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Abstract

We explain some basic facts in the cohomology theory of arithmetic
groups. For this need some concepts and results from homological algebra
and from the cohomology theory of sheaves, for this I refer to the first four
chapters of the [book].This part of the book can be considered as chapter
I of this volume.

We also need some concepts and results from the theory of linear alge-
braic groups. I will explain these facts in terms of various examples and
I hope that this discussion of examples will generate enough familiarity
with these ideas. For the details I refer to the literature for instance the
book of A. Borel or J. Humphreys.
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1 Affine algebraic groups over Q.

A linear algebraic group G/Q is a subgroup G ⊂ GLn, which is defined as
the set of common zeroes of a set of polynomials in the matrix coefficients
where in addition these polynomials have coefficients in Q . Of course
we cannot take just any set of polynomials the set has to be somewhat
special before its common zeroes form a group. The following examples
will clarify what I mean:

1.) The group GLn is an algebraic group itself, the set of equations is
empty. It has the subgroup Sln ⊂ GLn, which is defined by the polynomial
equation

Sln = {x ∈ GLn | det(x) = 1}

2.) Another example is given by the orthogonal group of a quadratic
form

f(x1, . . . , xn) =

n∑
i=

aix
2
i

where ai ∈ Q and all ai 6= 0 (this is actually not necessary for the follow-
ing). We look at all matrices

α =

 a11 . . . a1n

...
...

an1 . . . ann


which leave this form invariant, i.e.

f(αx) = f(x)

for all vectors x = (x1, . . . , xn). This defines a set of polynomial equations
for the coefficient aij of α.

3.) Instead of taking a quadratic form — which is the same as taking
a symmetric bilinear form — we could take an alternating bilinear form

〈x, y〉 =〈x1, . . . , x2n, y1, . . . y2n〉 =
n∑
i=1

(x1yi+n − xi+nyi〉 = f〈x, y〉.

This form defines the symplectic group:

Spn =
{
α ∈ GL2n | 〈αx, αy〉 = 〈x, y〉

}
.

1.1. Important remark: The reader may have observed that I did not
specify a field (or a ring) from which I take the entries of the matrices.
This is done intentionally, because we may take the entries from any ring
R containing the rational numbers Q. In other words: for any algebraic
group G/Q ⊂ GLn and any ring R containing Q we may define

G(R) ⊂ GLn(R)

as the group of those matrices whose coefficients satisfy the required poly-
nomial equations.
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Adopting this point of view we can say that

A linear algebraic group G/Q defines a functor from the category of Q-
algebras (i.e. commutative rings containing Q) into the category of groups.

4.) Another example is obtained by the so-called restriction of scalars.
Let us assume we have a finite extension K/Q, we consider the vector
space V = Kn. This vector space may also be considered as a Q-vector
space V0 of dimension n[K : Q] = N . We consider the group

GLN/Q.

Our original structure as a K-vector space may be considered as a map

Θ : K −→ EndQ(V0),

and the group GLn(K) is then the subgroup of elements in GLN (Q) which
commute with all the elements of Θ(x), x ∈ K. Hence we define the
subgroup

G/Q = RK/Q(GLn) = {α ∈ GLN | α commutes with Θ(K)}

and G(Q) = GLn(K). For any Q-algebra R we get

G(R) = GLn(K ⊗Q R).

This can also be applied to an algebraic subgroup H/K ↪→ GLn/K, i.e. a
subgroup that is defined by polynomial equations with coefficients in K.

Our definition of a linear algebraic group is a little bit provisorial. If
we consider for instance the two linear algebraic groups

G1/Q =

{(
1 x
0 1

)}
⊂ Gl2

G2/Q =


 1 0 x

0 1 0
0 0 1

 ⊂ GL3

then we would like to say, that these two groups are isomorphic. They
are two different “realizations” of the additive group Ga/Q. We see that
the same linear algebraic group may be realized in different ways as a
subgroup of different GLN ’s.

Of course there is a concept of linear algebraic group which does not
rely on embeddings. The understanding of this concept requires a little bit
of affine algebraic geometry. The drawback of our definiton here is that
we cannot define morphism between linear algebraic group. Especially
we do not know when they are isomorphic. I assert the reader that the
general theory implies that a morphism between two algebraic groups is
the same thing as a morphism between the two functors form Q-algebras
to groups. In some sense it is enough to give this functor. For instance,
we have the multiplicative group Gm/Q given by the functor

R −→ R×

and the additive group Ga/Q given by R→ R+.
We can realize (represent is the right term) the the group Gm/Q as

Gm/Q =

{(
t 0
0 t−1

)}
⊂ Gl2
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1.1 Affine groups schemes

We say just a few words concerning the systematic development of the
theory of linear algebraic groups.

For any field k an affine k-algebra is a finitely generated algebra A/k,
i.e. it is a commutative ring with identity, containing k, the identity of
k is equal to the identity of A, which is finitely generated over k as an
algebra. In other words

A = k[x1, x2, . . . , xn] = k[X1, X2, . . . , Xn]/I,

where they Xi are independent and where I is a finitely generated ideal
of polynomials in k[X1, . . . , Xn].

Such an affine k-algebra defines a functor from the category of k alge-
bras to the category of sets

B 7→ Homk(A,B).

A structure of a group scheme on A/k consists of the following data:
a) A k homomorphism m : A→ A⊗k A (the comultiplication)
b) A k-valued point e : A→ k (the identity element)
c) An inverse inv : A→ A,
which satisfy certain requirements:
We have Homk(A⊗kA,B) = Homk(A,B)× Homk(A,B) and hence

m defines a map tm : Homk(A,B)× Homk(A,B)→ Homk(A,B).
The requirement is that for all B this composition map tm defines a

group structure on Homk(A,B). The k valued point e is the identity and
inv yields the inverse.

I leave it to the audience to figure out what this means for m, e, inv.
An affine k together with such a collection m, e, inv is called an affine
group scheme.

Now it is clear what a homomorphism between affine group schemes
is.

It is a not entirely obvious theorem that for any affine group scheme
G/k = (A/k,m, e, inv) we can find a faithful representation i : G/k ↪→
Gl(V ).

We may also consider linear algebraic group over other fields K. This
means that we only require the coefficients of the defining polynomials to
be in this other field. We write G/K for a group defined over K. Then we
have the permission to consider the groups G(R) for any ring containing
K.

If we have a field L ⊃ K and a linear group G/K then the group
G/L = G×K L is the group over L where we forget that the coefficients
of the equations are contained in K. The group G ×K L is the base
extension from G/K to L

1.1.1 Tori, their character module,...

A special class of algebraic groups is given by the tori. An algebraic group
T/K over a field K is called a split torus if it is isomorphic to a product
of Gm-s. It is called a torus if it becomes a split torus after a suitable
finite extension of the ground field, i.e we have T ×K L

∼−→ Grm/L.
If we take an arbitrary finite field extension L/Q we may consider the

functor
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R→ (L⊗Q R)×.

It is not hard to see that this functor can be represented by an alge-
braic group over Q, which is denoted by RL/Q(Gm/L) and called the Weil
restriction of Gm/L. We propose the notation

RL/Q(Gm/L) = GL/Qm (1)

The reader should try to prove that for a finite extension L̃/L which is
normal over Q we have

GL/Qm ×Q L̃
∼−→ (Gm/L̃)[L:Q]

and this shows that GL/Qm is a torus .

A torus T/K is called anisotropic if is does not contain a non trivial
split torus. Any torus C/K contains a maximal split torus S/K and a
maximal torus S/K. The multiplication induces a map

m : S × C1 → C

this is a surjective (in the sense of algebraic groups) homomorphism
whose kernel is a finite algebraic group. We call such map an isogeny and
write that C = S · C1.

We give an example. Our torus RL/Q(Gm/L) contains Gm/Q as a
subtorus: For any ring R containing Q we have R× = Gm(R) ∈ (R⊗L)×.
On the other and we have the norm map NL/Q : (R⊗L)× → R× and the
kernel defines a subgroup

R
(1)

L/Q(Gm/L) ⊂ RL/Q(Gm/L)

and it is clear that

m : Gm ×R(1)

L/Q(Gm/L)→ RL/Q(Gm/L)

has a finite kernel which is the finite algebraic group of [L : Q]-th roots of
unity.

For any torus T = Grm we define the character module as the group of
homomorphisms

X∗(T ) = Hom(T,Gm).. (2)

If the torus is split, i.e. T = Grm then X∗(T ) = Zr and the identification
is given by (n1, n2, . . . , nr) 7→ {(x1, x2, . . . , xr) 7→ xn1

1 xn2
2 . . . xnrr }.

It is a theorem that for any torus we can find a finite, separable, normal
extension L/K such that T ×K L splits. Then it is easy to see that we
have an action of the Galois group Gal(L/K) on X∗(T ×K L) = Zr. If
we have two tori T1/K, T2/K which split over L

HomK(T1, T2)
∼−→ Hom Gal(L/K)(X

∗(T2 ×K L), X∗(T1 ×K L)) (3)

To any Gal(L/K)− action on Zn we can find a torus T/K which splits
over L and which realizes this action.

A homomorphism φ : T1/K → T2 is called an isogeny if dim(T1) =
dim(T2) and if tφ : X∗(T2)→ X∗(T1) is injective.
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1.1.2 Semi-simple groups, reductive groups,.

An important class of linear algebraic groups is formed by the semisimple
and the reductive groups. I do not want to give the precise definition here.
Roughly, a linear group is reductive if it does not contain a non trivial
normal subgroup which is isomorphic to a product of groups of type Ga.
A group is called semisimple, if it is reductive and does not contain a non
trivial torus in its centre.

For example the groups Sln, Spn are semi simple. The groups SO(f)
are semi-simple provided n ≥ 3. The groups Gln and especially the mul-
tiplicative group Gl1/Q = Gm/Q are reductive.

Any reductive group G/Q (or over any field of characteristic zero) has
a central torus C/Q and this central torus contains a maximal split torus
S. The derived G(1)/Q is semi simple and we get an isogeny

G(1) × C1 × S → G

or briefly G = G(1) · C1 · S.
If for instance G = RL/Q(Gln/L) then G(1) = RL/Q(Sln/L) and C =

RL/Q(Gm/L) and this yields the product decomposition up to isogeny

G = G(1) ·R(1)

L/Q(Gm/L) ·Gm.

1.2 k-forms of algebraic groups

Exercise: 1) Consider the following two quadratic forms over Q:

f(x, y, z) = x2 + y2 − z2 , f1(x, y, z) = x2 + y2 − 3z2.

Prove that the first form is isotropic. This means there exists a vector
(a, b, c) ∈ Q3 \ {0} with

f(a, b, c) = 0.

Show that the second form is anisotropic, i.e. it has no such vector.
2) Prove that the two linear algebraic group G/Q = SO(f)/Q and

G1/Q = SO(f1)/Q cannot be isomorphic. (Hint: This is not so easy since
we did not define when two groups are isomorphic.)

Here is some advice: In general we call an element e 6= u ∈ G(Q) unipo-
tent if it is unipotent in GLn(Q) where we consider G/Q ↪→ GLn/Q. It
turns out that this notion of unipotence does not depend on the embedding.

Now it is possible to show that our first group G(Q) = SO(f)(Q) has
unipotent elements, and G1(Q) does not. Hence these two groups cannot be
isomorphic.

3) Prove that the two algebraic groups G×QR and G1×QR are isomorphic,
and therefore the two groups G(R) and G1(R) are isomorphic.

In this example we see, that we may have two groups G/k,G1/k which
are not isomorphic but which become isomorphic over some extension L/k.
Then we say that the groups are k-forms of each other. To determine the
different forms of a given group G/k is sometimes difficult one has to use
the concepts of Galois cohomology.

For a separable normal extension L/k we have the almost tautological
description

G(k) = {g ∈ G(L)|σ(g) = g for all elements in the Galois group Gal(L/k)}.
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Now let we can consider the functor Aut(G) : It attaches to any field
extension L/k the group of automorphisms Aut(G)(L) of the algebraic
group G ×k L. We denote this action by g 7→ σ(g) = gσ. Note that this
notation gives us the rule g(στ) = (gτ )σ. A 1-cocycle of Gal(L/k) with
values in Aut(G) is a map c : σ 7→ cσ ∈ Aut(G)(L) which satisfies the
cocycle rule

cστ = cσc
σ
τ

Now we define a new action of Gal(L/k) on G(L): An element σ acts
by

g 7→ cσg
σg−1
σ

We define a new algebraic group G1/k: For any extension E/k we have
an action of Gal(L/k) on E ⊗k L and we put

G1(E) = {g ∈ G(E ⊗k L)|g = cσg
σg−1
σ }

For the trivial cocycle σ 7→ 1 this gives us back the original group.
It is plausible and in fact not very difficult to show that E → G1(E) is

in fact represented by an algebraic group. This group is clearly a k-form
of G/k.

We can define an equivalence relation on the set of cocycles, we say
that

{σ 7→ cσ} ' {σ 7→ c′σ}
if and only if we can find a a ∈ G(L) such that

c′σ = a−1cσa
σ for all σ ∈ Gal(L/k)

We define H1(L/k,Aut(G)) as the set of 1-cocycles modulo this equiv-
alence relation. If we have a larger normal separable extension L′ ⊃ L ⊃ k
then we get an inclusion H1(L/k,Aut(G)) ↪→ H1(L′/k,Aut(G)). If k̄s is
a separable closure of k we can form the limit over all finite extensions
k ⊂ L ⊂ k̄s and put

H1(k̄s/k,Aut(G)) = lim
→
H1(L/k, Aut(G))

This set is isomorphic to the set of isomorphism classes of k-forms of G/k.
We may apply the same concepts in a slightly different situation. A

k− algebra D over the field k is called a central simple algebra, if it has
a unit element 6= 0, if it is finite dimensional over k, if its centre is k
(embedded via the unit element) and if it has no non trivial two sided
ideals. It is a classical theorem, that such an algebra over a separably
closed field is isomorphic to a full matrix algebra Mn(k). Hence we can
say over an arbitrary field k, that the central simple algebra of dimension
n2 are the k-forms of Mn(k).

For any algebraic groupG/k we may consider the adjoint group Ad(G),
this is the quotient of G/k by its center. It can be shown, that this is
again an algebraic group over k. It is clear that we have an embedding

Ad(G)→ Aut(G)

which for any g ∈ Ad(G)(L) is given by

g 7→ {x 7→ g−1xg}.
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A form G1/k of a group G/k is called an inner k-form, if it is in the image
of

H1(k̄s/k,Ad(G))→ H1(k̄s/k,Aut(G)).

We call a semi simple group G/k anisotropic if it does not contain
a non trivial split torus (See exercise 1.2.1.) In our example below the
group of elements of norm 1 is semi simple and anisotropic if and only if
D(a, b) is a field.

I want to give an example, we consider the algebraic group Gl2/Q we
consider two integers a, b 6= 0, for simplicity we assume that b is not a
square. Then we have the quadratic extension L = Q(

√
b). The element(

0 a
1 0

)
defines the inner automorphism

Ad(

(
0 a
1 0

)
) : g 7→

(
0 a
1 0

)
g

(
0 a
1 0

)−1

of the group Gl2, let σ be its non trivial automorphism. Then σ 7→

Ad(

(
0 a
1 0

)
) and IdGal(L/k) 7→ IdAut( Gl2)(L) is a 1-cocycle and we get a

Q form of our group.
Hence we get a Q form G1 = G(a, b)/Q of our group Gl2. It is an

inner form.

Now we can see easily that group of rational points of our above
group G(a, b)(Q) is the multiplicative group of a central simple algebra
D(a, b)/Q. To get this algebra we consider the algebra M2(L) of (2,2)-
matrices over L. We define

D(a, b) = {x ∈M2(L)|x = Ad(

(
0 a
1 0

)
)xσAd(

(
0 a
1 0

)
)−1}.

We have an embedding of the field L into this algebra, which is given
by

u 7→
(
u 0
0 uσ

)
Let ub the image of

√
b under this map. We also have the element ua =(

0 a
1 0

)
in this algebra.

Now I leave it as an exercise to the reader that as a Q vctor space

D(a, b) = Q⊕Qub ⊕Qua ⊕Quaub
We have the relation u2

a = a, u2
b = b, uaub = −ubua.

Of course we should ask ourselves: When is D(a, b) split, this means
isomorphic to M2(Q). To answer this question we consider the norm ho-
momorphism, which is defined by

x+yub+zua+waaub 7→ (x+yub+zua+waaub)(x−yub−zua−waaub) = x2−y2b−z2a+w2ab.

It is easy to see that D(a, b) splits if and only if we can find a non zero
element whose norm is zero.
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If we do this with R as base field and if we take a = −1, b = −1 then
we get the Hamiltonian quaternions, which is non split.

We may also look at the p-adic completions Qp of our field. Then it
is not difficult to see that D(a, b) splits over Qp if p 6= 2 and p /| ab. Hence
it is clear that there is only a finite number of primes p for which D(a, b)
does not split.

If we consider R as completion at the infinite place, and the Qp as the
completions at the finite places, then we have

The algebra D(a, b) splits if and only if it splits at all places. The
number of places where it does not split is always even.

The first assertion is the so called Hasse-Minkowski principle, the sec-
ond assertion is essentially equivalent to the quadratic reciprocity law.

1.3 The Lie-algebra

We need some basic facts about the Lie-algebras of algebraic groups.
For any algebraic group G/k we can consider its group of points with

values in k[ε] = k[X]/(X2). We have the homomorphism k[ε]→ k sending
ε to zero and hence we get an exact sequence

0→ g→ G(k[ε])→ G(k)→ 1.

The kernel g is a k-vector space, if the characteristic of k is zero, then
its dimension is equal to the dimension ofG/k. It is denoted by g = Lie(G).

Let us consider the example of the group G = SO(f), where f : V× →
k is a non degenerate symmetric bilinear form. In this case an element in
G(k[ε]) is of the form Id + εA,A ∈ End(V ) for which

f((Id + εA)v, (Id + εA)w) = f(v, w)

for all v, w ∈ V. Taking into account that ε2 = 0 we get

ε(f(Av,w) + f(v,Aw)) = 0,

i.e. A is skew with respect to the form, and g is the k-vector space of skew
endomorphisms. If we give V a basis and if f =

∑
x2
i with respect to this

basis then this means the the matrix of A is skew symmetric.
If we consider G = Gln/k then g = Mn(k), the Lie-bracket is given by

(A,B) 7→ AB −BA (4)

We have some kind of a standard basis for our Lie algebra

g =

n⊕
i=1

kHi ⊕
⊕
i,j,i 6=j

kEi,j (5)

where Hi (resp.Ei,j) are the matrices

Hi =



0 0 . . . 0 0 0
0 0 . . . 0 0 0

0 0
. . . 0 0

0 0 0 1 0 0

0 0 0 . . .
. . . 0

0 0 0 0 0 0


resp. Ei,j =



0 0 . . . 0 0 0
0 0 . . . 0 0 0

0 0
. . . 1 0

0 0 0 0 0 0

0 0 0 . . .
. . . 0

0 0 0 0 0 0
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and the only non zero entries (=1) is at (i, i) on the diagonal (resp. and
(i, j) off the diagonal.)

For the group Sln/k the Lie-algebra is g(0) = {A ∈Mn(k)| tr(A) = 0}
and again we have a standard basis

g(0) =

n−1⊕
i=1

k(Hi −Hi+1)⊕
⊕
i,j,i 6=j

kEi,j (6)

A representation of a group scheme G/k is a k-homomorphism

ρ : G→ Gl(V )

where V/k is a k− vector space. Then it is clear from our considerations
above that we have a ”derivative” of the representation

dρ : g = Lie(G/k)→ Lie(Gl(V )) = End(V )

this is k-linear.
Every group scheme G/k has a very special representation, this is the

the Adjoint representation. We observe that the group acts on itself by
conjugation, this is the morphism

Inn : G×k G→ G

which on T valued points is given by

Inn(g1, g2) 7→ g1g2(g1)−1.

This action clearly induces a representation

Ad : G/k → Gl(g)

and this is the adjoint representation. This adjoint representation has a
derivative and this is a homomorphism of k vector spaces

DAd = ad : g→ End(g).

We introduce the notation: For T1, T2 ∈ g we put

[T1, T2] := ad(T1)(T2).

Now we can state the famous and fundamental result

Theorem 1.1. The map (T1, T2) 7→ [T1, T2] is bilinear and antisymmet-
ric. It induces the structure of a Lie-algebra on g, i.e. we have the Jacobi
identity

[T1, [T2, T3]] + [T2, [T3, T1]] + [T3, [T1, T2]] = 0.

We do not prove this here. In the case G/k = Gl(V ) and T1, T2 ∈
Lie(Gl(V ) = End(V ) we have [T1, T2] = T1T2−T2T1 and in this case the
Jacobi Identity is a well known identity.

On any Lie algebra we have a symmetric bilinear form (the Killing
form)

B : g× g→ k (7)

which is defined by the rule

B(T1, T2) = trace(ad(T1) ◦ ad(T2))

11



A simple computation shows that for the examples g = Lie(Gln) and g(0) =
Lie(Sln) we have

B(T1, T2) = 2n tr(T1T2)− 2 tr(T1) tr(T2) (8)

we observe that in case that one of the Ti is central, i.e.= uId we have
B(T1, T2) = 0. In the case of g(0) the second term is zero.

It is well known that a linear algebraic group is semi-simple if and only
if the Killing form B on its Lie algebra is non degenerate.

1.4 Structure of semisimple groups over R and
the symmetric spaces:

We need some information concerning the structure of the group G∞ =
G(R) for semisimple groups over G/R. We will provide this information
simply by discussing a series of examples.

Of course the group G(R) is a topological group, actually it is even a
Lie group. This means it has a natural structure of a C∞ -manifold with
respect to this structure. Instead of G(R) we will very often write G∞.
Let G0

∞ be the connected component of the identity in G∞. It is an open
subgroup of finite index. We will discuss the

Theorem of E. Cartan: The group G0
∞ always contains a maximal

compact subgroup K ⊂ G0
∞ and all maximal compact subgroups are con-

jugate under G0
∞. The quotient space X = G0

∞/K is again a C∞-manifold.
It is diffeomorphic to an Rn and carries a Riemannian metric which is in-
variant under the operation of G0

∞ from the left. It has negative sectional
curvature. The maximal compact subgroup K ⊂ G0

∞ is connected and
equal to its own normalizer. Therefore the space X can be viewed as the
space maximal compact subgroups in G0

∞.

This theorem is fundamental. To illustrate this theorem we consider
a series of examples:

1.4.1 The groups Sld(R) and Gln(R):

The group Sld(R) is connected. If K ⊂ Sld(R) is a closed compact sub-
group, then we can find a positive definite quadratic form

f : Rn → R,

such that K ⊂ SO(f,R). since the group SO(f,R) itself is compact, we
have equality. Two such forms f1, f2 define the same maximal compact
subgroup if thre is a λ > 0 in R such that λf1 = f2.

This is rather clear, if we believe the first assertion about the existence
of f . The existence of f is also easy to see if one believes in the theory of
integration on K. This theory provides a positive invariant integral

Cc(K) −→ R

ϕ −→
∫
K

ϕ(k)dk
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with
∫
ϕ > 0 if ϕ ≥ 0 and not identically zero (positivity),

∫
ϕ(kk0)dk =∫

ϕ(k0k)dk =
∫
ϕ(k)dk (invariance).

To get our form f we start from any positive definite form f0 on Rn
and put

f(x) =

∫
K

f0(kx)dk.

A positive definite quadratic form on Rn is the same as a symmetric
positive definite bilinear form. Hence the space of positive definite forms
is the same as the space of positive definite symmetric matrices

X̃ =
{
A = (aij) | A =t A,A > 0

}
.

Hence we can say that the space of maximal compact subgroups in Sld(R)
is given by

X = X̃/R∗>0.

It is easy to see that a maximal compact subgroup K ⊂ Sld(R) is equal to
its own normalizer (why?). If we view X as the space of positive definite
symmetric matrices with determinant equal to one, then the action of
Sld(R) on X = Sld(R)/K is given by

(g,A) −→ g A tg,

and if we view it as the space of maximal compact subgroups, then the
action is conjugation.

There is still another interpretation of the points x ∈ X. In our above
interpretation a point was a symmetric, positive definite bilinear form
< , >x on Rn up to a homothety. This bilinear form defines a transpose
g 7→tx g and hence an involution

Θx : g 7→ (txg)−1 (9)

Then the corresponding maximal compact subgroup is

Kx = {g ∈ Sln(R)|Θx(g) = g} (10)

This involution Θx is a Cartan involution, it also induces an involution
also called Θx on the Lie-algebra and it has the property that (See 7)

(u, v) 7→ B(u,Θx(v)) = BΘx(u, v) (11)

is negative definite. This bilinear form is Kx invariant. All these Cartan
involutions are conjugate.

If we work with Gln(R) instead then we have some freedom to define
the symmetric space. In this case we have the non trivial center R× and
it is sometimes useful to define

X = Gln(R)/SO(R) · R×>0 (12)

then our symmetric space has two components, a point is pair (Θx, ε)
where ε is an orientation. If we do not divide by R×>0 then we multiply
the Riemannian manifold X by a flat subspace and we get the above space
X̃.

A Cartan involution on Gln(R) is an involution which induces a Cartan
involution on Sln(R) and which is trivial on the center.
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Proposition 1.1. The Cartan involutions on Gln(R) are in one to one
correspondence to the euclidian metrics on Rn up to conformal equiva-
lence.

Finally we recall the Iwasawa decomposition. Inside Gln(R) we have
the standard Borel- subgroup B(R) of upper triangular matrices and it is
well known that

Gln(R) = B(R) · SO(R) · R×>0 (13)

and hence we see that B(R) acts transitively on X.

1.4.2 The Arakelow- Chevalley scheme (Gln/Z,Θ0)

We consider the case G = Gln and the special Cartan involution Θ0(g) =
(tg)−1 and look at it from a slightly different point of view.

We start from the free lattice L = Ze1⊕Ze2⊕ · · · ⊕Zen and we think
of Gln/Z as the scheme of automorphism of this lattice. If we choose an
euclidian metric < , > on  L ⊗ R then we call the pair (L,< , >) an
Arakelow vector bundle. up to homothety, we get a Cartan involution Θ
on Gln(R). We choose the standard euclidian metric with respect to the
given basis, i.e. < ei, ej >= δi,j . The the resulting Cartan involution is
the standard one: Θ0 : g 7→ (tg)−1. This pair (Gln/Z,Θ0) is called an
Arakelow- Chevalley scheme. (In a certain sense the integral structure of
Gln/Z and the choice of the Cartan involution are ”optimally adapted”)

In this case we find for our basis elements in (5)

BΘ0(Hi, Hj) = −2nδi,j + 2;BΘ0(Ei,j , Ek,l) = −2nδi,kδj,l (14)

hence the Ei,j are part of an orthonormal basis.
We propose to call a pair (L,< , >x) an Arakelow vector bundle over

Spec(Z)∪{∞} and (Gln,Θx) an Arakelow group scheme. The Arakelow
vector bundles modulo conformal equivalence are in one-to one correspon-
dence with the Arakelow group schemes of type Gln.

1.4.3 The group Sld(C)

We now consider the group G/R whose group of real points is G(R) =
Sld(C) (see 1.1 example 4)).

A completely analogous argument as before shows that the maximal
compact subgroups are in one to one correspondence to the positive defi-
nite hermitian forms on Cn (up to multiplication by a scalar). Hence we
can identify the space of maximal compact subgroup K ⊂ G(R) to the
space of positive definite hermitian matrices

X =
{
A | A =t A , A > 0 , detA = 1

}
.

The action of Sld(C) by conjugation on the maximal compact subgroups
becomes

A −→ g A tg

on the space of matrices.
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1.4.4 The orthogonal group:

The next example I want to discuss is the example of an orthogonal group
of a quadratic form

f(x1, . . . , xn) = x2
1 + . . .+ x2

m − x2
m+1 − . . .− x2

n.

Since at this point we consider only groups over the real numbers, we may
assume that our form is of this type.

In this case one has the usual notation

SO(f,R) = SO(m,n−m).

Of course we can use the same argument as before and see that for any
maximal compact subgroup K ⊂ SO(f,R) we may find a positive definite
form ψ

ψ : Rn −→ R
such that K = SO(f,R) ∩ SO(ψ,R). But now we cannot take all forms
ψ, i.e. only special forms ψ provide maximal compact subgroup.

We leave it to the reader to verify that any compact subgroup K fixes
an orthogonal decomposition Rn = V+ ⊕ V− where our original form f is
positive definite on V+ and negative definite on V−. Then we can take a
ψ which is equal to f on V+ and equal to −f on V−.

Exercise 3 a) Let V/R be a finite dimensional vector space and let f
be a symmetric non degenerate form on V. Let K ⊂ SO(f) be a compact
subgroup. If f is not definite then the action of K on V is not irreducible.

b) We can find a K invariant decomposition V = V− ⊕ V+ such that f
is negative definite on V− and positive definite on V+

In this case the structure of the quotient space G(R)/K is not so easy
to understand. We consider the special case of the form

x2
1 + . . .+ x2

n − x2
n+1 = f(x1, . . . , xn+1).

We consider in Rn+1 the open subset

X− = {v = (x1 . . . xn+1) | f(v) < 0} .

It is clear that this set has two connected components, one of them is

X+
− = {v ∈ X− | xn+1 > 0}

Since it is known that SO(n, 1) acts transitively on the vectors of a given
length, we find that SO(n, 1) cannot be connected. Let G0

∞ ⊂ SO(n, 1)
be the subgroup leaving X+

− invariant.
Now it is not to difficult to show that for any maximal compact sub-

group K ⊂ G0
∞ we can find a ray R∗>0 · v ⊂ X

(+)
− which is fixed by K.

(Start from v0 ∈ X(+)
− and show that R∗>0Kv0 is a closed convex cone

in X
(+)
− . It is K invariant and has a ray which has a “centre of gravity”

and this is fixed under K.)

For a vector v = (x1, . . . , xn+1) ∈ X(+)
− we may normalize the coor-

dinate xn+1 to be equal to one; then the rays R+
>0v are in one to one

correspondence with the points of the ball

◦
Dn=

{
(x1, . . . , xn) | x2

1 + . . .+ x2
n < 1

}
⊂ X(+)

− .

This tells us that we can identify the set of maximal compact subgroups
K ⊂ G0

∞ with the points of this ball. The first conclusion is that G0
∞/K '
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Dn is topologically a cell (diffeomorphic to Rn). Secondly we see that for
a v ∈ X+

− we have an orthogonal decompositon with respect to f

Rn+1 = 〈v〉+ 〈v〉⊥,

and the corresponding maximal compact subgroup is the orthogonal group
on 〈v〉⊥.

1.4.5 Special low dimensional cases

1) We consider the group Sl2(R). It acts on the upper half plane

H = {z | z ∈ C,=(z) > 0}

by

(g, z) −→ az + b

cz + b
, g =

(
a b
c d

)
∈ Sl2(R).

It is clear that the stabilizer of the point i ∈ H is the standard maximal
compact subgroup

K = SO(2) =

{(
cosϕ sinϕ
− sinϕ cosϕ

)}
.

Hence we have H = Sl2(R)/K. But this quotient has been realized as
the space of symmetric positive definite 2× 2-matrices with determinant
equal to one

x =

{(
y1 x1

x1 y2

) ∣∣ y1y2 − x2
1 = 1, y1 > 0

}
.

It is clear how to find an isomorphism between these two explicit realiza-
tions. The map (

y1 x1

x1 y2

)
−→ i+ x1

y2
,

is compatible with the action of Sl2(R) on both sides and sends the identity(
1 0
0 1

)
to the point i.

If we start from a point z ∈ H the corresponding metric is as follows:
We identify the lattices 〈1, z〉 = {a + bz | a, b ∈ Z} = Ω to the lattice
Z2 ⊂ R2 by sending 1→

(
1
0

)
and z →

(
0
1

)
. The standard euclidian metric

on C = R2 induces a metric on Ω ⊂ C, and this metric is transported to
R2 by the identification Ω⊗ R→ R2.

2) The two groups Sl2(R) and PSl2(R) = Sl2(R)/{±Id} give rise to
the same symmetric space. The group PSl2(R) acts on the space M2(R)
of 2 × 2-matrices by conjugation (the group Gl2(R) acts by conjugation
and the centre acts trivially) and leaves invariant the space

{A ∈M2(R) | trace(A) = 0} = M0
2 (R).

On this three-dimensional space we have a symmetric quadratic form

B : M0
2 (R) −→ R

B : A −→ 1

2
trace (A2)
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and with respect to the basis h =

(
1 0
0 −1

)
, e+ =

(
0 1
1 0

)
, e− =(

0 1
−1 0

)
, this form is x2

1 + x2
2 − x2

3.

Hence we see that SO(M0
2 (R), B) = SO(2, 1), and hence we have

an isomorphism between PSl2(R) and the connected component of the
identity G0

∞ ⊂ SO(2, 1). Hence we see that our symmetric space H =
Sl2(R)/K = PSl2(R)/K can also be realized (see ........) as disc

D = {(x1, x2) | x2
1 + x2

2 < 1}

where we normalized x3 = 1 on X
(+)
− as in ....... .

1.4.6 The group Sl2(C).

Recall that in this case the symmetric space is given by the positive definite
hermitian matrices

A =

{(
y1 z
z y2

) ∣∣ det(A) = 1, y1 > 0

}
.

In this case we have also a realization of the symmetric space as an upper
half space. We send(

y1 w
w y2

)
7−→

(
w

y2
,

1

y2

)
= (z, ζ) ∈ C× R>0

The inverse of this isomorphism is given by

(z, ζ) 7→
(
ζ + zz̄/ζ z/ζ
z/ζ 1/ζ

)
As explained earlier, the action of Gl2(C) on the maximal compact sub-
group given by conjugation yields the action

G(R)×X −→ X,

(g,A) −→ gAtg,

on the hermitian matrices. Translating this into the realization as an
upper half space yield the slightly scaring formula

G× (C× R>0) −→ C× R>0,

(g, (z, ζ)) −→

(
(az + b) (cz + d) + ac ζ2

(az + d) (cz + d) + cc ζ2
,

ζ

(az + d) (cz + d) + cc ζ2

)

1.3.4. The Riemannian metric: It was already mentioned in the
statement of the theorem of Cartan that we always have a G0

∞ invariant
Riemannian metric on X. It is not to difficult to construct such a metric
which in many cases is rather canonical.

In the general case we observe that the maximal compact subgroup is
the stabilizer of the point x0 = e ·K ∈ G0

∞/K = X. Hence it acts on the
tangent space of x0, and we can construct a k-invariant positive definite
quadratic form on this tangent sapce. Then we use the action of G0

∞ on
X to transport this metric to an arbitrary point in X: If x ∈ X we find
a g so that x = gx0, it defines an isomorphism between the tangent space
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at x0 and the tangent space at x. Hence we get a form on the tangent
space at x, which will not depend on the choice of g ∈ G0

∞.
In our examples this metric is always unique up to scalars.
a) In the case of the group Sld(R) we may take as a base point x0 ∈ X

the identity Id ∈ Sld(R). The corresponding maximal compact subgroup
is the orthogonal group SO(n). The tangent space at Id is given by the
space

Sym0
n(R) = TXId

of symmetric matrices with trace zero. On this space we have the form

Z −→ trace(Z2),

which is positive definite (a symmetric matrix has real eigenvalues). It
is easy to see that the orthogonal group acts on this tangent space by
conjugation, hence the form is invariant.

b) A similar argument applies to the group G∞ = Sld(C). Again the
identity Id is a nice positive definite hermitian matrix. The tangent space
consists of the hermitian matrices

TXId =
{
A | A =t A and tr(A) = 0

}
,

and the invariant form is given by

A −→ tr(AA).

c) In the case of the group G0
∞ ⊂ SO(f) where f is the quadratic form

f(x1, . . . , xn+1) = x2
1 + . . .+ x2

n − x2
n+1.

We realized the symmetric space as the open ball

◦
Dn= {(x1, . . . , xn) | x2

1 + . . .+ x2
n < 1}.

The orthogonal group SO(n, 1) is the stabilizer of 0 ∈
◦
Dn, and hence it is

clear that the Riemannian metric has to be of the form

h(x2
1 + . . .+ x2

n)(dx2
1 + . . . dx2

n)

(in the usual notation). A closer look shows that the metrics has to be

dx2
1 + . . .+ dx2

n√
1− x2

1 − . . .− x2
n

.

In our two low dimensional spacial examples the metric is easy to deter-
mine. For the action of the group Sl2(R) on the upper half plane H we
observe that for any point z0 = x + iy ∈ H the tangent vectors ∂

∂x
|z0 ,

∂
∂y
|z0 form a basis of the tangent spaces at z0.
If we take z0 = i then the stabilizer is the group SO(2) and for

e(ϕ) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
.

We have

e(ϕ) ·
(
∂

∂x
|i
)

= cos 2ϕ · ∂
∂x
|i + sin 2ϕ

∂

∂y
|i

e(ϕ)

(
∂

∂y
|i
)

= sin 2ϕ · ∂
∂x
|i + cos 2ϕ

∂

∂y
|i.
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Hence we find that ∂
∂x
|i and ∂

∂y
|i have to be orthogonal and of the same

length.
Now the matrix (

y x
0 1

)
sends i into the point z = x + iy. It sends ∂

∂x
|i and ∂

∂y
|i into y · ∂

∂x
|z

and y · ∂
∂y
|z, and hence we must have for our invariant metric

〈 ∂
∂x
|z,

∂

∂y
|z〉 = 0 ; 〈 ∂

∂x
|z,

∂

∂x
|z〉 =

1

y2
; 〈 ∂
∂y
|z,

∂

∂y
|z〉 =

1

y2
,

and this is in the usual notation the metric

ds2 =
1

y2
(dx2 + dy2).

A completely analogous argument yields for the space H3 the metric

1

ζ2
(dζ2 + dx2 + dy2).

2 Arithmetic groups

If we have a linear algebraic group G/Q ↪→ GLn we may consider the
group Γ = G(Q) ∩ GLn(Z). This is the first example of an arithmetic
group. It has the following fundamental property:

Proposition: The group Γ is a discrete subgroup of the topological
group G(R).

This is rather easily reduced to the fact that Z is discrete in R. Actually
our construction provides a big family of arithmetic groups. For any
integer m > 0 we have the homomorphism of reduction mod m, namely

GLn(Z) −→ GLn(Z/mZ).

The kernel GLn(Z)(m) of this homomorphism has finite indesx in
GLn(Z) and hence the intersection Γ′ = GLn(Z)(m) ∩ Γ has finite in-
dex in Γ.

Definition 2.1.: A subgroup Γ′′ of Γ is called a congruence subgroup,
if we can find an integer m such that

GLn(Z)(m) ∩ Γ ⊂ Γ′′ ⊂ Γ.

At this point a remark is in order. I explained already that a linear
algebraic group G/Q may be embedded in different ways into different
groups GLn, i.e.

↪→ GLn1

G

↪→ GLn2

In this case we may get two different congruence subgroups

Γ1 = G(Q) ∩GLn1(Z),Γ2 = G(Q) ∩GLn2(Z).
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It is not hard to show that in such a case we can find an m > 0 such that

Γ1 ⊃ Γ2 ∩GLn2(Z)(m)

Γ2 ⊃ Γ1 ∩GLn1(Z)(m) .

From this we conclude that the notion of congruence subgroup does
not depend on the way we realized the group G/Q as a subgroup in the
general linear group.

Now we may also define the notion of an arithmetic subgroup. A
subgroup Γ′ ⊂ G(Q) is called arithmetic if for any congruence subgroup
Γ ⊂ G(Q) the group Γ′ ∩ Γ is of finite index in Γ′ and Γ. (We say that
Γ′ and Γ are commensurable.) By definition all congruence subgroups are
arithmetic subgroups.

The most prominent example of an arithmetic group is the group

Γ = Sl2(Z).

Another example is obtained as follows. We defined for any number field
K/Q the group

G/Q = RK/Q(Sld)

for which G(Q) = Sld(K). If OK is the ring of integers in K, then Γ =
Sld(OK) (and also Γ̃ = GLn(OK)) is a congruence (and hence arithmetic)
subgroup of G(Q).

It is very interesting that the groups Γ = Sl2(Z) and Sl2(OK) for
imaginary quadratic K/Q always contain arithmetic subgroups Γ′ ⊂ Γ
which are not congruence subgroups. This means that in general the class
of arithmetic subgroups is larger than the class of congruence subgroups.
We will prove this assertion in (See ......).

If only the group G(R) is given (as the group of real points of a group
G/Q or perhaps only as a Lie group, then the notion of arithmetic group
Γ ⊂ G(R) is not defined. The notion of an arithmetic subgroup Γ ⊂ G(R)
requires the choice of a group scheme G/Q such that the group G(R) is
the group of real points of this group over Q. The exercise in 1.1.2. shows
that different Q- forms provide different arithmetic groups.

Exercise 2 If γ ∈ GLn(Z) is a nontrivial torsion element and if γ ≡ Id
mod m then m = 1 or m = 2. In the latter case the element γ is of order
2. This implies that for m ≥ 3 the congruence subgroup GLn(Z)(m) of
GLn(Z) is torsion free.

This implies of course that any arithmetic group has a subgroup of
finite index, which is torsion free.

2.1 The locally symmetric spaces

We start from a semisimple group G/Q. To this group we attached the the
group of real points G(R) = G∞. In G∞ we have the connected compo-
nent G0

∞ of the identity and in this group we choose a maximal compact
subgroup K. The quotient space X = G∞/K is a symmetric space which
now may have several connected components. On this space we have the
action of an arithmetic group Γ.

We have a fundamental fact:
The action of Γ on X is properly discontinuous, i.e. for any point
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x ∈ X there exists an open neighborhood Ux such that for all γ ∈ Γ we
have

γUx ∩ Ux = ∅ or γx = x.

Moreover for all x ∈ X the stabilizer

Γx = {γ | γx = x}

is finite.

This is easy to see: If we consider the projection p : G(R)→ G(R)/K =
X, then the inverse image p−1(Ux) of a relatively compact neighborhood
Ux of x = g0K is of the form Vg0 ·K, where Vg0 is a relatively compact
neighborhood of g0. Hence we look for the solutions of the equation

γvk = v′k′, γ ∈ Γ, v, v′ ∈ Vg0 , k, k
′ ∈ K.

Since Γ is discrete in G(R) there are only finitely many possibilities for γ
and they can be ruled out by shrinking Ux with the exception of those γ
for which γx = x.

If Γ has no torsion then the projection

π : X −→ Γ\X

is locally a C∞-diffeomorphism. To any point x ∈ Γ\X and any point
x̃ ∈ π−1(x) we find a neighborhood Ux̃ such that

π : Ux̃−̃→Ux.

Hence the space Γ\X inherits the Riemannian metric and the quotient
space is a locally symmetric space.

If our group Γ has torsion, then a point x̃ ∈ X may have a nontrivial
stabilizer Γx̃. Then it is not difficult to prove that x̃ has a neighborhood
Ux̃ which is invariant under Γx̃ and that for all ỹ ∈ Ux̃ the stabilizer
Γỹ ⊂ Γx̃. This gives us a diagram

Ux̃ −−−−−−−→ Γx̃\Ux̃ = Uxy y
X

π−−−−−−−→ Γ\X

i.e. the point x ∈ Γ\X has a neighborhood which is the quotient of a
neighborhood Ux̃ by a finite group.

In this case the quotient space Γ\X may have singularities. Such
spaces are called orbifolds. They have a natural stratification. Any point
x defines a Γ conjugacy class [Γx̃] of finite subgroups Γx̃ ⊂ Γ. On the
other hand a conjugacy class [c] of finite subgroups H ⊂ Γ defines the
(non empty ) subset (stratum) Γ\X([c]) of those points x ∈ Γ\X for
which Γx̃ ∈ [c].

These strata are easy to describe. We observe that for any finite
H ⊂ Γ the fixed point set XH intersected with a connected component
of X is contractible. Let x0 ∈ XH be a point with Γx0 = H. Then
any other point x ∈ XH is of the form x = gx0 with g ∈ G(R). This
implies that g ∈ N(H)(R), where N(H) is the normaliser of H, it is an
algebraic subgroup. Then N(H)(R)∩K = KH is compact subgroup, put
ΓH = Γ ∩N(H)(R), and we get an embedding
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ΓH\XH ↪→ Γ\X.
This space contains the open subset (ΓH\XH)(0) of those x where

H ∈ [Γx̃] and this is in fact the stratum attached to the conjugacy class
of H.

We have an ordering on the set of conjugacy classes, we have [c1] ≤ [c2]
if for any H1 ∈ [c1] there exists a subgroup H2 ∈ [c2] such that H1 ⊂ H2.
These strata are not closed, the closure Γ\X([c]) is the union of lower
dimensional strata.

If we start investigating the stratification above we immediately hit
upon number theoretic problems.Let us pick a prime p and we consider
the group Γ = Slp−1[Z] and the ring of p-th roots of unity Z[ζp] as a
Z-module is free of rank p− 1 and hence we get an element

ζp ∈ Sl(Z[ζp]) = Slp−1(Z)

and hence a cyclic subgroup of order p. But clearly we have many con-
jugacy classes of elements of order p in Γ because any ideal a is a free
Z-module. If we want to understand the conjugacy classes of elements of
order p or the conjugacy classes of cyclic subgroups of order p in Slp−1(Z)
we need to understand the ideal class group.

In the next section we will discuss two simple cases.

These quotient spaces Γ\X attract the attention of various different
kinds of mathematicians. They provide interesting examples of Rieman-
nian manifolds and they are intensively studied from that point of view.
On the other hand number theoretic data enter into their construction.
Hence any insight into the structure of these spaces contains number the-
oretic information.

It is not difficult to see that any arithmetic group Γ contains a normal
congruence subgroup Γ′ which does not have torsion. This can be deduced
easily from the exercise .... at the end of this section. Hence we see
that Γ′\X is a Riemannian manifold which is a finite cover of Γ\X with
covering group Γ/Γ′.

The following general theorem is due to Borel and Harish-Chandra:
The quotient Γ\X always has finite volume with respect to the Rie-

mannian metric. The quotient space Γ\X is compact if and only if the
group G/Q is anisotropic.

We will give some further explanation below.

2.1.1 Low dimensional examples

We consider the action of the group Γ = Sl2(Z) ⊂ Sl2(R) on the upper
half plane

X = H = {z | =(z) = y > 0} = Sl2(R)/SO(2).

As we explained in .... we may consider the point z = x+ iy as a positive
definite euclidian metric on R2 up to a positive scalar. We saw already that
this metric can be interpreted as the metric on C induced on the lattice
Ω = 〈1, z〉. The action of Sl2(Z) on the upper half plane corresponds to
changing the basis 1, z of Ω into another basis and then normalizing the
first vector of the new basis to length equal one.
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This means that under the action of Sl2(Z) we may achieve that the
first vector 1 in the lattice is of shortest length. In other words Ω = 〈1, z〉
where now |z| ≥ 1.

Since we can change the basis by 1→ 1 and z → z + n. We still have
|z + n| ≥ 1. Hence see that this condition implies that we can move z by
these translation into the strip −1/2 ≤ <(z) ≤ 1/2 and since 1 is still the
shortest vector we end up in the classical fundamental domain:

F = {z| − 1/2 ≤ <(z) ≤ 1/2, |z| ≥ 1}
Two points z1, z2 ∈ F are inequivalent under the action of Sl2(Z)

unless they differ by a translation. i.e.

z1 = −1

2
+ it , z2 = z1 + 1 =

1

2
+ it,

or we have |z1| = 1 and z2 = − 1
z1

. Hence the quotient Sl2(Z)\H is given
by the following picture

It turns out that this quotient is actually a Riemann surface, i.e. the
finite stabilizers at i and ρ do not produce singularities. As a Riemann
surface the quotient is the complex plane or better the projective line
P1(C) minus the point at infinity.

It is clear that the points i and ρ = + 1
2

+ 1
2

√
−3 in the upper half

plane are the only points with non-trivial stabilizer up to conjugation by
an element γ ∈ Sl2(Z). Actually the stabilizers are given by

Γi =

{(
0 1
−1 0

)}
, Γρ =

{(
−1 1
−1 0

)}
.

We denote the matrices

S =

(
0 1
−1 0

)
; R =

(
1 −1
1 0

)
.

The second example is given by the group Γ = Sl2(Z[i]) ⊂ Sl2(C) = G∞
(see .......). Here we should remember that the choice of G∞ = Sl2(C)
allows a whole series of arithmetic groups. For any imaginary quadratic
extension K = Q(

√
−d) with OK as its ring of integers we may embed K

into C and get
Sl2(OK) = Γ ⊂ G∞.

If the number d becomes larger then the structure of the group Γ
becomes more and more complicated. We discuss only the simplest case.

We will construct a fundamental domain for the action of Γ on the
three-dimensional hyperbolic space H3 = C× R>0.

We identify H3 with the space of positive definite hermitian matrices

X = {A ∈M2(C) | A =t A,A > 0, det(A) = 1}.

We consider the lattice

Ω = Z[i] ·

(
1

0

)
+ Z[i] ·

(
0

1

)

in C2 and view A as a hermitian metric on C2 where C/Ω has volume

1. Let e′1=(α

β)
be a vector of shortest length. We can find a second vector

e′2 =
(
γ
δ

)
so that det

(
α β
γ δ

)
= 1. This argument is only valid because
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Z[i] is a principal ideal domain. We consider the vectors e′2 + νe′1 where
ν ∈ Z[i]. We have

〈e′2+νe′1, e
′
2+νe′1〉A = 〈e′2+νe : 1′〉A+ν〈e′1, e′2〉A+ν〈e′2, e′1〉a+νν〈e′1, e′1〉A.

Since we have the the euclidean algorithm in Z[i] we can choose ν such
that

−1

2
〈e′1, e′1〉 ≤ Re〈e′1, e′2〉A,=〈e′1, e′2〉A ≤

1

2
〈e′1, e′1〉A.

If we translate this to the action of Sl2(Z[i]) on H3 then we find that every
point x = (z; ζ) ∈ H3 is equivalent to a point in the domain

F̃ = {(z, ζ) | −1

2
≤ Re(z),=(z) ≤ 1

2
; zz + ζ2 ≥ 1}.

Since we have still the action of the matrix

(
i 0
0 −1

)
we even find a

smaller fundamental domain

F = {(z, ζ) | −1

2
≤ Re(z),=(z) ≤ 1

2
; zz + ζ2 ≥ 1 and Re(z) + =(z) ≥ 0}.

I want to discuss also the extension of our considerations to the case of the
reductive group Gl2(C). In such a case we have to enlarge the maximal
compact subgroup. In this case the group K̃ = Sl1(2) · C∗ = K · C∗ is a
good choice where C∗ is the centre of Gl2(C). Then we get

H3 = Sl2(C)/K = Gl2(C)/K̃

i.e. we have still the same symmetric space. But the group Γ̃ = Gl2(Z[i])
is still larger. We have an exact sequence

1→ Γ→ Γ̃→ {iν} → 1.

The centre ZΓ̃ of Γ̃ is given by the matrices

{(
iv 0
0 iv

)}
. The centre ZΓ

has index 2 in ZΓ̃. Since the centre acts trivially on the symmetric space,
hence the above fundamental domain will be “cut into two halfes” by the

action of Γ̃. the matrices

(
iv 0
0 1

)
induce rotation of ν · 90◦ around the

axis z = 0 and therefore it becomes clear that the region

F0 = {(z, ζ) | 0 ≤ =(z),Re(z) ≤ 1

2
, zz + ζ2 ≥ 1}

is a fundamental domain for Γ̃.
The translations z → z + 1 and z → z + i identify the opposite faces

of F . This induces an identification on F0, namely(
1

2
+ iy, ζ

)
−→

(
−1

2
+ iy, ζ

)
−→

(
y +

i

2
, ζ

)
.

On the bottom of the domain F0, namely

F0(1) = {(z, ζ) ∈ F0 | zz + ζ2 = 1}

we have the further identification

(z, ζ) −→ (iz, ζ).

Hence we see that the quotient space Γ̃\H3 is given by the following figure.
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I want to discuss the fixed points and the stabilizers of the fixed points
of Γ̃. Before I can do that, I need some simple facts concerning the
structure of Gl2.

The group Gl2(K) acts upon the projective line P1(K) = (K2\{0})/K∗.
We write

P1(K) = (K) ∪ {∞} ; K(xe1 + e2) = x,Ke1 =∞.

It is quite clear that the action of g =

(
α β
γ δ

)
∈ Gl2(K) is given by

gx =
αx+ β

γx+ δ
.

The action of Gl2(K) on P1(K) is transitive. For a point x ∈ P1(K) the
stabilizer Bx is clearly a linear subgroup of Gl2/K. If x = ∞, then this
stabilizer is the subgroup

B∞ =

{(
a u
0 b

)}
,

and for x = 0 we get

B0 =

{(
a 0
u b

)}
.

It is clear that these subgroups Bx are conjugate under the action of
Gl2(K). They are in fact maximal solbable subgroups of Gl2.

If we have two different points x1, x2 ∈ P1(K), then this corresponds
to a choice of a basis where the basis vectors are only determined up to
scalars. Then the intersection of the two groups Bx1 ∩ Bx2 is a so-called
maximal torus. If we choose x1 = Ke1, x2 = Ke2, then

Bx1 ∩Bx2 =

{(
a 0
0 b

)}
.

Any other maximal torus of the form Bx1 , B2 is conjugate to T0 under
Gl2(K).

Now we assume K = C. We compactify the three dimensional hyper-
bolic space by adding P1(C) at infinity, i.e.

H3 ↪→ H3 = H3 ∪ P1(C) = C× R≥0 ∪ {∞}.

(The reader should verify that there is a natural topology on H3 for which
the space is compact and for which Gl2(C) acts continuously.)

Now let us assume that a ∈ Gl2(C) is an element which has a fixed
point on H3 and which is not central. Since it lies in a maximal compact
subgroup times Cx we see that this element a can be diagonalized

a −→ g0 a g
−1
0 =

(
α 0
0 β

)
= a′

with α 6= β and |α/β| = 1.
Then it is clear that the fixed point set for a′ is the line

Fix (a′) = {(0, ζ) | ζ ∈ R>0},

i.e. we do not get an isolated fixed point but a full fixed line.
The element a′ has the two fixed points ∞, 0 in P1(C), and hence ist

defines the torus T0(C). Then it is clear that

Fix(a′) = {(0, ζ) | ζ > 0} = T0(C) · (0, 1)

i.e. the fixed point set is an orbit under the action of T0(C).
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2.1.2 Fixed point sets and stabilizers for Gl2(Z[i]) = Γ̃

If we want to describe the stabilizers up to conjugation, we can focus our
attention on F0.

If we have an element γ ∈ Γ̃, γ not central and if we assume that
γ has fixed points on H3, then we know that γ defines a torus Tγ =
centralizerGl2(γ) = stabilizer of xγ , xγ′ ∈ P1(C). This torus is defined
over Q(i), but it is not necessarily diagonalizable over Q(i), it may be
that the coordinates of xγ , xγ′ lie in a quadratic extension of F/Q(i).
This is the quadratic extension defined by the eigenvalues of γ.

We look at the edges of the fundamental domain F0. We saw that
they consist of connected pieces of the straight lines

G1 = {(z, ζ) | z = 0}, G2 = {(z, ζ) | z =
1

2
}, G3 = {(z, ζ) | z =

1 + i

2
},

and the circles (these circles are euclidean circles and geodesics for the
hyperbolic metric)

D1 = {(z, ζ) | zz+ζ2 = 1,=(z) = Re(z)}, D2 = {(z, ζ) | zz+ζ2 = 1,=(z) = 0},

D3 = {(z, ζ) | zz + ζ2 = 1,Re(z) =
1

2
}.

The pour of points (∞, (z0, 0)) ∈ P1(C)× P1(C) has as its stabilizer

Tz0(C) =

(
1 z0

0 1

)(
α 0
0 β

)(
1 −z0

0 1

)
=

(
α z0(β − α)
0 β

)
,

the straight line {(z0, ζ) | ζ > 0} is an orbit u nder Tz0(C) and it consists
of fixed points for

Tz0(C)(1) =

{(
α z0(β − α)
0 β

) ∣∣∣∣ α/β ∈ S1

}
.

We can easily compute the pointwise stabilizer of G1, G2, G3 in Γ̃. They
are

Γ̃G1 =

{(
iν 0
0 iµ

)}
=

{(
iν 0
0 i

)}
· zΓ̃

ΓG̃2
=

{(
iν 1−iν

2

0 1

) ∣∣∣∣1− iν2
∈ Z[i]

}
· ZΓ̃ =

{(
±1 1±1

2

0 1

)}
· ZΓ̃

ΓG̃3
=

{(
iν (1−iν)(1+i)

2

0 1

)}
· ZΓ̃,

where in the last case we have to take into account that (1−iν)(1+i)
2

∈ Z[i]
for all ν.

Hence modulo the centre ZΓ̃ these stabilizers are cyclic groups of order
4, 2, 4.

The arcs Di are also pointwise fixed under the action of certain cyclic
groups, namely

D1 =Fix

((
0 i
1 0

))
D2 =Fix

((
0 1
1 0

))
D3 =Fix

((
1 −1
1 0

))
,
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and we check easily that these arcs are geodesics joining the following
points in the boundary

D1 runs from
√
i to −

√
i

D2 runs from i to − i

D3 runs from e = e
1πi
6 = e

πi
3 to ρ.

The corresponding tori are

T1 =Stab(−1, 1) =

{(
α iβ
β α

)}
T2 =Stab(−

√
i,
√
i) =

{(
α β
β α

)}
T3 =Stab(ρ, ρ) =

{(
δ − β β
−β δ

)}
.

The torus T2 splits over Q(i), the other two tori split over an quadratic
extension of Q(i).

Now it is not difficult anymore to describe the finite stabilizers and the
corresponding fixed point sets. If x ∈ H3 for which the stabilizer is bigger
than ZΓ̃, then we can conjugate x into F0. It is very easy to see that x
cannot lie in the interior of F0 because then we would get an identification
of two points nearby x and hence still in F0 under Γ̃.

If x is on one of the lines D1, D2, D3 or on one of the arcs G1, G2, G3

but not on the intersection of two of them, then the stabilizer Γx is equal
to ZΓ̃ times the cyclic group we attached to the line or the arc earlier.
Finally we are left with the three special points

x12 =D1 ∩D2 ∩G1 = {(0, 1)}

x13 =D1 ∩D3 ∩G3 =

{(
1 + i

2
,

√
2

2

)}
x23 =D2 ∩D3 ∩G2 =

{(
1

2
,

√
3

2

)}
.

In this case it is clear that the stabilizers are given by

Γ̃x12 =〈
(

0 i
1 0

)
,

(
i 0
0 1

)
〉 = D4

Γ̃x13 =〈
(

0 i
1 0

)
,

(
1 −1
1 0

)
,

(
i 1
0 1

)
〉 = S4

Γ̃x23 =〈
(

0 1
1 0

)
,

(
1 −1
1 0

)
〉 = S3.

2.2 Compactification of Γ\X
Our two special low dimensional examples show clearly that the quotient
spaces Γ\X are not compact in general. There exist various constructions
to compactify them.

If, for instance, Γ ⊂ Sl2(Z) is a subgroup of finite index, then the
quotient Γ\H is a Riemann surface. It can be embedded into a compact
Riemann surface by adding a finite number of points. this is a special case
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of a more general theorem of Satake and Baily-Borel: If the symmetric
space X is actually hermitian symmetric (this means it has a complex
structure) then we have the structure of a quasi-projective variety on
Γ\X. This is the so-called Baily-Borel compactification. It exists only
under special circumstances.

I will discuss the process of compactification in some more detail for
our special low dimensional examples.

2.2.1 Compactification of Sl2(Z)\H by adding points

Let Γ ⊂ Sl2(Z) be any subgroup of finite index. The group Γ acts on the
rational projective line P1(Q). We add it to the upper half plane and form

H = H ∪ P1(Q),

and we extend the action of Γ to this space. Since the full group Sl2(Z)
acts transitively on P1(Q) we find that Γ has only finitely many orbits on
P1(Q).

Now we introduce a topology on H. We defined a system of neighbor-

hoods of points p
q

= r ∈ P1(Q). We define the Farey circles S
(
c, p
q

)
which

touch the real axis in the point r = p/q (p, q) = 1 and have the radius
c

2q2
. For c = 1 we get the picture
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Let us denote by D
(
c, p
q

)
= ∪c′:0<c′≤cS

(
c′, p

q

)
the Farey disks. For

c→ 0 these Farey disks D
(
c, p
q

)
define a system of neighborhoods of the

point r = p/q. The Farey disks at ∞ ∈ P1(Q) are given by the regions

D(T,∞) = {z | =(z) ≥ T}.

It is easy to check that an element γ ∈ Sl2(Z) which sends∞ ∈ P1(Q) into

the point r = p
q

sends D(T,∞) to D
(

1
T
, p
q

)
. These Farey disks D(c, r) do

not meet provided we take c < 1. The considerations in 1.6.1 imply that
the complement of the union of Farey disks is relatively compact modulo
Γ, and since Γ has finitely many orbits on P1(Q), we see easily that

YΓ = Γ\H

is compact (which means of course also Hausdorff).
It is essential that the set of Farey circles D(c, r) and D

(
1
c
,∞
)

is
invariant under the action of Γ on the one hand and decomposes into
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several connected components (which are labeled by the point r ∈ P1(Q))
on the other hand. Hence

Γ\
⋃
r

D(c, r) =
⋃

Γri\D(c, ri)

where ri is a set of representatives for the action of Γ on P1(Q) and where
Γri is the stabilizer of ri in Γ.

It is now clear that Γri\D(c, ri) is holomorphically equivalent to a
punctured disc and hence the above compactification is obtained by filling
the point into this punctured disc and this makes it clear that YΓ is a
Riemann surface.

2.2.2 The Borel-Serre compactification of Sl2(Z)\H
There is another construction of a compactification. We look at the disks
D(c, r) and divide them by the action of Γr. For any point y ∈ S(c′, r)−
{r} there exists a unique geodesic joining r and y, passing orthogonally
through S(c′, r) and hitting the projective line in another point y∞ (
= −1/4 in the picture below)
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If r = ∞, then this system of geodesics is given by the vertical lines
{y · I + x | x ∈ R}.. This allows us to write the set

D(c, r)− {r} = X∞,r × [c, 0)

where X∞,r = P1(R) − {r}. The stabilizer Γr acts D(c, r) and on the
right hand side of the identification it acts on the first factor, the quotient
Γr\X∞,r is a circle. Hence we can compactify the quotient

Γr\D(c, r)− {r} ↪→ Γr\X∞,r × [c, 0].

This gives us a second way to compactify Γ\H, we apply this process to
a finite set of representatives of P1(Q) mod Γ.

There is a slightly different way of looking at this. We may form the
union

H ∪
⋃
r

X∞,r = H̃

and topologize it in such a way that

D(c, r) = X∞,r × [c, 0) ⊂ X∞,r × [c, 0]
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is a local homeomorphism. Then we see that the compactification above
is just the quotient

Γ\H̃.
This compactification is called the Borel-Serre compactification. Its

relation to the Baily-Borel is such that the latter is obtained by the former
by collapsing the circles at infinity to a point.

It is quite clear that a similar construction applies to the action of a
group Γ ⊂ Sl2(Z[i]) on the three-dimensional hyperbolic space. The Farey
circles will be substituted by spheres S(c, α) which touch the complex
plane {(z, 0) | z ∈ C} ⊂ H3 in the point (α, 0), α ∈ P1(Q(i)) and for α =∞
the Farey sphere is the horizontal plane S(∞, ζ0) = {(z, ζ0) | z ∈ C). An
element γ ∈ Γ which maps (0,∞) to α maps S(∞, ζ0) to S(c, α), where
c = 1/ζ0. For a given α we may identify the different spheres if we vary c
and for any point α ∈ P1(Q(i)) we define X∞,α = P1(C) \ {α}. Again we
can identify

D(c, α) \ {α} = X∞,α × (0, c] ⊂ D(c, α) \ {α} = X∞,α × [0, c]

The stabilizer Γα acts on D(c, α) \ {α} and again this yields an action on
the first factor. If we choose α =∞ then

Γ∞ = {
(
ζ a
0 ζ−1

)
|ζ root of unity,a ∈M∞}

where M∞ is a free rank 2 module in Z[i]. If ζ does not assume the value i
then Γ∞\X∞,∞ is a two-dimensional torus, a product of two circles. If ζ
assumes the value i then Γ∞\X∞,∞ is a two dimensional sphere. If course
we get the same result for an arbitrary α.

Then we get an action of the group Γ on H̃3 = H3∪
⋃

α∈P1(K)

D(c, α) \ {α}

and the quotient is compact.
The the set of orbits of Γ on P1(Q(i)) is finite, these orbits are called

the cusps.

2.2.3 The Borel-Serre compactification, reduction theory
of arithmetic groups

The Borel-Serre compactification works in complete generality for any
semi-simple or reductive group G/Q. To explain it, we need the notion of
a parabolic subgroup of G/Q.

A subgroup P/Q ↪→ G/Q is parabolic if the quotient variety in the
sense of algebraic geometry is a projective variety. We mentioned already
earlier that for the group Gl2/Q we have an action of Gl2 on the projective
line P1 and the stabilizers Bx of the points x ∈ P1(Q) are the so-called
Borel subgroups of Gl2/Q. They are maximal solvable subgroups and

Gl2/Bx = P1,

hence they are also parabolic.
More generally we get parabolic subgroups of Gln/Q, if we choose a

flag on the vector space V = Qn = Qe1⊕ · · · ⊕Qen. This is an increasing
sequence of subspaces

F : (0) = {(0)} = V0 ⊂ V1 ⊂ V2 . . . Vk = V.
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The stabilizer P of such a flag is always a parabolic subgroup; the quotient
space

G/P = Variety of all flags of the given type,

where the type of the flag is the sequence of the dimensions ni = dimVi.
These flag varieties (the Grassmannians ) are smooth projective schemes

over Spec(Z) and this implies that any flag F is induced by a flag

FZ : (0) = {(0)} = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk = L = Zn (15)

where Li = Vi ∩ L, and of course Li ⊗Q = Vi, this is the elementary fact
which we will use later.

If our group G/Q is the orthogonal group of a quadratic form

f(x1, . . . , xn) =

n∑
i=1

aix
2
i

with ai ∈ K∗. Then we have to replace the flags by sequences of subspaces

F : 0 ⊂W1 ⊂W2 . . . ⊂W⊥2 ⊂W⊥1 ⊂ V,

where the Wi are isotropic spaces for the form f , i.e. f | Wi ≡ 0, and
where the W⊥i are the orthogonal complements of the subspaces. Again
the stabilizers of these flags are the parabolic subgroups defined over Q.

Especially, if the form f is anisotropic over Q, i.e. there is no non-zero
vector x ∈ Kn with f(x) = 0, then the group G/Q does not have any
parabolic subgroup over Q. This equivalent to the fact that G(Q) does
not have unipotent elements.

These parabolic subgroups always have a unipotent radical UP which
is always the subgroup which acts trivially on the successive quotients
of the flag. The unipotent radical is a normal subgroup, the quotient
P/UP = M is a reductive group again, it is called the Levi-quotient of P .

We stick to the group Gln/Q. It contains the standard maximal torus
whose R valued points are

T0(R) = {


t1 0 . . . 0
0 t2 . . . 0

0 0
. . . 0

0 0 0 tn

 | ti ∈ R×,
∏

ti = 1} (16)

It is a subgroup of the Borel subgroup (maximal solvable subgroup or
minimal parabolic subgroup)

B0(R) = {


t1 u1,2 . . . u1,n

0 t2 . . . u2,n

0 0
. . . un−1,n

0 0 0 tn

 | ti ∈ R×,
∏

ti = 1} (17)

and its unipotent radical U0 consists of those b ∈ B0 where all the ti = 1.
This unipotent radical contains the one dimensional root subgroups

Ui,j = {



1 0 . . . 0 0
0 1 . . . 0 0

0 0
. . . x 0

0 0 0
. . . 0

0 0 0 0 1

} (18)
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where i < j, these one dimensional subgroups are isomorphic to the one
dimensional additive group Ga. They are normalized by the torus, for an
element t ∈ T (R) and xi,j ∈ Ui,j(R) = R we have

txi,jt
−1 = ti/tjxi,j . (19)

For i = 1, . . . , n, j = 1, . . . , n, i 6= j (resp. i < J ) characters αi,j(t) =
ti/tj are called the roots (resp. positive roots) of T0 in Gln. We denote
these systems of roots by ∆Gln (resp)∆Gln

+ . The one dimensional sub-
groups Ui,j , i 6= j are called the root subgroups.

Inside the set of positive roots we have the set of simple roots

π = πGln = {α1,2, . . . , αi,i+1, . . . , αn−1,n} (20)

The Borel subgroup B0 is the stabilizer of the ”complete” flag

{0} ⊂ Qe1 ⊂ Qe1 ⊕Qe2 ⊂ · · · ⊂ Qe1 ⊕Qe2 ⊕ · · · ⊕Qen, (21)

the parabolic subgroups P0 ⊃ B0 are the stabilizers of ”partial” flags

{0} ⊂ Qe1 ⊕ · · · ⊕Qen1 ⊂ Qe1 ⊕ · · · ⊕Qen1 ⊕Qen1+1 ⊕ · · · ⊕Qen1+n2 ⊂ · · · ⊂ Qn.
(22)

The parabolic subgroup P0 also acts on the direct sum of the successive
quotients

Qe1 ⊕ · · · ⊕Qen1 ⊕Qen1+1 ⊕ · · · ⊕Qen1+n2 ⊕ . . . (23)

and this yields a homomorphism

rP0 : P0 →M0 = Gln1 ×Gln2 × . . . (24)

hence M0 is the Levi quotient of P0. By definition the unipotent radical
UP0 of P0 is the kernel of r0.

A parabolic subgroups P0 ⊃ B0 defines a subset

∆P0 = {αi,j ∈ ∆Gln | Ui,j ⊂ P0}

and the set decomposes int two sets

∆UP0 = {αi,j | Ui,j ⊂ ∆UP0 },∆M0 = {αi,j | Ui,j , Uj,i ⊂ ∆P0} (25)

Intersecting this decomposition with the set πGln yields a disjoint decom-
position

πGln = πM0 ∪ πU (26)

where πU = {αn1.n1+1, αn1+n2,n1+n2+1, . . . , }. In turn any such decom-
position of πGln yields a well defined parabolic P0 ⊃ B0.

If we choose another maximal split torus T1 and a Borel subgroup B1 ⊃
T1 then this amounts to the choice of a second ordered basis v1, v2, . . . , vn
the vi are given up to a non zero scalar factor. We can find a g ∈ Gln(Q)
which maps e1, e2, . . . , en to v1, v2, . . . , vn, and hence we can conjugate the
pair (B0, T0) to (B1, T1) and hence the parabolic subgroups containing B0

into the parabolic subgroups containing B1. The conjugating element g
also identifies

iT0,B0,T1,B1 : X∗(T0)
∼−→ X∗(T1)

and this identification does not depend on the choice of the conjugating
element g. This allows us to identify the two set of positive simple roots
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πGln ⊂ X∗(T0) and π ⊂ X∗(T ). Eventually we can speak of the set π of
simple roots of Gln. Hence we have the fundamental fact

The Gln(Q) conjugacy classes of parabolic subgroups P/Q are in one
to one correspondence with the subsets π′ ⊂ π where π′ is the set of those
simple roots αi,i+1 for which Ui,i+1 ⊂ UP , the unipotent radical of P. Then
number of elements in π is called the rank of P, the set π is called the type
of P.

We formulated this result for Gln/Q but we can replace Q by any field
k and Gln by any reductive group G/k. We have to define the system of
relative simple positive roots πG for any G/k (See [B-T]).

The group G/k itself is also a parabolic subgroup it corresponds to
π′ = ∅. We decide that we do not like it and we consider only proper
parabolic subgroups P 6= G, i.e. π′ 6= ∅. We can define the Grassmann
variety Gr[π′] of parabolic subgroups of type π. This is a smooth projective
variety and Gr[π′](Q) is the set of parabolic subgroups of type π.

There is always a unique minimal conjugacy class it corresponds to
π = πG . (In our examples this minimal class is given by the maximal
flags, i.e. those flags where the dimension of the subspaces increases by
one at each step (until we reach a maximal isotropic space in the case of
an orthogonal group)). The (proper) maximal parabolic subgroups are
those for which π = {αi,i+1}, i.e. π consist of one element.

We go back to the special case Gln/Q, the following results are true
in general but their formulation is just a little bit more involved.

For a maximal parabolic subgroup we consider the module Hom(P,Gm)⊗
Q ⊂ X∗(T )⊗Q. Of course it always contains the determinant. For a max-
imal parabolic subgroup P/Q of type {αi,i+1} we have

Hom(P,Gm)⊗Q = Qγi ⊕Qdet

where γi is

γi(t) = (

ν=i∏
ν=1

tν) det(t)−i/n. (27)

These γi are the dominant fundamental weights.
If our maximal parabolic subgroup is P/Q is defined as the stabi-

lizer of a flag 0 ⊂ W ⊂ V = Qn, then the unipotent radical is U =
Hom(V/W,W ). An element y ∈ P (Q) induces linear maps yW , yV/W

and hence Ad(y) on U = Hom(V/W,W ). We get a character γP (y) =
det(Ad(y)) ∈ Hom(P,Gm) which is called the sum of the positive roots.
An easy computation shows that

γni = γP (28)

We add points at infinity to our symmetric space: We consider the
disjoint union ∪π 6=πGGr[π′](Q) and form the space

X = X ∪
⋃
π′ 6=∅

Gr[π′](Q).

This is the analogue of or H ∪ P1(Q) in our first example, it is now
more complicated because we have several Grassmannians, and we also
have maps

rπ1,π2Gr[π1](Q)→ Gr[π2](Q) if π2 ⊂ π1.
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Our first aim is to put a topology on this space such that Γ\X becomes
a compact Hausdorff space.

In our first example we interpreted the Farey circle D
(
c, p
q

)
with

0 < c < 1 as an open subset of points in H, which are close to the point
p
q
, but far away from any other point in P1(Q).

The point of reduction theory is that for any parabolic P ∈ Gr[π′](Q)
(here we also allow P = G) we define open sets

XP (cπ′ , r(cπ′)) ⊂ X (29)

which depend on certain parameters cP , r(cP )) The points inXP (cπ′ , r(cπ′))
should be viewed as the points, which are ”very close” to the parabolic
subgroup P (controlled by cπ′ but ”keep a certain distance” (controlled
by r(cπ′)) to the parabolic subgroups Q 6⊃ P. They are the analogues of
the Farey circles. We will see:

a)This system of open sets is invariant under the action Gln(Z)

b) For P = G the set XG(∅, r0) is relatively compact modulo the action
of Gln(Z).

c) Any subgroup Γ ⊂ Gln(Z) has only finitely many orbits on any

Gr[π′](Q)

d) For a suitable choice of the the parameters cπ′ , and r(c′π) we have :

X =
⋃
P

XP (cπ′ , rc′π ) = XG(∅, r0) ∪
⋃

P :Pproper

XP (cπ′ , r(cπ′))

and if P and P1 are conjugate and P 6= P1 thenXP (c′π, r(cπ′))∩X
P1(cπ′ , r(cπ′)) =

∅.

Let us assume that we have constructed such a system of open sets,
then c) and d) impliy that for a given type π′ we have

Γ\
⋃

P :type(π′)=π

XP (c′π, r(cπ′)) =
⋃

ΓPi\X
Pi(c′π, r(cπ′))

where {. . . , Pi, . . . } = Σ(π,Γ) is a set of representatives of Gr[π′](Q) mod-
ulo the action of Γ and ΓPi = Γ ∩ Pi(Q).

This tells us that we have a covering

Γ\X = Γ\XG(∅, r0) ∪
⋃
π′ 6=∅

⋃
P∈Σ(π′,Γ)

ΓP \XP (cπ′ , r(cπ′)) (30)

The essential points of the philosophy of reduction theory are that
Γ\XG(∅, r0) is relatively compact and that we have an explicit descrip-
tion of the sets ΓP \XP (c′π, r(cπ′)) as fiber bundles with nil manifolds as
fiber over the locally symmetric spaces ΓM\XM .

We give the definition of the sets XP (c′π, r(c
′
π). We stick to the case

that G = Gln/Q and Γ ⊂ Γ0 = Gln(Z). is a (congruence) subgroup of
finite index. We defined the positive definite bilinear form (See 11)

B̃Θx = − 1

2n
BΘx : gR × gR → R
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and we have the identification gR
∼−→ T

G(R)
e , and hence we get a euclidian

metric on the tangent space T
G(R)
e at the identity e. This extends to a left

invariant Riemannian metric on G(R), we denote it by dΘxs
2. Hence we

get a volume form dΘx
volH

on any closed subgroup H(R) ⊂ G(R).

For any point x ∈ X and any parabolic subgroup P/Q with unipotent
radical U/Q) we define

pP (x, P ) = volU
Θx(Γ0 ∩ U(R))\U(R)) (31)

For the Arakelow-Chevalley scheme (Gln/Z,Θ0) See(1.4.2) we have
that B̃Θ0(Ei,j) = 1. We have by construction

Ui,j(Z)\Ui,j(R) = R/Z (32)

and under this identification Ei,j maps to ∂
∂x
. Hence we get

dΘ0
volUi,j

(Ui,j(Z)\Ui,j(R)) = 1

and from this we get immediately

Proposition 2.1. For any parabolic subgroup P0 containing the torus T0

we have
pP (Θ0, P ) = 1.

Let (L,< , >x) be an Arakelow vector bundle and (Gln,Θx) the cor-
responding Arakelow group scheme (of type Gln ) let

FZ : (0) = {(0)} = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk = L = Zn

be a flag and P/Z the corresponding parabolic subgroup. Then we have
the homomorphism

rP : P/ Spec(Z)→M/Z =

i=k∏
i=1

Gl(Li/Li−1) (33)

with kernel UP /Z. The metric < , >x on L ⊗ R yields an orthogonal
decomposition

L⊗ R =

i=k⊕
i=1

Li/Li−1 ⊗ R

and hence an Arakelow bundle structure (Li/Li−1, (Θx)i) for all i, and
therefore an Arakelow group scheme structure on M/Z.

Hence we get

Proposition 2.2. If (Gln,Θ) is an Arakelow group scheme then Θ in-
duces an Arakelow group scheme structure ΘM on any reductive quotient
M = P/U.

Definition : A pair (Gln/Z,Θ) is called stable (resp. semi stable) if
for any proper parabolic subgroup P/Q ⊂ Gln/Q we have

pP (Θ, P ) > 1 (34)

In our example in (2.2.1) the stable points are those outside the union of
the closed Farey circles.

To get a better understanding of these numbers we have to do some
computations with roots and weights. Let us start from an Arakelow
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vector bundle (L = Zd, < , >) and let us assume that L is equipped with
a complete flag

F0 = {0)} = L0 ⊂ L1 ⊂ · · · ⊂ Ld−1 ⊂ Ld (35)

which defines a Borel subgroup B/Z. The quotients (Li/Li−1, < , >i
) are Arakelow line bundles over Z or in a less sophisticated language
they are free modules of rank one and the generating vector ēi has a
length

√
< ēi, ēi >i. This length is of course also the volume of (Li/Li−1⊗

R)/(Li/Li−1).
The unipotent radical U/Z ⊂ B/Z has a filtration {(0)} ⊂ V1 ⊂

. . . , Vn(n−1)/2−1 ⊂ Vn(n−1)/2 = U by normal subgroups, the successive
quotients are isomorphic to Ga and the torus T = B/U acts by a positive
root αi,j and this is a one to one correspondence between the subquotients
and the positive roots. Then it is clear: If ν corresponds to (i, j) then

(Vν/Vν+1,Θν) = (Li/Li−1, < , >i)⊗ (Lj/Lj−1, < , >j)
−1. (36)

Moreover the quotients (Vν/Vν+1,Θν) depend only on the conformal
class of < , > and hence only on the resulting Cartan involution Θ.

The unipotent subgroup U/Z contains the one parameter subgroup
Ui,j/Z and this one parameter subgroup maps isomorphically to (Vν/Vν+1).
Hence our construction defines the Arakelow line bundle (Ui,j ,Θi,j).

If we now define nαi,j (x,B) = volΘi,j (Ui,j(R)/Ui,j(Z)) then it is clear
that

pB(x,B) =
∏
i<j

nαi,j (x,B) (37)

If P ⊃ B then its unipotent radical UP ⊂ U and we defined the set
∆UP as the set of positive roots for which Ui,j ⊂ UP . Then we have

pP (x, P ) =
∏

(i,j)∈∆UP

nαi,j (x,B) (38)

We follow a convention and put 2ρP =
∑

(i,j)∈∆UP αi,j so that ρP is the
half sum of positive roots in in the unipotent radical. This character is
equal to γP in formula (28) and hence we know for any maximal parabolic
subgroup Pi0

2ρPi0 =
∑

i≤i0,j≥i0+1

αi,j = nγi0 (39)

Since the numbers nαi,j (x,B) are positive real numbers we can define
for any γ =

∑
xiαi,i+1 ∈ X∗(T )⊗ R

nγ(x,B) =

n−1∏
i=1

nαi,j (x,B)xi . (40)

then we get

pP (x, P ) =

s∏
ν=1

pPiν (x, Piν )r
′
ν (41)
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where the r′ν > 0. This implies that pP (x, P ) > 1 if all pPiν (x, Piν ) > 1.
If our parabolic subgroup P is not maximal, and P = Pi1 ∩ Pi2 · · · ∩ Pis
then a simple computation shows that

γP = r1γi1 + r2γi2 + · · ·+ rsγis . (42)

where the ri are strictly positive rational numbers. Then we get

pP (x, P ) = nγP (x,B1)

where B1 ⊂ P is any Borel subgroup in P. The formula (42) implies

The Arakelow scheme (Gln/Z,Θ) is stable if for all maximal parabolic
subgroups pPi(Θ, Pi) = nγi(Θ, Pi)

n > 1.
We need a few more formulas relating roots and weights. For any

parabolic subgroup we have the division of the set of simple roots into
two parts

π = πM ∪ πUP .
This induces a splitting of the character module

X∗(T )⊗Q =
⊕

αi,j∈πM
Qαi,i+1 ⊕

⊕
αi,j∈πUP

Qγi (43)

where γi is the dominant fundamental weight attached to αi,i+1 (See (27)).
If now αi,i+1 ∈ πUP then we can project αi,i+1 to the second compo-

nent, this projection

αPi,i+1 = αi,i+1 +
∑

αν,ν+1∈πM
ci,ναν,ν+1 (44)

Here an elementary - but not completely trivial - computation shows that

ci,ν ≥ 0 (45)

We now state the two fundamental theorems of reduction theory

Theorem 2.1. For any Arakelow group scheme (Gln,Θ) we can find a
Borel subgroup B ⊂ Gln for which

nαi,i+1(Θ, B) >

√
3

2
for all i = 1, . . . , n− 1

Theorem 2.2. For any Arakelow group scheme (Gln,Θ) we can find a a
unique parabolic subgroup such that for all αi,i+1 ∈ πUP we have

nαPi,i+1
(Θ, P ) < 1

and such that the reductive quotient (M,ΘM ) is semi stable.

The first theorem is due to Minkowski, the second theorem is proved
in [Stu], [Gray].

This parabolic subgroup is called the canonical destabilizing group. If
(G, x) is semi stable then P = G. We denote it by P (x). This gives us a
dissection of X into the subsets

X =
⋃

P : parabolic subgroups of G/Q

X [P ] = {x ∈ X | P (x) = P} (46)
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Clearly γX [P ] = XγPγ−1] If we divide by the group Γ the we get

Γ\X =
⋃

P∈Par

ΓP \X [P ] (47)

where Par (Γ) is a set of representatives of Γ conjugacy classes of parabolic
subgroups of Gln/Q. This is a decomposition of Γ\X into a disjoint union
of subsets. The subset Γ\X [Gln] is compact, it is the set of semi stable
pairs (x,Gln), the subsets ΓP \X [P ] for P 6= G are in a certain sense ”open
in some directions” and ”closed in some other direction”. Therefore this
decomposition is not so useful for the study of cohomology groups. Do
remedy this we introduce larger subsets. For a real number r0, 0 < r0 < 1
(but close to 1) we define

XGln(r) = {x ∈ X| nαP (x)(x,Gln, P (x)) > r, for all α ∈ πUP (x)).

It contains the set of semi-stable (x,Gln). Together with the first theorem
this has a consequence

Proposition 2.3. The quotient ΩGln(r) = Γ\XGln(r) is relatively com-
pact open subset of Γ\X, It contains the set of semi-stable (x,Gln).

If we choose r < 1 very close to one then the the elements in ΩGln(r)
are only a ”little bit unstable”.

We start from a parabolic subgroup P and choose vectors cP = (. . . , cα, . . . )α∈πUP
where all 0 < cα < 1. Furthermore we choose a number r(cP ) < 1 and
define

XP (cP , r(cP )) = {x| nαP (x, P ) < cα for all α ∈ πUP ;xM ∈ XM (r(cP ))}
(48)

Proposition 2.4. For a given choice of cP we can find a number r(cP ) <
1 such that that for any x ∈ XP (cP , r(cP )) the destabilizing parabolic
subgroup P (x) ⊂ P.

To see this we have to look at the canonical subgroup Q̄ ⊂ (xM ,M).
Its inverse image Q ⊂ P is a parabolic subgroup of Gln. The reductive
quotient (xM̄ , M̄) is stable. We want to show that Q is canonical parabolic
of (x,Gln), i.e. we have to show that nαQ(x,Gln, Q) > 0 for all α ∈ πUQ =
πUP ∪ πM,UQ̄ .

For ∈ πM,UQ̄ this is true by definition. For α ∈ πUP we have

αP = α+
∑
β∈πM

aα,ββ and αQ = α+
∑
β∈πM̄

a′α,ββ,

where aα,β ≥ 0. The roots β ∈ πM,UQ̄ can be expressed in terms of the

βQ̄ = βQ :

βQ = β +
∑

β′∈πM̄

a∗β,β′β
′ (49)

and hence

αQ = αP −
∑

β∈πM,UQ̄

aα,ββ
Q +

∑
β′∈πM̄

cαβ′β
′. (50)

38



The last sum is zero because αQ, αP , βQ are orthogonal to the module
⊕β′Zβ′. We choose a reduced Borel subgroup B̄ ⊂ M, let B be its inverse
image in Q. We get the relation

nαQ(x,Gln, Q) = nαP (x,Gln, P ) ·
∏

β∈πM,UQ̄

nβQ(x,Gln, Q)−aα,β (51)

Now nαP (x,Gln, P ) < cα and nβQ(x,Gln, Q) > r(cP ). If we choose
r(cP ) close enough to one then it follows that nαQ(x,Gln, Q) < 1 and
hence our claim.

We can choose a family of parameters

(. . . , cP , . . . )P : parabolic over Q, r(cP )

which only depend on the type of P and such that we get a covering

X =
⋃
P

XP (cP , r(cP )))

and hence
Γ\X =

⋃
P

ΓP \XP (cP , r(cP )).

Here we have to start from P = Gln, in this case πUP = ∅ and we
choose a small positive number r0 < 1 and put L(∅) = r0. Now the rest
is clear. Therefore we now constructed the covering which satisfies the
necessary requirements. Since the cP , r(cP ) only depend on the type of
P , we change the notation: cP → c′π, r(cP )→ r(c′π).

We have a very explicit description of these sets ΓP \XP (c′π, r(c
′
π)).

We consider the evaluation map

nπ
′

: ΓP \XP (c′π, r(c
′
π))→

∏
α∈π′(0, cα)

x 7→ (. . . , nαP (x, P ), . . . )

(52)

Of course we also have the homomorphism

|απ
′
| : P (R)→ {. . . , |αP |, . . . }α∈π′ (53)

and the multiplication by an element y ∈ P (R) induces an isomor-
phisms of the fibers

(n
[π′]
X )−1(c1)

∼−→ (n
[π′]
X )−1(c2) if |απ

′
|(y) · c1 = c2

where the multiplication is taken componentwise. This identification de-
pends on the choice of y.

To get a canonical identification we use the geodesic action which
is introduced in the paper by Borel and Serre. We define an action of
A = (

∏
α∈ππ′ R

×
>0) on X. This action depends on P and we denote it by

(a, x) 7→ a • x
A point x ∈ X defines a Cartan involution Θx and then the parabolic

subgroup PΘx of G×R is opposite to P ×R and P ×R∩PΘx = Mx is a
Levi factor, the projection P →M induces an isomorphism

φx : M × R ∼−→Mx.
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The character απ
′

induces an isomorphism

sx : A
∼−→ Sx(R)(0)

where Hence we Sx(R)(0) is the connected component of the identity of
the center Mx(R) ∩ Sln(R) and we put

a • x = sx(a)x

We have to verify that this is indeed an action. This is clear because for
the Cartan-involution Θa•x we obviously have

PΘx = PΘa•x .

It is also clear that this action commutes with the action of P (R) on
X because

ysx(a)x = syx(a)yx for all y ∈ P (R), x ∈ X.

It follows from the construction that the semigroup A− = {. . . , aν , . . . }-
where 0 < aν ≤ 1 - acts via the geodesic action on XP (cπ, r(cπ′)) and
that for a ∈ A− we get an isomorphism

(n[π′])−1(c1)
∼−→ (n[π′])−1(ac1).

This yields a decomposition as product

XP (c′π, r(cπ′)) = (n[π′])−1(c0)×
∏
α∈π′

(0, cα]

where c0 is an arbitrary point in the product.
Since we know that |απ

′
| is trivial on ΓP and since the action of P

commutes with the geodesic action we conclude

ΓP \XP (c′π, r(cπ′)) = ΓP \(nπ
′
)−1(c0)×

∏
α∈π′

(0, cα] (54)

Let P (1)(R) = ker(απ
′
) then the fiber (nπ

′
)−1(c0) is a homogenous

space under P (1)(R) We have the projection map pP,M : X → XM where
XM is the space of Cartan involutions on the reductive quotient M. Hence
we get a map

p∗P,M = pP,M × n[π′] : X → XM ×
∏
α∈π′

(0, cα] (55)

On the product XM ×
∏
α∈π′(0, cα] the geodesic action only acts on the

second factor the map p∗P,M commutes with the geodesic action.

The group UP (R) acts simply transitively on the fibers of this projec-
tion, and hence

qP,M : ΓP \XP (c′π, r(cπ′))→ ΓM\XM (r(cP ))×
∏
α∈π′

(0, cα] (56)

is a fiber bundle with fiber isomorphic ΓU\U(R). If we pick a point x̃ ∈
ΓM\XM (r(cP )) ×

∏
α∈π′(0, cα] then the identification of q−1

P,M (x̃) with

ΓU\U(R) depends on the choice of a point x ∈ XP (c′π, r(cπ′)) which
maps to x̃.
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(The next requires a little revision) This can now be compactified,
we embed it into

ΓP \XP (c′π, r(cP ) = ΓP \(n[π′])−1(c0)×
∏

ν∈πG\π

[0, c′π].

We define

∂r(cP ) = ΓP \XP (c′π,Ωπ) \ ΓP \XP (cπ,Ωπ)

this is equal to

∂ΓP \XP (c′π, r(cP ) = ΓP \(n[π])−1(c0)× ∂(
∏

ν∈πG\π

[0, cπ])

where of course ∂(
∏
ν∈πG\π

[0, cπ]) ⊂
∏
ν∈πG\π

[0, cπ] is the subset where
at least one of the coordinates is equal to zero.

We form the disjoint union of of these boundaries over the π and set
of representatives of Γ conjugacy classes, this is a compact space. Now
there is still a minor technical point. If we have two parabolic subgroups
Q ⊂ P then the intersection XP (cP , r(cP )∩XQ(cQ, r(cQ)) 6= ∅. If we now
have points

x ∈ ∂ΓP \XP (cπ, r(cP ), y ∈ ∂ΓQ\XQ(cπ′ , r(cP ′)

then we identify these two points if we have a sequence of points {xn}n∈N
which lies in the intersection XP (cπ, r(cP )) ∩XQ(cπ′ , r(cP ′)) and which

converges to x in ΓP \XP (cπ, r(cP ) and to y in ΓQ\XQ(cπ′ , r(cP ′). A
careful inspection shows that this provides an equivalence relation ∼, and
we define

∂(Γ\X) =
⋃

π′,P∈Par(Γ)

∂ΓP \XP (cπ, r(cP )/ ∼

and the Borel-Serre compactification will be the manifold with corners

Γ\X = Γ\(X ∪
⋃

P :Pproper

XP (cπ′ , r(cP )). (57)

We define a ”tubular” neighborhood of the boundary we put

N (Γ\X) = Γ\
⋃

P :Pproper

XP (cπ′ , r(cP )) (58)

and then we define the ”punctured tubular” neighborhood as

•
N (Γ\X) = Γ\

⋃
P :Pproper

XP (cπ′ , r(cP )) = Γ\X ∩N (Γ\X) (59)

Eventually we want to use the above covering as a tool to understand
cohomology (See ) But then it is also necessary to understand the inter-
sections

XP1(cπ1 , r(cπ1
)) ∩ · · · ∩XPν (cπν , r(cπν )) (60)

Our proposition 2.4 implies that for any point x in the intersection the
destabilizing parabolic subgroup P (x) ⊂ P1 ∩ · · · ∩ Pν . Hence we see that
the above intersection can only be non empty if Q = P1 ∩ · · · ∩ Pν is a
parabolic subgroup.

41



Now we look at the product
∏
α∈π R

×
>0 here it seems to be helpful to

identify it - using the logarithm - with Rd:

log :
∏
α∈π

R×>0
∼−→ Rd (61)

If G is one of our reductive groups Gln,M let X be the symmetric space of
Cartan involutions- If we have a point x ∈ X and P a parabolic subgroup
such that P (x) ⊂ P then the number nαP (x, P ) is defined and < 1. If
P (x) 6∈ P then we put nαP (x, P ) = 1, so that nαP (x, P ) is always defined.

Hence we defined a function

NQ( , Q) : X → Rd;x 7→ {. . . ,− log(nαQ(x,Q)), . . . }α∈π = {. . . , NαQ(x,Q), . . . }α∈π.
(62)

a close look shows that the image is a convex set C(c̃) ⊂ Rd because
it is an intersection of half spaces defined by hyperplanes. In the target
space we can project to the unipotent roots, i.e. we look at the projection

rQ : x = {. . . , xα, . . . }α∈π 7→ {. . . , xα, . . . }α∈πUQ .

Then we can consider the composition rQ ◦NQ( , Q) and the image under
this composition is a cone CUQ(c̃) in Rd1

>0.Then

XP1(cπ1 , r(cπ1
)) ∩ · · · ∩XPν (cπν , r(cπν )) = XQ(C(c̃))→ CUQ(c̃) (63)

is a fiber bundle over the base CUQ(c̃).

3 Cohomology of arithmetic groups as
cohomology of sheaves on Γ\X
We are now in the position to unify — for the special case of arithmetic
groups — the two cohomology theories from our chapter II and chapter
IV of the [book]. (Lectures on Algebraic Geometry I)

We start from a semi simple group G/Q and we choose an arithmetic
subgroup Γ ⊂ G(Q). Let X = G(R)/K as before.

Let M is a Γ-module then we can attach a sheaf M̃ onMΓ\X to it.
To do this we have to define the group of sections for any open subset
U ⊂ X. We start from the projection

π : X −→ Γ\X

and define

M̃(U) = {f : π−1(U)→M | f is locally constant f(γu) = γf(u)}.

This is clearly a sheaf. For any point x ∈ Γ\X we can find a neighborhood
Vx with the following property: If x̃ ∈ π−1(x), then x̃ has a contractible
Γx̃-invariant neighborhood Ux̃ and Ux = Γx̃\Ux̃. Then it is clear that

M̃(Vx) =MΓx̃ .

Since x has a cofinal system of neighborhoods of this kind, we see that we
get an isomorphism

jx̃ : M̃(Vx) = M̃x−̃→MΓx̃ .
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The last isomorphism depends on the choice of x̃. If we are in the special
case that Γ has no fixed points then we can cover Γ\X by open sets U
so that M̃/U is isomorphic to a constant sheaf MU . These sheaves are
called local systems.

We will denote the functor, which sends M to M̃ by

shΓ : ModΓ → SΓ\X ,

occasionally we will write shΓ(M) instead of M̃, especially in situations
where we work with several discrete subgroups.

The motivations for these constructions are
1) The spaces Γ\X are interesting examples of so-called locally sym-

metric spaces (provided Γ has no torsion). Hence they are of interest for
differential geometers and analysts.

2) If we have some understanding of the geometry of the quotient space
Γ\X we gain some insight into the structure of Γ. This will become clear
when we discuss the examples in ...x.y.z.

3) The cohomology groups H•(Γ,M) are closely related and in many
cases even isomorphic to the sheaf cohomology groupsH•(Γ\X,M̃). Again
the geometry provides tools to compute these cohomology groups in some
cases (see x.y.z.).

4) If the Γ-moduleM is a C-vector space and obtained from a rational
representation of G/Q, then we can apply analytic tools to get insight (de
Rham cohomology, Hodge theory).

3.1 The relation between H•(Γ,M) and H•(Γ\X,M̃).

In general the spaces X will have several connected components. In this
section we assume that X is connected and Γ fixes it.

Then it is clear that

H0(Γ\X,M̃) =MΓ.

Hence we can write our functorM→MΓ from the category of Γ-modules
to Ab as a composite of

shΓ :M−→ M̃ and H0 : M̃ → H0(Γ\X,M̃).

We want to apply the method of spectral sequences. In a first step we
want to convince ourselves that shΓ sends injective Γ-modules to acyclic
sheaves.

In [book], 2.2.4. we constructed for any Γ module M the induced Γ
-module IndΓ

{1}M. This is the module of functions f : Γ→M and γ1 ∈ Γ
acts on this module by (γ1f)(γ) = f(γγ1). We want to prove that for any
such induced module the sheaf shΓ( IndΓ

{1}M). is acyclic.

We have a little
Lemma: Let us consider the projection π : X → Γ\X and the constant

sheaf MX on X. Then we have a canonical isomorphism of sheaves

π∗(MX)−̃→ ĨndΓ
{1}M.
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Proof: This is rather obvious. Let us consider a small neighborhood
Ux of a point x, such that π−1(Ux) is the disjoint union of small con-
tractible neighborhoods Ux̃ for x̃ ∈ π−1(x). Then for all points x̃ we have
MX(Ux̃) =M and

π∗(MX)(Ux) =
∏

x̃∈π−1(x)

M.

On the other hand

ĨndΓ
{1}M(Ux) =

{
h : π−1(Ux)→ IndΓ

{1}M | h is locally constant h(γu) = γh(u)
}

For u ∈ π−1(Ux) the element h(u) itself is a map

f(u) : Γ −→M,

and (γh(u))(γ1) = h(u)(γ1γ) (here γ1 ∈ Γ is the variable.)
Hence we know the function u→ f(u) from π−1(Ux) to IndΓ

{1}M if we
know its value f(u)(1) and this value can be prescribed on the connected
components of π−1(Ux). On these connected components it is constant,
we may take its value at x̃ and hence

f −→ ( . . . , f(x̃)(1), . . . )x̃∈π−1(x)

yields the desired isomorphism.
Now we get the acyclicity. We apply example d) in [book], 4.6.3 (sec-

tion on application of spectral sequences) to this situation. The fibre of π
is a discrete space and hence

π∗(MX) = ĨndΓ
{1}M

and Rq(π∗)(MX) = 0 for q > 0. Therefore the spectral sequence yields

Hq(X,MX) = Hq(Γ\X,π∗(MX)) = Hq

(
Γ\X, ˜IndΓ

{1}M
)
,

and since X is a cell, we see that this is zero for q ≥ 1.
We apply this to the case that m = I is an injective Γ-module. Clearly

we can always embed I −→ IndΓ
{1}I. But this is now a direct summand;

hence it follows from the acyclicity of ĨndΓ
{1}I that also Ĩ must be acyclic.

Hence we get a spectral sequence with E2 term

Hp(Γ\X,Rq(shΓ)(M))⇒ Hn(Γ,M).

The edge homomorphism yields a homomorphism

Hn(Γ\X, shΓ(M))→ Hn(Γ,M)

which in general is neither injective nor surjective.
Of course it is clear that the stalk Rq(shΓ)(M)x = Hq(Γx̃,M). If we

make the assumption that the action of Γ is faithful, this means that
any element γ different from the identity acts a non trivially on X, then
Rq(shΓ)(M) is supported on a lower dimensional closed subset.

If we have a commutative ring R in which the orders of all the finite
stabilizers Γx̃ are invertible and if we only consider R−Γ modulesM, then
of course Rq(shΓ)(M) = 0 for q > 0 and then the edge homomorphism
becomes an isomorphism.

44



3.1.1 Functorial properties of cohomology

We investigate the functorial properties of the cohomology with respect
to the change of Γ. If Γ′ ⊂ Γ is a subgroup of finite index, then we have,
of course, the functor

ModΓ −→ModΓ′ ,

which is obtained by restricting the Γ-module structure to Γ′. Since for
any Γ-module M we have MΓ −→MΓ′ , we obtain a homomorphism

res : Hi(Γ,M) −→ Hi(Γ′,M).

We give an interpretation of this homomorphism in terms of sheaf coho-
mology. We have the diagram

X

πΓ′ ↙ ↘ πΓ

π1 = πΓ,Γ′ : Γ′\X −→ Γ\X

and a Γ-moduleM produces sheaves shΓ(M) = M̃ and shΓ′(M)=̃M′ on
Γ′\X and Γ\X respectively. It is clear that we have a homomorphism

π∗1(M̃) −→ M̃′.

To get this homomorphism we observe that for y1 ∈ Γ′\X we have
π∗1(M̃)y1 = M̃π1(y1), and this is

{f : π−1(π1(y))→M | f(γỹ) = γf(ỹ) for all γ ∈ Γ, ỹ ∈ π−1(π(y1))}

and

M̃′y1
= {fg : (π′)−1(y1)→M | f(γ′ỹ) = γ′f(ỹ) for all γ ∈ Γ′, ỹ ∈ (π′)−1(y1)},

and if we pick a point ỹ ∈ (π′)−1(y1) ⊂ π−1(π1(y1)) then

π∗1(M)y1 'M
Γỹ1 ⊂ M̃′y1

=MΓ′ỹ1 .

Hence we get (or define) our restriction homomorphism as (see I, ....)

Hi(Γ\X, shΓ(M)) −→ Hi(Γ′\X,π∗1(shΓ(M)) −→ Hi(Γ′\X, shΓ′(M)).

There is also a map in the opposite direction.
Since the fibres of π1 are discrete we have

Hi(Γ′\X,M̃)−̃→Hi(Γ\X,π1,∗(M̃)).

But the same reasoning as in the previous section yields an isomorphism

π1,∗(M̃)−̃→ ĨndΓ
Γ′M.

Hence we get an isomorphism

Hi(Γ′\X,M̃)−̃→Hi(Γ\X, ĨndΓ
Γ′M)

which is well known as Shapiro’s lemma. But we have a Γ-module homo-
morphism

e : IndΓ
Γ′M−→M
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which sends an f : Γ→M, in f ∈ IndΓ
Γ′M to the sum

tr(f) =
∑

γ−1
i f(γi)

where the γi are representatives for the classes of Γ′\Γ. This homomor-
phism induces a map in the cohomology. We get a compositon

π1,• : Hi(Γ′\X,M̃) −→ Hi(Γ\X,M̃).

It is not difficult to check that

π1,• ◦ π•1 = [Γ : Γ′].

3.2 How to compute the cohomology groups H i(Γ\X,M̃)?

3.2.1 The Čech complex of an orbiconvex Covering

We return to the beginning of this note. We want to find a finite set
of points x̃1, . . . , x̃i, . . . , x̃r and open sets Ũx̃i , x̃i ∈ Ũx̃i such that the
following conditions are true

a) For γ ∈ Γ we have γŨx̃i ∩ Ũx̃i = ∅ unless we have γx̃i = x̃i, i.e.
γ ∈ Γx̃i

b) The map
⋃
Ũx̃i → Γ\X is surjective

c) For all i we have a Γx̃i equivariant homotopy contracting Ũx̃i to x̃i.

d) For any non empty finite intersection · · ·∩Ũx̃i∩· · ·∩Ũx̃j∩. . . we can
find a point x̃i in this intersection which is fixed by · · ·∩Γx̃i∩. . .Γx̃j = Γx̃i
and such that we have a Γx̃i equivariant homotopy contracting Ũx̃i to x̃i.

We know that the Čzech complex

C•(U,M̃) := 0→
⊕
i∈I

M̃(Uxi)
d0−→
⊕
i<j

M̃(Uxi ∩ Uxj )→ (64)

computes the cohomology provided we know that the intersections Ui =
Uxi1 ∩ Uxi2 ∩ · · · ∩ Uxiq are acyclic, i.e. Hm(Ui,M̃) = 0 for m > 0.

For the implementation on a computer we need to resolve the definition
of the spaces of sections and the definition of the boundary maps. (By
this I mean that we have to write explicitly

M̃(Ui) =
⊕
η

Mη

where η runs through an index set and Mη are explicit subspaces of M
and then we have to write down certain explicit linear mapsMη →Mη′ .)

To be more precise: We have to write Ui = ∪Uη as the union of its
connected components, we have to choose a connected component Ũη in
π−1(Uη) for each value of η, and then the evaluation of a section m ∈
M̃(Ui) on these Ũη yields an isomorphism

⊕evŨη : M̃(Ui)
∼−→
⊕
η

MΓη .

If we replace Ũη by γŨη then we get for m ∈ M̃(π(Ũη)) the equality

γevŨη (m) = evγŨη (65)
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Especially the choice of the x̃i yields an identification

evUxi : M̃(Uxi)
∼−→MΓx̃i (66)

this gives us the first term in the complex.
The computation of the second term is a little bit more delicate, the

discussion in Chap.II is not correct. The point is that the intersections
Uxi ∩ Uxj may not be connected. To get these connected components we
have to find the elements γ ∈ Γ for which

Ũx̃i ∩ γ(Ũx̃j ) 6= ∅ (67)

It is clear that this gives us a finite set Gi,j of elements γ ∈ Γ/Γxj . We
have a little lemma

Lemma 3.1. The images π(Ũx̃i ∩ γ(Ũx̃j )) are the connected components
of Uxi ∩Uxj , two elements γ, γ1 give the same connected component if and
only if γ1 ∈ ΓxiγΓxj .

Let Fi,j ⊂ Gi,j be a set of representatives for the action of Γx1 on Gi,j
this set can be identified to the set of connected components. Of course
the set Ũx̃i ∩ γ(Ũx̃j ) may have a non trivial stabilizer Γi,j,γ and then we
get an identification

⊕γ∈Fi,j evŨxi∩γŨxj : M̃(Uxi ∩ Uxj )
∼−→

⊕
γ∈Fi,j

MΓi,j,γ (68)

This is now an explicit (i.e. digestible for a computer) description of the
second term in our complex above. We still need to give the explicit
formula for d0 in the complex

0→
⊕
i∈I

MΓx̃i
d0−→
⊕
i<j

⊕
γ∈Fi,j

MΓi,j,γ (69)

Looking at the definition it is clear that this map is given by

(. . . ,mi, . . . ,mj , . . . ) 7→ (. . . ,mi − γmj , . . . ) (70)

Here we have to observe that γ ∈ Γ/Γxj but this does not matter since

mj ∈ MΓx̃j . So we have an explicit description of the beginning of the
Cech complex.

A little reasoning shows of course that a different choice F ′i,j of the
representatives provides an isomorphic complex.

Now it is clear, how to proceed. At first we have to understand the
combinatorics of the covering U = {Uxi}i∈I .

We consider sets

Gi = {γ = (e, γ1, . . . , γq)|γi ∈ Γ/Γxi ; Ũx̃0 ∩ · · · ∩ γiŨx̃i ∩ γqŨx̃q 6= ∅}

on these sets we have an action of Γx0 by multiplication from the left.
Again let Fi be a system of representatives modulo the action of Γx0 .

We abbreviate

Ũi,γ = Ũx̃0 ∩ · · · ∩ γiŨx̃i ∩ γqŨx̃q ,

let Γi,γ be the stabilizer of Ũi,γ .
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The images π(Ũi,γ) under the projection map π are the connected

components π(Ũi,γ) = Ui,γ ⊂ Ui = Uxi0 ∩ · · · ∩ Uxiν ∩ . . . Uxiq . On the

other hand each set Ũi,γ is a connected component in π−1(Ui,γ). We get
an isomorphism⊕
γ∈Fi

evŨi,γ : M̃(Ui) = M̃(Uxi0 ∩ · · · ∩ Uxiν ∩ . . . Uxiq )
∼−→
⊕
γ∈Fi

MΓi,γ .

(71)

We need to give explicit formulas for the boundary maps⊕
i∈Iq
M̃(Ui)

dq−→
⊕

i∈Iq+1

M̃(Ui).

Abstractly this boundary operator is defined as follows: We look at pairs
i ∈ Iq+1, i(ν) ∈ Iq where i(ν) is obtained from i by deleting the ν-th entry.
Then we have Ui ⊂ Ui(ν) and from this we get the resulting restriction

homomorphism Ri(ν),i : M̃(Ui(ν))→ M̃(Ui). Then

dq =
∑
i

q∑
ν=0

(−1)νRi(ν),i

and hence we have to give an explicit description of Ri(ν),i with respect
to the isomorphism in the diagram (71).

We pick two connected components π(Ũi,γ) ⊂ Ui and π(Ũi(ν),γ′ ⊂
Ui(ν), then we know that

Ũi,γ ⊂ Ũi(ν),γ′ ⇐⇒ ∃ ηγ,γ′ ∈ Γ such that ηγ,γ′γ
′
µ = γµ for all µ 6= ν

and then the restriction of Ri(ν),i to these two components is given by

M̃(π(Ũi(ν),γ′))

ev
Ũ
i(ν),γ′
−→ M

Γ
i(ν),γ′

↓ Ri(ν),i ↓ ηγ,γ′

M̃(π(Ũi,γ))
ev
Ũi,γ

−→ MΓi,γ

(72)

Here the two horizontal maps are isomorphisms, we observe that ηγ,γ′ is
unique up to an element in Γi(ν),γ′ and hence the vertical arrow ηγ,γ′ is

well defined.
Now we can write down the complex explicitly.

We will show that it follows from reduction theory that

Theorem 3.1. We can construct a finite covering Γ\X = ∪i∈EUxi = U
by orbiconvex sets.

This of course implies the following theorem of Raghunathan

Theorem 3.2. If R is any commutative ring with identity and if M is a
finitely generated R− Γ− module then the total cohomology⊕

q∈N

Hq(Γ\X, shΓ(M))

is a finitely generated R-module
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2.1.3 Special examples in low dimensions.
We consider the group Γ = Sl2(Z)/{±Id} and its action on the upper

half planesH. We want to investigate the cohomology groupsHi(Γ\H,M̃)
for any module Γ-module M. The special points i and ρ in Γ\H are the
only points which are fixed points. We construct two nice orbiconvex
neighborhoods of these two points, which will cover Γ\H. We drop the no-
tation with the tilde and consider i, ρ as points in the upper half plane and
as points on Γ\H. The stabilizers Γi, resp. Γρ are cyclic and generated
by the two elements

S =

(
0 1
−1 0

)
, R =

(
1 −1
1 0

)
(RS)

respectively.
Now we consider i. In the fundamental domain we consider a strip

Vi = {z | − 1/2 + ε ≤ <(z) ≤ 1/2− ε}. To this strip we apply the matrix(
0 −1
1 0

)
, we take the union Vi ∪

(
0 −1
1 0

)
Vi and we get our orbiconvex

neighborhood Ui of i. Let us look at ρ. In the fundament domain F we
consider the subset V −ρ = {z ∈ F|ε ≤ <(z) ≤ 1/2} We should also
consider we consider the corresponding subset V +

ρ containing ρ2, (Here
we have an ambiguity, we have two points in the fundamental domain
lying over the fixed point ρ.) we translate this set by the translation by
one, then we get the the set Vρ = V −ρ ∪ (V +

ρ + 1). To this set we apply
the elements the stabiliser and the union of the images under the action
of the stabiliser of ρ we get a nice orbiconvex neighborhood Uρ. If we take
our ε > 0 small enough then clearly

Γ\H = Ui ∪ Uρ (Cov)

and we get a resolution of a sheaf shΓ(M) = M̃

0→ M̃ → M̃i × M̃ρ → M̃i,ρ → 0

and hence the cohomology groups are given by the cohomology of the
complex

0→MΓi ⊕MΓρ →M→ 0.

Then H0(Γ\H,M̃) =MΓ =MΓi ∩MΓρ . Since this is true for any Γ
module we easily conclude that Γ is generated by Γi,Γρ.

We get

H1(Sl2(Z)\H,M̃Z) =M/(M(<S>
Z ⊕M<R>

Z ),

∀p Tp : H1(Sl2(Z)\H,M̃Z)→ H1(Sl2(Z)\H,M̃Z).

and the cohomology vanishes in higher degrees.

Exercise 1: Let Γ′ ⊂ Γ = Sl2(Z)/±Id be a subgroup of finite index.
Prove

ii) We have (Shapiros lemma)

H1(Γ′\H,Z) = H1Γ\H, ĨndΓ
Γ′Z).

These cohomology groups are free of rank

[Γ : Γ′]− ni − nρ + 1
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where ni (resp. nρ) is the number of orbits of Γi (resp. Γρ) on Γ′\Γ. If Γ′

is torsion free then

rank(H1Γ\H, ĨndΓ
Γ′Z) =

1

6
[Γ : Γ′] + 1

The Euler-characteristic of Γ′\H is 1
6
[Γ : Γ′].

Exercise 2:Let Mn be the module of homogenous polynomials in the
two variables X,Y and coefficients in Z. We have an action of Γ = Sl2(Z)
on this module by(

a b
c d

)
P (X,Y ) = P (aX + cY, bX + dY ).

these modules define a sheaf M̃n on Γ\H, and we want to investigate their
cohomology groups.

Prove:
i) If n is odd, then Mn = 0.
Hence we assume n ≥ 2 and n even from now on.
ii) H0(Γ\H,Mn) = 0.
iii) If we tensorize by Q , then H1(Γ\H,Mn ⊗ Q) is a vector space of

rank n− 1− 2
[
n
4

]
− 2

[
n
6

]
.

Hint: Diagonalize the action of Γi and Γρ on Mn ⊗ Q separately and
look at the eigenspaces. To say it differently: Over Q̄ we can conjugate the

matrices

(
0 −1
1 0

)
,

(
1 1
−1 0

)
into the diagonal maximal torus

(
t 0
0 t−1

)
,

and then look at the decomposition of Mn into weight spaces.
iv) Investigate the torsion in H1(Γ\H,Mn). (Start from the sequence

0→Mn →Mn →Mn/`Mn → 0.)

v) Now we consider Γ = Sl2(Z). The two matrices S =

(
0 −1
1 0

)
and

R =

(
1 1
−1 0

)
are generators of the stabilisers of i and ρ respectively.

We take for our module M the cyclic group Z/12Z,consider the spectral
sequence

Hp(Γ\H, Rq(shΓ)(Z/12Z).

Show that H0(Γ\H, R1(shΓ)(Z/12Z) = Z/12Z. Show that the differen-
tial

H0(Γ\H, R1(shΓ)(Z/12Z)→ H2(Γ\H, shΓ(Z/12Z)

vanishes and conclude

H1(Γ,Z/12Z) = Z/12Z.

3.2.2 The group Γ = Sl2(Z[i])

A similar computation can be made up to compute the cohomology in the
case of Γ̃ = Gl2(O). We have the three special points x12, x13 and x23

(See(2.1.2), and we choose closed sets Aij containing these points which
just leave out a small open strip containing the opposite face. If Ãij is a
component of the inverse image of Aij in H3, then

Aij = Γij\Ãij .
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The intersections Aij ∩Ai′j′ = Aν are closed sets. They are of the form

Aν = Γν\Ãν

where Γν is the stabilizer of the arc joining xij and xi′j′ . The restrictions
of our sheaves M̃ to the Aij and Aν and to A = A12 ∩ A23 ∩ A13 are
acyclic and hence we get a complex

0 −→ M̃ −→
⊕
(i,j)

M̃Aij −→
⊕
M̃Aν −→ M̃A −→ 0

where the M̃? are the restrictions of M̃ to ??? and then extended to the
space again.

Hence we find that our cohomology groups are equal to the cohomology
groups of the complex

0 −→
⊕
(i,j)

MΓij d1

−→
⊕
ν

MΓν d2

−→M −→ 0

with boundary maps

d1 :(m12,m13,m23) 7−→ (m12 −m13,m23 −m12,m13 −m23)

d2 :(m1,m2,m3) 7−→ m1 +m2 +m3.

If we take for instance M̃ = Z then we get H0(Γ̃\H3,Z) = Z and
Hi(Γ̃\H3,Z) = 0 for i > 0 as it should be.

3.2.3 Homology, Cohomology with compact support and
Poincaré duality.

Here we have to use the theory of compactifications. For any locally
symmetric space we can embed Γ\X into its Borel-Serre compactification

i : Γ\X −→ Γ\XBS ,

and this process was explained in detail for our low dimensional examples.
If we have a sheaf M̃ on Γ\X we can extend it to the compactification by
using the functor i∗. We get a sheaf

i∗(M̃) on Γ\XBS .

It will be shown later that for this particular compactification the functor
i∗ is exact. This is not true for the Baily-Borel compactification.

Our constructionM→ M̃ can be extended to the action of Γ on XBS

and

i∗(M̃) = result of the construction M→ M̃ on Γ\XBS .

Hence we get from our general results in Chapter I, ..... that

H•(Γ\X,M̃) = H•(Γ\XBS , i∗(M̃)).

But we have another construction of extending the sheaf M̃ from Γ\X
to Γ\XBS . This is the so called extension by zero. We define the sheaf
i!(M̃) on Γ\XBS by giving the stalks. For x ∈ Γ\XBS we put

i!(M̃)x =

{
M̃x if x ∈ Γ\X
0 if x 6∈ Γ\X

.
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It is clear that i! is an exact functor sending sheaves on Γ\X to sheaves
on Γ\XBS , and we have for an arbitrary sheaf

H0(Γ\XBS , i!(F)) = H0
c (Γ\X,F)

where H0
c (Γ\X,F) is the abelian group of those sections s ∈ H0(Γ\X,F)

for which the support

supp (s) = {x | sx 6= 0}

is compact.
Hence we define the cohomology with compact supports as

Hq
c (Γ\X,F) = Hq(Γ\XBS , i!F)).

If M̃ is a sheaf on Γ\X which is obtained from a Γ-module M, then it is
quite clear that

H0
c (Γ\X,M̃) = 0,

provided our quotient Γ\X is not compact.

The cohomology with compact supports is actually related to the ho-
mology of the group: I want to indicate that we have a natural isomor-
phism

Hi(Γ,M) ' Hd−i
c (Γ\X,M̃)

under the assumption that X is connected and the orders of the stabilizers
are invertible in R.

This is the analogous statement to the theorem .... which we discussed
when we introduced cohomology.

Our starting point is the fact that the projective Γ-modules have anal-
ogous vanishing properties as the induced modules.

Lemma: Let us assume that Γ acts on the connected symmetric space
X. If P if a projective module then

Hi
c(Γ\X, P̃ ) =


0 if i 6= dimX

PΓ if i = dimX.

Let us believe this lemma. Then it is quite clear that

Hi(Γ,M) ' Hd−i
c (Γ\X, P̃ ),

because both sides can be computed from a projective resolution.
We have still another description of the homology.
We form the singular chain complex

→ Ci(X)→ Ci−1(X)→ . . .→ C0(X)→ 0.

This is a complex of Γ-modules, and we can form the tensor product with
M. We get a complex of Γ-modules

−→ Ci(X)⊗M −→ Ci−1(X)⊗M −→ . . . .

We define the chain complex

C•(Γ\X,M),
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simply a resulting complex if we take the Γ-coinvariants.
But we may choose for our module M simply the group ring. Then

we have clearly
(C•(X)⊗ Z[Γ])Γ ' C•(X),

and hence we have, since X is a cell, that

Hi(Γ\X,Z[Γ]) = 0 for i > 0.

On the other hand we have

H0(Γ\X,M) =MΓ.

This follows directly from looking at the complex

(C1(X)⊗M)Γ −→ (C0(X)⊗M)Γ.

First of all we observe that 0-cycles

x1 ⊗m− x0 ⊗m

are boundaries since X is pathwise connected. On the other hand we have
that

x0 ⊗m− γx0 ⊗ γm ∈ C0(X)⊗M
becomes zero if we go to the coinvatiants and this implies the assertion.

If we have in addition that the orders of the stabilizers are invertible
in R than it is clear that a short exact sequence of R-Γ-modules

0 −→M′ −→M −→M′′ −→ 0

leads to an exact sequence of complexes

0 −→ C•(Γ\X,M′) −→ C•(Γ\X,M) −→ C•(Γ\X,M′′) −→ 0,

and hence to a long exact cohomology sequence

Hi(Γ\X,M′) −→ Hi(Γ\X,M) −→ Hi(Γ\X,M′′) −→ Hi−1(Γ\X,M′).

Now it is clear that

Hi(Γ,M) ' Hi(Γ\X,M) ' Hd−i
c (Γ\X,M̃).

3.2.4 The fundamental exact sequence

By construction we have the exact sequence

0→ i!(M̃)→ i∗(M̃)→ i∗(M̃)/i!(M̃)→ 0

of sheaves and clearly i∗(M)/i!(M) is simply the restriction of i∗(M̃)
to the boundary extended by zero to the entire space. This yields the
fundamental exact sequence

→ Hq−1(∂(Γ\X),M̃)→ Hq
c (Γ\X,M̃)→ Hq(Γ\X̄,M̃)→ Hq(∂(Γ\X),M̃)→ . . .

We define the “inner cohomology”Hq
c (Γ\X,M̃) as the image ofHq

c (Γ\X,M̃)→
Hq(Γ\X,M̃). ( This a little bit misleading because these groups are not
honest cohomology groups. An exact sequence of sheaves 0 → M′ →
M→M′′ → 0 does not provide an exact sequence for the H! groups. )
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We want to have a slightly different look at this sequence. We recall
the covering (See 58,59)

Γ\X = Γ\X(r)∪
•
N (Γ\X) = Γ\X(r) ∪

⋃
P :Pproper

ΓP \XP (cπ′ , r(cπ′))

(73)

where the union runs over Γ conjugacy classes of parabolic subgroups

over Q and
•
N (Γ\X) is a punctured tubular neighborhood of ∞, i.e. the

boundary of the Borel-Serre compactification.

It is well known (See for instance [book] vol I , 4.5 ) that from a
covering Γ\X =

⋃
i Vi we get a Čzech complex and a spectral sequence

with Ep,q1 - term ∏
i={i0,i1...,ip}

Hq(Vi,M̃) (74)

where Vi = Vi0 ∩ · · · ∩ Vip . The boundary in the Čzech complex gives us
the differential

dp,q1 :
∏

i={i0,i1...,ip}

Hq(Vi,M̃)→
∏

j={j0,j1...,jp+1}

Hq(Vj ,M̃) (75)

Here we work with the alternating Čzech complex, we also assume that
we have an ordering on the set of simple positive roots. If such a Vi is
non empty then it of the form ΓQ\XQ(C(c̃)).

We return to the diagram (63), on the left hand side we can divide
by ΓQ. We have the map which maps a Cartan involution on X to a
Cartan-involution on M . Then we get a diagram

f† : XQ(C(c̃)) → XM (r)× CUQ(c̃)
↓ pQ ↓ pM

f : ΓQ\XQ(C(c̃)) → ΓM\XM (r)× CUQ(c̃))
(76)

where the bottom line is a fibration. To describe the fiber in a point
x̃ we pick a point x ∈ (pm ◦ f†)−1. Then UQ(R) acts simply transi-
tively on the fiber (f†)−1(f†(x)) hence UQ(R) = (f†)−1(f†(x)). Then
pQ : UQ(R) → ΓUQ\UQ(R) yields the identification ix : ΓUQ\UQ(R)

∼−→
f−1(x̃). If we replace x by γx = x1 with γ ∈ ΓUQ then we get ix1 =

Ad(γ) ◦ ix where for u ∈ UUQ Ad(γ)(u) = γuγ−1 where for u ∈ UQ(R),
under this action of ΓQ.

We have the spectral sequence

Hp(ΓM\XM (r), Rqf∗(M̃))⇒ Hp+q(ΓQ\XQ(C(cπ1
, . . . , cπν )),M̃)

and clearly Rqf∗(M̃) is a locally constant sheaf. This sheaf is easy to
determine. Under the above identification we get an isomorphism

i•x : H•(ΓUQ\UQ(R),M̃))
∼−→ R•(M̃)x̃.

The adjoint action Ad : ΓQ → Aut(ΓUQ\UQ(R)) induces an action

of ΓQ on the cohomology H•((ΓUQ\UQ(R)),M̃). Since the functor co-
homology is the derived functor of taking ΓUQ invariants it follows that
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the restriction of Ad to ΓUQ acts trivially on H•(ΓUQ\UQ(R),M̃). Con-

sequently H•((ΓUQ\UQ(R)),M̃) is a ΓM− module. We get

R•f∗(M̃)
∼−→ ˜H•(ΓUQ\UQ(R),M̃)

and our spectral sequence becomes

Hp(ΓM\XM (r), ˜H•((ΓUQ\UQ(R)),M̃))⇒ Hp+q(ΓQ\XQ(C(c̃)),M̃)

We can take the composition rQ ◦ f. Then it is obvious that for any
point c0 ∈ CUQ(c̃)) the restriction map

H•(XQ(C(c̃)),M̃)→ H•(XQ((rQ ◦ f)−1(c0),M̃) (77)

is an isomorphism. On the other hand it is clear that we may vary our
parameter c̃ we may assume that the CUQ(c̃) go to infinity. Then we may
enlarge the parameter r without violating the assumptions in proposition
2.3. Hence we get that the inclusion ΓQ\XQ(C(c̃)) ⊂ ΓQ\XQ induces an
isomorphism in cohomology

H•(ΓQ\XQ(C(c̃)),M̃)
∼−→ H•(ΓQ\X,M̃) (78)

We choose a total ordering on the set of Γ conjugacy classes of parabolic
subgroups, i.e. we enumerate them by a finite interval of integers [1, N ].
We also enumerate the set of simple roots {α1, . . . , αd) in our special
case αi = αi,i+1. For any conjugacy class [P ] we define the type of P to
be t(P ) = πUP the subset of unipotent simple roots and d(P ) = #πUP

the cardinality of this set. If Pi1 , . . . , Pir are maximal, i1 < i2 · · · < ir
and if Pi1∩, · · · ∩ Pir = Q is a parabolic subgroup then we require that
t(Pi1) < · · · < t(Pir ).

The indexing set Par(Γ) of our covering is the Γ conjugacy classes of
parabolic subgroups over Q. If we have a finite set [Pi0 ], [Pi1 ], . . . , [Pip ]
of conjugacy classes then we say [Q] ∈ [Pi0 ], [Pi1 ], . . . , [Pip ] if we can find
representatives P ′iν ∈ [Piν ] and Q′ ∈ [Q] such that Q′ = P ′i0 ∩ . . . P

′
ip .

Hence we see that the E•,q1 complex in our spectral sequence (75) is
given by∏
i

Hq(ΓQi\X
Qi(C(c̃)),M̃)→

∏
i<j

∏
[R]∈[Qi]∩[Qj ]

Hq(ΓR\XR(C(c̃)),M̃)→

(79)

this obtained from our covering (59). Now we replace our covering by a
simplicial space, i.e. we consider the diagram of maps between spaces

Par :=
∏
i

ΓQi\X
p1←−
p2←−

∏
i<j

∏
[R]∈[Qi]∩Qj ]

ΓR\X
←−
←−
←−

(80)

this yields a spectral sequence with E•,q1 term∏
i

Hq(ΓQi\X,M̃)
d(0)

−→
∏
i<j

∏
[R]∈[Pi]∩[Pj ]

Hq(ΓR\XR,M̃)
d(1)

−→ (81)

Our covering also yields a simplicial space which is a subspace of ( 80) we
get a map from (75) to (81 ) and this map is an isomorphism of complexes.
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We replace Par by another simplicial complex

Parmax :=
∏

[P ]:d(P )=1

ΓP \X
p1←−
p2←−

∏
[Q]:d(Q)=2

ΓQ\X
←−
←−
←−

(82)

We have an obvious projection Π : Par → Parmax which induces a
homomorphism

∏
iH

q(ΓQi\X,M̃)
d(0)

−→
∏
i<j

∏
[R]∈[Pi]∩[Pj ]

Hq(ΓR\XR,M̃)
d(1)

−→
↑ ↑∏

[P ]:d(P )=1 H
q(ΓP \X,M̃)

d(0)

−→
∏

[R]:d(R)=2 H
q(ΓR\XR,M̃)

d(1)

−→
(83)

and an easy argument in homological algebra shows that this induces an
isomorphism in cohomology or in other words an isomorphism of the Ep,q2

terms of the two spectral sequences.

We had the covering

•
N (Γ\X) =

⋃
P :Pproper

ΓP \XP (cπ′ , r(cπ′)) (84)

which gives us the spectral sequence converging to H•(
•
N (Γ\X),M̃) with

Ep,q1 =
⊕

i0<i1<···<ip

⊕
[Q]∈[Pi0 ]∩[Pi1 ]∩···∩[Pip ]

Hq(ΓQ\XQ(cπ′ , r(cπ′))) (85)

Our covering of
•
N (Γ\X) gives us a simplicial space Cov(

•
N )Γ\X) and

we have maps

Cov(
•
N (Γ\X)) ↪→ Par→ Parmax. (86)

We saw that the resulting maps induced an isomorphism in the Ep,q2 terms
of the spectral sequences. Hence we see that Parmax yields a spectral
sequence

Ep,q1 =
⊕

[P ]:d(P )=p+1

Hq(ΓP \X,M̃)⇒ Hp+q(
•
N (Γ\X),M̃)) (87)

At this point we want to raise an interesting question

Does this spectral sequence degenerate at Ep,q2 level?

The author of this book is hoping that the answer to this question is
no! And this is so for interesting reasons! We come back to this question
when we discuss the Eisenstein cohomology.

The complement of
•
N (Γ\X) is a relatively compact open set V ⊂

Γ\X, this map contains the stable points. We define M̃!
V = iV,!(M̃) then

we get an exact sequence

0→ M̃!
V → M̃ → M̃/M̃!

V → 0 (88)
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and M̃/M̃!
V is obviously the extension of the restriction of M̃ to

•
N (Γ\X)

and the extended by zero to Γ\X. We claim (easy proof later) that

H•c (Γ\X,M̃) = H•(Γ\X,M̃!
V ) (89)

and this gives us again the fundamental exact sequence

Hq−1(
•
N (Γ\X),M̃)→ Hq(Γ\X,M̃!

V )→ Hq(Γ\X,M̃)→ Hq(
•
N (Γ\X),M̃)→

(90)

3.2.5 How to compute the cohomology groups Hq
c (Γ\X,M̃)

We apply the considerations in 4.8 from the [book]. Again we cover Γ\X
by orbiconvex open neighborhoods Uxi , and now we define

M̃!
x = (ix)!i

∗
x(M̃).

These sheaves have properties, which are dual to those of the sheaves
M̃ulx. If x = (x1, . . . , xs) and if we add another point x′ = (x1, . . . , xs, xs+1)
then we have the restriction M̃x → M̃x′ , which were used to construct
the Čech resolution.

Now let d = dim(X). For the ! sheaves we get (See [book] , loc. cit.)
get a morphism M̃!

x′ → M̃!
x. For x = (x1, . . . , xs) we define the degree

d(x) = d + 1 − s. Then we construct the Čech-coresolution (See [book],
4.8.3)

→
∏

x:d(x)=q

M̃!
x → · · · →

∏
(xi,xj)

M̃!
xi,xj →

∏
xi

M̃!
xi → i!(M̃)→ 0.

Now we have a dual statement to the proposition with label acyc

Proposition: (acyc!)If d = dim(X) then

Hq(Ux̃,M̃!
x) =

{
MΓỹ q = d

0 q 6= d

Hence the above complex of sheaves provides a complex of modules
C•! (U,M̃) :

→
∏

x:d(x)=q

Hd(Ux, M̃
!
x)→ · · · →

∏
(xi,xj)

Hd(Uxi,xj ,M̃
!
xi,xj )→

∏
xi

H̃d(Uxi ,M̃
!
xi)→ 0.

Now it is clear that

Hq(Γ\X, i!(M̃)) = Hq
c (Γ\X,M̃) = Hq(C•! (U,M̃)).

Now let us assume thatM is a finitely generated module over some com-
mutative noetherian ring R with identity. Then clearly all our cohomology
groups will be R-modules.

Our Theorem A above implies
Theorem (Raghunathan) Under our general assumptions all the co-

homology groups Hq
c (Γ\X,M̃), Hq(Γ\X,M̃), Hq

! (Γ\X,M̃), Hq(∂(Γ\X),M̃)
are finitely generated R modules.
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3.2.6 The case Γ = Sl2(Z)

In the followingM can be any Γ-module. We investigate the fundamental
exact sequence for this special group.

Of course we start again from our covering Γ\H = Ui ∪Uρ. The coho-
mology with compact supports is the cohomology of the complex

0→ H2(Ui ∩ Uρ,M̃!
i,ρ)→ H2(Ui ,M̃!

i)⊕H2(Uρ,M̃!
ρ)→ 0.

Now we have H2(Ui∩Uρ,M̃!
i,ρ) = M,H2(Ui ,M̃!

i) =MΓi =M/(Id−
S)M,H2(Uρ ,M̃!

ρ) = MΓρ =M/(Id−R)M and hence we get the complex

0→M→MΓi ⊕MΓρ → 0

and from this we obtain

H1(Γ\H, i!(M)) = ker(M→ (M/(Id− S)M⊕M/(Id−R)M))

and
H0(Γ\H, i!(M)) = 0, H2(Γ\H, i!(M)) =MΓ

We discuss the fundamental exact sequence in this special case. To do
this we have to understand the cohomology of the boundaryH•(∂(Γ\H, M̃).
We discussed the Borel-Serre compactification and saw that in this case
we get this compactification if we add a circle at infinity to our picture of
the quotient. But we may as well cut the cylinder at any level c > 1, i.e.
we consider the level line H(c) = {z = x+ ic|z ∈ H} and divide this level
line by the action of the translation group

ΓU = {
(

1 n
0 1

)
|n ∈ Z} = {

(
ε n
0 ε

)
|n ∈ Z, ε = ±1}/{±Id}.

But this quotient is homotopy equivalent to the cylinder

ΓU\H ' ΓU\H(c).

We apply our general consideration on cohomology of arithmetic groups
to this situation and find

H•(∂(Γ\H),M̃) = H•(ΓU\H, shΓU (M)) = H•(ΓU\H(c), shΓU (M)).

This cohomology is easy to compute. The group ΓU is generated by

the element T =

(
1 1
0 1

)
. It is rather clear that

H0(ΓU\H, shΓU (M)) =MΓU , H1(ΓU\H, shΓU (M)) =MΓU =M/(Id−T )M.

Then our fundamental exact sequence becomes

0→MΓ →MΓU → ker(M→ (M/(Id−S)M⊕M/(Id−R)M))
j−→M/(MΓi⊕MΓρ)

r−→

M/(Id− T )M→MΓ → 0
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Now it may come as a little surprise to the readers, that we can for-
mulate a little exercise which is not entirely trivial

Exercise: Write down explicitly all the arrows in the above fundamental
sequence

We give the answer without proof. I change notation slightly and work
with the matrices

S =

(
0 −1
1 0

)
, R =

(
1 −1
1 0

)
and we have the relation

RS = T =

(
1 1
0 1

)
Then Γi =< S >,Γρ =< R > . The map

M/(M<S> ⊕M<R>)→M/(Id− T )M

is given by
m 7→ m− Sm

We have to show that this map is well defined: If m ∈M<S> then m 7→ 0.
If m ∈M<R> then

m− Sm = m− SR−1m = m− Tm

and this is zero in M/(Id− T )M.
The map

ker(M→ (M/(Id− S)M⊕M/(Id−R)M))→M/(M<S> ⊕M<R>)

is a little bit delicate. We pick an element m in the kernel, hence we can
write it as

m = m1 − Sm1 = m2 −R−1m2

and send m 7→ m1 − m2 (Here we have to use the orientation). If we
modify m1,m2 to m′1 = m1 + n1,m

′
2 = m2 + n2 then m′1 −m′2 gives the

same element in M/(M<S> ⊕M<R>).
This answer can only be right if m1 −m2 goes to zero under the map

r, i.e. we have to show that

m1 −m2 − S(m1 −m2) ∈ (Id− T )M

We compute

m1−m2−S(m1−m2) = m−m2+Sm2 = m−m2+R−1m2−R−1m2+Sm2 =

−R−1m2 + Sm2 = −T−1Sm2 + Sm2 ∈ (Id− T )M
Finally we claim that the map M<T> → ker(M → (M/(Id − S)M⊕
M/(Id−R)M)) is given by m 7→ m−Sm = m−R−1T−1m = m−R−1m.

Final remark: The reader may get the impression that it is easy
to compute the cohomology, but the contrary is true. In the case Γ =
Sl2(Z)/±Id we found formulae for the rank of the cohomology groups, this
seems to be a satisfactory answer, but it is not. The point is that in the
next section we will introduce the Hecke operators, these Hecke operators
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form an algebra of endomorphisms of the cohomology groups. It is a
fundamental question (see further down) to understand the cohomology
as a module under the action of this Hecke algebra. It is difficult to write
down the effect of a Hecke operator on a module like M/(MΓi +MΓρ).
We will discuss an explicit example in (4.3.2.)

The situation is even worse if we consider the case Γ = Gl2(Z[i])/{(iνId)}.
First of all we notice that it is not possible to read off the dimensions of the
individual groups Hi(Γ\H3, M̃) from the complex in 3.2.2 ) . Of course
we can compute them in any given case, but our method does not give
any kind of theoretical insight.

We will see later that we can prove vanishing theorems Hi(Γ̃\H3, M̃C)
for certain coefficient systems M̃C by transcendental means. These results
can not be obtained by our elementary methods.

4 Hecke Operators

4.1 The construction of Hecke operators

We mentioned already that the cohomology and homology groups of an
arithmetic group has an additional structure. We have the action of the
so-called Hecke algebra. The following description of the Hecke algebra
is somewhat provisorial, we get a richer Hecke algebra, if we work in the
adelic context (See Chap III). But the desription here is more intuitive.

We start from the arithmetic group Γ ⊂ G(Q) and an arbitrary Γ-
module M. The module M is also a module over a ring R which in the
beginning may be simply Z.

At this point it is better to have a notation for this action

Γ×M→M, (γ,m) 7→ r(γ)(m)

where now r : Γ→ Aut(M).
We assume that M is a module over a ring R in which we can invert

the orders of the stabilizers of fixed points of elements γ ∈ Γ.
If we have a subgroup Γ′ ⊂ Γ of finite index, then we constructed maps

π•Γ′,Γ :H•(Γ\X,M̃) −→ H•(Γ′\X,M̃)

πΓ′,Γ,• :H•(Γ\X,M̃) −→ H•(Γ′\X,M̃)

(see 2.1.1).
We pick an element α ∈ G(Q). The group

Γ(α−1) = α−1Γα ∩ Γ

is a subgroup of finite index in Γ and the conjugation by α induces an
isomorphism

inn(α) : Γ(α−1) −→ Γ(α).

We get an isomorphism

j(α) : Γ(α−1)\X −→ Γ(α)\X

which is induced by the map x −→ αx on the space X. This yields an
isomorphism of cohomology groups

j(α)• : H•(Γ(α−1)\X,M̃) −→ H•(Γ(α)\X, j(α)∗(M̃)).
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We compute the sheaf j(α)∗(M̃). For a point x ∈ Γ(α)\X we have
j(α)∗(M̃)x = M̃x′ where j(α)(x′) = X. We have the projection πΓ(α−1) :

X → Γ(α−1)\X, and the definition yields

(M̃)′x =
{
s : π−1

Γ(α−1)
(x′)→M | s(γm) = γs(m) for all γ ∈ Γ(α−1

}
The map z −→ αz provides an identification π−1

Γ(α−1)
(x′)

∼−→ π−1
Γ(α)(x)

in in terms of this fibre we can describe the stalk at x as

j(α)∗(M̃)x =
{
s : π−1

Γ(α)(x)→M | s(γv) = α−1γαs(v) for all γ ∈ Γ(α)
}
.

Hence we see: We may use α to define a new Γ(α)-moduleM(α): The
underlying abelian group ofM(α) isM but the operation of Γ(α) is given
by

(γ,m) −→ (α−1γα)m = γ ∗α m.
Then we have obviously that the sheaf j(α)∗(M̃) is equal to M̃(α). Hence
we see that every element

uα ∈ HomΓ(α)(M(α),M)

defines a map ũα : j(α)∗(M̃)→ M̃. Hence we get a diagram

H•(Γ(α−1)\X,M̃)
j(α)•−→ H•(Γ(α)\X, j(α)∗(M̃))

ũ•α−→ H•(Γ(α)\X,M̃)(91)xπ• yπ• (92)

H•(Γ\X,M̃)
T (α,uα)−−−−−−−−−−−−−−−−−−−−−−−−−−→ H•(Γ\X,M̃)(93)

where the operator on the bottom line is the Hecke operator. It depends
on two data, namely, the element α ∈ G(Q) and the choice of uα ∈
HomΓ(α)(M(α),M).

It is not difficult to show that the operator T (α, uα) depends only on
the double coset Γ α Γ, provided we adapt the choice of uα. To be more
precise if

α1 = γ1αγ2 γ1, γ2 ∈ Γ,

then we have an obious bijection

Φγ1,γ2 : HomΓ(α)(M(α),M) −→ HomΓ(α1)(Mα1),M)

which is given by
Φγ1,γ2(uα) = uα1 = γ1uαγ2.

The reader will verify without difficulties that

T (α, uα) = T (α1, uα1).

(Verify this for H0 and then use some kind of resolution)

There is a case where we have also a rather obvious choice of uα. This
is the case if R ⊂ Q and our Γ-module M is a R-lattice in the Q-vector
space MQ, where MQ is a rational G(Q) module, i.e. is obtained from a
rational (finite dimensional) representation of our group G/Q.

Then we have the canonical choice of an

uα,Q :M(α)
Q −→MQ,
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which is given by m 7→ αm. But this morphism will not necessarily map
the lattice M(α) into M. It is also bad if uα,Q maps M(α) into bM,
where b is an integer > 1. But then we can find a unique rational number
d(α) > 0 for which

d(α)·uα,Q :M(α) −→M and d(α)·uα,Q(M(α)) 6⊂ bM for any integer b > 1.

Then uα = d(α)·uα,Q is called the normalized choice. The canonical choice
defines endomorphisms on the rational cohomology, i.e. the cohomology
with coefficients in M̃Q whereas the normalized Hecke operators induce
endomorphism of the integral cohomology.

We see that we can construct many endomorphisms T (α, uα) : H•(Γ\X,M̃)→
H•(Γ\X,M̃). These endomorphisms will generate an algebra

HΓ,M̃ ⊂ End(H•(Γ\X,M̃)).

This is the so-called Hecke algebra. We can also define endomorphisms
T (α, uα) on the cohomology with compact supports, on the inner coho-
mology and the cohomology of the boundary. Since the operators are
compatible with all the arrows in the fundamental exact sequence we de-
note them by the same symbol.

We now assume thatM is a finitely generated R module where R is the
ring of integers in an algebraic number field K/Q. Then our cohomology
groups Hq(Γ\X,M̃) are finitely generated R-modules with an action of
the algebra H on it. The Hecke algebra also acts on the inner cohomology
Hq

! (Γ\X,M̃) If we tensorize our coefficient system with any number field
L ⊃ K , then we write ML = M ⊗ L.

We state without proof :

Theorem 4.1. Let M be a module obtained by a rational representation.
For any extension L/K/Q the HΓ ⊗ L module Hq

! (Γ\X,M̃L) is semi
simple, i.e. a direct sum of irreducible HΓ modules.

The proof of this theorem will be discussed in Chap.3, it requires
some input from analysis. We tensorize our coefficient system by C, i.e.
we consider ML ⊗L C =MC. Let us assume that Γ is torsion free. First
of all start from the well known fact, that the cohomology H•(Γ\X,M̃C)
can be computed from the de-Rham-complex

H•(Γ\X,M̃C) = H•(Ω• ⊗ M̃C(Γ\X)).

We introduces some specific positive definite hermitian form on MC
and this allows us to define a hermitian scalar product between two M̃C
-valued p-forms

< ω1, ω2 >=

∫
Γ\X

ω1 ∧ ∗ω2,

provided one of the forms is compactly supported.
This will give us a positive definite scalar product on Hp

! (Γ\H,M̃n,C),
In the classical case of Gl2 this is the Peterson scalar product. Finally we
show that HΓ is self adjoint with respect to this scalar product, and then
semi-simplicity follows from the standard argument.
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4.1.1 Commuting relations

We want to say some words concerning the structure of the Hecke algebra.
To begin we discuss the action of the Hecke-algebra on H0(Γ\X,M̃).

We have to do this since we defined the cohomology in terms of injective
(or acyclic) resolutions and therefore the general results concerning the
structure of the Hecke algebra can be reduced to this special case.

If we have a Γ-module M and if we look at the diagram defining the
Hecke operators, then we see that we get in degree 0

MΓ(α−1) −→ (M(α))Γ(α) uα−→ MΓ(α)x y
MΓ T (α,uα)−−−−−−−−−−−−−−−→ MΓ

where the first arrow on the top line is induced by the identity mapM→
M(α) =M and the second by a map uα ∈ HomAb(M,M) which satisfies
uα((αγα−1)m) = γuα(m). Recalling the definition of the vertical arrow
on the right, we find

T (α, uα)(v) =
∑

γ∈Γ/Γ(α)

γ · uα(v).

We are interested to get formulae for the product of Hecke oprators, so,
for instance, we would like to show that under certian assumptions on
α, β and certain adjustment of uα, uβ and uαβ we can show

T (α, uα) · T (β, uβ) = T (β, uβ) · T (α, uα) = T (αβ, uαβ).

It is easy to see what the conditions are if we want such a formula to
be true. We look at what happens in H0 and get

T (α, uα) · T (β, uβ)(v) =
∑

γ∈Γ/Γ(α)

∑
η∈Γ/Γ(β)

γuα · ηuβ(v).

We rewrite the right hand slightly illegally:∑
γ∈Γ/Γ(α)

∑
η∈Γ/Γ(β)

γuαηu
−1
α uαuβ(v),

where we have to take into account that this does not make sense because
the term γuαηu

−1
α is not defined. But let us assume that (i) for each η

we can find an η′ such that

η′ ◦ uα = uα ◦ η,

where these η′ also form a sytem of representatives for Γ/Γ(β) (ii) The

elements γη′ and η′γ form a system of representatives for Γ/Γ(αβ) (iii)

uαuβ(v) = uβuα(v) = uαβ(v), then we get a legal rewrite

T (α, uα)·T (β, uβ)(v) =
∑

γ∈Γ/Γ(α)

∑
η′∈Γ/Γ(β)

γη′uαuβ(v) =
∑

ξ∈Γ/Γ(αβ)

ξuαβ(v) =
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T (αβ, uαβ)(v)

We want to explain in a special case that we may have relations like
the one above.

Let S be a finite set of primes, let |S| be the product of these primes.
Then we define ΓS = G(Z[ 1

|S| ]). We say that α ∈ G(Q) has support in S

if α ∈ G(Z[ 1
|S| ]).

We take the group Γ = Sld(Z), and we take two disjoint sets of primes
S1, S2. For the group Γ one can prove the so-called strong approximation
theorem which asserts that for any natural number m the map

Sld(Z) −→ Sld(Z/mZ)

is surjective. (This special case is actually not so difficult. The theorem
holds for many other arithmetic groups, for instance for simply connected
Chevalley schemes over Spec(Z). )

We consider the case

α =


a1

a2

. . .

ad

 ∈ ΓS1 , β =


b1

b2
. . .

bd

 ∈ ΓS2 ,

where ad|ad−1 . . . |a1 and bd|bd−1| . . . |b1. It is clear that we can find in-
tegers n1 and n2 which are only divisible by the primes in S1 and S2

respectively, so that

Γ(ni) ⊂ Γ(α−1),Γ(n2) ⊂ Γ(β−1),

where the Γ(ni) are the full congruence subgroups mod n1 and n2 re-
spectively. Since we have

Sld(Z/nZ) = Sld(Z/n1Z)× Sld(Z/n2Z)

we get
Γ/Γ(α−1β−1)

∼−→ Γ/Γ(α−1)× Γ/Γ(β−1).

On the right hand side we can chose representatives γ for Γ/Γ(α−1)
which satisfy γ ≡ Id mod n2 and η for Γ/Γ(β−1) which satisfy η ≡ Id
mod n1. Then the products γη will form a system of representatives for
Γ/Γ(α−1β−1). But then we clearly have uαη = ηuα and we see that (i)
and (ii) above are true. Then we can put uαβ = uαuβ .

We consider the case that our module M is a R-lattice in MQ, where
MQ is a rational G(Q)-module. Then we saw that we can write

uα = d(α) · α

where d(α) will be a product of powers of the primes p dividing n1 and
an anologous statement can be obtained for β and n2.

Since we have αβ = βα and since clearly d(α)d(β) = d(αβ) we also
get the commutation relation.

Of course we have to be careful here. We only proved it for the rather
uninteresting case of H0(Γ\X,M). If we want to prove it for cohomology
in higher degrees, we have to choose an acyclic resolution

0 −→M −→ A0 −→ A1 −→ . . . ,
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We have to extend the maps uα, uβ to this complex

0 −→ M(α) −→ (A•)(α)yuα yuα
0 −→ M −→ A•,

and we have to prove that the relation

uαηuβ = η′uαuβ = η′uαβ

also holds on the complex. If we can prove this, it becomes clear that the
commutation rule also holds in higher degrees.

We choose the special resolution

0 −→M −→ IndΓ
1M−→ .

It is clear that if suffices to show: If we selected the uα, uβ in such a way
that we have the condition (i), (ii) and (iii) above satisfied, then we can
choose extensions uα, uβ , uαβ to IndΓ

1M so that (i), (ii) and (iii) are also
satisfied. Once we have done this we can proceed by induction.

We have the diagram of Γ(α)-modules

0 −→ M(α) −→ ( IndΓ
1M)(α)yuα y?

0 −→ M −→ IndΓ
1M,

and we are searching for a suitable vertical arrow ?. The horizontal arrows
are given by (as before)

i : m −→ fm : {γ −→ γm}.

To get a map

? ∈ HomΓ(α)

((
IndΓ

1m
)(α)

, IndΓ
1M

)
we apply Frobenius reciprocity: We choose representatives γ1 . . . γm of
Γ/Γ(α); then our Γ(α)-module in the second argument is

IndΓ
1M'

⊕
γi

Ind
Γ(α)
1 M

where f ∈ IndΓ
1M is mapped to (f1, . . . , fm) ∈ Ind

Γ(α)
1 , and where

fi(γ) = f(γiγ).

Hence we have

HomΓ(α)

((
IndΓ

1M
)(α)

, IndΓ
1M

)
'
⊕
xi

Hom{1}

(
IndΓ

1M,M
)
.

an element Φγi : Hom{1}( IndΓ
1M,M) is a collection of homomorphisms

ϕγi,γ :M−→M,
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so that almost all of them are zero on Φγi(f) = ϕγi,γ(f(γ). The homo-
morphism

i ◦ uα ∈ HomΓ(α)(M(α), IndΓ
1M) = Hom{1}(M,⊕γ1M)

is by definition given by the vector of maps

m −→ (. . . , fuα(m)(γi), . . .) = (. . . γiuα(m), . . .).

Hence we define ??? by the conditions that

ϕγi,γ : m −→


γiuα(m) for γ = 1

0 for γ 6= 1,

and we get the required commutative diagram. This morphism ? is now
the extension of uα : M(α) → M to ( IndΓ

{1}M)(α) −→ IndΓ
{1}M. It

is clear that under the assumption (i), (ii), (iii) for the morphisms uα :
M(α) →M and uβ :M(β) →M the extensions also satisfy (i), (ii), (iii).

Hence we see that under our special assumptions on α, β we have

T (β, uβ) · T (α, uα) = T (βα, uβα)

on all the cohomology groups H•(Sld(Z)\X,M̃).

4.1.2 Relations between Hecke operators

We attach a Hecke operator to any coset ΓαΓ where α ∈ Gl+2 (Q) (i.e.
det(α) > 0, we want α to act on the upper half plane). The center of
Gl2(Q) is Q×. It acts trivially on Mn this will have te effect that α and
λα with λ ∈ Q∗ define the same operator. (Of course here we assume
that m = −n/2.) Hence we may assume that the matrix entries of α
are integers. The theorem of elementary divisors asserts that the double
cosets

Γ ·Mn(Z)det6=0 · Γ ⊂ Gl+2 (Q)

are represented by matrices of the form(
a 0
0 b

)
where b | a. But here we can divide by b, and we are left with the matrix

α =

(
a 0
0 1

)
, a ∈ N.

We can attach a Hecke operator to this matrix provided we choose uα.
We see that α induces on the basis vectors

XνY n−ν −→ aν−n/2 ·XνY n−ν .

Hence we see that we have the following natural choice for uα

uα : P (X.Y ) −→ an/2α · P (X,Y ).

(See the general discussion of the Hecke operators)
Hence we get a family of endomorphisms

T

(a 0
0 1

)
, ua 0

0 1



 = T (a)
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of the cohomology Hi(Γ\H,Mn).
We have seen already that we have TaTb = Tab if a, b are coprime.
Hence we have to investigate the local algebra Hp which is generated

by the

Tpr = T

(pr 0
0 1

)
, upr 0

0 1




for the special case of the group Γ = Sl2(Z) and the coefficient system
Mn. To do this we compute the product

Tpr · Tp = T

((
pr 0
0 1

)
, uαrp

)
· T
((

p 0
0 1

)
, uαp

)
where the u′αr are the canonical choices.

Again we investigate first what happens in degree zero, i.e. onH0(Γ\H, Ĩ)
where I is any Γ-module.

Let α =

(
p 0
0 1

)
, then we have

T (αr, uαr )T (α, uα)ξ = (
∑

γ∈Γ/Γ(αr)

γuαr )(
∑

η∈Γ/Γ(α)

ηuα)(ξ)

We have the classical system of representatives

Γ/Γ(αr) =
⋃

j mod pr

(
1 j
0 1

)
Γ(αr)

⋃ ⋃
j′ mod pr−1

(
1 0
j′p 1

)(
0 1
−1 0

)
Γ(αr)

Then our product of Hecke operators becomes

(
∑

j mod pr

(
1 j
0 1

)
+

∑
j′ mod pr−1

(
1 0
j′p 1

)(
0 1
−1 0

)
uαr )(

∑
j1 mod p

(
1 j1
0 1

)
+

(
0 1
−1 0

)
)uα(ξ) =

(
∑

j mod pr,j1 mod p

(
1 j
0 1

)
uαr

(
1 j1
0 1

)
uα)(ξ)

+(
∑

j mod pr

(
1 j
0 1

)
uαr

(
0 1
−1 0

)
)uα(ξ)+

(
∑

j′ mod pr−1,j1 mod p

(
1 0
j′p 1

)(
0 1
−1 0

)
uαr

(
1 j1
0 1

)
uα)(ξ)+

(
∑

j′ mod pr−1

(
1 0
j′p 1

)(
0 1
−1 0

)
uαr

(
0 1
−1 0

)
uα)(ξ)

Now we have to assume the validity of certain commutation rules

uαr

(
1 j1
0 1

)
=

(
1 j1p

r

0 1

)
uαr

uαr

(
0 1
−1 0

)
uα

(
0 1
−1 0

)
= pnuαr−1

(∗)

which are obviously valid for the canonical choices in the case I =Mk[m]
( here m is arbitrary). We also have uαruα = uαr+1 . If we exploit the
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first commutation relation then we get as the sum of the first summand
and the third summand∑

j mod pr,j1 mod p

(
1 j + prj1
0 1

)
uαr+1+

∑
j′ mod pr−1,j1 mod p

(
1 0

(j′ + pr−1j1)p 1

)(
0 1
−1 0

)
uαr+1 ,

and this is Tpr+1 . To compute the contribution of the second and the

fourth summand we observe that w =

(
0 1
−1 0

)
∈ Γ and hence we have

wξ = ξ. Now the second commutation relation yields for the sum of the
second term and the fourth term

pn(
∑

j mod pr

(
1 j
0 1

)
uαr−1 +

∑
j′ mod pr−1

(
1 0
j′p 1

)(
0 1
−1 0

)
uαr−1)

If we take into account that our summation over the j( resp. j′) is
mod pr( resp. mod pr−1), then we see that this second expression yields
pn+1Tpr−1 , provided r > 1. If r = 1 then the summation over pr−1 is the
same as the summation over pr−2 and then the second term is (1+1/p)Tp0

If we put e(r) = 0 for r > 1 and e(1) = 1 then we arrive at the formula

Tpr · Tp = Tpr+1 + (1 +
e(r)

p
)pn+1Tpr−1

This formula is valid for all values of r ≥ 0 if we put Tp−1 = 0.

We proved the formulae for the H0(Γ\H, Ĩ) for any Γ module I for
which we can choose the uα satisfy the commutation rules (*). These
commutation rules are satisfied for the canonical choice in the case of
I =Mn[m]. But then it is not so difficult to see that we can embed Mn

into an acyclic Γ-module I0 such that we can extend the uα :M(α)
n →Mn

to I
(α)
0 → I0 such that the commutation rules are still valid. Then we

get induced morphisms uα : (I0/Mn)(α) → (I0/Mn) and also on these
quotient the commutation rules hold. Then we see from the resulting
exact sequence that our formulae for the Hecke operators are also true for
the action on H1(Γ\H,M̃n).

It may be illustrative to generalize a little bit. We choose an integer
N > 1 and we take as our arithmetic group the congruence group Γ =
Γ(N). For any prime p /| N the T (α, uα) with α ∈ Gl+2 (Z[1/p]) form a
commutative subalgebra Hp which is generated by Tp. For p|N we can
also consider the T (α, uα) with α ∈ Gl+2 (Z[1/p]). They will also generate
a local algebra Hp of endomorphisms in any of our cohomology groups,
but this algebra will not necessarily be commutative. But we saw that
the Hp,Hp1 commute with eachother for two different primes p, p1. All
these algebras Hp have an identity element ep, we form the algebra

HΓ =
⊗
p

′
Hp

where the superscript indicates that a tensor has an ep for almost all
p. This algebra acts on all our cohomology groups. The algebra H of
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endomorphism of one of our cohomology group is a homomorphic image
of HΓ.

We come back to this after a brief recapitulation of the theory of semi
simple modules.

4.2 Some results on semi-simple modules for al-
gebras

We need a few results from the theory of algebras A acting on finite
dimensional vector spaces over a field L. Let L̄ be an algebaic closure of
L.

Let be a finite dimensional vector space V over some field L and an
L- algebra A with identity acting on V by endomorphisms. We say that
the action of A on V is semisimple, if the action of A ⊗ L̄ on V ⊗ L̄ is
semi simple and this means that any A submodule W ⊂ V ⊗ L̄ has a
complement. Then it is clear that we get a decomposition indexed by a
finite set E

V ⊗ L̄ =
⊕
i∈E

Wi

where the Wi are irreducible submodules, i.e. they do not contain any
non trivial A submodule.

This decomposition will not be unique in general. For any two Wi,Wj

of these submodules we have ( Schur lemma)

HomA(Wi,Wj) =

{
L̄ if they are isomorphic as A -modules

0 else

We decompose the indexing set E = E1 ∪ E2 ∪ .. ∪ Ek according to
isomorphism types. For any Eν we choose an A module W[ν] of this given
isomorphism type. Then by definition

HomA(W[ν],Wj) =

{
L̄ if j ∈ Eν
0 else

.

Now we define H[ν] = HomA(W[ν], V ⊗ L̄) we get an inclusion H[ν] ⊗
W[ν] whose image Xν will be an A submodule, which is a direct sum of
copies of W[ν].

We get a direct sum decomposition

V ⊗ L̄ =
⊕
ν

⊕
i∈Eν

Wi =
⊕
ν

Xν

then this last decomposition is easily seen to be unique, it is called the
isotypical decomposition.

If V is a semi simple A module then any submodule W ⊂ V also has
a complement ( this is not entirely obvious because by definition only
WL̄ has a complement in VL̄. But a small moment of meditation gives us
that finding such a complement is the same as solving an inhomogenous
system of linear equations over L. If this system has a solution over L̄
it also has a solution over L.) and hence we also can decompose the A
module V into irreducibles. Again we can group the irreducibles according
to isomorphism types and we get an isotypical decomposition

V =
⊕
i∈E

Ui =
⊕
ν

⊕
i∈Eν

Ui =
⊕
ν

Yν .
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But an irreducible A module W may become reducible if we extend
the scalars to L̄ . So it may happen that som of our Ui decompose further.
Since it is clear that for any two A- modules V1, V2 we have

HomA(V1, V2)⊗ L̄ = HomA⊗L̄(V1 ⊗ L̄, V2 ⊗ L̄)

we know that we get the isotypical decomposition of V ⊗ L̄ by taking the
isotypical decomposition of the Yν ⊗ L̄ and then taking the direct sum
over ν.

Example: Let L1/L be a finite extension of degree > 1, then we put
A = L1 and V = L1, the action is given by multiplication. Clearly V is
irreducible, but V ⊗ L̄ is not. If L1/L is separable then the module is
semisimple, otherwise it is not.

We say that the A - module V is absolutely irreducible, if the A⊗ L̄-
module V ⊗ L̄ is irreducible. In this case it we have a classical result:

Proposition.Let V be a semi simple A module. Then the following
assertions are equivalent

i) The A module V is absolutely irreducible
ii) The image of A in the ring of endomorphisms is End(V )
iii) The vector space of A endomorphisms EndA(V ) = L.

This can be an exercise for an algebra class. Where do we need the
assumption that V is semi simple?

Proposition: For any semi -simple A module V we can find a finite
extension L1/L such that the irreducible sub modules in the decomposition
into irreducibles are absolutely irreducible.

Let us now assume that we have two algebras A,B acting on V , let us
assume that these two operations commute i.e. for A ∈ A, B ∈ B, v ∈ V
we have A(Bv) = B(Av). This structure is the same as having a A⊗L B
structure on V . Let us assume that A acts semi simply on V and let us
assume that the irreducible A submodules of V are absolutely irreducible.
Then it is clear that the isotypical summands Yν =

⊕
Wi are invariant

under the action B. Now we pick an index i0 then the evaluation maps
gives us a homomorpism

Wi0 ⊗ HomA(Wi0 , Yν)→ Yν .

Under our assumptions this is an isomorphism. Then we see that we get

V =
⊕
ν

Wiν ⊗ HomA(Wi0 , Yν)

where iν is any element in Eν and where A acts upon the first factor and
B acts upon the second factor via the action of B on Yν .

Especially we see:

Proposition If V is an absolutely irreducible A ⊗L B module then
V
∼−→ X ⊗ Y, where X (resp, Y ) is an absolutely A (resp. B) module

We apply these considerations to get

Theorem 3: For any L we can decompose :
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H1
! (Γ\H,M̃n,L) =

⊕
H1

! (Γ\H,M̃n,L)(Πf )

where this is the isotypical decomposition and the Πf are isomorphism
classes of irreducible modules. There is a finite extension L/Q such that
all the isomorphism classes of isotypical modules which occur are actually
absolutely irreducible.

If Πf is an absolutely irreducible HΓ module then it is the tensor prod-
uct Πf = ⊗πp where the πp are absolutely irreducible Hp modules. For
p 6 |N the modules πp are of dimension one (see above theorem) and they
are determined by a number λ(πp) ∈ OL which is the eigenvalue of Tp on
πp.

This follows easily from our previous considerations. The eigenval-
ues λ(πp) are algebraic integers because Tp induces an endomorphism of
H1

! (Γ\H,M̃n,OL) which after tensorization with L becomes the Tp on the
rational vector space. The above field extension is called the splitting field
of HΓ.

These two theorems 2 and 3 are special cases of more general results.
We can start from an arbitrary reductive groups over Q, arbitrary congru-
ence subgroups Γ ⊂ G(Q) and arbitrary coefficient systems M obtained
from a rational representation of G/Q, they are finitely generated modules
over Z. Then we can consider certain symmetric spaces X = G(R)/K∞
and we have the cohomology groups H•(Γ\X,M̃), they are finitely gen-
erated Z modules. Again we can define an action of the Hecke algebra
HΓ and this Hecke algebra acts semi simply on the inner cohomology
H•! (Γ\X,M̃Q). (theorem 2) Again this Hecke algebra is the tensor prod-
uct of local Hecke algebras where for almost all primes these local Hecke
algebras Hp are polynomial rings in a certain number of variables. Then
the theorem 3 is also valid in this situation. We resume this theme in
Chap.III.

4.2.1 Hecke operators for Gl2:

We consider the classical case. Our group G/Q is the group Gl2/Q and
K = SO(2) ⊂ G∞. Then X = G∞/K is the union of an upper and a
lower half plane. We choose Γ̃ = Gl2(Z), then

Γ̃\G∞/K = Γ\H,

where Γ = Sl2(Z) and H is the upper half plane.
As Γ-modules we consider the Z –module

Mn =

{
n∑
ν=0

avX
νY n−ν | aν ∈ Z

}
.

The group Γ acts by(
a b
c d

)
XνY n−ν = (aX + cY )ν(bX + dY )n−ν .

We observe that the associated sheaf Mn becomes trivial if n 6= 0
mod 2 hence we assume that n is even. We define a rational representation
of Gl2(Q) on Mn,Q, which we choose to be

α ·P (X,Y ) =

(
a b
c d

)
P (X,Y ) = P (aX+cY, bX+dY ) det

(
a b
c d

)−n/2
.
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Here we may also multiply by another power det

(
a b
c d

)m
of the determi-

nant factor. We call the resulting module Mn,Q[m], later it will turn out
that m = −n is the optimal choice. At this present moment our module
isMn,Q[−n/2], this choice of the exponent m has the advantage that the
center acts trivially.

4.3 The case Γ = Sl2(Z).

We refer to Chap.II 2.1.3. We have the two open sets Ũi, resp. Ũρ ⊂ H,
they are fixed under

S =

(
0 −1
1 0

)
and R =

(
1 −1
1 0

)
,

respectively. We also will use the elements

T+ =

(
1 1
0 1

)
, S+

1 = T−ST
−1
− =

(
−1 1
−2 1

)
∈ Γ+

0 (2)

T− =

(
1 0
1 1

)
, S−1 = T+ST

−1
+ =

(
−1 2
−1 1

)
∈ Γ−0 (2)

.

The elements S+
1 and S−1 are elements of order four, i.e. (S+

1 )2 = (S−1 )2 =
−Id, the corresponding fixed points are i+1

2
and i + 1 respectively. Hence

S−1 fixes the sets αŨ i+1
2

and Ũi+1, this is the only occurrence of a non

trivial stabilizer.

4.3.1 Explicit formulas for the Hecke operators, a general
strategy.

In the following section we discuss the Hecke operators and for numerical
experiments it is useful to have an explicit procedure to compute them in
a given case. The main obstruction to get such an explicit procedure is
to find an explicit way to compute the arrow j•(α) in the top line of the
diagram (91). (we change notation j(α) to m(α)).

Let us assume that we have computed the cohomology groups on both
sides by means of orbiconvex coverings V : ∪i∈IVyi = Γ(α−1)\X and
U : ∪j∈JUyj = Γ(α)\X.

The map m(α) is an isomorphism between spaces and hence m(α)(V)
is an acyclic covering of Γ(α)\X. This induces an identification

C•(V,M̃) = C•(m(α)(V),M̃(α))

and the complex on the right hand side computes H•(Γ(α)\X,M̃(α)).
But this cohomology is also computable from the complex C•(U,M̃(α)).
We take the disjoint union of the two indexing sets I ∪ J and look at the
covering mα(V) ∪ U. (To be precise: We consider the disjoint union Ĩ =
I∪J and define a covering Wi indexed by Ĩ . If i ∈ Ĩ then Wi = m(α)(Vyi)
and if i ∈ J then we put Wi = Uxi . We get a diagram of Czech complexes

→
⊕

i∈Iq M̃
(α)(Wi) →

⊕
i∈Iq+1 M̃(α)(Wi)→

↑ ↑
→

⊕
i∈Ĩq M̃

(α)(Wi) →
⊕

i∈Ĩq+1 M̃(α)(Wi)→
↓ ↓

→
⊕

i∈Jq M̃
(α)(Wi) →

⊕
i∈Jq+1 M̃(α)(Wi)→

(94)
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The sets I•, J• are subsets of Ĩ• and the up- and down-arrows are the
resulting projection maps. We know that these up- and down-arrows
induce isomorphisms in cohomology.

Hence we can start from a cohomology class ξ ∈ Hq(Γ(α)\X,M̃(α)),
we represent it by a cocycle

cξ ∈
⊕
i∈Iq
M̃(α)(Wi).

Then we can find a cocycle c̃ξ ∈
⊕

i∈Ĩq M̃
(α)(Wi) which maps to cξ

under the uparrow. To get this cocycle we have to do the following: our
cocycle cξ is an array with components cξ(i) for i ∈ Iq.We have dq(cξ) = 0.
To get c̃ξ we have to give the values c̃ξ(i) for all i ∈ Ĩq \ Iq. We must have

dq c̃ξ = 0.

this yields a system of linear equations for the remaining entries. We
know that this system of equations has a solution -this is then our c̃ξ -
and this solution is unique up to a boundary dq−1(ξ′). Then we apply the
downarrow to c̃ξ and get a cocycle c†ξ, which represents the same class ξ
but this class is now represented by a cocycle with respect to the covering
U. We apply the map ũα : M̃(α) → M̃ to this cocycle and then we get a
cocycle which represents the image of our class ξ under Tα.

4.3.2 The special case Sl2

Let π1 : H → Γ\H be the projection. We get a covering Γ\H = π1(Ũi) ∪
π1(Ũρ) = Ui ∩ Uρ. From this covering we get the Czech complex

0 → M̃(Ui)⊕ M̃(Uρ) → M̃(Ui ∩ Uρ) → 0

↓ evŨi
⊕ evŨρ ↓ evŨi∩Ũρ

M<S> ⊕M<R> → M → 0

(95)

and this gives us our formula for the first cohomology

H1(Γ\H,M̃) =M/(M<S> ⊕M<R>) (96)

We want to discuss the Hecke operator T2. To do this we pass to the
subgroups

Γ+
0 (2) = {

(
a b
c d

)
| c ≡ 0 mod 2}

Γ−0 (2) = {
(
a b
c d

)
| b ≡ 0 mod 2}

(97)

we form the two quotients and introduce the projection maps π±2 : H →
Γ±0 (2)\H. We have an isomorphism between the spaces

Γ+
0 (2)\H α2−→ Γ−0 (2)\H

which is induced from the map m2 : z 7→
(

2 0
0 1

)
z = 2z. This map

induces an isomorphism
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α•2 : H1(Γ+
0 (2)\H,M̃)

∼−→ H1(Γ−0 (2)\H,M̃(α)). (98)

We also have the map between sheaves u2 : m 7→
(

2 0
0 1

)
m and the

composition with this map induces a homomorphism in cohomology

H1(Γ+
0 (2)\H,M̃)

u•2◦α
•
2−→ H1(Γ−0 (2)\H,M̃). (99)

This is the homomorphism we need for the computation of the Hecke
operator; it is easy to define but it may be difficult in practice to compute
it.

4.3.3 The boundary cohomology

We can also look at the same problem for the cohomology of the boundary,
then the situation becomes much simpler. Each of the spaces Γ+

0 (2)\H,Γ−0 (2)\H
has two cusps which can be represented by the points ∞, 0 ∈ P1(Q). The
stabilizers of these two cusps in Γ+

0 (2) resp. Γ−0 (2) are

< T+ > ×{±Id} and < T 2
− > ×{±Id} ⊂ Γ+

0 (2)

resp.
< T 2

+ > ×{±Id} and < T− > ×{±Id} ⊂ Γ−0 (2)

the factor {±Id} can be ignored. Then we get
We know that

H1(∂(Γ+
0 (2)bsH),M̃)

∼−→M/(Id− T+)M⊕M/(Id− T 2
−)M

H1(∂(Γ−0 (2)\H),M̃)
∼−→M/(Id− T 2

+)M⊕M/(Id− T−)M.

But now it is obvious that α maps the cusp ∞ to ∞ and 0 to 0 and then
it is also clear that for the boundary cohomology the map

α•2 :M/(Id−T+)M⊕M/(Id−T 2
−)M→M/(Id−T 2

+)M⊕M/(Id−T−)M

is simply the map which is induced by u2 :M→M. If we ignore torsion
then the individual summands are infinite cyclic.

Our moduleM is the module of homogenous polynomials of degree n
in 2 variables X,Y with integer coefficients. Then the classes [Y n], [Xn] of
the polynomials Y n (resp.) Xn are generators of (M/(Id−T ν+)M)/tors resp. (M/(Id−
T ν+)M)/tors where ν = 1 resp. 2. Then we get for the homomorphism α•2

α•2 : [Y n] 7→ [Y n], α•2 : [Xn] 7→ 2n[Xn]. (100)

4.3.4 The explicit description of the cohomology

We give the explicit description of the cohomology H1(Γ+
0 (2)\H,M̃). We

introduce the projections

H
π+

2−→ Γ+
0 (2)\H; H

π−2−→ Γ−0 (2)\H

and get the covering U2

Γ+
0 (2)\H = π+

2 (Ũi) ∪ π+
2 (T−Ũi) ∪ π+

2 (Ũρ) = π+
2 (Ũi) ∪ π+

2 (Ũ i+1
2

) ∪ π+
2 (Ũρ)
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where we put T−Ũi = Ũ i+1
2
. Our set {xν} of indexing points is i, i+1

2
, ρ,

we put U+
xi = π+

2 (Ũxi). Note T− 6∈ Γ+
0 (2), T+ ∈ Γ+

0 (2).

Again the cohomology is computed by the complex

0→ M̃(U+
i )⊕M̃(T−Ũ

+
i )⊕M̃(U+

ρ )→ M̃(U+
i ∩U

+
ρ )⊕M̃(T−Ũ

+
i ∩U

+
ρ )→ 0

we have to identify the terms as submodules of some
⊕
M and write

down the boundary map explicitly. We have

M̃(U+
i )⊕ M̃(U+

i+1
2

)⊕ M̃(U+
ρ )

d0−→ M̃(U+
i ∩ U

+
ρ )⊕ M̃(U+

i+1
2

∩ U+
ρ )

↓ evŨi
⊕ evT−Ũi

⊕ evŨρ ↓ evŨi∩Ũρ ⊕ evŨi∩T
−1
+ Ũρ

⊕ evT−Ũi∩Ũρ

M⊕M<S+
1 > ⊕M d̄0−→ M⊕M⊕M

(101)

where the vertical arrows are isomorphisms. The boundary map d̄0 in the
bottom row is given by

(m1,m2,m3) 7→ (m1 −m3,m1 − T−1
+ m3,m1 −m2) = (x, y, z)

We may look at the (isomorphic) sub complex where x = z = 0 and
m1 = m2 = m3 then we obtain the complex

0→M<S+
1 > →M→ 0; m2 7→ m2 − T−1

+ m2

which provides an isomorphism

H1(Γ+
0 (2)\H,M̃)

∼−→M/(Id− T−1
+ )M<S+

1 >. (102)

A simple computation shows that the cohomology class represented by
the class (x, y, z) is equal to the class represented by (0, y−x+T−1

+ z−z, 0)
we write

[(x, y, z)] = [(0, y − x+ T−1
+ z − z, 0)] (103)

4.3.5 The map to the boundary cohomology

We have the restriction map for the cohomology of the boundary

H1(Γ+
0 (2)\H,M̃)

∼−→ M/(Id− T−1
+ )M<S+

1 >

↓ r+ ⊕ r− ↓

H1(∂(Γ+
0 (2)\H),M̃)

∼−→ M/(Id− T+)M⊕M/(Id− T 2
−)M

(104)

we give a formula for the second vertical arrow. We represent a class [m] by
an element m ∈M and send m to its class in in each the two summands,
respectively. This is well defined, for r+ it is obvious, while for r− we
observe that if m = x − T−1

+ x and S+
1 x = x then m = x − T−1

+ S+
1 x =

x− T 2
−x.
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4.3.6 Restriction and Corestriction

Now we have to give explicit formulas for the two maps π∗, π∗ in the big
diagram on p. 50 in Chap2.pdf. Here we should change notation: The
map π in Chap.2 will now be denoted by :

$+
2 : Γ+

0 (2)\H→ Γ\H (105)

We have the two complexes which compute the cohomologyH1(Γ+
0 (2)\H,M̃)

and H1(Γ\H,M̃), and we have defined arrows between them. We realized
these two complexes explicitly in (101) resp. (95) and we have

M̃(U+
i )⊕ M̃(U+

i+1
2

)⊕ M̃(U+
ρ )

d0−→ M̃(U+
i ∩ U

+
ρ )⊕ M̃(U+

i+1
2

∩ U+
ρ )

($+
2 )(0) ↑ ↓ ($+

2 )(0) ($+
2 )(1) ↑ ↓ ($+

2 )(1)

M̃(Ui)⊕ M̃(Uρ)
d0−→ M̃(Ui ∩ Uρ)

(106)

and in terms of our explicit realization in diagram (101 ) this gives

M⊕M<S1> ⊕M d0−→ M⊕M⊕M

($+
2 )(0) ↑ ↓ ($+

2 )(0) ($+
2 )(1) ↑ ↓ ($+

2 )(1)

M<S> ⊕M<R> d0−→ M

(107)

Looking at the definitions we find

($+
2 )(0) : (m1,m2) 7→ (m1, T−m1,m2)

($+
2 )(0) : (m1,m2,m3) 7→ (m1 + Sm1 + T−1

− m2, (1 +R+R2)m3)

(108)

and we check easily that the composition ($+
2 )(0) ◦ ($+

2 )(0) is the multi-
plication by 3 as it should be, since this is the index of Γ0(2)+ in Γ.

For the two arrows in degree one we find

($+
2 )(1) : m 7→ (m,Sm, T−m)

($+
2 )(1) : (m1,m2,m3) 7→ (m1 + Sm2 + T−1

− m3)

(109)

We apply equation (103) and we see that ($+
2 )(1)(m) is represented by

[($+
2 )(1)(m)] = [0, Sm+ T−1

+ T−m−m− T−m, 0] (110)

We do the same calculation for Γ−0 (2). As before we start from a cov-
ering

Γ−0 (2)\H = π−2 (Ũi) ∪ π−2 (T+Ũi) ∪ π−2 (Ũρ) = π−2 (Ũi) ∪ π−2 (Ũi+1) ∪ π−2 (Ũρ)
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and as before we put U−yν = π−2 (Ũyν ). In this case Ũi+1 = T+Ũi is fixed

by S−1 =

(
−1 2
−1 1

)
∈ Γ−0 (2) and we get a diagram for the Czech complex

M̃(U−i )⊕ M̃(U−i+1)⊕ M̃(U−ρ )
d0−→ M̃(U−i ∩ U

−
ρ )⊕ M̃(U−i+1 ∩ U

−
ρ )

evŨi
⊕ evŨi+1

↓ ⊕evŨρ evŨi∩Ũρ ⊕ evŨi∩T
−1
− Ũρ

↓ ⊕evŨi+1∩Ũρ

M⊕M<S−1 > ⊕M d̄0−→ M⊕M⊕M
(111)

Again we can modify this complex and get

H1(Γ−0 (2)\H,M̃)
∼−→M/(Id− T−1

− )M<S−1 >. (112)

We compute the arrows ($−2 )∗, ($−2 )∗ in degree one

($−2 )(1) : m 7→ (m,Sm, T+m),

($−2 )(1) : (m1,m2,m3) 7→ (m1 + Sm2 + T−1
+ m3).

(113)

4.3.7 The computation of α•2.

We recall our isomorphism α between the spaces and the resulting iso-
morphism (98). The identity map of the moduleM and the isomorphism
α on the space identifies the two complexes

M̃(U+
i )⊕ M̃(U+

i+1
2

)⊕ M̃(U+
ρ )

d0−→ M̃(U+
i ∩ U

+
ρ )⊕ M̃(U+

i+1
2

∩ U+
ρ )

M̃(α)(α(U+
i ))⊕ M̃(α)(α(U+

i+1
2

))⊕ M̃(α)(α(U+
ρ ))

d0−→ M̃(α)(α(U+
i ∩ U

+
ρ ))⊕ M̃(α)(α(U+

i+1
2

∩ U+
ρ ))

(114)

and if we consider their explicit realization then this identification is
given by the equality of Z modules M = M(α). This equality of com-
plexes expresses the identification (98). We can compute the cohomology
H1(Γ−0 (2)\H,M̃(α)) from any of the two coverings

Γ−0 (2)\H = α(U+
i ) ∪ α(U+

i+1
2

) ∪ α(U+
ρ ) = Ux1 ∪ Ux2 ∪ Ux3

and
Γ−0 (2)\H = U−i ∪ U

−
i+1 ∪ U

−
ρ = Ux4 ∪ Ux5 ∪ Ux6 .

(115)

We have to pick a class ξ ∈ H1(Γ−0 (2)\H,M̃(α)) and represent it by a
cocycle

cξ ∈
⊕

1≤i<j≤3

M̃(α)(Uxi ∩ Uxj )

(The cocycle condition is empty since Ux1 ∩ Ux2 ∩ Ux3 = ∅.)
Then we have to produce a cocycle

cαξ ∈
⊕

4≤i<j≤6

M̃(α)(Uxi ∩ Uxj )

which represents the same class.
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To get this cocycle we write down the three complexes⊕
1≤i<j≤3 M̃

(α)(Uxi ∩ Uxj ) → 0

↑⊕
1≤i<j≤6 M̃

(α)(Uxi ∩ Uxj ) →
⊕

1≤i<j<k≤6 M̃
(α)(Uxi ∩ Uxj ∩ Uxk )

↓⊕
4≤i<j≤6 M̃

(α)(Uxi ∩ Uxj ) → 0

(116)

for our cocycle cξ we find a cocycle c†ξ in the complex in the middle which
maps to cξ under the upwards arrow and this cocycle is unique up to a
coboundary. Then we project it down by the downwards arrow, i.e. we
only take its 4 ≤ i < j ≤ 6 components, and this is our cocycle c

(α)
ξ .

We write down these complexes explicitly. For any pair i = (i, j), i < j
of indices we have to compute the set Fi. We drew some pictures and from
these pictures we get (modulo errors) the following list (of lists):

F1,2 = ∅ F1,3 = {Id, T−2
+ } F1,4 = {Id} F1,5 = {Id, T−2

+ }
F1,6 := {Id, T−1

− } F2,3 = {Id} F2,4 = {Id, T−} F2,5 = {Id}
F2,6 = {Id} F3,4 = {Id, T 2

+} F3,5 = {Id} F3,6 = {Id, S−1 }
F4,5 = ∅ F4,6 = {Id, T−1

− } F5,6 = {Id}
(117)

Now we have to follow the rules in the first section and we can write
down an explicit version of the diagram ( 116) . Here we have to be very
careful, because the sets Ũx̃2 , Ũx̃5 have the non-trivial stabilizer < S−1 >
and we have to keep track of the action of Γx̃2,5 : the set Fi,j ⊂ Γx̃i\Γ/Γx̃j .
Therefore we have to replace the group elements γ ∈ Fi,j by sets Γx̃iγΓx̃j .
In the list above we have taken representatives.

⊕
1≤i<j≤3

⊕
γ∈Fi,j (M

(α))Γi,j,γ → 0

↑⊕
1≤i<j≤6

⊕
γ∈Fi,j (M

(α))Γi,j,γ →
⊕

1≤i<j<k≤6

⊕
γ∈Fi,j,k

(M(α))Γi,j,k,γ

↓⊕
4≤i<j≤6

⊕
γ∈Fi,j (M

(α))Γi,j,γ → 0

(118)

Here we have to interpret this diagram. The moduleM(α) is equal to
M as an abstract module, but an element γ ∈ Γ−0 (2) acts by the twisted
action (See ChapII, 2.2)

m 7→ γ ∗α m = α−1γα ∗m
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here the ∗ denotes the original action. Hence we have to take the invariants
(M(α))Γi,j,γ with respect to this twisted action. In our special situation
this has very little effect since almost all the Γi,j,γ are trivial, except for
the intersection α(Ũ i+1

2
) ∩ Ũi in which case Γi,j,γ =< S−1 > . Hence

(M(α))<S
−
1 > =M<S+

1 >.

Each of the complexes in (118) compute the cohomology groupH1(Γ−0 (2)\H,M̃)
and the diagram gives us a formula for the isomorphism in (98). To get
u•α in (98) we apply the multiplication m2:m 7→ αm to the complex in the
middle and the bottom. Then the cocycle cαξ is now an element in

⊕
M̃(α)

and αcαξ represents the cohomology class u•α(ξ) ∈ H1(Γ−0 (2)\H,M̃).

Now it is clear how we can compute the Hecke operator

T2 = T2 0
0 1

 :M/(M<S> ⊕M<R>)→M/(M<S> ⊕M<R>)

We pick a representative m ∈ M of the cohomology class. We apply
($+

2 )(1) in the diagram (107) to it and this gives the element (Sm,m, T−m) =

cξ.We apply the above process to compute c
(α)
ξ . Then αc

(α)
ξ = (m1,m2,m3)

is an element in M̃(U−i ∩ U
−
ρ )⊕ M̃(U−i+1 ∩ U

−
ρ ) and this module is iden-

tified with M⊕M⊕M by the vertical arrow in (111). To this element
we apply the trace

($−2 )(1)(m1,m2,m3) = m1 +m2 + T−1
+ m3

and the latter element in M represents the class T2([m]).
We have written a computer program which for a givenM =Mn, i.e.

for a given even positive integer n, computes the module H1(Γ\H,M̃)
and the endomorphism T2 on it.

Looking our data we discovered the following (surprising?) fact: We
consider the isomorphism in equation (98). We have the explicit descrip-
tion of the cohomology in (102)

H1(Γ+
0 (2)\H,M̃)

∼−→M/(Id− T−1
+ )M<S+

1 >

and
H1(Γ−0 (2)\H,M̃(α))

∼−→M/(Id− T−1
− )(M(α))<S

−
1 >

We know that we may represent any cohomology class by a cocycle

cξ = (0, cξ, 0) ∈M(α)(π−2 (α(Ui)∩α(Uρ))⊕M(α)(π−2 (α(Ui)∩α(T−1
+ Uρ))⊕M(α)(π−2 (α(U i+1

2
)∩α(T−1

+ Uρ))

so it is non zero only in the middle component and then it is simply an
element in M. If we now look at our data, then it seems to by so that
c
(α)
ξ is also non zero only in the middle, hence

c
(α)
ξ ∈ (0, c′ξ, 0) ∈ 0⊕M(α)(π−2 (Ui ∩ T−1

− Uρ))⊕ 0

hence it is also in M(α) and then our data seem to suggest that

c′ξ = cξ

79



Hence we see that the homomorphism in equation (99) is simply given
by

XνY n−ν 7→ 2νXνY n−ν .

Is there a kind of homotopy argument (- 2 moves continuously to 1)-,
which explains this?

We get an explicit formula for the Hecke operator T2 : We pick an
element m ∈ M representing the class [m]. We send it by ($+

2 )(1) to
H1(Γ+

0 (2)\H,M̃), i.e.

($+
2 )(1) : m 7→ (m,Sm, T−m) (119)

We modify it so that the first and the third entry become zero see( 103)

[(m,Sm, T−m)] = [(0, Sm−m+ T−1
+ T−m− T−m, 0)] (120)

To the entry in the middle we applyM2 =

(
2 0
0 1

)
and then apply ($−2 )(1)

and get

T2([m]) = [S ·M2(Sm−m+ T−1
+ T−m− T−m)] (121)

4.3.8 The first interesting example

We give an explicit formula for the cohomology in the case ofM =M10.
We define the sub-modul

Mtr =

5⊕
ν=0

ZY 10−νXν

and we have the truncation operator

trunc : Y 10−νXν 7→

{
Y 10−νXν if ν ≤ 5,

(−1)ν+1Y νX10−ν else,

which identifies the quotient module M/M<S> to Mtr. To get the co-
homology we have to divide by the relations coming from M<R>, i.e.
we have to divide by the submodule trunc(M<R>.) The module of these
relations is generated by

R1 = 10Y 9X + 20Y 7X3 + Y 5X5

R2 = 9Y 8X2 − 36Y 7X3 + 14Y 6X4 − 45Y 5X5

R3 = 8Y 7X3 + 10Y 5X5

and then

H1(Γ\H,M̃) =

5⊕
ν=0

ZY 10−νXν/{R1,R2,R3} (122)

We simplify the notation and put eν = Y νXn−ν . Using R1 we can elimi-
nate e5 = −10e9 − 20e7 and then

H1(Γ\H,M̃) =

ν=6⊕
ν=10

Zeν/{−50e9 + 9e8 − 96e7 + 14e6,−100e9 − 192e7}

(123)
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introduce a new basis {f10, f9, f8, f7, f6, f5} of the Z module Mtr :

f10 = e10; f8 = −2e8 − 3e6; f6 = 9e8 + 14e6

f9 = −12e9 − 23e7; f7 = 25e9 + 48e7; f5 = 10e9 + 20e7 + e5

(124)

and hence in the quotient we get f̄5 = 0 and 2f̄7 = f̄6 and therefore

H1(Γ\H,M̃) = Zf̄10 ⊕ Zf̄9 ⊕ Zf̄8 ⊕ Z/(4)f̄7 (125)

(If we invert the primes < 12 then we we can work with e10, e9, e8 and in
cohomology e6 = − 9

14
e8, e5 = 5

12
e9, e7 = − 25

48
e9.)

If we can apply the above procedure to compute the action of T2 on
cohomology we get the following matrix for T2 :

T2 =


2049 −68040 0 0

0 −24 0 0
0 0 −24 0
0 0 0 2

 (126)

Hence we see that it is non trivial on the torsion subgroup. If we divide
by the torsion then the matrix reduces to a (3,3)-matrix and this matrix
gives us the endomorphism on the ”integral” cohomology which is defined
in generality by

H•int(Γ\X,M̃) = H•(Γ\X,M̃)/tors ⊂ H•(Γ\X,M̃Q) (127)

here we should be careful: the functor H• → H•int is not exact. In our
case we get (perhaps up to a little piece of 2-torsion) exact sequences of
Hecke modules

0 → Zf9 ⊕ Zf8 → Zf10 ⊕ Zf9 ⊕ Zf8
r−→ Zf̄10 → 0

‖ ‖ ‖
0 → H1

int,!(Γ\H,M̃)→ H1
int(Γ\H,M̃)

r−→ H1
int,!(∂(Γ\H),M̃)→ 0

(128)

where T2(f̄10) = (211+1)f̄10. If we tensor by Q then we can find an element
(the Eisenstein class) f†10 ∈ H1

int(Γ\H,M̃) ⊗ Q which maps to f̄10 This
element is not necessarily integral, in our case an easy computation shows
that 691f† ∈ H1

int(Γ\H,M̃). This means that 691 is the denominator of
f†10, i.e. 691 is the denominator of the Eisenstein class f†10.

The exact sequence X10 in (128) is an exact sequence of modules for
the Hecke algebra H ⊃ Z[T2] and hence it yields an element

[X10] ∈ Ext1
H(Zf10, H

1
int,!(Γ\H,M̃)), (129)

and an easy calculation shows that this Ext1 group is cyclic of order 691
and that it is generated by X10.

We can go one step further and reduce mod 691. Since there is at
most 2 torsion we get an exact sequence of Hecke-modules

0→ H1
int,!(Γ\H,M̃ ⊗ F691)→H1

int(Γ\H,M̃ ⊗ F691)
r−→ H1

int,!(∂(Γ\H),M̃ ⊗ F691)→0.
(130)

The matrix giving the Hecke operator mod 691 becomes
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T2 =

 667 369 0
0 667 0
0 0 667

 (131)

This implies that the extension class [X10⊗F691] is a element of order
691. This implies that 691 divides the order of [X10] and hence divides the
order of the denominator of the Eisenstein class.

4.3.9 The general case

Now we describe the general case M = Mn where n is an even integer.
We define Mtr as above, if n/2 is even, then we leave out the summand
Xn/2Y n/2, then we get

Mtr =M/M<S>.

This gives us for the cohomology and the restriction to the boundary
cohomology

H1(Γ\H,M̃)
∼−→ Mtr/Rel

↓ ↓
H1(∂(Γ\H,M̃)

∼−→ M/(Id− T )M.

(132)

We have the basis

en = trunc(Y n), en−1 = trunc(Y n−1X), . . . ,

{
Y n/2Xn/2 n/2 odd

0 else

for Mtr. Let us put n2 = n/2 or n/2 − 1. Then the algorithm Smith-
normalform provides a second basis fn = en, fn−1, . . . , fn2 such that the
module of relations becomes

dnfn = 0, dn−1fn−1 = 0, . . . , dtft = 0, . . . , dn2fn2 = 0

where dn2 |dn2+1| . . . |dn. We have dn = dn−1 = · · · = dn−2s = 0 where
2s+ 1 = dimH1(Γ\H,M̃)⊗Q and dn−2s−1 6= 0.

With respect to this basis the Hecke operator T2 is of the form

T2(fi) =

j=n2∑
j=n

t
(2)
i,j fj (133)

where we have (the numeration of the rows and columns is downwards
from n to n2)

t
(2)
ν,n = 0 for ν < n and t

(2)
i,j ∈ Hom(Z/(di),Z(dj))

and t
(2)
i,j = 0 for i ≥ n− 2s, j < n− 2s

(134)

If we divide by the torsion then we get for the restriction map to the
boundary cohomology

H1(Γ\H,M̃)int =

n−2s⊕
ν=n

Zfν
r−→ H1(∂(Γ\H,M̃)int = ZY n (135)
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where fn 7→ Y n and T2(Y n) = (2n+1 + 1)Y n. The Manin-Drinfeld princi-
ple implies that we can find a vector

Eisn = fn +

ν=n−2s∑
ν=n−1

xνfν , xν ∈ Q (136)

which is an eigenvector for T2 i.e.

T2(Eisn) = (2n+1 + 1)Eisn (137)

The least common multiple ∆(n) of the denominators of the xν is the
denominator of the Eisenstein class, it is the smallest positive integer for
which

∆(n)Eisn ∈ H1(Γ\H,M̃)int. (138)

This denominator is of great interest and our computer program allows
us to compute it for any given not to large n. We have to compute the xν .

We define H1(Γ\H,M̃)int,! to be the kernel of r, this is equal to⊕n−2s
ν=n−1 Zfν and the Hecke operator defines an endomorphism

T cusp
2 : H1(Γ\H,M̃)int,! → H1(Γ\H,M̃)int,! (139)

which is given by the matrix (t
(2)
i,j ) where n−1 ≥ i, j, n−2s, i.e. we delete

the ”first” (i.e.the n-th ) row and column.

Now we know that T2(fn) = (2n+1 +1)fn+
∑µ=n−2s
µ=n−1 t

(2)
n,µfµ. Then the

xµ are the unique solution of

ν=n−2s∑
ν=n−1

((2n+1 + 1)δν,µ − t(2)
ν,µ)xν = t(2)

n,µ; {µ = n− 1, . . . , n− 2s} (140)

These denominators are closely related to values of the Riemann ζ
function, it seems that

∆(n) = numerator(ζ(−1− n)). (141)

This has been verified up to n ≤ 150 by a computer. We found some
handwritten notes (from about 1980) where this is actually proved by
using modular symbols, but this proof has to be checked again.

4.3.10 Computing mod p

.
Of course the coefficients t

(2)
ν,µ become very large if n becomes larger,

hence we can verify (141) only in a very small range of degrees n.
But if we are a little bit more modest we may be able check ex-

perimentally whether a given - perhaps large- prime p, which divides a
numeratorζ(−1 − n) for a very large n actually divides ∆(n). Here we
need a little bit of luck.

Assume that we have such a pair (p, n). We want to show that the
prime p divides the lcm of the denominators of the xν in (140) and this
means that the equation (140) has no solution in Z(p), the local ring at p.
This is of course clear if the mod p reduced equation

ν≡n−2s∑
ν=n−1

((2n+1 + 1)δν,µ − t(2)
ν,µ)xν ≡ t(2)

n,µ mod p (142)
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has no solution. ( Of course the converse is not true, therefore we need
just a little bit of luck!). In this computation the numbers become much
smaller. In fact this has now been checked for all n ≤ 100 we can can
easily go much further.

4.3.11 Higher powers of p

This reasoning can also be applied if we look at higher powers of p dividing
a numeratorζ(−1−n). Let us assume that pδp(n)|numeratorζ(−1−n). We
have to show that pδp(n) divides the lcm of the denominators of the xν in
equation (140 ). This follows if we show that the equation

ν≡n−2s∑
ν=n−1

((2n+1 + 1)δν,µ − t(2)
ν,µ)xν ≡ pδp(n)−1t(2)

n,µ mod pδp(n) (143)

has no solution. This in turn means that the class

[Xn⊗Z/pδp(n)Z] ∈ Ext1
H((Z/pδp(n)Z)(−1−n), H1

int,!(Γ\H,M̃⊗(Z/pδp(n)Z))

has exact order pδp(n).

Interesting cases to check are p = 37, 59 then we have

ζ(−31) ≡ 0 mod 37; ζ(−283) ≡ 0 mod 372; ζ(−37579) ≡ 0 mod 373; ζ(−1072543) ≡ 0 mod 374; . . .

ζ(−43) ≡ 0 mod 59; ζ(−913) ≡ 0 mod 592

Here our computations have a surprising outcome. For ζ(−283) resp. ζ(−913)
it has been checked that the order of the extension class is 37 resp. 59 so
it is smaller than expected. This is not in conflict with the assertion that
the denominator is of order 372, 592. In fact it turns out that the deter-
minant of the matrix on the left hand side in (143) is (373)2 = 376 where
the denominator only predicts 374. Is this always so and is this also true
for other Hecke operators?

4.3.12 The denominator and the congruences

For the following we assume that (141) is correct. We discuss the denom-
inator of the Eisenstein class in this special case. In [Talk-Lille] this is
discussed in a more abstract way, so here we treat basically the simplest
example of 4.3 in [Talk-Lille].

We have the fundamental exact sequence

0→ H1
int,!(Γ\H,M̃)→ H1

int(Γ\H,M̃)
r−→ H1

int(∂(Γ\H),M̃) = Zen → 0
(144)

and we know that T2(en) = (2n+1 + 1)en. We get a submodule

H1
int,!(Γ\H,M̃)⊕ Zẽn ⊂ H1

int(Γ\H,M̃) (145)

where ẽn is primitive and T2ẽn = (2n+1 + 1)ẽn. We have r(ẽn) = ∆(n)en
and

H1
int(Γ\H,M̃)/(H1

int,!(Γ\H,M̃)⊕ Zẽn) = Z/∆(n)Z (146)
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Any m ∈ Z/∆(n)Z can be written as

m = r(
y′ +mẽn

∆(n)
) (147)

and this yields an inclusion Z/∆(n)Z ↪→ H1
int(Γ\H,M̃)⊗ Z/∆(n)Z.

Hence

Theorem 4.2. The Hecke module H1
int(Γ\H,M̃) ⊗ Z/∆(n)Z contains a

cyclic submodule Z/∆(n)Z(−1 − n) on which the Hecke operator Tp acts
by the eigenvalue pn+1 + 1 mod ∆(n) for all primes p

We can find a finite normal field extension F/Q such that

H1
int,!(Γ\H,M̃)⊗ F =

⊕
πf

H1
int(Γ\H,M̃ ⊗ F )[πf ] (148)

where πf is a homomorphism from the Hecke algebra to Of and H1..[πf ]
is the rank 2 eigenspace for πf .

The decomposition induces a Jordan-Hölder filtration on the integral
cohomology

(0) ⊂ JH(1)H1
int,!(Γ\H,M̃OF ) ⊂ JH(2)H1

int,!(Γ\H,M̃OF ) ⊂ · · · ⊂ JH(r)H1
int,!(Γ\H,M̃OF )

(149)

where the subquotients a locally free OF modules of rank 2 and after
tensoring with F they become isomorphic to the different eigenspaces.

We choose a prime p which divides ∆(n), let pδp(n)||∆(n). Let p be a
prime in OF which lies above p. If ep is the ramification index then we
have

OF /pepδp(n)(−1− n) ⊂ H1
int,!(Γ\H,M̃OF )⊗OF /peδp(n) (150)

The above Jordan-Hölder filtration induces a Jordan-Hölder filtration on
the homology mod pepδp(n) we have

OF /pepδp(n)(−1− n) ↪→ JH(1)H1
int,!(Γ\H,M̃OF )⊗OF /pepδp(n) ↪→ JH(2) . . .

(151)

where again the subquotients are free OF /pepδp(n) modules. This implies

Theorem 4.3. We can find πf,1, πf,2 . . . , πf,r in the above decomposition
and numbers f1 > 0, f2 > 0, . . . , fr > 0 such that

∑
fi = epδp(n) and we

have the congruence

πf,i(T`) ≡ `n+1 + 1 mod pfi (152)

for all primes `.

We write n = n0 + (p − 1)α where 0 < n0 < p − 1, we know that

p|Num(ζ(−1− n0)). We apply the above theorem an find π
(0)
1,f , . . . , π

(0)
r0,f

and a prime p0 ⊂ OF0 such that

π
(0)
f,i (T`) ≡ `

n+1 + 1 mod π
(0)
f,i (153)

for all indices i. Now it seems to be very likely that the Hecke-module
H1

int,!(Γ\H,M̃n0 ⊗Q) is irreducible (Maeda’s conjecture , this means that
Gal(F0/Q) acts transitively on the absolutely irreducible constituents
πf .) We may take F0 minimal, this means that this action on the set
of πf is faithful. Moreover it is also very likely that the primes p0 are
unramified and split in F0.
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4.4 Harish-Chandra modules with cohomology

In Chap.III , section 4 we will give a general discussion of the tools from
representation theory and analysis which help us to understand the coho-
mology of arithmetic groups. Especially in Chap.III 4.1.4 we will recall
the results of Vogan-Zuckerman on the cohomology of Harish-Chandra
modules.

Here we specialize these results to the specific cases G = Gl2(R) (case
A)) and G = Gl2(C) (case B)). For the general definition of Harish-
Chandra modules and for the definition of (g,K∞) cohomology we refer
to Chap.III, 4.

4.4.1 The finite rank highest weight modules

We consider the case A), in this case our group G/R is the base extension
of the the reductive group scheme G = Gl2/ Spec(Z). ( See Chap. IV for
the notion of reductive group scheme.) In principle this pretentious lan-
guage at this point means that we can speak of G(R) for any commutative
ring R with identity. Sometimes in the following we will replace Spec(Z)
by Z) We have the maximal torus T /Z and the Borel subgroup B/Z.
We consider the character module X∗(T ) = X∗(T × C). This character
module is Ze1 ⊕ Ze2 where

ei :

(
t1 0
0 t2

)
7→ ti (154)

Any character can be written as λ = nγ + d det where γ = e1−e2
2

( 6∈
X∗(T ) !), det = e1 + e2 and where n ∈ Z, d ∈ 1

2
Z and where n ≡ 2d

mod 2. To any such character λ we want to attach a highest weight module
Mλ. We assume that λ is dominant, i.e. n ≥ 0 and consider the Z−
module of polynomials

Mn = {P (X,Y ) | P (X,Y ) =

n∑
ν=0

avX
νY n−ν , aν ∈ Z}.

To a polynomial P ∈Mn we attach the regular function (See Chap. IV)

fP (

(
x y
u v

)
) = P (u, v) det(

(
x y
u v

)
)
n
2

+d1 (155)

and we obviously have

fP (

(
t1 w
0 t2

)(
x y
u v

)
) = tn2 (t1t2)dfP (

(
x y
u v

)
) = λ−(

(
t1 w
0 t2

)
)fP (

(
x y
u v

)
)

(156)

where λ− = −nγ+ (n
2

+d1) det = −nγ+d det considered as a character
on B. This is a module for the group scheme G/Z it is called the highest
weight module for λ and is denoted by Mλ. The action of G is of course
the action by right translations,i.e.

ρλ(

(
a b
c d

)
)(f)(

(
x y
u v

)
) = f(

(
x y
u v

)(
a b
c d

)
) (157)

Comment: When we say that Mλ is a module for the group scheme
G/Z we mean nothing more than that for any commutative ring R with
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identity we have an action of G(R) on Mn ⊗ R which is given by (155 )
and depends functorially on R. We can ”evaluate” at R = Z and get the
Γ = Gl2(Z) module Mλ,Z. (Actually we should not so much distinguish
between the Gl2(Z) module Mλ,Z and Mλ)

Remark: There is a slightly more sophisticated interpretation of this
module. We can form the flag manifold B\G = P1/Z and the character
λ yields a line bundle Lλ− . The group scheme G is acting on the pair
(B\G,Lλ−) and hence on H0(B\G,Lλ−) which is tautologically equal to
Mλ (Borel-Weil theorem).

We can do essentially the same in the case B) . In this case we start
from an imaginary quadratic extension F/Q and let O = OF ⊂ F its
ring of integers. We form the group scheme G/Z = RO/Z(G/O). Then
G(O) = Gl2(O⊗O) ⊂ Gl2(O)×Gl2(O). The base change of the maximal
torus T/Q ⊂ G ×Z Q is the product T1 × T2/F where the two factors are
the standard maximal tori in the two factors Gl2/F.

We get for the character module

X∗(T × F ) = X∗(T1)⊕X∗(T2) = {n1γ + d1 det} ⊕ {n2γ̄ + d2d̄et}
(158)

where we have to observe the parity conditions n1 ≡ 2d1 mod 2, n2 ≡ 2d2

mod 2 Then the same procedure as in case a) provides a free O- module
Mλ with an action of G(Z) on it. To see this action we embed the group
G(Z) = Gl2(O) into Gl2(O) × Gl2(O) by the map g 7→ (g, ḡ) where ḡ is
of course the conjugate. If now our λ = n1γ1 + d1 det1 +n2γ2 + d2det2 =
λ1 + λ2 then we have our two Gl2(O) modules Mλ1,O,Mλ2,O and hence
the Gl2(O)×Gl2(O)- moduleMλ1,O⊗Mλ2,O, is now ourMλ,O is simply
the restriction of this tensor product module to G(Z).

4.4.2 The principal series representations

We consider the two real algebraic groupsG = Gl2/R and G = RC/RGl2(C),
Let T/R, resp.B/R be the standard diagonal torus (resp.) Borel sub-
group. Let us put Z/R = Gm (resp. RC/RGm). We have the determinant
det : G/R → Z/R and moreover Z/R = center(G/R). If we restrict the
determinant to the center then this becomes the map z 7→ z2. Let us
denote by g, t, b, z the corresponding Lie-algebras.

Our aim is to to construct certain irreducible representations of G(R)
and their ”algebraic skeleton” the associated Harish-Chandra modules.
Of course homomorphism η : Z → C× yields via composition with the
determinant a one dimensional G(R) module Cη. We want to construct
infinite dimensional G(R) modules.

We start from a continuous homomorphism (a character) χ : T (R)→
C×, of course this can also be seen as a character χ : B(R) → C×. This
allows us to define the induced module

IGBχ := {f : G(R)→ C | f ∈ C∞(G(R)), f(bg) = χ(b)f(g), ∀ b ∈ B(R), g ∈ G(R)}
(159)

This space of functions is a G(R) - module, the group G(R) acts by right
translations: For f ∈ IGBχ, g ∈ G(R) we put

Rg(f)(x) = f(xg)
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Inside G(R) we have the connected component of identity of the standard
maximal compact subgroup K0

∞(= SO(2) resp. U(2)) and we know that
G(R) = B(R) ·K∞. This implies that a function f ∈ IGBχ is determined by
its restriction to K∞. In other words we have an identification of vector
spaces

IGBχ = {f : K∞ → C | f(tck) = χ(tc)f(k), tc ∈ K∞ ∩B(R), k ∈ K∞}.
(160)

We put Tc = B(R) ∩K∞ and define χc to be the restriction of χ to
Tc. Then the module on the right in the above equation can be written
as IK∞Tc χc. By its very definition IK∞Tc χc. is only a K∞ module it can be
endowed with the structure of a G(R) module via the above identification.

Inside IK∞Tc χc we have the submodule of vectors of finite type

◦IK∞Tc χc := {f ∈ IK∞Tc χc | the translates Rk(f) lie in a finite dimensional subspace}
(161)

The famous Peter-Weyl theorem tells us that all irreducible representa-
tions (satisfying some continuity condition) are finite dimensional and
occur with finite multiplicity in IK∞Tc χc and therefore we get

◦IK∞Tc χc =
⊕
ϑ∈K̂∞

V
m(ϑ)
ϑ =

⊕
ϑ∈K̂∞

◦IK∞Tc χc[ϑ] (162)

where K̂∞ is the set of isomorphism classes of irreducible representations
of K∞, where Vϑ is an irreducible module of type ϑ and where m(ϑ) is the
multiplicity of ϑ in ◦IK∞Tc χc. Of course ◦IK∞Tc χc is a submodule ◦IGBλR,
this submodule is not invariant invariant under the operation of G(R)
in other words if 0 6= f ∈ ◦IK∞Tc χc and g ∈ G(R) a sufficiently general

element then Rg(f) 6∈ ◦IK∞Tc χc.

But we can differentiate the action of G(R) on IGBλR. We have the well
known exponential map exp : g = Lie(G/R) → G(R) and we define for
f ∈ IGB , X ∈ g

Xf(g) = lim
t→0

f(g exp(tX))− f(g)

t
(163)

and it is well known and also easy to see, that this gives an action of
the Lie-algebra on IGB , we have X1(X2f) − X2(X1f) = [X1, X2]f. The
Lie-algebra is a K∞ module under the adjoint action and is obvious that
for f ∈ ◦IK∞Tc χc[ϑ] the element Xf lies in

⊕
ϑ∈K̂∞

◦IK∞Tc χc[ϑ
′] where ϑ′

runs over the finitely many isomorphism types occurring in Vϑ ⊗ g.

Proposition 4.1. The submodule ◦IK∞Tc χc ⊂ IGBχc is invariant under the
action of g.

We will denote by IGBχ the submodule ◦IK∞Tc χc together with this
action of g. Such a module will be called a (g,K∞) - module or a Harish-
Chandra module this means that we have an action of the Lie-algebra g,
an action of K∞ and these two actions satisfy some obvious compatibility
conditions.

We also observe that ◦IK∞Tc χc is also invariant under right translation
Rz for z ∈ Z(R). Hence we can extend the action of K∞ to the larger
group K̃∞ = K∞ · Z(R). Then IGBχ becomes a (g, K̃∞) module.

These (g, K̃∞) modules IGBχ are called the principal series modules.

We denote the restriction of χ to the central torus Z = {
(
t 0
0 t

)
} by

ωχ. Then Z(R) acts on IGBχ by the character ωχ, i.e. Rz(f) = ωχ(z)f.
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4.4.3 The decomposition into K∞-types

Kutypes

We look briefly at the K∞-module ◦IK∞Tc χc. In case A) the group

K∞ = SO(2) = {
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)
= e(φ)} (164)

and Tc = T (R) ∩K∞ is cyclic of order two with generator e(π). Then χc
is given by an integer mod 2, i.e. χc(e(π)) = (−1)m. For any n ≡ m
mod 2 we define ψn ∈ IGBχ by ψn(e(φ))) = einφ and then

decoKuA

IGBχ =
⊕

k≡m mod 2

Cψk (165)

In the case B) the maximal compact subgroup is

U(2) ⊂ G(R) = RC/R(Gl2/C)(R) ⊂ Gl2(C)×G2(C)

this is the group of real points of the reductive group U(2)/R. The inter-
section

Tc = T (R) ∩K∞ = {
(
eiφ1 0

0 eiφ2

)
= e(φ)}.

The base change U(2) × C = Gl2/C and Tc × C becomes the standard
maximal compact torus. The irreducible finite dimensional U(2)-modules
are labelled by dominant highest weights λc = nγc + d det ∈ X∗(Tc ×
C) (See section ( 4.4.1), here again n ≥ 0, n ∈ Z, n ≡ 2d mod 2 and
γc(e(φ)) = ei(φ1−φ2)/2.)

We denote these modules byMλc after base change to C they become
the modules Mλ,C.

As a subgroup of G(R) ⊂ Gl2(C)×G2(C) our torus is

Tc = {
(
eiφ1 0

0 eiφ2

)
×
(
e−iφ1 0

0 e−iφ2

)
} ∼−→ {

(
eiφ1 0

0 eiφ2

)
} (166)

and the restriction of χ to Tc is of the form

χc(e(φ)) = eiaφ1+ibφ2 = e
a−b

2
(φ1−φ2)e

a+b
2

(φ1+φ2) (167)

and this character is (a− b)γc + a+b
2

det . Then we know
decoKuB

◦IK∞Tc χc = IGBχ =
⊕

µc=kγc+
a+b

2
det;k≡(a−b) mod 2;k≥|a−b|

Mµc (168)

4.4.4 Intertwining operators

Let N(T ) the normalizer of T/R, the quotient W = N(T )/T is a finite
group scheme. The in our case the group W (R) is cyclic of order 2 and
generated by

w0 =

(
0 1
−1 0

)
In case a) we have W (R) = W (C) in case b) we have

G×R C = (Gl2 ×Gl2)/C ; T ×R C = T1 × T2 ; and W (C) = Z/2× Z/2
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where the two factors are generated by s1 = (w0, 1), s2 = (1, w0). The
group W (R) is the group of real points of the Weyl group, the group
W = W (C) is the Weyl group or the absolute Weyl group.

We introduces the special character

|ρ| :
(
t1 u
0 t2

)
→ | t1

t2
|
1
2

The group W (R) acts on T (R) by conjugation and hence it also acts
on the group of characters, we denote this action by χ 7→ χw. We define
the twisted action

w · χ = (χ|ρ|)w|ρ|−1

We recall some well known facts

i) We have a non degenerate (g,K∞) invariant pairing

IGBχ× IGBχ
w0 |ρ|2 → Cω2

χ given by (f1, f2) 7→
∫
K∞

f1(k)f2(k)dk (169)

We define the dual IG,∨B χ of a Harish-Chandra as a submodule of
HomC(IGBχ,C), it consists of those linear maps which vanish on almost

all K∞ types. It is clear that this is again a (g,K∞)-module. The above
assertion can be reformulated

ii) We have an isomorphism of (g,K∞) modules

IGBχδχ → IG,∨B χw0 |ρ|2 (170)

The group T (R) = Tc × (R×>0)2 and hence we can write any character
χ in the form

χ(t) = χc(t)|t1|z1 |t2|z2 (171)

where z1, z2 ∈ C.
For f ∈ IGBχ, g ∈ G(R) we consider the integral

T loc
∞ (f)(g) =

∫
U(R)

f(w0ug)du (172)

It is well known and easy to check that these integrals converge abso-
lutely and locally uniformly for <(z1 − z2) >> 0 and it is also not hard
to see that they extend to meromorphic functions in the entire C2. We
can ”evaluate” them at all (z1, z2) by suitably regularizing at poles (for
instance taking residues). This needs some explanation. To define the
regularized intertwining operator we consider the ”deformed” intertwin-
ing operator

T loc
∞ (λw0

R |γ|
z) : IGBλ

w0
R |γ|

z → IGBλR|ρ|2|γ|−z (173)

(See 172, χ = λw0
R |γ|

z) and this integral converges if <(z) >> 0. We have
decomposed

IGBλ
w0
R |γ|

z =
⊕
ϑ∈K̂∞

◦IK∞Tc χc[ϑ] =
⊕
ϑ∈K̂∞

IGBλ
w0
R |γ|

z[ϑ]

and our intertwining operator is a direct sum of linear maps between finite
dimensional vector spaces

c(λw0
R |γ|

z, ϑ) : IGBλ
w0
R |γ|

z[ϑ]→ IGBλR|ρ|2|γ|−z[ϑ]
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The finite dimensional vector spaces do not depend on z and the c(λw0
R |γ|

z, ϑ)
can be expressed in terms of values of the Γ− function. Especially they
are meromorphic functions in the variable z (See sl2neu.pdf, ). Hence we
can can find an integer m ≥ 0 such that

zmIGBλ
w0
R |γ|

z|z=0 : IGBλ
w0
R → IGBλR|ρ|2

is a non zero intertwining operator and this is now our regularized operator
T loc,reg
∞ (λw0

R ).

iii) The regularized values define non zero intertwining operators

T loc,reg
∞ (χ) : IGBχ→ IGBχ

w0 |ρ|2 (174)

These operators span the one dimensional space of intertwining operators
Hom(g,K∞)(I

G
Bχ, I

G
Bw0 · χ)

Finally we discuss the question which of these representations are uni-
tary. This means that we have to find a pairing

ψ : IGBχ× IGBχ→ C (175)

which satisfies

a) it is linear in the first and conjugate linear in the second variable

b) It is positive definite, i.e. ψ(f, f) > 0 ∀f ∈ IGBχ

c) It is invariant under the action of K∞ and Lie-algebra invariant
under the action of g, i.e. we have

For f1, f2 ∈ IGBχ and X ∈ g we have ψ(Xf1, f2) + ψ(f1, Xf2) = 0.

We are also interested in quasi-unitatry modules. This is notion is
perhaps best explained if and instead of c) we require

d) There exists a continuous homomorphism (a character) η : G(R)→
R× such that ψ(gf1, gf2) = η(g)ψ(f1, f2), ∀g ∈ G(R), f1f2 ∈ IGBχ

It is clear that a non zero pairing ψ which satisfies a) and c) is the
same thing as a non zero (g,K∞)-module linear map

iψ : IGBχ→ (IGBχ)∨ (176)

by definition iψ is a conjugate linear map from IGBχ to (IGBχ)∨. The map
iψ and the pairing ψ are related by the formula ψ(v1, v2) = iψ(v2)(v1).

Of course we know that (See (170))

(IGBχ)∨
∼−→ IGBχw0 |ρ|2δ−1

χ (177)

and we find such an iψ if

χ = χw0 |ρ|2δ−1
χ or χw0 |ρ|2 = χw0 |ρ|2δ−1

χ (178)

We write our χ in the form (171). A necessary condition for the
existence of a hermitian form is of course that all |ωχ(x)| = 1 for x ∈ Z(R)
and this means that <(z1 + z2) = 0, hence we write

z1 = σ + iτ1, z2 = −σ + iτ2 (179)
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Then the two conditions in (178) simply say

(un1) : σ =
1

2
or (un2) : τ1 = τ2 and χc = χw0

c (180)

In both cases we can write down a pairing which satisfies a) and c).
We still have to check b). In the first case, i.e. σ = 1

2
we can take the

map iψ = Id and then we get for f1, f2 ∈ IGBχ the formula

ψ(f1, f2) =

∫
K∞

f1(k)f2(k)dk (181)

and this is clearly positive definite. These are the representation of the
unitary principal series.

In the second case we have to use the intertwining operator in (174)
and write

ψ(f1, f2) = T loc,reg
∞ (f2)(f1) (182)

Now it is not clear whether this pairing satisfies b). This will depend on
the parameter σ. We can twist by a character η : Z(R)→ C× and achieve
that χc = 1, τ1 = τ2 = 0. We know that for σ = 1

2
the intertwining

operator T loc
∞ is regular at χ and since in addition under these conditions

IGBχ is irreducible we see that

T loc
∞ (χ) = α Id with α ∈ R×>0 (183)

Since we now are in case a) and b) at the same time we see that the two
pairings defined by the rule in case (un1) and (un2) differ by a positive
real number hence the pairing defined in (182) is positive definite if σ = 1

2
.

But now we can vary σ. It is well known that IGBχ stays irreducible as
long as 0 < σ < 1 (See next section) and since T loc

∞ (χ)(f)(f) varies con-
tinuously we see that (182) defines a positive definite hermitian product
on IGBχ as long as 0 < σ < 1. This is the supplementary series. What
happens if we leave this interval will be discussed in the next section.

4.4.5 Reducibility and representations with non trivial co-
homology

As usual we denote by ρ ∈ X∗(T ) ⊗ Q the half sum of positive roots we
have ρ = γ resp. ρ = γ1 + γ2 ∈ X∗(T )⊗Q in case A) (resp. B)).

For any character λ ∈ X∗(T × C) we define λR to be the restriction
(or evaluation)

λR : T (R)→ C×.
This provides a homomorphism B(R) → T (R) and hence we get the
Harish-Chandra modules IGBλR are of special interest for our subject
namely the cohomology of arithmetic groups.

We just mention the fact that IGBχ is always irreducible unless χ = λR
(See sl2neu.pdf, Condition (red)).

We return to the situation discussed in section (4.4.1), especially we
reintroduce the field F/Q. Then we have X∗(T × F ) = X∗(T × C) and
hence λ ∈ X∗(T × F ). We assume that λ is dominant, i.e. n ≥ 0 in case
a) or n1, n2 ≥ 0 in case b). In this case we realized our modules Mλ as
submodules in the algebra of regular functions on G/Z and if we look at
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the definition (See (156)) we see immediately that Mλ,C ⊂ IGBλ
w0
R and

hence we get an exact sequence of (g,K∞) modules

0→Mλ,C → IGBλ
w0
R → Dλ → 0 (184)

Hence we see that IGBλ
w0
R is not irreducible. We can also look at the

dual sequence. Here we recall that we wrote λ = nγ+d det . Then we will
see later thatM∨λ,C =Mλ−2d det,C. Hence after twisting the dual sequence
becomes

0→ D∨λ ⊗ det2d
R → IG,∨B λw0

R →Mλ,C → 0 (185)

Equation (170) yields IG,∨B λw0
R

∼−→ IGBχ|ρ|2 and our second sequence be-
comes

0→ D∨λ ⊗ det2d
R → IGBλR|ρ|2 →Mλ,C → 0 (186)

Now we consider the two middle terms in the two exact sequences (184,186)
above. The equation (174) claims that we have two non zero regularized
intertwining operators

T loc,reg
∞ (λw0

R ) : IGBλ
w0
R → IGBλR|ρ|2 ;T loc,reg

∞ (λR|ρ|2) : IGBλR|ρ|2 → IGBλ
w0
R

(187)

If we now look more carefully at our two regularized intertwining op-
erators above then a simple computation yields (see sl2neu.pdf)

Proposition 4.2. The kernel of T loc,reg
∞ (λw0

R ) is Mλ,C and this operator
induces an isomorphism

T̄ (λR) : Dλ
∼−→ D∨λ ⊗ det2d

R

(Remember λ is dominant) The kernel of T loc,reg
∞ (λR|ρ|2) is D∨λ ⊗ det2d

R
and it induces an isomorphism of Mλ,C.

The module IGBχ is reducible if T loc,reg
∞ (χ) not an isomorphism and

this happens if an only if χ = λR or λw0
R |ρ|

2 and λ dominant. (There is
one exception to the converse of the above assertion, namely in the case
A) and σ = 1

2
and χw0

c 6= χc.)

For us of of relevance is to know whether we have a positive definite
hermitian form on the (g,K∞)-modules Dλ. To discuss this question we
treat the cases A) and B) separately.

We look at the decomposition into K∞-types. (See ( 165)) In case A)
(See ( 165)) it is clear that Mλ,C is the direct sum of the K∞ types Cψl
with |l| ≤ n. Hence

Dλ =
⊕

k≤−n−2,k≡m(2)

Cψk ⊕
⊕

k≥n+2,k≡m(2)

Cψk = D−λ ⊕D
+
λ (188)

Proposition 4.3. The representations D−λ ,D
+
λ are irreducible, these are

the discrete series representations.
The operator T̄ (λR) induces a quasi-unitary structure on the (g, K̃∞)-

module Dλ. The two sets of K∞ types occurring inMλ,C and in Dλ (resp.)
are disjoint.

Proof. Remember that as a vector space D∨λ ⊗ det2d
R = D∨λ , only the way

how K̃∞ acts is twisted by det2d
R . Then the form hψ(f1, f2) = T loc,reg

∞ (λw0
R )(f2)(f1)

defines a quasi invariant hermitian form. It is positive definite (for more
details see sl2neu.pdf).
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A similar argument works in case B).We restrict the Gl2(C)×Gl2(C)
module Mλ,C to U(2)× U(2) then it becomes the highest weight module
Mλc =Mλ1,c⊗Mλ2,c . (See4.4.1) Under the action of U(2) ⊂ U(2)×U(2)
it decomposes into U(2) types according to the Clebsch-Gordan formula

Mλc |U(2) =
⊕

µc=kγc+
d1+d2

2
det;k≡(n1−n2) mod 2;n1+n2≥k≥|n1−n2|

Mµc

(189)

Hence we get

Dλc |U(2) =
⊕

µc=kγc+
d1+d2

2
det;k≡(n1−n2) mod 2;k≥n1+n2+2

Mµc (190)

Again we have

Proposition 4.4. The operator T loc,reg
∞ (λw0

R ) induces an isomorphism

T̄ (λR) : Dλ
∼−→ D∨λ ⊗ det2d

R

The (g,K∞) modules are irreducible.
The operator T loc,reg

∞ (λw0
R ) induces the structure of a quasi-unitary

module on Dλ if and only if n1 = n2. This is the only case when we have
a quasi-unitary structure on Dλ. The two sets of K∞ types occurring in
Mλ,C and in Dλ (resp.) are disjoint.

The Weyl W group acts on T by conjugation, hence on X∗(T × C)
and we define the twisted action by

s · λ = s(λ+ ρ)− ρ (191)

Given a dominant λ we may consider the four characters w · λ,w ∈
W (C) = W and the resulting induced modules IGBw · λR. We observe
(notation from (4.4.1))

s1 · (n1γ + d1 det +n2γ̄ + d2det) = (−n1 − 2)γ + d1 det +n2γ̄ + d2det)

s2 · (n1γ + d1 det +n2γ̄ + d2det) = n1γ + d1 det +(−n2 − 2)γ̄ + d2det)

(192)

Looking closely we see that that the K∞ types occurring in IGBs1 ·
λ or IGBs2 · λ are exactly those which occur in Dλ. This has a simple
explanation, we have

Proposition 4.5. For a dominant character λ we have isomorphisms
between the (g,K∞) modules

Dλ
∼−→ IGBs1 · λ, Dλ

∼−→ IGBs2 · λ. (193)

The resulting isomorphism IGBs1 · λ
∼−→ IGBs2 · λ is of course given by

T loc
∞ (s1 · λ).

Interlude: Here we see a fundamental difference between the two
cases A) and B). In the second case the infinite dimensional subquotients
of the induced representations are again induced representations. In the
case A) this is not so, the representations D±λ are not isomorphic to rep-
resentations induced from the Borel subgroup.
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These representation are called discrete series representations and we
want to explain briefly why.

Let G be a semi simple Lie group for example our G = G(R), here we
allow both cases. Then we have an action of G×G on L2(G) by left and
right translations. Then Harish-Chandra has investigated the question
how this ”decomposes” into irreducible submodules. Let Ĝ be the set of
isomorphism classes of irreducible unitary representations of G.

Then Harish-Chandra shows that there exist a positive measure µ on
Ĝ and a measurable family Hξ of irreducible unitary representations of G
such that

L2(G) =

∫
Ĝ

Hξ ⊗Hξµ(dξ) (194)

( If instead of a semi simple Lie group we take a finite group G then
this is the fundamental theorem of Frobenius that the group ring C[G] =
⊕θVθ ⊗ V ∨θ where Vθ are the irreducible representations.)

If we are in the case A) then the sets consisting of just one point
{D±λ } have strictly positive measure, i.e. µ({D±λ }) > 0. This means that
the irreducible unitary G×G modules D±λ ⊗D

±
λ∨ occur as direct summand

(i.e. discretely in L2(G).).
Such irreducible direct summands do not exist in the case B), in this

case for any ξ ∈ Ĝ we have µ({ξ}) = 0.

We return to the sequences (184),(186). We claim that both sequences
do do not split as sequences of (g,K∞)-modules. Of course it follows from
the above proposition that these sequences split canonically as sequence of
K∞ modules. But then it follows easily that complementary summand is
not invariant under the action of g. This means that the sequences provide
non trivial classes in Ext1

(g,K∞)(Dλ,Mλ,C) and hence these Ext• modules
are interesting.

The general principles of homological algebra teach us that we can
understand these extension groups in terms of relative Lie-algebra coho-
mology. Let k resp. k̃ be the Lie-algebras of K∞ resp. K̃∞ the group K̃∞
acts on g, k̃ via the adjoint action (see 1.3) We start from a (g, K̃∞) module
IGBχ and a module Mλ,C.

Our goal is to compute the cohomology of the complex (See Chap.III,
4.1.4)

HomK̃∞
(Λ•(g/k̃), IGBχ⊗Mλ,C). (195)

There is an obvious condition for the complex to be non zero. The
group Z(R) ⊂ K̃∞ acts trivially on g/k and hence we see that the complex
is trivial unless we have

ω−1
χ = λR|Z(R)

we assume that this relation holds.
We will derive a formula for these cohomology modules which is a

special case of a formula of Delorme, which will also be discussed in Chap.
III. An element ω ∈ HomK̃∞

(Λn(g/k̃), IGBχ ⊗Mλ,C) attaches to any n

tuple v1, . . . , vn of elements in g/k̃ an element

ω(v1, . . . , vn) ∈ IGBχ⊗Mλ,C (196)

such that ω(Ad(k)v1, . . . ,Ad(k)vn) = kω(v1, . . . , vn) for all k ∈ K̃∞.
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By construction

ω(v1, . . . , vn) =
∑

fν ⊗mν where fν ∈ IGBχ,mν ∈Mλ,C

and fν is a function in C∞ which is determined by its restriction to K̃∞
( and this restriction is K̃∞ finite). We can evaluate this function at the
identity eG ∈ G(R) and then

ω(v1, . . . , vn)(eG) =
∑

fν(e)⊗mν ∈ Cχ⊗Mλ,C

The K̃∞ invariance (196) implies that ω is determined by this evaluation
at eG. Let T̃c = T (R) ∩ K̃∞ = Z(R) · Tc. Then it is clear that

ω∗ : {v1, . . . , vn} 7→ ω(v1, . . . , vn)(eG) (197)

is an element in

ω∗ ∈ HomT̃c
(Λn(g/k̃),Cχ⊗Mλ,C) (198)

and we have: The map ω 7→ ω∗ is an isomorphism of complexes

HomK̃∞
(Λ•(g/k̃), IGBχ⊗Mλ,C)

∼−→ HomT̃c
(Λ•(g/k̃),Cχ⊗Mλ,C)

(199)

The Lie algebra g can be written as a sum of T̃c invariant submodules

g = b + k̃ = t + u + k̃ (200)

in case B) this sum is not direct, we have b ∩ k̃ = t ∩ k̃ = t̃c and hence we
get the direct sum decomposition into T̃c-invariant subspaces

g/k̃ = t/̃tc ⊕ u. (201)

We get an isomorphism of complexes

HomT̃c
(Λ•(g/k̃),Cχ⊗Mλ,C)

∼−→ HomT̃c
(Λ•(t/k̃),Cχ⊗ Hom(Λ•(u),Mλ,C))

(202)

the complex on the left is isomorphic to the total complex of the double
complex on the right.

Intermission, the theorem of Kostant The next step is the com-
putation of the cohomology of the complex Hom(Λ•(u),Mλ,C). To do this
we work over the rationals and we we study the case A) first. So our group
is now G/Q = Gl2/Q and our module Mλ,C will be replaced by Mλ,Q.

Then u = QE+ where E+ =

(
0 1
0 0

)
. The module has a decomposition

into weight spaces

Mλ,Q =

ν=n−ν⊕
ν=1

QXn−νY ν =

µ=n⊕
µ=−n,µ≡n(2)

Qeµ. (203)

The torus T (1) = {
(
t 0
0 t−1

)
} acts on eµ = Xn−νY ν by

ρλ(

(
t 0
0 t−1

)
)eµ = tµeµ (204)
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We also have the action of the Lie algebra on Mλ,Q (See section ??)
and by definition we get

d(ρλ)(E+)eµ = E+eµ =
n− µ

2
eµ+2 (205)

Now we can write down our complex Hom(Λ•(u),Mλ,C) very explic-
itly. Let E∨+ ∈ Hom(u,Q) be the element E∨+(E+) = 1 then the complex
becomes

0→
µ=n⊕

µ=−n,µ≡n(2)

Qeµ
d−→

µ=n⊕
µ=−n,µ≡n(2)

QE∨+ ⊗ eµ → 0 (206)

where d(eµ) = n−µ
2
E∨+ ⊗ eµ+2. This gives us a decomposition of our com-

plex into two sub complexes

Hom(Λ•(u),Mλ,C) = H•(u,Mλ,Q)⊕AC• (207)

where AC• as acyclic (it has no cohomology) and in

H•(u,Mλ,Q) = {0→ Q en
d−→ Q E∨+ ⊗ e−n → 0} (208)

the differential is zero. Hence we get

H•(u,Mλ,Q) = H•( Hom(Λ•(u),Mλ,Q)) = H•(u,Mλ,Q) (209)

We notice that the torus T acts on H•(u,Mλ,Q) ( The Borel subgroup
B acts on the complex Hom(Λ•(u),Mλ,Q) but since the Lie algebra co-
homology is the derived functor of taking invariants under U (elements
annihilated by u) it follows that this action is trivial on U).

Hence we see that T acts by the character λ on Q en = H0(u,Mλ,Q)
and by the character λ− − α = w0 · λ = λw0 − 2ρ on Q E∨+ ⊗ e−n =
H1(u,Mλ,Q).

Here we see the simplest example of the famous theorem of Kostant
which will be discussed in Chap. III 6.1.3.

We discuss the case B). Again we want that our groupG/R = RC/R(Gl2/C)
is a base change from a group G/Q denoted by the same letter. We need
an imaginary quadratic extension F/Q and put G/QRF/Q(Gl2/F ). We
choose a dominant weight λ = λ1 + λ2 = n1γ1 + d1 det1 +n2γ2 + d2det2

and then Mλ,F = Mλ1,F ⊗ Mλ2,F is an irreducible representation of
G ×Q F = Gl2 × Gl2/F. Now we have u ⊗ F = FE1

+ ⊕ FE2
+. Then basi-

cally the same computation yields:
The cohomology H•(u,Mλ,F ) is equal the complex

H•(u,Mλ,F ) = {0→ Fe
(1)
n1 ⊗ Fe

(2)
n2

d−→ FE1,∨
+ ⊗ e(1)

−n1
⊗ e(2)

n2 ⊕ FE
1,∨
+ ⊗ e(1)

n1 ⊗ E
2,∨
+ ⊗ e(2)

−n2
d−→ FE1,∨

+ ⊗ e(1)
−n1
⊗ E2,∨

+ ⊗ e(2)
−n2
→ 0}

(210)

where all the differentials are zero. The torus T acts by the weights

λ in degree 0, s1 · λ, s2 · λ in degree 1, w0 · λ in degree 2 (211)

We go back to (212) and get a homomorphism of complexes

HomT̃c
(Λ•(g/k̃),Cχ⊗Mλ,C)→ HomT̃c

(Λ•(t/k̃),Cχ⊗H•(u,Mλ,C))

(212)
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which induces an isomorphism in cohomology so that finally

H•(g,K∞, I
G
Bχ⊗Mλ,C)

∼−→ H•( HomT̃c
(Λ•(t/k̃),Cχ⊗H•(u,Mλ,C))

(213)

and combining this with the results above we get

Theorem 4.4. If we can find a w ∈W (C) such that χ−1 = w · λR then

H•(g,K∞, I
G
Bχ⊗Mλ,C)

∼−→ Hl(w)(u,Mλ,C)(w · λ)⊗ Λ•(t/k̃)∨

If there is no such w then the cohomology is zero.

Proof.

4.4.6 The cohomology of the Dλ the cohomology of unitary
modules

4.4.7 The Eichler-Shimura Isomorphism

4.5 Modular symbols, L− values and denomina-
tors of Eisenstein classes.

4.5.1 Modular symbols attached to maximal tori in Gl2.

Compact symbols attached to anisotropic tori, relative symbols attached
to split tori....

4.5.2 Evaluation of cuspidal classes on modular symbols

We discuss the results on special values of L-functions attached eigenforms

4.5.3 Evaluation of Eisenstein classes on modular symbols
and the determination of the denominator (in certain cases)

Here we (hopefully) prove (141); we discuss the two cases cases Sl2(Z) and
some special congruence subgroups Γ ⊂ Sl2[Z[i]].

4.5.4 The Deligne-Eichler-Shimura theorem

In this section the material is not presented in a satisfactory form. One
reason is that it this point we should start using the language of adeles,
but there also other drawbacks. So in a final version of these notes this
section probably be removed.

Begin of probably removed section
In this section I try to explain very briefly some results which are

specific for Gl2 and a few other low dimensional algebraic groups. These
results concern representations of the Galois group Gal(Q̄/Q) which can
be attached to irreducible constituents Πf in the cohomology. These re-
sults are very deep and reaching a better understanding and more general
versions of these results is a fundamental task of the subject treated in
these notes. The first cases have been tackled by Eichler and Shimura,
then Ihara made some contributions and finally Deligne proved a general
result for Gl2/Q.

We start from the groupG = Gl2/Q, this is now only a reductive group
and its centre is isomorphic to Gm/Q. Its group of real points is Gl2(R) and
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the centre Gm(R) considered as a topological group has two components,
the connected component of the identity is Gm(R)(0) = R×>0. Now we
enlarge the maximal compact connected subgroup SO(2) ⊂ Gl2(R) to
the group K∞ = SO(2) · Gm(R)(0). The resulting symmetric space X =
Gl2(R)/K∞ is now a union of a upper and a lower half plane: We write
X = H+ ∪H−.

We choose a positive integer N > 2 and consider the congruence sub-
group Γ(N) ⊂ Gl2(Q)). We modify our symmetric space: This modifica-
tion may look a little bit artificial at this point, it will be justified in the
next chapter and is in fact very natural. (At this point I want to avoid to
use the language of adeles.)

We replace the symmetric space by

X = (H+ ∪H−)×Gl2(Z/NZ).

On this space we have an action of Γ = Gl2(Z), on the second fac-
tor it acts via the homomorphism Gl2(Z) → Gl2(Z/NZ) by translations
from the left. Again we look at the quotient of this space by the action
of Gl2(Z). This quotient space will have several connected components.
The group Gl2(Z) contains the group Sl2(Z) as a subgroup of index two,

because the determinant of an element is ±1. The element

(
1 0
0 −1

)
in-

terchanges the upper and the lower half plane and hence we see

Gl2(Z)\X = Gl2(Z)\((H+∪H−)×Gl2(Z/NZ)) = Sl2(Z)\(H+×Gl2(Z/NZ)),

the connected components of (H+×Gl2(Z/NZ)) are indexed by elements
g ∈ Gl2(Z/NZ). The stabilizer of such a component is the full congruence
subgroup

Γ(N) = {γ =

(
a b
c d

)
|a, d ≡ 1 mod N, b, c ≡ 0 mod N}

this group is torsion free because we assumed N > 2.
The image of the natural homomorphism Sl2(Z)→ Gl2(Z/NZ) is the

subgroup Sl2(Z/NZ) (strong approximation), therefore the quotient is by
this subgroup is (Z/NZ)×.

We choose as system of representatives for the determinant the ma-

trices ta =

(
a 0
0 1

)
, a ∈ (Z/NZ)×. The stabilizer of then we get an

isomorphism

SN = Gl2(Z)\(H×Gl2(Z/NZ))
∼−→ (Γ(N)\H)× (Z/NZ)×.

To any prime p, which does not divide N we can again attach Hecke
operators. Again we can attach Hecke operators

Tpr = T

(pr 0
0 1

)
, upr 0

0 1




to the double cosets and using strong approximation we can prove the
recursion formulae.

We consider the cohomology groups H•c (SN ,M̃n), H•(SN ,M̃n) and
define H•! (SN ,M̃n) as before. This is a semi simple module for the coho-
mology.
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The theorem 3 extends to this situation without change. We have
a small addendum: If denote by Z(N,×) ∈ Q× the subgroup of those
numbers which are units at the primes dividing N . We have the homo-
morphism r : Z(N,×) → (Z/NZ)×

On each absolutely irreducible component Πf the Hecke operators T (z, uz)
act by a scalar ω(z) ∈ OL and the map z 7→ ω(z) factors over r and in-
duces a character ω(Πf ) : (Z/NZ)× → (OL)×. This character is called
the central character of Πf .

The following things will be explained in greater detail in the class
Now we exploit the fact, that the Riemann surface Γ(N)\X is in fact

the space of complex points of the moduli scheme MN → Spec(Z[1/N ]).
On this moduli scheme we have the universal elliptic curve with N level
structure

E
↓ π
MN

On E we have the constant `-adic sheaf Z`. For i = 0, 1, 2 we can con-
sider the `- adic sheaves Riπ∗(Z`) on MN . We have the spectral sequence

Hp(MN × Q̄, Rqπ∗(Z`))⇒ Hn(E × Q̄,Z`).
We can take the fibered product of the universal elliptic curve

E(n) = E ×MN E × · · · ×MN E
πN−→MN

where n is the number of factors. This gives us a more general spectral
sequence

Hp(MN × Q̄, RqπN,∗(Z`))⇒ Hn(E(n) × Q̄,Z`).
The stalk RqπN,∗(Z`)y ) of the sheaf RqπN,∗(Z`) in a geometric point

y of MN is the q-th cohomology Hq(E(n)
y ,Z`) and this can be computed

using the Kuenneth formula

Hq(E(n)
y ,Z`)

∼−→
⊕

a1,a2...,an

Ha1(Ey,Z`)⊗Ha2(Ey,Z`) · · · ⊗Han(Ey,Z`),

where the ai = 0, 1, 2 and sum up to q. We haveH0(Ey,Z`) = Z`(0), H2(Ey,Z`) =
Z`(−1) and the most interesting factor is H1(Ey,Z`) which is a free Z`
module af rank 2.

This tells us that the sheaf decomposes into a direct sum according to
the type of Kuenneth summands. We also have an action of the symmetric
group Sq which is obtained from the permutations of the factors in E(n)

which also permutes the types. We are mainly interested in the case q = n
and then we have the special summand where a1 = a2 · · · = an = 1. This
summand is invariant under Sn and contains a summand on which Sn acts
by the signature character σ : Sn → {±1}. This defines a unique subsheaf
Rnπ∗,n(Z`)(σ) ⊂ Rnπ∗,n(Z`) and hence we get an inclusion

H1(MN × Q̄, Rnπ∗,n(Z`)(σ) ↪→ Hn+1(E(n) × Q̄,Z`)
and we can do the same thing for the cohomology with compact supports.
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Now I will explain:
A) If we extend the scalars from Q to C then then extension ofRnπ∗,n(Q`)(σ)

is isomorphic to the restriction of Mn ⊗Q` to the etale topology.
B) The Hecke operators Tp for p 6 |N are coming from algebraic corre-

spondences Tp ⊂ MN ×MN and induce endomorphisms Tp : H1(MN ⊗
Q̄, Rnπ∗,n(Z`)(σ)) → H1(MN ⊗ Q̄, Rnπ∗,n(Z`)(σ)) which commute with
the action of Gal(Q̄/Q) on the cohomology.

C) This tells us that after extension of the scalars of the coefficient
system we get

H1(MN (C),Mn ⊗Q`)
∼−→ H1(MN × Q̄, Rnπ∗,n(Q`)(σ))

and this gives us the structure of a Gal(Q̄/Q)×HΓ on H1(MN (C),Mn⊗
Q`).

D) The operation of the Galois group on H1(MN (C),Mn ⊗ Q`) is
unramified outside N , therefore we have the conjugacy class Φ−1

p for all
p 6 |N as endomorphism of H1(MN (C),Mn ⊗Q`).

Now we use another fact, which will be explained in Chapter III. We
also can define a Hecke algebra Hp for the primes p|N, and hence we get
an action of a larger Hecke algebra

Hlarge
N =

⊗
p

′
Hp

and this algebra commutes with the action of the Galois group.
We now apply our theorem 2 to the cohomology H1

! (MN (C),Mn⊗Q`),
as a module under this large Hecke algebra. Then the isotypical summands
will be invariant under the Galois group.

Theorem 4: a) The multiplicity of an irreducible representation
Πf ∈ Coh(MN (C),M̃n,Ll) is two.

b) This gives a product decomposition

H1
! (MN (C),Mn ⊗ Ll)

∼−→ HΠf ⊗W (Πf ), ,

where HΠf is irreducible of type Πf and where W (Πf ) is a two dimensional
Gal(Q̄/Q) module.

The module W (Πf ) is unramified outside N and

tr(Φ−1
p |W (Πf )) = λ(πp), det(Φ−1

p |W (Πf )) = pn+1ω(Πf )(p)

This theorem is much deeper than the previous ones. The assertion
a) follows from the theory of automorphic forms on Gl2 and b) requires
some tools from algebraic geometry. We have to consider the reduction
MN × Spec(Fp) and to look at the reduction of the Hecke operator Tp
modulo p. I will resume this discussion in Chap. V.

I want to discuss some applications.
A) To any isotypical component Πf we can attach an ( so called au-

tomorphic) L function

L(Πf , s) =
∏
p

L(πp, s)

where for p 6 |N we define

L(πp, s) =
1

1− λ(πp)p−s + pn+1ω(Πf )(p)p−2s
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and for p|N we have

L(πp, s) =

{
1

1−pn+1ω(Πf )(p)p−s if πp is a Steinberg module

1 else

This L-function, which is defined as an infinite product is holomorphic
for <(s) >> 0 it can written as the Mellin transform of a holomorphic
cusp form F of weight n+ 2 and this implies that

Λ(Π, s) =
Γ(s)

2πs
L(Πf , s)

has a holomorphic continuation into the entire complex plane and satisfies
a funtional equation

Λ(Πf , s) = W (Πf )(N(Πf ))s−1−n/2Λ(Πf , n+ 2− s)
Here W (Πf ) is the so called root number, it can be computed from

the πp where p|N , its value is ±1, the number N(Πf ) is the conductor of
Πf it is a positive integer, whose prime factors are contained in the set of
prime divisors of N .

B) But we also can interpret an isotypic component as a submotive in
Hn+1(E(n) × Q̄,Z), this is the so called Scholl motive.

If we apply the results of Deligne in Weil II, which have been proved
in the winter term 2003/4, we get the estimate

|ι(λ(πp))| ≤ 2p(n+1)/2

for any embedding ι of L into C.
End of probably removed section

2.2.5 The `-adic Galois representation in the easiest non triv-
ial case

Again we consider the module M = M10[−10]. We choose a prime
` and for some reason let us assume ` > 7. Then we can consider the
cohomology groups

H1(Γ\H,M̃/`nM̃)

and the projective limit

H1(Γ\H,M̃ ⊗ Z`) = lim
←
H1(Γ\H,M̃/`nM̃).

Now it is known that the quotient space is the ”moduli space” of
elliptic curves, this is an imprecise and even incorrect statement, but it
contains a lot of truth. What is true is that we can define the moduli
stack S/ Spec(Z) of elliptic curves, this is a smooth stack and it has the
universal elliptic curve E π−→ S over it.

We can define etale torsion sheaves (M/`nM̃)et on this stack and we
know that

H1
et(S × Spec(Z) Q̄, (M/`nM̃)et)

∼−→ H1(Γ\H,M̃10/`
nM̃10).

On these etale cohomology groups we have an action of the Galois group.
Using correspondences we can define Hecke operators Tp for all p 6= `,
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they induce endomorphism on the etale cohomology and they commute
with the action of the Galois group.

We denote this action of the Galois group as a representation

ρn : Gal(Q̄/Q)→ Gl(H1
et(S × Spec(Z) Q̄, (M/`nM̃)et)).

This representation is unramified outside `, and this means:
The finite extension K

(n)
` /Q for which Gal(Q̄/K(n)

` ) is the kernel of
ρn is unramified outside `.

By transport of structure we have the same projective system of Hecke×Galois
modules on the right hand side.

We recall our fundamental exact sequence, the Galois groups acts on
the individual terms of this sequence, we get projective systems of Galois-
modules and passing to the limit yields

ρ! : Gal(Q̄/Q)→ Gl(H1
! (Γ\H,M̃ ⊗ Z`))

and
ρ∂ : Gal(Q̄/Q)→ Gl(Z`e10).

The field K` =
⋃
nK

(n)
` defines the kernel Gal(Q̄/K`), the exten-

sion K`/Q is unramified at all primes p 6= `. If p is a prime in OK`
which lies above then the geometric Frobenius Φp is the unique element
in Gal(K`/Q) which fixes p and induces x 7→ x−p on the residue field
OK`/p. This element defines a unique conjugacy class Φp in Gal(K`/Q).

Theorem(Deligne)For any prime p 6= ` we have

ρ∂(Φp) = p11Id

and

det(Id− ρ(Φp)t|H1
! (Γ\H,M̃ ⊗ Z`)) = 1− τ(p)t+ p11t2

This is a special case of the general theorem stated in the previous
section and it one of the aims of the subject treated in this book to
generalize this theorem to larger groups.

We conclude by giving a few applications.
A) The function z 7→ ∆(z) is a function on the upper half plane

H = {z|=(z) > 0} and it satisfies

∆(
az + b

cz + d
) = (cz + d)12∆(z)

and this means that it is a modular form of weight 12. Since it goes
to zero if z = iy →∞ it is even a modular cusp form.

For such a modular cusp form we can define the Hecke L-function

L(∆, s) =

∫ ∞
0

∆(iy)ys
dy

y
=

Γ(s)

(2π)s

∞∑
n=1

τ(n)

ns
=

Γ(s)

(2π)s

∏
p

1

1− τ(p)p−s + p11−2s

the product expansion has been discovered by Ramanujan and has been
proved by Mordell and Hecke.

Now it is in any textbook on modular forms that the transformation
rule
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∆(−1

z
) = z12∆(z)

implies that L(∆, s) defines a holomorphic function in the entire s
plane and satisfies the functional equation

L(∆, s) = (−1)12/2L(∆, 12− s) = L(∆, 12− s).
This function L(∆, s) is the prototype of an automorphic L-function.

The above theorem shows that it is equal to a ”motivic” L-function. We
gave some vague explanations of what this possibly means: We can in-
terpret the projective system (M/`nM̃)et as the `−adic realization of a
motive:

M = Sym10(R1(π : E → S))

(All this is a translation of Deligne‘s reasoning into a more sophisti-
cated language.)

It is a general hope that “motivic” L-functions L(M, s) have nice prop-
erties as functions in the variable s (meromorphicity, control of the poles,
functional equation). So far the only cases, in which one could prove
such nice properties are cases where one could identify the ”motivic” L-
function to an automorphic L function. The greatest success of this strat-
egy is Wiles‘ proof of the Shimura-Taniyama-Weil conjecture, but also the
Riemann ζ-function is a motivic L− function and Riemann‘s proof of the
functional equation follows exactly this strategy.

B) But we also have a flow of information in the opposite direction.
In 1973 Deligne proved the Weil conjectures which in this case say that
the two roots of the quadratic equation

x2 − τ(p)x+ p11 = 0

have absolute value p11/2, i.e. they have the same absolute value. This
implies the famous Ramanujan- conjecture

τ(p) ≤ 2p11/2

and for more than 50 years this has been a brain-teaser for mathe-
maticians working in the field of modular forms.

C) We consider the Galois representation

ρ : Gal(Q̄/Q)→ Gl(H1(Γ\H,M̃ ⊗ Z`))
and and its sub and quotient representations

ρ! : Gal(Q̄/Q)→ Gl(H1
! (Γ\H,M̃ ⊗ Z`)), ρ∂ : Gal(Q̄/Q)→ Gl(Z`e10).

The representation ρ∂ is the `− adic realization of the Tate-motive
Z(−11) (For a slightly more precise explanation I refer to MixMot.pdf on
my home-page). On Z`(−1) = H2(P1 × Q̄,Z`) the Galois group acts by
the Tate-character

Gal(Q̄/Q)→ Gal(Q(ζ`∞)/Q)
α−→ Z×`

where Q(ζ`∞) is the cyclotomic field of all `n-th roots of unity (n→∞).
We identify Gal(Q(ζ`∞)/Q) = Z×` , the identification is given by the map
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x 7→ (ζ 7→ ζx) and then α(x) = x−1. Hence the first assertion in Delignes
theorem simply says:

ρ∂ = α11.

We say a few words concerning

ρ! : Gal(Q̄/Q)→ Gl(H1
! (Γ\H,M̃ ⊗ Z`)).

It is easy to see that the cup product provides a non degenerate alter-
nating pairing

< , >: H1
! (Γ\H,M̃ ⊗ Z`)×H1

! (Γ\H,M̃ ⊗ Z`)→ Z`(−11)

and clearly for any σ ∈ Gal(Q̄/Q) we must have

< ρ(σ)u, ρ(σ)v >= α11(σ) < u, v > .

This means we have det(ρ(σ)) = α11(σ) and we can ask what is the im-
age of Gal(Q̄/Q) in Gl(H1

! (Γ\H,M̃⊗Z`) = Gl2(Z`). We ask a seemingly
simpler question and we want to understand the image of

ρ!, mod ` Gal(Q̄/Q)→ Gl(H1
! (Γ\H,M̃ ⊗ F`) = Gl2(F`).

This question is discussed in the paper ” On `-adic representations and
congruences for coefficients of modular forms,” Springer lecture Notes 350,
Modular Functions of one Variable III by H.P.F. Swinnerton-Dyer.

Here we can say that the image of this homomorphism composed with
the determinant will be (F×` )11 ⊂ F×` . It is shown in the above paper that
for ` 6= 2, 3, 5, 7, 23, 691 the image of the Galois group will simply be as
large as possible, namely it will be the inverse image of (F×` )11.

We can apply the Manin-Drinfeld principle and conclude that after
tensorization by Q` the representation ρ⊗Q` splits

ρ⊗Q` = ρ1 ⊗Q` ⊕Q`e10(−11).

In section 2.2.3 we have seen that we have such a splitting also for the
integral cohomology, i.e. for the module H1(Γ\H,M̃ ⊗ Z`) provided ` is
not one of the small primes, which have been inverted and ` 6= 691.

But if ` = 691 then we have seen in 2.2.3 that we have a homomorphism

j : Z/(691)(−11) ↪→ H1
! (Γ\H,M̃Z/(691)),

this is a homomorphism of Galois-modules. This means that the repre-
sentation of the of the Galois group modulo ` = 691 is of the form

ρ!, mod 691 : Gal(Q̄/Q)→
(
∗ ∗
0 ∗

)
ρ!, mod 691(σ) 7→

(
α(σ)11 u(σ)

0 1

)
The field K

(1)
691 contains the 691− th roots of unity and is an unramified

extension of degree 691, in a sense this extension is now obtained by an
explicit construction.
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