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1 Motives and their cohomological realizations

In this manuscript I use the concept of motives without defining what I really
mean by that. Basically a motive should be a piece in the cohomology of an
algebraic variety, but the rules how I get such pieces are not fixed. In any
case a motive must have various cohomological realizations, namely the Betti
realization, the de-Rham realization and the /-adic realizations for all primes /.

1.1 Pure Motives

I consider smooth projective schemes X/Spec(Q), we know that we can find a
nonempty open subset V' = Spec(Zg) C Q such that X extends to a smooth
projective scheme X — V. Let us choose such an extension. We consider the
cohomology of this scheme, I denote it by H*(X) and by this I mean the various
realizations:



1.1.1 The cohomological realizations
The Betti-cohomology:

2 dim(X)
Hy(X) = H3(X(C).2) = € H™(X(C),2).
m=0

This a finitely generated Z graded Z-module together with the involution F,
induced by the complex conjugation on X (C)

The de-Rham-cohomology:

The de Rham cohomology is defined as the hypercohomology of the complex
of coherent sheaves 0 — Ox — Q% — ...Q% — 0. This cohomology is the
cohomology of a double complex

0 - Ox — Q% —... Q¢—>o0
! ) !

- 0% = Q3 - .. Q;l(’l%o
+ + |

0% = 0 - .. lefﬁo
+ + +

here the vertical complexes are resolutions of the coherent sheaves in the top
line by coherent acyclic sheaves. Then

Hipn(X) = H*(Q%*(X))

These cohomology groups are finite dimensional QQ vector space together with
the descending filtration. In degree @ = n it is of the form

Hjjpy(X) = FOHjjp,(X) D F'Hjp,(X) D -+ D F"Hjlgy, (X) = H°(X, Q%).

The next step in the filtration F"™ H%,, (X) = 0.
We have the comparison isomorphism

Ip_arn : HR(X) @ C — Hip,(X)®C

( Hodge decomposition + motives of pure weight+Hodge numbers
, effective motives?)

The {¢-adic cohomology:
For any prime ¢ we have the etale cohomology groups

ere(X) = H*(X x Q,Zy)

they are modules for the Galois group Gal(Q/Q)
For any embedding Q; — C we have the comparison isomorphism

Iy HY (X)©C = Hy(X)®C

which is compatible with F



Furthermore the complex conjugation acts on Hy (X (C),C) and H*(Q*(X))®
C via the complex conjugations cg and cpgr. The comparison isomorphisms sat-
isfy in addition

ITocg®Fy =cprol
Iyoc=Fy ol

If T consider the cohomology in a fixed degree n then I want to call the object
H™(X) a pure motive of weight n. This weight is visible as the length of the
filtration of the de-Rham cohomology.

It this weight is also visible in the etale cohomology: For p ¢ S and p # £
the modules H"(X x Q, Q) are unramified at p. The characteristic polynomial

det(Id T — &, ' |H*(X x Q,Qy)) € Z[T

-1

is independent of ¢ and its roots ( the eigenvalues of Frobenius @,

n/2.

) are of
absolute value p

1.2 Some simple pure motives

Now Z(—n) = H?"(P",Z) is the following object

HZ'(PY)=7Z-1p ,Fx(1g) = (-1)"1p

HZW(P") = Q- 1pgr + Filtration,F"Q(—n) = Q(—n), F"1Q(-n) =0
I:HY'®,C -~ HY, @9 C

I: 13 — (27”) 1DR

IToF,ocg=cprol

HZ'(P™) = Z¢(—n) Galoismodul

Iy H(P") @ Zy — Hegg(IP”, Zy)

compatible with the action of Fj.

It will important that the comparison isomorphism gives us a canonical
generator in Z;(—n — 1). This generator can also be seen in the following way.
For all m we have the privileged £"*-s root of unity

(om = €7

and the canonical generator in Zy(—n) is given by C ym - These motives Z(—n)
for n € Z are called pure Tate motives.

If we have a finite extension K/Q, then we can consider P"/K and the
Weil restriction Rg/qP". Then we can consider the motive H"(Rg/oP") =
Z(—n)%/Q, Tts Betti-cohomology and étale cohomology

_ K/@ K/Q _ 1,,4Gal@/Q)
Z( ;6213, Zy(—n) _IndGal(Q/K)Z( n).
o K—

element lg/(@ =(.,1p,... )o:k>C
These motives are Tate motives which are twisted by an Artin motive.



We also want to consider correspondences on T" C X xqg X, they induces
endomorphisms on the cohomology H®(X), of course by this we mean that they
induce endomorphisms in any of the cohomological realizations. We consider
the ring generated by these endomorphisms and we try to find correspondences
which are projectors in all cohomological realizations. If we have such an endo-
morphism ¢ then we also want that (H*(X),q) is also a pure motive. In any
case it has all the cohomological realizations and this is my basic criterion for
something being a motive.

If we are lucky then we can find such projectors, which induce the identity
on the cohomology H™(X) in degree n and which are zero in the other degrees.
Then we may speak of H"(X) as a pure motive of weight n. It is also possible
that we can find only ”projectors with denominators”, i.e. endomorphism p
which satisfy p? = mp with some non zero integer m. In such a case we get a
motive with coefficients. (See 1.8.)

1.3 Mixed motives

Now I want to remove a closed subscheme Y C X. Let U = X \ 'Y, this is now
quasi projective. I want to consider the cohomology H®(U) of U and I want
explain that we may consider this (under certain conditions) as a mixed motive.
We denote the inclusions j : U — X,i: Y — X.
Let me assume for simplicity that ¥ C X is smooth, then Y = Spec(Qx/J)
and we consider the completion

NY = Spec(liin(ox/jn))

which I consider as being a tubular neighborhood of Y. Locally on Y this is of
the form Spec(Oy (W")[[f1,.-., fr]]), where the f; are generators of the ideal J
which form a system of local parameters.

If T remove the zero section Y from this scheme I get

NY=NY\Y

L]

I want that the cohomology H®*(N Y) is a mixed motive and I will explain
why this is not an entirely absurd idea.

Let us start from the case that Y is just a finite number of Q-rational
points. In this case and our completion is simply a disjoint union of By =
SpecQ[[z1, - . ., zq]] where d = dim(X). If we stick to one of these points P then

L]

we have to understand the cohomology of B, \ P =B, .
It is clear that from the point of view of Betti-cohomology this is just a
sphere of dimension 2d — 1 and we say

Zifp=0,2d — 1

0 else

Hﬁ(éd) = {

The involution F,, acts by the identity in degree zero and by (—1)? in degree
2d — 1.

If we want to understand the de-Rham and the etale realization I begin with
the case d = 1. In this case we consider B; as "homotopy equivalent” to the



multiplicative group scheme G,,. If we cover the projective line P! by two affine
planes Uy, U; then G,, = Uy NU; and we consider the resulting Mayer-Vietoris
sequence in cohomology, it provides and isomorphism

HY(G,,) — H*(P")

Now we remember how we compute the cohomology of a sphere by using
the Mayer-Vietoris sequence. In By we can define the subschemes By[z; # 0]
and we can cover By by these subschemes. Writing down certain Mayer-Vietoris
sequences provides some convincing evidence that

H*=Y(B,) = Z(—d)

Now we consider the general case, our subscheme Y is still smooth. We
L] L]
can view N' Y as a fibre bundle over Y where the fibres are B, where d is the

c.odimension of Y in X. If we consider the sheaf Z on N''Y and the inclusion
N'Y — NY then the direct image functor is not exact we have

RYj,(Z)=0if g #2d—1,0

and in degree zero
J«(Z) is the constant sheaf Z

and
R2d7 1]'>‘< (Z)

is a local system of sheaves with stalk at a point isomorphic to Z(—d). This

L]
is just the local system of the cohomology groups of the fibres By. I claim that
this local system is trivial because if we consider the Betti-cohomology, then we
have an orientation on the normal bundle and the stalk R??~1j,(Z), = Z. In
the other realizations we get trivializations from the comparison isomorphisms.
We get a spectral sequence for the cohomology with Es-term

HP(Y, R%j.(Z)) = H"(N' Y, Z)

and since there are only two columns we get the Gysin sequence

— H'(Y, Rj.(Z)) » H"(N Y, Z) = H" 53 (y, RV (2)) — ™Y, Rj.(2Z)
Now we have to assume that the kernel and the cokernel of
(Y, R (2)) < HYY, RO (2)
are pure motives. Since the local system R??71j,(Z) is trivial this map
(Y, R (2)) = HNY, 2(-2d)) — HU(Y, BL(2)

is given by the multiplication by d-th the Chern class of the normal bundle and
we see that the map is induced by an algebraic cycle and this makes it clear



L]
that we can consider H"(N Y,Z) as a mixed motive. Of course the kernel and
the cokernel are just the terms E5-0, gy~ 21241
We want to say a few words about the de-Rham realization. At first we
consider the case that Y is of codimension one. We return to the global sit-

uation and consider Y — X. In a suitable neighborhood of a point yg € Y

the subscheme Y is given by an equation 1 = 0, let 21,22, ..., 24, be a set of
local coordinates in this neighborhood. Then we define two modified de-Rham
complexes:

The first one is

1
Yo,log

v

— "'Qyo,log

Ju10g(£2%)yo = 0 = Ox g 10g — € -

where Q¥

vo.log 18 Dx y,— module generated by the forms

dzx
L Adwg, A, A Ada,
T

it is slightly larger than Q% in all degrees > 0.
The second one is

j!,zero(Q.)yo =0— xlox,yo — (’)X7y0dx1 S5 .Z‘lox,yodxg D= ...

where the differentials in degree v are generated by the differentials dxy Adz;, A
...dx;, and zidz;, Adx, A...dz;, if all the 4, are different from the index 1.
Now we can define

Hpr(U,Z) = Hpp(X,ix(Z)) = H* (X, ji105(22°))
and
HbR,c(Uv Z) = HBR(Xvi!(Z)) = H.(ij*,zero(Q.))

and
HprN'Y,ju(Z)) = H* (X, i 10g(2°) /G zero (2°)).
We define the Hodge filtration in the standard way, then we can verify that

In(Hp(U,Z) = Hp(N Y. .(Z)) 0 F™ (Hp (N Y.50(2)) =
I(F™ (Hp (U, Z)) = F™(Hpg(N Y.1.(Z)))

(Hodge)

If Z is not of codimension one, then we blow up X along Y, we get a diagram
Y = X « U
b } I
Y =< X « U

where now Y is of codimension one. The reasoning in SGA4% IV.5 shows that

we have H*(N' Y,Z) = H™"(N Y,Z) in the Betti and the ¢ adic realizations,
hence we define

Hpp(N'Y,Z) = Hpp(N ¥, 2)



L]
and we have constructed all the realizations of our mixed motive H*(N Y, Z). It
has a weight filtration coming from our spectral sequence, this weight filtration
is visible on all realizations and compatible with the comparison isomorphisms.
The weights are n and n + 1.We get a long exact sequence

S HMU,Z) - H"(U,Z) — H*(N'Y,Z) —

Now we encounter a problem which we have seen in milder form before. We
certainly should try to show that the image of

H"(U,Z) - H"(N' Y, Z)

is the cohomology of a mixed motive and we also should show a similar assertion
for the kernel the map

H”’l(/{/ Y,Z) — HM(U,Z).

As far as I understand this is one of the major obstacles if we want to construct
an abelian category of mixed motives. If we can show that this is so under
certain assumptions or in a given concrete situation, then we might be justified
to say that

image (H(U,Z) — H"(U,Z)) = H\/(U,Z)

is a pure motive and it sits in an exact sequence

0 = HMU,Z) — H"(U,Z) — ker(H"(N' Y, Z) ~> H"™Y(U, Z)) — 0.

The motive H{*(U,Z) is pure of weight n the kernel ker(d) = ker(H™(N

Y,Z) N H(U,Z)) is mixed of weights n,n + 1. Hence H"(U,Z) has a
weight filtration with weights n,n + 1.
If dy is the dimension of U, then the dimension of Y is dy — d. If we assume

that n > 2(dg — d) then the weight n part in H"(N Y, Z) becomes zero and we
have H"(U,Z) = H"(X,Z) independently of Y. Furthermore ker(H"(N' Y, Z) —
HITY(U, 7)) is pure of weight n + 1 and we get

[H™(U,Z)] € Extyn(ker(0), H" (X, Z)).

Now we assume that the codimension of Y is one and we look at the co-
homology in degree n = 2dy — 1 In this case H?TY(U,Z) — Z(—dp) and
ker(6) — Z(—do)"~! where 7 is the number of connected components of Y.
Therefore we end up with an element

[H*PH (U, Z)] € Extp(Z(—do)" ™", H** (X, Z)).

For any element D € ker(d), D # 0 we can consider the line ZD € ker(9),
and the inverse image of this line provides a subextension

[H" (U, 2)][D] € Extypn(Z(—do), H"(X,Z)).



This construction is due to S. Bloch. If X/Q is a smooth, projective curve,
then the only choice we have is d = 1 and Y is simply a set of closed points
{P1, Ps,...,P.}. Let Q(F;) be the residue-field then we put n; = deg(P;) =
[Q(P;) : Q]. If all the P; are rational then H(Y, R'j,(Z)) = Z(—1)". In the
general case we have to twist these Tate motives by a finite dimensional repre-
sentation of the Galois group.

Now Y (C) is a set of n = 3 n; points and

HYNY)=H'NY©).,2) =2"=P( P 2

I o0:Q(P;)—C

and an element D € H'(N Y (C),Z) is simply a divisor, this divisor is rational
over Q if its coeflicients at the points lying over a given closed point P; are
constant and hence all equal to an integer d;. Hence a divisor D = ) ;NP can

be viewed as an element in H5(N Y) and this element is in the kernel of §
if and only if the degree deg(D) = > n;d; = 0. Therefore we may remove the
points P; from X, we get an open subscheme U = X \ {Py,..., P} and

[H™(U, 2))[D] € Ext)ypm(Z(-1), H' (X, Z)).

Now we can send the divisor D to its class [D] in the Picard group Pic(X)(Q)
and we get a diagram

ker(8)g = {D = Y n;Pi,deg(D) =0} — BExth(Z(-1), H'(X,Z))
pY \
Pic(X)(Q)

S. Bloch formulated the idea, that for a good theory of an abelian category
mixed motives the horizontal arrow in the top line should become surjective
provided the set of points removed is large enough. The vertical arrow is well
defined and should define an isomorphism.

We will also allow subvarieties Y C X which are singular, we should have
some control over the singularities. For instance the case that Y is a divisor
with normal crossings should be accepted.

We modify our construction slightly. We define the derived sheaf j.(Z). We
choose an injective resolution of our sheaf Z on U

0O — Z —- 0 — 0 =—

1

0 - J° - J' = J2 =
the complex of sheaves
3e(Z) = 0 = ju(J%) = Gu(T) = ju(J?) =

we restrict this sheaf to Y and hope that we can show that

H*(Y, j.(Z))



is a mixed motive. I think that this has been proved by Deligne in his papers
Weil II and Hodge I-ITI.. Furthermore we hope that can can identify the kernel
and the image of
§: H*(Y,j.(2)) — HIT(U,Z)

as mixed motives, i.e. we can find certain projectors obtained from correspon-
dences which cut out these kernels and cokernels. I do not think that there is a
general theorem which asserts this, so it has to be decided in the given concrete
case. If we can do this we again get exact sequences

0— HU,Z) — H"(U,Z) — ker(§ : H*(Y, j.(Z)) — HX(U,Z)) — 0.

Now the mixed motives will have longer weight filtrations, because H* (Y, j.(Z))
has a weight filtration with many different weights > n.

We get a second mixed motive, if we consider the cohomology with compact
supports, namely

0 — koker(H" ' (X,Z) — H" (Y, j.Z)) — H(U,Z) — H"(U,Z) — 0.

At this point it is not clear what it means that we have exact sequences of
mixed motives. But in any case we can look at the different realizations of these
motives and then we get exact sequences in the category Mp_rr( and Mgal
and this are abelian categories.

We briefly discuss an example. We may for instance remove three lines in
general position from X = P?, i.e. we consider

U:PQ\(10U11UZQ):P2\AL>Gm x Gy,
Then U = G,,, x G, and the Kiinneth-formula yields

H:(U,7Z) = HX(U,Z) ® H>(U,7) ® HX(U,Z) = Z(0) ® Z(—1)* @ Z(—2).

For the cohomology without supports we get

H*(U,Z) = H (U, Z) ® H' (U, Z) ® H*(U,Z) = 7.(0) ® Z(—1)* ® Z(—2).
Hence the map H2(U,Z) — H*(U,Z) is zero and this yields short exact se-

quences
0— H*(U,Z) — H*(A,i*(j.(Z)) — HY(U,Z) — 0
The computation of the cohomology sheaves R®(i*(j.(Z)) becomes a little bit

more complicated, but we can easily compute the E? terms HP (A, R(i*(j.(Z))
and get

(0) for n=0
niA wg _Jz(-1)? & Z(0) for n=1
HY (&, 70.(2) = (—2)®Z(-1)? for n=2

(

—2) for n=3



Construction principles

Now we give a vague outline how we may extend our construction princi-
ples to construct certain objects, which may be called mixed motives. These
principles will be applied in concrete situations.

We may consider subvarieties Y which are singular, an interesting case is
when Y is a divisor with normal crossings. We may also replace the system
of coefficients Z by something more complicated namely a motivic sheaf F on
U. These motivic sheaves are obtained as follows. We may for instance have
a smooth, projective morphism 7 : Z — U. Then the cohomology R*w.(Z)
provides such a motivic sheaf. It may happen that certain correspondences
of this morphism define idempotents on R*m,(Z). In this case the cohomology
of R*m.(Z) decomposes into a direct sum, the summands again define motivic
sheaves. Finally we may extend a motivic sheaf F from U to X. This may be
done by requiring support conditions for the extensions. If for instance Y is the
disjoint union of to subschemes Y = Y; U Y5, then we may extend to the points
in Y7 by taking the direct image without support conditions and to Y5 by taking
compact supports. (See the construction of Anderson motives in [Ha-Eis] and
also later in this paper.) Then we get certain sheaves F# on X and we consider
their cohomology H*®(X, F#). These objects will be ”mixed motives.” We have
to take care that these mixed motives still have cohomological realizations, they
must have Betti-de-Rham realizations which are mixed Hodge-structures and
the f-adic realisations must be modules for the Galois group. Of course we
must be aware that we encounter incredibly complicated objects. These mixed
motives have very long weight filtration with with many different weights.

But if we are lucky then we can find correspondences, i.e. finite to finite
correspondences T C X x X which respect the subset U and then also the
subscheme Y. We have the two projections pi,ps : T — X. If we now have
a motivic sheaf F# on X and the resulting mixed motive H®*(X,F#) (or a
piece cut out by an idempotent) then we get a morphism [T : H®*(X,F#) —
H*(T, pi(F#)) Now we have H*(T, p%(F#)) = H*(X, R*pa.(p}(F#)) and now
we hope or assume that we have a natural morphism ¢ : R*po. (pi (F7)) — F#.
Then it is clear that the pair (T, ¢) induces an endomorphism

[T,¢]: H*(X,F#) — H*(X,F%).

These endomorphisms induce endomorphisms in the realizations we can con-
sider the ring of endomorphism generated by these correspondences. An element
q in this ring is called an idempotent if it induces an idempotent in any of the
realizations.

Then it is tempting to decompose

H*(X, F*) = H*(X, F*)[q = 1] @ H*(X,F¥)[g = 0],

we do not know what the individual summands are. But we consider them as
mixed motives and we know that they have cohomological realizations.

If we look at examples of these H®(X, F#) then we see that they become
very large, they have weight filtrations with many steps and the dimensions of
the cohomology groups become very large.

We hope to find projectors which cut out summands in our mixed motives
H*(X,F#). For instance we can try to construct mixed motives which have

10



only two steps in the weight filtration and where the filtration steps are Tate
motives, i.e. we want construct extension of Tate motives of the form

X={0—7Z0) — X — Z(—n—-1) — 0},

we write X € Exty,n(Z(—n — 1),Z(0)). Such objects have been constructed in
[Ha-Eis|, these are the Anderson motives. In the second volume of [Ha-Eis] we
will extend this construction of Anderson-motives to other groups.

We may also do the following. Let k be an arbitrary field of characteristic
zero. As above we remove the triangle A from P?. Now we pick points @Q; € ;,
these point should be different from the intersection points of the lines P, =
lo Nl. We get a second triangle Ay whose sides are the lines passing through
the pairs of points @Q;, Q;. We blow up the three points @;, we get a surfaces X.
The triangle A; can be viewed as a subscheme of X, the inverse image of As
is a hexagon Ag inside of X. Each line of the triangle A; meets intersects the
hexagon in two points.

We put V =X\ AQ U A; and we introduce the notation

Jo Ve X\ A 25 X

On X we define the sheaf Z# = j; .21 (Z). Now I hope that the cohomology
H?(X,7Z7%) is a very interesting Tate motive which has a three step filtration

0C Z(0) c M c H*(X,Z#),

where M/Z(0) — Z(-1), H*(X,Z#)/M = Z(—2). (This hope is supported
by some tentative computations). Furthermore I hope that

0—Z0)—-M—Z(-1)—0
is a Kummer motive, hence it corresponds to a number ¢ € k™. The other quo-
tient H2(X,Z%")/Z(0) is also a Kummer-motive ®Z(—1). This Kummer-motive
should be given by the number 1 — ¢ € £*. The number ¢ should correspond to
the position of the third point Q2 € l3. We denote this motive by My 1_,.
Such a motive is of course not in Exth v, (Z(—n—1),Z(0)), but we may form
"framed” direct sums

framed(@ Mg, 1—g,)-
i=1
Ifnow > 2;A(1—2;) = 0in A%2k* then we may hope that we can change the basis
in M/Z(0) = ®Z(—1)e; in such a way that 0 — Z(0) - M; — Z(—1)e; — 0
splits for s = 1,...,[r/2] and 0 — M;/Z(0) — H?(X,Z#); — Z(—2) — 0 splits
fori=[r/2]+1,...,m
This seems to indicate that in some sense (?7)

framed(é Mg, 1—2,) ={0—>Z(0) > X - Z(-2) - 0} ® Z(-2)".
i=1

if Y~ x;A(1—x;) = 0. Hence we can say that r-tuples of elements x1, s, ..., 2, €
k> \ {1} which satisfy > x; A (1 — 2;) = 0 in A%k produce elements in
Ext'(Q(-2),Q(0)) = K3 (k).

11



1.5 Extensions
Let us assume, that we produced extensions X', which are sequences

0 —Z(0) — X —Z(-n—-1) —0.

We consider their realizations:
1.5.1 The Betti realization The Betti cohomology Xp is a free Z-module
which sits in an exact sequence

0—7Z—Xgp —7Z—0.

We have an involution F,, on Xp which acts by 1 on the left copy of Z and
by (—1)"*1 on the right. The extremal modules have canonical generators, in
other words as modules they are equal to Z. The de-Rham realization yields is

an exact sequence of Q vector spaces
0—Q0) — Xpr —Q(-n—-1)—0
together with a descending filtration

FOXDR D) FlXDR == FnJrlXDR D Fn+2XDR = 0
!
FrlQ(-n—1)=Q.

where the downwards arrow is an isomorphism.
We have a comparison isomorphism between the two exact sequences

I . XpC—— > Xpr®C.
an this comparison isomorphism satisfies
lTocgoFy =cqrnol

where the c77 is always the action of the complex conjugation on the coefficients.

We want to consider these objects (Xp, Foo, Xpr, F,I) as objects of an
abelian category B—dRh it is related to the category of mixed Hodge-structures.
Finally we have the p-adic realizations. For each prime p we have an action of

the Galois group Gal(Q/Q) on Xp ® Z, and we get an exact sequence
0—2Z,00) — Xp®Z, — Zy(—n—1) — 0

and this action is unramified outside of S U {p}.
Again we notice that the comparison isomorphism gives us canonical gener-
ators in Z,(0) and Z,(—n — 1)

1.5.2 The Betti- de-Rham extension class
We can associate an extension class

[X]B—arn € Extp g, (Z(—n —1),Z(0))

to our objects X. To do this we have to understand Extl_ ;z5, (Z(—n—1),Z(0)).
We distinguish two cases, first we assume that n even. We know that Z(—n—1)

12



l(Bfnfl)

has a canonical generator . We have a unique lift of this generator to

an element egnfl) € Xp ® Q which lies in the —1 eigenspace for F,. We also
find a unique e(D_Ig_l) € F"*1Xpr ® C which maps to the image of I(14 "™ ").
Then 153_"_1) - I*I(e(D_Is_l)) maps to zero in C(—n — 1). Hence we see that
150 1S ) e c(o) = C.

Finally we look at the action of cp on this class. Since Fi, acts trivially on
Z(0) we get from the compatibility condition

a1 — T ebp ) = Foocp(1y " = T (e n ™))
= (15" = e )

and therefore we conclude that the extension class lies in iR. If we choose =i

27
as a basis element for iR then we get an identification

Exty_qnn(Z(—n —1),7(0)) = R.

Now we consider the case that n is odd.

Again we know that Z(—n) has a canonical generator 159_”). We have a
non unique lift of this generator to an element ™ e X B ®Q. We find a
unique egg) € F"Xpr ® C which maps to the image of I(lgn)). Then 15_;”) -
I’l(e(D_g)) maps to zero in C(—n). Hence we sce that 15" — I’l(e(D_g)) € C(0)
mod Z = C mod Z.

We compute the action of cg on this class and this time we get

ep(1y™ - 171(6351?2)) = Faocp(1y™ = Tl )
= (5™ — 1Y)

and hence
Extp_gpn(Z(—n),Z(0)) = R/Z.

Now we encounter the fundamental question: What are the classes which
come from a mixed motive over QQ, in other words what is the image

Ext )y (Z(—n — 1), Z(0)) = Extp_gpy (Z(—n — 1), Z(0)).

Since the group on the left hand side is not really defined we may ask: How
many objects of the form

X={0—20) — X —2Z(-n—-1) — 0}

can we find somewhere in the cohomology of an algebraic variety over Q and
what are the possible values for their extension class in the category B — dRh.

The general conjectures about the connection between K-theory and the
hypothetical category of mixed motives seems to suggest the following question.
The case n > 0 even:

Is it true that for any such object X the extension class
[(X5_aru] = (' (—n)a(X) (Extp_qrn)

with some rational number a(X)? What are the possible denominators, are they
bounded?

13



The case n odd:
Is it true that for any such object X the extension class

[Xs_rru] € Q/Z

in other words we get only torsion elements?

I think that we must be aware, that it is by no means clear, that our construc-
tion principles do not go beyond the construction of mixed motives constructed
by K-theory, or other known approaches to the category of mixed Tate-motives.

Actually T have the feeling that these two conjectures combined with with
the conjectures on the p-adic realisation, which is formulated in 1.6. are really
conjectures about some finiteness results, which are a little bit scaring.

1.3.1 The Galois-module extension class
Now we consider the attached sequences of Galois modules
0— 2,0 —X®Zy, — Zp(—m—1) — 0
We consider exact sequences of Galois-modules Z,, x Gal(Q/Q)-Moduln
0—7Zy,(0) > X = Zp(—n—1)—=0.

We assume that n is even and p > 2. Then we know especially p — 1 fn + 1.
Such a module provides an element X

[X] € Bxtlyay g0 (=1 = 1, Z,(0) = HY(Gal(Q/Q). Zy(n +1)) =
lim « HY(Gal(Q/Q),Z/p™Z(n + 1)).

It may be helpful if we introduce the notation

m n+1
Zp/p" Lp(n+1) = MS’E o
To understand this cohomology we pass to the cyclotomic extensions Q(¢,m)/Q
and we denote their Galoisgroups over Q by I';,,.We have the canonical isomor-
phism
a: Ty = Gal(Q(¢pm)/Q)——(Z/p™Z)*.
Our assumptions on p,n imply that we can find an z € (Z/p™Z)* such that
2"t £ 1 mod p and this implies that

H (P, i) = HP (T, i) = 0

m Yl
ms Mp p"

and the Hochschild-Serre spectral sequence yields an isomorphism
H* (Gal(Q/Q), ™) = H (Gal(Q/Q(Gm ), s )

Since the Gal(Q/Q({pm))-module u?,ﬁnﬂ) is trivial we have the Kummer iso-
morphism

HY (Gal(Q/Q(¢pm ), o™ T o (Q(¢pm)* @ pSi) T =
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(@(Cpm)* [ Z/me)(—’rL) = {ZL’|£E c Q(Cpm)* ® Z/me,QL’U _ xa(a)fn}.
An element ¢ € H'(Gal(Q/Q),Z,(n + 1)) is a sequence of elements
E= ()
which satisfy
Em € (QGn)" ® pS)™ = HY(Gal(Q/Q), pg™+)

and are mapped to eachother by the transition map: The homomorphism
Z)pm 7 — Z/p™Z yields the projective system and consequently we get a
homomorphism

(Q(Cpm“ )* 02y Nfﬁg—u )FmH — (Q(Cpm)* by U?’Z})Fm
and we have to identify this homomorphism. An easy computation yields
NG yms1)/QGpm) (Em+1) = &
and we conclude that our homomorphism is given by
N2t (QGn)* @ 2 )T = (Q(Gm)* © i)
With respect to these homomorphisms we have
HY(Q Zy(n + 1) = Im(Q(Gpm )" ® ppit))™
We consider the restriction
HY(Gal(Q/Q), Zy(n + 1)) — H (Gal(Qp/Qp), Zp(n +1)).

Since Ty, = Gal(Q(¢pm /Q) = Gal(Q,(¢ym /Q,) our considerations above using
the Hochschild -Serre sequence also apply to this situation: we may replace Q

by Qp. Let

Ur(r}) cCO" = (ZP[CP"‘])*

be the group of units congruent 1 mod p,then
(U ® pi))'m C(Qp(Gom)* @ Z/p" L) (—n).
The projective limit

lim(US) @ Z/p™)(=n) = Vy(—n).

n

and I claim that V(—n) is a free Z, -module of rank one .
(The Hilbert symbol yields a pairing

1
UN @ Z/p"Z) x (U @ Z/p"Z) - —Z/Z(1)
pm
and a generator in V,,,(—n) yields a homomorphism

. 1
o1 UV @Z/p™7 — p—mZ/Z
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which satisfies
Spy1(u”) = (o) 1841 (u)
and this must be the Coates-Wiles homomorphism. (Washington, Chap. 13).)

Now we assume that n is even. We introduce the subring O,, = Z[%, Cpm].

We define elements CS:,L = Cpm @ Cpm - @ (pm € Iu?” and we construct the
Soulé elements in (O, @ pon ) :

am@) = I =G 0 gn

(a,p)=1
a mod p™

and N,ln/fl,m (Cn,m+1) = Cn.m. We get an element in the projective limit

(@) =(...cnm(p),...) € HI(Q,Zp(n +1)).

These elements ¢, (p) and ¢, (p) do not depend on the choice of the prim-
itive p™-th root of unity, they are canonical elements in H'(Q,Z,(n + 1)).

If we send the elements c¢,(n) into the local Galois cohomology then they
become a multiple of a generator e,

Cn(p) = ZIl(n) *€n
with €,(n) € Z,. I think, that the results on p-adic L-functions and Iwasawas
results imply (Washington 13.56) that
ly(n) = (p(n+1) mod Zj

where

(p(n+1) = lim ((n+1—(p—1)p%).
I also assume at this point that (,(n+1) # 0. In any case it is not clear whether
lim(0), ® ugﬁ)rm has a non zero image in H'(Q,Z,(n + 1)) without such an
—

assumption.

1.6 The p-adic extension classes
We assume that n > 0, even and that we have constructed a mixed motive
over Q

X={0—-2Z0) > X —Z(—n—1) = 0}

it provides an extension class
[X], € H'(Gal(Q/Q), Zy(n + 1))

for all primes p. We can say that these Galois-modules form a ”compatible
system” of representations for the Galois group, because all the Galois-modules
come from the same global object. The Soulé elements allow us to formulate an
assertion which makes the above statement precise.

We ask:

16



Let X be a mized motive as above. Is it true that for all primes p
[X];U = a(X)Cp(n) (E'Ttp—etale)

where a(X) is the same number which occurred in our formula for the Hodge-de
Rham extension class? Perhaps it is more reasonable to ask the weaker question
whether this relation holds for the image of [X], in H*(Gal(Q,/Qy), Zy(n +1))

Do exotic mixed Tate motives exist?

We call a mixed Tate motive X exotic if one of the above assertions fails.
Clearly there are various qualities of being exotic. In the course of these notes
we will construct mixed motives for which we know that (Extg_qrp) is true,
but where we do not know how to prove (Ext,_ctale). In my lecture notes
volume ”Eisenstein Kohomologie und die Konstruktion gemischter Motive” 1
gave the construction of the Anderson motives. For these motives I computed
the Hodge-de-Rham extension class and showed that in fact they are of the
predicted form a(X)¢'(—n).

I also hope that I can compute the p-adic extension classes, so both questions
can be answered positively for these motives. In their paper ” Dirichlet motives
via modular curves. ” Ann. Sci. cole Norm. Sup. (4) 32 (1999) A. Huber
and G. Kings prove that the p-adic classes have the right form. But they use
K-theory and I do not understand completely how the object in K-theory can
be compared to the object which I construct.

I also will construct mixed Anderson motives X'(f) for the symplectic group
GSp,, they will be labeled by classical elliptic modular forms f. Again I will
compute the Hodge-de-Rham extension class, the computation of the p-adic
extension class seems to be even much more difficult.

On the other hand in the volume ”The 1-2-3 of modular forms” I pointed
out that the non existence of exotic mixed Tate-motives gives us a hint to prove
the conjectural congruences in my article ” A congruence between a Siegel and
an elliptic modular form.”

Of course the non existence of exotic Tate motives would be an interesting
theorem in arithmetic algebraic geometry. But it seems to me also interesting
that it has such concrete consequences which can be checked in examples.

Finally I will construct mixed Anderson motives for the symplectic group
GSpy, and here I find some objects whose Betti-de-Rham probably do not satisfy
(Extp_qrn)- These are labeled by eigenclasses in the cohomology of Gl4(Z) with
suitable coefficients.

1.7 Final remarks At this point I am always a little bit confused. Experts
in K-theory keep telling me that the answer to both questions is clearly yes,
i.e. there are no exotic mixed Tate motives. They say that this follows if we
work in the category of mixed Tate-motives over number fields, which has been
constructed by Voevodsky. In this category the computation of the extension
groups Extqaq/q is reduced to the computation of K-groups of number fields,
which has been done by Borel.

But it is not clear to me whether the mixed Tate motives which I constructed
above can be viewed as objects in Voevodsky’s category. Especially this applies
to the examples for GSp,.
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We add some further speculations: Assume that we have always the above
relation between the Hodge-de-Rham extension class to the p-adic extension
class. If this would be the case then we would have a tool to attack the question
concerning the denominators of a(X’). If for instance (,(n+1—(p—1)) 0
mod p we have seen that the image of ¢,(n) in H*(Gal(Q,/Qp), Zy(n+ 1)) is a
generator and therefore we can not have a p in the denominator of a(X). But
if the (—value is zero mod p we get that c,(n) is locally at p a p— th power.
In such a case the Vandiver conjecture would still imply that c¢,(n) itself is not
a p-th power.

But independently of the validity of the Vandiver conjecture we can consider
we can pick an n as above and a prime p. If (,(n + 1) # 0 then we would know
that the p-denominator in a(X) is at most p’r(™).

But of course at this point we cannot say anything for a single value n >
0. We have the remarkable result by Christophe Soulé that for p > v(n) the
Vandiver conjecture is true for the n-component which means that we know
that ¢p(n,1) # 0 and this is equivalent to ¢,(n) is not a p-th power. Hence we
have to check a finite number of primes. hence we see that we can bound the
denominators and we have to check a finite set of primes. But this finite set is
so enormously large that we can not check them all.

We can also speculate what happens if n is odd. Then we have seen that the
p adic extension classes are all zero. This applies only to the projective limit,
the cohomology on the finite level may be non zero. This supports the idea that
the Hodge-de Rham classes should be torsion classes in this case.

2 Modular Construction of mixed Motives

We want to produce situations of this kind in the context of Shimura Varieties.

We consider the case G = Glz/Spec(Z). For a prime p we define the two
subgroups Ki(p) C Ko(p) C Gla(Z,)

Kotr) = (1= (0 ) €Guz)l =0 modp)

and for K;(p) we require a =1 mod p in addition.

Let K;o(p) € K; = G(Z) be the subgroup where we replace the factor
G(Z,) by Ko(p) and accordingly we define K 1(p).

We pick a prime py which will play an auxiliary role. To this prime I attach
the modular curve Yy (pg) whose complex points are Yy (po)(C) = G(Q)\G(R) /Koo %
G(Ay)/Kypo(p). Here Koo = SO(R) x RZ,. This curve is a curve over Spec(Z)
the fiber over pg is singular. It has two cusps, we have the compactification

Xo(po) = Yo(po) U {0, 00}

where two cusps are actually rational.

For any even integer n > 0 I consider the SLy(Z)-modules

M, = {ZaVX”Y"7”|aV c Z} .
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Actually I can realize M,, as a Z-module of homogeneous polynomials P(c, d)
of degree n in the lower row entries of the matrix

()

The group acts by multiplication from the right and I twist by a power of the
determinant, i.e.

(3 g) P(c,d) = P(ac + 7d, B + 6d) det (‘;‘ ?)

(see [Ha] ...). (The variable ¢ corresponds to X and d to y). This has the effect
that the central character is

= 0 —z "

0 =z '

They provide sheaves M,, on the Riemann surface To(po)\H. This sheaf
has a motivic interpretation: We have the universal family 7 : £ — Yy(po) and
its n-fold fibered product

¢ X ¥ (po) Ex - X Yo (po) £ YO(pO)~

This yields a holomorphic map on the complex valued points. The symmet-
ric group S, acts on this fibered product and hence it acts on the sheaf of
cohomology groups R™m, .(Z). Then it is well known that

'A;ln = Rnﬂ'n’* (Z)Sn(s) .

Now we choose another prime p which should be different from pg. We can
interpret M,, p = =M, ® Z,, as a p-adic sheaf over Yj (po) This prime will be
fixed for the rest of this article and we will write M for M,, p- We have the two
cusps oo and 0 and let Do, Dy be small punctured discs around the cusps. We
get the exact sequence in cohomology

HO (Yo (po) xq @, M) — H(Doo x@ @, M) ® H(Do xq Q, M)
LI H! (Yo(po) xg Q, /\/1) — H*(Yo(po) x@(@ M)
— H' (Do xg Q, M) ® H'(Dy xo Q, M) —
(1)
We have the action of the Hecke algebra on all these modules and especially

we have the operators T),. Whenever we have a finitely generated Z, module M
with an action of the Hecke algebra we can decompose it into

M = Mord 2 Mnilpt-

Here Myiipt is the maximal submodule on which 7}, acts nilpotently and M oq
is a complement on which 7}, acts as an isomorphism. We can say

M oa = () T"(M)

m>1
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Since we assumed that n > 0 the morphism § is injective and r is surjective if
we restrict to the ordinary part.

The Hecke operator acts by the eigenvalue p"*! + 1 on the ordinary coho-
mology at infinity.

All these modules are Galois modules and as Gal(Q/Q) modules

HO(Do, M) ® H(Doo, M) = Z,(0) ® Z,(0)
Hlord(DO’M)EBHlord(DOO7M) - Zp(_n_ 1)@217(—71—1)7

0= Zy(0)* = H}(Yo(po) xg Q, M) = H} (Yo(po) xq Q, M) =0
0 — H!(Yo(po) xg Q, M) = H*(Yo(po) xg QM) = Zp(—n — 1) =0

We can also compute these cohomology groups as the cohomology of the sheaves

it(M), Ri (M)
on the complete curve Xo(po).

Now we follow the suggestion of G. Anderson and construct a sheaf M# on
Xo(po) which is a compromise: We have

o+ Yo(po) — Y3(po) = Yo(po) U {0} <3 Xo(po)

and

M* = R% i1 (M).
The cohomology
H'(Xo(po) xq Q, M#) = H' (Y (po) xq Qi1 (M))
has a filtration in three steps:

F= H'\y(Xo(po) xo @ M#) 5 F'H', (Xo(po) xq Q, M¥)

- ) = ord )
D F?H', 1(Xo(po) xo QM) D {0} = F?,
where
FO/F1 ~Z,(—n —1)
FI/F2 =~ HII(YO(p) XQ Q7M> ord
F?2=F?/F3 ~ Z,(0)

This filtration is of course compatible with the action of the Hecke algebra and
the Galois group.

If we divide by the lowest step in the filtration, we get
0 — H!Yo(po)xoQ, M) ora — H' (Y (po)xqQ, io1(M))/Zp(0) — Zp(—n—1) — 0.

This sequence has a canonical splitting which is compatible with the action
of the Hecke algebra if we tensorize by @Q,. Hence if we choose a generator
wp € HY (Do, M,,), then

ord

H', (Y (po) x@ Q. i0t(M))/Z,(0) € H! (Yo(po) xq@ @, M) @& p™ - Eis(wy) - Zy,
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where the quotient of the two modules is Z/p‘sp(”)Z, and where p (™ is the
denominator of the Eisenstein class, i.e. p’»(") - Eis(w,) is a primitive element,
and therefore

P’ Eis(wn) - Z, € H' (Yg(po) xq Qi0,1(M))/Z(0).
Hence we can construct a submodule
Hi;,(Yo(po) % Qo (M)
which sits in an exact sequence
0 = Zy(0) = Hyy (Y5 (po) @ Q, ior(M)) = Zp(—n —1) = 0
of Galoismodules and on which 7T}, acts as a scalar with eigenvalue p"** + 1.

In some sense we can say that this Galoismodule is the p-adic realization of
a mixed motive

Higs (Y5 (po) % Q,i01(M)) = Hie (Xo(po) xq @, M*), (2)
we also have a Betti and a Hodge realization of this object.

Now we want to compute the class
[Hiis(Yo(po) xq Qi (M))] € H' (Gal(Q/Q), Zy(n + 1))
We have the elements

cp(n) € H(Gal(Q/Q), Zy(n + 1))

constructed by Ch. Soulé.
Now I make the conjecture:

The extension class of the Galoismodule
0 = Zy(0) — Hpyo(Yg (po),ior(M)) = Zp(—n —1) = 0

is given by

Cp(n) pg+2_1 ¢(—1—n) ) (3)

This formula should of course be compared with the formula for the Hodge
de-Rham extension class in my lecture notes volume [Ha-Eis] . ( T have to confess
that I made the computation much to complicated, because I always had the
idea that the integral structure on the de-Rham cohomology should play some
role. This had the effect that I sometimes go back and forth.)

But in principle the computation is correct. I have to integrate the differ-
ential form Eis(a x 9y) against the relative cycle 3,, and this is the number I
want to compute, it gives the extension class.
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_pSP(n) pZ)H_l -1 1 C/(—Tl) (4)

4 ppt? —1¢(-1—n) 2mi

Then the conjecture above simply says that the mixed motive Hi (Yg(po), io (M)

is not exotic. In a certain sense the complex number Clé;i”) is equal to log,,(c,(n)).

We had to assume n > 0 because otherwise there is not enough room for a
mixed motive. But if we pass from Yy(pg) to Y1(po) then we get a larger set
Y(po) = Lo(po) U Lo(po) of cusps and the contribution of the boundary in the
exact sequence (1) becomes larger. This is described in detail in [?] 4.1.1 p. 108.
We get

H.(Dz(po)?'/\;l ®F) = 69[5]01(:00)7
@
in degree 0 we have to sum over

¢ =(n,a") und ¢ = (1,na")
and in degree 1 over the characters

an+1 an+1

77a071) and 90:( anail)a

P =
where 1 : (Z/poZ)* — F*, and the parity of 7 is n. )

This allows us to define the mixed motives Hy,, (Y{(po), io(M))[n] which are
called H*(M#)[n] in [?]. If n # 1 then we can put n = 0.

Again we get a formula for the Betti-de-Rham extension class [?] and in if
n = 0 the results in the Dissertation of Ch. Brinkmann [Br] (see also [?]) give a
formula for the p-adic extension class. Therefore we see that under these special
assumptions the motives are not exotic.

This argument can be used to prove the conjectured formula for the p-adic
extension mod p. We replace our curve Yy(po) by the curve Yp 1(po,p) this is
the which belongs to the level subgroup Ky, », = XKo(po) x K1(p) x . Inside
K1 (p) we have the full congruence subgroup K (p), the quotient Gl3(Z,)/K(p) =
Gla(FFp). We have the Teichmiiller character w), : F)\ — Z,' it yields a character
wy : Ki(p) — Z,, we construct the induced representation Indg&gp)w” = I n
This defines a local coefficient system I,,» on Y (pg). We construct the sheaf T fn
and we get again the mixed Galois-module

0= Z(0) = Hyy, (Xo(po) xq Q. IJn) = Zp(—1) @ wy =0 (5)

This gives us an extension class in the category of Galois-modules which can
be computed using the results in [Br]. We assume that 0 < n < p, in [Ha2] we
explain that we have an inclusion M ® F,, — I,» ® I, and that this inclusion
induces an isomorphism on the ordinary part of cohomology

Hlord(YO XQ @aM ®FP) % Hlord(YO XQ @a jwn ®FP) (6)

This extends if we go the modified sheaves I7,, and M ® Fp# and from here we
get the formula for the extension class mod p.
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I made a serious attempt to prove the conjecture modulo higher powers p™
but so far I was not really successful.

Comments: We find the exponent p’»(") because we have to multiply the
generator w, of the cohomology at infinity by this power of p to make the
Eisenstein class integral. On the other hand we know under our assumptions
that {(—1 — n) is p-integral, hence

((-1—-n)= PP (™) . unit.
The truth is that we know d;,(n) = d,(n).

But this formula gives us also a hint why we should have the equality of
these two numbers. First of all one can see that 0 < 6, (n) < d,(n). But if we
had 0,,(n) < d,(n), then it would mean that we can extract a p-th root from
¢p(n) which is of course not impossible but it will be a rare event.

2.1 Anderson motives for the symplectic group

I may consider the group G = GSp, and consider the double quotient
GQN\X x G(Af)/Ky

where K is a suitable open compact subgroup in the group of finite adeles and
X is the hermitian symmetric domain attached to this group. This quotient is
the set of complex valued point of a quasiprojective scheme

1
G _
Sk, =8 — Spec(Z[N])

where NN is the product of primes occurring in the congruences defining K.
Hence the topological space will now be denoted by

S, (C) = GQ\X x G(Ay)/K;.

Remark: In the following exposition we have a slight notational inconsis-
tency. For any reductive group M/Q we can define the spaces

Sgar = M(Q\M(A)/K x K¢ (7)

If it happens that G = GSp,, are more generally leads to a Shimura variety,
then we gave a different meaning to Sﬁf in this case it is a scheme and the result-
ing locally symmetric space is Sﬁf (C). Hence Sﬁf has two different meanings.

In the following text S]C(:f will be most of the time the topological space, and
only under certain circumstances we remember that the set of complex points
of a scheme, which is denoted by the same letter.

If we consider an irreducible rational representation

p:G/Q — GL(Mg)
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of the algebraic group G/Q. This representation is given by its highest weight
A = > n;vy; + mpu, where the +; are the fundamental weights and where p is the
weight character. Then this representation provides a sheaf M@ of Q-vector
spaces on our complex variety ng (C). If we are a little bit careful und if we

write
Sg.(C) =[] r\x

with some congruence subgroups I'; C G(Q) (or maybe even better I'; C G(Z)),
then we can choose I';-invariant lattices in Mz in M and this provides sheaves
Mz on S¢ (C).

During the progress of this notes we have to enlarge the ring Z to a larger
ring R at several occasions. This larger ring R will be obtained from Z by
inverting some primes and and then we take the integral closure of this new
ring in an algebraic extension K/Q. We tensorize the sheaves Mz by R and
the resulting sheaves will be denoted by M.

At the beginning of our discussion we do not know how big we have to choose
R, whenever I enlarge it I will say which new primes have to be inverted and
which further algebraic extensions have to be taken. These primes will be called
small primes.

These sheaves are obtained from the universal family of principally polarized
abelian varieties and products, symmetric parts and so on — over SIGQ. Let us

denote this motivic sheaf also by M and rebaptize the old M to Mg, i.e. Mp
is the sheaf of Betti- cohomology groups of this motive. At this step we may
have invert some primes, I think tat the primes which are smaller than the
coeflicients n;of our highest weight are enough.

We may also consider the sheaf of de-Rham cohomology groups

MARn/SE,
it comes with a filtration and the Gauss-Manin connection
Vv MdRh — MdRh ® Q}g

which is flat and satisfies a Griffith transversality condition.

Finally we can consider consider a prime [, which lies over a prime ¢ and
M[ = MB ® Ry, and this is a system of [-adic sheaves on Sﬁf. If 7 is not
invertible in R then Ry is a field.

Let S <5 S where S is a smooth compactification obtained by the
method of toroidal embeddings (Faltings-Chai). We have that

S\ = JSH) =S
[P]

where [P] runs over the conjugacy classes of maximal parabolic subgroups. The
Levi-quotients of these maximal parabolic subgroups are essentially products
Glg—q x GSpa x Gy, where a runs from 0 to g — 1. We call the parabolic
for a = 0 the Siegel parabolic and for a = g — 1 the Klingen parabolic. The
boundary stratum corresponding to the Klingen parabolic subgroup is a union
of Shimura varieties attached to GSpy—1 together with their universal abelian
variety over it. So it is of codimension 1 and a smooth divisor provided K is
sufficiently small.

24



The SGJ/]\ attached to the Siegel parabolic is a configuration smooth toroidal

varieties of dimension % — 1 with transversal intersections. The combina-

torics of this configuration is governed by taking certain cone decompositions
for the action of congruence subgroups I'' C Gl,(Z) on the positive definite
symmetric matrices in My(R). I will come back to this point later. For the
other strata we get something in between.

We can construct “motivic sheaves” on S by extending M from S to
So where we require support conditions for these extensions. We are mainly
interested in the Siegel parabolic and hence we extend somehow to the strata
S@A which are different from the Siegel stratum. Then we take an auxiliary
prime po and choose a congruence subgroup Ky(po) C Ky. (This is similar to
the construction in my book.) We get a decomposition of SG)A] into different

connected components. And then according to certain rules we extend M to
AA
S[P]. ~
Of course we may still take the full direct image i.(M) (here we take the
derived functor) and we consider the cohomology

H* (84,04 (M))

as a mixed motive over Z[M%N] with coefficients in R.

If we consider the Betti cohomology of this motive then we can compute
it using the Borel-Serre compactification and we apply our considerations from
[MixMot 3.1].

We write the compactification

5¢,(C) — 5,
and S}C(;f is a manifold with corners. We have

SEN\SR () =JopS=0s
P

where now P runs over all parabolic subgroups containing a fixed Borel sub-
group.

We choose a Borel subgroup B and let us choose P to be the representative
of P which contains B.

Then we have a finite coset decomposition

G(Ag) = P(Ap)Er Ky
&f

and we recall from [MixMot 3.1] that we have

H'(@PS,MR) - UH.(SI](\/[}M(gf)yH.(u7M)R)7
&r

H(u,M)= @ H"™ (u, M)(w- ),

weWw P
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where W is the set of Kostant representatives of W/W™ and where w - A =
(A4 p)¥ — p and p is the half sum of positive roots.

At this point I am rather imprecise about which primes should be inverted,
a safe choice would be to invert all primes which ae less or equal to the numbers
n; which enter in our highest weight. But I am not so sure whether this choice
is too cautious, I will discuss this problem later.

Remark. Let us assume for the moment that g = 2, Let P be the Siegel
parabolic and @ be the Klingen. I have explained that the strata Sp" and S5
are different in nature. This is also reflected in the Borel-Serre compactification
or better in the cohomology of the two strata. Let M (resp. M) be the reductive
quotient for the Siegel (resp. Klingen) parabolic. In the following discussion I
suppress the {; because what I am saying does not depend on this variable. We

form the symmetric spaces S%M and S%{h, then they are of the form
¥

M(Q)\ M®R)/KY x  M(Ap)/K}'
M(Q\MUR)/KY x Mi(hg)/KGE

and the groups K2 KMt are the images of P(R)NK ., Q(R)N K respectively.

Both groups M, M; are naturally product of the form GLa x G,,, = M™) x
Gm,Ml(l) X Gpm. Now Koo N M™M(R) is not connected but Ko, N Ml(l)(R) is.
This has some influence on the structure of the cohomology. We consider the
cohomology

H*(M(Q) \ M(R)/KX x M(Ag)/ Ky, H*(u, M)
as a module under the Hecke algebra
HM = Co(K'\ M(Af)/K}").

M

o

If we replace K2 by its connected component K __, then the cohomology be-
comes a HM x mo(M(R))-module where mo(M(R)) is as usual the group of
connected components. If we restrict to the action of the Hecke algebra, then

H*(M(Q)\ M(R)/K . x M(Ay)/ Ky, He(u, M)

decomposes under HM into

P H(MQ)\ MR)/K . x M(Ag)/ Ky, H(u, M) () B

—~—

of Y
D  H(MQ\MR)/K x M(Ag)/K s, He(u, M))(7y)

where o, 77 are irreducible R-modules under the Hecke algebra. Here we must
enlarge our ring R. We have to be sure that the eigenvalues of the Hecke-
operators ( of course we only take Z-valued functions in the Hecke-algebra) lie
in R and we need that there are no congruence amoung the moular forms. The
isotypical components ¢y have multiplicity two.

Then we know:
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The oy are modules given by Hecke modules on the space of certain cusp
forms where the weight and level are determined by M and Ky. The 7y cor-
respond to Hecke modules attached to Fisenstein series of the same weight and
level.

Now we know that the o components come with multiplicity two and the
T¢ come with multiplicity one. These considerations are valid for M and for

M.
o M

But now we observe that we have replaced KX by K_ . It is easy to un-
derstand the effect of this manipulation. We recall that we have an action of
7o(G(R)) and the image 7o (K ) of KX in mo(G(R)) is non trivial (The connected

M

o
component K goes to zero.). This means

H*(M(Q)\ (M(R)/KX) x M(Ayg)/ K}, He(u, M) =

H* (M(Q)\ (M(R)/K ) x M(A7)/K M, He (u, M))™E). (8)

In the case of the Klingen parabolic subgroup mo(K) = 1 but in the case of
the Siegel parabolic subgroup the group 7y (K) has both eigenvalues +1 on the
isotypic components

H( L H()(ofp) = HL( L, H())(og) @ H2( , H*())(oy)-

We return to the case of a general genus g, we will be mostly interested in
the Siegel parabolic in the following we reserve the name P for it, let M be
its reductive quotient it is a Gl; X Gy,. If we consider the cohomology then
we have the surjective map from the cohomology with compact support to the
inner cohomology.

HE(Shhe, 'O (M) (10 N)) — H7 (S, H) (t, M)(w- ).

These modules for the Hecke-algebra HM (M (A)//K JﬁVI ), according to a the-
orem of Franke and Schwermer the surjective map has a canonical rational
splitting. If some congruence primes for the cohomology are invertible in R and
the quotient field of R is large enough then we get an isotypical decompositions
over R

(SKM’HZ(w) (u, M)(w - N)) — Hpy © H? (SKM’HZ(w) (u, M) (w - A)).
Hy (SH, HIG @) (u, M) (w - \)) @H, (s Hl(WM)(w.A))(m,

where the o are irreducible modules for the Hecke-algebra HM (M(A)//K }” ).

We have also the Hecke -algebra H%(G(A)//K;) and I abbreviate the notation
by calling them HM  HE.

Ind?%y, Hy (S , HI) (w, M) (w - N))(of) — H*(9S, M),
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and again we may have to invert a few more primes.
The modules oy have a central character w(oy) which is an algebraic Hecke-
character and the type of this character can be read off from the data A, w.
From this algebraic Hecke character we get another algebraic Hecke character

@(O’f) : IQ’f — R*

whose weight is equal something computed from w - A and perhaps we call it
simply w(w - A).
Now we invoke a theorem of R. Pink which tells us that
The isotypical component He (S, H') (u, M)(w-))(oy) is pure Tate mo-
: ¥

tive

Hy (Sicye, H'OD (u, M) (w - X)) (04) @ R(&(0p))-

We have to inquire whether this inner cohomology can be non zero. A neces-

sary condition is that the representations of M on the cohomology H!(®) (u, M) (w-
A) is self dual. This is of course not a problem if g = 2 because in this case the
semi simple type of M is A;. We will discuss later what happens if g > 3

We want to discuss the construction of sheaves with support conditions on
S/, T assume that my subgroup is of the form Ky =[], K}, where K, is open
in G(Z,) and equal to it for almost all primes p. I choose an auxiliary prime pg
for which K, = G(Zy,). I consider a group Ko(po) C G(Zy,) whose reduction
mod py is a Borel subgroup B(F,,) C G(F,,). We define the new K(po) to
be the subgroup of Ky where I replace the component at py by K¢(po). With
respect to this choice of the open compact subgroup I define my space ng.

The boundary of ng will now have a certain combinatorial structure ob-
tained from the prime pg. We have an action of the group B(F,,) on the sets
of different types of parabolic subgroups. We form the simplicial set 7 whose
vertices are the maximal parabolic subgroups in G(IF,,,) modulo this action and
the simplices of maximal dimension are the Borel subgroups modulo this action.
If we consider the character module X*(T') of a maximal torus then the maximal
simplices are just the chambers and so on.

We from reduction theory we get a projection map

T: 80 =8""\S—T.

If we take a closed subset = C T then the inverse image of this closed subset
will be an open subset S, and its union with the interior will provide an open
subset Sz C S". We have the chain of inclusions

i=:5 < Szandiz: Sz —T

We extend our sheaf M from ng to Sz by zero, i.e. we take the sheaf i (M)

and then we take the full direct image i= . (i (M)) This gives us a sheaf Mz
on S and we can consider its cohomology

H* (8", Mz).
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Now we will investigate this sheaf and we want to analyze to what extend
we can find mixed Tate motives inside this cohomology.

To understand this we look at the middle dimension first. Let d = %
and we consider the maps in the Betti cohomology

HY(SE (C), Mp) — HI(0S, Mp)
HI"1(0S, Mp) — HZ(SE (C), Mp)

We have the Dynkin Diagram as above but now «, will denote the long
root at the right end. To this root corresponds an injective cocharacter x, :
G, — T C G which is defined by < xg4,a; >= 26,4 and by the requirement
that it factors through the semisimple part G of G. Hence it is clear that
Xg(Gm) = A is the central torus of M intersected with G(1).

Let 7o : A = Gy, be the character for which vy o x,4(z) = .

If as usual 1,72, . ..,7, are the dominant weights, the v, extends to a char-
acter on M and for the restriction to A we have v4|A = ~{.

—_~—

We select a oy which occurs in H{®) (u, M)(w - A) and we assume that
< XgyW-A> < — < xg,pp >

so we are on the left hand side of the central point for cohomology. Then the
general results on Eisenstein cohomology tell us that the subspace

—_~—

Ind%iH'(Slj\fy,Hl(w) (u, M)(w - N)(og) € H*H) (08, M)¢

is in fact in the image of the cohomology provided the associated Eisenstein
series does not have a pole.

Actually what we have to do is to extend o to a representation o = 0o X 0
which now occurs in the cuspidal spectrum Acysp(M(Q)\M(A)). Let H, this
isotypical submodule so that we have

H’(s,fgfy,ﬂww)(u, M)(w-N)(of) = H*(m, KM H, @ H'™ (u, M))

We twist this representation by a character
frs s m = [yg(m)]®

and we consider the induced representation

logs = {f : G(A) = H,|f(pg) = o(m)us)(p)}

where m is the image of p in M (A). The functions should satisfy some finiteness
conditions.
We can form the Eisenstein series

Eis : Irgs — A(G(Q)\G(A)
given by

Eis(f)(g)= > flg)e)

PO\G(Q)
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which is convergent for R(s) >> 0.

Let us assume that we are in the holomorphic case, i.e. the Eisenstein
operator is holomorphic at s = 0 Then we know that the Eisenstein series is
actually an intertwining operator

Eis: I, — A(G(Q)\G(A))

we get a homomorphism

Eis® : H*(g, Koo, I,.. ® Mc) ® 05 — H*(S, Mc)

and if we compose this with the restriction to the boundary then I claim that
this composition gives us a surjective map

roBis: H(g, Ko, I, @ Mc) @1, — IndziH‘(S%fM,Hl(w)(u, M)(w- ) (o)

This means that as long as w - A is far enough to the right we know that
after tensorization by C the subspace

o, Indf{i H* (S, H'™) (u, M) (w - N (05

is in the image of the restriction map. If now ©p € W7 is the longest

element then we can consider ©p - oy = O'}/ and this module occurs in the

cohomology H'(S%M,Hl(w/)(u,/\/l)(w’ - A)) where w’ is the dual partner to w.
7

Here we have the opposite inequality

< XgoW - A>> — < xg,pp >

and for these weights we find that the map
Indff H* (S H'O) (u, M) (w - N (o) = HEFHOI (S M)

is injective if we do not have a pole.

If we pick such a oy then the module Ind%; (o¢) provides a module under the
Hecke-algebra H<. This induced module is of course a restricted tensor product
over all primes p of local modules. If we consider the local induced modules at
po then we can use our support condition = define submodules

= 4G
Ind;t’z;][ C Indzif (oy)

and quotients

G =/ 2,G

u(og) : Ind¥ (of)— Ind;_[;;[ ,
where 2’ is the complementary support condition. These submodules are not
modules for the full Hecke algebra, we have to take the identity element at the

prime py. We define

/

H* (8", Mz)(0y)

to be the inverse image of Indi’;’fch' (SM,,, H'®) (u, M) (w-A)(og) in H* (S, Mz)

divided by the kernel of u(oy). Then by construction we have a map

r(og) : H* (S, Mz)(oy) = H* (Sithe, H'™) (w1, M) (w - X)(oy)
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which is surjective up to torsion. We also get a map
doy) : Indzz\i (U}/) — H* (S, ME)(Uf).

If we divide the kernel of r(os) by the image of 6(cs) then we get the inner
cohomology.

Now I want to assume for a moment that Z is everything and =’ = (. T also
assume that

r(oy) : H’(S/\A,./\;l)(af) — H'(S%I,Hl(w)(u,/\/l)(w -N)(oy)

is in fact surjective on the integral level. Then we have rationally the Manin-
Drinfeld principle, this gives us a canonical section and a decomposition up to
isogeny

H* (M, M)(o5) D Hy (SM, M) (of) @ Héis(S?ffM,H“w)(mM)(w “A)(og).
We can not expect that the restriction

H}Elis(‘g[]\(l}\f?Hl(w) (uv M)(w ' )‘)(Uf) — H* (811\(411)7 ) Hl(w) (u7 M)(w ' )\)(O’f)

is surjective. I explained in [Ha-book], chap3, 6.3 that I believe that the order
of the cokernel should be related to a special values of the L function attached
to . More precisely the ”arithmetic” of the second constant term should tell
us something about this kokernel.

2.1.1 The Anderson motive

I want to explain that the discussion of the mixed Anderson motives gives
some further evidence that a result of this kind should be true. We take
a suitable 2. If we divide H*(S", M)(o;) by the image of §(cs) then we
get as a quotient a submodule of the cohomology namely the inverse image

of H* (S%?I,Hl(w)(u,/\/l)(w - A)(oy,Z) in the cohomology. We get an almost

decomposition

H* (8", M)(oy)/ Tm(8(a)) > HI.(SlgfaM)GBH}.Eis(S}]\(/[}VMHl(w)(uaM)(w'A)(vaE)

and this gives us the subobject Hp, (S, M)(of) which sits in an exact se-
quence

0 — Ind5 ¥ H*(SM,,, HO ) (w, M)(w - A (o)) 2 Hpo(S™, Mz) (o)

KIW?
f
s mdS 3 Hy, (83 H'O (u, M) (w - M) (07) = 0

and the term in the middle is a mixed Tate motive X[oy] Here we have to
observe that § raises the degree by one and r respects the degree. The map

Hio (S, H'O (4, M) (w0 N)org) = H* (P, HYO (u, M) (- N) (77)

has a finite cokernel, this cokernel will be given by a number A(oy).
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So we assume g = 2 and we also assume that we do not have a pole of the
Eisenstein series.

I want to give some indication how the Hodge-de Rham extension classes
can be computed. We apply the same argument as in my SLN. Actually I
think T made the computations unnecessarily complicated there. To simplify
the considerations I also assume that oy is defined over QQ otherwise I have to
make a lot of noise about fields of definition and conjugation under Galois.

We follow the advice given by our general discussion of the computation of
the Hodge de-Rham Ext-group. We can twist by a Tate motive so that the
bottom becomes Z(0) and then the top will be Z(—n — 1) with n. Let us also

M

. K.
assume for simplicity that our choice of K is so that o f 7 is of rank one so that

H'(SII‘(/IM,HZ w)(u, M)(w - N)(04) = Z(—n — 1) is of rank one. Now we assume

that

H*(S™, Mz)(0f) — Ind?y H* (SKM,HZ(“’)(u,M)(w “N)(of, E)

is surjective. Then A( Héls(SAA Mz)(of) — H'(SKM,

will be surjective. We take a suitable differential form

H') (u, M) (w-X) (o,

Wiop € Homp_ (A*(g/t), 1, @ C)

such that the Eisenstein intertwining operator maps wiop ® I, to
nd?, H Sk H'®) (1, M) (w0 - N) (07, E)

and such that complex conjugation acts by —1 since n is even. This is the
canonical Betti lift which we described earlier. If we multiply be a denominator
d(n) then we will land in the integral cohomology of the boundary. Now we
can find ( at this point some details have to be fixed) a class wpo; such that
Whot and wiep define the same class in Homg__ (A%(g/€), I,.. ® C) and such that
Eis(wne) lies in the F? filtration step of the de Rham filtration. So this is the
de-Rham-lift. According to our rules we have to look at the difference

(Eis(wo]) — Eis(wiop)) X ¢ € Ind3iu H* (SKM,Hl<w>(u, M) (w - \)(oy)

Again this can be computed as an integral against a relative cycle.
First of all we notice that we can write the difference wpo; — wiop as & dipoo
where
Voo € Hompg_ (A?(g/€),I,.. ® C)

This differential form can be interpreted as a form on
PQ\X x G(Af)/ Ky
more or less by construction. We have the level function
PQ\X x G(A7)/K; ™% Rog

and any level surface is homotopy equivalent to dpS. If we restrict this class to
such a level hypersurface it becomes closed and ¢ x 1y will be a non zero class
in
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H2(0pS, M) = Ind§,H1(SM,,, H®) (u, M)(w - \)=). Now we can find a

K
2-cycle 3 which represents a non zero class in

3] € Ha(9pS, M) = Hl(SI]‘(/[}w,Hl(u,/\;l))

and this cycle can be bounded by a chain ¢ inside SIG(f (C). Then it is the
definition that our extension class is given by the integral

JEis((nar = wion) x 7) = [ Eis(ure x0)
c 3

and as in [Ha-book] we find that integral can be computed from the second
term in the constant term of the Eisenstein class. We copy the result from
SecOPs.pdf

1 A (f,m +n2+2)) 1 ¢'(=m)
(O’f)ﬁ(ka) ACOh(f7 ny + no + 3) ((—1 — nl) LT
(9)

The factor C'(0p,, ) is a local contribution which stems from the auxiliary
prime pg. I have not yet done the computation but I think that up to a power
of pg it is equal to the inverse of the local Euler factor at pg in the ratio of
L-values. If ap, is the pp-th Fourier coefficient, i.e. the eigenvalue of T}, then
Apy = Qpy + Bpos WpoBpo = P¥ 1 and we should have

X(f)a-drn = _C(Upov)‘)<9

7?7,1771272 7’!741777,272 7’",171

C(O’ )\) — (1 — QpePo )(1 — IBPOPO ) i 1 —Po
Po> (1 _ apopan17n273)(1 _ l@popanlfngf?)) o1 _pan172
1— apopanl—ng—Z _’_panl—l 11 _p0—n1—1

1 _ apopoinlingig +p07n173 pO 1 _ pan172

(10)

C/(fnl)
s

is an extension class in Exth jp,(Z(—2 — n1 — no),Z(—1 — ny)) and the rest

of this expression is an algebraic number. Since the period is defined up to a

unit, it makes sense to speak of the prime decomposition of this number. Under

certain conditions we expect congruences modulo primes which occur in the

denominator of this number.(See SecOps.pdf)

We should interpret the formula (11) as follows: The last factor factor

2.1.2 Non regular coefficients

So far we discussed only the regular case, this means the case where the Eisen-
stein series is holomorphic at s = 0. Our our special case this means that ny > 0.
If we have ny = 0 then we have to study the behavior of the function

(11)

1 ACOh(f,n2—|—2+s))C(1+s)

_C(Up07 )\) (Q(Uf)e(k’m) Acoh(‘ﬂ no + 3+ 5) <(2 —+ S)

at s = 0.
Let us recall that f can be viewed as a modular form of weight £k = 4 +
ny + 2ny = 4 + 2ny. Hence we see in the numerator the expression A(f, g +s)
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If this does not vanish at s = 0 then the Eisenstein series has a pole at s = 0.
Taking the residue we get some non zero residual classes in H? (ng , M), they
are square integrable.

At this moment we are more interested in the case where A(f, ) = 0. Then
the Eisenstein class will be holomorphic at s = 0. Let us assume that we are in
the unramified case.

It is already discussed in [Hal] that in this case the induced module Ind(o)
has a unitary quotient J(oy), and this may have the consequence that

HOmHG (Ind(crf),Hf’(S}G(f,M,\) 75 0

and hence the Manin-Drinfeld principle is not valid under these circumstances.
This issue is discussed in [Hal]. In the appendix (letter to Goresky and MacPher-
son) we carry out a lacunary computation which shows that

J(of) occurs non trivially in Hf)’(ng7M>\)

12
if and only if the sign in the functional equation is — 1 (12)

We also discuss the relation between this assertion and the Saito Kurokawa lift.
Remark: At this point we should remark that we tacitly assume that we are
in the unramified case. This implies that actually I(cy) = J(os) The assertion
that that /(o) has a unitary quotient, means that after tensorization with C
a) we have an admissible representation I (o) of G(A ;) whose Hecke-module
of Ky invariant vectors is I(oy),
b) The G(A;)— module has a non trivial quotient J(o ;) on which we have
a positive definite G(Ay) invariant hermitian scalar product and (o) injects.

In [Hal] 3.1.4 we also discuss the construction of a mixed motive attached to
o¢. It follows from Piatetkii-Shapiro that H (SIG(f , M ®F) contains a submod-

ule SK(os) which consists of two copies of J(oy) and we get an exact sequence
0= SK(of) = HP(SE,, My @ F)(of) — Ind(H?’(S[]\%VI,MA(w “N)(er)) =0
(13)

The motive SK(of) = M(oy,r1) and it provides an extension class
V(of) € Extpn(Z(—k), M(oy,71)) = Extiyn(Z(—k), SK(oy)) (14)

In [Hal] we do not discuss the question of computing this extension class, in a
sense we did not know what that meant. But following T. Scholl we can give
some kind of an answer to this question. We choose an auxiliary prime py and
modify Ky at py to the Iwahori and the level will be Kf(py). We modify our
sheaf and construct a mixed motive H? (ng, M¥)(of). We have

H (S M)W’ (o) * © HY(SE, ME) (o)) ;
H(SE, M) o) 5 HY(S My, M) V(o) "
The submodule in the top row is a Tate motive Z(—k + 1)® the quotient in
the bottom row is Z(—k)® where a = 1,2, b = 2,1 depending on the support

conditions defining M#. We can write two exact sequences

0= H' (S, M)’ N)(op)# = ker(r) = SK(op) 0

0= SK(oy) = HY(SE,, MY )(07) == H (S, M)(w - \)(of)# — 0

My
Ky

(16)
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these two sequences are obtained from the diagram (15). They provide extension
classes

V(of) € Exta(Z(—k), SK(0y), V' (07) € Extpp(SK (o), Z(~k + 1)) (17)

Such a pair is a biextension and to such a biextenion T. Scholl attaches an
”intersection number ” or ”height pairing”

i[V(op), Y (0))]

, which is well defined modulo an ”element in Ext! (Z(—1),Z(0)).” To define this
pairing Scholl "intergrates” the pair of extension classes ((Y(oy), Y'(c%)) into a
diagram of type (15) let us call it

((V(or), Y (o)) (18)
and to such an object Scholl attaches an honest number
il(V(of), V(o))

The ”integral” (18) is only defined modulo an element in Ext!(Z(—1), Z(0)) and
this explains the ambiguity in the definition of i[(Y(0¢),)’(07}))]. Moreover the
existence of this integral is conjectural.

—_~—

But in our case we have an integral i[((Y(oy),Y’(0%)], this is simply the
diagram (15). (It is like finding a primitive to a function f which is defined as
the derivative of a function F.)

Now an extension of the computations in [Hal] Kap. IV 4.3.3 and Sec-
OPs.pdf to this case should yield

—_~—

; k
il(P(op), V()] ~ LM (04,71, 5) (19)
where ~ means up to some uninteresting non zero factors (JW). This is in a
certain sense a formula of Gross-Zagier type.

2.1.3 ¢g>3

We consider the case g = 3. We start from a highest weight A = n1y; + naoye +
nszys for simplicity we assume that this yields a representation of the group
GSp3 /Gy, then we have ny+n3 = 0 mod 2. The group M = Gl;-G,, the locally
symmetric space Sfj\g}w is of dimension 5, we look for cohomology in degree 2 and
3. We have the two interesting Kostant representatives w’ = s382, w = $3525357.
For these two elements we consider the coefficient systems My (w’-X), My (w-A)
onS IA%V,. Since we want to have non trivial inner cohomology we need to assume

that the coefficient systems are self dual and hence we need n; = 1+ 2n3. Then
we get for our coefficient systems

w' A = (24n2+2n3) (1 4927 ) H(=14n3)ys, wA = (24n2+2n3) (11 4957 +(=3-n3)7s.
and we can look for isotypical summands

H (S, Ma(w" - M) (), H(Sicye, Ma(w - A))(oy) (20)
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We know that they provide motives, if we assume that Ky is unramified then
they are Tate motives of weight w(w’-\) respectively. Now a simple computation
shows that the difference w(w-\) —w(w’- A) is even and therefore the extension
classes should be torsion and our source for congruences dries out. But this is
only good because at the time we can not expect a rationality result for the
ratios
Aoy v —1)
\coh (Uf; V)

because the motive M (o) should have a non zero middle Hodge number and
this puts a parity condition on the critical values, (or kills them all).

The situation changes if we the take the parabolic subgroup given by
a; — X <= a3,

the semi simple part is M = PSly x Sp;. The first factor has to be viewed as
the linear factor and corresponds to a1, the other factor is the hermitian factor.
Hence we see that our locally symmetric space is essentially a product

S;‘g}u = Sl X SQ. (21)
We pick a Kostant representative w € W and write as usual
wA+p) = p=di7" +dz3" + a(w, \)72 (22)

The resulting coeflicient system is a tensor product of coefficient systems on
the two factors and hence we see that in the isotypical decomposition (after a
suitable finite extension F/Q)

HY (S Ma(w- ) @ F) = @ B (S, Ma(w - N)(op). (23)
of

The oy = 74 x 0 where 7¢ resp. o are simply modular forms f of weight
k1 = di + 2 and g of weight ks = d3 + 2. We simply write

op =1p %0y =(f,9)

If we now apply the Eisenstein intertwining operator then we have to look at
the second term in the constant term. We find the formula for it in chap3.pdf
section 6.3. The Dynkin diagram of the semi-simple part of the dual group
MY = Gly x PSl, is

af — x >= o,
the first factor corresponds to Gly the second to PSly. We have to compute
the action of M on the Lie-algebra u}. The roots in A;}g are those ¥ =

a1y + aay + agay for which a > 0. By inspection we get 6 such roots with
Vv
a = 1 and one such root with a = 2. We can easily check that r?P =r; ®Ad and

v
ry” = det, where det is of course the determinant on the first factor. The highest
weight for the representation Ad is x; = af +a3 +2ay and x2 = o) +2ay +2a3

We compute the second constant term. We are interested in cases where we
can construct Anderson mixed motives and this means that we should deal with
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a pair of Kostant representatives w’, w where [(w) =4 and I(w’) = 3. We have
two such pairs

W) = $2818382 W] = $28153

Wy = $2838281 Wh = 28382

and then

wi(A+p) = B+n2+2n3)71" + 3+ n1 + n2 +n3)y3" +1/2(=1 — n2)y2

wi(A+p) = (3 +n2 + 2n3)3" + (3 + 11 + n2 + n3) 3" +1/2(+1 + n2)ye

wa(A+ p) = (54 n1 + 2ng + 2n3)7" + (14 n3)vd’ +1/2(—1 — ny)ve

wh(A + p) = (54 n1 + 2na + 2n3)YM + (1 +nz)y M + 1/2(1 + n1)ye
(24)

The coefficients of vi resp.y3! are the numbers d; + 1 resp. ds + 1 in equation
(22). Then we find easily that

(25)

2d3—d1:2+2n1+n2(22) if w=w;
d172d3:4+n1+2n2(24) 1fw:w2

In other words: We give ourselves d, ds and we look for w = w; resp. w =
wy and for a solution of the equations in (24) with A dominant. Then d;,ds
determine the choice of w.

In the case w = wy we have the further constraint d; — ds = n3 — n; which
in the case d; < d3 implies n; > —d; + ds.

Then it becomes clear that the possible solutions for no resp. n; are even

and %2 resp. 7 run through an interval

: 2d3—di1—2 di—2 : —
0,c2] = {[O,mm(2 =) ifw=wy (26)

[0, d1=2ds=1] if w=ws

We want to understand the expression in chap3.pdf (100). We get in the
two cases

< Xl,/fl(l) >= %(9 + 2n1 + 3ng + 4?7,3) b(wl,)\) = —l(]. +n2)
< xo, 1M >=0 2b(wy, \) =
(27)
< X1, 12V >= (T 40y + 200 +4n3)  blws, \) = —L(1+my)
< o, eV >=0 2b(wy, A) = —(1 + ny)

For w; this yields for the the following expression for the second constant
term (chap3.pdf (100)and SecOps.pdf).

T Acoh(q—xa},’rl XAd,5—|—’I’L1+2’rL2+2n3) C(1+n2)
Qo) Acoh(T x 0,71 X Ad, 6 + 11 + 2n2 + 2n3) (2 + n2)

C™ (000, NTR (W) ® TP (¢f))
(28)
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and for wq

T ACOh(TXU},Tl XAd,4+TL1 +n2+2n3) C(1—|—n1)

* Tloc Tloc
Q(O-f)e ACOh(T % 0}’7,1 x Ad,5 + ny +n2+2n3) <(2+n1)0 (0007)‘) ) (w)® f (d}f))

(29)

We give the ”arithmetic interpretation” of these two second terms. For the
beginning we forget the factors at the right we come from the infinite place.

Again we expect that these second terms give us the Betti-de-Rham exten-
sion class of a mixed Tate motive X' (o) and if we look at the formulae (24)
then we see that we get

X(of) € Extyp(Z(—1 —n),Z(0)) (30)

where n = nj or ne depending on the case in which we are. Since we need non
torsion classes we have to assume that n is even. Then we apply the functional
equation for the Riemann (- function to the ratio of ¢ values and get

C(n+1) n+1 ¢'(—n)

¢(n+2) m ((=1-mn)

and we get a factorization

( 1 Acoh(,,.) )( —n-—1 )(CI(_n)> (31)
Ao a1 -\ 7

We assume that n is even. The last factor on the right is interpreted as extension
class in Exth_ . pham(Z(—1 —n),Z(0)), the factor in the middle is a rational
number. The first factor needs some more explanation. It depends on a pair
(f,g) of cusp forms on Gly(Z) of weight k; resp. k3. These weights are the
coefficients of v resp. 73 in (24) augmented by 1. We have the symmetric

square lift of the automorphic form ¢’ to an automorphic form II; on Glz/Z.
Let H = Gly x Gl3 then this lift provides an isotypical subspace

HY (St )7y x TLy) © HO(SHy) (32)
and then we have more or less by definition
AR (1 x o, 1 x Ad, 5) = AP (1 x TIy, 7y X 72, 8) (33)

where r1, 75 are the two tautological representations( In chap3.pdf erkléren).
Now we have the results in [Ha-Rag] and we know that for integers v in a
certain interval [c(w, A), d(w, A)] the ratios

1 Acoh(y)
Qop) Ao (v +1)

(34)

are algebraic numbers in F. Here (o) is a period which is well defined up
to a unit in O (See [Ha-Rag]). The above intervall [c(w, ), d(w, \)] can be
determined from the data w, A. It is called the interval of critical arguments.
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2.1.4 Delignes conjectures

In [Ha-book] , chap3.pdf, 3.1 and 3.1.3. we discussed the hypothetical construc-
tion of motives attached to isotypical subspaces in the cohomology of arithmetic
groups. In our situation here this is actually not so difficult, we have

M(oy,r1 x Ad) = M(7p,7m1) x My, re) = M(7s,71) X Sme((M(a’f,rg)).
(35)

where the factors M(7y,71),M(0,71) are the Deligne-Scholl motives attached
to the modular forms (f, g). Note that the motive attached to (o, 71 x Ad) does
not change if we twist oy by a power of |[dp f|.

For any pure motive M of weight w = w(M) Deligne defines a set of critical
arguments. To define this set we look a the Hodge-decomposition

MpeC= € My (36)

P,q:ptHq=w

and we say that M has Hodge numbers (p, ¢) if M;? # 0. We define this set only
under the assumption that our motive does not have a middle Hodge number,
ie. h%% = 0. We look for the Hodge number (p.,q.) with p. > ¢. and p,.
minimal, then the set of critical arguments is the interval [g. + 1, p].

Under these conditions Deligne formulates the following conjecture (here we
assume that the motive is a motive with coefficients in Q)

There exist two periods Q1 € C* which are defined in terms of the compar-
ison of Betti- and de-Rham cohomology and which are unique up to an element
in Q* such that for all integers v € [g. + 1, p]

A(M, v)
Qe

eQ (37)

In our situation the Hodge numbers are
(d1 —+ 1,0), (O,dl + 1) for M(Tf,?"l)
and
(2ds +2,0), (ds + L,ds + 1), (0,2d; + 2) for Sym>((M(0}, 72)).

The Hodge numbers for M(of, 7 x Ad) are the sums of these Hodge numbers.
The motive is pure of weight w = d; + 2d3 + 3 this number is odd and hence
we know that for all Hodge numbers we have p # ¢. Therefore we get

%1 if dy < d fw=w
dq . - 1

ds — 5 if di > d3 . (38)
%—dg—l if w=ws

W—|—1_

Dc 5 =

Miraculously (?) this number is the number ¢y +1 in (26). Our second term
in the constant term becomes

7T ACOh(Uf’Tl X Adv WTH + %) C(l +n)
Qog)€ AP (op, 1 x Ad, WTH +5+1)¢(2+n)

O (000, VTR (w) ® TP ()
(39)
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where n = n; or n = ny depending on the case. The argument WTH +5+1
runs exactly over the right half of the critical arguments.

If we believe in the existence of the motive M(oy, 71 x Ad) and the equality
of the motivic and the cohomological L-function then the conjecture of Deligne
predicts that in formula (39) the ratio

1 A“Mog,r x Ad, "F + 1)
Qo) At (op,ry x Ad, ¥ + 2 4+ 1)

(40)

is an algebraic number in F) provided v and v + 1 are critical and we choose as
period
Q(M(Uf7 R Ad))e(V+1)

Q(M(Jf, 7 X Ad))e(,,)

Qoy) =

In this form Delignes conjectures are not available, already the existence
of the motive is not clear. But there is still another drawback: The periods
Q(M(of,71 % Ad))(y are only defined modulo an element in /. The definition
of the periods uses the comparison between the Betti and de-Rham cohomology.

In our paper with Raghuram [Ha-Rag] we prove a rationality result about
special values of Rankin-Selberg L-functions which is weaker than Delignes con-
jecture but also in some sense stronger. Applied to our situation here it says
that we can define a period (o) which is well defined up to an element in Oj;.
With this definition of the period the numbers

1 Ao, r x Ad, ¥ 4+ 1) 1

Q(O’f)€ ACOh(O'f,T'l X Ad, WTH + % + ]_) C(_l _ TL)

C*(000; A) (41)

are in F'* are their prime decomposition is well defined. In [Ha-Rag] we
also show that the factor C*(0o, A) is @ non zero rational number. It is an
important question to compute this number exactly. In the case g = 2 this
number in SecOps.pdf and it turns out to be very simple. A similar question
arises in [Ha-Mum]| and has been solved by Don Zagier in the appendix to that
paper.

We are again at the point where we can ask the question whether primes [
dividing the denominator of the algebraic number in (41) create denominators
of the Eisenstein classes and therefore also congruences between eigenvalues of
modular forms on different groups.

We return to the ratios of L-values on p.3. The L-functions which occur in
these expressions are actually the ”"automorphic” or ”unitary” L functions. But
I think that I have strong reasons that we should express them in terms of the
”cohomological” L-function. In the case discussed in ”Eis-coh...” the arguments
of evaluation are exactly the critical points of the Scholl-motive M (f) attached
to the automorphic form and this is equal to the cohomological L-function.

In the special case which we consider we started from two modular forms
f, g of weights k1, ks respectively. For both of them we have the Scholl-motive
M(f), M(g) and the two dimensional ¢-adic Galois-representations

p() : Gal(Q/Q) — GUM (f))e), p(o) : Gal(Q/Q) — GUM (f))e),

and we have for the Frobenii:
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. 0 .
p(7)(®, ") = ( 0 Bp) o+ By = ap, 0By = pt T = ph

_ 0 B
p(J)((I)p 1) = ('}37 5 ) » Yp T+ (5p = cp,'ypdp = pk3 1 :pd3+1
p

where a,, resp. ¢, is the p — th Fourier coefficient of f resp. g.
We take the symmetric square of p(o) and get

p(Sym? (o)) : Gal(Q/Q) — Gl (Z¢)

(here we assume that f, g have coefficients in Z.) Then

2

ol 0 0

p(Sme(U))(<1>;1) ~[0 pitl 0
0 0 &

Then we can write the finite part of the L-function as

cOo 1
L h(rxH,s):H > 5 5
p
" det(1d — (ap 0 )) o0 phtt o0 |p)
0 Bp 0 0 62
p

Here it becomes clear that this is the motivic L-function of the motive M (7 x
IT). Here the representation r of the dual group is the tensor product of the two
tautological representations.

The local Euler-factor is of degree 6 it can be expressed in terms of the
eigenvalues ay, ¢, and is given by

[(1 + (_apcf) + 2app—1+h) P+ (a?]p—Q—‘rQh + C;l)p—l—‘rk _ 4C§p—2+h+k + 2p—3+2h+k)p—25+
_ _ _ _ _ 1 _3 _ —1
(apcgp 34+2h+k + 2app 4+3h+k:)p 3s +p 6+2(2h+k)p 48)) * (1 _ apph lp s +pk+2h 3p 23)]

Our motives M(f), M(g) have Hodge types {(d1 + 1,0),(0,d; + 1), (ds +
1,0),(0,ds + 1)} and therefore we get for the Hodge type of M (7 x II)

{(d142d3+3,0), (d1+d3+2,d3+1), (d1+1, 2d5+2), (2d3+2, d1+1), (d3+1, d1+d3+2), (0, d1+2d3+3)}

it is pure of weight d; + 2ds + 3.
We reorder these Hodge type according to the size of the second component
and get

{(U/,O), (U) - ava)v (w - b7 b)» (bvw - b)v (aaw - a)» (va)}v

where now 0 <a <b < 3.
From the the Hodge type or from representation-theoretic considerations we
get a I' factor at infinity which is (if I am not mistaken)

L(s)I'(s —a)['(s —b)
(2m)3s

Loo(m x 1, s) =
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Again we put
AN (7 XTI, 8) = Loo (T x II,5) LM (7 x I1, s).
This function satisfies a functional equation:
AP (7 x T1,5) = AP (7 x Tw + 1 — s)

Once we accept this functional equation then we have fast algorithms to compute
the values A" (7 x II, 59) at given argument so up to very high precision.

( For classical modular forms f of weight & we have the following formula

ainF(s, 2mn/A))

k—
) Snk—s

1
2w
where I'(s, 2mnA) is the incomplete T function and where A is a strictly positive
real number. The right hand side is independent of A (this gives a good test

that the functional equation is really correct) and A = 1 is the best choice. The
sum is rapidly converging, because the incomplete I" goes rapidly to zero.)

I remember that Don Zagier once mentioned that we always have such a
formula to compute values of L-functions, once we can guess the functional
equation and this formula can be used to confirm the guess.

This has been done by Tim Dokchitser in his Note ” Computing special values
of motivic L-functions. Experiment. Math. 13 (2004), no. 2, 137-149. ”

Finally we discuss the special values. We have the above list of Hodge types,
recall that the Hodge types lists those pairs (p, q) with p+¢ = w = dy +2d3 +2
for which h?4(M) # 0. The Deligne conjecture predicts that we have to look
at pairs (pe,q.) for which p. + ¢. = w,p. > ¢. for which hP=% = 0 and for
which A"~ = 0 for all ¢. < v < p.. This is the critical interval M.y =
[(Pes 4e), (ges pe)] of our motive. One should look at it as an interval on the line
p+q=w.

We look at our Hodge types

{(d142d3+3,0), (d1+d3+2,d5+1), (d1+1, 2d3+2), (2d3+2,d1+1), (d3+1, d1+d3+2), (0, d1+2d5+3) }

We have to find the interval we have to distinguish cases. The first case is

a)
di < 2ds+1
Now we have two possibilities for the critical interval, it is either
al)
[(2d3 +2,dy + 1), (dy + 1,2d3 + 2)]
a2)

[(d1 +ds + 2,ds + 1),(d3 +1,dy +d3 +2)]
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depending on which one is smaller.

The second case is
b)
diy > 2ds +1

In this case the critical interval is clearly

[(dy +1,2d5 + 2), (2d5 + 2,d; + 1)],

In the paper with Raghuram [Ha-Rag] we will prove that we can define a
period Q(7y x IIy) which under our assumptions ( f, g have coefficients in Q) is
unique up to a sign such that

AN (7 x 1, a)
Acob (7 x IT,a + 1)

Q(ry x Hf)g(“) € Q provided p. > a+1,a>¢q.+1

From our data [p.,q.] and the value of a we can reconstruct the coefficient
system A.

”Large” primes occuring in the denominator of these rational number should
produce congruence between eigenvalues of Hecke operators on Siegel modular
forms of genus three and certain expressions in eigenvalues on pairs of modular
forms of genus one.

The computation of the period is somewhat delicate. We give a definition
in [Ha-Rag] and the period is well defined up to a unit ( under our special
assumptions up to 1) But it is not clear from the abstract definition how -
given explicit data, i.e. f, g -we can really compute a number with high precision
which gives us the value of the period.

There is a way out. Recall that we compute ratios of special values a,a + 1
where a runs through an interval [p. — 1, ¢. + 1] of integers, this interval can be
quite long. So we simply choose our period such that for ayg = p. — 1

A (r x T, ag)

=1.
Acob (7 x I, a0 + 1)

Q*(Tf X Hf)e(ao)

The correct period differs from this one by a rational number, which will
have some prime factors {p1,p2,...,pr} in it. Now we can start to verify the
above rationality assertion for all ¢ and we can compute these ratios as rational
numbers.

Recall that we are interested in arguments a for which our ratio of L-values
divided by the ”correct” period has a ”large” prime p in its factorization (in
the denominator). Now it would be really bad luck, if this prime p would be
(always) member of {p1,p2,...,Dr}

Hence if we find large primes p in the denominator of the ratios

AB(7 x I, a)
Aoh(7 x I, a+1)

for some values of a then we can look for congruences mod p between different
kinds of Siegel modular forms.

@ (r x )<
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2.1.5 The Hecke operators on the boundary cohomology

We go back to the very general case that G/Spec(Z) is a Chevalley scheme
and let P C G be a maximal parabolic subgroup, here we assume that it is
conjugate to its opposite. We assume that 7'/Spec(Z) is a maximal split torus
and T C B C P. Let m = {a1,2,...,a.} be the set of simple positive roots,
let {v1,72,-..,7r} be the set of dominant fundamental weights. We have

2< Vi, Q5 >
< g, 0 >

= 5ij7
the dominant weights are elements in X*(7') ® Q. We also consider the
cocharacters {x1, X2, ..., Xr} € X«(T) ®Q, which form the dual basis to the «;.

If we identify X, (T) ® Q = X*(T) ® Q via the canonical quadratic form, then
_ 27;
Xi = < o>

We choose a parabolic subgroup P, let «;, be the erased simple root. We
consider the cuspidal (inner ?) cohomology of the boundary stratum attached
to P and consider an isotypical subspace

Hf_l(m(SM,M(ﬁ’ . )\))(gf)) C H*(0p(S), M).

Actually we should take an induced module on the left hand side, but let
us assume that we only look at unramified cohomology, i.e. Ky = G(Z) Then
induction simply means that we restrict the action of H™ to the action of H“
on H!'_l(w)(SM, M(w - N)). We want to derive a formula for a ”cohomological”

Hecke operator in H as a sum over ”cohomological” Hecke operator in H.

The algebra of Hecke operators is generated by local algebras Hf and these
local algebras commute (under our assumption that everything is unramified,
they are even commutative).

We fix a prime p. To get Hecke operators we start from cocharacters y =
> mixi : Gm — T, where the m; € Z. This provides an element x(p) € T(Q,),
and hence a double coset K,x(p)K, whose characteristic function is denoted
by T,. By convolution this defines an operator (also denoted by T)) on the
cohomology with 3.1.2 rational coefficients

T, : H'(S}G(f,MA ®Q) = H.(SIG(f7M/\ ® Q).

We have defined the modified operators, which act on the cohomology with
integral coeflicients

T =7 p"0NT  HY(SE, M) — H(SE,, M.

(See chap.3.pdf 3.1.2)

We have a formula for the action of 7, on the unramified spherical functions.
We consider unramified characters v, : T(Q,) — C*. Since T(Q,) = X.(T) ®
Q, we have for the module of unramified characters

Homy, (T(Q,), C*) = Hom(X.(T),C*) = X*(T) ® C*

If we pick a x € X,(T) and a v, =€ Hom,(T(Qp), C*)vp(x(p)) We have
the embedding X*(T') — Hom,,(T(Qp),C*) which is given by v — |y|, =
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(x = |y(z)|p). I want to distinguish carefully between the algebraic character
and its absolute value. If we have a v € X*(T') and a x € X,.(T) then we put
Vp(x(p) =< x,7 >p=p~ X7~
Especially we have the half sum of positive roots p§ € X*(T) ® Q and the
resulting character |p%|.
We define the spherical function 1,,, by

Y, (9) = vp(bk) = v (b)

and this will be an eigenfunction for the convolution with a Hecke operator
Ty * vy, = T;(/(VP)IZJVP.

This spherical function differs from the spherical function in chap3.pdf 2.3.4
they are related by the formula

w”p (g) = ¢Vp_|/7g l» (g)

We write a formula for 7)/(v,) for the case that x = x; is one of our basis
cocharacters x;. We look at the orbit of x; under the Weyl group, let W; be the
stabilizer of x; in W, then

e,
T)\(/(VP) :p<X“pB> Z < WXiy,Vp — |pg|17 > +6(X1)7

where 0(;) is a positive integer. It is zero if for all positive roots @ we have
< xi,a >€ {0,1}, i.e. the coefficient of the root a; in any positive root is always
< 1. (This extra term comes bla bla)

If we now have an isotypical submodule H?(S%, M, )(rf),7f = ®,mp, and

Ty = Indggg‘; ;yp (algebraic induction) then our above formula says

) G ) le]
T (mp) = p=XMPE> (N < wxi, vy — pGlp >) +pMPEZS(x). (42)
e

The exponent < x;, A + p§ >= c(x, ), the d is equal to zero because of our
assumption.
Now we ask for a formula for the Hecke operator on T;Oh on an isotypical

piece H;_l(m (SM M(10-)\)) (o)) in the cohomology of some boundary stratum.

We assume that o, = Indﬁi&’; vp. The Weyl group Wy acts on W/W; from the

left, let us choose a set of representatives {...,v,...} for this action. Then the
sum becomes

A G ) le}
pXATPE> ( Z Z < Wi, vp — |p%4|p >) 4 p<Xz7/\+pB>6(Xi))
vEWNM\W/W; woeWnr /War,i
(43)
We want to transform this into a sum over Hecke operators acting on H,'_l(w) (SM, M(w-

A))(of)) we write

45



. G i 2
pXeAE> (3 Yo <wxi, v — ol e — loply >) +pMES(x)
veWM\W/W; woeWar /Wi
(44)

The character pp = fp7;, is invariant under the action of Wy, we can pull this
factor in front

pXATES (N plesien> N vy — o | >) + pTE 6 ()
WGWM\W/Wi 'lUEWM/WM,i
(45)

For a given v € Wj/\W the inner sum is the value of a Hecke operator on the

cohomology H, i) (SM M(w- X)) (of)) times a correcting factor. To compute
this correcting factor we write

DA+ p§) = A + b(@, M), (46)

Note that this expression is - as it must be- independent of the representative v.
If we want to compute the correcting factor we have to choose the representative
v = wiv, wr € Wi such that vy x; is in the positive chamber with respect to
the given Borel subgroup in M, i.e.

< VX4, @ >> 0 for all v # g (47)

this is certainly true if vy is a Kostant representative.
Then the correcting factor becomes

p<ka¢7ﬁ£,;1,),\—b(w=>‘)'Yio> (48)

(note the minus sign!) and hence we get

=) g X
pSUEX it BB Ao > Z < WVgXi, Vp — |pJ]§4|p >= T%;Oh(gf) (49)
weEWn /Wy i

) ) o )
Z p<x1,A+p§>f<vkxl,u@,fb(w,A)mo>Tkai (04)) +p<><i,k+p§>5(xi)
v EWn \W/W;
(50)

and this is equal to

) G_—1,~(1) 5/~ ) i
Z pXiATPEU (e b(w’)‘)%f’»)Tvkxi(Uf)) +p<X“>\+pg>5(Xi)
v EWn \W/W;
(51)
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We can still write this differently, we have
ﬂgi;l,)A - b(UN)a )‘)’yio = ﬂq(];l?)\ + b(ﬁ)v A)’Yio - Qb(’LZ}, )‘)Pyio = ﬁ)()‘ + Pg) - Qb(’UNJ, >‘)7i0
(52)

and then (51) becomes

5 e R N 5 (o) )
v EWn \W/W;
(53)

The factor in front is equal to one if w = w and otherwise the exponent is a
strictly positive number. Hence we get

TN (Ind (o)) = Ty * (o) + Hecke-ind

T O @) ) A c5h ) 4 <A 5y
weEW P /W, w1

Let us call the first summand on the right hand side the "main” term. We
observe that for w # @ the exponent < x;, (A + p&) — w™lw(A + p§) > >
0 and if A is regular this is also true for < x;,A > . This tells us that the
eigenvalue T b (Ind(o,)) is a p-adic unit if and only if T%(’mh(ap) is a p-adic
unit, provided A is regular or §(x;) = 0.

( For the special case G = GSpa/Spec(Z) and P the Siegel parabolic this
yields the formulae in 3.1.2.1 in ”Eisenstein Kohomologie...”. The formula for
T, 5 is wrong, I overlooked the term p<X#:*>§(x;). This was discovered by Ger-
ard, the congruences for the second Hecke operator became wrong.)

2.1.6 The general philosophy

Now we can formulate how the general form of a Ramunujan-type congruence
should look like. We start from an isotypical subspace H*(SM, M(w - Ag)) (o)
where R = Z[1/N] where N is a suitable integer. Let I,, C H} be the anni-
hilator of oy. Then the quotient ’H%[/L,f = R(oy) is an order in an algebraic
number field Q(of). We consider the second constant term of the Eisenstein
series evaluated at s,, = 0 and assume that it is of the form

a(og)Mot(oy)

where a(oy) € Q(o) and where Mot(oy) has some kind of an interpreta-
tion as an element in some Ext}w m- Now we assume that a "large” prime
[ C R(oy) divides the denominator of a(cy). We assume that o, is ordinary
at [, i.e. T (oy) & [ for all i (some ig ?).

Then we can hope for an isotypical component II; for the Hecke algebra
H$ in the cohomology H*®(S% M,)(Ilf), we consider the order HG /I, =
R(IIy), we expect to find a prime [; C R(IIf) and an isomorphism between the
completions

D : R(Hf)[l L) R(O’f)[
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such that for all primes p

(T (1)) = TS (Ind(0p))  mod 1.

We consider the case where our modular forms f, g have rational coefficients,
i.e. are of weight 12,16, 18,20,22, 26 this means that the values for d;,ds are
10, 14, 16, 18, 20, 24. Following a notation in representation theory we put

w-A=wA+p)—p=di(w- )\)7241 +d3(wo)\)'y£§ +1/2(—6 — n2)va,-

Given di,d3 a value a in the upper half of the above range, we solve the
equations

d

dy(wy - A) =dy, ds(wy - ) = ds, %—l—?l—&—dg—&—Qza (casel)
ny d1

di(wa - A) =dy, d3(ws - A) = ds, 7+7+d3+3:a (case2)

We introduce the number
w =dq +2d3 + 3

and observe that d—21 +d3+2 = “’T'H is the reflection point of the functional
equation. We rewrite our equations a little bit. In (casel)

ki—4=dy —2=ns+2n3
ks —4=ds —2=mnq1+ns+ns3
20 —w—1=n9

and in (case2)

k176:d174:n1+2n2+2n3
k3—4=d3—2=n3
20—w—3=m

As it turns out that for our restricted choice of f, g we never have solutions
in (case2).

This gives us a unique highest weight A\ = A(dy,ds,a) and a space of holo-
morphic modular cusp forms Sy, n, 44n, in which we should look for a cusp
form satisfying congruences.

I want to give the precise form for the expected congruences. We choose the
Hecke operator T, this is the operator whose eigenvalues are the traces of the
Frobenius, it has also the property that < y3,a >€ {—1,0, 1} for all roots «,
and if we identify X.(T)g = X.(T)g then x5 = ~s.

The Weyl group W is the semidirect product of S3 and (Z/2Z)% and is of
order 48. The stabilizer W3 of x3 is the subgroup Ss, this is the Weyl group of
As. We have to study the double cosets

W \W/Wy = WP /Ws.

The quotient W/W3 has cardinality 8, on this quotient we have the action of
W, this is the group generated by the reflections s1, s3 and hence is of order 4.
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It is clear that we have two orbits of length 2 and one orbit of length 4. Hence
the sum in (Hecke-ind) has three terms.

The orbit of length 4 gives us the "main” term in our formula (Hecke-ind)
and Tgi’f‘)h(ap) = ap(f)ap(g), where of course the two factors are the eigenvalues
of f, g respectively.

The two other orbits correspond to the Kostant representatives e = (Id, O p,
they are fixed by s1, hence the W), orbits are given by {(e, s3), (Op,s30p)}.
This means that for choice of w we have T " (5.} = a,(g), it remains to
w—lwx,; NP P
compute the factor in front. For w = e or w = ©p this factor is

p<(Id.—u~171 w)x3,A\+p>

Our element @ is one of the two Kostant representatives wi,ws on p. 1.
Then w~'Op is equal to the the corresponding elements v, vo. We get

< (Id —wyY)xs, A+ p >=ng +n3 +2 <(Id—viYHYxs, A+ p>=n3+1
<(Id—wgl)x3,)\+p>:n1+n2+n3+3 <(Id—v51)X3,A+p>:n2+n3+2

Hence we expect:

We choose triple d1,ds,a and a pair of eigenforms f, g with weight d; +2 =
k1,ds+2 = ks. Let A solve the appropriate equations (casel), (case2). If a prime
[ divides the denominator of

At (7 x 11, a)
Acol(r x T,a+ 1)

Q(ry x Iy)

then we find an isotopical subspace HS (S, My)(I1) and a congruence
TS& (ﬁp) = ap(g)(p"3+1 +ap(f) +p”2+"3+2) mod [
in (casel) and
ng (ﬁp) = ap(g)(p"2+"3+2 + ap(f) +pn1+n2+n3+3) mod [

in (case2)
We compare to TABLE 1. in [BFG]: We have

(K1, ks) = (m2,m1)

and
ry =mng +n3+ 2,79 =ng + 1 in (casel),

r1 =mn1 +ng +n3+ 3,70 = ng + ng + 2 in (case2).

Recall that we are interested in the special value a+ 1, we can say in (casel)

no+1 w r—To+wW
1= —+1l=———+1
a+ 5 +2+ 5 +
and in (case2)
no+1 w r—Trot+w
1= —+1l=———+1
a+ 5 +2+ 5 +

Now I checked against TABLEL in [BFG] and Anton’s tables and the data
match perfectly. We even see some "small” primes providing congruences. We

49



see a 172 occuring in the case f of weight 12 and g of weight 18. We observe
that both forms are ordinary at 17.

Remark: In our special case the expression for T¢>°"(Ind(0,)) is a sum of
three terms, the term in the middle a,(g)a,(f) has weight % + 1 the first
term has a lower weight the third term has a higher weight. The difference of
the weights of the first and third term is up to a shift our evaluation point a.
This means: The closer these two weights get, the closer a comes to the center
of the L function.

We go to g = 4. In this case our group M = Gly - G,,. We choose a highest
weight A = nq1vy1 4+ navys + n1y3 + na7y4, the central character is trivial. It seems
that the interesting Kostant representatives are

w' = 54535954 and W = 545352545351 (54)

We get

WA+ pG) = (2+n1 +n2) (W + ) + B+ ny +2n0)9 + L1+ 1),

wA+ pG) = (24 n1 +n2) (1 +137) + B+ n1 + 2n4)9" + 5(—1 —n1)n
(55)

We see that M (w-A) is self dual, this is the reason why we have chosen ny = ng.
As usual we define numbers dy = d3, ds by

d1—|—1:d3—|—1:2—|—n1—|—n2,d2—|—1:3+n1—|—2n4 (56)

The dimension of SI% is 20, we look at our fundamental exact sequence

H%S%,,MA(IU' ) HYO(SE,,My) — HY(SE, My — H4($}§fM,MA(w \)
T T
HY (S, Ma(w' - X)) (o) H{ (S, Ma(w - X)) (o7)
(57)

This is the constellation where we can hope for extensions of mixed Tate
motives. The difference of the weights of w’ and w is two, which seems to be
too big. But the cohomology of SIA(/[M is concentrated in degree 4 and 5, so we

get boundary cohomology in degree 9 and 10.

We have to compute the second constant term. To do this we have to study
the representation of the group LM on the Lie-algebra u}. The Dynkin diagram
for the Langlands dual group *G is

of — af — af >= af.

and we get M if we erase ay. The representation of LM on uY, decomposes
into two irreducible representations, the first one has highest weight

Vv Vv Vv \2
M=o +0g -0z +0y
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and is up to a twist the tautological representation. The second one has highest
weight
ne = o) +2a3 + 20y + 2ar)

and is (again up to a twist) the A% of the tautological representation. It is
of dimension 6. We recall formula (100) in chap3.pdf. The number a in this
formula takes the values 1,2 and we get

weo=<n, i >=T4+3n+nytng=di+3dy+ 3

2 i 58
%:<n2,,u(1)>:5+2n1+n2+2n4:d1+d2+3 ( )
This implies that the second constant term is
1 ACO]‘(af,r,]l ,A42n1+ns+ny) AC(’h(o'f \Tng 64311 +n242n4)
Qoy) ACOl‘(Uf,m,1 ,542n1+ns+nyg) A°°h(0f,rn2 ,7T+3n1+ns+2n4)
= (59)

1 AN (op A3 (14n1)) A (o ,ray, TR 4 1400)
Qof) Aot (ap,rny, gt +5(14n1)+1) AP (af,rp,, 2 +24n01)

Since assume that we are in the unramified case the two isotypical subspaces
o’ resp. oy in (57) provide Tate motives Z(—"3 + 1(n1 +1)) resp. Z(—¥ —
%(nl + 1)). Hence our usual construction of Anderson motives will provide ele-
ments

X(oy) € Exth(Z(—1—n,),2) (60)

Since we want non torsion classes, we assume n; even. This implies that ds
must be even and if we give ourselves d; > 1,ds > 2 and even, then we see that
for our given di,ds and given Kostant representative w = s483582545351 we find
a dominant A = ni7y; 4+ neye + n1y3 + nNgay4 with

1
wA+p) = (di + 1)(1" +73") + (da + 13" — (1m0

if and only if n; € [0, min(d; — 1,dy — 2)] and even.
Again we consult [Ha-Rag] and find that the miracle happens again: The

numbers ¥ + 1(1+n4) + 1 run through the critical arguments, for ny = 0 the

number G + % is the smallest critical argument to the right from the central
w1

argument for the functional equation (= ).

Hence we know that the factor in front

L AMopry, 5+ 51+ m))
Qay) Ao (ap, 1y, S+ %(1 +n1)+1)

(61)

is an algebraic number in F. The period (o) is locally well defined up to a unit
and hence we can speak of the prime decomposition of this algebraic number.
Hence we may apply the principles outlined in 2.1. and ask whether ”large”
primes [ which divide the denominator of the expression in (61) create eigen-
classes in H 10(81(5 . M) whose eigenvalues are congruent to the eigenvalues of
oy modulo [.

In our heuristic reasoning we encounter new difficulties, before we discuss
these problems I want to give the precise form of these congruences in the sense
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of (?77?,(Hecke-Ind)). The following considerations hold for arbitrary even value
of g.

We choose the cocharacter x, : ¢ — 1" which satisfies < x,a; >= 0 for i <
gand < x4,y >= 1. (This means the first g entries on the diagonal are
equal to ¢ the other entries are equal to 1.) The stabilizer of this character in
the Weyl group is Sy = Wj; the Weyl group of M. Then we can represent the
cosets W/Wy, by the 29 elements which exchange some of the e; — fi, fi = —e;
and leave the others fixed. So we can say that W/W), is equal to the set of
subsets of {1,2,...,¢g}. The Weyl group W), also acts from the left on this coset
space and acts transitively transitively on the set of subsets of a fixed cardinality
h. Therefore the number of orbits is g + 1.

We go back to the case g = 4, our cocharacter is x4 and our parabolic sub-
group is the Siegel parabolic subgroup, i.e. 79 = 4. Let wp be the longest Kostant
representative. We have the choices vy = e, v = 84, Uk = $45352548381, WpS4, WP,
they are Kostant representatives and hence they satisfy (47). We choose @w =
5453525453851

We investigate the expressions

<Xa, A+ pF — vt (ﬁ}(A +p3) — 2b(w, >\)’Y4) > (62)

these will give us the exponents in the powers of p which enter in the sum. To
do this we have to write

A+ oG — ot ( ()\+pB)—2bw)\74> ZmJaJ (63)
and then
<X A — ot (B p§) = 26, M) ) >=ma (64)

Perhaps it it even simpler to rewrite this in the terms of the p-s. We observe

that < x4, MS; >= 0 and hence

my =< Xa,b(e, \)ya — vyt (ﬂg’))\ — b(w, )\)fy4> >=2b(e, \)— < x4,0; " (ﬂg’))\ — b(w, )\)'y4) >
(65)

If we choose vy, = e or v, = wp then v, u( )/\ = ,u(} and hence < x4, v 1#50 )/\ >=

0, so
2b(e, \)— < Xa, U (,igj ) — b(w, Am) >=2b(e, \) £ b(@,\)  (66)
These numbers are easy to compute and equal to

Now we consider the two choices vy = s4, wpss. In this case we get for the
exponents

3 n 1
5+?1+mj:5(1+nl) (68)
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or more precisely we get

1/ _ 14+ ny ifv, =s
ma =< xa,ble; A — vy (MS’)’\ ~ b, Ah‘l) - {2 +ny4+ng  ifu = 1;1384
(69)

Finally we choose vy = 548352545351 = w. In this case the two p contri-
butions cancel and one also checks easily that < X4,v,:174 >= (. Hence the
exponent is zero. Since x4 is miniscule we get d(x4) = 0. We conclude that
formula (53) yields

The cocharacters x4, s4X4, Wx4, WpS4,wp define conjugacy classes of cochar-
acters for the group M = Gl - G,,. Since we assumed for simplicity that the
central character of M is trivial we can divide by the factor G,, and consider
these cocharacters as homomorphisms from G,, to the standard maximal torus
of M = Gly. The conjugacy classes of of these five cocharacters are x4, X3, X2, X1
in the notation of chap3.pdf 3.1.4. and xo which is the trivial character. We
observe that Ti\f scoh — T% b — 1 and therefore we get

Tﬁ,coh(lnd(o_p)) — p4+n1+n2+2n4 +p6+3n1+n2+2n4)
+ p1+n4T>€\;I’COh(O'p) +p2+n1+n4Ti\;I,coh(a.p) (70)
¥ T ()

Therefore we can express the eigenvalues of the above Hecke operators at a
prime p in terms of the Satake parameter w, = {w1 p, w2 p, w3 p, wa p}+ of mT,. We
get

~(1)
TR = 3 p i, (71)
I:#I=v

This has now the same shape as the expressions which we have seen before.
The numbers ng;‘}h (o) are algebraic integers. We have exactly one term which
does not have a strictly positive power of p in front of it. Therefore we may ask
whether for a ”large” prime [ C Op, which divides the denominator of

1 ACOh(O'f,’I“m,4+2n1 + no +TL4)
Qo) At (of,74,,5 4 2n1 +ng + n4)

"creates” an isomorphism class class II; with HlO(SIG(f,M)\)(Hf)) # 0 such
that

T)i’COh(Hp) = T9°°"(Ind(s,)) mod [ for all primes p (72)
This is in perfect analogy to the cases g = 2,3 where the congruences have

been verified experimentally.
But we may have a problem. We still have the ”motivic” factor

ACOh(O'f,T‘m, 6 + 3711 + no + 2714)
Aot (op, 1y, , T+ 301 + ng + 2n4)
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In our previous cases this was a ratio

(.
ot )

and this had an interpretation as an extension class in the Betti-de-Rham real-
ization.

We now assume that the analogous computations to the computation in
[Hal], 4.2. and SecOPs.pdf work and especially that the secondary operator is
non zero and is given by a ”simple” rational number. Then

(74)

Xp—de—rham(0f) € Extp_gpp(Z(=1 —n1),Z(0)) = iR (75)
is essentially equal to this motivic factor

ACOh(O'f,’I’n2, 6 + 3711 =+ no + 2714)
Aot (op, 1y, , T+ 3n1 + ng + 2n4)

(76)

This may challenge our belief that there are no exotic Tate motives, because
otherwise we must have a relation

ACOh(Uf, Ty, 6+ 301 4+ ng + 2n4)

! —
ACOh(Uf7TT]277+3n1 +ny + 2714) C( nl) (77)

where ~ means equal up to an algebraic number. This is hard to believe!

Of course some computations have to be checked. Especially we have to
check whether, in analogy with the case ¢ = 2, the secondary operator on
the cohomology of the relevant Harish-Chandra modules is non zero and has a
"reasonable” value. If this is so, then we can say:

If (77) is not true then we can construct a mized Tate motive X (o) whose
extension class in Exty 4. gy (Z(—1-n1), Z(0)) is not in the rational line through

¢'(=na)/im

This does not destroy our hope for congruences. We may ask for the image

of
1 BdR 1
Extpm(Z(=1 = 1), Z(0)) — Extp_gpp,(Z(=1 = n1), Z(0)).

If our construction works then it seems to be plausible that this image may
generate even an infinite dimensional Q-vector space. But perhaps there is some
reason that its image is not infinitely divisible. Assuming this we can ask the
question about congruences formulated above.

In principle we can check these questions experimentally. For the congru-
ences Bergstrom and friends should extend their computations to g = 4. More
serious is the question whether (77) is true. If we find an algebraic number
such that

ACOh(CTf, Tnos 6+ 3711 “+ ng + 2714)

AN (o f, 1y, T+ 301 + N + 2n4)

= B¢ (=n1)
up to a very high order of precision (high with respect to the height of 3), then

this does not prove that (77) is true, but it makes us almost sure. If we do not
find such a number then it is very likely that (77) is false.
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2.1.7 Non regular coefficients again

So far we always assumed that n; > 0. We expect that in this case the Eisenstein
intertwining operator is holomorphic at s = 0. The second term in the constant
term of the Eisenstein series is a product of two terms and the second factor is
a ratio of A? -L values

ACOh(Jf,r,,z,S +2n1 +no+2ng4 +n1+1+5)
AN (g, 5+ 2n1 + g +2ng + 11 + 2+ )

(78)

where

ACOh 0'f77”772, H H = H ~1 —s (79)

b Igl—2 L —p 7w P » 1:#1=217w171’p

and 2 =< T}g,ﬂgl\ =54 2n1 + ng + 2ny4.

Now the situation becomes very unclear. We have to evaluate at s = %> +
1+ n;. Our estimates for the @y, imply that A (of,r,,,s) is holomorphic at
this argument if ny > 0. But if ny = 0 then we may have a first order pole.
Actually we do not know whether such a pole is a first order pole, we only know
from Langlands see 7?7 that the expression in (59) has at most a first order pole.
But let us assume that we have a first order pole. This pole cancels if

ACOh(af,rn1,4+n2+n4) =0 (80)

This vanishing may be a rare event, but it can happen that for our given o the
L-function in the first factor satisfies the functional equation

ACOh(af, Tny, 8+ 2ng + 20y — 5) = fACOh(cff, Ty S) (81)

and then (80) is forced.

The situation is now analogous to the situation in section 2.1.2 and we may
ask whether the minus sign in the functional equation implies that we have a
submodule SK(oy) C H!10(8g1,7/\/l,\) which is a direct sum of copies of J(oy)
and which provides a motive which is isomorphic to M(oy,7y,).

More precisely we can define SK®(oy) as the image of the tautological map
Homyg (J(og). HE(SE,. M) @ J(0y) ™5 HF(SE, M) (52
For any prime ideal [ we have an action of the Galois action on
H!.(Sg‘vaA ® F)
which commutes with action of the Hecke algebra. (see the remark at the

beginning of section 2.1 this induces an action on SK*(os) ® Fy and therefore
we get an action of the Galois group on

Wi(oy) = Homﬂgf (J(og), H (S, M) © F)

such that the tautological map becomes an isomorphism of Galoisx Hecke mod-
ules.
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We still have the congruence relations and they tell us that for all primes p
the eigenvalues of the Frobenius @, ! on Wi(o ) have to be taken from the list

v T *
Ly(op) = {p*Wp=efenzwr ) (83)

of summands occurring in the formulas (70) and (71).
This implies that we can have an non trivial SK(oy) C H{ (ng M) ® F)
only if we have some summands in our list £,(c¢) which satisfy

(1) q ~(1)
a(V)  <Xvs by x>, % | — o3 t+n2+2n <X25flg x>
|p ™y 2wl =p2 2TEM = [ SX2Ha, (84)

In analogy to what we have seen earlier we should choose ¢ = 10. If SK%(of) #

o)
0 then we get that the members p=X*#ax>wr "€ L,(0), which are also eigen-

MO
values for @, ! must have absolute value p<X*#4.>” and hence we get |w} =1

for those values of I. If we assume that actually all wj , € Lp(oy) with #I =2
occur as Frobenius eigenvalue, then we get the Ramanujan conjecture. Actually
it seems to be plausible that each eigenvalue in the sublist where #1 = 2 occurs
with multiplicity one. then we get that dim(Wi(os)) = 6. In this case we have
found the motive M(o, r2) in side the cohomology HY (Sf?f,/\/b\) ® F).

If ACOh(of,r1,4 + ng + ng + s) has a first order zero at s = 0 then we can
construct Anderson mixed motives (as in section 2.1.2 ), i.e. extensions

V(oy) € Extiyum(Z(—k),SK(0oy))

V(o) € Exthm(SK(op), Z(—k + 1)) (85)

where now k = 5 + no + ng4, and these two extension come with a canonical
g

”integral” to a biextension (3’(0%),Y(0y)) and a computation like the one in
SecOPs.pdf should yield

ACOh’/(O'f,Tl,Zl + g+ n4) ACOh(Uf7T7727 6+ no + 2n4 + S)

TN (! ~ Res.—
Z[y (Uf)7y(0'f)] Q(O—f)eACOh(O—f7T175+'I’L2+n4) eSS—OACOh(O'f,Tn2,7+n2+2n4+5)

(86)

This formula gives us a strong hint that we always should have SK'°(o ) #0,
because otherwise

—_~—

iY'(0}), V(o)) € Extp_gpn(Z(=k), Z(—k + 1))

and this last group is hypothetically log(QZ,) and this is again hard to believe.
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