My talk at the NT-lunch samimad "A different look at $\tau(p)=p "+(691)$ "

In the following

$$
\Gamma=\delta L_{2}(\mathbb{Z})
$$

this group acts on the upper half plane

$$
H_{H}=\left\{z \mid g_{m}(z)>0\right\}
$$

The quotient $[I H$ looks os follows

The quotient is not courpact we define neighbor hoods of infinity:

$$
\left.\partial(\Sigma|H|)=\Gamma_{\infty} \backslash H<c\right)
$$

where $H_{H}(c)=\left\{z_{c}|H| H_{m}(z) \geq c\right\}$
and

$$
\Gamma_{\infty}=\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbb{Z}\right\} c \Gamma .
$$

We have the elements of finite order

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), R=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
$$

the fix the points i and $g=\frac{1+\sqrt{-3}}{2}$.
We introduce the Γ-module

$$
u_{n}=\left\{\sum u_{v} x^{v} Y^{n-v} \mid a_{v} \in \mathbb{Z}\right\}
$$

for $P(X, Y) \in \mu_{n}$ and $\gamma=\binom{a b}{c \frac{b}{d}} \in \Gamma$

$$
(\gamma P)(x, y)=P(a x+c y, b x+d y)
$$

We define the sheaves $\widetilde{\mu}_{\mu}$: If $\pi: H \longrightarrow \Gamma I H$ is the projection
and VCTVHY is open then

$$
\begin{aligned}
\tilde{M}_{n}(v)= & \left\{f: \pi^{-1}(v) \rightarrow M_{n} \mid\right. \\
& f \text { locally con } \quad \text { and } \\
& f(\gamma v)=\gamma f(\sigma)\} .
\end{aligned}
$$

we are interested in the cheap a homology $H^{1}\left(F \backslash H, \tilde{\mu}_{\mu}\right)$.

These cohomology group ese finitely generated \mathbb{Z}-modules and in this case

$$
\begin{aligned}
& H^{\mu}\left(\Sigma \|-1, \tilde{\mu}_{\mu}\right)=\frac{\mu_{\mu}}{\mu_{m}^{\langle S\rangle}+\mu_{\mu}^{\langle R\rangle}} \\
& \left(\mu_{\mu}^{\langle s\rangle}=\left\{f \in \mu_{\mu} \mid s f=f\right\}, \mu_{R}=\cdots\right)
\end{aligned}
$$

There is some more structure on the arhomology groups

1) De have the fundamental exact sequence

$$
\rightarrow H_{c}^{1}\left(\Gamma \backslash H, \tilde{\mu}_{m}\right) \longrightarrow H^{1}\left(\Gamma \backslash H_{1} \tilde{\mu}_{m}\right) \rightarrow H^{1}\left(\partial\left(\Gamma(H), \tilde{d}_{m}\right) \rightarrow\right.
$$

cohom with comport supports

2.) We have an action of the Heake celpebrer on this diagram

$$
\partial l=\mathbb{Z}\left[T_{2,} T_{3} T_{\delta 1}, \sim, T_{p_{1}}\right]
$$

i.e for each prince or have on endomorphisms \vec{l}_{p} on the diapsem and the Ip commute
(*) For any finitely generated \mathbb{Z}-module X we introduce the notation $X_{\text {int }}:=X /$ Torsion
this moduk $X_{\text {int }}$ is also the image of X in $X \otimes Q$ ($*$)
3) From our fund mental exact
sequence ur get
this is a short exact sequence of free \mathbb{Z}-modules with on action of \mathcal{J}.
4) For all p the generator ω_{n} is on ligan vector, ie.

$$
T_{p} \omega_{n}=\left(p^{n+1}+1\right) \omega_{n}
$$

5) The "complex conjugation"

$$
c: z \longrightarrow-\bar{z}
$$

induces on involution on the
cohomoligy (comuruting with Hl) We hor $c \omega_{m}=-\omega_{m}$ and

$$
\left[+_{1}^{1}\left(L^{1} H 1, \tilde{\mu}_{m} \otimes Q\right)=H_{!,+}^{1} \oplus H_{!-}^{1}\right.
$$

where the two summends are isomaptic Heck modules.
Now we can write a computes program, which does the following:
It produces a basis (sat of fir generactass)

$$
f_{n}, \underbrace{f_{n-1}, \cdots, f_{k}}_{\text {basis of } H!} \quad) \omega_{n}
$$

and for any p it produce the matrix with respect to this basis

$$
T_{p}=\left(\begin{array}{cccc}
p^{n+1}+1 & 0 & t_{n-2}^{(p)} & 0 \\
0 & x & x & \cdots x \\
\vdots & & & \\
0 & x & \cdots & \cdots-x
\end{array}\right)
$$

Now I come back to the title of the talk. I consider the case $n=10$. The the computer program spits out the matrix for T_{2},

$$
T_{2}=\left(\begin{array}{ccc}
2049 & 0 & -68040 \\
0 & -24 & 0 \\
0 & 0 & -24
\end{array}\right)
$$

we see that f_{10} is mot on eigenvector. We try to modify it and lover foo on x s.t.

$$
\tilde{f}_{10}=f_{10}+x f_{8}
$$

is on eigenvector. This means
we want

$$
T_{2}\left(f_{10}+x f_{8}\right)=\left(2^{\prime \prime}+k\right)\left(f_{10}+x f_{8}\right)
$$

and this says we how r to sober

$$
\begin{aligned}
& 2073 \cdot x=-68040 \\
& \text { i.e } 691 \cdot x=-22680
\end{aligned}
$$

We see: We cen decompose

$$
H^{1}\left(\Sigma N H, \tilde{\mu}_{10} \otimes Q\right)=H_{1}^{1}\left(\tilde{-} 1 H_{1} \tilde{\mu}_{10} \otimes Q\right) \oplus Q \tilde{\rho}_{10}
$$

where \tilde{f}_{10} mops to ω_{10} and

$$
T_{2} \tilde{\rho}_{10}=\left(2^{4}+1\right) \tilde{\rho}_{10}
$$

The element \tilde{f}_{10} is uniquely defined by the ore conditions. We say \tilde{f}_{10} io the Eisanstein class

But we see the Eisenstein class has the denominator 691 this means that

$$
f_{, 10}^{t}=691 \cdot \tilde{\rho}_{10} \in H^{2}\left(\Gamma_{\Gamma} \mid H, \tilde{\mu}_{10}\right)_{\text {int }}
$$

is u primitior element.
We consider the matrix for T_{p}

$$
T_{p}=\left(\begin{array}{ccc}
p^{\prime \prime}+1 & 0 & t^{(p)} \\
0 & \tau(p) & 0 \\
0 & 0 & \tau(p)
\end{array}\right)
$$

the above computation yields that the equation

$$
\left(p^{\prime \prime}+1-\tau(p)\right) x=t^{(p)}
$$

corn not be solved with $x \in \mathbb{Z}$, there must be u 691 in the denominator of x. Hence we conclude

For all prince p we haver the Congruence

$$
\tau(p) \equiv p^{\prime \prime}+1 \bmod 681
$$

Of course at this point we do not know that the number $r(p)$ is Ramonnjan's $\tau(p)$ which is defined by

$$
\Delta(q)=q \cdot \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2 u}=\sum \tau(n) p^{n}
$$

Far this we need the Eicller - Shimuve isomorphism.

Main message: V rowing the denouninatov is better than only knowing the resulting congruences.

We know from Serre and Deligne
that there is a representation of the Galois group (Now $l=691$!)

$$
\rho_{10}: \operatorname{gal}(\bar{Q} / Q) \longrightarrow G L\left(\left.H^{\frac{1}{L}} \right\rvert\, \mathbb{K}, \mathcal{H}_{10} \tilde{\mu}_{10} \otimes \mathbb{Z}_{l}\right)
$$

which has the following propoties
i) The representation is unromified outside l.
We have the cyclotomic character α_{e} : Gal $(\bar{Q} / Q) \rightarrow \operatorname{Gol}\left(Q\left(S_{e}\right) / Q\right)=$

$$
\mathbb{Z}_{e}^{x}
$$

which is defined by

$$
\sigma(\zeta)=\zeta_{l}^{\alpha(\theta)}
$$

for any e^{m} - th root of whity
Then
(ii) $P_{\omega}(\sigma) \omega_{n}=\alpha_{l}(\sigma)^{u} \omega_{n}$
on $H^{L}\left(\partial C(k-), \tilde{\mu}_{10} \otimes \mathbb{Z}_{C}\right)$
Let $\rho_{10}!(\sigma)$ be the restiviction
$\left\{\begin{array}{l}\text { of } \rho_{10} \text { to } H_{1}^{1}\left(\Gamma^{N+1}, N_{10} \otimes \mathbb{Z}_{e}\right) \\ \text { then we have for on } P \neq l\end{array}\right.$ and the resulting Frobanius $\Phi_{P} \in \operatorname{Ga}(\bar{Q} / B) / \sim$ that $\hbar\left(\rho_{10}^{!} \cdot \Phi_{p}\right)=\tau(p)$

$$
\operatorname{det}\left(\rho_{10}^{\prime}\left(\Phi_{p}\right)=p^{\prime}\right.
$$

(iii) In End $\left(H^{1}\left(C^{n} \mid H, \tilde{\mu}_{w} \otimes \mathbb{Z}_{e}\right)\right)$ we have the famous Eicheer-shimurar conginenve volution

$$
\rho_{10}\left(\Phi_{p}^{2}\right)-T_{p} \cdot \rho_{10}\left(\Phi_{p}\right)+p^{4} \cdot I d=0
$$

We consider the reduction of our representation mad l. Led $\alpha_{l, 1}: \operatorname{Gal}\left(Q\left(S_{e}\right) \varphi\right) \longrightarrow\left(\mathbb{C}_{l e}\right)^{x}=\vec{F}_{e}^{x}$
be the reduction of $\alpha_{l} \bmod l$.
The reduction mode of our fundamental exact sequence is the exact sequence

$$
\left.\left.\begin{array}{rl}
0 & \rightarrow H_{!}^{1}\left(\sigma \left(1-1, \tilde{\mu}_{10} \theta\left(r_{e}\right)\right.\right.
\end{array}\right) H^{1}\left(r>1+1, \tilde{\mu}_{0} \sigma \pi_{l}\right)\right) .
$$

here $\Psi_{l}(-11)$ is the one dimensional H_{e} vector space on which Galco(se)/ce) acts by the cravacter $\alpha_{l l}^{1 l}$.
Now there is a simple agumant using the denominentur that the is u galois module embedding

$$
\mathbb{H}_{e}(-11) c H_{!}^{1}\left(\pi \mid-1, \tilde{\mu}_{\infty} \otimes \overrightarrow{\pi_{e}}\right)
$$

and this sags that the reduction mode of our Gabrismodien
is of the form

$$
\rho_{10} \bmod l: \sigma \xrightarrow{\text { is of the join }}\left(\begin{array}{ccc}
\alpha_{l, 1}^{16}(\sigma) & u_{12}(\sigma) & u_{13}(\sigma) \\
0 & 1 & u_{23}(\sigma) \\
0 & 0 & \alpha_{l, 1}^{11}(\sigma)
\end{array}\right)
$$

hence we see that the denominator forces the image of Sal (\$ice) into the subgroup $B^{(a)}\left(\pi_{p}\right)$
where

$$
B^{(a)}=\left\{\left(\begin{array}{ccc}
t u & u \\
1 & w \\
& t
\end{array}\right)\right\}
$$

Thu. The image of the
Galois group is equal to $B^{(1)}\left(H_{p}\right)$, so it is as large es prorible under the present circuinstances.
The proof uses the Eichler-Shimura congruences. It plays a roll
that we con find ae prime $p \equiv 1 \bmod l$ and $p^{11}+1-\tau(p) \neq 0 \bmod l^{2}$

This giver us field extensions

$$
\begin{aligned}
Q \subset Q\left(\zeta_{e}\right) & \subset k_{1} e k \\
& \subset k_{2}<k
\end{aligned}
$$

where $[k: Q]=(l-1) \cdot l^{3}$.
We have the following "Zevergungs gesetz"

I7 prime p splits completely in K_{1} or in K_{2} if and only if $p \equiv 1 \bmod l$ and

$$
\tau(p) \equiv p^{11}+1 \bmod l^{2}
$$

I do not see how such a result can be obtained if one only books at the
congruences
For more details and a move extensive discussion I refer to my unfinished book on cohomology of arithmetic groups
Inttps: I/ www. neath, uni-bonn/de/people/ harder
In the folder Manuscripts/buch you find volume-III.pdf the mewed version.

I want to add some remerbs. which concern the experimental aspects.

I our example we see that the Hecke operator T_{2} suffices to voify that the Eisenstein
ales hes denominator 691 .
This will very often happen in other serturtions:

One thebe operator is enough to compute the denominentor.
But then the congruences follow for all eiguralues of ltecte operators T_{p}.
On the other hand there are many instances where people have vilified the congruences for a certain small numbo of primes (a for all primes) but where the denominator is mol verified.

It seems to be easier to prove the congruences than to compute the denominator.
On the other hand the denominator con be computed in any given case (in principle).

For several years I have bothered people - those people who loos ta do computations to write a program that worker for cases which go beyond the case above. For instance the case treater in 1-2-3 would be nice.

