.2.2 we formulated
the expectation that the value of this pairing should be expressible in terms of
L-functions. attached to 7y ¢, I have no idea how to do this in general.

A special example

We stop our general reasoning and consider a very special case, we choose a finite
extension Fy/Q and choose H/Q = Rp,/g(Gl2/F) and G/Q = Rp/p((Gly x
Glz)/Fp). In this situation we can work with the Whittaker model. In this case
dy = 2r1 + 3ry, we pick two isomorphism types 7y ¢, 72 ¢ which occur in the
cuspidal cohomology H*® (ng JMy,), H® (SIGQ ,May,).

We want to compute the value of the pairing

. . 1 }
Hrre (Sflng’M/\l)(Ez X oy, p) X HTH (Szlg;fv/\/lh)(éz X Ta,f) = mou

(8.202)

here €1, €3 and n are characters on (Z/2Z)™ = mo(H (R)). Of course this pairing
is zero unless we have 7T2v)f =5 and €6,m = 1.

We start from the Whittaker model Dy & W(rf,v;) and we choose gen-
erators w!™) € Homy_ (AT +vr (8/8), DS, oo) ® My) and hgf) =11, hgt) €

Hp W(7; p,%p), where we even choose h,(f) = hgr% our previously chosen gener-

ators. Then the cup product of the two integral(!) cohomology classes

1

S 1
QW(e x mp)

W), D
Fted N it ey

FE @ < 1)) (8.203)

is given by the integral (see section 6.3.11)

1 @) (1) 1 (1) (1) 2 )
Q(l)(€><7T)QE><7Tf)/H F @ < by AR @ s hi?)),
= f SK;{

by construction the expression under the integral is a differential form in top
degree.
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We choose a specific invariant volume form dy = dy., X dy ;on H(A).
We normalize voldgf (K J{{ ) = 1, and we write dys = dToo X dkso, We require

volgg.. (Ks) = 1 and dz, will be the volume form given by the Riemannian
metric. To write down the integral explicitly we choose an orthonormal basis
of p ® R. This basis will consist of basises of the p,. For the p, we choose the
following basis

a) If v is real our basis will be X, ; = (1 0 > Xy = (0 1)

' 0o —-1)7» 1 0
b) For v complex we have the basis X, o, Xy 1, Xv,—1
Hence we get a basis

{. .. ’Xv,+7 )(71,7,7 R }S(r)gal U { .. »Xv,07 X’U,l) Xv,,l, e }Sggmp (8204)
To evaluate the integral we have to look at the value
witD AP (AZri+inx,) (8.205)

where the X, run through the above basis. The result is an element in W(D, ) ®
M. To compute this value we have to divide the above basis into a sub-
set A ={...,X,,...} consisting of r; + 5 elements and a complement B =
{-..,X},...} consisting of 71 + 27y elements of our basis, we have to multiply
wg’l
subsets.

But looking at the definition of our wg’l), wg ) we see that only one division
into two disjoint sets can give a non zero contribution. We describe this division.
Recall that € = {...,€y,... }yegrea is an array of signs, and €' is the opposite
array. Then the first r; elements in A will be the X, ., with v € S;gal and
this will be supplemented by the X7, with v € S5™P, this is the set Aj.
The set B; is the complement, but we also give the explicit description. The
first r1 elements will be the Xy,er and the second part consists of the elements
{.., Xv1,Xp,—1,... }. Hence we see that

)(AXy)wE,T ’2)(AX ). Then we have to sum over all these divisions into two

wg',l) (/\WS'Q) (A2r1+3r2X’/)) —
(8.206)
WA XA D) xea))o (A XA ) xen)

To evaluate the above integral we apply a method which goes back to Asai(?).
We write the constant function 1 on H(Q)\H(A) as the residue of an Eisenstein
series. More precisely for any complex number s we define a "height” function
H(y) = Hy(bk) = p(b)*** where y € H(A),b € By(A) and k € Ko x K. This
function is invariant under By (Q) and we define

Eis(s,y) = Ress—o Z Hg(vy)
Y€BH(Q\H(Q)

It is well known that this series converges for R(s) >> 0, hence it defines an
analytic function in R(s) >> 0 and it has a meromorphic continuation into the
entire s- plane. It is known that this function in s has a simple pole at s = 0
and
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CF(S + 1)

Cr(s+2)

especially we see that this residue considered as function in y is a constant cp.
Therefore we compute the integral

Ress—o Eis(s,y) = Ress—o

/ (content) Eis(s,y)dy (8.207)
0

and compute its residue at s = 0.

Let us denote the elements (---AX, A...)x,ca, resp. (---AXu A .. )x, e
by X4, resp. Xp,, then our integral becomes

/ FwD 5 ) () (yoos y ) F (D x ) (X, ) (9oes y ) Eis(s, y)dy =
H(Q)\H(A)

Jeramarca F@E < B (X4, (oor y ) F @E < D) (X8,) (Woos ¥ (e o sy Hs (19))dy
om@nmm F@E 5 B (Xa)) ooy ) F @ 5 BP) (X)) (9o 3 ) Hi(y)dy

We recall the decomposition H(A) = By (A)KH K H.0 then our measure dy =
db x (dkoo % dky). Then Hy(bk;)) = Hs(b), the express1on under the integral is

invariant under the action of K from the right and hence our integral becomes

/B N HOf(wwxh?))m><yoo,yf>f<w§’”xh&”)(»@l)(ywg,))d&fws(@))db
H H

This integral converges for R(s) >> 0 and the value of the residue at s = 0
is equal to the value of our integral. Now (wg’l)(XAl) X hgcl), (f: 2)( L) X h(z)

are Whittaker functions (with values in MK RC, M) ®C respectlvely) and we
have the Fourier-expansions

FlliD (a,) x b (ut >—GGZFXw£*’1><XA1>xh;”)((g D696 )
and

(+,2) 2) (T2 @y fa 0y (1 w) ft O
Flowg?(Xp,) x B (ut) = Y wl?(Xp,) x A )(<o 1)(0 1)(0 1)

a€F>x

Since the functions w(T’ )(XAl) X h;l),wg’z)()('gl) X hgf) are Whittaker functions
i.e. they satisfy -

1 u
0 <1 %) 1) = vl () < 1)

1 u
Wl (xp,) x hf)((o 1) y) = v () x B (y)
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Our volume form is dy = cp \ﬂ*ldg X d* tdk where all these measures are product
over local measures, we require volgy, (K,) = 1 and vol,U(Q)\U(A) = 1 the
constant cp is essentially he inverse of the discriminant.

Then

o) (5 ) (5 5) (5 1) ety 9) (5 %) (5 9w

(+,2) Wy (e 0) (T 0}, (.2 @ (b 0) ([t 0O , B
_ Jwe T (ABy) X hy )((O 1) <0 . Jwe (X, ) x By )( o 1) o 1 k) ifa+b=0

0 else
(8.208)

and therefore our integral becomes

we A X K we’ X k t k t
/T<@)\T<A)/Kfv° 2 DX b ) (g ) Epwe ™ (X)X hT) (g7 )kl dky

a€FX
(8.209)
and since T(Q) = F* for the value of the integral

(t.1) @y (t 0 (1,2) @y (~t 0 s 75 %
L) oA <0 (§ 1) £l e ) () pleoasyane
(8.210)

In the variable k; our functions are right invariant under K J’? hence the
integral over k; is actually a finite sum. Then for a fixed value of k; our
functions are products of local Whittaker functions, i.e.

00 < (G )k =5 DI ) m)

~~

—t 0 tow O t, O
wg(,*ﬂ)(XBl) X hgg)) ( o 1))kf) = wET*Z)(XBl(( 8" 1>)Hp h'(32)(((5' 1) kp)
and hence our integral becomes

H W ftv O @ (tv O s
wlatcf) S TLL (G D) rona( ) ez,
EfEK;IYO/Kf v v

The local Whittaker functions are explicitly given to us. We look at the different
places. We begin with a finite place p and if 7, i unramified, i.e. K f is maximal.
We have to compute

0 t, 0O
B (tp )h(2> (p > %
/T(Fp)p« P ("t ilsace,

We recall the explicit formulas for the values of h,(,l) (( (tg ?) ) and h,(f) (( (%’ ?) )s

Let w(my,p) be the Satake parameter of 7, then - as usual- we define

w7 D)1= N ketm((y o)

0 @,

N|=

ay = N(p)
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we introduced the Euler factor in (4.118 )

1

L(ﬂ'l,pa s) = (1—app=)(1— 5pp75)-

After expanding we get

L(m1p,s) 72 Zan YBU)N Zh(l) (wp ) (1)>)N(p)n(1s)

n=0 v=0 n=0
(8.211)

The for the second factor we have mp, = 7r¥7 " hence the Satake parameter is
w(mep) = w(mp) L. If we now define

B = Nt (7 9o = Nt 2 )

0 @,

then we have a3 = o, By = N(p) and hence aay, Bpf;, = N(p)®.
We get

— f( p
L(7T2,pv 3) = Z(Z O/;L ” V Z h ( ?))N(p)n(l—s)

n=0 v=0
(8.212)

We express the inner sums in terms of the semi-simple Satake parameters
(See (?? and remark after it), we have

T anl)E =) )
p

the same holds for 73 . and therefore

ol O ?)>=<Vzi)w<l><wp>3-”>2

Now we have the following identity in power series ring Z[u, 1/u[[¢]] :

ap By = (

1—t2 (e.¢] n

=201 -2l —u2t) ;(Z ut T

(According to Jacquet ( [?], ?7) the proof is a refreshing exercise.) We put
t=N(p)~'° and u = wM(m,) then this identity gives us

1-N(p)~—=>* _
(1= w®(mp)N(p) =1 =*)(1 = N(p)~17)2(1 — wD(my) "1 (N (p)17%))

3 (wfa;’”) (1)) 152 (W%’“’) (1)> |V (p)(—19

(8.213)
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The factor in the numerator is the inverse of the local factor of the Dedekind
¢p() function at s + 2, the factor (1 — N(p)~!7*) in the denominator gives us
the local zeta factor (,(1+ s). The remaining expression gives us local factor of
the adjoint L-function, i.e.

1
(1= w®(m)N(p)~1=*)(1 = N(p)~'=*)(1 = w® (my) "1 (N (p)~17*))

(8.214)

Therefore we get for an unramified 7,

ML(WP,Ad,S +1)= /
(8.215)

T(Fy)

In this book we try to avoid the discussions of the subtle phenomena at
ramified 7, therefore we assume that a similar formula also holds at the finite
number of ramified places, we may take this as definition of the local Euler
factor at these places.

The integral at the archimedian places

We treat the cases of a real and a complex place separately.

A) The place v is real. We have the two generators wli (4.152) and the
factor at our place v becomes

[T <sbum(y <aton(y st

We recall the definition of the generators and then our integral becomes (up to
some small power of 2 (to be fixed later))

_ o dt F(n+2+s)
n A\ n+2 —4rntys _ A\ AN
< (X=Y@i)", (X+Y®i)" > /0 g = =< (X-Y®i)", (X+Y®i)" > )

The factor in front is

<(X-Y)"),X+Y )" >= ZZ‘H*V (Z) (Z) < XYYV XMHRY o>
v,

and by definition we have (See ??) < X" "Y" X" #Y >= 0 unless we have
v+ p=n and then

—1
< XYV XVYTTH >= <n> )

v

Hence we see that one of the binomial factor cancels and we find < (X —Y ®
™), (X +Y ®9)"™ >= (2i)™. So we finally get

[ <oy Dreeno(f D) et =it
(8.216)



8.3. THE SPECIAL CASE GLy/F; 373

Let us call this last expression &,(n, s)

B) The place v is a complex place, this case is more difficult (interesting,
amusing ). In this case we have to evaluate

= 1,1 t 0 1,2 t 0 Sdt
<w! X,U)(< )),wv (X1, X 71,(( ) >t — =
/0 (Xou)({g 4 ! 1)({g ¢

We have the explicit formula (4.178) for these these factors for Z = X, g or Z =

(X1,0,X_1,) we have
2= ®0( Y, €,98,) (8.217)

p=-n patpa=|p]
Hence we multiply and get a sum
t 0 t 0
Sond(g ey V)X Tl
o B,

where
t 0 i t 0 _
T(p, py) =< PA((O 1))(6Z1®622),pw(<0 1))(€Z;®6Z; >

But since our pairing is invariant under the action of G(R) we can ignore the

N (é ?)) and we find that the value

b
<e, ®e z,euz ®e

(¢ lul o= e — —
oo JUDGED) =i = o
0 else

and taking into account the formulas for the pairing we get for the integrand

i (I)A’“(I)A’”(G (1)>)(%: <|:1|> (Iu“ilm))ts

pn=n
We have our explicit expressions for the ®, , we have to compute the Mellin
transform

romz Jo. Ku(@mt) K-, (2mt)e2rttredl =
x2n T(n+1 s/2)T'(n+1—p+s/2)T(n+24s/2)>
e S (8.219)

LD P 14 ot s/2T(n+ 1 — ot 5/2)

To get the value of the above integral we have to sum over the u. Hence finally
we get

0 t 0 t 0
8,(n,5) = J; <ol o (g )t xan((g §))s ek -
2 = "
e TR (ST T Lt pt /2T + 1=t 5/2)(2,, () (1))

(8.220)
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Eventually we are interested in the value at s = 0, then we have the following
identity, which I checked experimentally

§ Tn+1+mTn+1-w(> <“|>< Il >) =T(2n+2) (8.221)

=, )\l =

so that ®,(n,0) = (nt1)” (2n + 1)! We put &oo (A, 5) = [[,es5.. B(n0,5)

4n®
Then we see that the value our integral in (8.207) eventually is given by
Cr(l+s)
B\, s)L(mf, Ad, s+ 1 8.222
e gy Bl 5) Ly Ads + 1) (5.222)

We have to take the residue at s = 0, we know that all the factors except
Cr(s+ 1) are holomorphic at s = 0 and hence we get for the cup product of the
two cohomology classes

1 1 1 2 2 1
Qi"l(w,-)]:l( (Wt x h; U 7022)1(7”)]:1( (W x hgc )=

(8.223)

Ress—oCr(1+s
T et B 0) LTy, Ad, 1)

We know that this number is in ALA(’)F. Let p be a prime in Op[i].which
divides this number, i.e.

1 Ress—oCr(1+ s)
o ()0 (mp)  r(2)

po(ma)]| G (N, 0)L(7ms, Ad, 1).

We have the non degenerate pairing

- 1 ~ 1
H™tre (SII}[;{,MM@OF[E]) int,) X H 1272 (S§?7MA2®OF[K]) int,t = Op[——]

and the decomposition into saturated Hecke submodules
Hr1+7“2 (SII—(I;.I,Mkl ® OF[ALA]) int,! D)
Hrtre (Sllg;’v/\;lkl ® Or[a5]) int (m1,5) © H 472 (Sflg;f’/\;lxl ® Op[a7]) it (1) "
(8.224)

where - means that we take the saturated direct sum over the w} # myr. We
introduce the quotient

Hrtre (S]Ig;ﬁ-/\;bq ® Or[a5]) it (m1,5) =

Hrtre (S;I;I;u/\;lxl ® Or[a5]) int,)/H T (Sf([;u/\;lxl ® Or[a5]) int, (1,5
(8.225)
and the above pairing induces a non degenerate pairing

[yr1+T2 Y 1 T1 T2 ~ 1 1
HMr (S[Ig;uMAl ® OF[K]) int,!(Tfl,f) x H"t? (ngH,MAQ %y OF[K]) int7!(7T27f) — OF[A—A]
(8.226)
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We choose a character € then H™1 1272 (SIIng , /\;b\2 ®OF[A%]) int,1 (€' X g f) is

a free OF[&] module of rank one, a generator is yo = [Wﬂ@)(uﬁ) X hgcl))].
e \Tf

Let xy be the corresponding generator in H™1 172 (ngf\;l)\l ® OF[ALA]) int,! (€ X
~ K
m1,¢) We can find an element Zo € H™72(SH,,, M), ® OF[ALAD int,1 (€ X 71 f)

such that < xg,yo >= 1. Let w, be an uniformizer for p we lift xo to an element
Ty e Htr2(SH, My, ® OF[ALA]) int,) and we can write ( we localize at p)

K
wx_ Totz rit+re( QH Y 1 1
Ty = pouy with z e H (SK;],M)\I ® OF[K]) int,!(ﬂ-l,f) . (8227)
wp by
Then
< To, Yo >
1 =< Fg,yo >= —2 = (8.228)
Wy

and this implies m = §(7y).
We can slightly modify this argument. Any element & € H™1 "2 (SII;IH, My ®
s

OF[ALA]) int,] can be written as above in the form

= 21Y
= 3y
wy !

and then the map # — y mod wg(w)H““2 (;‘S‘IJL(IJ,?,,/\;I,\1 ® OF[ALA]) int, 1 (T1,7) 7+

yields an inclusion

Hrtre (SE?,/\;(,\I) it (11,7) ® Op[2-]/p°(™) —

- 8.229
H”HZ(SE;I,M,\J int, (11,7) T ® Op[ 2] /p() ( )
This has consequences for congruences, it is clear how to formulate a theorem
corresponding to Theorem (3.3.2).
At this place references to Urban, Dimitroff and Namikawa will be added.

8.3.5 Fixing the period

We have mentioned that the prime factorisation of the numbers /&%ﬁﬁ) are of

great arithmetical interest. Conjecturally primes dividing these numbers should
also divide the denominators of certain Eisenstein classes and hence they should
also provide some congruences between eigenvalues of Hecke operators acting
on the cohomology of different groups (see ([42])).

I think that it is of great importance to collect experimental data, which
verify (or falsify) these conjectures. We will explain in (Mix-Mot) and in [44]
that there is a strategy to prove these conjectures if we accept some plausible
and fundamental conjectures about mixed motives. This means that the ex-
perimental verification of these conjectures would give some support to these
motivic conjectures.

We have rather effective algorithms to compute the values A(r ® fi,0) with
very high precision. But then we also need a numerical value for the period
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Qe x m¢). Of course this period is well defined (up to a unit) but how can
we actually compute it? We also have to take into account that we also must
compute all the conjugates Q(7e X7 7¢).

In section 5.1.2 we gave a recipe to compute these periods in the special
case that our group is Gly/Z and we look at unramified cohomology, i.e. Ky =
Gly(Z). In this case we get the periods from the values A(r +,) themselves (see
(5.38)).

This method to fix the periods also works if we allow ramification. In this
case we use the lemma of Shapiro (section 2.1.1 (2.4) to ”transfer” the ramifi-
cation into the coefficient system. More precisely we consider free Z-modules
V with an action of I'/T'(N), i.e. a module of congruence origin (see section
1.2.2). Now we return to the situation in section 5.1.2 and replace in (5.6) the
coefficient system by ./\/l& @ V.

We resume the reasoning from section 5.1.2, Again we start from the or-
biconvex covering I'H = U; U U, in section 2.1.4. As before we get that the
map

S: M\ @V — Hy(T\H,d(D\H), M5 @ V) ;m — [Co 00 @ m] (8.230)

is surjective, here we should assume that the I' -module V is irreducible. Then
we can find elements mj,mo,...,mg € M ® V which generate the kernel of
the boundary map 9 : Hy(D\H, 9(T\H), M5 @ V) — Hy(d(I'\H), M5 ® V).
We lift these elements to elements mq,...,mg and evaluate these lifts on the
appropriate cohomology class, i.e. we consider the numbers ( ideals )

w
< Fl——— x Y 1y > 8.231
(Q(Exﬂ_‘f) Trf) mg ( )
These numbers should be expressed in terms of L-values and our choice of the
period is the right one if and only if these numbers form a set of coprime integers.

The necessary computations may be a little bit difficult, therefore we discuss
a very special case. We choose a prime p, and consider the congruence subgroup
To(p) C I' = Glz(Z) and the cohomology.

—_~—

H'(To(p)\H, M},) = H'(D\H, M3 ® Ind(,)1). (8.232)

Here Indll:o(p))l = Indgl(ngp)l is the induced representation from the trivial
representation 1. This is of course simply the Z module of Z— valued functions on
B(F,)\G(F,). The representation Indgl(}g’s)l ® Q of Gly(F,) is not irreducible,
it contains the trivial representation 1 and the irreducible complement is the
Steinberg representation St,. Then

H (To(p)\H, M3) = H*(T\H, M3) & H'(D\H, M} @ St,,) (8.233)

We have the action of the Hecke algebra HP) on these cohomology groups
and decompose into eigenspaces

H'(D\H, M, @ St, @ F) = @ H'(T\H, M}, ® St, ® F)(ry) (8.234)

f
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and we have defined the periods (e x 7¢) in (8.170). We resume our consider-
ations from section 5.1, we consider the map

8y : Hy(D\H), d(T\H)), M5 © St,) — Ho(d(D\H)), M5 ®St,)  (8.235)

We know (see section 3.3.1 that Ho(9(I'\H)), M3 ® St,) = M} @ St,/(Id —
T ) M5 @ St,,. We extend our base ring to R = Z[%, (p] then we have the direct
sum decomposition

St, ® R = &-_gRf, where T} fo = (2 fa. (8.236)

and the arguments in section 3.3.1 imply Ho(9(I'\H), M5 ® Re,) = 0 if a # 0.
For a = 0 we have of course Hy(9(I'\H), M3 ® Reg) = Ho(9(T\H), M%) ® R
this module was computed earlier.

Now we can say that the images of
e, ® fo; v=0....n,a=1,....,p—1

and
e, fo;v=1...n—1

generate a submodule S({...,e, ® e,,...}) of finite index in the kernel of 4y,
and the primes dividing the order of the quotient S(...,{e, ® eq, ...}/ kerdy)
are the primes which divide some of the d¢ (e, ).

We give the elements f, explicitly. We know that the elements <(1) (1)> and
0 1 1 u . .

1 0) \o 1 for u = 0,...,p — 1 are representatives for the quotient
B(F,)\G(F,). Then we can choose

fo((é ?)) = -, fo((_o1 é) : (é 11‘)) =1forallucT, (8.237)

and fora=1,...,p—1

n((é ?>>=0and fa<(_°1 é)(é 1{))=<§“ (8.238)

Next we look at the action of the torus T'(F,) on St,. The center acts trivially,
hence we can restrict this action to { (é (1)> } = F\. We make a list of characters
x:Fy —C*

{XO?XI?"'aXp72aXp71} (8239>

where the x;, with b=1,...,p — 2 are just the non trivial characters and xg =
Xp—1 is the trivial character.. We extend our base ring further and put R; :=
1

Z[m,g},, Cp—1] and we define the functions g, for b=10,1,...,p—2,p—1:

Forb:l,...,p—Qweputgb(<(1) ?))zO;gb(<_01 é)(é Y))sz(u)
(8.240)
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where of course x;(0) = 0. Finally we put

go(((l) (1)))2—17;90(<01 é)(é If)):lforalluer

oy Sp=van(® ) (G 2p=) T

we notice that fo = go. Let Stl(jo) C Stp ® Ry be the submodule of functions with

—p+1 for u=0
(8.241)

support on the big cell {(_01 (1) . (1) 1{) }u=01,...p—1- Then an elementary
computation shows that the g, with b = 1,...,p — 1 as well as the f, with
a=1,...,p—1 form a basis of Stéo). More precisely we find

124 p-1
@ = EZG(b, a)faforb=1,....p—2and g,_1=—Y fa (8.242)
a=1 a=1

where G(b,a) € Z[(,,(p—1] are Gaussian sums. We may as well express the f,
in terms of the g, we get

1 =
fo=— Z C'(a,b)gy and fo = go (8.243)
b=1

where again the C’(a, b) are algebraic integers.

We consider the numbers

w,
— 7t  xhN e @ f,>v=0,....n0a=0,....p—1 244
<‘F(Q(§>< 7Tf) >< ‘Il'f)?e]/®f > 71/ 07 3n? a 07 7p (8 )

Then we know that for a # 0 these numbers are in OF[]%, Cp)- We also know
that for a = 0 the numbers n(7y,v) < .7:(9(:;7”) X hSTO,)),e,b, ® fo >€ (’)F[%, Cpl-

A) Hence we can fix the period by requiring that the ideal generated by these
numbers is the ring OF[%,CI,].

Now we consider numbers

w,
"t < hO)y ¢ v=0,....mb=1,....p—1 24

These numbers can be expressed in terms of L—values. A close inspection
shows us that

We & h(?),ei@)gb >=

= J:(Q(é xmp) "

mA(Wf X Xbs V). (8.246)

Hence we get
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B) Another option to fix the periods is to require that the ideal generated by
numbers in (8.245) is the ring OF[ﬁpr,Cpq].

We could also fix periods Q4 (e x ), 2B (e x m), such that if we but them
into (8.244) and (8.245) then the ideal we get is simply Op. These two periods
"differ” from the actual period by an ideal which only contains prime factors
above p,p — 1 and n(7y,v). The periods QB (e x 7¢) can be computed from the
L- values.

It is clear that we have some control over the primes that have to be inverted.
We call them small with respect to w¢ primes.

I made the conjecture that the large primes ¢ dividing these L-values are also
dividing denominators of Eisenstein classes for the cohomology of the symplectic
group Sp,/Z, what this means has been explained in 5.6. A special case of this
conjecture has been formulated in [42]. This conjecture implies that we also get
congruences mod £ between eigenvalues of Hecke operators on the cohomology
of the symplectic group and the cohomology of Gly/Z.

These conjectures on congruences have been verified in many cases for a
finite (far from empty ) set of Hecke operators. The first such verification was
done in [24] in the meanwhile many more cases of these congruences have been
checked.

But of course the the denominator conjecture is stronger than the conjec-
ture on congruences. The denominator conjecture can be verified ( in principle
) in any given case. This has been explained in section 3.2.1 and carried out
in section 3.3 in a toy case. But in this toy case we profit from the fact that
the dimension is low and that we have such an extremely simple covering by
orbiconvex sets. The computation of the cohomology is very easy but the com-
putation of the Hecke operator was not easy at all (at least for the two of us:
H. Gangl and me).

But this changes dramatically once we leave the group Gly and if we pass for
instance to the symplectic group Sp,/Z, Sps/Z. For many cases the congruence
have been checked by Bergstrom, Faber, v.d. Geer, Dummighan and many
others, but as far as I know the denominator has not been verified for more
complicated groups. On the other hand once the denominator has been verified
the congruences follow for all Hecke eigemvalues not only for a finite number of
them.

Here the computational complexity increases dramatically if the parameter
- the weight, the prime p or the rank of the group become large, but I hope that
somebody can write algorithms which verify the denominator conjecture for a
few small values of these parameters. So we may for instance take our prime p
again and consider the congruence subgroup I'g(p) C Sp,(Z) which is the inverse
image of P(F,) C Sp,(F,) where P is the standard Klingen-parabolic subgroup.
Then it may be possible to check the denominator for H?3(To(p)\Ha, M) for
some small primes and small highest weights A. The case of trivial coefficients,
i.e. A =0 is discussed in [44]).

If we only want to verify the congruences then there is the option that we
choose a Q-form G*/Q such that G*(R) is compact. Then our locally symmetric
space is a finite set. In our special situation we can use some well known
arguments from Galois-cohomology to construct a G*/Q such that G*/Q splits
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at all finite places except at the chosen place p. Then we can extend the group
G*/Q to a smooth group scheme G*/Z which is semi simple over Spec(Z[%])
and G*(Z) is the so called paramodular group I'*(p). In terms of the Bruhat-
Tits theory this says that G*(Z,) is a maximal parahoric subgroup which is not
hyperspecial. The we put K} (p) := Q*(%) and then we know

(S%*(p M) = HO(SI%*(p M) = D M= (8.247)
z,€G"(Q\G* (Ay)/ K} (p)

For a few small values of p and small modules M one should be able to get hold

of the set Sig{ - = G (QN\G"(Af)/KF(p).

Hence we get an explicit description of the cohomology, We can apply the
method from section 3.2.1 and we get explicit formulas for Hecke operators

Tcoh,)\ . (Sg

g*
T s (p),/\/l) — HO(S7.

M)

i)’

for some small values of ¢ # p.

From this we get a list £*(p) of eigenspaces 7} for the central sub algebra
HUPY which occur non trivially in HO(SQ

provides a short list of eigenvalues

(p)? MQ®F), and each such eigenspace

* * (racoh, A
L(rg) ={..,mp(Tp""), -} finite list of (x.0) (8.248)

The Hecke algebra H{P}) also acts on H'(ng(p),./\;l,\), here K(p) is the

product of G(Z;) over all ¢ # p and K, is the unique maximal parahoric sub
group which is not hyperspecial, in other words G(Q)NK,, =T, is the paramod-
ular subgroup. Hence we get anther list of eigenspaces m¢, which occur in
H*(S%, (5
mula or the topological trace formula tell us that the two lists of of eigenvalues
have many members in common, i.e. the two lists £*(p) and £(p) have many
members in common( I do not know whether this comparison has been carried
out in the literature and what the precise statement is.)

MA@ F ), Now the principles of functoriality or Arthurs trace for-

From the computational point of view it seems to be a lot easier to pro-
duce the lists £*(p) and L(7}). Assume we find an eigenclass oy in some

H 1(813(1; () M,,) and a prime ideal [ dividing Q((eiif")) Then we expect to find

a congruence between oy and a 7y, but as we know the lists £(p).L(ny) are
difficult to produce. Therefore we may instead look up the lists £*(p).L(7})
and try to find a a list £(7}) which satisfies the congruence.

The conjecture concerning the congruences and the denominators of Fisen-
stein classes can be formulated in a much more general context (see also the next
chapter or [?]). We may for instance start from a group G/Q = Rp, ,oGl2/Fo,
where Fj is an arbitrary number field.

Already in the case that Fy/Q is a real quadratic field some questions arise
which seem to be worth to be investigated. In this case the space SI% is a Hilbert
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modular surface, let To/Fy C Gla/Fy be the standard split maximal torus and
T = Rp;g(Th) C G/Q. Let us assume we are in the same simple situation as
above, we have chosen a prime ideal p We may also choose p = Op,. Now we
choose the sub group Ko f(p) = [[,., Gl2(Or,, ) x Ko.f(p). We now want to
mimic the above approach. Let K? C T(Ay) be the maximal compact open
subgroup we consider the map

J(@sos€5) : T@QNT(R) x T(Ag) /KT — GQ\X x G(Ag)/Ko(p). (8.249)

We choose a highest weight A

8.3.6 The L-functions

Again I have to say a few words concerning L-functions.

To automorphic L-functions at the unramified places we have to introduce
the dual group GY(C) ( this is Glo(C) in this case ) and a finite dimensional
representation r of this group. The definition of the dual group is designed
in such a way that the Satake parameter w, of an unramified representation
at p can be interpreted as a semi simple conjugacy class in GY(C) (see [La]).
Therefore we can form the expression

L(Wpa Ty S) = det(Id - T(wp)pis)il

and then the global L function L(7,r, s) is defined as the product over all these
unramified L -factors times a product over suitable L-factors at the finite primes.
If we do this for our automorphic forms on Gls and if r = r; is the tautological
representation of Glz(C) then we get the local L-factors

1
(1= Ap2(p)p~*) (L = Ap1(p)p~*)

and we see that it differs by a shift by 1/2 from our previous definition. Our
earlier L -function was the motivic L-function, its definition does not require
the additional datum r. Our automorphic form 7 defines a motive M(r). This
motive has the disadvantage that it does not occur in the cohomology of a
variety, it occurs only after we apply a Tate twist to it. The central character
w(m) has type x +— ™ and defines a Tate motive. The automorphic form
7 ®@w(m)~! =7V occurs in the cohomology

L(mp,71,8) =

HY(SE, . M[=n]) > H'(SE , M[-n])(m @ w(r) ") = H'(SE,, M[-n])(z")

where M,,[—n] is obtained by twisting the original module by the —n-th power
of the determinant. (See [35], III). This motive occurs in the cohomology of
a quasiprojective scheme ( See also [Scholl] ) Now we adopt the point of view
that 7y is a pair (ITy,:) (See 1.2.6) and then M(7) defines a system of [-adic
representations p(7); which are also labelled by the ¢ : Q(7f) — Q. Then it is
Delignes theorem that for unramified primes

5) = oM, 5) = det(1d — p(F), M) p ™)

for a suitable choice of £ # p.

L(mp, 71,8 —
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Weights and Hodge numbers

We may of course look at the motives M(7) which are attached to an eigenspace
in H! (S[G{ , M[—k])(r) in other words we twisted the natural module M,, by
the —k- th power of the determinant. Again we get an [-adic representation p;
and the Weil conjectures imply that the eigenvalues of the inverse Frobenius

p[(Fp_l) all have the same absolute value pzk?“. The number 2k —n + 1 is
usually called the weight w(p() of the Galois representation or also the weight
w(M(7)) of the motive M().

The central character w(w) of 7 has a type and if we make the natural identi-
fication of G, with the centre then the type of w(m) is an integer type(w(w)) € Z
and the formula for the weight is

w(M(7)) = —type(w(m)) + 1.

This weight plays a role if we want to get a first understanding of the analytic
properties of the motivic L-functions. Its abcizza of convergence is the line
R(s) = w(M(m)) + 1.

The special case k = n is special, because in this case our motive occurs in the
cohomology of a variety. The eigenvalues of the Frobenius are algebraic integers
and the non zero Hodge numbers are h”t19 and h%"+1, If k is arbitrary then the
centre acts on M, [—k| by the character t(k) = n — 2k and the non zero Hodge
numbers will be A+ ="3* We notice that for an isotypic component
H} (SKf7M[—k])( m) the number #(k) is the type of the central character w(m).

8.3.7 The special values of L-functions

We now observe that the local L factors L(M(7¥ @ (x()~1), s) which we intro-
duced in 2.2.6 are actually the local L-factors of the motivic L-function, i.e.

LM(rY @ (xV) ™), s) = LM(x" @ (x'") 1), 5)

Theorem 8.3.2. With these notations we can give a formula for the composi-
tion

L(M(mV

(X(l)) ) 1) 'Iloc(

_ & _
o, 0 Qe(mp) ™ A (we) = nE T

Applications
We evaluate this formula at elements 1y € W(ms,T)o(r,,y) and an element
g, € G(Ay). We get Qc(ms) ™" F (we) (W) = 5 € H! (S§,, M)o(r,.x) and
LM(mY @ (x)"1),1)
Qe(my)
We have seen that J._, (wf)(gf)d(gf) (Lemma 2.2 ) is an integer and it is obvious

ch,,(lllf)(gf) = 'IZOC(WfaXfl)(wf)(Qf))

that d(g f) = Hp d(gp). If we choose for ¢y an element which is also a product
wf(gf) = Hp 1p(gp) then we get

()
s t)la) [Tata) = ZHAZ 20 Hﬂ“ X3 )W) (90)d(g,)
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The factors in the products over all primes are equal to one at almost all places.
Then we have to optimize the choices of 1), and g,. First of all we can choose
these data such that all local factors are different from zero. Then we conclude
that we have an invariance under Galois for the L-values

LM((m¥ @ (x)~1)7, 1)
Qg(w?)

LM(r @ (x™)™), 1)
Qe (my)

( )7 =xM(t,)

We may observe that the characters x(*) can be written as product of a Dirichlet
character and a power of the Tate character, i.e. x(!) = ¢-a~" whererv =0,...n.
Now we can write

M(r¥ @ (xV)™) =M(x" ©@¢~") @ Z(v)

and
LM(mY @ (x")™),1) = L(M(x¥ @ ™), 1+ v)

and the arguments 1+v are exactly the critical arguments for the motive M(7" ®
¢~1) in the sense of Deligne.

Of course we are now able to prove also some integrality results, it is clear
that the left hand side is integral, more precisely it is an element in O(7¢, x ).
Now we have to work with local representations to find out under which condi-
tions we can force the product of local factors to be a unit or at least to bound
the primes dividing it. Hence we have a tool to show that

LM(r¥ @ (xV)™1), 1)
Qs(wf)

at least if we invert a few more primes.

€ O(7s,x7)
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Chapter 9

Eisenstein cohomology

Our starting point is a smooth group scheme G/ Spec(Z) whose generic fiber
G = G X7 Q is reductive and quasisplit. We choose a Borel subgroup B/Q and
a torus T/Q C B/Q. Let F//Q be a smallest extension such that T' xg F' split,
let ¥ be a finite set of primes which contains the primes ramified in F/Q. We
assume the group scheme is reductive over the open subset & = Spec(Z)\X and
at the places in X it is given by a maximal parahoric group scheme structure.
If G is split, then we assume that G is split. Our open compact level subgroup
Ky =11,K, CG(Z) =11,9(Zy) C G(Ay) and K, = G(Zy) for pe U.

Our Cartan involution © fixes the maximal torus 7" x R, it defines the max-
imal compact subgroup K., ¢ GM(R).

Let A\ € X*(T) be a highest weight, let M, be a highest weight module
attached to this weight. It is a Z-module, the module M) ® Q is a highest
weight module for the group G/Q.

We want to study the map r : H'(SIG(f,J\;lA) — H'(@ng,ﬂ;l,\). It is a
central problem in this book to get insight into the nature of this map. This
map is the trigger for many arithmetic applications. This is manifested for the
group Sla/Q in the earlier chapters 4 and 5.

The assumption that G/Q is quasisplit is not essential, a reader who is
somewhat familiar with the work of Borel and Tits [9] will not have difficulties
to translate the following considerations to the case that G/Q is any reductive

group.

9.1 The Borel-Serre compactification
We consider our space
Sk, = G(Q\G(A)/Kuc Ky
and its Borel-Serre compactification
i:S% ; S¢ .
Our highest weight module M provides a sheaf M on these spaces.

385
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We have an isomorphism
o/ G ~ ~ o/ oG ~
H (SKf,M,\)—>H (SKf,M,\)

for any coefficient system M, coming from a rational representation M of G (Q).
The boundary dSk is a manifold with corners. It is stratified by submanifolds

08k = JorSE,,
P

where P runs over the G(Q) conjugacy classes of proper parabolic subgroups
defined over Q. We identify the set of conjugacy classes of parabolic subgroups
with the set of representatives given by the parabolic subgroups that contain
our standard Borel subgroup B/Q. Then we have

H*(0pSE,, M») = H*(P(Q\G(A) /KooKy, M)
We have a finite coset decomposition

G(Ay) = JP(Af)EsKy,
&f

for any £y put K}D(ff) =PA)rN §fo§]71. Then we have
PQ\X x G(As)/Ky = PQ\X x P(As)/K7f (&5)¢s,
&r
If Up C P is the unipotent radical, then
M =P/Up

is a reductive group. For any open compact subgroup Ky C G(Ay)(resp. for
Ko C Gs) we define K}V[(ff) C M(Ay)(resp. KM C M) to be the image of
KFP (&) in M(Ay) (resp. My). We put

Sitiey) = MQ\M(A)/ KL K} (&5)
and get a fibration
wp : P(Q\X x P(Ag)/Kf (&) — M(Q)\M(A)/M(Q\K x K} (&)

where the fibers are of the form I'y\Up(R) and where 'y C U(Z) is of finite
index and defined by some congruence condition dictated by K f (&f). The Lie-
algebra u of Up is a free Z-module and it is clear that we have an integral version
of the van -Est theorem which says:

If R = Z[%] where a suitable set of primes has been inverted then

H'(FU\UP(R),MR) L) H.(H7MR).

More precisely we know that the local coefficient system R.WP*(M) is obtained
from the rational representation of M on H®(u, M).
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Hence we get

H.(GPS,MR UH. SKM 5 )’ ( M)R)’

and
H*(u,Mgp)= € H'™ (u, Mg)(w-N),

weW P

where W7 is the set of Kostant representatives of WM\W and where w - A =
(A+ p)* — p and p is the half sum of positive roots.

The primes which we have to be inverted should be those which are smaller
than the coefficients of the dominant weights in the highest weight of M. But
at this point we may have to enlarge the set of small primes.

We conclude

The cohomology of the boundary strata apng with coefficients in M can
be computed in terms of the cohomology of the reductive quotients of parabolic
subgroups, where we have to take coefficients in the cohomology of the Lie algebra
of the unipotent radical with coefficients in M

9.1.1 The two spectral sequences

The covering of the boundary by the strata dpS provides a spectral sequence,
which converges to the cohomology of the boundary. We can introduce the sim-
plex A of types of parabolic subgroups, the vertices correspond to the maximal
ones and the full simplex corresponds to the minimal parabolic. To any type of a
parabolic P let d(P) its index , we make the convention that d(P)—1 is equal to
the dimension of the corresponding face in the simplex. Let M = Mp = P/Up
be the reductive quotient (the Levi quotient). If Z3;/Q is the connected com-
ponent of the identity of the center of M/Q then d(P) is also the dimension of
the maximal split subtorus of Z;/Q minus the dimension of the maximal split
subtorus of Zg/Q. The covering yields a spectral sequence whose E}*® term
together with the differentials of our spectral sequence is given by

v
0= EY'= @ HIU0pSE,, M) 4 @ HY(0pSFE,, M) = (9.1)
P,d(P)=1 d(P)=p+1

We apply Kostants theorem to get a more explicit description of the bound-
ary operators d}’?. We get

BB @ S, M DD HS, M)
Pd(P) =p+lwew?r Q,d(Q)=p+2w' eW®
(9.2)

and the d'? = @y d?? %> we explain these dfu’?w, : Hereiw e WP w e WQ,
we have Q C P. Then w € W? and w’ = vw where v € W and Q is the image
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of @ in Mp. Then the Mg module M(w’ - \) = v - (w-A) and the map d;;% , is
simply the restriction map to the boundary cohomology

dot H°<S}1¥1§P,/\;l(w “A) = H'(Slf\jﬁQ,M(v cw- ) (9.3)
s p

There is also a homological spectral sequence which converges to the co-
homology of the boundary. It can be written as a spectral sequence for the
cohomology with compact supports. Let d be the dimension of & then we have
a complex

~ P HIVTeNEpsE M) P HITTU9pSE M) —
P,d(P)=p+1 P,d(P)=p
(9.4)

and therefore the E.l’. term is

Ey,= @ HI'PU0pSE,,M)
P,d(P):p

the (higher) differential go from (p,q) to (p —r,q+ 1 —7).

We write the spectral sequence for the cohomology of the boundary more
explicitly. We put d(Pr) := #I so that P; becomes maximal if d(P;) = 1. Then
we get for the E'? term

BY'= D H'0p (S M)= D D HTWEM M) (95)

I #I:p+1 I#I:p+1 weWrr

here M., = Hl(“’)(up,../\;l,\) is the irreducible M; module with highest weight
w-\ = w(Ap) — p. We want to write down the differential 7 : EP9 — EPH4
to do this we restrict it to a direct summand, i.e. we fix I and w € W¥7. Then
the maximal parabolic subgroups in M7 correspond to the subsets I’ C I with
#I' = #1—1. The parabolic subgroup P induces a maximal parabolic subgroup
P;, C My and we get the restriction

PII 0 HQ—Z(w)(sMI,Mw‘)\) N @ @ Hq—l(w)—l(w’)(SMI/’Mw/w'/\)
Icr wleWP}l
(9.6)

Now we have ordered the simple roots, hence we also ordered the set I and we
can define the sign (—1)P)1) where p(I,I’) is the position of I\ I’ in 1.
Then we find

P DR e L 0.7
I:#I=p+1,I'CI,w

Hence we see that understanding the map r : H*(SE, My) — H*(9(S%), M)
is reduced to the understanding of this map for the reductive quotients of
parabolic subgroups and some Weyl group combinatorics, which may become
quite complicated.
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Now we define E£” to be the cohomology of the complex {d??**, EP*}, and
then the mechanism of al sequences gives us new complexes

P—2,9+1 D, q
dy

_2g—14d —
— BTN pR 2 pRRal (9.8)

and the cohomology of these complexes are the E5'?. Again we have differ-
entials dy? : EP?. —: EFT172 But since p < r — 1 the differentials d2? = 0
once v > r. and hence the EP'¢ = ED:? for v > r.

We get a filtration

H*(O(T\X), M) = FOH*((I'\X), M) D FLH*(J(I'\X), M) D

(9.9)
- D FTUHA(O(\X), My) © FTH®(9(I\X), M) = {0}
and the quotients
f”H'((‘?(I‘\XL./\;IA)/JT”HH'(G(I‘\X),/\;(,\) =FE*Y (9.10)

and hence these quotients are subquotients of Fy*™".

Here we are confronted with several very interesting questions.
A) Does the above spectral sequence degenerate at E5'° level, i.e. are all
differentials d3® = 0 for v >7

If our highest weight A = . n;v; + J is regular, this means fall n; > 0
then degeneration follows from the work of Schwermer and Li that the spectral
sequence degenerates at E5'® level. This is so because in this situations the
Eisenstein series involved are holomorphic at the evaluation point.

This question is closely related to the next one.

B) We consider the image of the map r (see ??). How does Im(r) interfere
with the filtration 9.9, can it happen that Im(r) N F¥ H*(d(T'\X), My) # {(0)}
for some v > 07 What is the largest such v?

If there are classes £ € Tm(r)NFYH*((I\X), M) , £ # 0 then these classes
are called ”ghost classes.” It follows again from Schwermer and Li that there
are no ghost classes if A is regular.

9.1.2 Induction

The description of the cohomology of a boundary stratum is a little bit clumsy,
since we are working with the coset decomposition. The reason is that we are
working on a fixed level, if we consider cohomology with integral coefficients. If
we have rational coefficients then we can pass to the limit. Then

H* (008, M) = mH* (P(Q)\G(A)/ K K 7. M) =

To(G(R)XG(Ay) 1. o/ oM . B G(A) e/ oM 7I7e
Indwg(M(R)xP(%{f)%g}H (SK}”’H (u, M)) = Indm)(JW(]R))xP(Af)H (S™, H*(u, M)),

where the induction is ordinary group theoretic induction (plain induction).
We should keep in our mind that the mo(M(R)) x P(Af) -modules are in fact
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mo(M(R)) x M(Ay)-modules. We need some simplification in the notation and
we will write for any such mo(M(R)) x M(Af) module H

Wnd G )« o) H =I5 H
We will use the same notation for an induction from the torus 7" to M.

Under certain conditions we also have the notion of induction for Hecke
- modules and we can work with integral coefficient systems. This will be
discussed at another occasion.

But I want to mention that in the case that Ky is a hyperspecial maxi-
mal compact subgroup ( in the cases where we are dealing with a split semi-
simple group scheme over Spec(Z) we can take Ky = [[G(Z,) (see 1.1)) then
G(Qp) = P(Z,)K, = B(Z,)K, the group theoretic induction followed by taking
K invariants gives back the original module. In this case we do not have to
induce!

Of course we have to understand the coefficient systems H*®(u, M), for this
we need the theorem of Kostant which will be discussed in the next section.

9.1.3 A review of Kostants theorem

At this point we can make the assumption that our group G/Q is quasisplit, we
also assume that G(1)/Q is simply connected. Then we may assume that Mz
is irreducible and of highest weight A. Let B/Q be a Borel subgroup, we choose
a torus T/Q C B/Q. Let X*(T) = Hom(T xg Q,G,, xg Q) be the character
module, it comes with an action of a finite Galois group Gal(F/Q), here F
is the smallest sub field of Q over which G/Q splits. Let T())/Q C T/Q the
maximal torus in G()/Q, then X*(T()) contains the set A of roots, the subset
AT of positive roots (with respect to B.) The set of simple roots is identified
to a finite index set I = {1,2,...,r}, i.e we write the set of simple roots as
7= {ag,..., ..., } C AT. We assume that the numeration is somehow
adapted to the Dynkin diagram. The finite Galois group Gal(F/Q) acts on
I and 7 by permutations. Furthermore we have the action of the (absolute)
Weylgroup W on X*(T W xF ) and we have a positive definite scalar product
<, >= X*(TW x F) x X*(T™ x F) — Z. Attached to the simple roots we
have the dominant fundamental weights {,...,v;,...,7;,...} they are related
to the simple roots by the rule

< Yiyay >
9 STy~ ”

<aj,05 >

The dominant fundamental weights form a basis of X*(T™) x F).
Our maximal torus T'/Q is up to isogeny the product of T(}) and the central
torus C/Q, i.e. T =TW .C and the restriction of characters yields an injection

j:X*(T) = X*(TW) @ X*(C),
this becomes an isomorphism if we tensorize by the rationals

X5(T) = X*(T) ® Q = X3(TM) @ X5(C).
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This isomorphism gives us canonical lifts of elements in X*(T™M) or X*(C)
to elements in X@(T) which will be denoted by the same letter. Especially the
fundamental weights v1...,7i,... are elements in X¢ (7).

Let A € X*(T x F) be a dominant weight, our decomposition allows us to
write it as

A= ami+5= D435
icl
we have a; € Z,a; > 0 and § € X*(C). To such a dominant weight A there
is an absolutely irreducible G x F' -module M. The abelian part § is rather
irrelevant, we can not choose it to be zero because it has to satisfy a parity

condition with respect to A(1).

We consider maximal parabolic subgroups P/Q D> B/Q. These parabolic
subgroups are given by the choice of a Gal(F/Q) orbit ¢ = J C I. Such an
orbit yields a character v; = 3, ;7. The parabolic subgroup P/Q provided
by this datum is determined by its root system AP = {8 € A| < 3,75 >> 0}.
The choice of the maximal torus 7" C P also provides a Levi subgroup M C P
but actually it is better to consider M as the quotient P/Up.

The set of simple roots of M) is the subset 7 = {..., i, ... }icry, Where
of course Iy = I'\J. We also consider the group G NM = M;. It is a reductive
group, it has T as its maximal torus. We apply our previous considerations
to this group M;. It has a non trivial central torus C7/Q. This torus has a
simple description, we pick a root o, € J, we know that J is an orbit under

Gal(F/Q). We have the subfield F,,;, C F such that Gal(F/F,,) is the stabilizer
of ;. Then it is clear that

Cl L> RFai/Q(Gm/Fai)?
up to isogeny it is a product of an anisotropic torus C7/Q and a copy of Gy,.
The character module X¢(C1) is a direct sum

X5(C1) = Xg(CT) © Q. (9.11)

Here X (C7) = {7 € Xg(C1) | < 7,2 ;@i >= 0}. The half sum of positive
roots in the unipotent radical is

pu = fPYs (9.12)

where 2fp > 0 is an integer.
We also have the semi simple part 7M™ < MM and again we get the
orthogonal decomposition

XH(TW) = X5(T )@ X5(Ch) = P QueP v = P 0 eP Q.

i€l i€J i€l i€J

Here we have to observe that the %M ,i € Ip; are the dominant fundamental
weights for the group M), they are the orthogonal projections of the ~; to the
first summand in the above decomposition. We have a relation
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v = 'yJM + Zc(j,i)'yi, for j € Iy
i€i
and we have ¢(j,i) > 0 for all ¢ € J.
Let Wi C W be the Weyl group of M. For the quotient Wy, \W we have a
canonical system of representatives

WP ={weW |w(ry) Cc AT}

To any w € W we define w- A = w(\ 4+ p) — p where p us the half sum of
positive roots. If we do this with an element w € W then = w- X is a highest
weight for M) and therefore w - X provides a highest weight module M (w - \)
The cohomology H*(up, M,) is a (graded) M-module we can decompose into
irreducibles. Then Kostant’s theorem

H*(up, My) = @@ H™ (up, My)(w - N),

weWwr

where the isomorphism type of H")(up, M,)(w- A) is M (w - A) but we have
always to remember that it sits in degree

l(w) =#{ac ATlw lac A7} (9.13)

Each isomorphism class occurs only once.

We write
we A= pEM g +4
“ (9.14)
€ XHTIM)y @ X5 (C1) @X*(C)
We decompose d; and define the numbers a(w, A) (see (9.11))
01 = 6 + alw, \)vy.

Then we get

wA+p) —p=p"M +a(w, Ny, (9.15)

We also consider the extended Weyl group W, this is the group of automor-
phisms of the root system. Let wy € W be the element sending all positive roots
into negative ones. We have an automorphism ©_ € W inducing ¢ — ¢~ on
the torus. Let ©® = wgo©_. This element induces a permutation on the set 7 of
positive roots, which may be the identity and induces —1 on the determinant.
Then

O\ = Z aeivi — 1)
il
is a dominant weight and the resulting highest weight module is dual module
to M. Therefore we get a non degenerate pairing

H*(up, My) x H*(up, Moy) — HWr (up, F) = F(—2py),
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which respects the decomposition, i.e. we get a bijection w — w’ such that
l(w) + l(w'") = dy, and such

H ™ (up, My)(w - A) x H @) (up, Moy)(w' - ON) — HWr (up, F)  (9.16)

is non degenerate. We conclude

a(w,\) + a(w’,ON) = =2fp. (9.17)
We say that w - A is in the positive chamber if
a(w,\) < —fp (9.18)

The element © conjugates the parabolic subgroup P into the parabolic subgroup
@, which may be equal to P or not. If P = Q resp. P # @ then we say that P
is (resp. not ) conjugate to its opposite parabolic. If ©_ is in the Weyl group
then all parabolic subgroups are conjugate to their opposite. In this case we
have © = 1.

Conjugating by the element © provides an identification 0p,q : wr = we
We have two specific Kostant representatives, namely the identity e € W* and
the element wp € W7, this is the element which sends all the roots in Up to
negative roots (the longest element). Its length I(wp) is equal to the dimension
dp = dlm(Up)

Any element in w € WT can be written as product of reflections

W= Sq; ---Sa;, (9.19)

where v = [(w) and the first factor «;, € J. We always can complement this
product to a product giving the longest element
= WSq, Sa; = wp, (9.20)

Sayy - Sai, S Sa;

Qiyyq "7 dp vl T dp

The inverse of the element sq,  ...Sq,, i
v P

- Q
W= Say, e Sa,,, € w

~

This defines a second bijection ipg : WF — W® which is defined by the
relation

w=wp ipgw)=wp- -w, l(w)+Il(w)=dp (9.21)
The composition 91;,1Q olpg: WP — WP is the bijection provided by duality.

The element wp conjugates the Levi subgroup M of P into the Levi subgroup
of @ = prwg,l. The element wp = Owp conjugates the parabolic subgroup
P into its opposite (which is conjugate to Q) and induces an automorphism on
the subgroup M which is a common Levi-subgroup of P and its opposite.

If we choose w = e then

Zai%‘ +4d= Z aiy! + Z( Z a;c(i, j) +n;)v; + 0.

el i€l JEJ 1€l
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Since J is the orbit of an element ¢ € I we see that < v;, «; > is independent
of j and hence we get easily

S aseid) +mi) = 55 (DS aiclind) +my))s +

jeJ icly jeJ icly

and hence

ales ) = 2= (S2(S aeli, ) + )

#J JeJ i€l

If we choose © p then as an M-module Mg,y is dual to Mex(—2f;7v.s). We
write OA + p =), ae;yi — 0 and then

wp(Y ai+8) =Y neit =Y (Y a6:c(0i,05) +ae;)v; —2f17s — .

iel i€ly jEJ ©icly

and especially we find
1 N
a(wp, \) = —(7(2( Z aeic(04,07) + aej)) +2f1)vs

#J =
jed i€lpm

In general we have the inequalities

a(®p,\) < alw,\) <ale,N).

We can write our relation (9.15) slightly differently. We can move the half
sum of positive roots to the right and split into p = p™ + fp~;. We put gt =
pBM) 4 oM oand then we write

wA+ p) = iV + (a(w, A) + fp)ys = iV + b(w, \)ys (9.22)
and of course now we have

b(w, \) + b(w’,©ON) = 0. (9.23)

9.1.4 The inverse problem

Later we will encounter the following problem. Our data are as above and we
start from a highest weight for M, we write

p=pY 46 +ay;+0= Z neiv + 61+ ayy +9.
i€l

We ask whether we can find a A such that we can solve the equation (Kost).
More precisely: We give ourselves only the semi simple component (") of 4 and
we ask for the solutions

w\+p) =M+ ...

where w € W* and A dominant, i.e. we only care for the semi simple component.
Let us consider the case where J = {ig}, i.e. it is just one simple root. Then
the term d; disappears and our equation becomes

wA +p) = i + by, + 6,
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of course the § is irrelevant, but we want to know the range of the values
b = b(\,w) when i) is fixed, but X\, w vary. Of course it may be empty. Let us
fix a w and let us assume we have solved w(A 4 p) = (") +.... Then it is clear
that the other solutions are of the form A+ p+ v where wv € Qv;,. These v are
of the form v = cvy with ¢ € Z. We write 1o = ) _,; biy; and it is easy to see
that there must be some b; > 0 and some b; < 0. This implies that A + cvp is
dominant if and only if ¢ € [M, N], an interval with integers as boundary point.
This of course implies that -still for a given w - the values b = b(\, w) also have
to lie in a fixed finite interval

b=b(w,\) € [buin(w, i), bumax (w, 7] = I(w, V). (9.24)

This will be of importance because these intervals will be related to intervals
of critical values of L-functions.

9.2 The goal of Eisenstein cohomology

The goal of the Eisenstein cohomology is to provide an understanding of the
restriction map r in theorem ( 6.2.1). More precisely we assume that we under-
stand (can describe) the cohomology H*® (0S¢ ;» M), then we want to under-

stand the image H%;, (0S¥ . M) in terms of this description.

It is clear from the previous considerations that understanding of the bound-
ary cohomology H*(9S% f,/\/l A) requires an understanding the cohomology of

H*(SM\, H*(u, M))), where M runs over the reductive quotients of the dif-
5
ferent (conjugacy classes) of parabolic subgroups. We have to compute the

differentials in the spectral sequence. These differentials will depend on the

P

Eisenstein cohomology of the H '(SI]‘(/[M7H *(u, M,)), in other words we meet
f

the same issue for smaller reductive groups.

The situation simplifies if the highest weight X is regular. Then we have
a good understanding of the Eisenstein cohomology and the spectral sequence
degenerates at F3'* level (see [69]). T am convinced that the spectral sequence
does not degenerate at E3'® in general, and this raises the question how high
the level of non degeneration may become.

We have to take the action of the Hecke-algebra H%f on the spectral sequence

{Er.y.a d:’.}T:1,27... (925)

into account, more precisely we have to consider the entire spectral sequence

as (multigraded) module for the Hecke algebra. We look for irreducible H2Z,,

¥

modules oy which occur in some H*(Siy, H*(u, M(w - X) ® F))(os) # 0. In
¥

general they may pop up in different summands of some ET?, these summands

are indexed by P,w. Let us denote this direct sum by E} (o).

We want to compute the EF(oy) term, this means we have to compute
d3* (o) : EPos) — EPT™9(5;). We go to the transcendental level, i.c. we
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tensor everything by C. Then the methods of Eisenstein cohomology will give us
some matrix expressions for d’*(os) where the matrix coefficients are express-
ible in terms of certain special values of L— functions L(o¢,ry,v) at certain
specific ( critical ) arguments v. This tells us that we can express the kernel of
dy* (o) and EY?(of) in terms of special values of L-functions. Now the next
step will be to compute d3*(of).. We know that it is zero if \is regular or if the
rank of G/Q is two but to to the best of my knowledge this has not been done
in any other case.

Hence we see that the structure of the cohomology of the boundary, the struc-
ture of the Eisenstein cohomology and the differentials in the spectral sequence
will depend on the behaviour of certain L-functions L(oy, 7y, 2) at certain inte-
ger arguments v € Z. Sometimes we need to know whether or not L(o¢,ry, 2)
has a pole at z = v. We know that in some cases the structure of the Eisen-
stein cohomology depends on the vanishing of L(oy, 7y, 2) at a certain specific
argument v. We do not know whether there are cases where the structure of
the boundary cohomology or the vanishing of certain higher differentials even
depends on the order of vanishing of the L-function. Actually this would be
very exciting.

On the other hand we know that the cohomology is a Q-vector space and
{E2*(0¢), d*}r=1,,.. is a Hecke modules spectral sequence over F. Our tran-
scendental description of { E2*(07)®C, d2*} involves the special values L(o ¢, 7y, V)
and hence we must get some algebraicity relations for special values of L func-
tion, i.e a certain expression in L(oy,ry, ) with varying v must be an element
of F.

The Eisenstein cohomology itself, i.e. the image of r is defined over Q, but
it has a transcendental description involving special values of L functions. This
should be another source for rationality theorems on special values. We discuss
a typical example of such an algebraicity relation in the next subsection and in
[47]. See also section 9.4.5

Finally we want to add a very speculative remark. In principle we can
compute the cohomology as Hecke module explicitly in a given case. Hence
we know that certain ”anomalies” in the structure of the cohomology must be
induced by zeros (or higher order zeros) of L-functions. Therefore we might
be able to certify a zero (or higher order zero) just by looking deeply into the
Hecke-module structure. This is a dream of the author, but the computational
difficulties might be insurmountable.

9.2.1 The lowest step

In the following section we apply the above strategy to a very specific part
of the cohomology of the boundary. We discuss the special case of rank one
Eisenstein cohomology. We call this method the ”Cohomological-Langlands-
Shahidi” method, in brief the C-L-S-method.

This strategy has been carried out successfully in the case that G/Q =
Gly/Q, the maximal parabolic subgroup P has reductive quotient quotient
Gl,, x Gl with nn/ even in [47].In the following we try to present a kind of
axiomatised approach to the proceeding in [47]. All the assumption which we
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make in the following are verified in [47]. The combinatorial Lemma was proved
by U.Weselmann.

We recall the filtration (8.26) of the cohomology, we define the correspond-
ing filtration on the cohomology of the boundary. We study the Eisenstein
cohomology on the lowest step of this filtration.

We start from a maximal parabolic subgroup P/Q D B/Q let M/Q be its
reductive quotient. We define

HP (0pSE,, My = P H;*“w)(slﬂév,,Hl<w>(up,/\>1)(w-A))cH’(apsgf,MA)
weW P
(9.26)

We will abbreviate H'™)(up, M)(w-\) = M(w - \) where always keep in mind
that the element w € W' knows what the actual parabolic subgroup is and
that M (w - \) sits in degree I(w).

By definition the inner cohomology is the image of the cohomology with
compact supports. This implies that the submodule

@ H!q(apsgf,/\;l)\) C @ Hq(8p8§f,/\;lk) :E?’q
P:d(P)=1 P:d(P)=1

is annihilated by all differentials d%'¢ and hence we get an inclusion

. o—[(w .
i @ P g )(sjﬂfy,M(w ‘X)) = H*(OSE,, My). (927
P:d(P)=1weWP
The image of this inclusion will be called H? (0S¥ . M,). The Hecke algebra

acts on these modules. Let us assume that H?(0SF,, MAx®Q) C H*(dSF,, My®
Q) is complete. This is not an unrealistic assumption, it can be verified in many
concrete situations. Then we get a decomposition

H!'(asfc(:f,/\;l,\ ®Q)o Hr.lon!(aSIG(f7M>\ ®Q) = H.@SIGQ,MA ® Q). (9.28)
Now we can ask:
What is the intersection of H‘Eis(ang,/\;lA ® Q) with the first summand,
or what amounts to the same, what is H Eis(@SIG(f,./\;lA ® Q).

This is in a sense a first step in our efforts to understand the Eisenstein part
of the cohomology.

The Cartan involution © sends P/Q into ©(P) D B_/Q and O(P) is con-
jugate to a parabolic [O]P = @ D B/Q, hence © induces an involution [©] on
the set of parabolic subgroups containing B (= set of G(Q) conjugacy classes of
parabolic subgroups). Two parabolic subgroups P,Q D B are called associate
if [P = Q.

We can decompose the cohomology H(0SE f,/\;l A ® Q) into summands at-
tached to the classes of associated parabolic subgroups

HI'(aS[G(f,MA ®Q) =

Dr.r-orr Hf(aPSEfaMA) S Dpg) Hx'(ﬁPSzC(;fa/\;lA ®Q) & H!‘(C{’QSIC(;faMA ® Q)
(9.29)
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where in the second sum @) = [O]P. Each summand is a sum over the elements
of WP and then we can decompose under the action of the Hecke algebra. We
choose a sufficiently large extension F/Q and in the case P = [O]P we get

H 0pSE, My @ F) = @ @H™ (S} Malw-2) @ F)(o5) (9.30)

weW?F oyp

In the case P # [O]P = @ we group the contributions from the two parabolic
subgroups together. To any w € W we have the element ipg(w)=w" € we
see 9.21). We also group the terms corresponding to w and w’ together. To

any oy which occurs in H,Fl(w)(S%M,Hl(“’)(up,M)(w ‘A) @ F) we find a 0 =
: F

oy” |'}/@j|§f @, which occurs in the second summand.
The decomposition into isotypical pieces becomes
o—Il(w ~ o—l(w ’ ~
D (S M(w- N @ F)(og) @ B (Sl M- 2) @ F)(o)))
of

(9.31)

We can define the second step in the filtration ( 6.39) as the inverse image of
H? (3S§f,MA) under the restriction r.

Delorme’s method

We briefly review some results of Delorme on the (g, K, ) cohomology of induced
representations. We introduce some notation. As usual P/U = M/Q will be
the reductive quotient, Let ¥, m, u be the corresponding Lie algebras. We also
assume that the Cartan involution is defined over Q and hence K, is the group
of R-valued points of a group defined over Q, let £ be its Lie algebra. The
intersection P NO(P) is a Levi-subgroup of P/Q, we also denote by M/Q. The
intersection M N K., = KX is a maximal compact subgroup of M (R).

Let MM < M be the semi simple derived subgroup and let C; be the
connected component of identity of the centre. The corresponding Lie algebras

are m(?) and ¢. The intersection K](Vl[) N K, is maximal compact in M () (R), its

. . (0
Lie-algebra is {%5\4).

We have g = P+£ = (mPu)+£ and £ = PNk = mNE. Hence g/€ = m/eM pu.
We construct an isomorphism

Homy (A*(a/t), WmdSE)H,  © My) 5 Homcar (A*(m/€) © A*(u), Hy & M,).
(9.32)

An element w € Hompg_(A®(g/%), Indgﬁiﬂ}m ® M) has a value

w(X1, X, X,) € ndSE H, @ My)
on a n -tuple X1, Xs,...,X,, € g. This value is a function G(R) — H, _ ®
M) which by definition of Ind satisfies w(X1, Xa,...,X,)(pg) = 0s(p) @
Id(w(X1, Xa,...,X,)(g)) for all p € P(R),g € G(R). Since any g € G(R) can
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be written as g = pk, with p € P(R),k € K we see that w(X1, Xo,..., X,)
is determined by its values on K,,. But since w is K -invariant we have
w(Ad(k)X1,...,Ad(k)X,))(k) = w(X1,...,X,)(eq), Therefore we see that w
is completely determined by its values at all n-tuples X1, ..., X,, € g evaluated
at the identity eg. If we now take X7 =1, Xy =t5,..., X, = ¢, with t; € m
and Xp41 = uq,...,Xppq = Uq With u; € u, then obviously the map

(tl,tg,...,tp,ul,...,uq) +—>w(t1,t2,...,tp,) }—>w(tl,tg,...,tp,ul,...,uq)(eg}

is an element in Hom g (A®(m/€) @ A®(u), Ho, ® My). It is not too difficult
to check that this gives the isomorphism rg p. The complex on the right is a
double complex, the differential d is the sum d = d; + dy.

If we fix t1,t2,...,t, then the evalution on this p-tuple gives us a map
ev(t) : Hompgum (A*(m/€) @ A®(u), H,, ® My). = Hom(A®*(u).Hs @ M,)

Now Hom(A®*(u).H, ® M)) = H,  ® Hom(A®*(u).M)) and we have seen
that the complex Hom(A®(u).M)) has a subcomplex of invariants under U

H* (1, My) = Hom(A®(u), My)Y,

on this sub complex all the differentials dy; are zero and the inclusion induces
an isomorphism H®(u, M) — H*(u, M,). We recall the theorem of Kostant
which says

H*(u, My) = @ H'™ (u, My)(w- N), (9.33)

weWr

where H' ") (u, My)(w - \) is the irreducible highest weight module for M with
highest weight w - A = w(A + p) — p. We will denote it by M(w - ) We always
remember that it sits in degree [(w) and we always keep in mind that w is not
only an element in W, but that there is a specific P in the background and
weWw?r.

Hence we get the theorem of Delorme

Theorem 9.2.1. We have an injective homomorphism of complexes
Homygas (A*(m/8), Hy @H* (u, My)) = Homs_(A*(a/8), IndS®)H, _oM,)

which induces an isomorphism in cohomology. Hence we get an isomorphism of
cohomology groups

B = KX Hy @ Ma(w-N) <> B9, Koo, Indil[) Hoo © M)
weWP

The restriction map r on the level of the de-Rham complexes

We recall the de-Rham isomorphism in section 8.1.3 and (8.5). Of course we

have a corresponding formula for the cohomology of a boundary stratum

H*(9pS§,, My) — H*( Homg_ (A*(8/%), Coo(U(A) P(Q\G(A)/Ef) ® M5)
(9.34)
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and the restriction map rp : H'(ng,/\;l)\) — H’(apng,./\;lA) is induced by
the constant Fourier coefficient

FP(f)(g) = / £ (ug)du (0.35)
U(A)

We mentioned that we may have a difference between the cuspidal and the
inner cohomology. We consider an irreducible (non zero) module H,_ @ H;, C
L%, . (G(Q)\G(A)/K) which has non trivial cohomology H*(g, Koo, Hr ®

disc
M) # 0. Let go be the lowest degree such that H% (g, Ko, Hr., ® M)) # 0.
Then we have the following

Proposition 9.2.1. If H, ® H,, ¢ L2, ,(G(Q)\G(A)/Ky), then the compo-

cusp
sition

qu(g7KOO7H7Too ®-A/l/\) ®H7Tf — HqO(ng,./\;l)\ ®(C) L> qu(aslcifv-/\;lk ®(C)
(9.36)

1S MON Zero.

Proof. We have to show that for all proper parabolic subgroups the map F* :
Hy ® Hy, — Coo(U(A)P(Q)\G(A)/Ky is zero. If this is not so then there is
a parabolic subgroup such that the Fourier coefficient even lands in the space
Coo,cusp(U(A)P(Q)\G(A)/Kf). We ”decompose” this space, hence we get an
embedding

FPiH. @ He — @ Indggﬁgv% ®V,,. (9.37)
Since we assumed that H,_ ® H, is irreducible we know that the projection

to a suitable summand Indggig Vo, @V, ; Indggﬁ; Voo @ V5, induces already an
injection. On the level of complexes we get

Homg, ( Hom(A®(g/t), Hr,, ©@ M) @ Hy, —
A (9.38)
Homy_, (A*(g/%), Indg ) Vo, ® My) © Tndg(a)) Vi,

We apply Delorme’s method to factor at infinity on the right hand side. We
have the harmonic sub complex

Duewr Hompar (A (mD /by), Vo, @ M(w - A) @ A®(crr)
(9.39)
Homy., (A*(g/¢)), ( Tndipy) Vo, © M)

We also know the that the restriction of o to the central torus Cp; of M is
of type w - A\|Cps. We see that the embedding (9.38) actually factors

]:If : HOIHKx (A.(g/e)7H7T<>o ®MA) ®H7rf —
(9.40)
@goo Docwr Homg m (A*(m™ /eny), Voo @ M(w - ) @ A®(car)

But since H,_ is in L? and we have the information about the asymptotic
behaviour of the V,,_ we can conclude that the image of F, ,}; actually lies in the
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summand with w = ep the identitiy element. So the constant Fourier coefficient
gives us a map

]:}1: N HOmKDO(A.(g/E)’Hﬂ'QO ®M)\) ®H7rf —
(9.41)
D, Hompu (A*(m®) /b)), Vo, @ M(ep - N)) @ A®*(err)

Let ¢; be the smallest degree in which the complex on the right is not zero,
then there is a 0o such that Hompgu (AT (mW /err), Vo, @ M(ep - \)) =
Ho(m, KMV,  ® M(ep - )\)) # 0 we even know that it is of dimension
one. Of course the complex on the left is zero in degree < ¢;. We restrict
the action of G(R) on H,_ to M(R) then we have a surjective M(R) ho-
momorphism H,_ — V,_. We further restrict the M(R) to KX then we
find a section s : V,_ — Hy_ This allows us to lift the non zero class in
Hom g m (AT (m® /epr), V,_@M(ep-))) toaclassin Homg_ (A% (g/t), Hy. ®
M.). This shows ¢; = ¢qp and the proposition.

O

We return to the issue raised in the section ”cuspidal vs. inner.” We said
that an isomorphism type 7¢ of a Hecke module which occurs in the inner
cohomology is strongly inner, if

H\op(SE, s My ®@p C)(my) = HP (SE,, M) (7f) ®F C

This is an equality between a Hecke-module defined by transcendental no-
tions and a Hecke module which has a combinatorial definition. But in view of
our proposition we also see that 7y is strongly inner if and only if

HY (8§, Mx® F)(my) = H* (S, My @ F)(ny) (9.42)

and this is now a combinatorial characterisation for the isomorphism type 7y
to be strongly inner.

We should be a little bit careful with the notion of cuspidal cohomology. Of
course if we given an isomorphism type of Hecke-modules 7; which is strongly
inner, then this means that all the isotypic cohomology H*®(S¥ » My @ F)(ry)
is cuspidal.

But if 7y is given and occurs in the inner cohomology then we can find
a friend 7o and an embedding ® : H._ ® Hp, — L3 (G(Q)\G(A)/Ky).
This produces cohomology classes and we call these classes cuspidal if ® factors
through the space of cusp forms. But this notion depends on the choice of o
and ®. Hence such a space of cuspidal classes is only defined over C.

Of course we have seen in the proof of proposition 9.2.1 that an irreducible
Hecke module 7o, which occurs in the inner cohomology has to be somewhat
special if it is not strongly inner. The proof shows that we must have

G(hy)
Hy, © G4V, (9.43)
where o is strongly inner in H*(S},,, Mx(e- A)) and M the Levi-quotient of
7

a proper parabolic subgroup. This is now a very strong restriction on 7. If for
instance A is regular this can never happen ([69]).
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On the other hand this happens if A is not regular. In [35] Kapitel III we
discuss examples where this happens. There we also discuss the possibility to
construct mixed motives from these inner but not strongly inner 7y, and for us
this possibility was the main motivation to study these phenomena.

For some more recent developments in this direction we refer to Mix-Mot.pdf
on my home page.

9.2.2 Induction and the local intertwining operator at fi-
nite places

Our modules oy are modules for the Hecke algebras HM KM = ®,,’H% - Therefore

we can write them as tensor product oy = ®,0,. We con51der a prime p where
oy is unramified then we get can give a standard model for this isomorphism
class. The module H,, is the rank one O -module OF, i.e. it comes with
a distinguished generator 1. The Hecke algebra acts by a homomorphism (See
6.3.2)

hoy) : iy = O (9.44)

and gives us the Hecke-module structure on H,,. We can induce H,, to a
Hgg module. This is actually the same O module but now with an action
P

of the algebra HEN | We simply observe that we have an inclusion H<

KG . =

KG Z
Muw'-X)

A,
It follows easily from the description of the spherical (unramified) Hecke

modules via their Satake parameters that the induced modules H,, and H"zﬁ

and induction simply means restriction.

are isomorphic as H'ED modules and hence we get that after induction the

KG Z
two summands in (9. 31) become isomorphic. We choose a local intertwining

operator
loc .
Tp : H[,p — H‘,; (9.45)

simply the identity. We do not discuss local intertwining operator at ramified
places. But it can be shown that there are non zero local operators TplOC :
H,, — Hoy for all p and we define T}OC = Hp Tploc.

9.3 The Eisenstein intertwining operator

Our notations are as above, let H,, be an absolutely irreducible module for

HiL. TS M(w - N) @ F)(oy)).

Here F' C C is a finite normal extension of Q. We realise o¢ as a restricted
tensor product H,, = ®; H,,, we assume that for the primes p ¢ ¥ H,, is
of dimension one. 6.60). Now it follows from Theorem 8.1.1 that there is an
irreducible M (R) module H,__ such that H®(m, KM, H((yif) @M(w-A)) # 0 and
that we have an embedding

we assume that it occurs in some H

®:H, ©H, @pC = L3 (M(Q)\M(A)). (9.46)



9.3. THE EISENSTEIN INTERTWINING OPERATOR 403

In the following we forget the ® and consider H,  ® H,, as a subspace of
L3 . (M(Q)\M(A)). We assume that w - X is in the positive chamber.

disc

We we consider the induced module, recall that this is the space of functions
{f:G(A) = Ho|f(pg) = pf(9)} (Ind)

where p is the image of p in M (A). We can define the subspace H. (o) consisting
of those f which satisfy some suitable smoothness conditions and then we can
define a submodule Indg(i) H((,OO) where the f(g) € H,SOO) and the f themselves

(&)
also satisfy some smoothness conditions.

We embed this space into the space A(P(Q)\G(A)) by sending

fr=Ag = flg)(em)},

here A denotes some space of automorphic forms. This an embedding of G(A)-
modules or an embedding of Hecke modules if we fix a level.

We have the character vp : M — G,,, for any complex number z we define
the homomorphism |yp|? : M(A) — R* which is given by |yp|* : m — |yp(m)|?.
As usual we denote it by C(]yp|?) the one dimensional C vector space on which
M(A) acts by the character |yp|*. Then we may twist the representation H,
by this character and put H, ® |yp|* = HQC(|yp|?). An element g € G(A) can
be written as g = pk,p € P(A),k € KJQ where K? D Ky is a suitable maximal
compact subgroup and now we define h(g) = |yp|(p)|. Eisenstein summation
yields embeddings a a

Eis : Indi(p) HS™ @ [yp|* = A(G(Q)\G(A)), (9.47)

where

Bis(f)(g) = > f(vg)(em)h(vg),

YEP(Q\G(Q)

it is well known that this is locally uniformly convergent provided R(z) >> 0,
(see [49)).

Now we assume that H, is even in the cuspidal spectrum. We get important
information concerning these Eisenstein series, if we compute their constant
Fourier coefficient with respect to parabolic subgroups: For any parabolic sub-
group P;/Q C G/Q with unipotent radical U; C P; we define (See [49], 4)

FR(ES()) = [ Eis()(19)dus.
U1(Q\U1(4)

This only depends on the G(Q)-conjugacy class of P;/Q. It is also in [49] , 4
that this constant term is zero unless P; is maximal and the conjugacy class of
P is equal to the conjugacy class of P/Q or the conjugacy class of @Q/Q. (which
may or may not be equal to the conjugacy class of P/Q.) Here we need that
H, is in the cuspidal spectrum.

These constant Fourier coefficients have been computed by Langlands, we
briefly recall the main steps in this calculation. We refer to [49] Chapter II, S
4.
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We consider the action of Ug on the quotient P\G, we know that we have
a Bruhat cell decomposition

PQ\GQ = |J P@\P@QuU™(Q)
weWw P

where U®) = [loea+ wagar Ua- Then the Eisenstein summation becomes

Eis(f)(@)= Y, D flwug)(en)h(wug)?, (9.48)

weWF ueU()(Q)

and we get for the constant Fourier coefficient
>/ S fwung)(erh(wun,g)du,  (9.49)
wew P Y UL (@\U1(A) weU @) (Q)

Since we assumed that H, is in the space of cusp forms on M it follows
/ F(wuat,g)(err)h(wu, g) duy = 0 (9.50)
Ur(Q\U1(A)

unless we have wUyw™' NP C Up. (See [49], loc. cit. Lemma 33)

Hence we get a non zero term in the expression (9.49) if
a) The parabolic subgroup P/Q is conjugate to its opposite parabolic P_/Q
and P1 =P.

b) P # [©]P and P, = P or P, = [O]P.

In case a) we have to take P; = P and we have two non zero summands
in (9.49), namely we can take w = ey or w = w’ where w”P(wf)~! = P_
the opposite parabolic subgroup. The element w’ induces an automorphism
of M/Q. We get a twisted representation w” (o) of M(A), we have H,r(,) =
{m  f(w?(m)|f € H,}. We get two terms in (9.49)

FP(Eis(f))(g) = f(g)h(g)* + v Flw”ug)h(w” ug)*du (9-51)

and this means that we get an intertwining operator

FP o Eis: IndIGDEgHg ® |yp|? —

G(A 2 G(A .
Ind(3) Hy @ [ypl* @ Ind5) Hor o) @ gl =% € A(Up(A)P(Q\G(A)).
(9.52)
In case b) we have to compute the constant Fourier coefficients along P and
along @ = P; = [O]P. In this each of the two integrals only one of the terms in

the summation is non zero: For F¥ this is the term w = ey and for F? it is
again the element w’, but now the conjugacy class of P_ is Q. We get

FP(Eis(f))(g) = f(g)h(g)” and F( Eis(f))(g) = / fw”uyg)h(w”ug)*du
Uq(A)
(9.53)
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and hence we get an intertwining operator

(FP @ FQ)o Bis: Ind5) Hy ® [yp|* —

G(A > G(A .
Ind(s) Hy @ [ypl* @ Indg) Hor o) @ g > (9.54)

C A(UP(A)P(Q\G(A)) ® AUg(A)Q(Q)\G(A)).

Regardless of P = @ or P # () we have to consider the intertwining operator
( the second term in the constant term)

. G(A 2 G(A —z
F9o Eis: IndPEAgHU®\7p| — IndQEAgHwP(a)®|WQ|2fP .

We observe that both sides are restricted tensor products taken over all places
and therefore we try to define local intertwining operators

oc G(Qp z G(Qp —z
TI¢(2) : Ind3e") Ho, © [yplz = Indp(e") Hyr (o) @ gl 27

(9.55)
T%(2) : IndSG oo, @ |2, — Indgig) Hyur oy @ hg|2r =

which are holomorphic in a neighbourhood of z = 0 and isomorphism for z
in a non empty open set. We know that these intertwining operators exist, we
have to choose them.

At the the unramified finite places the H,, is one dimensional and comes
with a generator 1 the local operator is constant, i.e. does not depend on z and
is equal to T)°¢ in section (9.2.2). and T%°¢(0) = ®@,T,°" .

At the ramified places p € ¥ things are not so easy. We may choose

Tploc(z) = / f(wpupgp)h(wpupgp)zdup,
UQ(QP)

It is not so difficult to see that Tploc(z) is holomorphic at z = 0 again we use
that w - A is in the positive chamber. In view the applications to arithmetic we
have to discuss rationality questions, especially we should prove that TPIOC(O)
respects the F-vector space structure, i.e. we should prove that
1 . G(Qp) G(Qp)
Tp OC(O) . IndP(Qi)Ho'p — IndP(QZ)HwP(O'p) (956)

This issue is discussed in a special case in [47] 7.3.2.1.

We also assume that we have chosen nice realisations H,_, H,/_, and an
intertwining operator

T2(2) : IndSE) Hoo @ [ypla, — IndGg) Hor ® |27 2 (9.57)

which is normalised by the requirement that it induces the ”identity” on a
certain fixed K type. It should also satisfy certain rationality conditions.
Again this is discussed in a special case [47] Chap. 8 and 9 (Weselmann).

Now we can define T 1°¢(2) = T lo¢ x I, T,'°¢(z), this is a legal expression
since for all p € ¥ it sends the generator to the generator.
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We get the classical formula of Langlands for the constant term: For f €

In dGEA)H ® |yp|? we get

FFPo Eis(f) = f + C(o,2)T°(2)(f), (9.58)

where C(o, A, z) is a product of local factors Cy, (o, , z) over all primes and and a
factor Coo (000, ). For any v = p or v = oo the function Cy (ov, 2) is a function
in z which is holomorphic for %(z) > 0 (here we need that w- \ is in the positive
chamber.) By definition we have Cp(0p,2) = 1 at the ramified primes. For the
unramified primes we get Cp,(0p, 2) = fUQ @,) fo(wPupgy)h(wPu,g,)? du, where
fo is the spherical function, i.e. the generator of H,,

The computation of this last integral carried out in H. Kims paper in [60],
chap. 6. Kim expresses the factor in terms of automorphic L— functions at-
tached to oy. To formulate the result of this computation we have to recall the
notion of the dual group (7.1). Inside the dual group “G we have the dual group
LM which acts by conjugation on the Lie algebra u}. The set of roots A;}; isa
set of cocharacters of T'/Q, a coroot a¥ € Aa; defines a one-dimensional root
subgroup uY, ,v. The “M -module u} decomposes into submodules. We recall
that the maximal parabolic subgroup P/Q was obtained from the choice of a
Galois-orbit i C I (9.1.3) and any

aY € AUV, =a(a",i)a"; + Z m;7jozvj. (9.59)
g

Here the coefficients are integers > 0 and a(a", ;) > 0. For a given integer a > 0
we define

wplal = P upa (9.60)

aVia(aV,i)=a

it is rather obvious that u}[a] is an invariant submodule under the action of M"Y
and actually it is even irreducible. Let us denote the representation of M/Q on

uy[a] by rg}vD. In the following 7, will be the highest weight of rg’v’.

With these notations we get the following formula for the local factor at an
unramified place p (See [60])

1
(0,2) = || I "P’r“ ezt )T;OC(Z)(f). (9.61)
ey Lap,ra ,az + 2)

If we put L(*) (Uf,rz’v’,z) = HMZE LX) (op, rz}vD,z), then

s

C(o,2) = C(000, 2) HCP(U,,,Z) =C(0x0,2) H

p a=1 L(Z)(O'farr:ll;a az + 1)

L(E)(Uf7 ’I":;IVD, az)

The local factor at infinity depends on the choice of 779, in 1.2.4 we gave
some rules how to fix it, if it is not zero on cohomology.
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In general people hope that there is a consistent definition of local Euler-

v Vv
factors L(o,, 74", 2) also for ramified primes and also Euler-factors L(0w, 74", 2)
at infinity. Then we define the completed L-function

Ao,ra”,2) = L(0so, 0", 2) HL(ap,r,L;P,z).

Now it makes sense to alter the definition of 71°¢(z), forv=p € ¥ or v = o0
the new local operators will be

u\/
Ly(oy,re",az + 1)

Tloc(2) .= x (‘old T¢(z))

u\/
Ly(oy,re”,az2))

and T'°¢(z) = [[, T¢(z). If now F = FF or F = FF & F? then we get

Ao, Tg;,az))

Fo Eis(f)=f+ H T (2)(f), (9.62)

o Ao, ra ,az +1)

It is a theorem of Langlands that the Eisenstein intertwining operator is
holomorphic at z = 0 if the second term is holomorphic at z = 0. Since w - A is
in the positive chamber there is no problem with 7"°¢(z)(f), it is holomorphic
at z = 0. Hence we see that the Eisenstein intertwining operator is holomorphic
at z = 0.

Let us assume that w - A or equivalently o are in the positive chamber. In
case a) we have holomorphicity at z = 0 if the weight A is regular (See [Schw]
) and in case b) the Eisenstein series is always holomorphic at z = 0. In this
section that we assume that the Eisenstein series is holomorphic at z = 0 and
hence we can evaluate at z = 0 in (9.58) . Then we get an intertwining operator

Eiso ® : Indf(y)H, — A(G(Q)\G(A)). (9.63)

We get a homomorphism on the de-Rham complexes

Homp (A*(g/8), Ind G\ H, @p C @ My) 2% Homp  (A®(a/8), AG(Q\G(4)) © M)
(9.64)

We introduce the abbreviation H,o,, = Hs, ®F,C and decompose H, = H,_ &
H,,. We compose (9.64) with the constant term and get

Fo Bis®: Homg (A*(g/t), Ind5E Hy o @ My) ® Hyog, —

Hom e, (A*(g/t), (5] Hooo ® My) @ Hioo, (9.65)

D
Homy (A*(g/¢), Tndgg) Hor, ® M) ® Hop
where P = @ in case a).
We study the contribution from the place co
oc,* . ° G
Tleer . Homp_ (A*(g/t), IndP(R) - ®@M,) — Hompg_(A*(g/t), IndPEE)H ® M)
(9.66)
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and the resulting operator on the cohomology

oc,e . G(R ° G(R
T%% : H(g, Koo, I3 Hy @ My) = H*(g, Koo, Tndip() Hor @ M)

(9.67)

Our computations above imply that the intertwining operator in (9.67) re-

spects the direct sum decomposition and hence TR%® = @, cppr 7709 (w)
where

TR (w) : ') (m, K3, Hy o @ H' (1, My ) (w - X)) =
(9.68)
Ho=U) (m, KM H,, @ H ) (u, M) (w' - X))

The computation of T'9%*(w) is a problem in representation theory of semi-
simple groups or the theory of Harish-Chandra modules. A first interesting
and amusing case is treated in [43] (Appendix by D. Zagier). This has been
generalised in an appendix by U. Weselmann in [47].

Hier muss irgendwo die relative Periode auftauchen

Theorem 9.3.1. Ifw- \ is in the positive chamber, and if the Eisenstein series
is holomorphic at z = 0 then the Eisenstein intertwining operator gives us a
homomorphism of Hecke-modules
. o—l(w A ~
Eisc @ ®7: H*-{@)(m, KM H, ® M(w-\)® IndgEAjj;Haf @r C— HI(SE, My ®C)(oy)

The composition with the restriction r to the cohomology of the boundary gives us

ro Eisco®9: Ind}féi;;Hgf —

Ay —Il(w A —l(w’
Indg ") HEo™ (S M(w-X) @ C)(og) @ Indg!) H )))(8]]‘;’}\47/\/1(11/ -\ @ C)(a})

. q A(O—vrzjvavo) loc,e loc
ro Fisco® :w®1/)fr—>w®1/1f+HA7u}Vj1)Too’(w)(w)®Tf (V)
a 0.7T¢1 I

(9.69)

We recall the definition Weysp(00e X0y) := Hompg, (H,  ®@H,,, L2 (M(Q)\M(A)/K}VI)

Ty Hcusp
summing up the Hodge decomposition summands we get an intertwining Eisen-
stein operator

Bisc : @, W (0w x 05) ® HT') (m, KM, Hy | @ My(w- X)) © Tndg ) Hy, —

Hq(SIG(f ) MA)
(9.70)

A priori the cuspidal cohomology is defined on the transcendental level, i.e

ng;gw(sgy,M(w A)®pC) C H!q_l(w)(SIAffM,M(w ) ®@F C.
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In the following we make the assumption that the cuspidal cohomology

H&Isi)(w )(SIAéIM,M(w A) ®C) as ’HKM

mology. Then we that (See proposmon 3.2.3)

module is complete in the inner coho-

HE ) (SKM,MA(w~)\))®C)(0 ) = HE (S KM,MA(w M)(og) @r C).
We abbreviate and put

G(|A) I(w
I§H(os) = Ind) HE )(S%I,MA(w~A))(of>

(9.71)
I§H (0}) = Indg( ) o™ (Sih M(w' - 2)(07)
then the ’H?(f Hecke-module
IEHY (of) ® ISH" : () C H(OSF,, M) (9.72)

is a complete submodule.
If we assume that the same assumptions hold for the dual module M v then
a simple argument using Poincare duality implies (see (6.3.8)

Im(r o Bisc)( Indp( /) Héy™ ) (S, M(w - ) € C)(07))
(9.73)
= Im(r(Hq(ng,/\;l,\) ®@C)N(IEH Y (of) & IGH? : (d%))
and this implies that ’I"(Hq(SIG(f , My))N (Iqu(af)@Iqu(a})) is the F-vector

space

r(HY(SE,, M) N(IEH o) ® IGH (7)) = {y + T(op)(ws)}  (9.74)

where 95 € ngsi) w))(SKMM7

between the two Hecke modules I§H(of) and I§H(0)).

M(w-AN))(oy) and where T'(o ) is a homomorphism

We compute the operator T'(c¢). This may become a delicate issue. It seems
that this operaror may be simply zero if {(w) > [(w’), and therefore this operator
seems to be totally uninteresting if this is the case. But this is certainly not the
case and why this is so will be explained in the following section..

But for the moment we assume I(w) = I(w’). Of course we apply the theorem
7?7 above, then it is essentially a linear algebra problem. We make several
assumptions, which can be verified in many cases. We fix .

a) For 0o, we have dim Woyep(00o X 0f) = 0,1

b) If dim Weysp(0oo X 0f) = 1 then HI7UW) (m, KM H, & My(w-\)) is
also one dimensional.

This second condition needs to be commented, First of all it means that
q — l(w) is the lowest degree in which the cohomology is non zero. Secondly it
may happen that KX = P(R) N K, is not connected. If K2! is its connected
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component of the identity then it may happen that H?~{w) (m, KMY H, ®
M (w - X)) becomes two dimensional. This is related to the fact that the
restriction of Hy_ to M) (R) becomes reducible. (See the discussion of the
discrete series in ???). Then the two-group K2 /K1 acts on this space and
our cohomology groups are the one dimensional + subspaces.

If we now assume that a) and b) are satisfied for o, and also for o7 then we
choose inclusions @, : Hy  ® Hy, < LZ (@)\M(A)/K}W) and we also

(M
cusp
choose generators w,_ € HI~!(®) (m, KM H, & My(w-\)). We do the same
for the HU/

We briefly return to our isotypical subspace ngsgw)(SK}V[ S Ma(w-N))(oy)

We remember that originally our coefficient system was obtained from a repre-
sentation of G/Op,, the M are Op, modules. Then we know that there is a
finite set S of primes such that

d(oy)
ngsiaw) (SKMvMA(w . A)) Y OF,S)(Uf) - @ Hfff,OF,s (975)
1
Here H,,; 0,5 is e free Op s modules with an action of the Hecke algebra
H%y Of course H, _ = H,; 0,5 ® F, if S is large enough we have
Hyp 05 = Hi, €0 (9.76)

Therefore we can rewrite (9.75)

d(oy)
ngsi)(w)(sKM,M,\(w N) @ Ops)(of) — @ i e, (9.77)

It follows from our assumptions that d(o) is equal to the number of oo
with Wousp(0o X 0f) =1 and

HEG™ (Sghe, Ma(w - V) @ @HM B! (wo. @eo)  (9.78)

cusp

Hence we can write

€y = ZUoo hu,aoo Qu,aoo ‘I’gm (waoo oY 60)
(9.79)
¢ (wo., ®eo) = Z# Yoo nBAoo nlu

where hy o, 90.,u € H%f and Q,,_,As_, € C. ( Here the A is the the
capital greek letter Alpha)
We can to the same for ngblp(w (SMy M(w' - A))(0’) and we get the same
5

relations where we have to put a ’ at the right spots.
Hence we can write an element yf € ngsi; w)(S;‘(/IM,MA(w -A)) ®C)(oy) in

two ways as an array

iy ={ Y it or ¢, = {7 Yo
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where 1) € In dggif)’H ey ;9@=) € In dggif HKf (Wo, ® €0).

We are ready to compute T'(cf). We have chosen we_,w,r_ and we define
numbers Coo (000, 0h,) by

TR YWy, ) = Coo(Toc, Ohg )war_. (9.80)

Then theorem ?7? yields

v A(o, EYDO ocs (v
T(of><<1>zw<w%®¢;>>>HMcoo(om, o), ((wor, @ TP (0Y))

(9.81)
Then (9.79) yields
T(Uf)(ﬂf) = T(Uf){ e 71/}5“11)7 s }V:l,...,d(o'f) =
Ao, ra
7’ Poooe 9ot v Coo (o0, O ) Ruoo e Al iy} (9.82)
1;[ A(o, rap, 1) Z =
T
V'~ th spot
We define the relative period-matrix
P(Uf) = (Z hV,UoogU/oo7V/COO(UOO7UIQQ)QV7O'OCA;/OO7V/)V,VI7 (983)

Oco

thisis a (d(oy),d(of))- matrix with coefficients in HM ®C. It depends on the
choice of the two basis’s ...e,,... and e . hence it is umque up to multiplication
from the left and the right by elements in Gly af)(HKf ® OFp.3).

Our first arithmetic application of Eisenstein cohomology is the following
rationality result

Theorem 9.3.2. The matriz

Ao, TE’VD,O)

We write the values of the complete L functions above as values of the
complete cohomological L function. We have written

wA+p) = D + pas + 81+ 6 = g 4 b(w, )y + 0F + 6

where (! is a highest weight for the semi-simple group M) /Q and b(w, )y +
01 4 0 is the abelian part. We denote by x, the highest weight of the represen-
tation , 74" then we get from the definition

Vv

Ao, ra”,s) = ACOh(O', rglv37s+ < Xa,,u(l) +pam — 0> =b(w, ) < Xa,Vs >)
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here we take into account that < x,,d7 >= 0. The ratio of L— values in the
theorem above becomes

Ao, r;”v”, < Xa,pM >)) A (o, 7"2}%,< Xa, p — 6 > —b(w, A) < Xa,vs >)

Vv - Vv
Alo,ma”, < Xarpmr >) +1) AN (0,767, < Xa, pD) = 6 > =b(w, A) < Xas 7 > +1)
There is a cancellation of the term < xq, par >).

Now we remember that the cohomological L function is invariant under
twisting (see (7.26) by a Tate character, hence we have

Vv Vv
AN (o, 10", 5) = AP (o @ [v)' ] 1a” 5).

We see that H,  ® H,,|y}!| occurs in L2 (M((@)\M(A)/KJM) more precisely

cusp

we can identify

W (0, L2uop (M(Q\M(A)/E ")) = W (o], Lausp (M(Q)\M (8)/K§1)).

cusp

Hence we get a family of non trivial Hecke modules
-l M b
H? (W)(SK},V“Mu“>+6{+b'y§”+6)(of|7J|f>‘
and on the other side we get the modules

—(w’ —-b
H? (w)(S}A(/[vaM#(1)+5r’/7b7§”+5)(J}|7J|f ).

By the same procedure as above we can define a relative period P(o¢|v;(%),
We have to understand how this period varies if b varies. Therefore we consider
a covering of of S%M by a narrow space, To be more precise we consider the

¥

isogeny M) x C} x C/Q — M/Q and we explained in (???) that we get partial
coverings

MO Gm 1 c M
SK}um X SK?M X SKCT X SK? — SKfM (9.84)
f

where on the left hand side the group K&l,) CcM (U(R) is the connected compo-
nent of the identity of a maximal compact subgroup and on the torus component
we may take the connected component of the group of real points of the maximal
split subtorus.

We get injective homomorphism between Hecke modules

Hq*l(w)(SIAffM,Mp<1>+5;+b7y+5)(0f|7J\l}) —

= HIO (S0 M) @ HYS 2, Fbrn) @ (o) @ hulf @ )
f
(9.85)

We can define the period matrices (2(1)), (A1) also for the cohomology of
the narrow covering, but these period matrices only depend on the first factor in
the Kiinneth decomposition above. Hence they do not depend on b. Our original
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period matrices in (9.79) are certain submatrices of these, which submatrix
depends on the parity of b. Then a careful inspections shows that

Ploslvilsl) = Ploy)~! (9.86)

If we start from our original oy for any value b € Z we can consider the
expression

ACOh(O', 7’;¥’7 < Xa“u(l) —0>-b< Xa>VJ >)

m Plop®  (987)
a ACOh<Ja raP7 < Xaaﬂl(l) —6>-b< XasVJ > +1)

where +1 = (—1)*~%(¥:})| Can we prove the assertion of Theorem 9.3.2 for this
given value of b7

This is certainly the case if there is a dominant weight \; and a Kostant
representative w; € W with [(w;) = I(w}) such that

wi(M +p) = @Y+ 85+ 6+ by

We discussed this issue briefly in section 9.1.4 and saw that for a given w; the
number b has to lie in an interval, which may be empty. But we may of course
have several options to choose w;.

The final answer should be: There is a finite interval o f integers [a(p™), b(u(M)]
which are the so called critical arguments for (") + &7 (Will be explained in
earlier section on the cohomological L-function.) Then we can solve the equation

wi (A + p) = g + 67 + 0+ bys;wr € WP I(wy) = I(w}), A\ dominant
(9.88)

if and only if

afuM] < < xa, M =6 > =b < xa, 75 >
(9.89)
< Xar pD =8> —b < Xa, 70 > +1 < buV]

This is the Combinatorial Lemma.
We summarise : The C-L-S-method proves - provided certain assumptions
are verified - that

A (0,707, < Xy ) — 8 > —b < Yo, 77 >)

- Plop)* e Ml @ F
- ACOh(O', 7«:1’7 < Xa”u(l) —0>-b< XasVJ > +1) ’
(9.90)

provided the arguments < Y, # +par —6 > —b < x4, 77 >, and < xaq, pM) +
py — 6 > —b < Xq,7s > +1 are critical.

9.3.1 Denominators of Eisenstein classes and Congruences

We drop the assumption I(w) = l(w’) and replace it by l(w) > l(w’) and we

also assume that w - A is in the positive chamber. Furthermore we assume that
Indggijfc;Hnglp(w)(Siﬂéw,M(w -A) ® C)(oy) is complete in HQ(SI%,MA ® C),
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i.e. the Manin-Drinfeld principle is valid. This is certainly the case if A is
(sufficiently ) regular,

Then we can conclude that Eisc = Eisg ® p C where

Eisp : IndﬁgﬁﬁHgL;gw) (Siars Mw - X) @ F)(og) — HUSE,, M & F)
(9.91)

Now we know that for regular representations M the cohomology H” (m, KM H, ®
M(w - X)) is non zero only for v in a very narrow interval around the middle
degree (see [101], Thm. 5.5). If the difference [(w) — I(w’) is greater than the
length of this interval, then the following condition is fulfilled

In any degree T2%*(w) induces zero on the cohomology. (Tzero)

If we assume (Tzero) and Manin-Drinfeld then we get 7 o Eisp(¢f) = ¢y,
i.e. the restriction of the Eisenstein class to the boundary gives us back the
original class. It does snot spread out (see section 7.1.5.).

Then it seems that the second term in the constant term has no
influence on the structure of the cohomology. It is a central message
of this book that this is not the case. Under certain circumstances the
second term is of fundamental arithmetic interest, it contains relevant
arithmetic information.

We pass to the integral cohomology, then we may restrict Eisp to the in-

tegral cohomology Indggﬁ;;Hgl;gu&t(S%M,M(w A)oys(0f), here S is a con-
: ’ :

trollable finite set of primes, which have to be inverted. Again we come across
with the question: Determine the denominator ideal

A(O’f) = {a\a S OF,S|
a Eisp( IndeaEiﬁiH&;i)(w) (S, M(w - N)ogs (7)) € HUSE,, My @ Op ) int.
(9.92)

We have some heuristic (or speculative) arguments which suggest a relation
between this denominator and the arithmetic of the second constant term. This
conjectural relationship is also supported by an impressive amount of experi-
mental data.

To get a little bit closer to the formulation of the conjecture we look at
the constant term, but not on the level of cohomology , we look at it on the
level of complexes. We assume that I(w) = I(w') + 1. We decompose the Lie-
algebra m = m™) @ Q dyp @ ¢ @ ¢ and then the Delorme complex and the local
intertwining operator becomes

- Hong(A‘(m(l)/EM),Hgg? Q@ M(w - X)), A (Q dvp) @ A®(c;) @ A®(c) —
1
— Homyey (A*(mD /8), H,, ) ® M- \)), @A*(Q dvg) © A*(c}) @ A*(c)
(9.93)
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Let g be the lowest degree such that Hom gear (A9 (m) /gM), H_ooMw
A)) # 0, put ¢ = qas +1(w). Then we have to compute the restriction of T2¢(w)

to the essential piece
Hom ear (A2 (mM) /eM), H o) @ M(w - X)) ® A°(Q dy,) ® A°(cf) @ A°(c)

\I/ Tloc( )
Hom e (A®(m) /eM), H,, o) @ M(w' - X)) @ ANQ drp) @ A°(c5) © A°(c)
(9.94)

We perform the same computation as above, but now we define the number
/
Coo (0007 Uoo) by

T (W, ) = Coo(0oo, 0l Wor_ A dyg, (9.95)

We define the relative period matrix P(os) by the same formula, with respect
to the bases ...e, ... and ...e}, this gives us a linear map

HI(SY, M(w - \) @ F)(og) © C PO pra-1- 0 (St M’ - X) & F)(0}) A Cdrg

(9.96)
This linear maps induces a Hecke module linear map
Tloc G(Af) . prq—Ii(w) .
T (o) IndP(A % H (SKM,M(w A)®F)(op) = 0.97)

Indg (/) HI=1- l(w>(s}gM,M(w N) @ F)(o}) A Cdyq

Eventually we get for the constant Fourier coeflicients of our Eisenstein series
F o Eisc(¢y) = s+

ACOh(J, ?";%, < Xa,/i(l) —0>-b< XasVJ >)

T'°%(o) (1) A Cdryg

(9.98)

v
a ACOh(Jv Ttlllpv < Xaa,u'(l) -4 >—b< Xa,VJ > +1)

Here 1y is a "harmonic differential” form which represent the cohomology
class also called ;. Then T'°¢(o¢)(¢)5) ACdyg is also a harmonic form, but the
cohomology class is zero. Hence we do not get any consequences (for instance
rationality) for the factor in front.

But there are instances where this second term contains interesting informa-
tion. We abbreviate and write

(o) =[] A“’h(fﬂ" ;< Xas D) =6 > =b < xa,77 >) (9.99)
7 " ACOh(a,ra < Xay pD) =8 > —b < xa,77 > +1)

Now we write C(o,b) as a product

C(a,b) = C™(a,b)C™(a, b) (9.100)
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where the first factor collects the critical values and the second factor is gives
us something like a motivic extension class. Then we find instances where we
can show

C(a,b)P (o) € Ma(o),d(o ) (F) (9.101)

Since the relative period matrix is well defined modulo action by Gly(s,)(OF,s)
from the left and from the right, we can speak of the denominators of this ma-
trix, i.e.

AL(O'f) = {a\a S Opys\aCC“t(a, b) S Md(af),d(nf)(OF,S)- (9.102)

Now we have some speculative arguments suggesting, that under certain
conditions we should have

A(Uf) - AL(O'f) (9.103)

This is of course a very vague statement, one might even argue that it is
empty, if we do not specify the set of exceptional primes S. But in principle it
gives us a slightly more precise idea how this relationship between the ”arith-
metic” of the second constant term and the denominator of the Eisenstein class
looks like.

We discuss and verify these conjectures in the Chapters 3-5 in the very
special case G/Z = Gly/Z, the parabolic subgroup P/Z is of course the standard
Borel and we consider unramified cohomology, i.e. Ky = GIQ(Z ). In this special
situation the group M/Z = T'/Z the the standard maximal torus. Our coefficient
system is the M from section 4.1.1, we assume that n is even and d = 0. Then
o is simply the n + 2-th power of the Tate character, the only possible value of
b is b = n and then-after using the functional equation- we get

¢'(=n)
C(o,n) c(n)C(_1 y

where c(n) is a rational number with prime factors < n. (See MixMot). The
numerator is the motivic factor, the denominator is the critical factor, we know
that {(—1 —n) € Q. In this cases we prove that the exact denominator is the
numerator of {(—1 —n). (Theorem 5.1.2).)

Unfortunately the proof given there is a "wrong” proof, because it uses
fortunate special circumstances (Whittaker model, modular symbols).

In Chapter 3 we describe a computer program (written with the help of H.
Gangl) which verifies the conjecture -in the above special case - experimentally
(‘and in principle ) in any specific case.

In the last section of this book we discuss several instances of this conjecture,
we also discuss the further experimental evidence in these cases.
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9.4 The special case Gl,

In the previous section we considered only the bottom step in the boundary
cohomology, and in this bottom step we only considered cuspidal contributions.
For the special case G = Gl,,/Z we extend the construction of Eisenstein classes
which we obtain from parabolic of lower rank. This means that we make an
attempt to understand the questions raised above, but we admit that we are
very far from a satisfactory answer. We more or less make a start and end up in
a combinatorial coppice where we may get completely lost. On the other hand
we expect consequences on special values of L-functions like the ones in [47] but
it is not clear how much get that goes beyond the results in [47]. In any case I
am very optimistic that these considerations will give the corresponding result
to the main theorem in [47]in the case nn’ odd. In this case there is a non zero
Hodge middle Hodge type and this implies that the critical arguments have to
satisfy a parity condition. (See [?]).

9.4.1 The tempered representations with cohomology at
infinity

We consider the group Gl,, /R, we choose a essentially selfdual highest weight
A= ;L_l a;y; + dé( ie. a; = an—;) . The a; are integers > 0 and d is a half
integer which satisfies the parity condition

d€Zifnisodd ,az =2d mod Z if n is even
We want to recall the construction of a specific (g, Ko ) -module Dy with
H*(g, Koo, Dy @ M) #0

and we will also determine the structure of this cohomology. This module is
the only tempered Harish-Chandra module which has non trivial cohomology
with coefficients in M. The center G,, of Gl,, acts on the module M, by the
character wy : x — 2™%. Since we want no zero cohomology the center S(R)
of G1,,(R) acts by the central character (wy)g' on Dy. The module Dy will be
essentially unitary with respect to that character.

We construct our representation Dy by inducing from discrete series repre-
sentations. We consider the parabolic subgroup °P whose simple root system
is described by the diagram

0—X—0—X—--+—o0(=x) (9.104)

i.e. the set of simple roots Io; of the semi simple part of the Levi quotient ° M
is consists of those which have an odd index. Let m be the largest odd integer
less or equal to n — 1 then a, is the last root in the system of simple roots in
Tops. Of course m =n — 1 if nis even and m = n — 2 else.

The reductive quotient is equal to Gly X Gla X ... Gly(xG,, ), where the last
factor occurs if n is odd. This product decomposition of ° M induces a product
decomposition of the standard maximal torus T' = [], ;.44 7i(XGy,) and for the
character module we get

XH(T) = P X (T)(@X"(Gm) (9-105)
i:0dd
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The semi simple reductive quotient °M M (R) is A; x Ay x - - x Ay, the number
of factors is
if n is even

‘r=(m+1)/2= {gl

5= ifnisodd
We also introduce the number
if
e(n) =0 ifmeven (9.106)
1 if n odd

We have a very specific Kostant representative wy, € W' F. The inverse of
this permutation it is given by

wil ={1—1,2—n3—24—n—1....}.

The length of this element is equal to 1/2 the number of roots in the unipotent
radical of °P, i.e.

In(n—2) ifniseven
H(wan) = (9.107)
(n—1)? ifn is odd

W~

=

We compute

wanA+p)—p= Y by M pds= Y b% +ds = gV + do.
iz odd i:i odd
(9.108)

(The subscript ,, refers to unitary, it refers also to the length {(w;, being
half the dimension of the unipotent radical. Here we have to observe that
w - A is an element in X*(7T) but the individual summands may only lie in
X*(T)®Q = X§(T). Any element v € X*(T') also defines a quasicharacter
&+ T(R) — R (by definition). But an element v € X§(7') only defines a
quasicharacter |y|g : T(R) — RZ, which is defined by |y|r(z) = [m~y(z)[*/™.)

To compute the coefficients b; we use the pairing ( See7.1) and observe that
< Xi)Vj >= 51"3'. Then

bj =< Xj, wan(A+p) = p >=< wixj A +p>—<xjp>.  (9.109)

Now the choice of wy, becomes clear. It is designed in such a way that

t 0 0 0 1 0 0
0 0 t
_ 0 0 1 0 0 _ 0 0 1 0
wunlxl(t) = 0 1 0 ,'lUuan,?,( ) = 0 0
0 0 0 0

(@)
(@)
S
o
I
L

— oo o:
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and for the general odd index j we have wylx;(t) = h(jt1)/2 where for all
1 < v < n/2 we denote by h,(t) the diagonal matrix which has a 1 at all entries
different from v,n + 1 — v and which has entry ¢ at v and ¢t~! at n+1 —v. Then
hy, = {t — h,(t)} is a cocharacter. It is clear that

i(hw (1)) =

t ifv<i<n-—v
1 else

This yields for j =1,....,°r

bojo1 =3 (ay+1)<hj7>—-<x;p>=( Y (a,+1)—L

v j<v<n—j

We should keep in mind that we assume a,, = a,_,. Then we can rewrite the
expressions for the b, :

2a; +2a;41+---+2an_1 +an +n—25 ifniseven
ij_l{ J TS 3-1 743 J (9.110)

2aj+2aj+1+--~—|—2an%1—|—n—2j if n is odd
The byj41 will be called the cuspidal parameters of A and we summarise

The baj_1 have the same parity, this parity is odd if n is odd. If n is even
then baj_1 has parity of az. We have by > b3 > -+ > by, > 0. They only depend
on the semi simple part \(V).

By Kostants theorem
Wyn * A = wWun(A +p) —p

is the highest weight of an irreducible representation of °M. This irreducible
representation occurs with multiplicity one in H! %) (o p, My).
The highest weight of this representation is

o (M) 3
wun’)\:wun(A+p)*p: Z bZ’YZM +d57(2’)/2+2’)/4++2’Ym,1+§’ym+1)
i:i odd
(9.111)

Digression: Discrete series representations of Gla(R), some conventions

We consider the group Gla/ Spec(Z), the standard torus T' and the standard
Borel subgroup B. We have X*(T) = {y = ay1 +ddla € Z,d € 1Z;a+2d =0
mod 2} where

t 0 ) -2 t1.a
(0 ) = T = (G E ()
0 o to

(Note that the exponents in the expression in the middle term are integers)

A dominant weight A = a~y; +d0 is a character where a > 0. These dominant
weights parameterize the finite dimensional representations of Gla/Q. The dual
representation is given by AV = avy; —dd. But these highest weights also parame-
terize the discrete series representations of Gla(R), (or better the discrete series
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Harish-Chandra modules). The highest weight A defines a line bundle £_q~ 45
on B\G and
My = HY(B\G, Lar+d5)

Then we get an embedding and a resulting exact sequence
0= My = I§((—ay1 + dé)r) — Dav — 0

and D,v is the discrete series representation attached to \V. ( Note the subscript
g can not be pulled inside the bracket!).
A basic argument in representation theory yields a pairing

I ((—am — do)) x I (((a +2)71 + dd)r) — R

(here observe that 2y; = 2p € X*(T)).
From this we get another exact sequence which gives the more familiar def-
inition of the discrete series representation

0— Dy = IS(((a + 2)y1 + dd)r) — My — 0. (9.112)

The module Dy is also a module for the group K. = SO(2) and it is well
known that it decomposes into K, types

Dy=-0C¢y..Cp_g—a ®CP_q2 D Cth1a42 ® CiPgta ... (9.113)

(End of digression)

We return to our formula (9.111). The group

M= ] Mix (Gp)

i:todd

where M; = Gly. If T; is the maximal torus in the i-th factor, then the highest
weight is 'y; MY and let d; be the determinant on that factor. The indices 4
run over the odd numbers 1,3,...,m. If n is odd then let é,, : T'— G,,, be the
character given by the last entry. Then we have for the determinant

0

9.114
. (9114)

5251—|—53+"'+5m+{

We want to write the character 2vs + 2v4 + -+ 4+ 21 + %'ymﬂ in terms
of the d;. We recall that

Yo =6 — 28
Ya=01 403 — 20

3 (9.115)
Ym—1 :51+53"'+5m—2*m7_15
and if n is odd
Y41 :51+53+5m_%+15
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Then the summation over the d-terms on the right hand side yields

0 n—1
smey )= (9.116)

—:L(4+8+~-~+2(m—1)—{

and if we take our formula (9.114) into account and also count the number of
times a §; occurs in the summation we get

(5 1)1 +(5—-3)03+ -+ (-5 +1)0p—2 n=0 mod 2
24y 4. 22, — 2, else

2 2
(9.117)

3
2724272+ + 2Ymo1 F SV = {

Let us denote the coefficient of d; in the expressions on the right hand side by
¢(i,m.) We recall that we still have the summand dé in our formula (??. Then

o d(s
p=wa- A= Y by MY (elin) + D)+ (9.118)
i:i odd (=%~ +d)dn

We claim that the individual summands are in the character modules X *(7})
(resp. X*(Gy,y,)). This means that

n—1

by M+ (cliyn) + d)s; € X*(Ty), — +deZ. (9.119)
We have to verify the parity conditions. If n is odd the the parity condition
for X\ says that d € Z. On the other hand we know that in this case the b; are
odd and since the ¢(i,n) are also odd the parity condition is satisfied for the
individual summands.
If n is even then the parity condition for for A says that Gaz =nd mod n.
We know that the b; all have the same parity: b; = az mod 2. Hence need that

az =2d mod 2, but this is the parity condition for A.

For any of the characters p; we have the induced representations I;]Z,VI"' (i +
2p;) the discrete series representation D,,, and the exact sequence

0= Dy, — I (s + 2pi) — My, — 0. (9.120)
The tensor product
D= XD Y (9.121)
: i:todd a 2

is a module for ° M.
Here we have to work with K ;QM = Ko N° M. This compact group is not
necessarily connected, its connected component of the identity is
KM MO(R) = SO(2) x SO(2) x --- x SO(2) = K. MW,

o

An easy computation shows

KM=

oo

0(2) x O(2) x --- x O(2) if n is oddE
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since Ko, C Sl,(R) we have the determinant condition in the even case, in the
odd case we have the {£1} in the last factor and this relaxes the determinant
condition.

Under the action of K;M’(l) we get a decomposition

D, = P QP Co-. i 42120)) (9.123)

e i=1 ;=0
occur with multiplicity one. Here ¢ = (...,¢;,...) is an array of signs +1.
The induced representation (algebraic induction)

md¢® p

b Dy =Dy (9.124)

is an irreducible essentially unitary (g, Ko,) -module, this is the module we
wanted to construct. (To be more precise: We first construct the induced rep-
resentation of G(R) where G(R) is acting on vectors space V, consisting of a
suitable class of functions from G(R) with values in D,, and then we take the

K finite vectors in V.) The restriction of this module to Kéé) s given by

KD Zx KD
Ind 5,0, Dy = D QP d, 2,0 Ce, 12120 (9.125)
hd e 1=1 v;=0 ad

(The last induced module is defined in terms of the theory of algebraic groups.

We consider K&l)) as the group of real points of an algebraic group, namely the
connected group of the identity of the fixed points under the Cartan involution
©. Then KZOM s the group of real points of a maximal torus. Then

K@
Ind %5, 0) Ce; v r2420) =
{f|f regular function f(tk) =TI, e; ()51 bit2+2vi) £k for all t € K;OMO)J{: € Koo}
(9.126)

We compute the cohomology of this module
Homp (A*(g/t), Dy @ My) = H*(g, Koo, Dx @ M),

i.e. the differentials in the complex on the left hand side are all zero. (Reference
to 4.1.4)

We apply Delorme to compute this cohomology. We can decompose °m =°
m® @ a then °¢ c® m) and

Homy  (A*(g/t), Dy ® M) = Homyeonm (A*(*m/°€), Dy ® My,,5) =
Hom o ar (A®(*mM) /°8), Dy @ Moy,,.) @ A®(a).
(9.127)

If we replace K ;OM on the right hand side by its connected component of the
identity then we have an obvious decomposition

HOHIK;M,(U (A.(Om(l)/oé), 'D# ® Mwun.)\) = ® HomK;,OAL(l) (A. (Om(i’l)/oéi)7 ,Dbi ® Mbl)
4:4 odd
(9.128)
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the factors on the right hand side are of rank two: We have Ko MW SO(2)

and under the adjoint action of Ké’oo M. the module m(i’l)/"ﬁi ® C decomposes

m®D /¢ © C = CPY, ® CPY_

(See [Sltwo.pdf]) Then the two summands are generated by the tensors

Wi+ = PXJF ® Yy, 42 @ M_p,,W; — = PiY_ ®Y_p_o ® my, (9.129)

where m,) is a highest (resp.) lowest weight vector for Ké’OOM acting on
My.-a- On the tensor product on the right we have an action of the maximal
compact subgroup O(2) x O(2) x - - - x O(2) and under this action it decomposes
into eigenspaces of dimension one. These eigenspaces are given by the product
of sign characters € = (e, €3,...).

Then it becomes clear that Hom goar (A*(°m™) /°€), D, @ M,,,.2) is of rank
one if n is odd and for n even it deCOIﬁoposes into two eigenspaces for the action

of the group O(2) x O(2) x --- x 0(2)/5(0(2) x O(2) x --- x O(2)) = {1}

HOmK;M (A'(om(l)/of), Dﬁ Q@ Muypr) =
Hom gonr (A®(°m™) /°8), D)y @ Moy, 1))+ © Hompeons (A*(CmV) /28), Dy © Moy, ) -

We have to recall that My = HYw) (4o p, M) is a cohomology group in
degree [(wyy). The classes in the factors of the last tensor product lie in degree
1, hence the multiply up to classes in degree °r. This means that

Hi(g, Koo, Dy ® M) # 0 exactly for g € [[(wun) +° 7, {(wun) +n]  (9.130)

in the minimal degree {(w) 4° r it is of rank 2 or 1 depending on the parity of
n.

9.4.2 The lowest K, type in D,

The maximal compact subgroup K, is the fixed group of the standard Cartan-
involution © : g — tgil. The subgroup °M is fixed under © and the subgroup
SO(2) xSO(2) x ---xSO(2) = KW = TY is a maximal torus in K. It is the
stabilizer of a direct sum decompositions of R™ into two dimensional oriented
euclidian planes V; plus a line Rz if n is odd, we write

R"=PV: @ (Rz) (9.131)

The Cartan involution is the identity on our torus 77 /R. This torus can
be supplemented to a ©®— stable maximal torus by multiplying it by the torus
Ty gpiit Which is the product of the diagonal tori acting on the V; in (9.131)
times another copy of G,, acting on Rz (if necessary). So we get a maximal
torus Th = 1Y - T1 sp1it- Obviously T is the centralizer of T and the centralizer
of T split is the group °M.
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If we base change to C then T7 splits. We identify

SO(2) = (_“b Z) (9.132)

and then the character group X* (7T} x C) = &Ze, where on the v-th component

a b

e, : a) ™ a+bi = a+by/—1. Then this choice provides a Borel subgroup

—b
B. D T x C, for which the simple roots af,as,...,as, are
€] —€eg,83 —€3,...,€0p_] — €op,€0p_1 + €0, for n even
e1 — €9, —€3,...,€Eo0. if n is odd

(See [Bou] ). For n even we get the fundamental dominant weights
e1t+e+---+ey, frv<°r-—1
Y= 3(er+test-tepq—e,) ifv="r-—1 (9.133)
slerteat o teogten) ifv=°r

and for n odd we get

(9.134)

e Jeatet-+tey, fv<°r
v %(61+€2+"'+eor) last weight

An easy calculation shows

ig-e- _ )91 =927 + (92 —93)v8 + -+ (gor—1 — Gor)VEp 1 + (gor—1 + gor )7, 7 even
>
P (9 5+

1= 927+ (92 = 93)%5 + -+ (gor—1 = gor)yor—1 + 290,75, n odd
(9.135)
The character Z:;l gie; is dominant (with respect to B, ) if
>go > ... gop_1 > Fgo if n is even
g1 =292 =2 gor—1 Z Tger Vv (9136)
912922+ 2 Ggor—1 = gor 20

Under the action of K(gé) the (g, Kéé))— module D) decomposes into a direct
sum

Dy = P Dar(O,) (9.137)

where p¢ € X*(T° x C) is a highest weight, ©,c is the resulting irreducible
K-module and Dy(0©,) is the isotypical component.
We introduce the highest weight (see (9.110))

ug(/\) = (bl + 2)61 + (bg + 2)62 + -+ (bgoT_l + 2)6o7n (9138)

and and in terms of our dominant weight A this is

c(\) = 2(ar + DT+ -+ 2(aor—1 + 1)vE,_1 + 2(aer—1 + aor +3)75,  if nis even
Ho 2(a1 + D)5+ -+ - + 2(ae, + 3)7S, if n is odd
(9.139)
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For A = 0 we get an expression (not depending on the parity of n)
116(0) = 295 + - -+ + 295, + 675, (9.140)

In the case that n is even the group K, contains the element § which maps
e; — e; for i <°r —1 and eo,, — —eo, or what amounts to the same exchanges
v§,_1 and 7§, and fixes the other fundamental dominant weights. Then

SN 1= D(G(N) = 295 + -+ + 695,y + 295, + D(X°) (9.141)

Proposition 9.4.1. If n is odd then the K&l))- type © e (x) occurs in Dy with

multiplicity one. All other occurring K&l)) types are “larger”, i.e. their highest
weight satisfies p° = pS(N) + Y nias with n; > 0. We have

H*(g, Koo, Dy @ M) = Homy_ (A*(9/€), 0 ,c0) @ M))
If n is even then the (g,Kéi)) module Dy decomposes into two irreducible

sub modules
D, =D} & Dj.
The Kc()é) types © e (x) TESP. Ope(n) occur with multiplicity one (resp. zero ) in

]D;\"( resp. DY ). They are the lowest KC%) types respectively. We have
H*(g, K&, Dy ® M) = H*(9, K&, Df @ My) @ H* (9. K&, Dy @ My) =

Homy 1) (A*(g/t), © 5 (n) © M) & Homye1) (A*(g/t), Opg(n) ©® M)
Proof. For two fundamental weights we write p¢ > u§ if ¢ is "larger” than
p§ in the above sense. We start from ( 9.125 ) and consider a single summand

€Y
Indﬁg"M(l) Cte, (b, +2+2v,)- This induced module decomposes into isotypical mod-

ules

KL KO
IndKZOM(l) CwEi(bi+2+2yi) = @ IndK?Mu) Cwsi(bi+2+21’i) (@MC) (9 142)
pe *

where p¢ runs over the set of dominant weights, where ©, is the irreducible
m
module of highest weight ¢ and where Indi?]\/](l)C¢Ei(bi+2+21’i)(®ltc) is the

isotypical component. If we pick any dominantxweight ©¢ then Frobenius reci-
procity yields that

<)
©,e occurs in IndiioMu)Ci/’ai(bi-s—ZHw) with multiplicity £ <~

2 (9.143)
t =11, e;(t)%:(6iT2+2v4) occurs in O, with multiplicity

and if k > 0 this implies p© > ¢+ [, e;(t)5® 2220 (1), Tt it easy to see that

)

we get minimal fol, types only if all v; = 0. But

=(1,1,...,1,£1) if
t— Hei(t)fi(bﬁ?) is dominant <—— e=(1,1,...,1, ) if n even
J e=(1,1,...,1,1) if n odd

(9.144)

and in the n even case these two characters are exactly p§(A) and g§(A) and in
the n odd case this character is u§(A).
O
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9.4.3 The unitary modules with cohomology, cohomolog-
ical induction.

We start from an essentially self dual highest weight A and the attached highest
weight module M. In their paper [101] Vogan and Zuckerman construct a finite
family of (g, K~ ) modules denoted by A, (\) which have non trivial cohomology
with coefficients in M, i.e.

H*(g, Koo, Ag(N\) @ M) #0

They also show that all unitary irreducible (g, K ) -modules with non trivial
cohomology in with coefficients in M. are of this form. We briefly recall their
construction and translate it into our language and our way of thinking about
these issues.

We introduce the torus S'/R whose group of real points is the unit circle in
C* and we chose once for all the isomorphism

io : S' xg C = G,,,/C, (9.145)

which sends z € S}(R) to z € C*. We identify S* = SO(2) by sending z = x + iy

to (_:cy z) . We consider the free Z module

Homg (S, TY) = Homg(S',T1) = X, (T xg C)

where of course the last identification depends on the choice of ig. We have the
standard pairing < , >: X, (Th xg C) x X*(T} xg C) — Z.

The first ingredient in the construction of an A4 () is the choice of a cochar-
acter x : St — T, (defined over R). From this cocharacter we get the centralizer
Zy , this is a reductive subgroup whose set of roots is

Ay ={ae ACX"(Th xgC)| <yx,a>=0}.

We can also define
AT ={a| < x,a>> 0},

this set depends on the choice of iy (see (3.27)). This provides a parabolic
subgroup Py C G xg C whose system of roots is A, UAY. Clearly ©(Py) = Py
hence P, is the ©-stable parabolic subgroup attached to the datum yx. This
parabolic subgroup is only defined over C, if we intersect it with its conjugate
P, then we get the centralizer Z, of x. We relate this to the notations in [101]:
the q in A4(A) is the Lie-algebra of Py, the group Z, is the L. Let u, be the Lie
algebra of U,. The datum x determines the q in Aq(X). We could introduce the
notation Aq(A) = A, (A). Since T is the centralizer of T. we can find a generic
cocharacter xgen such that P, = B. our chosen Borel subgroup in °M.

To a highest weight A which is trivial on the semi-simple part ZS) Vogan-
Zuckerman attach an irreducible unitary (g, Koo) module A4(\) such that

H*(g, Koo, Ag(X) @ M) #0.
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Vogan and Zuckerman show (based on results of many others ) that all the
unitary irreducible (g, Ko ) modules with non trivial cohomology in M) are
isomorphic to an Aq(X).

Furthermore they give a description of the K. types occurring in Aq(\)
especially they show that Aq(\) contains a lowest Ko, type. This lowest K-
type is given by a dominant weight which obtained by the following rule:

We consider the action of the group K. on the unipotent radical U, and
on the Lie algebra u,, and the restriction of this action to T7. The torus 77 also
acts on u, and under this action we get a decomposition into one dimensional
eigenspaces

= @
aGA;

let us choose generators X, in these eigenspaces. We observe that the roots
a,Oa € AT induce the same root . on Tf. The vector V,, = X, — OX, € u,
is a non zero eigenvector for 7Y and

uNEeC = € v,
(a,@a)EA;

the sum runs over the unordered pairs. Then

peGA) = D act A (9.146)
(a,0a)eA}

is a highest weight of a representation ©,, () of Kéé)

K(()é) type in Aq(X). We get

and this is the lowest

(9.147)

The module is determined by these properties:

1) It has non trivial cohomology with coefficients in My

2) It has pc(x, A) as highest weight of a minimal K, type. (See Thm. 5. 3
in [101].)

We return to our group Gl,/Z,, then a cocharacter x : S' — T¢ is of the
form

z" 0 0

0o z" ... ...

0 2"

0 (1)

where the entry (1) occurs if n is odd. Such a character is regular if and only if
the integers n; are pairwise different.

It is known that A, (\) is tempered if and only if x is regular or what
amounts to the same when the corresponding O-stable parabolic subgroup is
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a Borel subgroup. The set of regular y has several connected components,
these components are open convex cones, whose faces are given by hyperplanes
n; = n; for some 77 # j. The O-stable parabolic subgroup B, only depends on
the connected component which contains x.

Furthermore we have an action of Weyl group Wi _ on these connected
components. This Weyl group is the semi direct product of the symmetric
group S, and by by involutions n, — (—1)®n, with the constraint ) e, =0
mod 2 in case n even.

We can summarise

Given our dominant autodual X there are (resp.there is) exactly two tempered
isomorphism types A, =(X) if n is even (resp. one tempered A, (\) if n is odd.)
If we look at their lowest K, type we see that these modules are isomorphic to
the modules ]D)f for n even (resp. Dy )for n odd.

Cuspidal cohomology for Gl,
Grobners objection

A theorem of Wallach asserts that in a cuspidal representation H, ®H,_ _ C
L2, (Gl (Q\Gl, (A)) with H*(g, Koo, Hr,, ® My) # 0 the component H_
must be tempered (See [?], ), hence it must be an A, (\) with x regular.

On the other hand Theorem 5.2 in [47] says that for any other ® : Hy, ®
Hr, < L3,.(Gl,(Q)\Gl,(A) the homomorphism ® factors through the space
of cusp forms, in other words any ® provides cuspidal classes. Hence this means
that a Hecke-module 7 which occurs in the inner cohomology H*(S% - MA®F)
and which provides cuspidal classes is necessarily strongly inner.

It this point a little warning is appropriate. In [47] in the proof of Theorem
4.5 the authors refer to a preliminary version of this book ( and also a paper
of Grobner). Here - in this book - the Theorem 4.5 is replaced by the much
more general and much more simpler to prove proposition 7?7 so the reference
becomes obsolete.

9.4.4 Eisenstein classes

In the previous section we considered only the bottom step in the boundary
cohomology, and in this bottom step we only considered cuspidal contributions.
We now extend the construction of Eisenstein classes to obtained from parabolic
of lower rank.

Our group is Gl,,/Q and we choose a parabolic subgroup P/Q containing
the standard Borel subgroup and with reductive quotient M = Gl,,, x Gl,, %
- x Gly,..
We want to construct Eisenstein cohomology classes in H*® (Sg . M A,C) start-
ing from inner classes in

Hu(apst,M/\(c @ Hy™ ) SM CH ) (up, My).(w- X))

weWw P

We pick an element w € W¥, and write

w(A+p) = M — b (w, M) vny = b2(w, A)Ynyng + -+ = br(w, )‘)'Yn1+---+n2_1 + 315,
9.149
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here the v, +..n, € Hom(P,G,,) ® Q are the dominant fundamental weights(
see 1.74) und iV is the semi simple part (with respect to M), i.e.

A = ((a1 + Dy + -+ (any—1 + DV ) + (@1 + D7+ (@ngnar + DV ) + -

:[Lgl)+.+ﬂ£1).

(9.150)

We assume that bM (w, \) > 0 i.e. w(\ + p) is in the negative chamber and

we also assume that the ﬂgl) are self dual, this is a condition on A, w. We pass
to a suitable finite normal extension F/Q and decompose the strongly inner
cohomology

Hy(0pSE, . Mar) = D P IndgH!Tl(w)(Slj\éM,./\;lw‘,\)(gf) (9.151)

weW?r o,

where the oy are absolutely irreducible. The Kiinneth-theorem implies that
Op=01,fR025Q Q0 f. At an unramified place p this module has a Satake
parameter

Wp(0f) = {Wips s Wy pr Wnydlpsr e o Wnytma,py--- )

where the first n; entries are the Satake parameters of o1 r and so on.
We choose an ¢ : F — C. We take an irreducible submodule

Hy, C IndgH!'!*l(w)(Slf\ém,/\;lw.x)(gf),
then there is an irreducible (m, K2)-module H,_ and an embedding

:Hy, ®Hy, ®p,C=Hy = L3, (M(Q)\M(A)) (9.152)

cusp
such that H, ®p, C C H*(m, KX, H,_)® H,,. (see Theorem 8.1.1).

For z = (21,29,...,2—1), 2;i € C we define the character

|7P|£ = |’Y7l1 |Z1 h/nl-i-nz ‘22 s ‘7n1+n2+"'+nr71 |ZT_1 : M(A) - C

By the usual summation process we get an Eisenstein intertwining operator
Bis(a,2) : ISH, ® [1p 2 > AG(Q\G(A)) (9.153)

the series is locally uniformly converging in a region where all (z;) >> 0 and
hence the Eisenstein intertwining operator is holomorphic in this region. We
know that it admits a meromorphic extension into the entire C" 1.

We want to evaluate at z = 0, this is possible if Eis(o, z) is holomorphic at
z = 0. To find out what happens at z = we have to consider the constant term
(constant Fourier coefficient) of Eis(c,z) along parabolic subgroups P;. (See
[49] ) These constant Fourier coefficients a given by integrals

FPflg) = f(ug)du. (9.154)
Up, (Q\Up, (A)
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It suffices to compute these constant terms only for parabolic subgroups con-
taining our given maximal torus. It is shown in [49] that the constant term
evaluated at Eis(o, z)(f) is zero unless P and P; are associate, this means that
the Levi subgroups M and M are isomorphic. (For this we need the cuspidality
condition (See [49], )But then we can find an element in the Weyl group which
conjugates M into M7 and hence we may assume that P and P; both contain
our given Levi subgroup M. Of course now P; may not contain the standard
Borel subgroup.
We may also assume that ny = no = --- =n;, < nj 11 = = nj4j, <
© < Njy4oje14l = = Nj4.qj, = Nyp. Then it is easy to see that the
number of conjugacy classes of parabolic subgroups which contain M is equal
to T'/jlljgljsl
We compute F1 o Eis(a, 2)(f) following [49], . By definition (adelic vari-
ables in U(A), P(A), ...are underlined)

FM o Eis(a,2)(f)(g) = fo(aug)du  (9.155)

~/UP1 (Q\UP, (A) aeP(Q)\G(Q) -

Let Wy be the Weyl group of M, the Bruhat decomposition yields G(Q) =

Uwew P(Q\wP(Q), put Pl(w)(Q) = w P(Q)w N P;(Q) then our expression
becomes (we pull the summation over W to the front)

FP o Eis(o,2)(f)(g) =

Y. fu(wbug)du

/Upl @\UP &) e o) @)\ Py (@)

War, \W/ Wy
(9.156)

where Wy, is the Weyl group of M. If now for a given w the intersection of
algebraic groups w~tU;w N M = V has dimension > 0, then this intersection is
the unipotent radical of a proper parabolic subgroup of M. Since ¢ is cuspidal
the integral over V(Q)\V (A) is zero, therefore this w contributes by zero. Hence
we can restrict our summation over those w € W which satisfy wMw™! = M.
let us call this set W1 But then

P{"(Q\P(Q) = w™ Up(Q)w N Up, (Q)\Up, (Q)
and the above expression becomes

FPro Eis(o,2)(f)(g) =

S W Jup, @\, () Zvets) @\Up, (@ T2(W0VUG A= (9.157)

ZWMl\WMle/WM /f(urlUpwnUpl\Upl)(A) [z (wug)du

Our parabolic subgroup P contains the standard Borel subgroup, let U, be the
unipotent radical of the opposite group. In the argument of f, we conjugate by
w, then Up NwUp,w™ ' \wUp,w™ =wUpw ! NU, = U;,’;Eli.

FPro Eis(a,2)(f)(g) = > o feluwgdu (9.158)
War, \WMM1 /W, Up/'p, (A)
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We pick a w € WM-M the group M acts by the adjoint action on wilUIZ’;ﬁiw

and hence by a character 553%)31 on the highest exterior power of the Lie-algebra
of this group. Then this operator sends

: z z\w ! w
FPwo Eis(o,2) : ISH, ® |yp|Z — I}%ngﬁl ® (lvel) ‘559.1)31| (9-159)

The integral is a product of local integrals over all places, we may assume that
Iz = foo.z Ipprime fp.z- and then

/ fz(ﬂwg)dﬂ:/ foo,z(UooWGoo H/ fp.z(upwgp)
Up'py (A) P ry (R) P o (Qp)
(9.160)

and for bv = oo or v = p here the local integrals yield intertwining operators

TP 0y, 2)  I§H,, @ lypls = I Hyyr @ lyply 2@ 0570 [ (9.161)

O'

Proposition 9.4.2. There are local intertwining operators

TSP oy, 2)  IEHo, @ |ypls — I H

w
gy

@ el 2 0w v (9.162)

which have the following properties

a) They are holomorphic and nowhere zero in Rz; > 0 (we are still assuming
that [i is in the negative chamber.)

b) They have a certain rationality property ( [47], for the case of finite places
7.3.2.1, for the infinite places 8.4.5 and Chapter 9 (Weselmann.)

c) At the unramified primes v = p they map the spherical vector to the
spherical vector.

Finally we have

!
FPv o Bis(o,z) = C(w, P, P1,o,2) TEM (00, 2) @ Q) T "0y, 2)

p:primes

(9.163)

where C(w, P, Py,0,z) is a meromorphic function in the variable z. Therefore
these functions C(w, P, Py, 0,z) decide whether FEis(o, z) is holomorphic at z =
0, the poles of Eis(o,z) at z are the poles of the C(w, P, P, 0, z).

We compute these factors C(w, P, Py, 0, z). By definition the group Up’p,
is a subgroup of U, and as such it it easy to describe. Recall that our our
group M is Gl,, x --- x Gl and this corresponds to a decomposition of Q" =
X190 Xo®- - -d X, into subspaces and for any two indices 1 < i < j < r we define
G, ; to be the subgroup GI(X; @ X;) acting trivially on all other summands.
For all pairs 4, j we define the cocharacters x; ; : G,, — T where x; ;(t) is the
diagonal matrix having ¢ as entry at place 4, and t ! at place j and 1 everywhere
else. We define w; , :=< x; j, i) > .

The intersection G ; N U;,’;,Ul is either trivial or it is the full left lower block

unipotent group U;; ;.
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This tells us that the above integral can be written as iterated integral over
subgroups of the form U, ,(A). To be more precise: If U;”j;”l # 1 then we find
an index ¢ such that U;;y; is not trivial. In a first step we compute the local

P
unramified. We are basically in the situation, that our parabolic subgroup is

maximal. The group P’ = P N G, 41 contains the standard Borel subgroup,
P| = P; N Gjj,i+1 is the opposite and w = e. Then

integral fU_ 1 (Qp) f,S?Q (upwgp)du, at finite places where our representation o
i,1 D =

LCOh(CTi’p X O'Q/Jrl,p, wi’2i+l + bl(w,)\)%— < Xii+1,)2 > —1)
Leob (o X 0ty L 4 by(w, M)+ < Xijig1, 2 >)
(9.164)

Cp(e7P/7P1/aga§> =

A standard argument (See Langlands, Kim, Shahidi ) tells us that we can
reduce the computation of the iterated integral to situations like the one above
and then we get at unramified places

LCOh(Uiyp x oY % + bi,j(w)\)—i- < Xi,js2 > —1)

2,
Lbog bi,j(w, )\)"f' < Xi,j 2 >

Cp(w,P,P1,Q7§) = | | LCOh(O" x gV hd
2,p j
(9.165)

4,3

Jp? 2

Here the indices i, j run over those indices for which U; ; C Up 5., and b; j(w, ) =<
Xi,j» Hab > . At ramified primes p we also have a definition of the local Euler-
factors L (o, ,, xoy,,z) (Shahidi’s book) and hence we can define C,(w, P, P1, 0, z)
by the same expression.

At the infinite place the Rankin-Selberg local Euler factors are also defined.
We introduce the modified I'- function I'c(z) = #F(z) Then

L0500 X 0} 0, 2) = [ [ Te(z +p0)

where the p, are (half)-integers which are computed from the coefficients of w- A
by mysterious rules. ([47].)

Now we define C,(w, P, Py, 0,z) for all places v by the above expression,
where we express the the cohomological L factor by the automorphic Rankin-
Selberg L factor with the shift in the variable s. We go back to equation (9.163
) and define

C(vaaplvg7§) :HCV(U)7P7P17Q’§)' (9166)

We from the above proposition (9.4.2) that the factors C(w, P, P1,0,z) de-
termine the analytic behavior of Eis(c,z) at z = 0. We have to exploit the
analytic properties of the Rankin-Selberg L-functions. Here we have to use
Shahidi’s theorem which yields -(always remember that f is in the negative
chamber-)

A (o x oV, Tl + b (w, N+ < xi5,2 > —1) =

[1, LM (0iy X 0y %55 + bij(w, N+ < X3 5,2 > —1) (9.167)
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is holomorphic at z = 0 unless we are in the following special case:

a) In the product in formula ( 9.165) we have 7 = ¢ + 1 and where n; =
ni+1,ul(»l) = ,ugr)l and b;(w, \) = 1.

b) The pair o; X 0,41 is a segment, this means that o; ® det; = 041

If these two conditions are fulfilled then C(w, P, P1, 0, z) has first order pole
along z; = 0.

The denominator is always holomorphic and never zero at z = 0. (This is a
deep theorem: it is the prime number theorem for Rankin-Selberg L-functions.)

9.4.5 Rationality of L-values and some questions

We see that we get an abundant supply of cohomology classes: Starting from any
parabolic P and an isotypical subspace IndgHC'u_si)(w)(Sﬁ/[M,/\;lw. A)(ay) we get
¥

the Eisenstein intertwining operator (See equation (9.153)). We analyse what
happens at z = 0. If it is holomorphic we get a Hecke invariant homomorphism

Eis*(0) : H*(g, Koo, IdF00e ® M) @ IndGH,, — H*(SF,, Mc). (9.168)

We can restrict these cohomology classes to the boundary and even to bound-
ary strata 8@(5}%,/\;1) where () runs over the parabolic subgroups associate
to P, or more generally those parabolic subgroups which contain an associate
to P. This means that the class ”spreads out” over different boundary strata
These restrictions to these other strata are given by certain linear maps which
are product of ”local intertwining operators” times certain special values of L
functions.

In certain cases this ”spreading out” is highly non trivial. We have to clarify
some local issues. First of all we have to find out whether the local intertwining
operators are non zero and have certain rationality properties. Especially we
have to show that these local operators at the infinite places induce non zero
maps between the cohomology groups of certain induced Harish-Chandra mod-
ules. And we have to show that these maps on the level of cohomology have
rationality properties. ([47],7.3, )

If these local issues are settled then we can argue: The image of the co-
homology H*®(S§ f,./\;l) in the cohomology of the boundary is defined over Q
(or some number field depending on our data). Since the L— values enter in
the description of this image we get rationality statements for special values of
L-functions.

This has been exploited in some cases ([34], [36], [43]]) and a very general
result in this direction is in [47](see previous section).

But in case we have a pole we may also produce cohomology classes by taking
residues, again starting from one boundary stratum. The restriction of these
classes to the boundary will spread out over other strata in the boundary and
we may play the same game. In this case the non vanishing issue of intertwining
operators on cohomological level comes up again and will be discussed in the
following section. (see Thm. ?7?)

We also will encounter situation where a pole along a plane z; = 0 (or
may be even several such planes ) ”fights” with a zero along some other planes
containing zero. Then this influences the structure of the cohomology. But how?
This question has been discussed in [36]. Is the order of vanishing along this
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zero visible in the structure of the cohomology? Or is it visible in the structure
of the cohomology of the boundary, or in the spectral sequence?

9.5 Residual classes

We have seen that our Eisenstein classes may be singular at z = 0. In this section
we look at the extremal case that FEis(o,z) has simple poles along the lines
2i =< Xn;mi+1,2 >= 0, In this case we call these Eisenstein classes residual.
It follows from the work of Moeglin-Waldspurger[71] that this can only happen
under some very special conditions.

We start from a factorization n = uv we look the parabolic subgroup P, ,
which contains the standard Borel subgroup and has reductive quotient Gl x
Gl, % -++ x Gl,. The standard maximal torus is a product 7' = [[:Z] 7; and
accordingly we have X*(T') = @;_] X*(T;). We have an obvious identification
T, = GY,.

We choose a highest weight A = 3 a;y; + dd, we assume that it is self dual,
i.e. a; = a,_;. We have a restriction on the character u = w-\ = w(A+pn)—pn,
we must have

w(A+pN) — py = bl’Y{w + bg’yé\/f 4.4+ bu717ﬁ1 — dodet(l)
+b1’yf\iu + bQIY%u + -+ buflvé\ﬁ,l - (d() + l)det(Q) 4+ ...

DIV 1yugs + 02 4 buryiny — (do + v — 1)det™) (9.169)

where det”) is the determinant on the v-th block. In other words our highest
weight is a sum p = Y p; where

i = pM — (do + i — 1)det® (9.170)

where the semi simple component pu(t) = biyM + boy 4 - by YM =
bl'y{\iu + bg’}/é\iu + o+ by ... is 7always the same”. We notice that
of course we have the self duality condition b; = b,_;. Furthermore we have

S d; = —d.

We define
1=v
D, = Q) Dy, (9.171)
i=1
and start from our isotypical He,.(Sya, Muw.a)(0f). The Kimneth formula
s
yields that we can write oy = 01y X 02,5 X -+ X 0y ¢ where all the o; y occur

in the cuspidal cohomology of Gl,, hence they may be compared. The relation
(9.170) allows us to require that o;11 ¢ = o5 ¢ ® |0]. If this is satisfied we say
that oy is a segment. We assume v # 1 and hence P # G.

We know that under the assumption that o is a segment (and only under
this assumption) the factor C'(o, wp, z) has a simple poles along the lines z; = 0,
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and this is the only term in (??) having these poles. The operator T'°¢(a, s) is
a product of local operators at all places

Tloc(o_7 Z) Tloc 0_007 >< HTIOC Opr 2

and the local factors are holomorphic as long as R(z;) > 0. We take the residue
at z = 0 i.e. we evaluate

sz o Eis(c ® s)|,=0 = HZ’ (o, wp, 2)| =0T (0, wp, 0)(f) (9.172)

This tells us that the residue of the Eisenstein class gives us an intertwining
operator

Res,—o Bis(c ® 2) : “Ind ) D, ® Vi, — L3 (GQ\G(A) /Ky, wig, Isryo)
(9.173)

The image J,,, ® J,, is an irreducible module ( this is a Langlands quotient)

and via the constant Fourier coefficient it injects into aIndP(A;)DW ® Vo, At
the infinite place we get a diagram

G(R) 70N (D,,)
Indi@D, ~ — o,
1 (9.174)
Ind (3D

It is a - not completely trivial - exercise to write down the solutions for the
system of equations (9.169). This means starting from our highest weight u we
have to find w, A\. The answer is that A must be of the special form

A= a1V, + a2y20 + -+ Gu1V(u—1)0 + d0 (9.175)

which in addition is essentially self dual, i.e. a; = a,_; the number d is uninter-
esting and only serves to satisfy the parity condition.

We choose a specific Kostant representative wu v € WP it is the permu-
tation in the letters 1,2,...,n given by the followmg rule: write v = 7 +
(j—Dowithl < i < w then w;, ,(v) = j+ (i — 1)v. Then we compute
wy, (A +pn) — py € X*(T x E) and we get

(wy, (A +pN) = pN) =
(a1 +v =Dy + (a2 + v =)' + (au—1 +v - )70l
(a1 +v =Dy, + (aa+v =1L, + (@u—r +o =1,

(a1 +v— 1)’71]\1(1)71)71 + (a2 +v — 1)’7%(1} 1)u SRR (T 1)77Ji\{1+(1’*1)“)+
—(u—1)(yo + vou + - C Y (w-1) )"‘dd
(9.176)

The length of this Kostant representative is

l(wy, ) =n(u—1)(v—1)/4.
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Let wp be the longest Kostant representative which sends all the roots in Up
to negative roots. Then we define the (reflected) Kostant representative w,, , =
wpwy, . We get

wuwA+p)—p=p=(ar+v =11 + 1L, + -+ 1)t
(a2 +v = 1)(3" + 925+ + Yok o1ya)F

(@u1+v =Dl + v g+ + ’73/1—1+(v—1)u)+
—(u+ 1) (Yu + Y20+ F Ywo1yu) +dO - (9.277)

Hence we see that we the semi simple component stays the same and the abelian
parts differ by 2(yy + Y2u + -+ + Yw—1)u)) We see that we can solve ( 9.169)
provided b; > v — 1.

The identification J,  — A44()\))

Of course we expect
H*(9, Kooy Jo, @ M) # 0. (9.178)

In the paper [101] the authors give a list of irreducible (g, Ko ) modules
Aq(A) which have non trivial cohomology H*®(g, K, Aq(A) ® My) # 0. This
list contains all unitary modules having this property. On the other hand we
know that any such unitary Aq(\) can be written as a Langlands quotient. In
the paper of Vogan and Zuckerman it is explained how we can get a given unitary
Aq () as Langlands quotient, basically this means we construct a diagram of the
form (9.174) but where now we have Aq(A) in the upper right corner instead
of Jy. . In the following section we describe a specific Aq()\) and write it as
a Langlands quotient (i.e. we find its Langlands parameters) this means we
determine the upper left and lower right entries and then check that these entries
are the ones in diagram (9.174). From this we will derive the following

The map

H*(9, Koo, Jo.. @ My) @ Jo, — H*(SE,, M) (9.179)

is non zero in degree l(wy, ) = n(u —1)(v —1)/4.
See Theorem (?7)

Attaching motives to 07777

The condition (NUQuot )) will be true if A is sufficiently regular but for non
regular weights it fails. If the weight is not regular then we may have a pole of
the Eisenstein series at z = 0. This possibility has to be discussed, it can only
happen if we have (UQuot). But even if we have (UQuot) we may not have a
pole.

Let us assume that we have (UQuot) and the Eisenstein operator is holomor-
phic at z = 0. Then we may have several copies of J(oy) in H!'(ng,/\;b\ ® C).

This defines again an isotypical submodule H!'(Sﬁf,/\;l A® F)(of). We get an
exact sequence
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0 — HP(SE,, My ® F)(57) = X(o7) = J(0f) = 0 (9.180)

This is a sequence of Hecke-modules over F, the section (9.69) provides a section
over C.

If our locally symmetric space SIG(f the set of complex points of a Shimura
variety then we can interpret this sequence as a mixed motive. This motive has
an extension class in the category of mixed Hodge-structures

(X (o) B—arn € Exty_gpn(J(op), HY (S, My & F)(07)) (9.181)

and in some cases we can compute this class (we have to look at a suitable
bi-extension) and express it in terms of the second term in the constant term
(See [MixMot-2013.pdf]. )

We have seen that in many situations the space S %M is not the set of complex
points of a Shimura variety and therefore we do not know how to attach a
motive or an £ adic Galois representation to it. (Sometimes we know how to
attach a motive to it but it is simply a Tate motive). But if it happens that the
module J(of) produces a non trivial submodule H? (Sﬁf , MA®F)(dy)) then the
situation changes and we can attach a Galois-module H (ng,./\;l,\ ® F)\)(d7))

to it which contains a lot of information about o ;. Again we refer to ( [MixMot-
2013.pdf].) We have seen in [35] (3.1.4.) that this can happen.

The motivic interpretation of Shahidis theorem
We go back to a general submodule oy = O'J(cl) xaf) =05 € Coh(H;usp(Sé\(/[M , Mapr),
s

we drop the assumptions above. We assume that we can attach motives M(JJ(}), 1), M(a}z), 1)
where 77 is the tautological representation. (Actually we do not need the mo-

tives it suffices to have the compatible systems of [-adic representations) Then

we can attach the Rankin-Selberg motive to this pair

Mgs(of, Ad) = M(O’;l),Tl) X M(Uf),rl)v = Hom(M(o}Z),rl),M(oﬁl),rl)) @ Z(—w(pu'?,1r5))
(9.182)

Under the assumption of the theorem the we have M(a}l),rl) = M(J;Q),Tl)

and we see that the Galois module Hom(M(af),rl),M(U?),rl)) contains a
copy of Z((0) and therefore we get an exact sequence of Galois modules

0 — Z(—w(u®, ) = Mrs(os, Ad)er.aa — M2 (of, Ad)st.aa — 0

Hence the motivic L function is a product
L(Mgs(o7, Ad)es aa, 8) = LIZ(—w(u®), ) LMY (07, Ad)és ad, )

If we substitute for s the expression

w(r, V) + wirs, us”)

2

— b(w, \) + 5 = w(ra, pu5) — b(w, \) + s
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then we find

L(Mrs (o, Ad)eads 8) = C(=b(w, A) + ) LMY (04, Ad)ét ad, )

Then the motivic interpretation of Shahidis theorem is, that L(Mg% (o5, Ad)et,ad, W(

b(w, A) + s) is holomorphic at s = 0 and non zero (this is in a sense the prime
number theorem for this L function) and therefore - if we have b(w,\) = —1-
the pole comes from the first order pole of the Riemann - function. If now

0;1) X 0}2) = oy occurs in the cuspidal cohomology then we have an inclusion
Dy % Hop = AM(Q)\M(A)/K}")

We form the Eisenstein intertwining operator and compose it with constant
Fourier coefficient, then we get

FFPo Eis(s): f s f+C(0,8)T(s)(f) (9.183)

The operator T%°¢(s) = T32¢(s) ® @ T3°°(s) is holomorphic at s = 0. Under
our assumptions the function C(o,s) has a first order pole at s = 0 and we get
a residual intertwining operator

Ress—o : IndED, x H,, ® (0) = A (G(Q)\G(A)/Ky) (9.184)

Rationality results

Ist das nicht schon diskutiert?? Finally we want to discuss the case that
P £ ©O(P) = Q. If this happens then ng is never a Shimura variety. We have
isotypical pieces (see (9.31) )

H!.il(w)(sljg}u,/\;l(’w ) )\) ®F)(Uf) @H!ofl(w')(Sﬁ{?//,”M(w’ . )\) ®F)(U})
(9.185)

and we know that component of the Eisenstein cohomology consists of the classes

{5 & L(of)T{(5)} (9.186)

where L(oy) is an element of F' and for all ¢ : FF — C we have

WL(o7) = g

C(0s0, N)C (100, A) (9.187)
(Looy)

If the factor at infinity C(0s,A) # 0 then we get from this rationality
results for the ratios of L-values. (See [43],[47]) These rationality results will be
important when we discuss the arithmetic nature of the numbers in??

Combining the results of Borel-Garland [7] and Mceglin-Waldspurger [71]
we get that the homomorphism

P P H (9 Koo; AsN) @ M) @ Jo, — H (SE,, My)  (9.188)

u|n o 5:segment

T2, N(Ql)

),
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is surjective. This gives us the decomposition into isotypical spaces of H {2) (ng , M.
We separate the cuspidal part (v = 1) from the residual part and get

H{Q)(Sg‘vaA) = @ Hc.usp(sgf“/\/l)\)(ﬂ-f) ® @ @ H.(QVKOO;AQ()‘) ® M) ®J0'f7

7 ¢:cuspidal u|n O f:segment
u<n

where the bar on top means we have gone to its image via the map in (9.188). It
follows from the theorem of Jacquet—Shalika [59] that there are no intertwining
operators between the summands.

In the extremal case u = n,v = 1 the parabolic subgroup P is all of G
and Aq(A) = Dy. In this case and only this case the representation A4(\) is
tempered, and the lowest degree of nonvanishing cohomology is the number b% .
An easy computation shows that in the case v > 1 the number ¢ < bY". Then
our theorem above implies that in degree ¢

H(g, Koo; Ag(A) © M) ® Jpp — HI(SE, M))

is injective. This has also been proved by Grobner [29]. The above result,
which we announced earlier (?7), can be sharpened as in the following theorem.
During the induction argument we use Thm. ?? for the reductive quotients M
of the parabolic subgroups.

9.6 Some examples where we expect denomina-
tors

We will discuss some specific examples where we can make the ideas alluded to
in section (9.3.1 ) more explicit. In many of these examples the congruences
can be verified. The ambient reductive group will be Sp,/Z or Sps/Z.

9.6.1 Some notations and structural data

The roots and weights-diagram for Sp,/Z looks like this.

™ 1 72

Q2




440 CHAPTER 9. EISENSTEIN COHOMOLOGY

The maximal torus is

0 0 0
0t 0 0

Te=t={ly o 4 o[
0 0 0

Let BZ D T/Z be the Borel subgroup hose positive simple roots are
a1 (t) = t1/ta, a(t) = 13.
The fundamental dominant weights are
Y1(t) = t1,72(t) = tita.

We are mainly interested in the Siegel parabolic subgroup P D B, its reductive
quotient M = P/U has the roots aq, —a3. The fundamental weight for M is

2 =ty /ts

We choose a highest weight A = n17y; + naye, we assume nq; = 0 mod 2,
let M be a resulting module for G/ Spec(Z). We get the following list of
Kostant representatives for the Siegel parabolic subgroup P and they provide
the following list of weights.

oA = A=32n2+m)y2 + !
s2oA = L(=2+m)ye + 2na +ny + 2
S$981 A = %(—4 —n1)v2 + (2ng +ny + 2)yM
595182 A = (=6 —2ny —n1)ye + nyyiY,

We choose for Ko, C Sp,(R) the standard maximal compact subgroup U(2),
it is the centraliser of the matrix

0 1 0 0
-1 0 0 0
0 0 0 1
0 0 -1 0

which defines a complex structure. We consider the cohomology H*(S$ . M 2)

to simplify the exposition we assume that Ky = Sp, (Z)

9.6.2 The cuspidal cohomology of the Siegel-stratum

We consider the fundamental exact sequence. Inside the cohomology H*®(9(S% ) M)

we have the strongly inner part Hj0p (Sg ; ), M ») where we inverted a controlled
finite set of primes. If we invert a certain controlled finite set of primes S then

HY(0p(SE,) Mo Zs) = @ Hy "™ (Siye s H' (up, My @ Zs) (w - M)
weWF
(9.189)
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With respect to the Hecke-module structure this module will be a complete di-
rect summand in the cohomology of the boundary, provided S is chosen properly,

We have to avoid the inner congruences and the denominators of the Eisenstein
classes. (See Chap. V)

We look at the special Kostant representant w = sos1 in this case we know
how to describe the corresponding summand in terms of automorphic forms on
Gly. We introduce the usual abbreviation H'®) (up, M\®Zg) = My (w-\)@Zs.
Our coefficient modules are the modules attached to the highest weight

1
f=w- A= (2+2ny +ny)y" 5 (=4 = n) (9.190)
Let us put £k = 4+ 2ny + ny and m = %nl. It will be of great importance
that we can vary A and still get the same value of k, i.e. the same semi simple

component and m varies from 0 to k — 2 (See 9.24).

The relative period

Let us look at the space S;‘(/IM. The group M/ Spec(Z) is isomorphic to Gls,
p

it is the Levi-quotient of the Siegel parabolic. The group K is the image of
P(R) N K under the projection P(R) — M (R). This is the group O(2) its
connected component of the identity is K2/ (1) = SO(2) as a subgroup of index
2. Hence we get a covering of degree 2

sﬁgy = M(Q\M(R)/KM (1) x M(Ay)/K} — S%M (9.191)

and an inclusion

i:Hl(SIAéu,MA(w~>\))<—> I(s KM,MA(w \). (9.192)

On the cohomology on the right we have the action of O@(2)/SO(2) = Z/2Z
and the cohomology decomposes into a + and a — eigenspace. The inclusion 4
provides an isomorphism of the left hand side and the + eigenspace.

This inclusion is of course compatible with the action of the Hecke algebra.
If we pass to a suitable extension F//Q we get the decompositions into isotypic
subspaces if we tensor our coeflicient system by F. An isomorphism type o
occurs with multiplicity one on the left hand side and with multiplicity two
on the right hand side. Over the ring Op g the modules H (S K]{W’MA(

A oy.s)(oy) are of rank one, hence we can find locally in the base Spec(OFr) an
isomorphism

Tarith( ) Hl( KM’MA(U} )\)OFS))(O'}C)L)H ( Klt{,M)\(w A)OFS))(O—f)
(9.193)

this isomorphism is unique up to an element in (’);} g
We have to understand how this period varies if we twist by a power of the
determinant, i.e. by a multiple of v5. We recall the isomorphism (see(7.26))

HI(S?(/[Ma )—?H( KMleL-i-’Yz)
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this isomorphism is compatible with the action of the Hecke-algebra but it
interchanges the + and the — eigenspace. Hence we can arrange our arithmetic
intertwining operator such that it satisfies

T (g @79, 1) 7t = 2T () ey ! (9.194)
Now we consider the transcendental description of the cohomology groups
Hl(sKM,MA w- e @Hl S%M,MA(U/ “Ne)(op) @ HE (SKM,MA(w ANe)(of)
(9.195)

We consider the character ug : B(R) — C* which yields the Harish-Chandra
module ngR which contains contains the sum of the two discrete representa-
tions D, O D,f. ® D,,,. We have the decomposition

’D,uug = @ F¢M,V7D:R = @ F¢,u,u

v=0(2),|v|>k v=0(2),v>k

¢u,v(9) = ¢,u,u(b <_CEISIE((2) SCI(I)IS((Q;))) — uR(b)QQﬂ'in.

Of course KM = T1(R) = {e(¢) = <—C(s)1sr(1((bq35) S;(I)ls((q;))} and we can write

e(¢)” = e?™®. We have the well known formula for the (m, K2:0—) cohomology

where

H'((m, K30°), Dy @ Mi(w - A)) = Homerro (A (m/eM), Dy, @ My (w - N)) =

CPY ® ¢y,—k @ j—2 + CPY ® ¢y 1k @ V_py2 = Cuwpm + Ciog -
(9.196)

Here vp_o = (X +iY)*72, resp. vo_p = (X — iY)*=2 are two carefully chosen
highest (resp. lowest) weight vectors with respect to the action of K20, The
elements P1 are the usual elements in m/€. We choose a model space H,, for
oy i.e. a free rank one Op -module on which the Hecke algebra acts by the
homomorphism oy : ’H%M — Op. We also choose and embedding ¢ : F' — C

and an (m, K20) x KM X ’HKM invariant embedding

®:D,, ® Hy, ®p, C— Li(M(Q)\M(A)) (9.197)

this is unique up to a scalar in C* because the representation is irreducible and
occurs with multiplicity one in the right hand side. This yields an isomorphism

q)} : Hl((mv Ké\g[’o)’ D/LR®MA(w')‘))®Hﬂf®F7LC — H' ( M (w-A)c )(LO(Tf)

K]\/I?
-1 0

We observe that the element € = ( 0 1

) € KX has the following effect

Ad(€)(Py) = P_ e(dy) = byor and e(vp_s) = (—1)™vo . (9.198)
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Hence we see that

W]E;+T;)'L Wk,m + (_l)m@k,m resp. w,(c’_n)l = Wk,m — (—l)mwhm (9.199)

are generators of the + and the — eigenspace in H'(m, K20 D, @ M, (w-\)).
Therefore our map ® and the choice of these generators provide isomorphisms

o H,, ®p, C 5 HL(SY,, My (w- Ne)(tooy), (9.200)

K}\l?
) H,, @, C " H( KM,M,\(w Ne)(toay) (9.201)

The choice of P;, P_ and ¢, _, is canonical, hence we see that the identifica-
tions depend only on ®, , which is unique up to a scalar. This means that

the composition T (, 0 of) = ) o (<I>E+))*1 yields a second (canonical)
identification between the + eigenspaces in the cohomology:

Ta0s (40 gy) : Hl(S;‘(/fM,MA(w~>\)C)(LOU.f);>
H'S KM,MA(U) >‘) )(Logf)

Our arithmetic intertwining operator (See (9.193) yields an array - labeled
by the embeddings ¢ : F' — C- of intertwining operators

Torith (g 4) @, C: HY (SII\;{I}M,M)\(W “Nr))(of) @, C

HL(SH My (- X)) (o) @5, © (9:20)

Hence get an array of periods which compare these two arrays of intertwining
operators

Qop, )T (Lo op) = T ™ (o)) @p, C (9.203)

Our formula (9.194) tells us that we can arrange the intertwining operators such
that

oy ®@72,,0) = Qog, )" (9.204)

These periods are uniquely defined up to a unit in (’); g- We also see that
the period only depends on the parity of n;/2 = m, hence define

Qe e(m)) := Q(oy,1) where e(m) = (—1)™ (9.205)

The Eisenstein intertwining

We pick a oy which occurs in H} ( My(w-A)F)), we choose a v : F — C

KM7
and we choose an embedding

P, : Dy, ® Hy, @, C = L2, (M(Q)\M(A)). (9.206)

cusp

We assume n; > 0 then the Eisenstein series converges for z = 0 and we get the
Eisenstein intertwining operator

Eis(0) 0 @, : Ind5 () (D) ® Hoy ®r, C — A(G(Q\G(A)) (9.207)
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(Here we use that K = Spy(Z).) This induces
Eis®(0) o ®, : Homg__ (A®(g/€),15(Dyy) @ My) @ Hy; @p, C—

(9.208)
— Hompg_ (A*(g/t), A(G(Q\G(A)) @ My)
and this induces a homomorphism in cohomology
H3(g, Koo, I§ (D) ® My ® Hyy @5, C) = HY(SE , Mac).  (9.209)

We want to compose it with the restriction to the cohomology of the bound-
ary. We have to compose it with the the constant Fourier coefficient FF¥ :
A(G(Q)\G(A)) = A(P(Q)U(A)\G(A)). We know that F maps into the sub-
space

"
IEDy, ® Hop ®F, C = IEDy @ Hop ®Fy C@Igpﬂﬁ% ® H"}UPHP,H”P ®r, C
(9.210)

where 1/ = wpw-A = s9- X = (24209 411 )y + 1(—2+n1)7y2. More precisely
we know that for h € IEDHR ® Hy, ®F, C

FP(h) = 4 Mo =) Mo AN, — 1)

A(0,71,0) Ao, A2(r),0) T(0)(h) (9.211)

where T'1°°(0) = T,1°° ® ®,T,'°°. The local intertwining operators at the
finite primes are normalised, they map the standard spherical function into the
standard spherical function. The operator T,!°¢ is actually equal to the operator
T8 ahove. This means that we can replace T.°¢ by mT arith “We want
to express this in terms of values of the cohomological L-functions, which means
that we have to shift the argument c(x, 1) (see 7?7 where x is the highest weight of
r1 or A%(ry) respectively, i.e. x; :=1t > (é (1)> or xo :(=1t (8 ?) . and this

gives us ¢(x, 1) =< x1, M > — < x1,8 >= 3+ no +ny and ¢(xa, 1) = 2+ ny.
Therefore we get in terms of the cohomological L—function

1 ACOh(O—a r1,N1 + na + 2) C(nl + 1)

P(h)y=h
Fr(h) * Qe m)} A (o, r1,n1 +ng + 3) ((n1 +2)

% Tarith (0) (h)
(9.212)

To our irreducible Hecke module o corresponds a modular cusp f form of
weight k (see ?7). We know that the (completed) cohomological L -function is
equal to the classical (completed) L function defined by Hecke. Then f has a
Fourier expansion f(g) := ¢+ >, a,q" where the coefficients a,, € Op, and

(27'(')5 . 1— app—s +pk—1p—25

The theorems of Manin and Shimura imply that there are two real numbers (the
periods) Q4 (f) such that for the critical arguments v =1,2,...k —1 the value

A(f,v) € F.
Qe
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and our relative period Q(a(l), m) is equal to the ratio of these two periods up
to an element in F'*. But remember the relative period is defined up to a unit

in OF.
If now v = ny + ny + 2 then we see that v then we see that v assumes
the values g,g —1,...,k — 2, here we allow n; = 0, hence we see that the

values v, v+ 1 are exactly half of the critical arguments of the Hecke L-function.
Discuss briefly the case n; =07

The intertwining operator T,1°¢ : I§D,,, — IgDHﬁg has a kernel D, this is
the sum of two discrete series representations. We know that

Homg __ (A*(g/t), D, ® My) = Hompg_(A3(g/t), D, @ My) = (9.213)
H3(g, Koo, Dy @ My) = CQo ©CQyo (9.214)

where Qg 1( resp. €12) are generators which map t0 wy ,,( resp. @ ). There-
fore Q21 + (—1)™Q42 maps to the generator [w,‘:’m] € H3(g, KM, Igl)mR ®
My)®F,C) whereas Q21 —(—1)™Q15 maps to the zero class in H3(g, KM, IgD#RQ@
M) ®p, C. This shows that in (9.210) the composition F¥ o Eis(0) is the
projection to the first summand because T.2¢ kills the factor at infinity. The
Eisenstein intertwining operator provides a section from a certain piece of the
boundary cohomology back to HS(SI% , M) ®p,C. We are in the case (Tzero)..

Apparently the second term in (9.210) does not play any role.

Since ny > 1 we can apply the Manin-Drinfeld principle and we can conclude
that this section is defined over F| if we define

H*(SE,, My @ F)(oy) =r~ " (H} (5%47/\@(10 “A)r))(or)) (9.215)

(Induction does not play a role since the level is one) then we get the decompo-
sition

HP(SE,, My @ F) & H;,(SE,, Mo ® F)(0y) = HY (SE,, My @ F)(0y)
(9.216)

The denominator of the Eisenstein class

We restrict this decomposition

H3 (SR, My ® Ops)(of) D HY 1 (SE,, Ma @ Ops)(05) ® HY s (SE,, M © Or s)(05)
(9.217)

The image of H%, Eis(S%f,./\;lA ® Op,s)(of) under r is a submodule of finite
index in H (S%YM,M)\(w -Nors))(of)) and the quotient is
: 2 :
H3,(S%,, My @ Ors)(07)/(HP 31 (SR, My @ Ops)(07) @ Hy 5i(SE,, Mo ® Op s)(05))
H (S, Ma(w- 1)) (o)) /image(r).
(9.218)
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The quotient on the right hand side is O s/Ag(oy) where Ag(oy) is the de-
nominator ideal. Tensoring the exact sequence

0— H int(S%»MA ® Ops)(0f) ® Hy 5io(SE,, My @ Ors)(0y) —
HE (SM M,\(w . /\) ® OF,S))(O'f)) — ORs/As(Uf) — 0

int\ QM

(9.219)
by Op/A(oy) yields an inclusion

Torp, (Or,s/A(of),0r/Alof) = Ors/Aloy)) = HY 1 (SR, My ® Ors)(0f) ® Ops/Aloy).
(9.220)

We are now in the same situation as in Chapter III-V, we would like to prove
a theorem analogous to Theorem 5.1.2. In principle we could write a computer
program which computes Ag(oy) in any case, as we did this for Sl(Z) in Chap-
ter III with the help of H. Gangl. But to the best of my knowledge such a
program is not yet written. I encouraged several postdocs and PhD-students to
write such a program, but in the meanwhile I realise that I underestimated the
difficulties.

In the section below we formulate a rather precise conjecture for the denom-
inator.

The secondary class

For the following we refer to SecOps.pdf. We can write
Qo1 — (—1)™Q4 5 = dip where ¢ € Homp_ (A%(g/t), ISD,, @ M)

and
W =T%() € Homg_ (A*(g/t), IED,. ® M)

is a closed form, hence it provides a cohomology class. This class is a multiple
of w,‘:’m, we write

'] = ek, m)[wy,/]
where ¢(k, m) is a non zero rational number. (This is the number ¢ on p. 12 iin
[42]). The computation of this number is not trivial. In SecOps.pdf I make an
attempt to compute this number, assuming that this computation is correct we
get
¢(m +1) 1 J(=m)

= small f2 221
c(k,m)c(n1 ) T =) x small power o (9.221)

Now we can formulate a conjecture (Denom):

In the expression

( 1 At (Lo fong +ng +2) 1 >C’(—n1)>
Qoyg,0))etEm) Acoh(yo fong +ng +3) ((—1 —nyq) 7

the factor inside the large brackets is in F' and behaves invariantly under the
action of the Galois group. The denominator of this number divides Ag(oy)
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This is of course not very precise, we must have some information about the
set S. In [42] we consider this conjecture for a very special case and there we
say that S should be a set of small primes, and we decided that 41 is not small.
We also tacitly assumed that the number ¢ does not have a 41 in its numerator
and we also assumed that 41 does not occur in the torsion of HZ(Sg,, M»).

In [42] T give a heuristic argument why I believe that the conjecture should
be true. This argument is assuming some plausible - but apparently very deep
-conjectures about mixed Tate-motives. These mixed Tate-motives here are not
the ones in the current literature, they are Grothendieck mixed Tate motives.
(See [Mix-Mot, ]) [44] . This argument also gives us some hints which should
be the primes in our set S.

We give a very vague outline of this argument. In [Mix-Mot] we will construct
a so called Anderson-Tate mixed motive H(Ag(oy)os) with coefficients in F.
This motive has a three step filtration

{0} C OF,S(f’nQ — 1) C HI(As(Uf)O’f) C H(As((ff)a'f)
and (9.222)
H(As(af)df)/H!(As(Uf)O'f) L) OF’S(—nl — Ng — 2).

Furthermore we know that the sequence
0— H!(As(af)df)/OFﬁs(—nz—l) — H(As((ff)af)/(gp’s(—ng—l) — Opws(—nl—ng—Q) —0

splits (this is Manin-Drinfeld and the definition of Ag(os).). This splitting is
canonical and hence we can construct a mixed motive X (Ag(o)os) which now
sits in an exact sequence

0— Op’s(—ng — 1) — X(As(af)af) — OF,S(_nQ —ny — 2) — 0. (9.223)

Actually we do not need to know what it means that X(Ag(os)oy) is a
mixed Anderson-Tate motive, the only thing we need to know that has a Betti-
de-Rham realisation

0— Ops(—n2 —1)p—darn = X(Ag(of)os)B—darn = Ors(—n2 —n1 — 2)p_darn — 0.
(9.224)

and for each prime [ in O we get ct sequence of Gal(Q/Q) -modules

0= Op,s(—n2 — 1) = X(As(of)of) ® Op,s = Op,,s(—n2 —n1 —2) =0
(9.225)

In [Mix-Mot] we will explain that we can attach extension classes to these
mixed motives, we have the Betti-de-Rham extension class

[X(As(of)os)B-arn] €
Exty_ gy (Or,s(—n2 — n1 — 2)B_arn, Or,s(—n2 — 1)p_drn) = R~
and for each ¢ and [|¢ we have the Galois -module extension class
X(As(of)of)et—p] € Extl,_(Ors(—n2 —ny — 2)et—1), Or,5(—n2 — 1)er—p)) =

H( Gal(Q/Q), Op,.s(n1 + 1)) = H'( Gal(Q/Q), Z¢(ny 4+ 1)) ® Op, 5.
(9.227)
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In [35] I explain how we can compute the Betti-de-Rham extension class of this
mixed motive in a simpler case (Glz instead of GSp,) but mutatis mutandis this
method can be transferred to this situation here and we get (see [Mix-Mot])

[X(As(of)or)B—drn] =

c(k,m)A(op) A op,ng +n2 +2) C(ng+1)
Q(oys,0))ctkm) Acoh(gp) ng +no +3) ((n1 +2)" (9.228)

( A(O’f) ACOh(O'f,nl + no -‘1-2) 1 )iC’(—nl))
Q(af,a))e(k’m) A (op,ny +ng +3) ((—1 —ny) T

Now our conjecture follows once we can prove

( A(O’f) ACOh(O'f7TL1 —|—n2—|—2) 1
Q(Uf, L))E(k’m) ACOh(O'f, ny +ng + 3) C(—l — Ny

)) € Ors (9.229)

We can make an attempt to prove this last assertion, for this we look at the
Galois-module extension class. Here we encounter the main stumbling block:
We have the collection of extension classes and we expect that they are not
independent, they ” know of each other”. More precisely we hope that the
Betti-de-Rham extension class determines the ¢ — et Galois-module extension
classes.

In [Mix-Mot] we introduce the Soule- element ¢,,, (¢) € H'( Gal(Q/Q), Z¢(n1+
1)), we consider its restriction to H'( Gal(Qy/Qy), Z¢(n1 + 1)) — Z;. Now we
dare to make the conjecture that this restriction is given by

A(oy) Aoy, ng + ng + 2) 1

Qog,0))eEm) A©h (g s, ny + ng + 3) C(—(l - nl))
9.230

X(As(op)of)et—n] = cn, (€) @ (

We make a small detour and discuss some heuristic arguments which provide
some support for this last conjecture. In [?] and [Mix-Mot] we discuss the anal-
ogous situation for the group Gls, we construct certain Anderson-Tate mixed
motives

[H'gia(Xo(po), M )] € Extyp(Z(—n — 1), Z(0)),

We can compute their Betti-de-Rham extension class (see [35],[Mix-Mot]. )

-1 1

po?—1¢(-1—n)

[HlEis(XU(PO)aMf,z)]B—dRh = (_T%C/(—n)) (9.231)

here pyg is an auxiliary prime, which is suppressed in our considerations for Sp,.
We notice that it is of the form rational number times (‘TQZ), it is essentially
the same shape as in ( 9.228). The difference is that here the Hecke eigenspace
oy is replaced by a Hecke character and the ratio of L-values attached to oy is
missing

In [Mix-Mot] we make an attempt to compute the ¢ — et again we formulate
the conjecture:
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Pl 1 1

1 Yhii =
[H 15 (Xo(po), MJE @ Ze)o—et e 1¢(-1-n

] ce(n) (9.232)

so basically the factor (=2:(’(—ny)) is replaced by c¢(n1).

In [Mix-Mot] we prove the above conjecture for n = 0 (Anderson-Kummer
Motives) and make an attempt to prove the conjecture by ¢-adically approx-
imating [H . (Xo(po), M# @ Zy)]¢—_e: by Anderson-Kummer motives. So far
this attempt fails but at least we get the above conjecture mod ¢. This is the
end of our detour.

Assuming the conjecture (9.228) our conjecture (Denom)) follows provided
we know in addition ¢;(n) is a generator. Hence we put this into the assumptions
in our conjecture.

Here we enter the realm of cyclotomic fields and we refer to [103]. We
encounter another Wieferich dilemma. We have a very simple criterion to
make sure that c¢,(n) is a generator. We consider the image ¢1 ¢(n) of ¢;(n) in
H( Gal(Q¢/Qy),Fy(ny + 1)). It is clear that cy(n) is a generator if ¢1 ¢(n) # 0.
We refer to the computation in [Mix-Mot], then we can formulate an elementary
criterion for ¢1 4(n) # 0.

We consider the truncated polynomial ring Fy[z]/(z*~1). We define the fol-
lowing element

Ben(a) = Er_[ (:(: (" P

I leave it as an exercise for the reader to show that
B, (%) = by 4 bpz® 4+ by 12" + by 022 where k=0 -2 —n

Then by, € Fy is an elementary expression and we can expect that the numbers
by, are randomly distributed mod /.

c1o(n) =0 <= by =0 <= By, (z) =D

Therefore we can expect that ¢; ¢(n) = 0 is a rare event, but we do not know
whether it is almost always the case.

Perhaps I should have mentioned that ¢1 ¢(n) = 0 is equivalent to ¢|((—1 —
n1). Hence we see that ¢ ¢(n) # 0 if £ is a regular prime. The Wieferich dilemma
is that we cannot prove that the set of regular primes is infinite.

We do not care so much about this issue. In this volume the experimental
aspect of the subject plays a significant role. With the help of the computer we
verified the analogous conjecture (Denom) in the case G = Slz/Z and coefficients
M,, in many cases and we see this verification as a model for other cases.
We think that it is of interest to accumulate experimental evidence for our
conjecture. If we succeed doing these computations we will (almost) never
encounter a case where ¢1¢(n) = 0. In the case here it is of course also of
interest that the conjecture follows from a conjecture about mixed Anderson-
Tate motives ( for this see also [44]).
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We discuss the set of exceptional primes S of course we should keep it as
small as possible. If we want to check the conjecture (Denom) numerically
our data ¢, A should not be too large, even small primes like £ = 2,3, 5, could
occasionally show up in the race, i. e. they are not necessarily in S.

In our construction of H(Ag(oyf)os) we need at some point that primes ¢
which occur in the torsion of H? (S]Céf , M) should be in S. Hence if we want to
be on the safe side we put those primes into S.

Of course we know that M is not determined by its highest weight. Actually
it easy to see that there is a smallest Mg\ which is generated by the highest
weight vector. We have the invariant pairing <; >: M, ® Q x Mb—wo A ®OQ—=Q
and hence we see that we get a biggest module M if we define

My i={me MA®Q| <m, M, , >€Z}

This suggests that S should contain those primes which divide the order of
MAﬁ/MAb, but this is definitely not a good idea. We pick a prime ¢, let Z,) € Q
be the the local ring at (¢), we choose a Hecke operator Tgc;ch’A where we assume
< x,; >> 0 for all simple roots. In our paper [?] we define-following Hida -
the ¢ ordinary part H'Ord(S,G(f,./\;l,\ ® Zy)) C H'Ord(S,G(f,/\;l,\ ® Zgy)), this is

the largest submodule such that

ord

TP H (SR, Mo ® L)) = H (SR, Mo @ L) (9.233)

is an isomorphism. This module does not depend on x. Then it follows easily

from the definition (see 6.51) or ( ??) that TZ(:“)‘ acts nilpotently on H*(S%,, MEIMR).
This implies of course immediately that the map

.ord(ngmA;lE\ Y Z(f))) % H.ord(Sg‘pr ® Z(l))) (9234)

is an isomorphism and this implies that the ordinary part of the cohomology
does not depend on the choice of the integral structure M. This suggests that
we we should include those primes £ into our set S for which o is not ordinary.
This is also consistent with the data in [42].

For me the most difficult part in the calculation is the treatment of the
intertwining operator at oo, this is carried out in SecOps.pdf. At the end of
SecOps.pdf. I discuss the arithmetic applications and the conjectural relation-
ship between the primes dividing the denominator of the expression in the large
brackets and the denominators of the Eisenstein classes in (9.6.2).

9.6.3 Higher rank examples

In section 9.3.1 we a somewhat vague description of the relationship between
prime ideals which divide certain values of L-functions and denominators of
Eisenstein classes. Here we want to make this more precise in another case
namely for the group G/Z = GSps/Z. We make some assumptions for which we
have experimental data.

We consider the group G/ Spec(Z) = GSps/ Spec(Z) with Dynkin-Diagram

ap — oy <= QO3
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and choose a highest weight A\ = n1vy; + nay2 + n37ys, here we assume ny = ng
mod 2 so that we may consider it as highest weight for G/ Spec(Z) which is
trivial on the centre. The highest weight module M provides a sheaf M, on
S[Céf = Sp;;(Z)\Hg

We consider the cohomology of the boundary, we select the boundary stra-
tum corresponding to the parabolic subgroup P given by oy — X <= asg,
the semi simple part is M = Gly x Sly. The first factor has to be viewed as the
linear factor and corresponds to «q, the other factor is the hermitian factor.

We look at the Kostant representatives w,w’ with l[(w) = 4,l(w") = 3, we
have two such pairs

Wy = 82818382 W2 = 528352951

. (9.235)
V1 = 825183 Vo = 828389

If ©p is the longest Kostant representatives then wy; = O pvy, wy = Opvs and
we get

wi(A+p) —p = (2+n2 +2n3)7M + (2 + n1 + n2 + ng)7AL +1/2(—6 — n2)va,
vi(A+p) —p=(2+n2+2n3)73 + (2+ 11 + n2 + n3)v 4+ 1/2(—4 + n2)Ya,
wy( A+ p) — p = (4+n1 + 2ng + 2n3)72" + n3yL +1/2(=6 — n1)ya,

va(A+p) — p = (4+n1 + 2n2 4 2n3)7" + n3yll 4+ 1/2(—4 + n1)ya,

Op(A+p) —p=mval +n3vhl + 3(=5 — B —n2 — n3)7a,

(9.236)

We denote the two coefficients at y3!( resp.)y3! by di( resp.)ds. Then the

cohomology H? (S%M,M(w - A)) is given by the Kiinneth-formula, the factors

are given by holomorphic modular forms of weight di + 2 = k1,d3 + 2 = k3.
Since we want the boundary cohomology to be non zero and since work on level
1 these weights k1, ko must be even. This implies that we should require that
ng is even and ny = ng mod 2 in the first case (i.e. w = wy) and n1,n3 even in
the second case (w = ws).

Given di,ds we find

A= (d3 — M%)%q + n2Ya, + %{M’yw in case 1
(9.237)
A= (dy —2d3 — 4 — 2n2)Ya, + N27Va, + d37Vas in case 2

In the first case the coefficient no has to lie in a string of even integers

ng € {min(dy —2,2d3 —dy — 2),...,2,0}, no =0 mod 2 (9.238)

and this means for the coeflicient in front of 74,
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b, ) = 1/2(—6 — np) € {—3,.. ., — — il Zd?’ —d)y (9939

This string of integers is not empty if and only if the minimum is > 0. If we want
to solve equation (9.236) in the first case ( of course with the above constraints)
we need

dy > 2 and 2ds > dy + 2 (9.240)

In the second case we easily see that
ny € {dy —4—2ds,...,2,0} (9.241)

and if we want to find solutions we need the inequality

dy > 2ds +4 (9.242)

Then we see that the factor in front of 7,, runs through the interval

bw, A) € {—=3,...,—1 — %1 + ds} (9.243)

Now we consider the Eisenstein cohomology in degree 6

HO(SE, . My) = HO((SE,), M)
Tip (9.244)

H!Q(SI]\?;M,M(W : )‘))

where w is one of the two elements of length 4 and where ip is an inclusion. An
eigenspace

H?(S%JCM,M(w ) x o) C (H?(S}‘ffM S M(w-N)) (9.245)

is essentially given by a pair f resp.g of holomorphic cusp forms of weight
k1 resp. k3. For simplicity we assume that these forms are unramified and have
rational Fourier coefficients.

We consider the Eisenstein cohomology given by this pair of forms, i.e we
study the map

Eis(0) : H?(S%fM,M(w N @Q)(rx0) = HY(SF, , My®@Q)  (9.246)
we assume that n; > 0, in this case the Eisenstein series is holomorphic at z = 0
and the Manin-Drinfeld principle is valid.

Again we want to understand the denominator of Eis(0). We study the
factor in front of the second term in the constant term. (See (9.62), We apply
[?], we look at the dual group GV and the action of MY = Gly x PSly on u},
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the Lie algebra unipotent radical of PV. This Lie algebra is of dimension 7 and
a closer kook shows that as a M module we have

up=r@ad®det ® 1 =u}[1] + up[2] (9.247)
t 0
here r; = 7y, where x1 : t — 01 € Glp and ad = ry, where x3 : t —
t 0 t 0
0 -1 € Slp. . And finally det = r,, where xo:t — 0 ¢ c Gl C M.
Then we get for the constant term
A -1 i+ 1
F(hy = b+ AT 0T O Ty Z U E D o (9.248)

AT x 0,7y, @7y, 0)¢(n; +2)
here the index i = 1,2 depending on the case. Again we assume n; > 0.

We rewrite this in terms of the cohomological L-function. We know from the
work of Gelbart-Jacquet that we can lift o to an automorphic form IT = Symz(a)
on H = Gl3/Q. This form is again cuspidal unless o is a CM-form ( this will
never happen under the present circumstances). Translated into cohomology
this means the following: Let v,,vs be the two fundamental dominant weights
and p = d3(va + 7vs), let M,, be the resulting highest weight module on H.
Then we find a non trivial

HE (S8 0, Mgy © M) (7 x 1) © HP (S350 Maq, @ M), (9.249)
f !

and for all primes p the Satake parameter wf of II, equals the image of the
Satake parameter wy, of 0,. Then we get an equality of L-functions

AT X 0p, 7y @1yy,2) = AT xIL7y, @ rxé,z),

t 0 0
here x4 :t+— [0 1 0. Then we write this in terms of the cohomological
0 0 1

L-function, we have to make a shift in the variable z by

1

5 (6+m:) (9.250)

d
< x1+ X5 dim + g — b(w, A Ve, >= ?1 +d3 +
hence

d 1
A(T X H7TX1 ®TX[37Z) :ACOh(T X H,’/‘Xl ®T‘X‘IS,Z+?1+d3+§(6+TLZ)
(9.251)

The same kind of reasoning as above gives us

1 ACOh(T X H7TX1 ® Tx31 % + d3 + %(6 + nl) — 1) C(’I’Ll + 1)Tarith
Q(r x M)A Acoh(7 x TLry, @7y, B +d3 + 3(64+n;))  C(ni +2)
(9.252)

F(h) =h+ (0) ()

here Q(7 x II) is the relative period defined in [47].
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Before we continue I want to say a few words concerning the (cohomological)
Rankin-Selberg L-function A" (7 xII, 7, ®ry,, ). In our special case which we
consider we started from two modular forms f, g of weights k1, k3 respectively.
For both of them we have the Scholl-motive M (f), M (g) and the two dimensional
l-adic Galois-representations

p(7): Gal(Q/Q) — GUM(£))e), p(o) : Gal(Q/Q) — GU(M(g))e),
and we have for the Frobenii:

_ « 0 _
p(r)(2, ) =~ ( 0 ﬁp> L+ By = ap, By = pFr Tt = ph !

_ 0 _
P = (35 )t 8=y = =
p

where a, resp. cp is the p — th Fourier coeflicient of f resp. g.
We take the symmetric square of p(o) and get

p(Sym*(0)) : Gal(Q/Q) — Gl3(Z)

(here we assume that f, g have coefficients in Z.) Then

2
T 0 0
p(Sym?(0))(@, ) =~ [ 0 p=Ft 0
0 0 55

Then we can write the finite part of the cohomological L-function as

1
LCOh(T X H, 5) — H 72 0 0 (9253)
p
: det(Id — (ap O) @ 0 phtl 0 ]p)
0 B;D 0 0 52
p

Our motives M(f), M(g) have Hodge types {(d1 + 1,0),(0,d; + 1), (ds +
1,0),(0,ds 4+ 1)} and therefore we get for the Hodge type of M (7 x II)

{(d142d3+3,0), (d1+ds+2,d3s+1), (d1+1, 2d3+2), (2d3+2, d1+1), (d3+1, d1+d3+2), (0, d1+2d5+3) }

it is pure of weight w = dy + 2ds + 3. We reorder these Hodge type according
to the size of the second component and get

{(w,0),(w —a,a),(w—20b,b),(byw —b), (a,w —a), (0,w)},

where now 0 < a < b < %. From the the Hodge type or from representation-
theoretic considerations we get a I' factor at infinity which is (if I am not mis-
taken)

T(s)T'(s—a)l'(s—b)

Loo(m x1II,s) = O
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Again we put
AP (7 x 10, 8) = Loo (T x 0, 8) LM (1 x T, 5).
This function satisfies a functional equation:

AP (7 x 1, 8) = AN (7 x IL,w + 1 — s). (9.254)

In [22] Tim Dokchitser outlines an effective algorithm which computes the
value AP (7 x 11, z9) at a given argument zo with arbitrary high precision. This
algorithm uses the functional equation.

We notice that the central point WT“ is an integer. The conjecture of Deligne
on special values predicts that there are two periods Q(7 x II)x such that the

values at critical arguments

1
Q(T X H)E(V)

1
AR (7 x 11, % +v)EF (9.255)

arguments is the set of integers where the critical arguments are the integers
= WTH + v which satisfy b < 4 < w —b. Let us call (b,w — b] the critical
interval. In [47] it is proved that there is a period Q(7 x II) such that the
numbers

1 AP (7 x IL, 7y, @ ryy, b — 1)
Q(r x I)EL A (7 X I, 7y, ® 7y, 1)

€F (9.256)

provided g and g — 1 lie in the critical interval. This period is well defined up
to a unit in OF. We apply this to the ratios of L-values in (9.252)

1 AN X TL, 7y, @7y, WEL 4
(T Tx1 @ Txs - 2 ) (9.257)
2

2

Q7 x IFL Ao (7 X TL 1y, @ 1y, Y + 2 + 1)
and here the n; are just the numbers in (9.238),(9.241). This means n; = ng
in the first case and n; = ny in the second case. But then it is clear that the

arguments YL 4 5 wil 4 % + 1 are critical if and only if the numbers n;

2
are the numbers in the two lists (9.238),(9.241). Therefore we know that the
numbers in (9.257) are in F and since the period is unique up to a unit, it makes

sense to speak of their factorisation into prime ideals.

Again we can formulate a conjecture. For simplicity we assume that f, g
have rational Fourier coefficients (then we only have finitely many cases)

If 0 is prime and f,g are ordinary at ¢ and if

Acoh(,r X T1,7y, @ Ty, wtl niY)
Q1 x IFL Acoh(r x I ry, @1y, ¥ + 2 +1)

£™|Denominator(

then £™ divides the denominator A(T X o) of the Eisenstein class. If we are a
little bit more courageous we may even conjecture the this is the exact power of
¢ which divides the denominator.

Of course this implies again that we must have congruences.
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If we have a non zero isotypical subspace H (S%}V,,M(w%) ®Q)(ry x0o5) C

H6(3(SIG<f,./\;l,\ ®Q) and ¢ divides the denominator in (9.258) then there should
be an non zero isotypical subspace HG(SI%,./\;(,\ ® F)(Iff) and a prime ideal
[ C OF) such that for all primes p and all Hecke operators T)‘é?;

(TN = (17 x o) (T0)) mod [ (9.259)

XP

We make this a little bit more concrete, as cocharacter we choose x3 which
is defined by < x3,a; >=1 and < x3, s >=< x3,a3 >= 0. Then we have an
explicit formula for (75 x o¢)(T. ;";‘) and this gives us

TXGM)(IZIP) ap(g)(p™ ™t + ap(f) + p"2t™++2)  mod [in (casel) and

TS (I,) = a,(g) (p"2 1772 + a,(£) + p+72+7543)  mod [ in (case2)
(9.260)

We have some experimental data supporting this conjecture in some cases for
some small primes p. We know 6 unramified modular forms which have rational
coefficients, they are of weight 12,16, 18,20,22,26 this means that the values
for dy,ds are 10,14, 16, 18,20, 24. For any pair (d,ds) we have exactly one pair
(f,g) of modular forms. since we want to avoid the pole of the ¢ function we
also require no > 0. In the second case we do not find a solution A with ny; > 0.

MM
K3t

the Hecke algebra acts by scalars, the formula for the eigenvalue of T;g’f‘p(Tf xXoy).
We are always in the case 1 and in (9.237) we give the formula for the highest
weight A for which we get the diagram (9.244). In [2] the authors find many
cases of a A for which H?(S§f7/\/l>\) is isotypical, i.e. the Hecke operators act
as scalars, and they produce short lists of eigenvalues. They find many cases
in which they find congruences of the type (?7?). (Table 3 in [2]). Here I want
to draw the readers attention to the case dy = 10,d3 = 16, in this case f = A.
Here the authors of [2] find a congruence of the above type modulo 172

In this special situation the space H?(S M (wy - N)) is isotypical, hence

Anton Mellit applied the algorithm of Dokchitzer to compute the critical
values in 9.255) for all pairs (f,g) with d;,ds < 18 and dy # ds. For all primes ¢
for which we have a congruence in Table 3 in [2] and for which Mellit computes
the critical values, we find find a ny such that

1 AP (T X L7y, @ 1yy, Yt 4 22
¢|Denominator( T voon ( 2 _& 77,22 )
Q7 x I)EL Ah (1 x 1,7y, @ 1y, WL + 22 4 1)

and again for £ = 17 and d; = 10,d3 = 16 we even find a divisibility by 172.

Of course there are still some issues which have to be discussed. In [2] the
authors say that the prime £ should be ”large” and they are not very precise what
this should mean. In any case we should fix in advance a finite set S = S(f, g) of
exceptional primes ¢ for which the congruences might not be true. This set may
depend on the choice of the periods. The period Q(7; x II) is a well defined
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positive real number (under the present assumptions). In our concrete situation
it follows from the results in [47] (5.2, 8.4.7 ) that the relative period

Q(rp x I)*! = SEZ;+ (9.262)

where the two periods (7)+, these periods have been fixed in section (8.3.5).
Mellit choses slightly different periods but his periods differ from our period
by a product of powers of 2,3,5,7,11,13 and for the di,d3 he considers these
primes are not ordinary, i.e. they lie in S(f,g). But the 17 is in fact ordinary
d; = 10,d3 = 16.

Mellit’s tables predict many more congruences then those which have been
found in [2]. The reason for this is that one encounters serious difficulties if
H,G(SIG(f,M A) is not isotypical, which probably means that the dimension of
this inner cohomology is greater than 8 (this is the length of the Hodge filtration
and also equal to #W¢g /Wi .) If this is the case we we need a finite extension
to decompose HF(SI% , M, ® F) into isotypical pieces

HY(S§,, My @ F) = @ HY(SF,, My @ F)(IIy) (9.263)
i

The method of counting F,, valued points which is applied in [2] may give a
way to compute the trace tr(Tg|H!6(S§f , M) ® F)) and this of course equal
to the sum of the traces on the right hand side and here summands are equal to

TXG&p(ﬁp) dinE(H,G(SIC;‘f,MA ® F)(II;)). But from here it is difficult to get the

values Tg »(IL). In principle one could try to count F,,~ valued points for some

r=1,2,3... but this is definitely not easy.
In Mellit’s tables we find for the case dy = 16, ds = 20 a divisibility

AN (7 X TL, 7y, ® 7y, 30)
Q7 x I)EL Ao (7 X IL, 7y, ® Ty, 31)

333769 | Denominator( ) (9.264)

and it would be nice if the expected congruence could be verified for some small
values of p. (there is still the very unlikely possibility that H (ng,/\/l A) has

333769 torsion or f or g is not ordinary for 333769.)

Of course it would be still nicer if we could verify the denominator conjecture
in this case.
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