CHAPTER 11

Cohomology of arithmetic groups
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Abstract

We explain some basic facts in the cohomology theory of arithmetic
groups. For this need some concepts and results from homological algebra
and from the cohomology theory of sheaves, for this I refer to the first four
chapters of the [book].This part of the book can be considered as chapter
I of this volume.

We also need some concepts and results from the theory of linear alge-
braic groups. I will explain these facts in terms of various examples and
I hope that this discussion of examples will generate enough familiarity
with these ideas. For the details I refer to the literature for instance the
book of A. Borel or J. Humphreys.
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1  Affine algebraic groups over Q.

A linear algebraic group G/Q is a subgroup G C G Ly, which is defined as
the set of common zeroes of a set of polynomials in the matrix coefficients
where in addition these polynomials have coefficients in Q . Of course
we cannot take just any set of polynomials the set has to be somewhat
special before its common zeroes form a group. The following examples
will clarify what I mean:

1.) The group GL,, is an algebraic group itself, the set of equations is
empty. It has the subgroup Sl,, C G L, which is defined by the polynomial
equation

Sl, = {x € GL, | det(z) =1}

2.) Another example is given by the orthogonal group of a quadratic
form

n
f(x17.--,$n) = Zale
=

where a; € Q and all a; # 0 (this is actually not necessary for the follow-
ing). We look at all matrices

an1 . Ann

which leave this form invariant, i.e.

flaz) = f(z)

for all vectors = (x1,...,2»n). This defines a set of polynomial equations
for the coefficient a;; of a.

3.) Instead of taking a quadratic form — which is the same as taking
a symmetric bilinear form — we could take an alternating bilinear form

(z,y) =(T1,..., %20, Y1,.. . Y2n) =

n

Z(.’.Elyi-i,-n — xz+nyl> = f(@: y)

i=1
This form defines the symplectic group:
Spn = {oc € GLay | {az,ay) = @7@} .

1.1. Important remark: The reader may have observed that I did not
specify a field (or a ring) from which I take the entries of the matrices.
This is done intentionally, because we may take the entries from any ring
R containing the rational numbers Q. In other words: for any algebraic
group G/Q C GL, and any ring R containing Q we may define

G(R) C GLn(R)

as the group of those matrices whose coefficients satisfy the required poly-
nomial equations.



Adopting this point of view we can say that

A linear algebraic group G/Q defines a functor from the category of Q-
algebras (i.e. commutative rings containing Q) into the category of groups.

4.) Another example is obtained by the so-called restriction of scalars.
Let us assume we have a finite extension K/Q, we consider the vector
space V = K". This vector space may also be considered as a Q-vector
space Vp of dimension n[K : Q] = N. We consider the group

GLn/Q.
Our original structure as a K-vector space may be considered as a map
0: K — Endg(W),

and the group G L, (K) is then the subgroup of elements in GLx (Q) which
commute with all the elements of O(x),z € K. Hence we define the
subgroup

G/Q = Rk o(GLn) = {a € GLN | a commutes with ©(K)}
and G(Q) = GL,(K). For any Q-algebra R we get
G(R) = GL,(K ®q R).

This can also be applied to an algebraic subgroup H/K < GL, /K, i.e. a
subgroup that is defined by polynomial equations with coefficients in K.

Our definition of a linear algebraic group is a little bit provisorial. If
we consider for instance the two linear algebraic groups

o - {(:

1
G2/Q = 0 C GLs
0

then we would like to say, that these two groups are isomorphic. They
are two different “realizations” of the additive group G./Q. We see that
the same linear algebraic group may be realized in different ways as a
subgroup of different GLy’s.

Of course there is a concept of linear algebraic group which does not
rely on embeddings. The understanding of this concept requires a little bit
of affine algebraic geometry. The drawback of our definiton here is that
we cannot define morphism between linear algebraic group. Especially
we do not know when they are isomorphic. I assert the reader that the
general theory implies that a morphism between two algebraic groups is
the same thing as a morphism between the two functors form Q-algebras
to groups. In some sense it is enough to give this functor. For instance,
we have the multiplicative group G, /Q given by the functor

R — R

and the additive group G,/Q given by R — R™.
We can realize (represent is the right term) the the group G,,/Q as

Gm/Q= {(é t(’)l)} C Gl



1.1 Affine groups schemes

We say just a few words concerning the systematic development of the
theory of linear algebraic groups.

For any field k an affine k-algebra is a finitely generated algebra A/k,
i.e. it is a commutative ring with identity, containing k, the identity of
k is equal to the identity of A, which is finitely generated over k as an
algebra. In other words

A:k[xl,xg,...,wn] :k[Xth,...,Xn}/I,

where they X; are independent and where [ is a finitely generated ideal
of polynomials in k[X1,..., Xx].

Such an affine k-algebra defines a functor from the category of k alge-
bras to the category of sets

B — Homy(A, B).

A structure of a group scheme on A/k consists of the following data:

a) A k homomorphism m : A - A ®; A (the comultiplication)

b) A k-valued point e : A — k (the identity element)

¢) An inverse inv: A — A,

which satisfy certain requirements:

We have Homy(A®r A, B) = Homg(A, B) x Homy(A, B) and hence
m defines a map ‘m : Homy (4, B) x Homy (A, B) — Homy(A4, B).

The requirement is that for all B this composition map *m defines a
group structure on Homy (A, B). The k valued point e is the identity and
inv yields the inverse.

I leave it to the audience to figure out what this means for m, e, inv.
An affine k together with such a collection m,e,inv is called an affine
group scheme.

Now it is clear what a homomorphism between affine group schemes
is.

It is a not entirely obvious theorem that for any affine group scheme
G/k = (A/k,m,e,inv) we can find a faithful representation i : G/k —
Gl(V).

We may also consider linear algebraic group over other fields K. This
means that we only require the coefficients of the defining polynomials to
be in this other field. We write G/K for a group defined over K. Then we
have the permission to consider the groups G(R) for any ring containing
K.

If we have a field L D K and a linear group G/K then the group
G/L = G Xk L is the group over L where we forget that the coefficients
of the equations are contained in K. The group G Xx L is the base
extension from G/K to L

1.1.1 Tori, their character module,...

A special class of algebraic groups is given by the tori. An algebraic group
T/K over a field K is called a split torus if it is isomorphic to a product
of Gy,-s. It is called a torus if it becomes a split torus after a suitable
finite extension of the ground field, i.e we have T' xx L — G/, /L.

If we take an arbitrary finite field extension L/Q we may consider the
functor



R — (L ®0 R) X,
It is not hard to see that this functor can be represented by an alge-

braic group over Q, which is denoted by Ry ;o(Gm /L) and called the Weil
restriction of G, /L. We propose the notation

R1/o(Gm/L) =G}/ (1)

The reader should try to prove that for a finite extension L /L which is
normal over Q we have

Gﬁ/Q X I = (Gm/i)[l‘@]
and this shows that an/ ? is a torus .

A torus T/K is called anisotropic if is does not contain a non trivial
split torus. Any torus C/K contains a maximal split torus S/K and a
maximal torus S/K. The multiplication induces a map

m:SxC; —C

this is a surjective (in the sense of algebraic groups) homomorphism
whose kernel is a finite algebraic group. We call such map an isogeny and
write that C = S - C1.

We give an example. Our torus Ry ,q(Gm/L) contains G,,/Q as a
subtorus: For any ring R containing Q we have R* = G,,(R) € (R® L)*.
On the other and we have the norm map N g : (R® L)* — R* and the
kernel defines a subgroup

RY)o(Gm/L) C Rpo(Gm/L)

and it is clear that

1
m: G x B (G /L) = Ry /g(Gm/L)
has a finite kernel which is the finite algebraic group of [L : Q]-th roots of
unity.

For any torus T' = Gy,, we define the character module as the group of
homomorphisms

X" (T) = Hom(T,G,).. (2)
If the torus is split, i.e. T'= Gy, then X*(T) = Z" and the identification
is given by (n1,n2,...,n.) = {(z1,22,...,2,) = ] xy? .. zp

It is a theorem that for any torus we can find a finite, separable, normal
extension L/K such that T x g L splits. Then it is easy to see that we
have an action of the Galois group Gal(L/K) on X*(T xx L) = 7Z". If
we have two tori T1 /K, T>/K which split over L

HomK(Tl,Tg) ;> Hom Gal(L/K)(X*(TQ XK L),X*(Tl XK L)) (3)

To any Gal(L/K)— action on Z" we can find a torus T'/K which splits
over L and which realizes this action.

A homomorphism ¢ : T1 /K — T is called an isogeny if dim(7}) =
dim(7T:) and if *¢ : X*(T2) — X*(T1) is injective.



1.1.2 Semi-simple groups, reductive groups,.

An important class of linear algebraic groups is formed by the semisimple
and the reductive groups. I do not want to give the precise definition here.
Roughly, a linear group is reductive if it does not contain a non trivial
normal subgroup which is isomorphic to a product of groups of type G,.
A group is called semisimple, if it is reductive and does not contain a non
trivial torus in its centre.

For example the groups Sl,, Sp, are semi simple. The groups SO(f)
are semi-simple provided n > 3. The groups Gl,, and especially the mul-
tiplicative group Gli/Q = G, /Q are reductive.

Any reductive group G/Q (or over any field of characteristic zero) has
a central torus C//Q and this central torus contains a maximal split torus
S. The derived G<1)/Q is semi simple and we get an isogeny

GYxCi xS =G

or briefly G = GY.cy - 8.
If for instance G' = Ry, /o(Gl,/L) then G = Ry o(Sl,/L) and C =
Rp/0(Gsm/L) and this yields the product decomposition up to isogeny

G=ac%Y.pW

L/Q(Gm/L) G

1.2  k-forms of algebraic groups

Exercise: 1) Consider the following two quadratic forms over Q:
f(xvyaz) = $2 +y2 - Z2 ) fl($7y,z) = LL'2 +y2 - 3Z2'

Prove that the first form is isotropic. This means there exists a vector
(a,b,¢) € Q*\ {0} with
f(a,b,c) =0.

Show that the second form is anisotropic, i.e. it has no such vector.

2) Prove that the two linear algebraic group G/Q = SO(f)/Q and
G1/Q = SO(f1)/Q cannot be isomorphic. (Hint: This is not so easy since
we did not define when two groups are isomorphic.)

Here is some advice: In general we call an element e # u € G(Q) unipo-
tent if it is unipotent in GL,(Q) where we consider G/Q — GL,/Q. It
turns out that this notion of unipotence does not depend on the embedding.

Now it is possible to show that our first group G(Q) = SO(f)(Q) has
unipotent elements, and G1(Q) does not. Hence these two groups cannot be
isomorphic.

3) Prove that the two algebraic groups G xR and G1 xR are isomorphic,
and therefore the two groups G(R) and G1(R) are isomorphic.

In this example we see, that we may have two groups G/k, G1/k which
are not isomorphic but which become isomorphic over some extension L/k.
Then we say that the groups are k-forms of each other. To determine the
different forms of a given group G/k is sometimes difficult one has to use
the concepts of Galois cohomology.

For a separable normal extension L/k we have the almost tautological
description

G(k) ={g € G(L)|o(g) = g for all elements in the Galois group Gal(L/k)}.



Now let we can consider the functor Aut(G) : It attaches to any field
extension L/k the group of automorphisms Aut(G)(L) of the algebraic
group G Xy L. We denote this action by g — o(g) = ¢g°. Note that this
notation gives us the rule g¢°” = (¢7)°. A 1-cocycle of Gal(L/k) with
values in Aut(G) is a map ¢ : 0 — ¢ € Aut(G)(L) which satisfies the
cocycle rule

_ o
Cor = CoCr

Now we define a new action of Gal(L/k) on G(L): An element o acts
by

g co9°9;"

We define a new algebraic group G1/k: For any extension E/k we have
an action of Gal(L/k) on E ®; L and we put

Gi(E)={9 € G(E @y L)lg = cog”95 "}
For the trivial cocycle o — 1 this gives us back the original group.

It is plausible and in fact not very difficult to show that E — G1(E) is
in fact represented by an algebraic group. This group is clearly a k-form
of G/k.

We can define an equivalence relation on the set of cocycles, we say
that

{o—=co}~{o—c,}

if and only if we can find a a € G(L) such that
¢y =a 'c,a’ for all o € Gal(L/k)

We define H'(L/k, Aut(G)) as the set of 1-cocycles modulo this equiv-
alence relation. If we have a larger normal separable extension L'’ D L D k
then we get an inclusion H'(L/k, Aut(G)) — H'(L'/k, Aut(G)). If ks is
a separable closure of k we can form the limit over all finite extensions
kCLCks and put

H' (ks /k, Aut(Q)) = liinHl(L/k, Aut(G))

This set is isomorphic to the set of isomorphism classes of k-forms of G/k.

We may apply the same concepts in a slightly different situation. A
k— algebra D over the field k is called a central simple algebra, if it has
a unit element # 0, if it is finite dimensional over k, if its centre is k
(embedded via the unit element) and if it has no non trivial two sided
ideals. It is a classical theorem, that such an algebra over a separably
closed field is isomorphic to a full matrix algebra My (k). Hence we can
say over an arbitrary field k, that the central simple algebra of dimension
n? are the k-forms of M, (k).

For any algebraic group G/k we may consider the adjoint group Ad(G),
this is the quotient of G/k by its center. It can be shown, that this is
again an algebraic group over k. It is clear that we have an embedding

Ad(G) — Aut(G)
which for any g € Ad(G)(L) is given by

g {z— g 'ag}.



A form G1/k of a group G/k is called an inner k-form, if it is in the image
of
H'(ks/k,Ad(G)) — H" (ks /k, Aut(Q)).

We call a semi simple group G/k anisotropic if it does not contain
a non trivial split torus (See exercise 1.2.1.) In our example below the
group of elements of norm 1 is semi simple and anisotropic if and only if
D(a,b) is a field.

I want to give an example, we consider the algebraic group Glz/Q we
consider two integers a,b # 0, for simplicity we assume that b is not a
square. Then we have the quadratic extension L = Q(v/b). The element

(O a) defines the inner automorphism

1 0
s epom (8 8)o(05)

of the group Glg, let o be its non trivial automorphism. Then o —

Ad(((l) 8)) and Idgaiz/x) + Idaus( co)(z) is a 1-cocycle and we get a

Q form of our group.
Hence we get a Q form G1 = G(a,b)/Q of our group Glz. It is an
inner form.

Now we can see easily that group of rational points of our above
group G(a,b)(Q) is the multiplicative group of a central simple algebra
D(a,b)/Q. To get this algebra we consider the algebra M>(L) of (2,2)-
matrices over L. We define

D(a,b) = {z € Ma(L)|x = Ad(((l] 8>)x“Ad( (? g))-l}.

We have an embedding of the field L into this algebra, which is given

by
wes (¥ 0
0 u’

Let up the image of Vb under this map. We also have the element u, =
0 a). .
(1 0) in this algebra.
Now I leave it as an exercise to the reader that as a Q vctor space

D(a,b) = Q® Qup ® Qua ® Quaup

‘We have the relation ui =a, uf = b, UgUp = —UpUg.-

Of course we should ask ourselves: When is D(a, b) split, this means
isomorphic to M2(Q). To answer this question we consider the norm ho-
momorphism, which is defined by

THYup+2ua+waaup = (THyup+2ua+waqup) (T —yup—2Ue —WaqUp) = x2—y2b—z2a+w2ab.

It is easy to see that D(a,b) splits if and only if we can find a non zero
element whose norm is zero.



If we do this with R as base field and if we take a = —1,b = —1 then
we get the Hamiltonian quaternions, which is non split.

We may also look at the p-adic completions Q, of our field. Then it
is not difficult to see that D(a,b) splits over Q, if p # 2 and p | ab. Hence
it is clear that there is only a finite number of primes p for which D(a,b)
does not split.

If we consider R as completion at the infinite place, and the Q, as the
completions at the finite places, then we have

The algebra D(a,b) splits if and only if it splits at all places. The
number of places where it does not split is always even.

The first assertion is the so called Hasse-Minkowski principle, the sec-
ond assertion is essentially equivalent to the quadratic reciprocity law.

1.3 The Lie-algebra

We need some basic facts about the Lie-algebras of algebraic groups.

For any algebraic group G/k we can consider its group of points with
values in k[e] = k[X]/(X?). We have the homomorphism k[¢] — k sending
€ to zero and hence we get an exact sequence

0— g— G(kle])) = G(k) — 1.
The kernel g is a k-vector space, if the characteristic of k is zero, then
its dimension is equal to the dimension of G/k. It is denoted by g = Lie(G).
Let us consider the example of the group G = SO(f), where f : VX —
k is a non degenerate symmetric bilinear form. In this case an element in

G(k[e]) is of the form Id + €A, A € End(V) for which
FflId + eA)v, (Id + eAd)w) = f(v,w)
for all v, w € V. Taking into account that e = 0 we get
e(f(Av,w) + f(v, Aw)) =0,

i.e. A is skew with respect to the form, and g is the k-vector space of skew
endomorphisms. If we give V' a basis and if f = > 27 with respect to this
basis then this means the the matrix of A is skew symmetric.

If we consider G = Gl,,/k then g = M, (k), the Lie-bracket is given by

(A,B)—~ AB — BA (4)
We have some kind of a standard basis for our Lie algebra
s=PrHio P kE, ()
i=1 i,4,i%]

where H; (resp.F; ;) are the matrices

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
00 . 0 0 0 0 1

H=10 0 0o 1 0o ol™Fu=]00 0 0o o
00 0 .. 0 00 0 ..
00 0 0 0 0 00 0 0 0

10

(=] o o o o



and the only non zero entries (=1) is at (4,7) on the diagonal (resp. and
(i,7) off the diagonal.)

For the group Sl,/k the Lie-algebra is g© = {A € M, (k)| tr(4) = 0}
and again we have a standard basis

n—1
o =PkrH - Hi)o P kEy (6)
i=1

4,5,47]

A representation of a group scheme G/k is a k-homomorphism
p:G— GIV)

where V/k is a k— vector space. Then it is clear from our considerations
above that we have a ”derivative” of the representation

dp : g = Lie(G/k) — Lie(Gl(V)) = End(V)

this is k-linear.

Every group scheme G/k has a very special representation, this is the
the Adjoint representation. We observe that the group acts on itself by
conjugation, this is the morphism

Inn:GxrG— G
which on T valued points is given by

Inn(gi, g2) = g192(g1) "
This action clearly induces a representation

Ad : G/k — Gl(g)

and this is the adjoint representation. This adjoint representation has a
derivative and this is a homomorphism of k£ vector spaces

Dpq =ad:g— End(g).
We introduce the notation: For 71,75 € g we put
[Tl, TQ} = a.d(Tl)(Tz).

Now we can state the famous and fundamental result

Theorem 1.1. The map (T1,T2) — [T1, T3] is bilinear and antisymmet-
ric. It induces the structure of a Lie-algebra on g, i.e. we have the Jacobi
identity

(11, [T2, T5]] + [T2, [Ts, Ta]] + [T, [T1, T2]] = 0.

We do not prove this here. In the case G/k = GI(V) and 11,1 €
Lie(Gl(V) = End(V) we have [T1,T>] = T1T> — T>T and in this case the
Jacobi Identity is a well known identity.

On any Lie algebra we have a symmetric bilinear form (the Killing
form)

B:gxg—k (7
which is defined by the rule

B(T1,T>) = trace(ad(71) o ad(72))

11



A simple computation shows that for the examples g = Lie(Gl,) and g©®
Lie(Sl,,) we have

B(Tl,Tz) =2n tI‘(Tsz) -2 tI‘(Tl) tI‘(Tg) (8)

we observe that in case that one of the T; is central, i.e.= uld we have
B(T1,T») = 0. In the case of g'® the second term is zero.

It is well known that a linear algebraic group is semi-simple if and only
if the Killing form B on its Lie algebra is non degenerate.

1.4  Structure of semisimple groups over R and
the symmetric spaces:

We need some information concerning the structure of the group Goo =
G(R) for semisimple groups over G/R. We will provide this information
simply by discussing a series of examples.

Of course the group G(R) is a topological group, actually it is even a
Lie group. This means it has a natural structure of a Cs -manifold with
respect to this structure. Instead of G(R) we will very often write Goo.
Let GY% be the connected component of the identity in Goo. It is an open
subgroup of finite index. We will discuss the

Theorem of E. Cartan: The group G° always contains a maximal
compact subgroup K C G2, and all maximal compact subgroups are con-
jugate under G2,. The quotient space X = G /K is again a Coo-manifold.
It is diffeomorphic to an R™ and carries a Riemannian metric which is in-
variant under the operation of G2, from the left. It has negative sectional
curvature. The maximal compact subgroup K C G2 is connected and
equal to its own normalizer. Therefore the space X can be viewed as the
space maximal compact subgroups in G%,.

This theorem is fundamental. To illustrate this theorem we consider
a series of examples:

1.4.1 The groups Sl;(R) and Gl,(R):

The group Slg(R) is connected. If K C Slg(R) is a closed compact sub-
group, then we can find a positive definite quadratic form

f:R" > R,

such that K C SO(f,R). since the group SO(f,R) itself is compact, we
have equality. Two such forms fi, f> define the same maximal compact
subgroup if thre is a A > 0 in R such that Af; = fa.

This is rather clear, if we believe the first assertion about the existence
of f. The existence of f is also easy to see if one believes in the theory of
integration on K. This theory provides a positive invariant integral

C.(K) —

R
p — /go(k)dk
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with [ ¢ > 0 if ¢ > 0 and not identically zero (positivity), [ ¢ (kko)dk =
J p(kok)dk = [ ¢(k)dk (invariance).

To get our form f we start from any positive definite form f; on R™
and put

f(z) = /K folk)dk.

A positive definite quadratic form on R™ is the same as a symmetric
positive definite bilinear form. Hence the space of positive definite forms
is the same as the space of positive definite symmetric matrices

X:{A:(aij)|A:tA,A>0}.

Hence we can say that the space of maximal compact subgroups in Slg(R)
is given by ~

X = X/R%,.
It is easy to see that a maximal compact subgroup K C Sla(R) is equal to
its own normalizer (why?). If we view X as the space of positive definite

symmetric matrices with determinant equal to one, then the action of
Slg(R) on X = Sl3(R)/K is given by

(9,A) — g Ay,

and if we view it as the space of maximal compact subgroups, then the
action is conjugation.

There is still another interpretation of the points x € X. In our above
interpretation a point was a symmetric, positive definite bilinear form
<, >z on R™ up to a homothety. This bilinear form defines a transpose
g —'* g and hence an involution

O::9— (g)7" (9)
Then the corresponding maximal compact subgroup is

Ko = {g € Sl.(R)[O.(9) = g} (10)

This involution O, is a Cartan involution, it also induces an involution
also called ©, on the Lie-algebra and it has the property that (See 7)

(u,v) = B(u,O¢(v)) = Be, (u,v) (11)

is negative definite. This bilinear form is K, invariant. All these Cartan
involutions are conjugate.

If we work with Gl,(R) instead then we have some freedom to define
the symmetric space. In this case we have the non trivial center R* and
it is sometimes useful to define

X = GL,(R)/SO(R) - R, (12)

then our symmetric space has two components, a point is pair (O, ¢€)
where ¢ is an orientation. If we do not divide by RZ, then we multiply
the Riemannian manifold X by a flat subspace and we get the above space
X.

A Cartan involution on Gl, (R) is an involution which induces a Cartan
involution on Sl,(R) and which is trivial on the center.

13



Proposition 1.1. The Cartan involutions on Gl,(R) are in one to one
correspondence to the euclidian metrics on R"™ up to conformal equiva-
lence.

Finally we recall the Iwasawa decomposition. Inside Gl,(R) we have
the standard Borel- subgroup B(R) of upper triangular matrices and it is
well known that

Gl,(R) = B(R) - SO(R) - R%, (13)

and hence we see that B(R) acts transitively on X.

1.4.2 The Arakelow- Chevalley scheme (Gl,/Z, ©)

We consider the case G = Gl,, and the special Cartan involution ©¢(g) =
(*g)~! and look at it from a slightly different point of view.

We start from the free lattice L = Ze1 @ Zea ® - - - ® Ze,, and we think
of Gl,,/Z as the scheme of automorphism of this lattice. If we choose an
euclidian metric < , > on L ® R then we call the pair (L,< , >) an
Arakelow vector bundle. up to homothety, we get a Cartan involution ©
on Gl,(R). We choose the standard euclidian metric with respect to the
given basis, i.e. < e;,e; >= §;,;. The the resulting Cartan involution is
the standard one: ©g : g ~ (*g)~*. This pair (Gl,/Z, ) is called an
Arakelow- Chevalley scheme. (In a certain sense the integral structure of
Gl,,/Z and the choice of the Cartan involution are ”optimally adapted”)

In this case we find for our basis elements in (5)

B@)0 (H“ HJ) = —2n5i,j + 2, B@@(Ei,j7 Ek,l) = —2n6i,k5j,l (14)

hence the FE; ; are part of an orthonormal basis.

We propose to call a pair (L, <, >5) an Arakelow vector bundle over
Spec(Z) U{oo} and (Gln, ©;) an Arakelow group scheme. The Arakelow
vector bundles modulo conformal equivalence are in one-to one correspon-
dence with the Arakelow group schemes of type Gl,.

1.4.3 The group Sl;(C)

We now consider the group G/R whose group of real points is G(R) =
Sla(C) (see 1.1 example 4)).

A completely analogous argument as before shows that the maximal
compact subgroups are in one to one correspondence to the positive defi-
nite hermitian forms on C" (up to multiplication by a scalar). Hence we
can identify the space of maximal compact subgroup K C G(R) to the
space of positive definite hermitian matrices

X={A|A="A,A>0,detA=1}.

The action of Slg(C) by conjugation on the maximal compact subgroups
becomes
A—gA'g

on the space of matrices.
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1.4.4 The orthogonal group:

The next example I want to discuss is the example of an orthogonal group
of a quadratic form

2 2 2 2
flzr,. ., zn) =21+ ...+ T — Tpa1 — --- — Ty
Since at this point we consider only groups over the real numbers, we may
assume that our form is of this type.
In this case one has the usual notation

SO(f,R) = SO(m,n —m).

Of course we can use the same argument as before and see that for any
maximal compact subgroup K C SO(f,R) we may find a positive definite
form

v R" — R
such that K = SO(f,R) N SO(¥,R). But now we cannot take all forms
1, i.e. only special forms 3 provide maximal compact subgroup.

We leave it to the reader to verify that any compact subgroup K fixes
an orthogonal decomposition R™ = Vi @ V_ where our original form f is
positive definite on V4 and negative definite on V_. Then we can take a
1 which is equal to f on V4 and equal to —f on V_.

Exercise 3 a) Let V/R be a finite dimensional vector space and let f
be a symmetric non degenerate form on V. Let K C SO(f) be a compact
subgroup. If f is not definite then the action of K on V is not irreducible.

b) We can find a K invariant decomposition V.= V_ & V. such that f
is negative definite on V_ and positive definite on V.

In this case the structure of the quotient space G(R)/K is not so easy
to understand. We consider the special case of the form

i N —xi+1 = f(z1,. .., Tnt1).
We consider in R™*! the open subset
X_={v=(x1...2n4+1) | f(v) < 0}.
It is clear that this set has two connected components, one of them is
Xt ={veX_|zny1 >0}

Since it is known that SO(n, 1) acts transitively on the vectors of a given
length, we find that SO(n,1) cannot be connected. Let G% C SO(n, 1)
be the subgroup leaving X invariant.

Now it is not to difficult to show that for any maximal compact sub-
group K C G2 we can find a ray R3o-v C X which is fixed by K.

(Start from vy € X ") and show that RY oKy is a closed convex cone
in X', It is K invariant and has a ray which has a “centre of gravity”
and this is fixed under K.)

For a vector v = (z1,...,%n41) € X(_H we may normalize the coor-
dinate x,4+1 to be equal to one; then the rays Riov are in one to one
correspondence with the points of the ball

o

Dyp={(z1,...,2) |2} + ... +22 <1} c X

This tells us that we can identify the set of maximal compact subgroups
K C GY, with the points of this ball. The first conclusion is that Ggo/K ~
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D™ is topologically a cell (diffeomorphic to R™). Secondly we see that for
a v € X' we have an orthogonal decompositon with respect to f

R = (o) + (o)

and the corresponding maximal compact subgroup is the orthogonal group
on (v)™*.

1.4.5 Special low dimensional cases

1) We consider the group Sl2(R). It acts on the upper half plane
H={z|z€C,3(z) >0}

by

az+b a b
(g,2) — e g= <c d> € Slx(R).

It is clear that the stabilizer of the point ¢ € H is the standard maximal
compact subgroup

3 B cosy  sing
K =150(2) = {(_Sin(p cos@) }

Hence we have H = Slp(R)/K. But this quotient has been realized as
the space of symmetric positive definite 2 X 2-matrices with determinant

equal to one
vy T 2
T = —x1=1,y1>0,.
{<x1 92) ’ iy ' . }

It is clear how to find an isomorphism between these two explicit realiza-
tions. The map
(y1 w1) N
1 Y2 Y2

is compatible with the action of Sl2(R) on both sides and sends the identity

1 0 o
(0 1) to the point .

If we start from a point z € H the corresponding metric is as follows:
We identify the lattices (1,z) = {a + bz | a,b € Z} = Q to the lattice
72 C R? by sending 1 — ((1)) and z — ((1)) The standard euclidian metric
on C = R? induces a metric on Q@ C C, and this metric is transported to
R? by the identification Q @ R — R?.

2) The two groups Slz(R) and PSlz(R) = Slo(R)/{£Id} give rise to
the same symmetric space. The group PSl2(R) acts on the space M2 (R)
of 2 X 2-matrices by conjugation (the group Gl2(R) acts by conjugation
and the centre acts trivially) and leaves invariant the space

{A € Ma(R) | trace(A) = 0} = M3 (R).
On this three-dimensional space we have a symmetric quadratic form
B : MJR)—R
B : A— % trace (A?)

16



and with respect to the basis h = (é Pl)’ er = (O 1), e =

(_01 é), this form is 2% 4+ x2 — «2.
Hence we see that SO(MZ2(R),B) = SO(2,1), and hence we have
an isomorphism between PSlz(R) and the connected component of the
identity G C SO(?,i). Hence we see that our symmetric space H =
Sl(R)/K = PSl>(R)/K can also be realized (see ........ ) as disc

D = {(z1,22) | a¥ + 25 <1}

where we normalized 3 =1 on X (f) as in ....... .

1.4.6 The group Sly(C).

Recall that in this case the symmetric space is given by the positive definite
hermitian matrices

A:{(y; ;2) |det(A):1,y1>0}.

In this case we have also a realization of the symmetric space as an upper
half space. We send

(5 )~
w Y2

The inverse of this isomorphism is given by

@0 (C5 1)

As explained earlier, the action of Gl2(C) on the maximal compact sub-
group given by conjugation yields the action

(E7i) = (Z7C) € (C X IR>0

GR) x X — X,

(9,4) — gA'g,
on the hermitian matrices. Translating this into the realization as an

upper half space yield the slightly scaring formula

G x (C x Rsg) — C x Ry,

(az +b) (cz+d)+aEC2 ¢

(@ (z0) — <(az+d) (cz+d)+cc¢?’ (az+d) (cz + d) + ce ¢2

1.3.4. The Riemannian metric: It was already mentioned in the
statement of the theorem of Cartan that we always have a G2, invariant
Riemannian metric on X. It is not to difficult to construct such a metric
which in many cases is rather canonical.

In the general case we observe that the maximal compact subgroup is
the stabilizer of the point o = ¢- K € G% /K = X. Hence it acts on the
tangent space of xp, and we can construct a k-invariant positive definite
quadratic form on this tangent sapce. Then we use the action of G, on
X to transport this metric to an arbitrary point in X: If x € X we find
a g so that x = gxo, it defines an isomorphism between the tangent space

17
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at xo and the tangent space at x. Hence we get a form on the tangent
space at z, which will not depend on the choice of g € G%.

In our examples this metric is always unique up to scalars.

a) In the case of the group Slg(R) we may take as a base point g € X
the identity Id € Sl4(R). The corresponding maximal compact subgroup
is the orthogonal group SO(n). The tangent space at Id is given by the
space

Sym?z (R) = Tia

of symmetric matrices with trace zero. On this space we have the form
Z — trace(Z?),

which is positive definite (a symmetric matrix has real eigenvalues). It
is easy to see that the orthogonal group acts on this tangent space by
conjugation, hence the form is invariant.

b) A similar argument applies to the group Go = Slg(C). Again the
identity Id is a nice positive definite hermitian matrix. The tangent space
consists of the hermitian matrices

T = {A1A ='"Aand tr(A) = 0},
and the invariant form is given by
A — tr(44).
c) In the case of the group G C SO(f) where f is the quadratic form
f(@1, o Tpt1) = i R —a:th.

We realized the symmetric space as the open ball

D= {(@1,wa) | 23 +... 422 < 1}.

o
The orthogonal group SO(n, 1) is the stabilizer of 0 €D,,, and hence it is
clear that the Riemannian metric has to be of the form

h(x? + ... 4 z2)(dz; + ... dz2)
(in the usual notation). A closer look shows that the metrics has to be

da? + ... +da?
\/l—x%—...—x%.

In our two low dimensional spacial examples the metric is easy to deter-
mine. For the action of the group Sl2(R) on the upper half plane H we
observe that for any point zo = x + iy € H the tangent vectors 3%|ZO,
a%|20 form a basis of the tangent spaces at zo.

If we take zp = ¢ then the stabilizer is the group SO(2) and for

o) = ( cos singo)

—sinp cose

We have

0
i +sin2p— |;
|i + sin goay|

9 9

Ox Ox

0 . 0 0
e(p) (a—y |1) = sin2¢p - P2 |i + cos 2<pa—y |-



Hence we find that % |; and a% |; have to be orthogonal and of the same

length.
Yy x
0 1

Now the matrix
sends i into the point z = x + iy. It sends 2 |; and a% i into y - 2 |2
and y - % |-, and hence we must have for our invariant metric
0 0 0 0 1 0 0 1
<% |2767y|2>* ’ <% |27%|2>*y727 <87y |2787y|2>*y727

and this is in the usual notation the metric
2 1 2 2
ds” = y—Q(dm + dy”).

A completely analogous argument yields for the space Hs the metric
1
@ (d¢? + dz® + dy?).

2 Arithmetic groups

If we have a linear algebraic group G/Q — GL, we may consider the
group I' = G(Q) N GL,(Z). This is the first example of an arithmetic
group. It has the following fundamental property:

Proposition: The group ' is a discrete subgroup of the topological
group G(R).

This is rather easily reduced to the fact that Z is discrete in R. Actually
our construction provides a big family of arithmetic groups. For any
integer m > 0 we have the homomorphism of reduction mod m, namely

GLn(Z) — GLn(Z/mZ).

The kernel GL,(Z)(m) of this homomorphism has finite indesx in
GLy,(Z) and hence the intersection I = GL,(Z)(m) N T has finite in-
dex in I'.

Definition 2.1.: A subgroup I'" of " is called a congruence subgroup,
if we can find an integer m such that

GL,(Z)(m)NT cT” cT.

At this point a remark is in order. I explained already that a linear
algebraic group G/Q may be embedded in different ways into different
groups GL,, i.e.

— GLyp,
G
—  GLp,

In this case we may get two different congruence subgroups

I =G(@Q)NGLy, (Z),T2 = G(Q) N GLn,(Z).
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It is not hard to show that in such a case we can find an m > 0 such that

Ty S T N GLn, (Z)(m)
Ty DT NGLy, (Z)(m)

From this we conclude that the notion of congruence subgroup does
not depend on the way we realized the group G/Q as a subgroup in the
general linear group.

Now we may also define the notion of an arithmetic subgroup. A
subgroup I'' C G(Q) is called arithmetic if for any congruence subgroup
I' € G(Q) the group IV NT is of finite index in ' and I". (We say that
IV and T' are commensurable.) By definition all congruence subgroups are
arithmetic subgroups.

The most prominent example of an arithmetic group is the group

I' = Slx(Z).

Another example is obtained as follows. We defined for any number field
K/Q the group

G/Q = Ri/q(Sla)
for which G(Q) = Sla(K). If Ok is the ring of integers in K, then I' =
Sla(Ok) (and also T' = GL,(Ok)) is a congruence (and hence arithmetic)
subgroup of G(Q).

It is very interesting that the groups I' = Sl»(Z) and Sla(Ok) for
imaginary quadratic K/Q always contain arithmetic subgroups I C T'
which are not congruence subgroups. This means that in general the class
of arithmetic subgroups is larger than the class of congruence subgroups.
We will prove this assertion in (See ...... )-

If only the group G(R) is given (as the group of real points of a group
G/Q or perhaps only as a Lie group, then the notion of arithmetic group
I’ € G(R) is not defined. The notion of an arithmetic subgroup I' C G(R)
requires the choice of a group scheme G/Q such that the group G(R) is
the group of real points of this group over Q. The exercise in 1.1.2. shows
that different Q- forms provide different arithmetic groups.

Exercise 2 If v € GLn(Z) is a nontrivial torsion element and if v = Id
mod m then m = 1 or m = 2. In the latter case the element ~y is of order
2. This implies that for m > 3 the congruence subgroup GLy(Z)(m) of
GLn(Z) is torsion free.

This implies of course that any arithmetic group has a subgroup of
finite index, which is torsion free.

2.1 The locally symmetric spaces

We start from a semisimple group G/Q. To this group we attached the the
group of real points G(R) = Gs. In G we have the connected compo-
nent G2 of the identity and in this group we choose a maximal compact
subgroup K. The quotient space X = Goo/K is a symmetric space which
now may have several connected components. On this space we have the
action of an arithmetic group I'.

We have a fundamental fact:
The action of I' on X is properly discontinuous, i.e. for any point
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x € X there exists an open neighborhood Uy such that for all v € T we
have
YU, NU; =0 or ~yx=uz.

Moreover for all x € X the stabilizer

Ly ={y|vz ==z}

is finite.

This is easy to see: If we consider the projectionp : G(R) - G(R)/K =
X, then the inverse image p~*(Us) of a relatively compact neighborhood
Ues of x = goK is of the form Vg, - K, where Vg, is a relatively compact
neighborhood of go. Hence we look for the solutions of the equation

yok = V'K vy € T,v,0v" € Vo, k, k' € K.

Since I is discrete in G(R) there are only finitely many possibilities for v
and they can be ruled out by shrinking U, with the exception of those ~y
for which vz = z.

If " has no torsion then the projection

X —T\X

is locally a Coo-diffeomorphism. To any point x € I'\X and any point
# € 7 *(z) we find a neighborhood Uz such that

m:Uzs—U,.

Hence the space I'\X inherits the Riemannian metric and the quotient
space is a locally symmetric space.

If our group I' has torsion, then a point £ € X may have a nontrivial
stabilizer I'sz. Then it is not difficult to prove that & has a neighborhood
Uz which is invariant under 'z and that for all § € Uz the stabilizer
I'y C I'z. This gives us a diagram

Ug — Ta\Us =Us

| |

X —7 - \X

i.e. the point z € I'\X has a neighborhood which is the quotient of a
neighborhood U; by a finite group.

In this case the quotient space I'\X may have singularities. Such
spaces are called orbifolds. They have a natural stratification. Any point
x defines a I' conjugacy class [['z] of finite subgroups I's C I'. On the
other hand a conjugacy class [c] of finite subgroups H C I' defines the
(non empty ) subset (stratum) I'\X([c]) of those points z € T'\X for
which 'z € [¢].

These strata are easy to describe. We observe that for any finite
H C T the fixed point set X* intersected with a connected component
of X is contractible. Let zo € X be a point with I';, = H. Then
any other point z € X7 is of the form © = gxo with g € G(R). This
implies that g € N(H)(R), where N(H) is the normaliser of H, it is an
algebraic subgroup. Then N(H)(R)NK = K is compact subgroup, put
' =T N N(H)(R), and we get an embedding
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r\x? < r\x.

This space contains the open subset (I'#\X#)(® of those = where
H € [I';] and this is in fact the stratum attached to the conjugacy class
of H.

We have an ordering on the set of conjugacy classes, we have [c1] < [e2]
if for any Hy € [c1] there exists a subgroup Ha> € [c2] such that Hy C Hs.
These strata are not closed, the closure I'\ X ([c]) is the union of lower
dimensional strata.

If we start investigating the stratification above we immediately hit
upon number theoretic problems.Let us pick a prime p and we consider
the group I' = Sl,—1[Z] and the ring of p-th roots of unity Z[(,] as a
Z-module is free of rank p — 1 and hence we get an element

Cp € SUZ[G)]) = Slp-1(Z)
and hence a cyclic subgroup of order p. But clearly we have many con-
jugacy classes of elements of order p in I" because any ideal a is a free
Z-module. If we want to understand the conjugacy classes of elements of
order p or the conjugacy classes of cyclic subgroups of order p in Sl,—1(Z)
we need to understand the ideal class group.
In the next section we will discuss two simple cases.

These quotient spaces I'\X attract the attention of various different
kinds of mathematicians. They provide interesting examples of Rieman-
nian manifolds and they are intensively studied from that point of view.
On the other hand number theoretic data enter into their construction.
Hence any insight into the structure of these spaces contains number the-
oretic information.

It is not difficult to see that any arithmetic group I' contains a normal
congruence subgroup I'" which does not have torsion. This can be deduced
easily from the exercise .... at the end of this section. Hence we see
that T\ X is a Riemannian manifold which is a finite cover of T'\ X with
covering group I'/T".

The following general theorem is due to Borel and Harish-Chandra:

The quotient T\X always has finite volume with respect to the Rie-
mannian metric. The quotient space T\X is compact if and only if the
group G/Q is anisotropic.

We will give some further explanation below.

2.1.1 Low dimensional examples

We consider the action of the group I' = Sl(Z) C Sl2(R) on the upper
half plane

X =H={z|S(z) =y > 0} = Sh(R)/SO(2).

As we explained in .... we may consider the point z = = + iy as a positive
definite euclidian metric on R? up to a positive scalar. We saw already that
this metric can be interpreted as the metric on C induced on the lattice
Q = (1,2). The action of Sla(Z) on the upper half plane corresponds to
changing the basis 1, z of {2 into another basis and then normalizing the
first vector of the new basis to length equal one.
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This means that under the action of Slz(Z) we may achieve that the
first vector 1 in the lattice is of shortest length. In other words = (1, z)
where now |z| > 1.

Since we can change the basis by 1 — 1 and z — z + n. We still have
|z +n| > 1. Hence see that this condition implies that we can move z by
these translation into the strip —1/2 < R(z) < 1/2 and since 1 is still the
shortest vector we end up in the classical fundamental domain:

F={e| - 1/2<R() < 1/2,]2 > 1)

Two points z1,z2 € F are inequivalent under the action of Sly(Z)
unless they differ by a translation. i.e.

1 1
21:f§+it,22:z1+1:§+it,

or we have |z1| =1 and 2z, = fi. Hence the quotient Slz(Z)\H is given
by the following picture

It turns out that this quotient is actually a Riemann surface, i.e. the
finite stabilizers at ¢ and p do not produce singularities. As a Riemann
surface the quotient is the complex plane or better the projective line
P!(C) minus the point at infinity.

It is clear that the points ¢ and p = +% + % —3 in the upper half
plane are the only points with non-trivial stabilizer up to conjugation by
an element v € Slz(Z). Actually the stabilizers are given by

n {5 0 n={(E )

We denote the matrices

() )

The second example is given by the group I' = Slx(Z[i]) C Sl2(C) = G
(see ....... ). Here we should remember that the choice of Goo = Sl2(C)
allows a whole series of arithmetic groups. For any imaginary quadratic
extension K = Q(v/—d) with O as its ring of integers we may embed K
into C and get

Slb(Ok) =T C Goo.

If the number d becomes larger then the structure of the group I'
becomes more and more complicated. We discuss only the simplest case.

We will construct a fundamental domain for the action of I on the
three-dimensional hyperbolic space H3z = C x Rsg.

We identify H3 with the space of positive definite hermitian matrices

X ={Ae M(C)| A="A,A>0,det(A) = 1}.

We consider the lattice

szm-6>+zm-c>

in C? and view A as a hermitian metric on C? where C/Q has volume

1. Let ei;(a be a vector of shortest length. We can find a second vector

eh = (}) so that det <: g) = 1. This argument is only valid because
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Zli] is a principal ideal domain. We consider the vectors ej + ve] where
v € Z[i]. We have

(eh+vel, eh+vet)a = (eh+ve: 1) a+v(el, es) a+{es, e )a+vrlel, el a.

Since we have the the euclidean algorithm in Z[i] we can choose v such
that i i

7§<€/1, 6/1> S Re<€;, 6/2>A7 %<6’1, 6/2>A S §<el17 €£>A-

If we translate this to the action of Slz(Z[i]) on Hs then we find that every
point x = (z;() € Hs is equivalent to a point in the domain

F={(:0) | —5 S Re(2),9(:) < 357+ 2 1}

N —

Since we have still the action of the matrix <é 701) we even find a

smaller fundamental domain

F={(z)| —% < Re(2),3(z) < Z;22 4+ ¢* > 1 and Re(z) + 3(2) > 0}.

N

I want to discuss also the extension of our considerations to the case of the
reductive group Glz(C). In such a case we have to enlarge the maximal
compact subgroup. In this case the group K =8I (2)-C*=K -C'isa
good choice where C* is the centre of Gla(C). Then we get

Hs = Sl (C)/K = Glo(C)/K

i.e. we have still the same symmetric space. But the group I' = Gla(Z[i])
is still larger. We have an exact sequence

1T =T = {i"} =1

0

v . The centre Zr
0 1
has index 2 in Z. Since the centre acts trivially on the symmetric space,
hence the above fundamental domain will be “cut into two halfes” by the

U

action of I'. the matrices (20 (1)> induce rotation of v - 90° around the

axis z = 0 and therefore it becomes clear that the region

The centre Z of I is given by the matrices { (

Fo ={(2,¢0) ]10<3(2),Re(z) < =, 22+ C2 >1}

DN =

is a fundamental domain for T".
The translations z — z + 1 and z — z + i identify the opposite faces
of F'. This induces an identification on Fpy, namely

1 1 . i
(5 +Zy,C) — (_5 —i—ly,() — (y+ §7C> .
On the bottom of the domain Fy, namely
Fo()={(z,0) € Fo| 22+ =1}

we have the further identification

(2,0) — (1%, Q).

Hence we see that the quotient space f\Hg is given by the following figure.
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I want to discuss the fixed points and the stabilizers of the fixed points
of I'. Before I can do that, I need some simple facts concerning the
structure of Gls.

The group Glz(K) acts upon the projective line P! (K) = (K2\{0})/K*.
We write

P'(K) = (K)U{oo} ; K(ze; +e2) =2, Ke; = co.

It is quite clear that the action of g = <: ?) € Gla(K) is given by
z=2 + 5 .
yx + &
The action of Gla(K) on P'(K) is transitive. For a point z € P'(K) the
stabilizer B, is clearly a linear subgroup of Glo/K. If x = oo, then this

stabilizer is the subgroup
a u
{0 3)}

m={(i 3))

It is clear that these subgroups B, are conjugate under the action of
Gl2(K). They are in fact maximal solbable subgroups of Gls.

If we have two different points z,z2 € P (K), then this corresponds
to a choice of a basis where the basis vectors are only determined up to
scalars. Then the intersection of the two groups B, N Ba, is a so-called
maximal torus. If we choose 1 = Kei, x2 = Kea, then

won.- (3 9}

Any other maximal torus of the form B,,, B2 is conjugate to 7o under
Gl (K).

Now we assume K = C. We compactify the three dimensional hyper-
bolic space by adding P'(C) at infinity, i.e.

Hs L)ﬁg =H3UP1(C) =Cx RZOU{OO}.

and for z = 0 we get

(The reader should verify that there is a natural topology on Hj for which
the space is compact and for which Glz(C) acts continuously.)

Now let us assume that a € Gl2(C) is an element which has a fixed
point on Hs and which is not central. Since it lies in a maximal compact
subgroup times C” we see that this element a can be diagonalized

—1 (0% 0 /
a—r goagy = 0 ﬁ =a

with a # 8 and |a/8| = 1.
Then it is clear that the fixed point set for a’ is the line

Fix (a’) = {(0,¢) | ¢ € R>o},

i.e. we do not get an isolated fixed point but a full fixed line.
The element @’ has the two fixed points co,0 in P*(C), and hence ist
defines the torus Tp(C). Then it is clear that

Fix(a’) = {(0,¢) | ¢ > 0} = T(C) - (0,1)
i.e. the fixed point set is an orbit under the action of Ty (C).
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2.1.2  Fixed point sets and stabilizers for Gly(Z[i]) =T

If we want to describe the stabilizers up to conjugation, we can focus our
attention on Fjp.

If we have an element vy € f‘, ~v not central and if we assume that
v has fixed points on Hs, then we know that - defines a torus Ty =
centralizergy, (y) = stabilizer of x-,z,, € P'(C). This torus is defined
over Q(¢), but it is not necessarily diagonalizable over Q(7), it may be
that the coordinates of x-,z.s lie in a quadratic extension of F/Q(3).
This is the quadratic extension defined by the eigenvalues of .

We look at the edges of the fundamental domain Fy. We saw that
they consist of connected pieces of the straight lines

G = {(2:0) | 2= 0.2 = {(2.0) | 2 = $h.Gs = {(=.0) | = = 1),

and the circles (these circles are euclidean circles and geodesics for the

hyperbolic metric)

Dy = {(2,¢) | 22+¢* = 1,3(2) = Re(2)}, D2 = {(2,¢) | 224¢* = 1,3(2) = 0},
1

D3 ={(2,¢) | 22+ ¢* = 1,Re(z) = 5},

The pour of points (0o, (20,0)) € P*(C) x P*(C) has as its stabilizer

T.(C) = ((1) Zf) (3 g) ((1) I 0) = (3 o3~ a)) ,

the straight line {(zo0,¢) | ¢ > 0} is an orbit u nder 7%, (C) and it consists
of fixed points for

T, (O)(1) = {(3 ZO('B[; O‘)) ‘ a/f € 51}.

We can casily compute the pointwise stabilizer of G1, G2, Gs in I'. They
are

- iV 0 iV 0

te={(5 »)}={(s D)}

1—4¢ . +1 L

o) e (3 1) =
v (=)t

O (1

where in the last case we have to take into account that w € Zli]
for all v.

Hence modulo the centre Zr these stabilizers are cyclic groups of order
4,2 4.

The arcs D; are also pointwise fixed under the action of certain cyclic

groups, namely
)
oo (1)
)]
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and we check easily that these arcs are geodesics joining the following
points in the boundary

D1 runs from Vi to — Vi

D5 runs from i to — 1

1md i
3

D3 runs frome =¢e¢ 6 =e3 top.

The corresponding tori are

nmscn =G )

Ty =Stab(—v/i, Vi) = {(g ﬁ)}

«

Ty =Stab(p, p) = {(5__55 g) } .

The torus T splits over Q(7), the other two tori split over an quadratic
extension of Q(%).

Now it is not difficult anymore to describe the finite stabilizers and the
corresponding fixed point sets. If z € Hs for which the stabilizer is bigger
than Zj, then we can conjugate = into Fp. It is very easy to see that x
cannot lie in the interior of F{y because then we would get an identification
of two points nearby = and hence still in F under I.

If z is on one of the lines D1, D2, D3 or on one of the arcs G1, G2, Gs
but not on the intersection of two of them, then the stabilizer I, is equal
to Zp times the cyclic group we attached to the line or the arc earlier.
Finally we are left with the three special points

x12 =D1 N DN G1 = {(0,1)}
1+i \/5)}

2 72

ngzDgﬂDgﬁGQ:{(l ﬁ)}

2" 2

I13:D10D3QG3:{<

In this case it is clear that the stabilizers are given by

C N
(@) ) G s

2.2 Compactification of I'\ X

Our two special low dimensional examples show clearly that the quotient
spaces '\ X are not compact in general. There exist various constructions
to compactify them.

If, for instance, I' C Sl2(Z) is a subgroup of finite index, then the
quotient I'\H is a Riemann surface. It can be embedded into a compact
Riemann surface by adding a finite number of points. this is a special case
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of a more general theorem of Satake and Baily-Borel: If the symmetric
space X is actually hermitian symmetric (this means it has a complex
structure) then we have the structure of a quasi-projective variety on
I'\X. This is the so-called Baily-Borel compactification. It exists only
under special circumstances.

I will discuss the process of compactification in some more detail for
our special low dimensional examples.

2.2.1 Compactification of Sl;(Z)\H by adding points

Let I C Sl2(Z) be any subgroup of finite index. The group I' acts on the
rational projective line P*(Q). We add it to the upper half plane and form

H=HUP(Q),

and we extend the action of I" to this space. Since the full group Sl2(Z)
acts transitively on P'(Q) we find that T" has only finitely many orbits on
PY(Q). _

Now we introduce a topology on H. We defined a system of neighbor-
hoods of points £ =r € P'(Q). We define the Farey circles S (c, %) which

touch the real axis in the point » = p/q (p,q) = 1 and have the radius

#. For ¢ =1 we get the picture

T

T N T
0 1

-1 —

N
[T

Let us denote by D (c7 %) = U o<er<eS (0’7 %) the Farey disks. For
¢ — 0 these Farey disks D (c7 %) define a system of neighborhoods of the
point 7 = p/q. The Farey disks at oo € P*(Q) are given by the regions

D(T,0) ={z|S(z) > T}.

It is easy to check that an element v € Sla(Z) which sends co € P*(Q) into
the point r = % sends D(T, 00) to D (%, g), These Farey disks D(c,r) do
not meet provided we take ¢ < 1. The considerations in 1.6.1 imply that

the complement of the union of Farey disks is relatively compact modulo
T', and since T" has finitely many orbits on P'(Q), we see easily that

Yr =T\H

is compact (which means of course also Hausdorff).
It is essential that the set of Farey circles D(c,r) and D (%,oo) is
invariant under the action of I' on the one hand and decomposes into
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several connected components (which are labeled by the point € P*(Q))
on the other hand. Hence

M\ JD(e,r) =T+ \D(c, )

where r; is a set of representatives for the action of I on P*(Q) and where
Ty, is the stabilizer of r; in T'.

It is now clear that I'y,\D(c,r;) is holomorphically equivalent to a
punctured disc and hence the above compactification is obtained by filling
the point into this punctured disc and this makes it clear that Yr is a
Riemann surface.

2.2.2 The Borel-Serre compactification of Sly(Z)\H

There is another construction of a compactification. We look at the disks
D(c,r) and divide them by the action of T',. For any point y € S(c’,r) —
{r} there exists a unique geodesic joining r and y, passing orthogonally
through S(c/,7) and hitting the projective line in another point oo (
= —1/4 in the picture below)

1

o=

If r = oo, then this system of geodesics is given by the vertical lines
{y-I+ x|z € R}.. This allows us to write the set

D(c,r) — {r} = Xoo,r X [,0)

where Xoo,» = PY(R) — {r}. The stabilizer T, acts D(c,r) and on the
right hand side of the identification it acts on the first factor, the quotient
I'r\Xoo,r is a circle. Hence we can compactify the quotient

IA\D(e,r) —{r} = I''\ X, X [c,0].

This gives us a second way to compactify I'\H, we apply this process to
a finite set of representatives of P*(Q) mod T

There is a slightly different way of looking at this. We may form the
union

HU | Xoor =H
T
and topologize it in such a way that

D(c,r) = Xoo,r X [¢,0) C Xoo,r X [c, 0]
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is a local homeomorphism. Then we see that the compactification above
is just the quotient
\H.
This compactification is called the Borel-Serre compactification. Its
relation to the Baily-Borel is such that the latter is obtained by the former
by collapsing the circles at infinity to a point.

It is quite clear that a similar construction applies to the action of a
group I' C Sl2(Z[i]) on the three-dimensional hyperbolic space. The Farey
circles will be substituted by spheres S(c,«) which touch the complex
plane {(2,0) | z € C} C Hj in the point (, 0), @ € P*(Q(4)) and for o = oo
the Farey sphere is the horizontal plane S(oc0,¢o) = {(2,¢0) | z € C). An
element v € I' which maps (0,00) to @ maps S(co, (o) to S(c, ), where
¢ =1/{. For a given @ we may identify the different spheres if we vary ¢
and for any point a € P*(Q(i)) we define Xoo,o = P*(C)\ {a}. Again we
can identify

D(c,a)\ {a} = Xoo,a X (0,¢] C D(c,a) \ {a} = Xoo,a X [0, (]

The stabilizer I’y acts on D(c, ) \ {a} and again this yields an action on
the first factor. If we choose o = co then

Foo = {<g CC_Ll) |¢ root of unity,a € M}

where M is a free rank 2 module in Z[3]. If ¢ does not assume the value &
then I'oo\ Xoo,00 i a two-dimensional torus, a product of two circles. If ¢
assumes the value 7 then I'oc \ X 0,00 is @ two dimensional sphere. If course
we get the same result for an arbitrary a.

Then we get an action of the group Ton Hz = HzU |J  D(c,a) \ {a}

a€ePl(K)

and the quotient is compact.

The the set of orbits of I on P*(Q()) is finite, these orbits are called

the cusps.

2.2.3 The Borel-Serre compactification, reduction theory
of arithmetic groups

The Borel-Serre compactification works in complete generality for any
semi-simple or reductive group G/Q. To explain it, we need the notion of
a parabolic subgroup of G/Q.

A subgroup P/Q < G/Q is parabolic if the quotient variety in the
sense of algebraic geometry is a projective variety. We mentioned already
earlier that for the group Gla/Q we have an action of Glz on the projective
line P* and the stabilizers B, of the points = € P!(Q) are the so-called
Borel subgroups of Gl2/Q. They are maximal solvable subgroups and

Glz/B, =P',

hence they are also parabolic.

More generally we get parabolic subgroups of Gl,/Q, if we choose a
flag on the vector space V = Q" = Qe; @ - - - ® Qe,,. This is an increasing
sequence of subspaces

F0)={0)}=VoCViCVs...Vi=V.
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The stabilizer P of such a flag is always a parabolic subgroup; the quotient
space
G /P = Variety of all flags of the given type,
where the type of the flag is the sequence of the dimensions n; = dim V;.
These flag varieties (the Grassmannians ) are smooth projective schemes
over Spec(Z) and this implies that any flag F is induced by a flag

fz:(O)Z{(O)}ILQCLlCLQC...CLkZLZZn (15)

where L; = V; N L, and of course L; ® Q = V;, this is the elementary fact
which we will use later.

If our group G/Q is the orthogonal group of a quadratic form
flx1,...,zn) = Zaim?
i=1

with a; € K*. Then we have to replace the flags by sequences of subspaces
F:0CWiCWs... C Wi CcWiCV,

where the W; are isotropic spaces for the form f, i.e. f | W; = 0, and
where the Wit are the orthogonal complements of the subspaces. Again
the stabilizers of these flags are the parabolic subgroups defined over Q.

Especially, if the form f is anisotropic over Q, i.e. there is no non-zero
vector z € K" with f(z) = 0, then the group G/Q does not have any
parabolic subgroup over Q. This equivalent to the fact that G(Q) does
not have unipotent elements.

These parabolic subgroups always have a unipotent radical Up which
is always the subgroup which acts trivially on the successive quotients
of the flag. The unipotent radical is a normal subgroup, the quotient
P/Up = M is a reductive group again, it is called the Levi-quotient of P.

We stick to the group Gl,/Q. It contains the standard maximal torus
whose R valued points are

t1 0 0
0 ta ... 0
To(R) = - . | e R [[t.=1}  (16)

0 0 0 ¢,

It is a subgroup of the Borel subgroup (maximal solvable subgroup or
minimal parabolic subgroup)

t1 w2 ... U1,n
0 to U2,n

Bo(R) = { , | e R [[t=1} @7
0 0 . Un—1,n

0 0 0 tn

and its unipotent radical Uy consists of those b € By where all the ¢; = 1.
This unipotent radical contains the one dimensional root subgroups

1 0 ... 0 O
0o 1 ... 0 0
Ui,j:{ 0 0 X 0 } (18)
0 0 O 0
0O 0 O 0 1
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where ¢ < j, these one dimensional subgroups are isomorphic to the one
dimensional additive group G,. They are normalized by the torus, for an
element ¢t € T(R) and z;,; € U; ;(R) = R we have

t{Ei,jt71 = ti/tjCCi,j- (19)

Fori=1,...,n,5=1,...,n,i# j (resp. ¢ < J ) characters «; ;(t) =
t;/t; are called the roots (resp. positive roots) of Ty in Gl,. We denote
these systems of roots by AS! (resp)Afl". The one dimensional sub-
groups U, j,1 # j are called the root subgroups.

Inside the set of positive roots we have the set of simple roots

ﬂ':Tl'Gln = {al,z,...,ai,i+1,...,an_1,n} (20)
The Borel subgroup By is the stabilizer of the ”complete” flag
{0} CQe; CQe1 @Qex C -+ C Qe1 ©Qex @ - -+ & Qen, (21)

the parabolic subgroups Py D By are the stabilizers of ”partial” flags

{0} CQe1 @ - ®Qen;, CQe1 P+ B Qen, ®Qen+1®---®Qenyqny, C---

(22)

The parabolic subgroup Py also acts on the direct sum of the successive
quotients

Qe1 @ - DQen, ®Qeny+1 @ D Qenytn, ® ... (23)
and this yields a homomorphism
TPy 2P0—)M0:G1n1 XGlnz X ... (24)

hence My is the Levi quotient of Py. By definition the unipotent radical
Up, of Py is the kernel of rg.
A parabolic subgroups Py D By defines a subset

APO = {Oti,j (S AGl" | Ui’j C Po}
and the set decomposes int two sets

AP0 = {a;; | Uiy € AP} AMO = {5 | U ;,Uj € A} (25)

Intersecting this decomposition with the set 7G yields a disjoint decom-
position

xGln = gMo 7V (26)
where 7V = {@n,.n141;, Qny+ng,ny+na+ls -« -5 ;. In turn any such decom-

position of 78 yields a well defined parabolic Py D Bo.

If we choose another maximal split torus 77 and a Borel subgroup B1 D
T: then this amounts to the choice of a second ordered basis v1,ve,...,vn
the v; are given up to a non zero scalar factor. We can find a g € Gl,(Q)
which maps e, ez, ..., e, to vi, v, ..., v,, and hence we can conjugate the
pair (Bo, To) to (B1,T1) and hence the parabolic subgroups containing By
into the parabolic subgroups containing B;. The conjugating element g
also identifies

iy, Bo.11.8, + X (To) — X7(Th)

and this identification does not depend on the choice of the conjugating
element g. This allows us to identify the two set of positive simple roots
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7n € X*(Ty) and 7 € X*(T). Eventually we can speak of the set 7 of
simple roots of Gl,,. Hence we have the fundamental fact

The Gl,,(Q) congugacy classes of parabolic subgroups P/Q are in one
to one correspondence with the subsets ' C 7 where 7' is the set of those
simple Toots o i+1 for which U; ;41 C Up, the unipotent radical of P. Then
number of elements in w is called the rank of P, the set 7 is called the type
of P.

We formulated this result for Gl,,/Q but we can replace Q by any field
k and Gl,, by any reductive group G/k. We have to define the system of
relative simple positive roots 7€ for any G/k (See [B-T]).

The group G/k itself is also a parabolic subgroup it corresponds to
7' = (). We decide that we do not like it and we consider only proper
parabolic subgroups P # G, i.e. ' # 0. We can define the Grassmann
variety Grl™'l of parabolic subgroups of type 7. This is a smooth projective
variety and Gr[“/]((@) is the set of parabolic subgroups of type 7.

There is always a unique minimal conjugacy class it corresponds to
m = 7% . (In our examples this minimal class is given by the maximal
flags, i.e. those flags where the dimension of the subspaces increases by
one at each step (until we reach a maximal isotropic space in the case of
an orthogonal group)). The (proper) maximal parabolic subgroups are
those for which 7 = {@;,i+1}, i.e. m consist of one element.

We go back to the special case Gl,/Q, the following results are true
in general but their formulation is just a little bit more involved.

For a maximal parabolic subgroup we consider the module Hom(P, G,)®
Q C X*(T)®Q. Of course it always contains the determinant. For a max-
imal parabolic subgroup P/Q of type {«,i+1} we have

Hom(P,Gm) ® Q = Qv ® Qdet

where ~; is

Yi(t) = (ﬁ t,) det(t) /™. (27)

These ~; are the dominant fundamental weights.

If our maximal parabolic subgroup is P/Q is defined as the stabi-
lizer of a flag 0 C W C V = Q", then the unipotent radical is U =
Hom(V/W,W). An element y € P(Q) induces linear maps yw, yv,w
and hence Ad(y) on U = Hom(V/W,W). We get a character vp(y) =
det(Ad(y)) € Hom(P,G,,) which is called the sum of the positive roots.
An easy computation shows that

Y =P (28)

We add points at inﬁpity to our symmetric space: We consider the
disjoint union Uy r, Grl™/(Q) and form the space

X=xu | a"(.
' #0
This is the analogue of or H U P'(Q) in our first example, it is now
more complicated because we have several Grassmannians, and we also

have maps
Ty e GT™N(Q) — CGrI™2N(Q) if 70 € .
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Our first aim is to put a topology on this space such that I'\ X becomes
a compact Hausdorff space.

In our first example we interpreted the Farey circle D (c, %) with

0 < ¢ < 1 as an open subset of points in H, which are close to the point
%, but far away from any other point in P*(Q).

The point of reduction theory is that for any parabolic P € Gr[”/](Q)
(here we also allow P = G) we define open sets

X" (e r(cy)) C X (29)

which depend on certain parameters cp,(cp)) The points in X7 (c_.,,7(c,/))
should be viewed as the points, which are ”very close” to the parabolic
subgroup P (controlled by ¢_, but "keep a certain distance” (controlled
by r(c,,)) to the parabolic subgroups Q 7 P. They are the analogues of
the Farey circles. We will see:

a)This system of open sets is invariant under the action Gl,(Z)

b) For P = G the set X (), ro) is relatively compact modulo the action
of Gl,(Z).

¢) Any subgroup I' C Gl,(Z) has only finitely many orbits on any
Grl"(Q)

d) For a suitable choice of the the parameters ¢, and r(c/,) we have :

X:UXP(QW/,TC;)IXG(Q,TO)U U XP(QWHT(QW/))

P P:Pproper
and if P and P; are conjugate and P # P then X* (¢, 7(c,./ ) )NX T (c,/,r(c,.)) =
0.

Let us assume that we have constructed such a system of open sets,
then c) and d) impliy that for a given type 7’ we have

N U xXPren) =T \X " () r(e,)
P:type(n/)=m
where {..., P;,...} = X(m,TI') is a set of representatives of Grl™] (Q) mod-
ulo the action of I and I'p, = I' N P;(Q).

This tells us that we have a covering

NX =n\x°0,r)u |J U TPAX (eprle)  (30)

7/ #0 PeX(n’,T")

The essential points of the philosophy of reduction theory are that
D\X%(®,70) is relatively compact and that we have an explicit descrip-
tion of the sets Tp\X¥(c.,r(c,.)) as fiber bundles with nil manifolds as
fiber over the locally symmetric spaces T'p\X M.

We give the definition of the sets X (c/,r(c,). We stick to the case
that G = Gl,/Q and I' C T'9 = Gl,(Z). is a (congruence) subgroup of
finite index. We defined the positive definite bilinear form (See 11)

~ 1
B(—)m = 7*3(—)74 D OrR X OR — R
2n
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and we have the identification gr AN Tf(R), and hence we get a euclidian
metric on the tangent space TE® at the identity e. This extends to a left
invariant Riemannian metric on G(R), we denote it by de,s*. Hence we
get a volume form d2= on any closed subgroup H(R) C G(R).

volyg

For any point « € X and any parabolic subgroup P/Q with unipotent
radical U/Q) we define

pp(x, P) = voly®* (I'o N U(R))\U(R)) (31)

For the Arakelow-Chevalley scheme (Gl,./Z,©0) See(1.4.2) we have
that Be,(E;,;) = 1. We have by construction

Ui (Z)\Ui;(R) = R/Z (32)
and under this identification E; ; maps to %. Hence we get

A%, (Uis(Z)\Ui;(R)) = 1

volUi 5

and from this we get immediately

Proposition 2.1. For any parabolic subgroup Py containing the torus Ty
we have
pp (@07 P) =1

Let (L,< , >;) be an Arakelow vector bundle and (Gl,, ©,) the cor-
responding Arakelow group scheme (of type Gl,, ) let

fz:(O):{(O)}:L()CLlCLQC...CLk:L:Zn

be a flag and P/Z the corresponding parabolic subgroup. Then we have
the homomorphism

i=k
rp: P/ Spec(Z) — M/Z = [ [ GI(L:/Li-1) (33)

with kernel Up/Z. The metric < , >, on L ® R yields an orthogonal

decomposition
i=k

LeR= @Li/Liﬂ ®R
i=1
and hence an Arakelow bundle structure (L;/L;—1,(0;);) for all ¢, and
therefore an Arakelow group scheme structure on M/Z.
Hence we get

Proposition 2.2. If (Gl,,©) is an Arakelow group scheme then © in-
duces an Arakelow group scheme structure O™ on any reductive quotient
M = P/U.

Definition : A pair (Gl,/Z, ©) is called stable (resp. semi stable) if
for any proper parabolic subgroup P/Q C Gl,/Q we have

pp(0,P)>1 (34)

In our example in (2.2.1) the stable points are those outside the union of
the closed Farey circles.

To get a better understanding of these numbers we have to do some
computations with roots and weights. Let us start from an Arakelow
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vector bundle (L = 7%, <, >) and let us assume that L is equipped with
a complete flag

Fo={0)}=LoCLi C---CLq-1 CLa (35)

which defines a Borel subgroup B/Z. The quotients (L;/Li—1,< , >;
) are Arakelow line bundles over Z or in a less sophisticated language
they are free modules of rank one and the generating vector &; has a
length \/< &;, € >;. This length is of course also the volume of (L;/L;—1®
R)/(Li/Li-1).

The unipotent radical U/Z C B/Z has a filtration {(0)} € Vi C
s Vam—1y/2=1 C Va(n—1),2 = U by normal subgroups, the successive
quotients are isomorphic to G, and the torus T'= B/U acts by a positive
root «; ; and this is a one to one correspondence between the subquotients
and the positive roots. Then it is clear: If v corresponds to (z,5) then

(Vo/Vis1,00) = (Li/Li—1,< , >i) ® (Lj/Lj-1,<, >;)"". (36)

Moreover the quotients (V,,/V,4+1,©,) depend only on the conformal
class of <, > and hence only on the resulting Cartan involution ©.

The unipotent subgroup U/Z contains the one parameter subgroup
Us,;/Z and this one parameter subgroup maps isomorphically to (Vi,/V,41).
Hence our construction defines the Arakelow line bundle (U; ;, O; ;).

If we now define na, ; (z, B) = vole, ;(U; ;(R)/U; ;(Z)) then it is clear
that

po(@.B) = [[ne,, . B) (37)

If P D B then its unipotent radical Up C U and we defined the set
AYP as the set of positive roots for which U; ; C Up. Then we have

pP(I’P) = H Na; ; (:L‘vB) (38)
(i,j)eAUP

We follow a convention and put 2pp = Z(MEAU}, a;,; so that pp is the
half sum of positive roots in in the unipotent radical. This character is
equal to vp in formula (28) and hence we know for any maximal parabolic
subgroup P;,

2P, = D @iy =1 (39)

i<ig,j2i0+1

Since the numbers nq, ; (z, B) are positive real numbers we can define
for any vy = inaiﬂ-.H S X*(T) R R

n—1
n~(z, B) = H Mo, ; (x, B)*". (40)
i=1
then we get
pP(3:7P) = pri,, (xzpiu)TV (41)
v=1
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where the ), > 0. This implies that pp(x, P) > 1 if all pp, (2, P;,) > 1.
If our parabolic subgroup P is not maximal, and P = P;, N P, --- N F;
then a simple computation shows that

VP =1y + T2y o e (42)
where the r; are strictly positive rational numbers. Then we get
pP(xv P) = Nyp ({Ij, Bl)

where B; C P is any Borel subgroup in P. The formula (42) implies

The Arakelow scheme (Gl,/Z,©) is stable if for all mazimal parabolic
subgroups pp, (0, P;) = n,, (0, P)" > 1.

We need a few more formulas relating roots and weights. For any
parabolic subgroup we have the division of the set of simple roots into

two parts
M U
T=n" Umn F.

This induces a splitting of the character module

X" (T)®Q= @ Qai,it1 ® @ Qi (43)

a; jenM a; jenVP

where ~; is the dominant fundamental weight attached to a,i+1 (See (27)).
If now i 41 € 7UP then we can project a; i4+1 to the second compo-
nent, this projection

P
i1 = Qiip1 + E Ci,v Oy 1 (44)

ay,ypr1emM
Here an elementary - but not completely trivial - computation shows that
civ >0 (45)

We now state the two fundamental theorems of reduction theory

Theorem 2.1. For any Arakelow group scheme (Gl,,®) we can find a
Borel subgroup B C Gl,, for which

Ny 41(0, B) > ?for alli=1,...,n—1

Theorem 2.2. For any Arakelow group scheme (Gl,,©) we can find a a
unique parabolic subgroup such that for all a; ;11 € wUP we have

0,P)<1

nap

and such that the reductive quotient (M, ™) is semi stable.

The first theorem is due to Minkowski, the second theorem is proved
in [Stu], [Gray].

This parabolic subgroup is called the canonical destabilizing group. If
(G, z) is semi stable then P = G. We denote it by P(z). This gives us a
dissection of X into the subsets

X = U XPl={z e X | P(z)=P} (46)

P: parabolic subgroups of G/Q
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Clearly 'yX[P] = X"P7 T 1f we divide by the group I' the we get

nx = J rs\xt” (47)

PePar

where Par (T') is a set of representatives of I' conjugacy classes of parabolic
subgroups of Gl,,/Q. This is a decomposition of I'\ X into a disjoint union
of subsets. The subset F\X[Gl”] is compact, it is the set of semi stable
pairs (z, Gly,), the subsets T'p\ X7) for P # G are in a certain sense ”open
in some directions” and ”closed in some other direction”. Therefore this
decomposition is not so useful for the study of cohomology groups. Do
remedy this we introduce larger subsets. For a real number 79,0 < ro < 1
(but close to 1) we define

X (r) = {z € X| n_p@ (x,Cla, P(x)) > 7, for all a € n/P@).
It contains the set of semi-stable (z, Gl,). Together with the first theorem

this has a consequence

Proposition 2.3. The quotient Q%" (r) = D\X % (r) is relatively com-
pact open subset of T\ X, It contains the set of semi-stable (x, Gl,).

If we choose r < 1 very close to one then the the elements in Q€' (r)
are only a "little bit unstable”.

We start from a parabolic subgroup P and choose vectorscp = (..., ¢aq, ...

where all 0 < ¢o < 1. Furthermore we choose a number r(cp) < 1 and
define

XP(QP,T(QP)) = {z| nor(z,P) < cq for all a € o’ M e XM(T(QP))}
(48)

Proposition 2.4. For a given choice of cp we can find a number r(cp) <
1 such that that for any v € XF(cp,7(cp)) the destabilizing parabolic
subgroup P(z) C P.

To see this we have to look at the canonical subgroup Q C (zar, M).
Its inverse image Q C P is a parabolic subgroup of Gl,. The reductive
quotient (x;, M) is stable. We want to show that @ is canonical parabolic
of (z,Gl,), i.e. we have to show that n_q (z,Gl,,Q) > 0foralla € 7Ve =
/P uaMUa,

For € 7MU& this is true by definition. For a € Y7 we have

af =a+ Z Qo3 and a® =a+ Z a;ﬁﬁ,

penM BEWM

where aq,5 > 0. The roots 8 € 7Y@ can be expressed in terms of the

/BQ:/BQ:

=B+ D> ajpp (49)
B’E‘ITM
and hence
a? =a" - Z ao. B + Z Cap' B (50)
ﬁEﬂ'Z\/LUQ ﬁ/Eﬂ'M
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The last sum is zero because a®,a’, 8% are orthogonal to the module
@' ZB . We choose a reduced Borel subgroup B C M, let B be its inverse
image in ). We get the relation

naa(@,Gly, Q) = nr(@,Glo, P) - [ nge(x,Gl,, @) #  (51)
5E7rM’UQ
Now n,r(z,Gln, P) < ca and nge(z,Gls, Q) > 7(cp). If we choose
r(cp) close enough to one then it follows that n,e(z,Gl,,Q) < 1 and
hence our claim.
We can choose a family of parameters

(. ey Cpyen )P: parabolic over Q; T(QP)

which only depend on the type of P and such that we get a covering

X = UXP(va T(QP)))

P
and hence

MNX = U Tp\X" (cp,r(cp))-
P

Here we have to start from P = Gl,, in this case 7Y7 = @ and we
choose a small positive number ro < 1 and put L(@) = ro. Now the rest
is clear. Therefore we now constructed the covering which satisfies the
necessary requirements. Since the ¢p,r(cp) only depend on the type of
P, we change the notation: ¢, — ¢/, r(cp) — r(c.).

We have a very explicit description of these sets T'p\X*(c,,7(c.))-
We consider the evaluation map

n™ TP\XT (L, 7(ch)) = TTaen (0, ca)

(52)
= (..,ngr(z,P),...)
Of course we also have the homomorphism
la™ | P(R) = {...,[a”],.. . Yacn (53)

and the multiplication by an element y € P(R) induces an isomor-
phisms of the fibers

()™ (o) = () M ) it o () - e = e
where the multiplication is taken componentwise. This identification de-
pends on the choice of y.
To get a canonical identification we use the geodesic action which
is introduced in the paper by Borel and Serre. We define an action of
A= (I]ocnr RZo) on X. This action depends on P and we denote it by

(a,z2) »aex

A point z € X defines a Cartan involution ©, and then the parabolic
subgroup P®= of G x R is opposite to P x R and P x RN P®* = M, is a
Levi factor, the projection P — M induces an isomorphism

¢zt M xR =3 M,.
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The character o™ induces an isomorphism
Sp i A= SZ(R)(O)

where Hence we S, (R)( is the connected component of the identity of
the center M,(R) N Sl,(R) and we put

aex =sz(a)x
We have to verify that this is indeed an action. This is clear because for
the Cartan-involution O, We obviously have

Pem — Peaoz

It is also clear that this action commutes with the action of P(R) on
X because

ysz(a)r = syz(a)yz for all y € P(R),z € X.

It follows from the construction that the semigroup A_ = {... ,a.,...}-
where 0 < a, < 1 - acts via the geodesic action on X (cx,r(c,,)) and
that for a € A_ we get an isomorphism

(™) (o) = (07 (acen).

This yields a decomposition as product

XP(ch,r(e)) = (™) (o) x H (0, ca]

a€cn’

where ¢ is an arbitrary poi/nt in the product.
Since we know that |a™ | is trivial on I'p and since the action of P
commutes with the geodesic action we conclude

PeA\X " (cr,7(e,)) = Te\m™) ™ (o) x [T (0,ca] (54)

a€en’

Let PY(R) = ker(a”’) then the fiber (n”/)fl(co) is a homogenous
space under P(l)(R) We have the projection map ppas : X — X™ where
XM is the space of Cartan involutions on the reductive quotient M. Hence
we get a map

p};’M :pp’wj X ’I’L[W/] ZX — XM X H (0700} (55)

aen’

On the product X x I1.c.(0,ca] the geodesic action only acts on the
second factor the map pp ), commutes with the geodesic action.

The group Up(R) acts simply transitively on the fibers of this projec-
tion, and hence

qp : TRAX T (h,m(cpr)) = T\ XM (r(cp)) x [ (0, cal (56)

acn’

is a fiber bundle with fiber isomorphic I'y\U(R). If we pick a point Z €
Ta\XM(r(cp)) x [Iacn(0,ca] then the identification of q;1M(~) with
I'v\U(R) depends on the choice of a point € X (ck,r(c,,)) which
maps to .
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(The next requires a little revision) This can now be compactified,
we embed it into

TA\X (e, r(ep) = T\ ) o) < [T [0, ¢4).
verg\m

We define

9r(cp) = TP\XP (¢, Q) \TP\X" (e, Q)
this is equal to

TPXP (e, r(ep) = TP\ (o) x O [ [0,ex))

verg\ T

where of course (][, e\« [0, ¢x]) C Il eng\x[0cx] is the subset where
at least one of the coordinates is equal to zero.

We form the disjoint union of of these boundaries over the 7 and set
of representatives of I' conjugacy classes, this is a compact space. Now
there is still a minor technical point. If we have two parabolic subgroups
Q C P then the intersection X* (cp,r(cp)NX? (cor7(cg)) # 0. If we now
have points

2 € OTP\XP (en, 7(ep),y € OTQ\X 2 (rr, 7(cp)

then we identify these two points if we have a sequence of points {n }nen
which lies in the intersection X (cx,7(cp)) N X9 (cpr,7(cps)) and which
converges to x in I'p\X%(cx,7r(cp) and to y in To\X®(cr,7(cps). A
careful inspection shows that this provides an equivalence relation ~, and
we define

am\x)=|J Orp\XP(err(cp)/ ~

7/, PEPar(T")
and the Borel-Serre compactification will be the manifold with corners

NX=T\(XU [J XP(c. r(cp)). (57)

P:Pproper
We define a ”tubular” neighborhood of the boundary we put
NOX) =T\ | XP(cu,r(cp)) (58)
P:Pproper
and then we define the ”punctured tubular” neighborhood as
NOX) =T\ |J X" r(cp)) =T\XNN(T\X) (59)
P:Pproper

Eventually we want to use the above covering as a tool to understand
cohomology (See ) But then it is also necessary to understand the inter-
sections

Xpl(c,mr(c ))ﬂ~~~ﬁXP"(cTrV,r(gm)) (60)

=mq

Our proposition 2.4 implies that for any point x in the intersection the
destabilizing parabolic subgroup P(z) C PiN---N P,. Hence we see that
the above intersection can only be non empty if @ = PAN---NP, is a
parabolic subgroup.
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Now we look at the product ], . RZ, here it seems to be helpful to
identify it - using the logarithm - with R%:

log : [] REo = R? (61)
aem

If G is one of our reductive groups Gl,,, M let X be the symmetric space of

Cartan involutions- If we have a point x € X and P a parabolic subgroup

such that P(z) C P then the number n.p(z, P) is defined and < 1. If

P(z) ¢ P then we put nap(z, P) = 1, so that nop(x, P) is always defined.
Hence we defined a function

N9(,Q): X 5 R%z— {...,—log(ngae(z,Q)),... Yacr = {.. .,Nang,Q)Q),...}aeﬂ,

a close look shows that the image is a convex set C'(¢) C R? because
it is an intersection of half spaces defined by hyperplanes. In the target
space we can project to the unipotent roots, i.e. we look at the projection

rQ:g:{...,ma,...}aeﬂ»—){.4.7:5&7...}(16”0(;,.

Then we can consider the composition rg o N9( , Q) and the image under
this composition is a cone Cy,, (¢) in Rilo.Then

X7 (eryym(eq,)) N N X (em, 7(ey,)) = XO(C(@) = Cug () (63)

is a fiber bundle over the base Cr, (¢).

3 Cohomology of arithmetic groups as
cohomology of sheaves on '\ X

We are now in the position to unify — for the special case of arithmetic
groups — the two cohomology theories from our chapter II and chapter
IV of the [book]. (Lectures on Algebraic Geometry I)

We start from a semi simple group G/Q and we choose an arithmetic
subgroup I' C G(Q). Let X = G(R)/K as before.

Let M is a I-module then we can attach a sheaf M onMI'\ X to it.
To do this we have to define the group of sections for any open subset
U C X. We start from the projection

7 X — D\X
and define
MU) = {f: 7 "(U) = M| f is locally constant f(yu) = vf(u)}.

This is clearly a sheaf. For any point € I'\ X we can find a neighborhood
Vz with the following property: If & € ﬁfl(m), then z has a contractible
I'z-invariant neighborhood Uz and U, = I'z\Uz. Then it is clear that

M(Vy) = M=,

Since z has a cofinal system of neighborhoods of this kind, we see that we
get an isomorphism

ji : M(Vy) = Mp——M"2,
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The last isomorphism depends on the choice of Z. If we are in the special
case that I" has no fixed points then we can cover I'\X by open sets U
so that M/U is isomorphic to a constant sheaf My;. These sheaves are
called local systems.

We will denote the functor, which sends M to M by

shr : Modr — Sr\ x,

occasionally we will write shr(M) instead of M, especially in situations
where we work with several discrete subgroups.

The motivations for these constructions are

1) The spaces I'\ X are interesting examples of so-called locally sym-
metric spaces (provided I' has no torsion). Hence they are of interest for
differential geometers and analysts.

2) If we have some understanding of the geometry of the quotient space
'\ X we gain some insight into the structure of I'. This will become clear
when we discuss the examples in ...x.y.z.

3) The cohomology groups H*®(I', M) are closely related and in many
cases even isomorphic to the sheaf cohomology groups H*(I'\ X, ./\;l) Again
the geometry provides tools to compute these cohomology groups in some
cases (see x.y.z.).

4) If the I'-module M is a C-vector space and obtained from a rational
representation of G/Q, then we can apply analytic tools to get insight (de
Rham cohomology, Hodge theory).

3.1 The relation between H*(I', M) and H*(I'\ X, M).

In general the spaces X will have several connected components. In this
section we assume that X is connected and I' fixes it.
Then it is clear that

HO(I\X, M) = M".

Hence we can write our functor M — MY from the category of I'-modules
to Ab as a composite of

shr : M — M and H° : M — H°(T'\ X, M).

We want to apply the method of spectral sequences. In a first step we
want to convince ourselves that shr sends injective I'-modules to acyclic
sheaves.

In [book], 2.2.4. we constructed for any I' module M the induced T’
-module Indlfl}M. This is the module of functions f : I' - Mand v, € I
acts on this module by (v1f)(7) = f(y71). We want to prove that for any
such induced module the sheaf shr( Indlfl}M). is acyclic.

We have a little
Lemma: Let us consider the projection w : X — I'\X and the constant
sheaf My on X. Then we have a canonical isomorphism of sheaves

T (M )— Ind};, M.
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Proof: This is rather obvious. Let us consider a small neighborhood
U, of a point x, such that 77 (U,) is the disjoint union of small con-
tractible neighborhoods Uz for & € m~!(z). Then for all points & we have

M (Uz) = M and
mMO)WU) = [ M.

zer—1(x)

On the other hand

—~

Indlfl}/\/l(Uw) = {h s (UL) — Ind?l}./\/t | h is locally constant h(yu) = fyh(u)}

For u € 7~ !(Us) the element h(u) itself is a map
f(u): T — M,

and (vh(u))(y1) = h(u)(y17y) (here 41 € T is the variable.)

Hence we know the function v — f(u) from 7= (U,) to Indlfl}/\/l if we
know its value f(u)(1) and this value can be prescribed on the connected
components of wil(Uz). On these connected components it is constant,
we may take its value at £ and hence

f— (..., f(@®Q),... )ieﬁ,l(z)
yields the desired isomorphism.
Now we get the acyclicity. We apply example d) in [book], 4.6.3 (sec-
tion on application of spectral sequences) to this situation. The fibre of 7
is a discrete space and hence

o~

me(My) = Indlfl}./\/l
and RY(m.) (M) = 0 for ¢ > 0. Therefore the spectral sequence yields

HY(X,My)=H'T\X,m.(My)) = H (F\X, Indfl}M> ,

and since X is a cell, we see that this is zero for ¢ > 1.
We apply this to the case that m = Z is an injective I'-module. Clearly
we can always embed Z — Indl{“l}I‘ But this is now a direct summand;

hence it follows from the acyclicity of Indgl}l' that also Z must be acyclic.
Hence we get a spectral sequence with Ey term

H?(T\X, RY(shr)(M)) = H"(T', M).
The edge homomorphism yields a homomorphism

H"(I'\X,shr(M)) - H"(T, M)
which in general is neither injective nor surjective.

Of course it is clear that the stalk R?(shr)(M), = HY(T'z, M). If we
make the assumption that the action of I' is faithful, this means that
any element ~ different from the identity acts a non trivially on X, then
R9(shr)(M) is supported on a lower dimensional closed subset.

If we have a commutative ring R in which the orders of all the finite
stabilizers I'z are invertible and if we only consider R—I" modules M, then
of course R(shr)(M) = 0 for ¢ > 0 and then the edge homomorphism
becomes an isomorphism.
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3.1.1 Functorial properties of cohomology

We investigate the functorial properties of the cohomology with respect
to the change of I'. If I" C T is a subgroup of finite index, then we have,
of course, the functor

Modr — Mody,

which is obtained by restricting the I‘—rpodule structure to I'V. Since for
any T-module M we have M" — M | we obtain a homomorphism

res : H' (I, M) — H'(I'", M).

We give an interpretation of this homomorphism in terms of sheaf coho-
mology. We have the diagram

X

T N\ 7T
m =7 :I\X — T\X

and a T-module M produces sheaves shr (M) = M and shp (M)=M’ on
I"\X and '\ X respectively. It is clear that we have a homomorphism

(M) — M.

To get this homomorphism we observe that for y1 € T'\X we have
T (M)y, = My, (y,), and this is

{f:n () = M| f(75) = /(@) for all y € T, § € 7" (w(y))}
and
My, ={fg: (x) " (y1) = M| J(Y'5) =~'f(@) for all y €T, 5 € (7') " (1)},
and if we pick a point § € (7') " (y1) C 7 (w1 (y1)) then
T (M)yy = MET1 C M, = Mo,
Hence we get (or define) our restriction homomorphism as (see I, ....)

HY(I'\X,shr(M)) — H'(I"\X, 7} (shr(M)) — H* (I'\ X, sh/ (M)).

There is also a map in the opposite direction.
Since the fibres of w1 are discrete we have

H (T'\X, M)—5H"(T'\ X, 71, (M)).

But the same reasoning as in the previous section yields an isomorphism

71, (M)— Indk M.

Hence we get an isomorphism

HY(I'\X, M)~ H"(T'\X, Indk, M)
which is well known as Shapiro’s lemma. But we have a I'-module homo-

morphism

e: Indb M — M
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which sends an f: ' — M, in f € Indk M to the sum
tr(f)=> v ()

where the ~; are representatives for the classes of I"\F. This homomor-
phism induces a map in the cohomology. We get a compositon

mie s H'(I'\X, M) — H'(T\X, M).
It is not difficult to check that

meom = [[:T'].

3.2 How to compute the cohomology groups H'(I'\ X, M)?
3.2.1 The Cech complex of an orbiconvex Covering

We return to the beginning of this note. We want to find a finite set
of points Zi1,...,&;,...,T, and open sets Uz,,Z; € Ug such that the
following conditions are true

a) For v € T we have WU@ N ~z~j = () unless we have vz, = &;, i.e.
v €Tl

b) The map |JUs, — T'\X is surjective

c) For all ¢ we have a I'z, equivariant homotopy contracting U}gl to Z;.

d) For any non empty finite intersection - - 'mei n-- 'mej N... we can
find a point Z; in this intersection which is fixed by - --N['z,N... Tz, =Tz,
and such that we have a I'z;, equivariant homotopy contracting Uz, to ;.

We know that the Czech complex

CHUM) =0 P MU,) 2 P MU, NUs,) - (64)

i€l i<j

computes the cohomology provided we know that the intersections U; =
Uz;y NUs;, NN Us,  are acyclic, i.e. H™ (Ui, M) =0 for m > 0.

For the implementation on a computer we need to resolve the definition
of the spaces of sections and the definition of the boundary maps. (By
this I mean that we have to write explicitly

M(Ui) = @ My

where 7 runs through an index set and M, are explicit subspaces of M
and then we have to write down certain explicit linear maps M, — M,.)

To be more precise: We have to write U; = UU, as the union of its
connected components, we have to choose a connected component Un in
71 (U,) for each value of 7, and then the evaluation of a section m €
M(Ui) on these [77, yields an isomorphism

Gevg, M(U;) = @MF”.

n
If we replace U, by yU, then we get for m € M(n(U,)) the equality

vevg, (m) = ev, g, (65)
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Especially the choice of the Z; yields an identification
evy,, MU,,) =5 M 2 (66)

this gives us the first term in the complex.

The computation of the second term is a little bit more delicate, the
discussion in Chap.II is not correct. The point is that the intersections
Uz; N Uz; may not be connected. To get these connected components we
have to find the elements v € I' for which

0y, N A(0,) £ 0 (67)

It is clear that this gives us a finite set G;; of elements v € T'/T';;. We
have a little lemma

Lemma 3.1. The images 7(Usg, ﬂfy(f]fj)) are the connected components
of Uz, NUsy;, two elements v, 1 give the same connected component if and
only if 1 € in'yfzj.

Let F;; C Gs,j be a set of representatives for the action of I'y;, on G ;
this set can be identified to the set of connected components. Of course
the set Ugz, N 'y(Ufj) may have a non trivial stabilizer T'; ; , and then we
get an identification

- A ~ i g,
Brer, €00, o, P MU NU;) = @ min (63)
YEF;
This is now an explicit (i.e. digestible for a computer) description of the

second term in our complex above. We still need to give the explicit
formula for dp in the complex

0 PMm= P P M (69)

icl i<j yEF; ;

Looking at the definition it is clear that this map is given by

(cooymiy oo my, )= (cooymg —ymy, . ) (70)

Here we have to observe that v € T'/ sz but this does not matter since

mj; € M"%i . So we have an explicit description of the beginning of the
Cech complex.

A little reasoning shows of course that a different choice Fj; of the
representatives provides an isomorphic complex.

Now it is clear, how to proceed. At first we have to understand the
combinatorics of the covering { = {Uy, }icr.
We consider sets

Giz {1: (67717"'5711”7’2 El-‘/in;ﬁvio mﬂ’le@ mrquiq 7&0}

on these sets we have an action of I'y, by multiplication from the left.
Again let F; be a system of representatives modulo the action of I'y,.
We abbreviate

Uiy = Uso N+ N 7iUs, N 7qUs,,

let I'; 5 be the stabilizer of [71-,1.
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The images 7(U;,) under the projection map m are the connected
components 71'([71-,1) =Uiy CUi =Us;y N+ NUsz;, N...Us;, . On the

other hand each set Ui,l is a connected component in Wﬁl(Ui,l). We get
an isomorphism

@ evg, M(U;) = /\;I(Ugci0 N NUs;, N...Us,y,) = M,
YEF; - YEF;

(71)
We need to give explicit formulas for the boundary maps
~ d ~
P mw) = P M.
i€l iera+1

Abstractly this boundary operator is defined as follows: We look at pairs
ie 17 i) e [ where i) is obtained from i by deleting the v-th entry.
Then we have U; C Uy and from this we get the resulting restriction
homomorphism R, ; : ./\;l(Ul-(u)) — M(U;). Then

q
dq = Z Z(_l)uRi(V)i‘
i v=0

and hence we have to give an explicit description of R, ; with respect
to the isomorphism in the diagram (71). S

We pick two connected components W(Ni,l) C U; and 71'(01-(1/)’7/ -
Uj(vy, then we know that B

171-,1 - Ul-(u)yl, <= 31,4 €I such that n%VwL =y, for all p#v

and then the restriction of R,.) ; to these two components is given by

~ - RGNV (V)
MU ) " Ma
\ R@(V),i L My (72)
B B ev[}bl .
M(m(Uiy)) — M i

Here the two horizontal maps are isomorphisms, we observe that 7., ./ is
unique up to an element in I';) ., and hence the vertical arrow n, ., is
well defined.

Now we can write down the complex explicitly.

v

We will show that it follows from reduction theory that

Theorem 3.1. We can construct a finite covering T\X = UiceUz, = U
by orbiconvezx sets.

This of course implies the following theorem of Raghunathan

Theorem 3.2. If R is any commutative ring with identity and if M is a
finitely generated R — I'— module then the total cohomology

P H(1\X, shr(M))

geN

is a finitely generated R-module
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2.1.3 Special examples in low dimensions.

We consider the group I' = Slz(Z)/{£Id} and its action on the upper
half planes H. We want to investigate the cohomology groups H*(I'\ H, M)
for any module I'-module M. The special points i and p in I'\H are the
only points which are fixed points. We construct two nice orbiconvex
neighborhoods of these two points, which will cover I'\H. We drop the no-
tation with the tilde and consider 4, p as points in the upper half plane and
as points on I'\H. The stabilizers I';, resp. I', are cyclic and generated

by the two elements
0 1 1 -1
s_<71 O),R_(1 0) (RS)
respectively.

Now we consider ¢. In the fundamental domain we consider a strip
Vi={z]—-1/24 € < R(z) < 1/2 — €}. To this strip we apply the matrix
? _01 , we take the union V; U (1) _01
neighborhood U; of i. Let us look at p. In the fundament domain F we
consider the subset V,” = {z € Fle < R(z) < 1/2} We should also
consider we consider the corresponding subset V;r containing p?, (Here
we have an ambiguity, we have two points in the fundamental domain
lying over the fixed point p.) we translate this set by the translation by
one, then we get the the set V, = V,~ U (V' + 1). To this set we apply
the elements the stabiliser and the union of the images under the action
of the stabiliser of p we get a nice orbiconvex neighborhood U,. If we take
our € > 0 small enough then clearly

Vi and we get our orbiconvex

MNH=U;UU, (Cov)

and we get a resolution of a sheaf shr(M) = M

0= M—=>M;x M, = M;,—0
and hence the cohomology groups are given by the cohomology of the
complex

0— Mo M 5 M—o0.

Then H°(D\H, M) = M" = M"i N M"». Since this is true for any T
module we easily conclude that I' is generated by I';,T',.
We get

HY(SL(Z)\H, Mz) = MM & M5,
Vp Ty : H'(Slo(Z)\H, Mz) — H"(Slo(Z)\H, Mz).

and the cohomology vanishes in higher degrees.

Exercise 1: Let I' C T = Slo(Z)/+x1d be a subgroup of finite index.
Prove
ii) We have (Shapiros lemma)

—~

HY(I"\H,Z) = H'T'\H, IndL Z).
These cohomology groups are free of rank

[:T]—n;—mn,+1

49



where n; (resp. n,) is the number of orbits of T; (resp. T',) on T'\I'. If T’
is torsion free then

—~

rank(H'T\H, Ind},Z) = é[F T+ 1
The Euler-characteristic of I"\H is £[I" : I"].

Exercise 2:Let M,, be the module of homogenous polynomials in the
two variables X,Y and coefficients in Z. We have an action of I' = Sl (Z)
on this module by

(Z Z) P(X,Y) = P(aX + c,bX + dY).

these modules define a sheaf M,, on T\H, and we want to investigate their
cohomology groups.

Prove:

i) If n is odd, then M,, = 0.

Hence we assume n > 2 and n even from now on.

i) H°(T\H, M,,) = 0.

iii) If we tensorize by Q , then H'(T\H, M,, ® Q) is a vector space of
rankn7172[%] 72[%].

Hint: Diagonalize the action of T'; and T', on M, ® Q separately and
look at the eigenspaces. To say it differently: Over Q we can conjugate the

. 0 -1 1 1Y). . . t 0
matrices (1 0 ) (_1 0) into the diagonal maximal torus (0 til) ,
and then look at the decomposition of M,, into weight spaces.

iv) Investigate the torsion in H*(T\H, M,). (Start from the sequence
00— My = My = My /tM; —0.)

v) Now we consider T' = Sl3(Z). The two matrices S = <(1) _01> and

R= (_11 é) are generators of the stabilisers of i and p respectively.

We take for our module M the cyclic group 7./12Z,consider the spectral
sequence

HP(D\H, R (shr)(Z/127Z).

Show that H°(T\H, R'(shr)(Z/12Z) = 7Z./12Z. Show that the differen-
tial
H°(T\H, R (shr)(Z/12Z) — H*(T'\H, shr(Z/127Z)

vanishes and conclude

HY(T',Z/12Z) = Z/12Z.

3.2.2 The group I' = Sly(Z[i])

A similar computation can be made up to compute the cohomology in the
case of I' = Gla(©). We have the three special points 12,213 and za3
(See(2.1.2), and we choose closed sets A;; containing these points which
just leave out a small open strip containing the opposite face. If /L-j is a
component of the inverse image of A;; in Hs, then

Ay; = Dij\ Ay
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The intersections A;; N Ay j = A, are closed sets. They are of the form
A, =T,\A,

where I', is the stabilizer of the arc joining z;; and x;/ ;. The restrictions
of our sheaves M to the A;; and A, and to A = A2 N A3 N A3 are
acyclic and hence we get a complex
0—>./\;l—>@./\;l,4ij —>@MAV — Ms—0
(4,9)

where the ./\;l? are the restrictions of M to ??? and then extended to the
space again.

Hence we find that our cohomology groups are equal to the cohomology
groups of the complex

r;; d* r, d?
0— PMii S PHM™T S M—0
(i:9) v
with boundary maps
1
d’ :(mi2,m13,ma23) —> (M12 — M3, Mag — Mi2,M13 — M23)

2
d :(ml,mg,mg) — m1 + mo + ms.

If we take for instance M = 7 then we get H*(T\H3,Z) = Z and
H'(I'\H3,Z) = 0 for i > 0 as it should be.

3.2.3 Homology, Cohomology with compact support and
Poincaré duality.

Here we have to use the theory of compactifications. For any locally
symmetric space we can embed I'\ X into its Borel-Serre compactification

i :T\X — I\ X ps,

and this process was explained in detail for our low dimensional examples.
If we have a sheaf M on I'\ X we can extend it to the compactification by
using the functor i.. We get a sheaf

ix(M) on T\Xgs.

It will be shown later that for this particular compactification the functor
ix is exact. This is not true for the Baily-Borel compactification. -

Our construction M — M can be extended to the action of I" on X ps
and

ix(M) = result of the construction M — M on '\ X ps.
Hence we get from our general results in Chapter I, ..... that
H*(D\X, M) = H*(T\X g3, ix (M)).

But we have another construction of extending the sheaf M from nNx
to Ij\X BS. Blis is the so called extension by Zero. We define the sheaf
11(M) on T\ X s by giving the stalks. For z € '\ X gs we put
- Ao if N\Xx
sty = {0 TETVE
0 if z¢gI\X
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It is clear that 4 is an exact functor sending sheaves on I'\ X to sheaves
on '\ X gg, and we have for an arbitrary sheaf

HO(M\X s, (F)) = HA(T\X, F)

where H?(T'\ X, F) is the abelian group of those sections s € H*(T'\ X, F)
for which the support

supp (s) = {z | s # 0}

is compact.
Hence we define the cohomology with compact supports as

HY(D\X, F) = HY(T\X s, i1 F)).

If M is a sheaf on T'\ X which is obtained from a T-module M, then it is
quite clear that ~
HJ(T\X, M) =0,

provided our quotient I'\ X is not compact.

The cohomology with compact supports is actually related to the ho-
mology of the group: I want to indicate that we have a natural isomor-
phism )

Hy(T, M) ~ HITH(D\X, M)

under the assumption that X is connected and the orders of the stabilizers
are invertible in R.

This is the analogous statement to the theorem .... which we discussed
when we introduced cohomology.

Our starting point is the fact that the projective I'-modules have anal-
ogous vanishing properties as the induced modules.

Lemma: Let us assume that I' acts on the connected symmetric space
X. If P if a projective module then

0 if i#dimX
H(T\X, P) =
Pr if i=dimX.

Let us believe this lemma. Then it is quite clear that
H;(T,M) ~ H Y\ X, P),

because both sides can be computed from a projective resolution.
We have still another description of the homology.
We form the singular chain complex

— Ci(X) = Ci—1(X) = ... = Co(X) — 0.

This is a complex of I'-modules, and we can form the tensor product with
M. We get a complex of I'-modules

— Ci(X) M — Cici(X) @M — ...
We define the chain complex

C' (F\X7 M):
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simply a resulting complex if we take the I'-coinvariants.
But we may choose for our module M simply the group ring. Then
we have clearly

(Ce(X) @ Z[I)r =~ Co(X),

and hence we have, since X is a cell, that

H/(T\X,Z[T)) =0  for i>0.

On the other hand we have
Ho(I\X, M) = Mr.
This follows directly from looking at the complex
(C1(X) @ M)r — (Co(X) @ M)r.
First of all we observe that 0-cycles
1 @m —zo ®@m

are boundaries since X is pathwise connected. On the other hand we have
that
To ®m — yzo @ ym € Co(X) @ M

becomes zero if we go to the coinvatiants and this implies the assertion.
If we have in addition that the orders of the stabilizers are invertible
in R than it is clear that a short exact sequence of R-I'-modules

0—M —M-—M'—0
leads to an exact sequence of complexes
0 — Co(M\X, M) — Co(T\X, M) — Co(I\X, M") — 0,
and hence to a long exact cohomology sequence
H,T\X,M') — H;T\X,M) — H;(I\X,M") — H;i_1(I'\X, M").
Now it is clear that

H;(T', M) ~ H;(T\X, M) ~ HI"{(T'\ X, M).

3.2.4 The fundamental exact sequence

By construction we have the exact sequence
0 = i1 (M) = iu(M) = (M) /i (M) = 0

of sheaves and clearly i.(M)/ii(M) is simply the restriction of i.(M)
to the boundary extended by zero to the entire space. This yields the
fundamental exact sequence

— H" NI\ X), M) - H(T\X, M) — HY(T'\X, M) — H*(§(I'\X), M) — ...

We define the “inner cohomology” HI(I'\ X, M) as the image of HI(I'\ X, M) —
HY(T\X, M). ( This a little bit misleading because these groups are not
honest cohomology groups. An exact sequence of sheaves 0 — M’ —
M — M"” — 0 does not provide an exact sequence for the H, groups. )
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We want to have a slightly different look at this sequence. We recall
the covering (See 58,59)

I\X = I\X(HUN (T\X) = T\ X(r) U U Te\X" (e r(cy)

(73)

where the union runs over I' conjugacy classes of parabolic subgroups

over Q and NV (I'\X) is a punctured tubular neighborhood of oo, i.e. the
boundary of the Borel-Serre compactification.

It is well known (See for instance [book] vol I , 4.5 ) that from a
covering I\ X = (J, Vi we get a Czech complex and a spectral sequence
with EP?- term

I #wvem (74)

i={i0,i1...,ip}

where V; = V;; N---N Vip. The boundary in the Czech complex gives us
the differential

e I HU(VAM) - I =M (15

i={i0,i1..,ip} j={jod1--dp+1}

Here we work with the alternating Czech complex, we also assume that
we have an ordering on the set of simple positive roots. If such a Vj is
non empty then it of the form T'g\ X% (C(2)).

We return to the diagram (63), on the left hand side we can divide
by I'g. We have the map which maps a Cartan involution on X to a
Cartan-involution on M. Then we get a diagram

. x%9cE) - XM(r) x Cu, (2)
1 pg L pm (76)
FiT\X®(C@®) — Ta\XY(r) x Cuy (@)

where the bottom line is a fibration. To describe the fiber in a point
& we pick a point £ € (pm o f7)7'. Then Ug(R) acts simply transi-
tively on the fiber (f1)™*(fT(z)) hence Ug(R) = (f7)~*(f(z)). Then
pq - Ug(R) — Ty, \Uq(R) yields the identification iy : T'v, \Ug(R) —
f7H(&). If we replace = by v& = 1 with v € Ty, then we get iz, =
Ad(y) o iz where for u € Uy, Ad(7)(u) = yuy~" where for u € Ug(R),
under this action of I'q.

We have the spectral sequence

HP(Ca\X " (r), R fo(M)) = H'TI(TQ\X?(Cley, - -+, ¢x,)), M)

and clearly R f. (M) is a locally constant sheaf. This sheaf is easy to
determine. Under the above identification we get an isomorphism

i H* (Tug \Ua(R), K1) < R*(M);.

The adjoint action Ad : Tq — Aut(Tv,\Ug(R)) induces an action

of T'q on the cohomology H*((I'v,\Ug(R)), M). Since the functor co-
homology is the derived functor of taking I'y, invariants it follows that
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the restriction of Ad to I'y, acts trivially on H*(T'v,\Ug(R), M). Con-
sequently H*((Tv,\Ug (R)), M) is a T'py— module. We get

—~

R* f.(M) = H*(Tu, \Uq(R), M)

and our spectral sequence becomes

HP(Ca\X ™ (r), H*((Tug \Uo(R)), M)) = H"*(To\X?(C(2)), M)

We can take the composition rg o f. Then it is obvious that for any
point co € Cy,, (€)) the restriction map

H*(X?(C(2), M) = H*(X%((rg o f) " (co), M) (77)

is an isomorphism. On the other hand it is clear that we may vary our
parameter ¢ we may assume that the Cy,, (€) go to infinity. Then we may
enlarge the parameter r without violating the assumptions in proposition
2.3. Hence we get that the inclusion o\ X9 (C(g)) C T\ X induces an
isomorphism in cohomology

H*(TQ\X?(C(2)), M) = H*(To\X, M) (78)

We choose a total ordering on the set of I" conjugacy classes of parabolic
subgroups, i.e. we enumerate them by a finite interval of integers [1, N].
We also enumerate the set of simple roots {ai,...,aq) in our special
case o; = @ +1. For any conjugacy class [P] we define the type of P to
be t(P) = nVF the subset of unipotent simple roots and d(P) = #xU?
the cardinality of this set. If P; ,..., P;, are maximal, i1 < i2--- < ip
and if P;;N,---N P;. = @ is a parabolic subgroup then we require that
t(P) < - < t(P,).

The indexing set Par(T") of our covering is the I' conjugacy classes of
parabolic subgroups over Q. If we have a finite set [Pi,], [Pi],- -, [Pi,]
of conjugacy classes then we say [Q] € [Pi], [P;,], ..., [P:,] if we can find
representatives P;, € [P;,] and Q' € [Q] such that Q" = P/ N...P; .

Hence we see that the E7'? complex in our spectral sequence (75) is
given by

[Ta" T \x% @), M =T] TI H'TX"(CE@)M)
i i<3 [REQ:1N(Q;]
(79)

this obtained from our covering (59). Now we replace our covering by a
simplicial space, i.e. we consider the diagram of maps between spaces

P1 —
H

Par:= [[To,\X o2 II II re\x— (80)

i i<Jj [R]€[Q:]NQ;] —

this yields a spectral sequence with E}’? term
q ~ . a0 q R .~ FIeY]
[[EH T \X, M) =T] I HTX",M) = (81)
i i<j [RIE[P;]N[P;]

Our covering also yields a simplicial space which is a subspace of ( 80) we
get a map from (75) to (81 ) and this map is an isomorphism of complexes.
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We replace Par by another simplicial complex

P1 —
<_
Parmay := H Fp\X ,, H Lo\ X+— (82)
[Pl:d(P)=1 [Ql:d(Q)=2 A

We have an obvious projection II : Bar — Parmar which induces a
homomorphism

Hi Hq(FQi\XvM) — Hi<j H[R]e[Pi]n[Pj]Hq(FR\XRaM)
) )
N (0) N
[ipjacpy=1 H*(LP\X, M) i [igar) =2 HI(CR\X T, M)

(83)

and an easy argument in homological algebra shows that this induces an
isomorphism in cohomology or in other words an isomorphism of the E%?
terms of the two spectral sequences.

We had the covering

N = | eX (e r(e) (84)

P:Pproper

which gives us the spectral sequence converging to H '( (D\X), M) with

EP= P . HY(TQ\X?(cpir(cyr))  (85)

i0<i1 < <ip [QIE[P;yIN[P;, I[Py,

Our covering of./(/' (T'\X) gives us a simplicial space QOU(/V)F\X) and
we have maps

Qon(ﬂ/ (M\X)) < Par — Parmar. (86)

We saw that the resulting maps induced an isomorphism in the E2'? terms
of the spectral sequences. Hence we see that Parmar yields a spectral
sequence

B = P H(TAXM) = HPP(N (D\X), M) (87)
[P:d(P)=p+1

At this point we want to raise an interesting question
Does this spectral sequence degenerate at EY? level?

The author of this book is hoping that the answer to this question is
no! And this is so for interesting reasons! We come back to this question
when we discuss the Eisenstein cohomology.

The complement of N (T\X) is a relatively compact open set V C
'\ X, this map contains the stable points. We define M}, = iy,;(M) then
we get an exact sequence

0— My = M— M/Mi, -0 (88)
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and M /M, is obviously the extension of the restriction of M to A" (I'\ X)
and the extended by zero to I'\X. We claim (easy proof later) that

H(D\X, M) = H*(T'\ X, M}/) (89)

and this gives us again the fundamental exact sequence

HYN (T\X), M) — HY(T\X, M},) = HY(D\X, M) — HYN T\X), M) —
(90)

3.2.5 How to compute the cohomology groups HI(I'\ X, /\;l)

We apply the considerations in 4.8 from the [book]. Again we cover I'\X
by orbiconvex open neighborhoods Uy,, and now we define

M, = (ighis(M).

These sheaves have properties, which are dual to those of the sheaves
Mz Itz = (21,...,2s) and if we add another point &’ = (1, ..., Ts, Tsy1)
then we have the restriction M, — Mz/ , which were used to construct
the Cech resolution.

Now let d = dim(X). For the ! sheaves we get (See [book] , loc. cit.)
get a morphism M), — M. For = (z1,...,2,) we define the degree
d(z) = d+ 1 — s. Then we construct the Cech-coresolution (See [book],
48.3)

= [ Me=- = J] Mo, = [[ Mz, = ir(M) = 0.

x:d(z)=q (zi,25) z;

Now we have a dual statement to the proposition with label acyc
Proposition: (acyc!)If d = dim(X) then

Mr, q=d

Hq(UivM'z)_{O q7éd

Hence the above complex of sheaves provides a complex of modules
Cr (M) :
= [l H'Uw M) == [ H'Usin; M, o)) = [[H Usis M3,) = 0.

z:d(z)=q (zg,24) z;

Now it is clear that

H*(D\X,i1(M)) = H(D\X, M) = H(C (4, M)).
Now let us assume that M is a finitely generated module over some com-

mutative noetherian ring R with identity. Then clearly all our cohomology
groups will be R-modules.

Our Theorem A above implies

Theorem (Raghunathan) Under our general assumptions all the co-
homology groups HY(T'\ X, M), HY(T'\ X, M), H{(T\ X, M), H(d("'\ X ), M)
are finitely generated R modules.
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3.2.6 The case I' = S1,(Z)

In the following M can be any I'-module. We investigate the fundamental
exact sequence for this special group.

Of course we start again from our covering I'\H = U; U U,.. The coho-
mology with compact supports is the cohomology of the complex

0— H>(U;NU,, M} ) = H*(Ui ,M}) ® H*(Uy, M),) — 0.

Now we have H?(U;\U,, M} ) = M, H*(U; , M}) = Mr, = M/(Id—
S)M, H*(U, ,M.,) = Mr, = M/(Id—R)M and hence we get the complex

0—=M— Mr, ®Mr, =0

and from this we obtain

HY(T\H, 4 (M)) = ker(M — (M/(Id — S)M & M/(Id — R)M))
and
H°(T\H, i1(M)) = 0, H*(P'\H, i;(M)) = Mr

We discuss the fundamental exact sequence in this special case. To do
this we have to understand the cohomology of the boundary H*®(d(T'\H, M).
We discussed the Borel-Serre compactification and saw that in this case
we get this compactification if we add a circle at infinity to our picture of
the quotient. But we may as well cut the cylinder at any level ¢ > 1, i.e.
we consider the level line H(c) = {z = z + ic|z € H} and divide this level
line by the action of the translation group

ro={(} "Vmezy=((¢ ") nezec=+1}/{+1d}.
0 1 0 €
But this quotient is homotopy equivalent to the cylinder

FU\H ~ FU\H(C).

We apply our general consideration on cohomology of arithmetic groups
to this situation and find

H*(9(T\H), M) = H*(Tv\H, shr, (M)) = H*(Cu\H(c), shr, (M)).
This cohomology is easy to compute. The group 't is generated by

the element T = (1

1 .
0 1) . It is rather clear that

H°(Ty\H, shr,, (M)) = M"U H' (T'y\H, shr,, (M)) = Mr, = M/(Id=T)M.
Then our fundamental exact sequence becomes
0— M' = MV o ker(M — (M/Id—S)MaM/1d—R)M)) -5 M/ (M i@MTr) 25
M/(Id - T)M — Mpr — 0
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Now it may come as a little surprise to the readers, that we can for-
mulate a little exercise which is not entirely trivial

Exercise: Write down explicitly all the arrows in the above fundamental
sequence

We give the answer without proof. I change notation slightly and work

with the matrices
0 -1 1 -1
s=(1 )= )

and we have the relation
1 1
RS =T = (O 1)

Then I's =< § >,T') =< R > . The map
MM @ M) 5 M/(1d — T)M
is given by
m—=m—Sm
We have to show that this map is well defined: If m € M<5> then m s 0.
If m € M<F> then

m—Sm=m—SR ‘m=m—Tm

and this is zero in M/(Id — T)M.
The map

ker(M — (M/(Id — S)M & M/(Id — R)M)) = M/(M=5> & M<F>)

is a little bit delicate. We pick an element m in the kernel, hence we can
write it as
m=my — Smy = mo — Rflmg

and send m — m1 — ma (Here we have to use the orientation). If we
modify mi,m2 to m} = m1 + n1,m5 = ma + na then mi — mj gives the
same element in M/(M<5> @ M<F>),

This answer can only be right if mi — ma goes to zero under the map
r, i.e. we have to show that

mi —mz — S(m1 — mg) S (Id — T)M
We compute
mi—mao—S(mi—ms) = m—mo+Smy = m—maot+R 'ma—R ' ma+Sms =

—R 'ma + Smy = =T 'Sma + Smy € (Id — T)M

Finally we claim that the map M<T> — ker(M — (M/(Id — S)M &
M/(Id— R)M)) is given by m + m—Sm =m— R T 'm = m—R 'm.

Final remark: The reader may get the impression that it is easy
to compute the cohomology, but the contrary is true. In the case I' =
Sl2(Z)/£1d we found formulae for the rank of the cohomology groups, this
seems to be a satisfactory answer, but it is not. The point is that in the
next section we will introduce the Hecke operators, these Hecke operators
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form an algebra of endomorphisms of the cohomology groups. It is a
fundamental question (see further down) to understand the cohomology
as a module under the action of this Hecke algebra. It is difficult to write
down the effect of a Hecke operator on a module like M /(M"i + MT#).
We will discuss an explicit example in (4.3.2.)

The situation is even worse if we consider the case I' = Gla(Z[z])/{(:"1d)}.
First of all we notice that it is not possible to read off the dimensions of the
individual groups H*(I'\H3, M) from the complex in 3.2.2 ) . Of course
we can compute them in any given case, but our method does not give
any kind of theoretical insight.

We will see later that we can prove vanishing theorems H*(I'\Hs, Mc)
for certain coefficient systems Mec by transcendental means. These results
can not be obtained by our elementary methods.

4  Hecke Operators

4.1 The construction of Hecke operators

We mentioned already that the cohomology and homology groups of an
arithmetic group has an additional structure. We have the action of the
so-called Hecke algebra. The following description of the Hecke algebra
is somewhat provisorial, we get a richer Hecke algebra, if we work in the
adelic context (See Chap III). But the desription here is more intuitive.

We start from the arithmetic group I' C G(Q) and an arbitrary I'-
module M. The module M is also a module over a ring R which in the
beginning may be simply Z.

At this point it is better to have a notation for this action

I'x M — M, (y,m) — r(y)(m)

where now r: I' = Aut(M).

We assume that M is a module over a ring R in which we can invert
the orders of the stabilizers of fixed points of elements v € T'.

If we have a subgroup I C T of finite index, then we constructed maps

e p JH(D\X, M) — H*(I"\ X, M)
70 e (H(T\X, M) — H*(T'\ X, M)

(see 2.1.1).
We pick an element a € G(Q). The group

M) =a 'TanT

is a subgroup of finite index in I" and the conjugation by « induces an
isomorphism
inn(a) : (a™") — D(a).

We get an isomorphism
jla) : T(a”N\X — T(a)\X

which is induced by the map x — ax on the space X. This yields an
isomorphism of cohomology groups

j(@)*  H*(D(a™\X, M) — H*(D(@)\X, j(a)(M)).
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We compute the sheaf j(@)«(M). For a point z € I'(a)\X we have

J(@)x(M)z = My where j(a)(z') = X. We have the projection mp,-1)
X = T(a"H\X, and the definition yields

(M), = {s : ﬂlf(la,l)(x') — M | s(ym) = ys(m) for all v € F(ofl}

The map z —+ az provides an identification ﬂ;(la,1>(x') " 7r1?(1a>($)
in in terms of this fibre we can describe the stalk at x as

G(@)«(M)y = {s : Wlf(la)(x) — M | s(yv) = o "yas(v) for all v € F(a)} .

Hence we see: We may use a to define a new I'(a)-module M(®): The
underlying abelian group of M@ is M but the operation of I'(«) is given
by

(v,m) — (& 'ya)m = 5 %4 m.

Then we have obviously that the sheaf j(a).(M) is equal to M®. Hence
we see that every element

Uq € Homp(a) (M () s ./\/l)

defines a map ia : j()«(M) — M. Hence we get a diagram

H* (D" WX A1) 8 B (D()\X, j(0).(5) ™5 H*(D(0)\X(91)

LT. IW. (92)

H*(D\X, M) Heua) H*(T\ X, MJ93)

where the operator on the bottom line is the Hecke operator. It depends
on two data, namely, the element o € G(Q) and the choice of us €
Homp () (M), M).

It is not difficult to show that the operator T'(e, us) depends only on
the double coset I o I', provided we adapt the choice of uy. To be more
precise if

Qi = y1ay2 7,72 €T,

then we have an obious bijection
‘1371,72 . Homp(a)(M(a),M) — Homp(al)(/\/lal),/\/i)

which is given by
Dy vz (Ua) = Uay = Y1UTY2-

The reader will verify without difficulties that
(o, ua) = T(on, ta, ).

(Verify this for H® and then use some kind of resolution)

There is a case where we have also a rather obvious choice of u,. This
is the case if R C Q and our '-module M is a R-lattice in the Q-vector
space Mg, where Mg is a rational G(Q) module, i.e. is obtained from a
rational (finite dimensional) representation of our group G/Q.

Then we have the canonical choice of an

Ua,Q : Mg‘) — Mo,
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which is given by m — am. But this morphism will not necessarily map
the lattice M into M. It is also bad if uag maps M into bM,
where b is an integer > 1. But then we can find a unique rational number
d(c) > 0 for which

d(@)tag : M — M and d(a)-uag(M'™) ¢ bM for any integer b > 1.

Then uq = d(a)-uq,g is called the normalized choice. The canonical choice
defines endomorphisms on the rational cohomology, i.e. the cohomology
with coefficients in Mg whereas the normalized Hecke operators induce
endomorphism of the integral cohomology.

We see that we can construct many endomorphisms T'(cv, uq ) : H*(T\X, M) —

H*(T'\ X, M). These endomorphisms will generate an algebra
Hp o C End(H*(T\X, M)).

This is the so-called Hecke algebra. We can also define endomorphisms
T(c,uq) on the cohomology with compact supports, on the inner coho-
mology and the cohomology of the boundary. Since the operators are
compatible with all the arrows in the fundamental exact sequence we de-
note them by the same symbol.

We now assume that M is a finitely generated R module where R is the
ring of integers in an algebraic number field K/Q. Then our cohomology
groups HY(T'\ X, M) are finitely generated R-modules with an action of
the algebra H on it. The Hecke algebra also acts on the inner cohomology
H{(T\ X, M) If we tensorize our coefficient system with any number field
L D K , then we write M, = M ® L.

We state without proof :

Theorem 4.1. Let M be a module obtained by a rational representation.
For any extension L/K/Q the Hr ® L module H(I'\X, ML) is semi
simple, i.e. a direct sum of irreducible Hr modules.

The proof of this theorem will be discussed in Chap.3, it requires
some input from analysis. We tensorize our coefficient system by C, i.e.
we consider M, ®r C = Mc. Let us assume that I' is torsion free. First
of all start from the well known fact, that the cohomology H*(I'\ X, Mc)
can be computed from the de-Rham-complex

H*(T\X, Mc) = H*(Q* ® Mc(T'\X)).

We introduces some specific positive definite hermitian form on Mc
and this allows us to define a hermitian scalar product between two Mc¢c
-valued p-forms

< Wi, w2 >=/ w1 N *wa,
r\x

provided one of the forms is compactly supported.

This will give us a positive definite scalar product on HP (T'\H, M, c),
In the classical case of Gl this is the Peterson scalar product. Finally we
show that Hr is self adjoint with respect to this scalar product, and then
semi-simplicity follows from the standard argument.
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4.1.1 Commuting relations

We want to say some words concerning the structure of the Hecke algebra.
To begin we discuss the action of the Hecke-algebra on H®(T'\ X, M).
We have to do this since we defined the cohomology in terms of injective
(or acyclic) resolutions and therefore the general results concerning the
structure of the Hecke algebra can be reduced to this special case.
If we have a I'-module M and if we look at the diagram defining the
Hecke operators, then we see that we get in degree 0

MEETD L (pmen@) My g ()

T |

M T(o,ua) M

where the first arrow on the top line is induced by the identity map M —
M@ = M and the second by amap uo € Homap(M, M) which satisfies
ta((aya™Ym) = yus(m). Recalling the definition of the vertical arrow
on the right, we find

T(a,uq)(v) = Z ~ - uq (V).

YEL/T(a)

We are interested to get formulae for the product of Hecke oprators, so,
for instance, we would like to show that under certian assumptions on
a, B and certain adjustment of us,ug and uag we can show

T(a,ua) - T(8,us) = T(B,us) - T(et,ua) = T(af, tap).

It is easy to see what the conditions are if we want such a formula to
be true. We look at what happens in H® and get

T(e,ua) - T(Brug)(w) = > > yua-nqus(o).

Y€ /T(a) n€T/T(B)

We rewrite the right hand slightly illegally:

Do D vuanuguaus(v),

YET /T (o) n€L/T(B)

where we have to take into account that this does not make sense because
the term yuqanug' is not defined. But let us assume that (i) for each n

we can find an 1’ such that
77' O Uq = Ua O,

where these 7" also form a sytem of representatives for I'/T'(3) (ii) The
elements yn’ and 7’y form a system of representatives for I'/T'(a3) (iii)

Uaug(v) = ugua (v) = uag(v), then we get a legal rewrite

T(a,ua) T(Byug)() = > > Muaug(v)= Y Euas(v) =

YET/T(a) n' €T /T(B) EET/T(aB)

63



T(af, uap)(v)

We want to explain in a special case that we may have relations like
the one above.

Let S be a finite set of primes, let |\S| be the product of these primes.
Then we define I's = G(Z[ﬁ]) We say that a € G(Q) has support in S
ifae G(Z[ﬁ})

We take the group I' = Sl4(Z), and we take two disjoint sets of primes
S1, S2. For the group I' one can prove the so-called strong approximation
theorem which asserts that for any natural number m the map

Sld(Z) — Sld(Z/mZ)

is surjective. (This special case is actually not so difficult. The theorem
holds for many other arithmetic groups, for instance for simply connected
Chevalley schemes over Spec(Z). )

We consider the case

ai b1

as b2
o= . €FS17/8: . e1—‘327

Qaq bd

where aqlag—1...|a1 and balba—1]...|b1. It is clear that we can find in-
tegers m1 and mg which are only divisible by the primes in S; and S»
respectively, so that

D(ni) C ("), D(n2) CT(B7),

where the I'(n;) are the full congruence subgroups mod ni and ng re-
spectively. Since we have

Sly(Z/nZ) = Sla(Z/n1Z) x Sla(Z/nZ)

we get
D/T(a™™") > T/T(a™") x T/T(B7).

On the right hand side we can chose representatives vy for T'/T'(a™ ")
which satisfy v = Id mod n2 and 5 for I'/T(8™") which satisfy n = Id
mod ni. Then the products yn will form a system of representatives for
I'/T(a 'B7'). But then we clearly have uan = nu, and we see that (i)
and (ii) above are true. Then we can put uag = uaug.

We consider the case that our module M is a R-lattice in Mg, where
Mg is a rational G(Q)-module. Then we saw that we can write

Ue = d(a) - «

where d(a) will be a product of powers of the primes p dividing n1 and
an anologous statement can be obtained for 8 and no.

Since we have a8 = Ba and since clearly d(a)d(8) = d(af) we also
get the commutation relation.

Of course we have to be careful here. We only proved it for the rather
uninteresting case of H°(T'\ X, M). If we want to prove it for cohomology
in higher degrees, we have to choose an acyclic resolution

0—M— A" — A — |
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We have to extend the maps ua,ug to this complex
0— M@ — (A
o e
0o— M— A°
and we have to prove that the relation
Uatpug = 1 Ualls = 1 Uag

also holds on the complex. If we can prove this, it becomes clear that the
commutation rule also holds in higher degrees.
We choose the special resolution

0— M — IndiM—.

It is clear that if suffices to show: If we selected the ua,ug in such a way
that we have the condition (i), (ii) and (iii) above satisfied, then we can
choose extensions ua, ug, uag to Indi M so that (i), (i) and (iii) are also
satisfied. Once we have done this we can proceed by induction.

We have the diagram of I'(«)-modules

0— M — (IndiM)
B
0— M—  IndiM,

and we are searching for a suitable vertical arrow 7. The horizontal arrows
are given by (as before)

i:m— fm: {y — ym}.

To get a map
r_\ (@ r
? € Homp(q) ( Ind; m) , Indy M

we apply Frobenius reciprocity: We choose representatives i ...7vym of
T'/T(e); then our I'(a))-module in the second argument is

Indi M ~ @ Ind; M

i
where f € Ind} M is mapped to (fi,..., fm) € Indf(a), and where
fi(y) = f).

Hence we have

Homp(q) (( IndlfM)(a) , Indl;./\/l) ~ @ Homyy ( Indlf./\/l,./\/l) .

an element -, : Hom(y( Ind] M, M) is a collection of homomorphisms

Pyt M — M,
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so that almost all of them are zero on @, (f) = ©~,,~(f(7). The homo-
morphism

10U € Homp(a)(./\/l<a), Indi M) = Homg} (M, ®4, M)
is by definition given by the vector of maps

m— (.o, fugom)y(¥i),--) = (- viua(m), . . .).
Hence we define 7?7 by the conditions that
Yiua(m) fory=1
Py 2 M —

0 for v # 1,

and we get the required commutative diagram. This morphism ? is now
the extension of uq : M — M to (Indl{“l}j\/l)(o‘> — Ind?l}M. It
is clear that under the assumption (i), (ii), (iii) for the morphisms uq :
M@ 5 M and ug : MP) — M the extensions also satisfy (i), (ii), (iii).
Hence we see that under our special assumptions on «, 3 we have
T(B,ug) - T(,ua) =T(Ba, uga)

on all the cohomology groups H*®(Sla(Z)\ X, M).

4.1.2 Relations between Hecke operators

We attach a Hecke operator to any coset I'al' where a € G1F (Q) (i.e.
det(a) > 0, we want « to act on the upper half plane). The center of
Gl2(Q) is Q*. It acts trivially on M,, this will have te effect that « and
Aa with A € Q" define the same operator. (Of course here we assume
that m = —n/2.) Hence we may assume that the matrix entries of «
are integers. The theorem of elementary divisors asserts that the double
cosets
[ Mn(Z)aetzo - T C Gl (Q)

are represented by matrices of the form

G 2)

where b | a. But here we can divide by b, and we are left with the matrix

a 0
ozf(o 1) , a€eN.

We can attach a Hecke operator to this matrix provided we choose uq.
We see that « induces on the basis vectors

XVynTv al/—n/2 XYy,
Hence we see that we have the following natural choice for ug
Uo : P(XY) — a™?a- P(X,Y).

(See the general discussion of the Hecke operators)
Hence we get a family of endomorphisms

T (8 (1]>u<g 0) =T(a)
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of the cohomology H*(I'\H, M,,).
We have seen already that we have T,T, = Ty if a, b are coprime.

Hence we have to investigate the local algebra H, which is generated
by the

_ 0
Tr=T (0 1)’” P 0
0 1

for the special case of the group I' = Sl»(Z) and the coefficient system
M,,. To do this we compute the product

p" 0 p O
enen(§ o) 2(( o)

where the u,,r are the canonical choices. ~
Again we investigate first what happens in degree zero, i.e. on H°(T'\H, I)
where [ is any I'-module.

Let a = <g (1)) , then we have

T(a", uar)T (e, ua)é = ( Z Ytar)( Z nua)(§)

~yel'/T'(a”™) nel/T'(a)

We have the classical system of representatives

rre)=J G) {)r(cf) U U (J}p (1)) (_01 é)r(ar)

j mod p” j’ mod pr—1

Then our product of Hecke operators becomes

S0 D CI R VRN A Gl RSO o IR Y G

j mod p” mod p7—1 j1 modp

Cox (o ) (o B

j mod pT,j1 modp

D ((1) {)ua (_01 é))ua(£)+

j mod p”

SRR TO e e

i’ mod p"—1,77 mod p

CE (Y Y (S D

j/ mod pr—l

Now we have to assume the validity of certain commutation rules
1 g1\ _ (1 5ip”
tor (0 1) - (0 1)t
0 1 0 1\ _ .
Uar 1 0 Ua 1 0 =P Uygr-1

which are obviously valid for the canonical choices in the case I = Mj[m]
( here m is arbitrary). We also have uqrua = ugr+1. If we exploit the

(%)
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first commutation relation then we get as the sum of the first summand
and the third summand

o
(R

j modp",j1 modp

Z 1 0 0 1 u
- r—1 artl,
(' +p Y)p 1) \~1 0 i

’ mod p”—1,j; mod p

J
and this is Tpr+1. To compute the contribution of the second and the
fourth summand we observe that w = (_01 (1)) € I and hence we have
wé = €. Now the second commutation relation yields for the sum of the

second term and the fourth term

S R PR A [

j mod p” j mod pr—1

If we take into account that our summation over the j( resp. j') is
mod p"( resp. mod p“l), then we see that this second expression yields
p"‘HT]DT_l7 provided 7 > 1. If » = 1 then the summation over p" ' is the
same as the summation over p"~? and then the second term is (141/p)T}0
If we put e(r) = 0 for » > 1 and e(1) = 1 then we arrive at the formula

Tpr - Tp = Tp7‘+1 + (1 + %r))p”+lTpT71

This formula is valid for all values of r > 0 if we put 7,1 = 0.

We proved the formulae for the H°(I'\H, I) for any I" module I for
which we can choose the uo satisfy the commutation rules (*). These
commutation rules are satisfied for the canonical choice in the case of
I = My [m]. But then it is not so difficult to see that we can embed M,
into an acyclic I'-module Iy such that we can extend the u, : Msla) — M.,
to I(()D‘) — Ip such that the commutation rules are still valid. Then we
get induced morphisms ua : (In/M,) ™ — (In/M,) and also on these
quotient the commutation rules hold. Then we see from the resulting
exact sequence that our formulae for the Hecke operators are also true for
the action on H'(I'\H, M,,).

It may be illustrative to generalize a little bit. We choose an integer
N > 1 and we take as our arithmetic group the congruence group I' =
I'(N). For any prime p | N the T(a,us) with a € GIJ (Z[1/p]) form a
commutative subalgebra H, which is generated by T,. For p|N we can
also consider the T(,uq) with a € G1J (Z[1/p]). They will also generate
a local algebra H, of endomorphisms in any of our cohomology groups,
but this algebra will not necessarily be commutative. But we saw that
the Hp, Hp, commute with eachother for two different primes p,p;. All
these algebras H, have an identity element e,, we form the algebra

Hr = ®/Hp
P

where the superscript indicates that a tensor has an e, for almost all
p. This algebra acts on all our cohomology groups. The algebra H of
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endomorphism of one of our cohomology group is a homomorphic image
Of HF .

We come back to this after a brief recapitulation of the theory of semi
simple modules.

4.2 Some results on semi-simple modules for al-
gebras

We need a few results from the theory of algebras 2l acting on finite
dimensional vector spaces over a field L. Let L be an algebaic closure of
L.

Let be a finite dimensional vector space V' over some field L and an
L- algebra 2 with identity acting on V' by endomorphisms. We say that
the action of 2 on V is semisimple, if the action of A ® L on V ® L is
semi simple and this means that any 2 submodule W C V ® L has a
complement. Then it is clear that we get a decomposition indexed by a
finite set

VL= @ W;
i€E

where the W, are irreducible submodules, i.e. they do not contain any
non trivial 2 submodule.

This decomposition will not be unique in general. For any two W;, W;
of these submodules we have ( Schur lemma)

L if they are isomorphic as 2 -modules

Homa (Wi, Wy) = {0 else

We decompose the indexing set £ = FE1 U F2 U .. U E} according to
isomorphism types. For any E, we choose an 2 module W}, of this given
isomorphism type. Then by definition

L ifjekE,

0 else

Homg (W), Wj) = {

Now we define Hy,) = Homg[(W[u]7 Ve f/) we get an inclusion Hp,) ®
W) whose image X, will be an 2 submodule, which is a direct sum of
copies of Wp,.

We get a direct sum decomposition

Vvel=P P w.=px.

v i€E,

then this last decomposition is easily seen to be unique, it is called the
isotypical decomposition.

If V is a semi simple 2 module then any submodule W C V also has
a complement ( this is not entirely obvious because by definition only
W; has a complement in V;. But a small moment of meditation gives us
that finding such a complement is the same as solving an inhomogenous
system of linear equations over L. If this system has a solution over L
it also has a solution over L.) and hence we also can decompose the 2
module V into irreducibles. Again we can group the irreducibles according
to isomorphism types and we get an isotypical decomposition

V:@Ui:@@m:@y,.

i€E v i€E,
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But an irreducible 20 module W' may become reducible if we extend
the scalars to L . So it may happen that som of our U; decompose further.
Since it is clear that for any two 2(- modules Vi, V2 we have

Homg(Vi,V2) ® L = Homyer (Vi ® L, V2 ® L)

we know that we get the isotypical decomposition of V' ® L by taking the
isotypical decomposition of the Y, ® L and then taking the direct sum
over v.

Example: Let Li/L be a finite extension of degree > 1, then we put
A = L; and V = Ly, the action is given by multiplication. Clearly V is
irreducible, but V ® L is not. If L;/L is separable then the module is
semisimple, otherwise it is not.

We say that the 2 - module V is absolutely irreducible, if the A ® L-
module V ® L is irreducible. In this case it we have a classical result:

Proposition.Let V' be a semi simple A module. Then the following
assertions are equivalent

i) The 2 module V is absolutely irreducible

i1) The image of A in the ring of endomorphisms is End(V)

111) The vector space of A endomorphisms Endy(V) = L.

This can be an exercise for an algebra class. Where do we need the
assumption that V' is semi simple?

Proposition: For any semi -simple 2l module V' we can find a finite
extension L1 /L such that the irreducible sub modules in the decomposition
into irreducibles are absolutely irreducible.

Let us now assume that we have two algebras 2, B acting on V, let us
assume that these two operations commute i.e. for A € A, B € B,v eV
we have A(Bv) = B(Awv). This structure is the same as having a A ®r, B
structure on V. Let us assume that 2 acts semi simply on V and let us
assume that the irreducible 20 submodules of V' are absolutely irreducible.
Then it is clear that the isotypical summands Y, = @ W; are invariant
under the action 6. Now we pick an index io then the evaluation maps
gives us a homomorpism

Wio ® I‘IOII]Q[(VVZ;O7 Y,,) —Y,.
Under our assumptions this is an isomorphism. Then we see that we get

V=W, ©® Homa(W;,,Y.)

where i, is any element in E, and where 2 acts upon the first factor and
B acts upon the second factor via the action of 6 on Y, .

Especially we see:

Proposition If V is an absolutely irreducible A @1, B module then
V =5 X ®Y, where X (resp, Y) is an absolutely 2 (resp. B) module

We apply these considerations to get

Theorem 3: For any L we can decompose :
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H!(P\H, M,,,1) = @D H! ("\H, M., 1)(IT)
where this is the isotypical decomposition and the 11y are isomorphism
classes of irreducible modules. There is a finite extension L/Q such that
all the isomorphism classes of isotypical modules which occur are actually
absolutely irreducible.

If 115 is an absolutely irreducible Hr module then it is the tensor prod-
uct Iy = ®m, where the m, are absolutely irreducible H, modules. For
p [N the modules m, are of dimension one (see above theorem) and they
are determined by a number A(mp) € Or which is the eigenvalue of T, on
Tp.

This follows easily from our previous considerations. The eigenval-
ues A(7p) are algebraic integers because Tp induces an endomorphism of
H{ (T\H, M., 0, ) which after tensorization with L becomes the T}, on the
rational vector space. The above field extension is called the splitting field
Of ’Hr .

These two theorems 2 and 3 are special cases of more general results.
We can start from an arbitrary reductive groups over Q, arbitrary congru-
ence subgroups I' C G(Q) and arbitrary coefficient systems M obtained
from a rational representation of G/Q, they are finitely generated modules
over Z. Then we can consider certain symmetric spaces X = G(R)/Koo
and we have the cohomology groups H*® (F\X,M), they are finitely gen-
erated Z modules. Again we can define an action of the Hecke algebra
Hr and this Hecke algebra acts semi simply on the inner cohomology
H?(I'\ X, Mg). (theorem 2) Again this Hecke algebra is the tensor prod-
uct of local Hecke algebras where for almost all primes these local Hecke
algebras H, are polynomial rings in a certain number of variables. Then
the theorem 3 is also valid in this situation. We resume this theme in
Chap.III.

4.2.1 Hecke operators for Gls:

We consider the classical case. Our group G/Q is the group Glz/Q and
K = 80(2) C Go. Then X = Goo/K is the union of an upper and a
lower half plane. We choose I" = Gl2(Z), then

MNGo/K =T\H,

where I' = Sl3(Z) and H is the upper half plane.
As I'modules we consider the Z —module

M, = {ZQUXVYTLV | a, € Z}.
v=0

The group I' acts by

d

We observe that the associated sheaf M,, becomes trivial if n # 0
mod 2 hence we assume that n is even. We define a rational representation
of Gl2(Q) on M,, @, which we choose to be

(‘Z b) XYY"V = (aX + eY) (bX +dY)" .

—n/2
a-P(X,Y) = (Z Z) P(X,Y) = P(aX +¢Y,bX +dY) det (Z Z) .
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Here we may also multiply by another power det (Z b of the determi-

d
nant factor. We call the resulting module M, g[m], later it will turn out
that m = —n is the optimal choice. At this present moment our module
is My, g[—n/2], this choice of the exponent m has the advantage that the
center acts trivially.

4.3 The case I' = SI1(Z).

We refer to Chap.II 2.1.3. We have the two open sets Ui, resp. Up C H,
they are fixed under

0 -1 1 -1
S_(l 0>andR—<1 O)’
respectively. We also will use the elements

T = (é }) , S =T_8T""' = (_; }) erd(2)

1 0 _ _ -1 2 _
T,:<1 1),S1:T+ST+1:(_1 1)eF0(2)

The elements S;” and S; are elements of order four, i.e. (S7)? = (S7)* =
—1Id, the corresponding fixed points are 1 and i+ 1 respectively. Hence

2
S; fixes the sets aUit1 and Ujy1, this is the only occurrence of a non
2

trivial stabilizer.

4.3.1 Explicit formulas for the Hecke operators, a general
strategy.

In the following section we discuss the Hecke operators and for numerical
experiments it is useful to have an explicit procedure to compute them in
a given case. The main obstruction to get such an explicit procedure is
to find an explicit way to compute the arrow j®(«) in the top line of the
diagram (91). (we change notation j(a) to m(a)).

Let us assume that we have computed the cohomology groups on both
sides by means of orbiconvex coverings U : UierVy, = T'(a™')\X and
U UjesUy; = T(a)\X.

The map m(a) is an isomorphism between spaces and hence m(«) ()
is an acyclic covering of I'(a)\X. This induces an identification

C*(, M) = C* (m(e)(T), M)

and the complex on the right hand side computes H*(T'(a)\X, M()).
But this cohomology is also computable from the complex C* (4, /\;1(0‘)).
We take the disjoint union of the two indexing sets I U J and look at the
covering mq () U il. (To be precise: We consider the disjoint union I =
TUJ and define a covering 20; indexed by I. If i € I then W; = m(a)(Vy,)
and if ¢ € J then we put W; = U,. We get a diagram of Czech complexes

- eazelq M<a)(Wi) — @ie['-frl M(a>(Wi) -
1) )
— @ge[_q M(a)(Wi) - @ge[’ﬁl M(a>(Wi) — (94)

¢ I
= B MPW) = Dycyars MP(Wi) —
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The sets I°®,J® are subsets of J* and the up- and down-arrows are the
resulting projection maps. We know that these up- and down-arrows
induce isomorphisms in cohomology.

Hence we can start from a cohomology class &€ € HY(I'(a)\X, M),
we represent it by a cocycle

ce € P M@ Wa).

icrq

Then we can find a cocycle & € @, 1, M@ (W;) which maps to cg
under the uparrow. To get this cocycle we have to do the following: our
cocycle ¢¢ is an array with components cg (¢) for ¢ € 9. We have dy(c¢) = 0.
To get & we have to give the values & (i) for all i € I\ I9. We must have

dge = 0.

this yields a system of linear equations for the remaining entries. We
know that this system of equations has a solution -this is then our é& -
and this solution is unique up to a boundary dq—1(¢’). Then we apply the
downarrow to ¢¢ and get a cocycle cg, which represents the same class &
but this class is now represented by a cocycle with respect to the covering
$(. We apply the map @* : M(® — M to this cocycle and then we get a
cocycle which represents the image of our class £ under T,.

4.3.2 The special case Sl

Let m1 : H — T\H be the projection. We get a covering T'\H = 71 (U;) U
m1(Up) = U; NU,. From this covering we get the Czech complex

0 - MU)eMU,) — MUNU,) —0
L evg, ®evg, L evgno, (95)
M<S> o) M<R> N M =0

and this gives us our formula for the first cohomology

H'(D\H, M) = M/(M~5> @ M~<F>) (96)

We want to discuss the Hecke operator T5. To do this we pass to the
subgroups

rg@):{<i Z>|czo mod 2}

rg(z)::{(i Z) 15=0 mod 2} 0

we form the two quotients and introduce the projection maps 7r§[ cH —
I'T(2)\H. We have an isomorphism between the spaces

Tg (2)\H =% T (2)\H

2 0

which is induced from the map ms : z +— <0 1

)z = 2z. This map

induces an isomorphism
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as  H (T (2)\H, M) = H (T (2)\H, M ). (98)

2 0
We also have the map between sheaves uz : m (0 1> m and the
composition with this map induces a homomorphism in cohomology

. .
Uy 00y

H'(T§ (2)\H, M) *=* H' (T (2)\H, M). (99)

This is the homomorphism we need for the computation of the Hecke
operator; it is easy to define but it may be difficult in practice to compute
it.

4.3.3 The boundary cohomology

We can also look at the same problem for the cohomology of the boundary,

then the situation becomes much simpler. Each of the spaces T'J (2)\H, T'y (2)\H
has two cusps which can be represented by the points co,0 € P*(Q). The
stabilizers of these two cusps in I'f (2) resp. I'y (2) are

< Ty > x{*Id} and < T? > x{£Id} C I'{(2)
resp.
< TP > x{#£Id} and < T- > x{+Id} C T';(2)
the factor {£Id} can be ignored. Then we get
We know that
H' (AT (2)bsH), M) =5 M/(Id — T4 )M @& M/(Id — T?) M
H'((Ty (2)\H), M) =5 M/(d - TH)M & M/(1d — T_)M.

But now it is obvious that o maps the cusp oo to oo and 0 to 0 and then
it is also clear that for the boundary cohomology the map

as: M/(Id=TH MM/ (Id=T* )M — M/(1d—TIYMSM/(Id—T-)M

is simply the map which is induced by us : M — M. If we ignore torsion
then the individual summands are infinite cyclic.
Our module M is the module of homogenous polynomials of degree n
in 2 variables X, Y with integer coefficients. Then the classes [Y"], [X"] of
the polynomials Y™ (resp.) X™ are generators of (M /(Id—T%)M)/tors resp. (M/(Id—
TY)M)/tors where v = 1 resp. 2. Then we get for the homomorphism a3

as Y] = [Y™], a3 : [X™] — 27 [X"]. (100)

4.3.4 The explicit description of the cohomology

We give the explicit description of the cohomology H'(T'F (2)\H, M). We
introduce the projections

71'Jr T
H -2 T3 (2)\H; H -2 Ty (2)\H

and get the covering i,

D Ums (Usa) Ums (Up)

2

T (2\H = nf (00) Umj (1-03) U (D)

3 (

74



where we put T_U; = U% Our set {x,} of indexing points is i, i‘gl,p,

we put U, = 75 (Us,;). Note T ¢ T'§(2), Ty € I'§ (2).
Again the cohomology is computed by the complex
0 — MUNHeM(T-UNNeMU) — MU NUNHSM(T-U; nUS) =0

we have to identify the terms as submodules of some € M and write
down the boundary map explicitly. We have

M(Ur)eeM(UaTl)@M(U;) o, M(Uij;)@M(UaTlmU:)

L evy, @ evyp g, @ evy, Levgng, ® VT, ® evp_g,no,
M@ M<ST> @ M o, Me Mo M

(101)

where the vertical arrows are isomorphisms. The boundary map dp in the
bottom row is given by

(m1,ma,m3z) > (m1 —ms,m1 — T} 'ma,mi —ma) = (z,y,2)

We may look at the (isomorphic) sub complex where z = z = 0 and
m1 = mz = mg then we obtain the complex

0— M5 5 Mo 0; ma = ma — T 'mo
which provides an isomorphism
H' (T (2\H, M) 5 M/(1d — T7HMSST> (102)
A simple computation shows that the cohomology class represented by

the class (z, y, z) is equal to the class represented by (0, y—a:—i—T;lz—z, 0)
we write

[(xv:%z)] = [(07y7(£+T;1272’,0)] (103)

4.3.5 The map to the boundary cohomology

We have the restriction map for the cohomology of the boundary

~

H'(TE@\H, M) M/(1d - TLHM=S>
4 rter | (104)
H'(O(TF(2\H), M) = M/(Id—T )M & M/(1d - T*)M
we give a formula for the second vertical arrow. We represent a class [m] by
an element m € M and send m to its class in in each the two summands,
respectively. This is well defined, for v it is obvious, while for r~ we

observe that if m = x — T;la: and Sz = = then m = x — T;lij =
z—T2x.
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4.3.6 Restriction and Corestriction

Now we have to give explicit formulas for the two maps 7*, 7, in the big
diagram on p. 50 in Chap2.pdf. Here we should change notation: The
map 7 in Chap.2 will now be denoted by :

wy T3 (2)\H — I'\H (105)

We have the two complexes which compute the cohomology H' (I'{ (2)\H, M)
and H'(T'\H, M), and we have defined arrows between them. We realized
these two complexes explicitly in (101) resp. (95) and we have

do

MU e MU e MUS) = MU NUF) e MU, NU)
2

2

(@)@ 1 | (@3) ) (@)1t L (@)
M(U:) & M(U,) o, MU NU,)
(106)

and in terms of our explicit realization in diagram (101 ) this gives
MaMSZaM B MeMeM
(@)1 4 (=)o @)V (@) 107)

MSS> ® M<E> ﬂ) M
Looking at the definitions we find
(w;)(o) : (ma, m2) — (m1, T—m1, m2)
(108)
(@) oy : (M1, ma, m3) = (m1 + Smy + T~ ma, (1 + R+ R*)ms3)
(0)

and we check easily that the composition (w3 )g) o (wwy)(® is the multi-
plication by 3 as it should be, since this is the index of I'o(2)" in T.

For the two arrows in degree one we find
()P :m = (m, Sm, T_m)
(109)
(@3) @) : (m1,m2,m3) — (m1 + Sma + T~ 'm3)

We apply equation (103) and we see that (g ) (m) is represented by

[(ww3) P (m)] = [0, Sm + T " T-m — m — T-m, 0] (110)

We do the same calculation for I'y (2). As before we start from a cov-
ering

Iy (2\H =75 (Ui) Uy (T4 Us) Uy (U,) = w5 (Us) Uy (Uigr) Uy (Uy)
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and as before we put U,, = m; (Uy,). In this case Ui+1 = T4U; is fixed

by S = <:1 i) € I'y (2) and we get a diagram for the Czech complex

MUT) e MU @ MUy) 2 MU nU,) @ MU, NU;)

evg, evg, 1 Gevg, evgng, © V=10, 1 evg, Ao,
M@ MSST> g M o, MaeMaeM
(111)

Again we can modify this complex and get
H'(Ty (2)\H, M) = M/(Id — T-" YM =51 >, (112)
We compute the arrows (w5 )", (w5 )« in degree one

(w3) M s ms (m, Sm, Tym),
(113)
(w;)a) : (ml,mg,mg,) — (m1 + Sma + T_:lm;;).

4.3.7 The computation of of.

We recall our isomorphism « between the spaces and the resulting iso-
morphism (98). The identity map of the module M and the isomorphism
« on the space identifies the two complexes

MUY & MU ) & MUT) o, MU NUH) @ MU, nU)
2 2
M (a(U)) & M (a(Uf,)) & M@ (a(U)) o, M (U nU)) & M (U, NU))
2 2

(114)

and if we consider their explicit realization then this identification is
given by the equality of Z modules M = M(®. This equality of com-
plexes expresses the identification (98). We can compute the cohomology
HY(Ty (2)\H, M) from any of the two coverings

Iy \H = a(U") Ua(Ui, ) Ua(US) = Usy UUs, U U,
and ’ (115)
Ty \H = U] UU, UU; = Us, UUs; U Us.

We have to pick a class £ € H*(Ty (2)\H, M(®)) and represent it by a
cocycle
cce P MO, UL

1<i<j<3

(The cocycle condition is empty since Uy, N Uy, N Uz, = 0.)
Then we have to produce a cocycle

e P MO, NUL)

4<i<j<6

which represents the same class.
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To get this cocycle we write down the three complexes
Bicicjes M (Us, NUL,)  — 0
T
691Sz'<j§6 M<a)(UIi N Uzj) - ®1§i<]’<k§6 M(a>(Uzi N UIJ‘ N Uzk)
I
Bicicjce M (Us, NUL,)  — 0
(116)

for our cocycle c¢ we find a cocycle CE in the complex in the middle which
maps to c¢ under the upwards arrow and this cocycle is unique up to a
coboundary. Then we project it down by the downwards arrow, i.e. we
only take its 4 <7 < j < 6 components, and this is our cocycle céa).

We write down these complexes explicitly. For any pair ¢ = (7,5),7 < j
of indices we have to compute the set F;. We drew some pictures and from
these pictures we get (modulo errors) the following list (of lists):

Fia2=0 Fis={I1d, T *} Fi,4 = {I1d} Fis = {I1d, T *}
Fie:={Id, T~} Foz = {Id} Fou={1d,T_} Fos = {Id}
Fas = {1d} Fsa={Id, T%} Fs5 = {Id} Fae = {Id, ST}
Fas=10 Fue={1d,T-"} Fs,6 = {Id}
(117)

Now we have to follow the rules in the first section and we can write
down an explicit version of the diagram ( 116) . Here we have to be very
careful, because the sets UfQ,UfS have the non-trivial stabilizer < S; >
and we have to keep track of the action of 'z, ; : theset F; ; C I'z,\I'/I'z,.
Therefore we have to replace the group elements v € F; ; by sets I'z, 7'z,
In the list above we have taken representatives.

Dicici<sDrer,, (MENTiiy 0
T
Drcicics Prer,, M7 = Bioicjcres Boer, , (M) ik
i
DBicicice Drer,, (MENFigy 0
(118)

Here we have to interpret this diagram. The module M is equal to
M as an abstract module, but an element v € I'j (2) acts by the twisted
action (See Chapll, 2.2)

—1
M= Y*am=0a Yyou*m
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here the * denotes the original action. Hence we have to take the invariants
(/\/l(‘”)mvm with respect to this twisted action. In our special situation
this has very little effect since almost all the I'; ; 4 are trivial, except for
the intersection a(U#) N U; in which case Ty j, =< S} > . Hence

(M(a))<s;> _ M<Sl+>.

Each of the complexes in (118) compute the cohomology group H* (T'y (2)\H, M)
and the diagram gives us a formula for the isomorphism in (98). To get
ug, in (98) we apply the multiplication ma:m — am to the complex in the
middle and the bottom. Then the cocycle cg is now an element in & M@
and acg represents the cohomology class u$(€) € H'(I'y (2)\H, M).

Now it is clear how we can compute the Hecke operator

T :T<2 0) P M/MTFZ @ M) o MJ(MS52 o MET)
0 1

We pick a representative m € M of the cohomology class. We apply
(w7 )™ in the diagram (107) to it and this gives the element (Sm, m, T_m) =
c¢. We apply the above process to compute ). Then acéa) = (ma1, ma,m3)
is an element in M(U;” NU, ) @ ./\;l(Uijrl N U, ) and this module is iden-
tified with M @ M @ M by the vertical arrow in (111). To this element
we apply the trace

(@3 ) (1) (M1, ma, ms) = ma +ma + T1 'mas

and the latter element in M represents the class T>([m]).

We have written a computer program which for a given M = M,,, i.e.
for a given even positive integer n, computes the module H'! (F\H,M)
and the endomorphism 7% on it.

Looking our data we discovered the following (surprising?) fact: We
consider the isomorphism in equation (98). We have the explicit descrip-
tion of the cohomology in (102)

HY (D (2\H, M) 5 M/(1d — T7 HMST>

and
H Ty (2)\H, M) =5 M/(Id — T~ (M(@)<51 >

We know that we may represent any cohomology class by a cocycle
ce = (0,c¢,0) € M(O‘)(ﬂ;(oe(Ui)ﬂoe(Up))@M(a)(712_(a(Ui)ﬁa(leUp))@M(a)(ﬂ{(a(UHTl)ﬂa(leUp))

so it is non zero only in the middle component and then it is simply an
element in M. If we now look at our data, then it seems to by so that

céa) is also non zero only in the middle, hence

e € (0,¢,0) € 0 M (ny (LiNTZ'U,)) @0
hence it is also in M and then our data seem to suggest that

/
Ce = C¢
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Hence we see that the homomorphism in equation (99) is simply given
by
XYY"V s 2V XYY",
Is there a kind of homotopy argument (- 2 moves continuously to 1)-,
which explains this?

We get an explicit formula for the Hecke operator 1o : We pick an
element m € M representing the class [m]. We send it by (w)® to
HYTE(2)\H, M), i.c.

(@) :m o (m, Sm, T_m) (119)
We modify it so that the first and the third entry become zero see( 103)
[(m, Sm, T-m)] = [(0, Sm — m + T; ' T_m — T—_m, 0)] (120)

To the entry in the middle we apply M2 = <§ (1)> and then apply (w5 )(1)

and get
To([m]) = [S - Ma(Sm — m + Ty " T-m — T-m)) (121)

4.3.8 The first interesting example

We give an explicit formula for the cohomology in the case of M = M.
We define the sub-modul

5
Mtr _ @Zyl()fl/XV
v=0

and we have the truncation operator

y1o-»xv if v < 5,

trunc : YOV XY
{(—1)"+1Y”X10—” else,

which identifies the quotient module M/M<5> to M™. To get the co-
homology we have to divide by the relations coming from M<F> i.e.
we have to divide by the submodule trunc(M<%>.) The module of these
relations is generated by

Ri = 10Y°X +20Y7 X3 + V°X°
Ro =9Y3X?2 —36Y7 X3 + 14Y°X* — 45Y° X®
Rs = 8Y7X® +10Y°X°®
and then

5
HY(P\H, M) = @ ZY """ X" /{R1, Ra, Rs} (122)
v=0
We simplify the notation and put e, = Y” X" ™. Using Ry we can elimi-
nate es = —10eg — 20e7 and then
B v=6
H'(D\H, M) = @D Ze, /{—50e9 + 9es — 96e7 + 14e, —100eg — 1927}

v=10

(123)
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introduce a new basis {fio0, fo, fs, f7, f6, fs } of the Z module M :

fio = eio0; fa = —2es — 3eq; f6 = Yes + 14es
(124)
fg = —12e9 — 23e7; f7 = 25e9 + 48er; f5 = 10eg + 20e7 + es5

and hence in the quotient we get f5 = 0 and 2f; = fs and therefore

HY(T\H, M) = Zf10 ® Zfo ® Zfs ® Z/(4) fr (125)

(If we invert the primes < 12 then we we can work with eiq, €9, es and in
cohomology es = —Zes,e5 = 15€9, €7 = —i—geg.)

If we can apply the above procedure to compute the action of 75 on
cohomology we get the following matrix for 75 :

2049 68040 0 0
0 —24 0 0

L= 0 0 —24 0 (126)
0 0 ()

Hence we see that it is non trivial on the torsion subgroup. If we divide
by the torsion then the matrix reduces to a (3,3)-matrix and this matrix
gives us the endomorphism on the ”integral” cohomology which is defined
in generality by

H (D\X, M) = H*(T\ X, M) /tors C H*(T'\ X, Mg) (127)

here we should be careful: the functor H®* — Hp, is not exact. In our
case we get (perhaps up to a little piece of 2-torsion) exact sequences of
Hecke modules

0 — Zfo ® Zfs — Zf10 ® Zfo ® Zfs — Zfio — 0
l I H
0 — Hilnt,!(F\HzM) — Hilnt(r\]HLM) — Hilnt,l(a(F\H)vM) - 0
(128)

where Tx(f10) = (2'*+1) fi0. If we tensor by Q then we can find an element
(the Eisenstein class) f{ro € Hilnt(F\H,./\;l) ® Q which maps to fio This
element is not necessarily integral, in our case an easy computation shows
that 691fT € HL, (I'\H, M). This means that 691 is the denominator of
ffo, i.e. 691 is the denominator of the Eisenstein class ffo.

The exact sequence Xio in (128) is an exact sequence of modules for
the Hecke algebra H D Z[T>] and hence it yields an element

[X10] € Ext3(Zfr0, Hineo(T\H, M)), (129)

and an easy calculation shows that this Ext' group is cyclic of order 691
and that it is generated by Xio.

We can go one step further and reduce mod 691. Since there is at
most 2 torsion we get an exact sequence of Hecke-modules

0=  Hpe (T\H, M & Fe1) — Hiny (T\H, M @ Fg91) —  Hiny 1 ((T\H), M & Fgo1) —0.
(130)

The matrix giving the Hecke operator mod 691 becomes
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667 369 0
o= 0 667 0 (131)
0 0 667

This implies that the extension class [X10 ® Feo1] is a element of order
691. This implies that 691 divides the order of [X10] and hence divides the
order of the denominator of the Eisenstein class.

4.3.9 The general case

Now we describe the general case M = M,, where n is an even integer.
We define M" as above, if n/2 is even, then we leave out the summand
X"/2yn/2 then we get

Mtr _ M/M<S>-

This gives us for the cohomology and the restriction to the boundary
cohomology

HY(T\H,M) = M /Rel
! ! (132)

~

H'(O(T\H,M) = M/(Id-T)M.
‘We have the basis

Yy"™/2X"/?2 p/2odd

en = trunc(Y"), en—1 = trunc(Y" ' X), ..., {O X
else

for M". Let us put na = n/2 or n/2 — 1. Then the algorithm Smith-
normalform provides a second basis fn = en, fn—1,..., fn, such that the
module of relations becomes

dnfn :O,dnflfnfl :0;---7dtft :0,---,dn2fn2 =0

where dn,|dny+1] - - - |dn.~We have d,, = dn—1 = -+ = dn—2s = 0 where
25 + 1 = dim H'(T'\H, M) ® Q and dy,—25—1 # 0.

With respect to this basis the Hecke operator T5 is of the form

Jj=mna

To(fi)= Y 2 £ (133)

Jj=n

where we have (the numeration of the rows and columns is downwards
from n to n2)

() =0 for v < n and tfj) € Hom(Z/(d:),Z(d;))

134
andtfj):0fori2n728,j<n723 (134)

If we divide by the torsion then we get for the restriction map to the
boundary cohomology

n—2s
H'(D\H, M)ine = @D Zf, — H'(O(P\H, M)in, = ZY" (135)

v=n
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where f, — Y™ and To(Y™) = (2" +1)Y™. The Manin-Drinfeld princi-
ple implies that we can find a vector

v=n—2s

EiSn = fn + Z xufu; Ty € Q (136)

v=n—1
which is an eigenvector for T3 i.e.
Ty (Bis,) = (2" + 1)Eis, (137)

The least common multiple A(n) of the denominators of the z, is the

denominator of the Eisenstein class, it is the smallest positive integer for
which

A(n)Eis, € H"(T\H, M)in. (138)
This denominator is of great interest and our computer program allows

us to compute it for any given not to large n. We have to compute the z,.

We define H'(I\H, M)int,y to be the kernel of r, this is equal to

Z;iil Zf, and the Hecke operator defines an endomorphism

5P HY (T\H, M)ine, — H"(T\H, M )in,: (139)
which is given by the matrix (tg?) where n—1 > 4, j,n—2s, i.e. we delete

the ”first” (i.e.the n-th ) row and column.
Now we know that Th(fn) = (2" +1) fn + S3#=" 725 (%), f,,. Then the

p=n—1
x, are the unique solution of
v=n—2s
S @ Do — ti)T =t {n=n—1,...,n—2s} (140)
v=n—1

These denominators are closely related to values of the Riemann ¢
function, it seems that

A(n) = numerator(¢(—1 — n)). (141)

This has been verified up to n < 150 by a computer. We found some
handwritten notes (from about 1980) where this is actually proved by
using modular symbols, but this proof has to be checked again.

4.3.10 Computing mod p

Of course the coefficients t,<,22‘ become very large if n becomes larger,
hence we can verify (141) only in a very small range of degrees n.

But if we are a little bit more modest we may be able check ex-
perimentally whether a given - perhaps large- prime p, which divides a
numerator((—1 — n) for a very large n actually divides A(n). Here we
need a little bit of luck.

Assume that we have such a pair (p,n). We want to show that the
prime p divides the lcm of the denominators of the z, in (140) and this
means that the equation (140) has no solution in Z,), the local ring at p.
This is of course clear if the mod p reduced equation

v=n—2s
S (@ )b — ti)T, = ty), mod p (142)
v=n—1
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has no solution. ( Of course the converse is not true, therefore we need
just a little bit of luck!). In this computation the numbers become much
smaller. In fact this has now been checked for all n < 100 we can can
easily go much further.

4.3.11 Higher powers of p

This reasoning can also be applied if we look at higher powers of p dividing
a numerator¢(—1—n). Let us assume that p®» ™ numerator¢(—1—n). We
have to show that p‘sp(n) divides the lem of the denominators of the z, in
equation (140 ). This follows if we show that the equation

v=n—2s
D@+ D)du — i)z = p W), mod p™ ™ (143)
v=n—1

has no solution. This in turn means that the class
[, ®Z/p™ V] € Bxth, ((Z/p™ "V Z)(~1-n), Hiy (D\H, M2(Z/p™ V)
has exact order p®» (™.

Interesting cases to check are p = 37,59 then we have
¢(=31)=0 mod 37; ¢((—283) =0 mod 37%; ¢(—37579) =0 mod 37%; ¢(—1072543) =0 mod 37%;...

¢(-43) =0 mod 59; ¢(—913) =0 mod 59°

Here our computations have a surprising outcome. For ¢(—283) resp. ((—913)
it has been checked that the order of the extension class is 37 resp. 59 so

it is smaller than expected. This is not in conflict with the assertion that
the denominator is of order 37%,592. In fact it turns out that the deter-
minant of the matrix on the left hand side in (143) is (37%)% = 37° where
the denominator only predicts 37%. Is this always so and is this also true
for other Hecke operators?

4.3.12 The denominator and the congruences

For the following we assume that (141) is correct. We discuss the denom-
inator of the Eisenstein class in this special case. In [Talk-Lille] this is
discussed in a more abstract way, so here we treat basically the simplest
example of 4.3 in [Talk-Lille].

We have the fundamental exact sequence

0 — Hie (D\H, M) — Hi (T\H, M) — Hiv (3(T\H), M) = Ze, — 0
(144)

and we know that T2(e,) = (2" + 1)e,,. We get a submodule
Hine (T\H, M) & Zé&, C Hi(I\H, M) (145)

where é,, is primitive and T»2é,, = (2"le + 1)é,. We have r(é,) = A(n)en
and

H_E (D\H, M)/ (Hb  (T\H, M) & Zé,) = 7/ A(n)Z (146)
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Any m € Z/A(n)Z can be written as

y' + mén
A@)

and this yields an inclusion Z/A(n)Z — Hi,(T\H, M) ® Z/A(n)Z.

m =7( (147)

Hence

Theorem 4.2. The Hecke module HL(T\H, M) ® Z/A(n)Z contains a
cyclic submodule Z/A(n)Z(—1 — n) on which the Hecke operator T, acts
by the eigenvalue p™ ™' +1 mod A(n) for all primes p

We can find a finite normal field extension F//Q such that
Hiye (D\H, M) @ F = @D Hio (T\H, M ® F)[r/] (148)
5
where 7 is a homomorphism from the Hecke algebra to Of and H'..[ry]
is the rank 2 eigenspace for my.

The decomposition induces a Jordan-Holder filtration on the integral
cohomology

(0) ¢ THYWHL(D\H, Mo,.) € THP HL (T\H, Mo,) C - € TH" Hsy o(T\H, Mo,,)
(149)

where the subquotients a locally free Or modules of rank 2 and after
tensoring with F' they become isomorphic to the different eigenspaces.

We choose a prime p which divides A(n), let p°»™||A(n). Let p be a
prime in Op which lies above p. If e, is the ramification index then we
have

Op /p° ™ (~1 — n) C Hp o(T\H, Mo, ) ® Op/p**™ (150

The above Jordan-Holder filtration induces a Jordan-Hoélder filtration on
the homology mod pep‘sp(") we have

O /p* ™ (—1 = n) > THY Hiye o (P\H, Mo,.) ® O p+™ ™) s TH® ..
(151)
where again the subquotients are free O /pep‘sp(") modules. This implies

Theorem 4.3. We can find 7wy 1,7f2...,7f, in the above decomposition
and numbers fi > 0, fo2 > 0,..., fr > 0 such that Y fi = epdp(n) and we
have the congruence

mri(Te) =0 +1 mod p'i (152)
for all primes £.

We write n = no + (p — 1)a where 0 < ng < p — 1, we know that

p|Num(¢(—1 — ng)). We apply the above theorem an find 71'5?}7 . ,TK'?(AE)’f
and a prime pg C OF, such that
71'}?1.) (T) =" +1 mod 71'}?2 (153)

for all indices i. Now it seems to be very likely that the Hecke-module
Hilntyg(P\H, Mno ® Q) is irreducible (Maeda’s conjecture , this means that
Gal(Fu/Q) acts transitively on the absolutely irreducible constituents
m¢.) We may take Fy minimal, this means that this action on the set
of 7y is faithful. Moreover it is also very likely that the primes po are
unramified and split in Fp.
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4.4 Harish-Chandra modules with cohomology

In Chap.III | section 4 we will give a general discussion of the tools from
representation theory and analysis which help us to understand the coho-
mology of arithmetic groups. Especially in Chap.IIT 4.1.4 we will recall
the results of Vogan-Zuckerman on the cohomology of Harish-Chandra
modules.

Here we specialize these results to the specific cases G = Gl2(R) (case
A)) and G = Gl2(C) (case B)). For the general definition of Harish-
Chandra modules and for the definition of (g, Ko ) cohomology we refer
to Chap.III, 4.

4.4.1 The finite rank highest weight modules

We consider the case A), in this case our group G/R is the base extension
of the the reductive group scheme G = Glz/ Spec(Z). ( See Chap. IV for
the notion of reductive group scheme.) In principle this pretentious lan-
guage at this point means that we can speak of G(R) for any commutative
ring R with identity. Sometimes in the following we will replace Spec(Z)
by Z) We have the maximal torus 7 /Z and the Borel subgroup B/Z.
We consider the character module X*(7) = X*(T x C). This character
module is Zei @ Zez where

. tl O .
ei: <0 t2) > 1 (154)

Any character can be written as A = ny + ddet where v = “5%2(¢
X*(T) !),det = e1 + ez and where n € Z,d € iZ and where n = 2d
mod 2. To any such character A we want to attach a highest weight module
M. We assume that A is dominant, i.e. n > 0 and consider the Z—
module of polynomials

My ={P(X,Y) | P(X,Y)=> a.X"Y"" a, € Z}.

v=0

To a polynomial P € M, we attach the regular function (See Chap. IV)

u v v

fp(<”" y)):P(u,v)det((i y))%+d1 (155)

and we obviously have

t1r w\ [ Y\\_ ngo,nde [T YNy -/ ft1 w x
(o ) (0 W =seats(E ) =x (e
(156)

where A\™ = —ny+ (5 +d1) det = —ny+ddet considered as a character

on B. This is a module for the group scheme G/Z it is called the highest
weight module for A and is denoted by M. The action of G is of course
the action by right translations,i.e.

G N T G4 TR A T G D ()

Comment: When we say that M is a module for the group scheme
G/Z we mean nothing more than that for any commutative ring R with
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identity we have an action of G(R) on M,, ® R which is given by (155 )
and depends functorially on R. We can "evaluate” at R = Z and get the
I' = Gl2(Z) module M z. (Actually we should not so much distinguish
between the Gl2(Z) module My z and M)

Remark: There is a slightly more sophisticated interpretation of this
module. We can form the flag manifold B\G = P'/Z and the character
A yields a line bundle £,-. The group scheme G is acting on the pair
(B\G, £,-) and hence on H°(B\G, £,-) which is tautologically equal to
M. (Borel-Weil theorem).

We can do essentially the same in the case B) . In this case we start
from an imaginary quadratic extension F/Q and let O = Op C F its
ring of integers. We form the group scheme G/Z = Ry ,z(G/O). Then
G(0) =Gl (0®0) C Gl2(0) x Gl2(0). The base change of the maximal
torus T/Q C G xz Q is the product 71 x T>/F where the two factors are
the standard maximal tori in the two factors Gla/F.

We get for the character module

XY(T x F) = X*(T1) ® X" (Tz) = {n1y + d1 det} @ {n27 + dadet}
(158)

where we have to observe the parity conditions n1 = 2di mod 2,n2 = 2d2
mod 2 Then the same procedure as in case a) provides a free O- module
M with an action of G(Z) on it. To see this action we embed the group
G(Z) = Glz(0) into Gl2(0) x Glz2(O) by the map g + (g,g) where g is
of course the conjugate. If now our A = n1vy1 + di dety1 +na2vy2 + dadete =
A1 + A2 then we have our two Glz(O) modules My, 0, Mx,,0 and hence
the Gl2(O) x Gl2(0O)- module My, 0 ® My, .0, is now our M o is simply
the restriction of this tensor product module to G(Z).

4.4.2 The principal series representations

We consider the two real algebraic groups G = Glz/R and G = R¢/rGl2(C),
Let T/R, resp.B/R be the standard diagonal torus (resp.) Borel sub-
group. Let us put Z/R = G, (resp. Rg/rGm). We have the determinant
det : G/R — Z/R and moreover Z/R = center(G/R). If we restrict the
determinant to the center then this becomes the map z — z2. Let us
denote by g, t, b, 3 the corresponding Lie-algebras.

Our aim is to to construct certain irreducible representations of G(R)
and their ”algebraic skeleton” the associated Harish-Chandra modules.
Of course homomorphism 7 : Z — C* yields via composition with the
determinant a one dimensional G(R) module Cr. We want to construct
infinite dimensional G(R) modules.

We start from a continuous homomorphism (a character) x : T(R) —
C*, of course this can also be seen as a character x : B(R) — C*. This
allows us to define the induced module

Ifx = {f: G(R) = C| f € Cx(G(R)), f(bg) = x(b)f(9), Vb € B(R(),g )G G(R)}
159

This space of functions is a G(R) - module, the group G(R) acts by right
translations: For f € I§x,g € G(R) we put

Ry(f)(@) = f(zg)
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Inside G(R) we have the connected component of identity of the standard
maximal compact subgroup K% (= SO(2) resp. U(2)) and we know that
G(R) = B(R) - Ko. This implies that a function f € I§y is determined by
its restriction to K. In other words we have an identification of vector
spaces

IEx ={f : Koo = C| f(tek) = x(te) f(k), te € Koo N B(R), k € Koo}
(160)

We put T. = B(R) N K& and define x. to be the restriction of x to
T.. Then the module on the right in the above equation can be written
as Iﬁm Xec- By its very definition Iq{i"" Xe- is only a Ko module it can be
endowed with the structure of a G(R) module via the above identification.

Inside Iﬂ{i >~ xc we have the submodule of vectors of finite type

Ip=xe:={f¢€ Iﬁ"" Xe | the translates Ry (f) lie in a finite dimensional subspace}
(161)

The famous Peter-Weyl theorem tells us that all irreducible representa-
tions (satisfying some continuity condition) are finite dimensional and
occur with finite multiplicity in Iﬁw Xc and therefore we get

o oo m(9 o oo
Ir=xe= @ V""" = @ “Ir=xv] (162)
Y€K o V9eK oo

where Ko is the set of isomorphism classes of irreducible representations
of Koo, where Vy is an irreducible module of type ¥ and where m(1}) is the
multiplicity of ¢ in °I£°° Xe. Of course OIT{(C‘” Xe is a submodule °T§ \g,
this submodule is not invariant invariant under the operation of G(R)
in other words if 0 # f € OITI%C xc and g € G(R) a sufficiently general
element then Ry(f) & OII{iDOXC.

But we can differentiate the action of G(R) on I§Az. We have the well
known exponential map exp : g = Lie(G/R) — G(R) and we define for
felf X eg

tX)) —
Xf(g) = lim flgexp(tX)) — f(g) (163)
t—0 t

and it is well known and also easy to see, that this gives an action of
the Lie-algebra on Ig, we have X1(Xa2f) — Xo(X1f) = [X1, X2]f. The
Lie-algebra is a Ko module under the adjoint action and is obvious that
for f € °I§{C"°XC[19] the element X f lies in Py OIq{(cmchl] where 9’
runs over the finitely many isomorphism types occurring in Vy ® g.
Proposition 4.1. The submodule OIJ{(C"" Xe C IS xe is invariant under the
action of g.

We will denote by JZx the submodule Olﬁ“’xc together with this
action of g. Such a module will be called a (g, Koo ) - module or a Harish-
Chandra module this means that we have an action of the Lie-algebra g,
an action of K, and these two actions satisfy some obvious compatibility
conditions.

We also observe that °I¥c°° Xc is also invariant under right translation
R. for z € Z(R). Hence we can extend the action of K to the larger
group Koo = Koo - Z(R). Then J%x becomes a (g, Koo) module.

These (g, K o) modules 3% x are called the principal series modules.

We denote the restriction of x to the central torus Z = {(é 3)} by

wy. Then Z(R) acts on JGx by the character wy, i.e. R.(f) = wy(2)f.
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4.4.3 The decomposition into K. -types

Kutypes
We look briefly at the Ko-module °I£°C Xc- In case A) the group

_ _ ¢ cos(d) sin(¢)) _
Ko =50 = (50 O —eon asy
and T. = T(R) N K« is cyclic of order two with generator e(w). Then x.
is given by an integer mod 2, i.e. xc(e(m)) = (=1)™. For any n = m
mod 2 we define 1, € 3Gx by ¥n(e(4))) = e™® and then

decoKuA

Hx= P cu (165)

k=m mod 2

In the case B) the maximal compact subgroup is
U(2) € G(R) = Re/r(Gl2/C)(R) C Gl2(C) x G2(C)

this is the group of real points of the reductive group U(2)/R. The inter-

section )
el¢1 0
1=1@ ke =1(%) ) = e

The base change U(2) x C = Glz/C and T. x C becomes the standard
maximal compact torus. The irreducible finite dimensional U (2)-modules
are labelled by dominant highest weights A\c = nvy. + ddet € X* (T x
C) (See section ( 4.4.1), here again n > 0,n € Z,n = 2d mod 2 and
Ye(e(d)) = ei<¢17¢2)/2_)

We denote these modules by M, after base change to C they become
the modules M c.

As a subgroup of G(R) C Gl2(C) x G2(C) our torus is

ip1 —idy i$1
e 0 e 0 ~ e 0
TC = {( 0 ei¢2) X ( 0 €7i¢2>} — {< 0 ei¢2)} (166)

and the restriction of x to Tt is of the form

Xc(€(¢)) — plad1tibdy _ eagb (¢>1*¢2)ea;b(¢1+¢2) (167)
and this character is (a — b)v. + GT% det . Then we know
decoKuB
OIJI"{COOXC = jgx = @ M“C (168)

pe=kyc+2EL det;k=(a—b) mod 2;k>|a—b|

4.4.4 Intertwining operators

Let N(T) the normalizer of T/R, the quotient W = N(T')/T is a finite
group scheme. The in our case the group W (R) is cyclic of order 2 and

generated by
(0 1
wo=-1 o0

In case a) we have W(R) = W(C) in case b) we have

GxrC=(ClaxCl)/C; TxgC=Ty xTy; and W(C) =7Z/2 x Z/2
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where the two factors are generated by s1 = (wo,1),s2 = (1,wo). The
group W(R) is the group of real points of the Weyl group, the group
W = W(C) is the Weyl group or the absolute Weyl group.

We introduces the special character

tl u t1 1
: — =2
ol (5 0) 1
The group W (R) acts on T'(R) by conjugation and hence it also acts

on the group of characters, we denote this action by x +— x*. We define
the twisted action

w-x = (xlp))*]pl ™"
We recall some well known facts

i) We have a non degenerate (g, K ) invariant pairing
IEx X I5X"°[p|* = Cwy given by (f1,f2) = [ fu(k)f2(k)dk (169)
Koo

We define the dual 3%y of a Harish-Chandra as a submodule of
Homc(Jcbix7 C), it consists of those linear maps which vanish on almost
all Ko types. It is clear that this is again a (g, Ko )-module. The above
assertion can be reformulated

ii) We have an isomorphism of (g, Ko ) modules
I5xdx = I X" |l (170)

The group T(R) = T: x (RZ;)? and hence we can write any character
X in the form

X(8) = Xe(B)[ta] [t2|*2 (171)

where z1, 22 € C.
For f € 3%x, g € G(R) we consider the integral

T.(F)9) = f(woug)du (172)
U(R)

It is well known and easy to check that these integrals converge abso-
lutely and locally uniformly for R(z1 — 22) >> 0 and it is also not hard
to see that they extend to meromorphic functions in the entire C2. We
can 7evaluate” them at all (z1,22) by suitably regularizing at poles (for
instance taking residues). This needs some explanation. To define the
regularized intertwining operator we consider the ”deformed” intertwin-
ing operator

T (A" I[*) : IBAL° Iy [* = IEAelpl* |y~ (173)

(See 172, x = A\g°|v|*) and this integral converges if R(z) >> 0. We have
decomposed

IENC YT = P CIE=xeW = @D I
Y€K 0o 9EK o0

and our intertwining operator is a direct sum of linear maps between finite
dimensional vector spaces

QR I7,9) : TBAL° Iy P[] — T Aelpf* 1y 77 [9]
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The finite dimensional vector spaces do not depend on z and the c¢(Ag°|7|*, 9)
can be expressed in terms of values of the I'— function. Especially they
are meromorphic functions in the variable z (See sl2neu.pdf, ). Hence we
can can find an integer m > 0 such that

ZMIEAR Y |e=0 s TEAE® — TEArlpl?

is a non zero intertwining operator and this is now our regularized operator
loc,reg ( ywo
T (AR")-

iii) The regularized values define non zero intertwining operators

T8 (x) : 38X — 35X 1ol (174)
These operators span the one dimensional space of intertwining operators

Homq, k.. (3%, IGwo - X)

Finally we discuss the question which of these representations are uni-
tary. This means that we have to find a pairing

P3G x IGx = C (175)
which satisfies
a) it is linear in the first and conjugate linear in the second variable
b) It is positive definite, i.e. 1 (f, f) >0V f € 7Gx

c¢) It is invariant under the action of K and Lie-algebra invariant
under the action of g, i.e. we have

For f1, f2 € 35x and X € g we have Y(X f1, f2) +¥(f1, X f2) =0.

We are also interested in quasi-unitatry modules. This is notion is
perhaps best explained if and instead of ¢) we require

d) There exists a continuous homomorphism (a character) n : G(R) —
R* such that 1(gf1, gf2) = n(g)¥(f1, f2), Vg € GR), frf2 € IGX

It is clear that a non zero pairing ¢ which satisfies a) and c) is the
same thing as a non zero (g, K« )-module linear map

iy : 35x = (09X (176)

by definition 4, is a conjugate linear map from J%y to (3§x)Y. The map
iy and the pairing ¢ are related by the formula ¥ (vi,v2) = iy (v2)(v1).
Of course we know that (See (170))

(3GX)Y —= Igxwolpf28y ! (177)
and we find such an i, if
X = xPo[p2dy ! or X" |pl* = xo|pf2éx ! (178)

We write our x in the form (171). A necessary condition for the
existence of a hermitian form is of course that all |wy (z)| = 1 for z € Z(R)
and this means that (21 + 22) = 0, hence we write

21 =0+ 171,22 = —0 + T2 (179)
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Then the two conditions in (178) simply say
(uni) : o= % or (ung) : 71 = 72 and X = x.° (180)

In both cases we can write down a pairing which satisfies a) and c).
We still have to check b). In the first case, i.e. o = % we can take the
map iy = Id and then we get for fi, fo € 3% x the formula

¥(f1, f2) = f1(k) f2(k)dk (181)
Koo
and this is clearly positive definite. These are the representation of the
unitary principal series.
In the second case we have to use the intertwining operator in (174)
and write

(f1, f2) = T8 (f2) (1) (182)

Now it is not clear whether this pairing satisfies b). This will depend on
the parameter 0. We can twist by a character n : Z(R) — C* and achieve
that xc = 1,71 = 72 = 0. We know that for o = % the intertwining
operator T,°¢ is regular at y and since in addition under these conditions
3% is irreducible we see that

T.X(x) = a Id with a € R%, (183)

Since we now are in case a) and b) at the same time we see that the two
pairings defined by the rule in case (uni) and (ung) differ by a positive
real number hence the pairing defined in (182) is positive definite if o = 1.

But now we can vary o. It is well known that 3§y stays irreducible as
long as 0 < o < 1 (See next section) and since To®(x)(f)(f) varies con-
tinuously we see that (182) defines a positive definite hermitian product
on J%x as long as 0 < ¢ < 1. This is the supplementary series. What

happens if we leave this interval will be discussed in the next section.

4.4.5 Reducibility and representations with non trivial co-
homology

As usual we denote by p € X*(T) ® Q the half sum of positive roots we
have p =y resp. p=71 +72 € X*(T) ® Q in case A) (resp. B)).

For any character A\ € X*(T x C) we define A to be the restriction
(or evaluation)
Ar : T(R) — C*.
This provides a homomorphism B(R) — T(R) and hence we get the
Harish-Chandra modules J§\r are of special interest for our subject
namely the cohomology of arithmetic groups.

We just mention the fact that JE is always irreducible unless x = Ag
(See sl2neu.pdf, Condition (red)).

We return to the situation discussed in section (4.4.1), especially we
reintroduce the field F'/Q. Then we have X*(T' x F) = X*(T x C) and
hence A € X*(T x F). We assume that A is dominant, i.e. n > 0 in case
a) or ni,n2 > 0 in case b). In this case we realized our modules M as
submodules in the algebra of regular functions on G/Z and if we look at
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the definition (See (156)) we see immediately that My c C TJEGAL? and
hence we get an exact sequence of (g, K ) modules

0= Myc — TGN =Dy — 0 (184)

Hence we see that jg)\]}fo is not irreducible. We can also look at the
dual sequence. Here we recall that we wrote A = ny+ ddet. Then we will
see later that M}\/’C = M_2ddet,c. Hence after twisting the dual sequence
becomes

0 — DY ®@deta? = IGVALY - Myc —0 (185)

~

Equation (170) yields Jg’v)\§° % 3%x|p|? and our second sequence be-
comes

0 — DY @ det? — IEA&|p|> = Mac — 0 (186)

Now we consider the two middle terms in the two exact sequences (184,186)
above. The equation (174) claims that we have two non zero regularized
intertwining operators

TROmE(\20) - TG0 5 TGA|p® Tt (Ar|p|?) : TG Arp|® — TEALO
(187)

If we now look more carefully at our two regularized intertwining op-
erators above then a simple computation yields (see sl2neu.pdf)

Proposition 4.2. The kernel of ToX™8(\L°) is Mc and this operator
induces an isomorphism

T()\R) Dy — ’D;\/ ® det%@d

(Remember X is dominant) The kernel of To™8(\g|p|?) is DY ® detd?
and it induces an isomorphism of My c.

The module 3Gy is reducible if T.l°“™8(x) not an isomorphism and
this happens if an only if x = Az or \g°|p|* and X dominant. (There is
one exception to the converse of the above assertion, namely in the case
A) and o =1 and X¥° # Xec.)

For us of of relevance is to know whether we have a positive definite

hermitian form on the (g, Koo )-modules Dy. To discuss this question we
treat the cases A) and B) separately.

We look at the decomposition into Ke-types. (See ( 165)) In case A)
(See ( 165)) it is clear that M ¢ is the direct sum of the Koo types Ci)y
with |I] < n. Hence

Dy = P Cyre P Cuw=DyeDf  (188)

k<—-n—2,k=m(2) k>n+2,k=m(2)

Proposition 4.3. The representations D;,D}\L are irreducible, these are
the discrete series representations.

The operator T(Ar) induces a quasi-unitary structure on the (g, Koo )-
module Dx. The two sets of Koo types occurring in My c and in Dy (resp.)
are disjoint.

Proof. Remember that as a vector space DY ® det?? = Dy, only the way
how K. acts is twisted by det?? . Then the form hy (f1, fo) = T 8 (AL°)(f2)(f1)
defines a quasi invariant hermitian form. It is positive definite (for more
details see sl2neu.pdf). O
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A similar argument works in case B).We restrict the Gl2(C) x Gl2(C)
module My ¢ to U(2) x U(2) then it becomes the highest weight module
My, = My, . @My, .. (Seed.4.1) Under the action of U(2) C U(2)xU(2)
it decomposes into U(2) types according to the Clebsch-Gordan formula

Miclue) = D My,

d d
pe=kyet+ BEI2 det;k=(n1—n2) mod 21 +tna>k>|ni—na|

(189)

Hence we get

Dxclue) = b My, (190)

pe=kye+ A2 det;k=(n1—n2) mod 2k>ni+nat2

Again we have

Proposition 4.4. The operator Toé“‘reg(/\&fo) induces an isomorphism
T(Ar) : Dy = DY @ detp’

The (g, Koo) modules are irreducible.

The operator Toé"”’reg()\go) induces the structure of a quasi-unitary
module on Dy if and only if n1 = na. This is the only case when we have
a quasi-unitary structure on Dx. The two sets of Koo types occurring in
Mic and in Dy (resp.) are disjoint.

The Weyl W group acts on T' by conjugation, hence on X*(T" x C)
and we define the twisted action by

s-A=sA+p)—p (191)

Given a dominant A we may consider the four characters w - A\, w €
W(C) = W and the resulting induced modules JGw - Ag. We observe
(notation from (4.4.1))

S1 - (nlw + di det +n2y + dz@) = (—n1 — 2)’)/ + di det +n2Yy + dzT%)

S92 - (nry + dy det +n2y + dgﬁ) =niy+ di det +(—’I’LQ — 2)’7 =+ dza)
(192)

Looking closely we see that that the Ko types occurring in J%s; -
Xor J%ss - A are exactly those which occur in Dy. This has a simple
explanation, we have

Proposition 4.5. For a dominant character X we have isomorphisms
between the (g, Kso) modules

Dy 5 3551 - A, Dy =5 TGsa - A (193)

The resulting isomorphism 3§s1 - A = 3Gsa - X is of course given by
T (s1 - ).

Interlude: Here we see a fundamental difference between the two
cases A) and B). In the second case the infinite dimensional subquotients
of the induced representations are again induced representations. In the
case A) this is not so, the representations Df are not isomorphic to rep-
resentations induced from the Borel subgroup.
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These representation are called discrete series representations and we
want to explain briefly why.

Let G be a semi simple Lie group for example our G = G(R), here we
allow both cases. Then we have an action of G x G on L?(G) by left and
right translations. Then Harish-Chandra has investigated the question
how this "decomposes” into irreducible submodules. Let G be the set of
isomorphism classes of irreducible unitary representations of G.

Then Harish-Chandra shows that there exist a positive measure u on
G and a measurable family H¢ of irreducible unitary representations of G
such that

13(G) = /G He & Hepa(de) (194)

( If instead of a semi simple Lie group we take a finite group G then
this is the fundamental theorem of Frobenius that the group ring C[G] =
PoVo ® ng where Vjy are the irreducible representations.)

If we are in the case A) then the sets consisting of just one point
{D¥} have strictly positive measure, i.e. u({Df}) > 0. This means that
the irreducible unitary G x G modules Di: ®D;Ev occur as direct summand
(i.e. discretely in L*(G).).

Such irreducible direct summands do not exist in the case B), in this
case for any £ € G we have u({€}) = 0.

We return to the sequences (184),(186). We claim that both sequences
do do not split as sequences of (g, Ko )-modules. Of course it follows from
the above proposition that these sequences split canonically as sequence of
Ko modules. But then it follows easily that complementary summand is
not invariant under the action of g. This means that the sequences provide
non trivial classes in Ext%& o) (D Mo c) and hence these Ext® modules
are interesting.

The general principles of homological algebra teach us that we can
understand these extension groups in terms of relative Lie-algebra coho-
mology. Let € resp. £ be the Lie-algebras of Ko resp. Koo the group Koo
acts on g, £ via the adjoint action (see 1.3) We start from a (g, Koo ) module
3% x and a module M c.

Our goal is to compute the cohomology of the complex (See Chap.III,
4.1.4)

Hompg (A* (8/%), 3%x © M c). (195)

There is an obvious condition for the complex to be non zero. The
group Z(R) C Koo acts trivially on g/¢ and hence we see that the complex
is trivial unless we have

wy' = Xelz@m)
we assume that this relation holds.

We will derive a formula for these cohomology modules which is a
special case of a formula of Delorme, which will also be discussed in Chap.
II. An element w € Homg_ (A™(g/8), 3G x ® M) attaches to any n

tuple v1,...,v, of elements in g/% an element
wvi,...,vn) ejgx(@/\/ﬁ,c (196)

such that w(Ad(k)vi,...,Ad(k)v,) = kw(vi,...,v,) for all k € Ku.
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By construction
w(vi,...,vn) = ny ® m, where f, € jgx, my € Mic

and f, is a function in (:'9o which is determined by its restriction to f{oo
( and this restriction is K finite). We can evaluate this function at the
identity eq € G(R) and then

w(vi,...,vn)(eq) = Zf,,(e) ®m, € Cx ® My

The Koo invariance (196) implies that w is determined by this evaluation
at eq. Let Tc = T(R) N Koo = Z(R) - T... Then it is clear that

w" i {v, . ont o w(vn, . o) (eq) (197)
is an element in
w* € Homg, (A"(g/F),Cx ® M c) (198)
and we have: The map w +— w™ is an isomorphism of complexes

Homp (A*(g/8),3%x ® Mac) — Homg (A*(g/F),Cx ® Mo c)
(199)

The Lie algebra g can be written as a sum of T, invariant submodules
g=b4E=ttu+t (200)

in case B) this sum is not direct, we haye bNE=tNEt= t. and hence we
get the direct sum decomposition into Te-invariant subspaces

g/t =t/t. ou (201)
We get an isomorphism of complexes

HomT~C(A°(g/E), Cx ® My c) — Homg, (A®(t/8),Cx ® Hom(A®(u), Mxc))
(202)

the complex on the left is isomorphic to the total complex of the double
complex on the right.

Intermission, the theorem of Kostant The next step is the com-
putation of the cohomology of the complex Hom(A®(u), M ¢). To do this
we work over the rationals and we we study the case A) first. So our group
is now G/Q = Glz2/Q and our module M ¢ will be replaced by M g.

Then u = QE where E; = (O !

0 0) . The module has a decomposition

into weight spaces

v=n—v p=n
Mio= @ QX""v'= P Qe (203)
v=1 p=—n,u=n(2)

The torus T = {<8 tE)l)} acts on e, = X" "Y" by
t 0
Pk((o f1>)eu =tley (204)
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We also have the action of the Lie algebra on My g (See section ?7)
and by definition we get
n—
d(pa) (B )ew = Even = " Lo (205)
Now we can write down our complex Hom(A®(u), M ¢) very explic-

itly. Let EY € Hom(u,Q) be the element EY(E;) = 1 then the complex
becomes

p=n p=n
0= P Q> P QE®en—0 (206)
p=—n,u=n(2) p=—n,u=n(2)

where d(e,) = "2 EY ® ey12. This gives us a decomposition of our com-
plex into two sub complexes

Hom(A® (1), My c) = H®(u, M q) ® AC*® (207)

where AC*® as acyclic (it has no cohomology) and in

H*(u, Mxrg) ={0 > Qe, -5 QEY ®e_,, — 0} (208)
the differential is zero. Hence we get
H*(u, Mig) = H*( Hom(A® (u), M 0)) = H* (u, M 0) (209)

We notice that the torus T acts on H*®(u, M g) ( The Borel subgroup
B acts on the complex Hom(A®(u), My ) but since the Lie algebra co-
homology is the derived functor of taking invariants under U (elements
annihilated by u) it follows that this action is trivial on U).

Hence we see that T acts by the character A on Q e, = H°(u, My q)
and by the character AT —a = wo - A = A¥? — 2p on Q EX Re_p, =
Hl (u, M)\,Q)-

Here we see the simplest example of the famous theorem of Kostant
which will be discussed in Chap. III 6.1.3.

We discuss the case B). Again we want that our group G/R = R¢/r(Glz/C)

is a base change from a group G/Q denoted by the same letter. We need
an imaginary quadratic extension F/Q and put G/QRp/q(Glz2/F). We
choose a dominant weight A = A1 + A2 = n17y1 + di det1 +navy2 + dadeto
and then My r = My, . Fr @ My, r is an irreducible representation of
G xq F = Glz x Glz/F. Now we have u® F = FE{ ® FE?. Then basi-
cally the same computation yields:

The cohomology H*®(u, My r) is equal the complex

He (u, My r) = {0 = Fell) @ Felt) <5 FEMYY @) @l @ FELY ®ell) 9 B2V @e

—n1

L FEY @) @ B2V @) -0}

—nq

(210)
where all the differentials are zero. The torus T acts by the weights
A in degree 0, s1 - A, s2 - A in degree 1, wo - A in degree 2 (211)

We go back to (212) and get a homomorphism of complexes

Homy, (A® (g/%), Cx ® Mxc) — Homy, (A® (t/%), Cx @ H® (u, My c))
(212)
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which induces an isomorphism in cohomology so that finally

H*(g, Koo, 35X ® M) — H*( Homg, (A®(t/), Cx ® H* (u, M c))
(213)

and combining this with the results above we get
Theorem 4.4. If we can find a w € W(C) such that x ™' = w - Az then

H* (g, Koo, I5X ® M) == H'™ (u, M) (w - X) @ A*(t/8)"
If there is no such w then the cohomology is zero.

Proof. O

4.4.6 The cohomology of the D) the cohomology of unitary
modules

4.4.7 The Eichler-Shimura Isomorphism

4.5 Modular symbols, L— values and denomina-
tors of Eisenstein classes.

4.5.1 Modular symbols attached to maximal tori in Gl,.

Compact symbols attached to anisotropic tori, relative symbols attached
to split tori....

4.5.2 Evaluation of cuspidal classes on modular symbols

We discuss the results on special values of L-functions attached eigenforms

4.5.3 Evaluation of Eisenstein classes on modular symbols
and the determination of the denominator (in certain cases)

Here we (hopefully) prove (141); we discuss the two cases cases Sl2(Z) and
some special congruence subgroups I' C Sl [Z][1]].

4.5.4 The Deligne-Eichler-Shimura theorem

In this section the material is not presented in a satisfactory form. One
reason is that it this point we should start using the language of adeles,
but there also other drawbacks. So in a final version of these notes this
section probably be removed.

Begin of probably removed section

In this section I try to explain very briefly some results which are
specific for Glz and a few other low dimensional algebraic groups. These
results concern representations of the Galois group Gal(Q/Q) which can
be attached to irreducible constituents II; in the cohomology. These re-
sults are very deep and reaching a better understanding and more general
versions of these results is a fundamental task of the subject treated in
these notes. The first cases have been tackled by Eichler and Shimura,
then Thara made some contributions and finally Deligne proved a general
result for Gl2/Q.

We start from the group G = Gl2/Q, this is now only a reductive group
and its centre is isomorphic to G, /Q. Its group of real points is Gl2(R) and
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the centre G, (R) considered as a topological group has two components,
the connected component of the identity is G, (R)®® = R%,. Now we
enlarge the maximal compact connected subgroup SO(2) C Gl2(R) to
the group Ko = SO(2) - Gm(]R)m). The resulting symmetric space X =
Gl2(R)/K is now a union of a upper and a lower half plane: We write
X=H{UH_.

We choose a positive integer N > 2 and consider the congruence sub-
group I'(N) C Gl2(Q)). We modify our symmetric space: This modifica-
tion may look a little bit artificial at this point, it will be justified in the
next chapter and is in fact very natural. (At this point I want to avoid to
use the language of adeles.)

We replace the symmetric space by

X = (Hy UH_) x Glo(Z/NZ).

On this space we have an action of I' = Glz(Z), on the second fac-
tor it acts via the homomorphism Glz2(Z) — Gl2(Z/NZ) by translations
from the left. Again we look at the quotient of this space by the action
of Glz(Z). This quotient space will have several connected components.
The group Gl2(Z) contains the group Sl2(Z) as a subgroup of index two,
because the determinant of an element is 1. The element <(1) _01) in-
terchanges the upper and the lower half plane and hence we see

Gla(Z)\ X = Glo(Z)\((H{UH_)xGly(Z/NZ)) = Sly(Z)\(H xGly(Z/NZ)),

the connected components of (H; x Glz2(Z/NZ)) are indexed by elements
g € Gl2(Z/NZ). The stabilizer of such a component is the full congruence
subgroup

F(N):{fy:(z Z>|a,d51 mod N,b,c=0 mod N}

this group is torsion free because we assumed N > 2.

The image of the natural homomorphism Sl(Z) — Gl2(Z/NZ) is the
subgroup Sl2(Z/NZ) (strong approximation), therefore the quotient is by
this subgroup is (Z/NZ)*.

We choose as system of representatives for the determinant the ma-

trices t, = (a O) ,a € (Z/NZ)*. The stabilizer of then we get an

0 1
isomorphism
Sy = GL(Z)\(H x Gl2(Z/NZ)) — (I'(N)\H) x (Z/NZ)*.

To any prime p, which does not divide N we can again attach Hecke
operators. Again we can attach Hecke operators

T

o pr 0
Tr =T <0 1)’“<pr 0)

0 1

to the double cosets and using strong approximation we can prove the
recursion formulae. y :
We consider the cohomology groups He(Sn, My), H*(Sn, My) and

define H'(Sn, M) as before. This is a semi simple module for the coho-
mology.
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The theorem 3 extends to this situation without change. We have
a small addendum: If denote by ZWV'*) € QX the subgroup of those
numbers which are units at the primes dividing N. We have the homo-
morphism r : ZWNX) 5 (Z/NZ)*

On each absolutely irreducible component I1y the Hecke operators T'(z,u.)
act by a scalar w(z) € Or and the map z — w(z) factors over r and in-
duces a character w(Ily) : (Z/NZ)* — (Or)*. This character is called
the central character of Ily.

The following things will be explained in greater detail in the class

Now we exploit the fact, that the Riemann surface I'(N)\ X is in fact
the space of complex points of the moduli scheme My — Spec(Z[1/N]).
On this moduli scheme we have the universal elliptic curve with N level
structure

&
l
My

On & we have the constant ¢-adic sheaf Z,. For ¢ = 0, 1,2 we can con-
sider the ¢- adic sheaves R'm.(Z¢) on My. We have the spectral sequence

Hp(MN X @,R%‘u(Zz)) = Hn(g X @,Ze).

We can take the fibered product of the universal elliptic curve
5<n) ZSX]WNSX "'XMNE‘"—N>MN

where n is the number of factors. This gives us a more general spectral
sequence

HP(My x Q, RN +(Ze)) = H™(E™ x Q, Zs).
The stalk R9mn «(Z¢)y ) of the sheaf Ry «(Z¢) in a geometric point

y of Mx is the ¢g-th cohomology Hq(é'é"),Zg) and this can be computed
using the Kuenneth formula

HUEW Z)) = P H(Ey,Ze) ® H(E), L) - ® H™ (£, L),

a1,a2...,an,

where the a; = 0, 1,2 and sum up to q. We have H°(&,, Z¢) = Z¢(0), H*(£y,Z¢) =
Z¢(—1) and the most interesting factor is H'(E,,Z,) which is a free Z,
module af rank 2.

This tells us that the sheaf decomposes into a direct sum according to
the type of Kuenneth summands. We also have an action of the symmetric
group Sy which is obtained from the permutations of the factors in £ ()
which also permutes the types. We are mainly interested in the case ¢ = n
and then we have the special summand where a1 = a2 -+ = a, = 1. This
summand is invariant under S,, and contains a summand on which S, acts
by the signature character o : S, — {£1}. This defines a unique subsheaf
R" 7y n(Ze)(0) C R"Txn(Ze¢) and hence we get an inclusion

H'(My X Q, R T n(Ze) (o) — H" ™ (E™ x Q, Ze)

and we can do the same thing for the cohomology with compact supports.

100



Now I will explain:

A) If we extend the scalars from Q to C then then extension of R" 7. »(Q¢)(0)
is isomorphic to the restriction of M,, ® Q; to the etale topology.

B) The Hecke operators T}, for p fN are coming from algebraic corre-
spondences T, C My X My and induce endomorphisms T, : Hl(MN ®
Q, R™y n(Z4)(0)) = H (MNn ® Q, R" 7.0 (Z¢)(0)) which commute with
the action of Gal(Q/Q) on the cohomology.

C) This tells us that after extension of the scalars of the coefficient
system we get

H'(Mn(C), M ® Q¢) = H' (My x Q, R"mv.n(Qe)(0))
and this gives us the structure of a Gal(Q/Q) x Hr on H*(Mn(C), M, ®
Qo).

D) The operation of the Galois group on H'(My(C), M, ® Q) is
unramified outside IV, therefore we have the conjugacy class ®, ! for all
p /N as endomorphism of H*(My(C), M, ® Q).

Now we use another fact, which will be explained in Chapter III. We
also can define a Hecke algebra H,, for the primes p|N, and hence we get
an action of a larger Hecke algebra

large __ !
W~ @y
p

and this algebra commutes with the action of the Galois group.

We now apply our theorem 2 to the cohomology H (Mx (C), M, ®Q),
as a module under this large Hecke algebra. Then the isotypical summands
will be invariant under the Galois group.

Theorem 4: a) The multiplicity of an irreducible representation
Iy € Coh(Mn(C), Mn,r,) is two.
b) This gives a product decomposition

H{ (Mn(C), My, ® L1) = Hn, @ W(IIy),,

where Hri, is irreducible of type Il and where W (Ily) is a two dimensional
Gal(Q/Q) module.
The module W (Ily) is unramified outside N and

tr(®, W (ILy)) = Almp), det(®,, ' [W (L)) = p"w(Ily) (p)

This theorem is much deeper than the previous ones. The assertion
a) follows from the theory of automorphic forms on Glz and b) requires
some tools from algebraic geometry. We have to consider the reduction
My x Spec(F,) and to look at the reduction of the Hecke operator Tj,
modulo p. I will resume this discussion in Chap. V.

I want to discuss some applications.
A) To any isotypical component IIy we can attach an ( so called au-
tomorphic) L function

L(vas) = HL(TFP,S)

where for p fN we define

1
T 1= A(mp)p—* + prlw(Ily) (p)p2°

L(mp, s)

101



and for p|N we have

1—pntlw(Iis)(p)p—*

—rt————  if 7, is a Steinberg module
L(7Tp7 S) =
1 else

This L-function, which is defined as an infinite product is holomorphic
for R(s) >> 0 it can written as the Mellin transform of a holomorphic
cusp form F' of weight n + 2 and this implies that

I'(s)

2m®

A(IL, s) = L(Iy, s)
has a holomorphic continuation into the entire complex plane and satisfies
a funtional equation

A(Ily, s) = W(IIp) (N (IT;))* "2 ATy, + 2 — 5)

Here W (Il) is the so called root number, it can be computed from
the 7, where p|N, its value is £1, the number N(IIy) is the conductor of
II; it is a positive integer, whose prime factors are contained in the set of
prime divisors of N.

B) But we also can interpret an isotypic component as a submotive in
H" (™ x Q,7Z), this is the so called Scholl motive.

If we apply the results of Deligne in Weil II, which have been proved
in the winter term 2003/4, we get the estimate

|L(A\(mp))| < 2p™FH/2

for any embedding ¢ of L into C.
End of probably removed section

2.2.5 The /-adic Galois representation in the easiest non triv-
ial case

Again we consider the module M = Mo[—10]. We choose a prime
£ and for some reason let us assume ¢ > 7. Then we can consider the
cohomology groups

HY(D\H, M /(" M)
and the projective limit

HY(T\H,M ® Z) = lim H'(D\H, M /(" M).

Now it is known that the quotient space is the "moduli space” of
elliptic curves, this is an imprecise and even incorrect statement, but it
contains a lot of truth. What is true is that we can define the moduli
stack S/ Spec(Z) of elliptic curves, this is a smooth stack and it has the
universal elliptic curve £ — S over it.

We can define etale torsion sheaves (M /" M).; on this stack and we
know that

H} (S x Spec(Z) Q, (M/L"M)er) = H'(T\H, M10/£" Mo).

On these etale cohomology groups we have an action of the Galois group.
Using correspondences we can define Hecke operators T}, for all p # ¢,
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they induce endomorphism on the etale cohomology and they commute
with the action of the Galois group.
We denote this action of the Galois group as a representation

pn: Gal(@/Q) = GI(Hey(S X spec(z) Q, (M/L" M).r)).
This representation is unramified outside ¢, and this means:
The finite extension K™ /Q for which Gal(Q/K ™) is the kernel of
pn is unramified outside ¢.
By transport of structure we have the same projective system of Hecke x Galois
modules on the right hand side.

We recall our fundamental exact sequence, the Galois groups acts on
the individual terms of this sequence, we get projective systems of Galois-
modules and passing to the limit yields

pr: Gal(Q/Q) — GI(H! (I\H, M ® Z¢))

and

po : CGal(Q/Q) — G1(Zeio).

The field K, = J,, Klf") defines the kernel Gal(Q/Kj), the exten-
sion K,/Q is unramified at all primes p # ¢. If p is a prime in Ok,
which lies above then the geometric Frobenius ®, is the unique element
in Gal(K,/Q) which fixes p and induces x — =7 on the residue field
Ok, /p. This element defines a unique conjugacy class ®, in Gal(K,/Q).

Theorem(Deligne) For any prime p # £ we have

po(®p) =p''1d

and

det(Id — p(®p)t H (T\HL, M © Z¢)) = 1 — 7(p)t + p'*#?

This is a special case of the general theorem stated in the previous
section and it one of the aims of the subject treated in this book to
generalize this theorem to larger groups.

We conclude by giving a few applications.

A) The function z — A(z) is a function on the upper half plane
H = {2|(z) > 0} and it satisfies
AR = (4 0)A()

and this means that it is a modular form of weight 12. Since it goes
to zero if z = iy — oo it is even a modular cusp form.

For such a modular cusp form we can define the Hecke L-function

['(s) T(n) _
L(A,s) / Azyy* (QW)s; ns 27T Hl—T s_|_p11 2s

the product expansion has been discovered by Ramanujan and has been
proved by Mordell and Hecke.

Now it is in any textbook on modular forms that the transformation
rule



A(—%) NG

implies that L(A,s) defines a holomorphic function in the entire s
plane and satisfies the functional equation

L(A,s) = (=1)?L(A,12 — s) = L(A, 12 — ).

This function L(A,s) is the prototype of an automorphic L-function.
The above theorem shows that it is equal to a ”motivic” L-function. We
gave some vague explanations of what this possibly means: We can in-
terpret the projective system (M/("/\;l)et as the {—adic realization of a
motive:

M =Sym'""(R'(r: € = 9))

(All this is a translation of Deligne‘s reasoning into a more sophisti-
cated language.)

It is a general hope that “motivic” L-functions L(M, s) have nice prop-
erties as functions in the variable s (meromorphicity, control of the poles,
functional equation). So far the only cases, in which one could prove
such nice properties are cases where one could identify the "motivic” L-
function to an automorphic L function. The greatest success of this strat-
egy is Wiles‘ proof of the Shimura-Taniyama-Weil conjecture, but also the
Riemann (-function is a motivic L— function and Riemann‘s proof of the
functional equation follows exactly this strategy.

B) But we also have a flow of information in the opposite direction.
In 1973 Deligne proved the Weil conjectures which in this case say that
the two roots of the quadratic equation

2* —7(p)z+p'' =0
have absolute value p*'/2, i.e. they have the same absolute value. This
implies the famous Ramanujan- conjecture

7(p) < 2p''/?

and for more than 50 years this has been a brain-teaser for mathe-
maticians working in the field of modular forms.
C) We consider the Galois representation

p: Gal(Q/Q) — GI(H"(T\H, M ® Z))

and and its sub and quotient representations
pr: Gal(Q/Q) — GI(H (I\H, M ® Z¢)), po : Gal(Q/Q) — Gl(Zseio).

The representation ps is the /— adic realization of the Tate-motive
Z(—11) (For a slightly more precise explanation I refer to MixMot.pdf on
my home-page). On Z,(—1) = H*(P' x Q,Z,) the Galois group acts by
the Tate-character

Gal(Q/Q) — Gal(Q((e=)/Q) -2 7.

where Q((¢e) is the cyclotomic field of all £"-th roots of unity (n — o0).
We identify Gal(Q((e~)/Q) = Z;, the identification is given by the map
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x> (¢ ¢%) and then a(z) = z~*. Hence the first assertion in Delignes

theorem simply says:
oo = ot

We say a few words concerning

o Gal(Q/Q) — GI(H} (T\H, M ® Zy)).

It is easy to see that the cup product provides a non degenerate alter-
nating pairing

<, > HY(D\H,M ® Z) x H' (T\H, M ® Z¢) — Z¢(—11)
and clearly for any o € Gal(Q/Q) we must have

< p(o)u, plo) >= o' (o) < u,v > .
This means we have det(p(0)) = a'' (o) and we can ask what is the im-
age of Gal(Q/Q) in GI(H}(T\H, M ®Z,) = Glz2(Z,). We ask a seemingly
simpler question and we want to understand the image of

P mod ¢ Gal(Q/Q) — GI(H (D\H, M ®@ F,) = Gla(Fy).

This question is discussed in the paper ” On /f-adic representations and
congruences for coefficients of modular forms,” Springer lecture Notes 350,
Modular Functions of one Variable III by H.P.F. Swinnerton-Dyer.

Here we can say that the image of this homomorphism composed with
the determinant will be (IF‘,{X)11 C F. It is shown in the above paper that
for £ # 2,3,5,7,23,691 the image of the Galois group will simply be as
large as possible, namely it will be the inverse image of (F) )

We can apply the Manin-Drinfeld principle and conclude that after
tensorization by Q. the representation p ® Q splits

Pp® Qe =p1 ®Qr P Qrern(—11).

In section 2.2.3 we have seen that we have such a splitting also for the
integral cohomology, i.e. for the module H*(I'\H, M@ Z¢) provided £ is
not one of the small primes, which have been inverted and ¢ # 691.

But if £ = 691 then we have seen in 2.2.3 that we have a homomorphism

31 Z/(691)(—11) < H(D\H, Mz o1)),

this is a homomorphism of Galois-modules. This means that the repre-
sentation of the of the Galois group modulo ¢ = 691 is of the form

oo s Gal@/0) ()
a(o)t U(U))

pr, mod 691(0) = ( 0 1
The field Kéé)l contains the 691— th roots of unity and is an unramified

extension of degree 691, in a sense this extension is now obtained by an
explicit construction.
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