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Abstract

We discuss the general conjecture that the denominators of Eisenstein classes should be related
to the prime factorisation of certain special values of L-functions. We propose an experimental
procedure to verify (or falsify) this conjecture in a given special case. We also discuss an
interesting special case, where this experimental approach could be tested.
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1 The general problem

We start from a semi simple (or reductive) group G/Q, an arithmetic subgroup Γ ⊂ G(R) and a
Γ moduleM which should be finitely generated as Z module. The group Γ acts on the symmetric
space X = G(R)/K∞. The Γ- module provides a sheaf M̃ on the locally symmetric space Γ\X. If
π : X → Γ\X is the natural projection, then for any open subset V ⊂ Γ\X

M̃(V ) = {f : π−1(V )→M | f locally constant and f(γu) = γf(u)}. (1)

In this note we consider the cohomology groups H•(Γ\X,M̃). A general theorem by Raghu-
nathan asserts that the cohomology groups are finitely generated Z-modules.

In general the quotient Γ\X is not compact, hence we can define the cohomology with compact
supports H•

c (Γ\X,M̃). We also can compactify and add the Borel-Serre boundary ∂(Γ\X) at
infinity and get the fundamental long exact sequence ([10],sec. 1.2.8, Thm. 6.2.1)

→ Hq−1(∂(Γ\X),M̃)→ Hq
c (Γ\X,M̃)→ Hq(Γ\X̄,M̃)

r−→ Hq(∂(Γ\X),M̃)→ . . . (2)

In this note we discuss some problems and conjectures, which can be investigated experimentally
(see 1.5). To achieve this goal we have to write an algorithm which does the following

Task A) Compute all the modules in this exact sequence explicitly and compute the arrows
between these modules.

Let us assume thatM =Mλ is a highest weight module over Z. In [10], Chap. 3, and Chap. 6
we define the action of the Hecke algebra on the above cohomology groups. More specifically for any
prime p and any cocharacter χ : Gm → T we define endomorphisms T coh,λ

p,χ on all the cohomology

groups Hq
? (Γ\X,M̃λ). These endomorphisms commute with the arrows in the long exact sequence

above.

Task B) Give explicit expressions for the T coh,λ
p,χ under the assumptions that A) is done.
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In [10] Chap. 2 , Sec. 3 and 4 we discuss a general strategy which allows us to tackle these tasks
(in principle). The cohomology is computed from the Čech complex of an orbiconvex covering [10]
Chap. 2 , loc.cit. and then we also can write a procedure which computes Hecke operators. I have
no idea whether this strategy is effective or optimal. In any case it is clear that in principle we can
solve A) and B) in any concrete situation.

One goal of such computation would be to get some data about the denominator of Eisenstein
classes and to verify the conjectural relations to some specific values of L-functions. (See further
down.)

The first example
In a joint effort with Herbert Gangl we investigated a ”baby” case : The group Γ = Sl2(Z), the

symmetric space is the upper half planeH = Sl2(R)/SO(2) andM =Mn = {
∑n

ν=0 aνX
νY n−ν | aν ∈

Z} where n > 0 is even, this is the highest weight module with highest weight λ = nγ. In this case
the cohomology in degree one is of interest. Task A ) is relatively easy (see [10] Chap. 2 , 2.1.8).
If we divide by the torsion and observe that H1(∂(Γ\H),M̃)/tors = Zωn and break the exact
sequence (2) then we get

0→ H1
! (Γ\H,M̃)→ H1(Γ\H̄,M̃)/tors

r−→ Zωn → 0, (3)

hereH1
! (Γ\H,M̃) is simply defined as the kernel of r. If we tensor by the rationals thenH1

! (Γ\H,M̃⊗
Q) is the so called inner cohomology, i.e. the image of the compactly supported cohomology in the
cohomology.

We have the Hecke operator Tp = T coh,λ
p,χ , where χ(p) =

(
p 0
0 1

)
, (see [10], Chap. 3) . We know

that ([10], 3.3.1)
Tpωn = (pn+1 + 1)ωn.

On the other hand we know that the eigenvalues of Tp on H1
! (Γ\H,M̃) ⊗ C are equal to the

eigenvalues of Tp on the space of holomorphic cusp forms Sn+2(Γ) (Eichler-Shimura isomorphism).

These latter eigenvalues satisfy the famous estimate |ap| ≤ 2p
n+1
2 , hence the they are definitely

smaller than pn+1 + 1, provided p is not too small. But in our concrete situation we may assume
n ≥ 10, because otherwise there are no cusp forms. Hence we get for any prime p that

Tpωn = (pn+1 + 1)ωn and det((pn+1 + 1)Id− Tp)|H1
! (Γ\H,M̃) ̸= 0.

Since the Tp commute we get a canonical splitting

H1(Γ\H̄,M̃ ⊗Q) = H1
! (Γ\H,M̃ ⊗Q)⊕Qω̃n (4)

where r(ω̃n) = ωn and Tpω̃n = (pn+1 + 1)ω̃n. (Manin-Drinfeld principle).

The class ω̃n is called the Eisenstein class, We are interested to find the smallest positive integer
∆(n) such that ∆(n)ω̃n ∈ H1(Γ\H̄,M̃)/tors. This number ∆(n) is called the Denominator of the
Eisenstein class.
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Any y ∈ H1(Γ\H̄,M̃)/tors we can be write ∆(n)y = y!+n(y)∆(n)ω̃n with y! ∈ H1
! (Γ\H̄,M̃)/tors.

Then the induced map y 7→ y! mod ∆(n)H1
! (Γ\H̄,M̃)/tors yields an inclusion

Z/∆(n) ωn ↪→ H1
! (Γ\H̄,M̃)/tors⊗ Z/∆(n) (5)

This denominator can be computed from any of the Hecke operators. With Gangl we wrote a
program which accomplishes task A) and also task B) for T2. A rough description of the algorithm
is given in [10], Chapter 3. We could compute the matrix of T2 for a large number of n (I think
n ≤ 150) and we found experimentally

∆(n) = Numerator of(ζ(−1− n)). (6)

This assertion is actually a theorem and is proved in [10] Thm. 5.1.1.

It is well known and very easy to see that we get congruences from the denominator. To be
more precise: The Hecke algebra acts semi-simply on H1

! (Γ\H,M̃⊗Q), we can find a finite normal
extension F/Q such that we get a decomposition into eigenspaces

H1
! (Γ\H,M̃ ⊗ F ) =

⊕
πf

H1
! (Γ\H,M̃ ⊗ F )(πf ), (7)

where πf is a homomorphism from the Hecke algebra to the ring of integers OF , we write πf (Tp) =
ap = ap(πf ). This implies that for the integral cohomology we can find a filtration

{0} ⊂ F1H1 ⊂ F2H1 ⊂ . . . H1
! (Γ\H,M̃ ⊗OF )/tors (8)

such the the successive subquotients are locally free and eigenmodules for the Hecke algebra with the
above eigenvalues. This implies: If a prime ℓ divides ∆(n) then we have the inclusion OF /ℓωn ↪→
H1

! (Γ\H,M̃ ⊗ OF )/tors ⊗ OF/ℓ then we can find a prime l ⊂ OF which divides ℓ, and a πf such
that

πf (Tp) ≡ pn+1 + 1 mod l (9)

for all p. For n = 10 we get the the famous Ramanujan congruences τ(p) ≡ p11 + 1 mod 691.

Here we have to be aware of the following fact: We have the implication

Non trivial denominator =⇒ Non trivial congruences (10)

but it is clear that there is no way to reverse the implication arrow.
(Of course, if V is a two dimensional vector space over the finite field Fℓ and if T : V → V is

an endomorphism with T 2 = 0 then we have T ̸= 0 with probability (l2 − 1)/l2. But this kind of a
dead end we meet very often in number theory.)

This is of importance once we want to verify this kind of assertions experimentally. If we want
to compute the denominator we only have to write an algorithm which achieves task A) and B).
(See later in section 1.5)

If we want to verify only congruences experimentally we can check (9) for a finite number of
primes and then we hope that this is not an accident. For this we also refer to the next example.
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1.1 Interlude: The q-expansion denominator

In our special situation we can discuss another notion of the denominator of the Eisenstein class. We
consider the space Mn+2(Γ) of holomorphic modular forms of weight n+2. This space is the direct
sum of the space of cusp forms Sn+2(Γ) and a one dimensional space generated by the Eisenstein
series En+2(z). These modular forms have a q-expansion and we can define the space of modular
forms with rational coefficients in their expansion. We get a decomposition

Mn+2(Γ)(Q) = QEn+2 ⊕ Sn+2(Γ)(Q) (11)

where the Eisenstein series has the q-expansion

En+2(z) = 1 + (−1)
n+2
2

2

ζ(−1− n)

∞∑
ν=1

σn+1(ν)q
ν ; q = e2πiz

and σn+1(ν) =
∑

d|ν d
n+1 (See [21], Chap. VII. ) Now we consider the space Mn+2(Γ)(Z), this

is the space of modular forms of weight n + 2 with integral coefficients in the q expansion. Then
we can use the formulas in [21] , Chap. VII, §3 to show that we can find a modular form f in
Mn+2(Γ)(Z) which starts f(z) = 1 +

∑
amq

m.

We have the action of the Hecke operators on Mn+2(Γ)(Z), the Eisenstein series satisfies
Tp(En+2) = (pn+1 + 1)En+2. We intersect the decomposition (11) with Mn+2(Γ)(Z) and get a
decomposition up to isogeny

Mn+2(Γ)(Z) ⊃ Zζ(−1− n)En+2 ⊕ Sn+2(Γ)(Z). (12)

The finite quotient Mn+2(Γ)(Z)/(Zζ(−1 − n)En+2 ⊕ Sn+2(Γ)(Z)) is a cyclic group generated by
the modular form f, hence we see that the denominator of En+2 is the numerator of ζ(−1− n),

We know that for an eigenform f ∈ Sn+2(Γ) the coefficients in the q-expansion are equal to the
eigenvalues of the respective Hecke operator and hence we see that we get essentially the same sort
of congruences as in (9). But it seems to be difficult to relate the (p-adic) integral structure on
the space of modular forms and the (p-adic) integral structure on the Betti cohomology. Hence it
is not clear how to relate the denominator in Betti cohomology to the q -expansion denominator.
The referee suggests that one could try to use the Fontaine-Lafaille functor [7] in the case p > n.

1.2 A second example

The denominator of Eisenstein classes is ubiquitous in the cohomology of arithmetic groups and we
expect that there should be some a strong linkage between primes dividing certain special values
of L-functions and primes dividing the denominator. This presumption has been formulated in [8],
Kapitel III.

We briefly discuss the example, which was the first one, where we found some experimental
evidence for this general expectation.

We start from G/Z = Sp2/Z, we realise it as the automorphism group of the lattice L =
Ze1 ⊕ Ze2 ⊕ Zf2 ⊕ Zf1 equipped with the alternating form < e1, f1 >=< e2, f2 >= 1 and and all
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other not yet defined values = 0. (See also 1.3).Let T be the standard maximal torus

T :=
{
t =


t1 0 0 0
0 t2 0 0
0 0 t−1

2 0
0 0 0 t−1

1

}
(13)

and B/Z the standard Borel subgroup, it is the stabiliser of the flag {e1} ⊂ {e1, e2} ⊂ {e1, e2, f2} ⊂
L. The corresponding generic fibers are G,T,B. The drawing shows its system of roots and the
dominant fundamental weights.
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the character module is X∗(T ) = Zγ1 ⊕ Zγ2, γ1(t) = t1, γ2(t) = t1t2. Here γ1, γ2 are the two
fundamental weights. The cocharacter module is X∗(T ) = Zχ1 ⊕ Zχ2 where < χi, γj >= δi,j .
The simple roots are α1, α2. We have two maximal parabolic subgroups P1, P2 ⊃ B, the reductive
quotients of these two parabolics are denoted by M1,M2. Our convention is that the root system of
Mi is {αi,−αi}. The group P1 is also called the Siegel parabolic and P2 is the Klingen parabolic.
For any root α we denote by Uα the corresponding one-parameter subgroup. The two fundamental
weights extend to characters γ2 : P1 → Gm, γ1 : P2 → Gm, these extensions are also called the
fundamental weights.

Our arithmetic group will be Γ = Sp2(Z), Our coefficient system will be M = Mλ where
λ = n1γ1 + n2γ2, n2 ≡ 0(2). In this case the cohomology of the boundary becomes much more
complicated. In the description of the boundary cohomology some genus one modular cusp forms f
of weight 2n2+n1+4 enter the stage. These modular forms are eigenforms for the Hecke operators,
the eigenvalues are algebraic integers, which generate a finite extension Q(f)/Q of Q. To such an
eigenform we can attach a Hecke L-function. For these L-functions L(f, s) we can find two carefully
chosen periods Ω(f)± which are real numbers-well defined up to elements in in Q(f)× - such that
for ν = 1, . . . , 2n2 + n1 + 3 the numbers

L(f, ν)

Ω(f)ε(ν)
∈ Q(f)

These numbers ν are the so called critical arguments and the values L(f, ν) are the critical values
. There is some kind of canonical choice for the periods Ω(f)± such that the values

∆(n)
L(f, 1)

Ω(f)+
,
L(f, 3)

Ω(f)+
,
L(f, 5)

Ω(f)+
, . . . ,

L(f, 2n2 + n1 + 1)

Ω(f)+
,∆(n)

L(f, 2n2 + n1 + 3)

Ω(f)+
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as well as
L(f, 2)

Ω(f)−
,
L(f, 4)

Ω(f)−
, . . . ,

L(f, 2n2 + n1 + 2)

Ω(f)−

form an array of coprime integers in Q(f). Here we assume that the class number of Q(f), is one. If
this is not the case we need a slightly more sophisticated formulation and define the periods locally
for a covering by Zariski open subsets.

Then we expect that some (large ?) primes l, which divide certain critical values L(f,ν)
Ω(f)ε(ν)

should

also divide the denominator ∆(f) of the Eisenstein class Eis(f).

We want to check this in examples, to do so we assume that our cusp form is defined over Q,
i.e. Q(f) = Q. We have exactly one such form fk for each of the weights k = 12, 16, 18, 20, 22, 26.

The first case where we see a divisibility by a ”large” prime is the case k = 22, we have 41|L(f22,14)
Ω+

.

In [9] we explain that we have to take λ = 4γ1 + 7γ2, and then we see an Eisenstein class

Eis(f22) ∈ H3(Γ\H2,M̃λ ⊗Q),

and our expectation is that 41 divides its denominator ∆(f22).

Hence the challenge is to carry out task A) and B) in this special case for one Hecke operator
we would get a verification of 41|∆(f). To my best knowledge so far we do not yet have an effective
algorithm for this case.

It is also not clear to me whether in this case we are already beyond the limit of capability of
existing computers.

But the the resulting congruence for the Hecke eigenvalues of T coh,λ
p,χ2

have been verified by Faber
and van der Geer for p ≤ 37 (See [6] and [9] ). Here
χ2 : Gm → T ad is the cocharacter which satisfies < χ2, α2 >= 1 and
< χ2, α1 >= 0.

In the meanwhile congruences of this type have been verified in many more cases by many
different people, always for a finite number of operators T coh,λ

p,χ (see for instance [1],[2],[17]). The
experimental evidence is very convincing. To get the necessary data one has to compute many
traces of Hecke operators T coh,λ

p,χ for many p and some specific choices of χ.

T. Ibukiyama proved a half integral version of these congruences in [15].

Chenevier and Lannes proved that the congruences mod 41 holds for all primes p, Lannes
reported on this at the Mini-conference in Oberwolfach. In the meanwhile the proof appeared in
the book [5]. T. Mégarbané extended their method in [18], und proved many new congruences. If I
understand correctly these authors actually use the denominator argument to prove the congruences,
but they use different groups. They start from semi simple groups G/Z for which G(R) is compact.
Then the symmetric space is simply a point ∗ and the locally symmetric space is replaced by
SGKf

= G(Q)\(∗×G(Af )/Kf ) where Af is the ring of finite adeles andKf = G(Ẑ) where Ẑ =
∏

p Zp.

Then SGKf
is a finite set. They consider the cohomology H0(SGKf

,M̃λ) and the action of the Hecke
algebra on it. This is certainly easier than the case above where the locally symmetric space is an
”honest” space. But they have to pay a price, they have to pass to much larger groups, namely
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SO(24) in [5] or to SO(23),SO(25) in [18]. The cohomology H0(SGKf
,M̃λ ⊗Q) is semi simple and

decomposes into irreducibles. This induces a decomposition up to isogeny

H0(SGKf
,M̃λ) ⊃

⊕
Πf

H0(SGKf
,M̃λ)(Πf ) (14)

here H0(SGKf
,M̃λ)/H

0(SGKf
,M̃λ)(Πf ) is torsion free. Then the finite -hopefully non zero- quotient

H0(SGKf
,M̃λ) ⊃

⊕
Πf
H0(SGKf

,M̃λ)(Πf ) yields denominators and hence congruences. Now the
authors use the very deep results of Arthur on the trace formula and show that some of the Πf are
endoscopic lifts from f22 or from a Siegel modular form and they see the congruences.

In [9] I give a heuristic argument why we should have the denominators. The argument was
based on some speculations about mixed Tate-motives. These speculations become much more
concrete if these mixed Tate-motives are mixed Kummer-motives ( See section 1.6). We get these
mixed Kummer motives, if our coefficient system is trivial, this means if λ = 0. But then we have
to allow ramification. We discuss this issue for the rest of this paper.

1.3 Another promising case

During the conference in Oberwolfach some people discussed the case of the subgroup Γ0(p) ⊂ Γ =
Sp2(Z) where Γ0(p) ⊂ Γ = Sp2(Z) is the inverse image of P2(Fp) ⊂ Sp2(Fp). The symmetric space
is H2 the Siegel upper halfspace. From now on our coefficient system will be trivial.

We are mainly interested in the cohomology in degree 3. We look at our fundamental exact
sequence

→ H3
c (Γ0(p)\H2,Z)

j−→ H3(Γ0(p)\H2,Z)
r−→ H3(∂(Γ0(p)\H2),Z)

δq−→ H4
c (. . . ). (15)

As usual we denote by H3
! (Γ0(p)\H2,Z) the image of j which is equal to the kernel of r.

Now we ask for an algorithm which in this special case -at least for some small values of p, and
a few ”small” Hecke operators- solves task A) and B) for all the modules and the arrows in this
sequence.

In the following we collect some information we have about the above cohomology and the action
of the Hecke algebra. To be a little bit more precise, we exhibit some explicit Hecke modules, which
occur in these cohomology groups, and of course the algorithm must see these pieces.

But the main problem will be to check the conjectures about denominators of Eisenstein classes
(see (93)), which can be verified or falsified by this algorithm.

1.3.1 The Borel-Serre boundary

Our first goal is to understand ∂(Γ0(p)\H2). We know that it is the union of strata

∂(Γ0(p)\H2) = ∂[P1](Γ0(p)\H2) ∪ ∂[P2](Γ0(p)\H2) ∪ ∂[B](Γ0(p)\H2) (16)

where these strata correspond to conjugacy class of the Siegel parabolic P1 the Klingen parabolic
P2 and the Borel subgroup B. We know that these strata have connected components and we have
an explicit understanding of these connected components.
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The connected components of the boundary strata are in 1-1 correspondence with orbits of
Γ0(p) acting on the rational points of the flag variety XP1

,XP2
,XB of parabolic subgroups of type

P1, P2, B respectively. If P any of the three parabolic subgroups then we get for the set of connected
components of ∂[P ]

π0(∂[P ](Γ0(p)\H2)) = Γ0(p)\Γ/ΓP where ΓP = P (Z) = P (Q) ∩ Γ.

Since Γ0(p) contains the full congruence subgroup mod p (the kernel of Γ→ Sp2(Fp)) this double
coset is also equal to

P2(Fp)\Sp2(Fp)/P (Fp) =WP2\W/WP :

where WP= Weyl group of MP , the reductive quotient of P.

The Weyl group W is generated by the reflections s2, s1. The quotient

WP2
\W =WP2 = {e, s1, s1s2, s1s2s1} = set of Kostant representatives. . (17)

We have to compute the orbits of WP on {e, s1, s1s2, s1s2s1}

i) If P = B then WP = {e} and we have four orbits.

ii) If P = P2 then WP2
= {e, s2} and {e, s1, s1s2, s1s2s1}/{e, s2} =

{e, {s1, s1s2}, s1s2s1} i.e. we have three orbits, two of length one and one of length 2.

iii) If P = P1 then WP1 = {e, s1} and {{e}, s1, s1s2, {s1s2s1}}/{e, s1} =
{{e, s1}, {s1s2s1, s1s2}} we have two orbits of length two.

The description of the boundary strata: We apply reduction theory. The parabolic subgroup P
has a reductive quotient MP = P/UP . This reductive quotient is

i) The maximal torus T/Z if P = B.

ii) If P = P2 then

M2 =MP2
=

{
t1 0 0 0
0 a b 0
0 c d 0
0 0 0 t−1

1

 ; det(

(
a b
c d

)
) = 1

}
.

iii) If P = P1 then

M1 =
{
MP1

=


a b 0 0
c d 0 0
0 0 a1 b1
0 0 c1 d1

 ; where

(
a1 b1
c1 d1

)
= det(

(
a b
c d

)
)−1

(
a −b
−c d

)}
.

We see that ∂[P ](Γ\X) =
⋃

ξ∈WP2
\W/WP

∂P ξ(Γ\X), here P ξ = ξPξ−1 and ∂P ξ(Γ\X) is the

connected component of the stratum corresponding to P ξ. We describe ∂P ξ(Γ\X). We start from
the well known fact that

P ξ(R)×K∞ → G(R)
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is surjective. If P ⊃ B is maximal then we have the fundamental weight character γξ : P ξ → Gm. If

P = B then γξ = (γξ1 , γ
ξ
2) : B → G2

m is the pair of dominant fundamental weights. Now γξ induces
a surjective homomorphism

|γξ| : P ξ(R)→ (R×
>0)

dP .

This homomorphism |γξ| is trivial on Γ0(p) ∩ P ξ(R) = ΓP ξ and therefore we can pick any
t0 ∈ (R×

>0)
dP and then we know (geodesic action [10])

∂P ξ(Γ\X)
∼−→ ΓP ξ\γ−1

ξ (t0)

Let P (1,ξ)(R) be the kernel of γξ. This kernel acts transitively on γ−1
ξ (t0) hence we can say

γ−1
ξ

(1) = P (1,ξ)(R)/KP
∞ where KP

∞ = P ξ(R) ∩K∞.

We have the projection πξ
P : P ξ → P ξ/UP ξ = MP ξ , the fundamental dominant weights γν are

trivial on UP ξ hence they are characters on MP.ξ The image of KP
∞ under the projection is KMP

∞
it is of finite index in a maximal compact subgroup of M (1,ξ)(R). Then we put

XM
Pξ =M (1,ξ)(R)/KM

Pξ
∞

and πP induces a map
P (1,ξ)(R)/KP → XM

Pξ .

This is a fibration with fiber UP ξ(R). Let ΓM
Pξ

be the image of ΓP ξ under πP then we get a
fibration

∂P ξ(Γ\X) = Γ0(p) ∩ ΓP ξ\γ−1
ξ (t0)

π̄P−→ ΓM
Pξ
\XM

Pξ (18)

where the fiber is ΓU
Pξ
\UP ξ(R).

1.3.2 The cohomology of the boundary strata:

This fibration provides a spectral sequence with E1-term

Hp(ΓM
Pξ
\XM

Pξ , ˜Hq(ΓU
Pξ
\UP ξ(R),Z))⇒ Hp+q(∂P ξ(Γ\X),Z)

here Hq(ΓUP,ξ
\UP,ξ(R),Z) is a module for ΓM

Pξ
and the sheaf in the above formula is obtained by

the usual process module to sheaf).

We compute these E1 terms for our three cases of parabolic subgroups.

i) P = B. In this case M = T the split maximal torus. In this case T (Z) = B(R) ∩K∞ = KB
∞.

Hence we see that XT = {pt}. Clearly ΓM
Pξ

= T (Z), we have to compute

H0(T (Z)\{pt}, ˜Hq(ΓUP,ξ
\UP,ξ(R),Z)).
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The cohomology H•(ΓU
Pξ
\UP ξ(R),Z) is a module for the torus T and we know its structure by

the theorem of Kostant (perhaps it is better to invert p in the coefficients)

H•(ΓU
Pξ
\UP ξ(R),Z

[1
p

]
)) =

⊕
w∈W

Z
[1
p

]
e(w · 0)

where e(w · 0) is a generator sitting in degree l(w) and w · 0 = ρw − ρ. Here ρ = γ1 + γ2 and this is
the half sum of positive roots.

Then

H0(T (Z)\{pt},
˜

Z
[1
p

]
e(w · 0))) = Z

[1
p

]
⇐⇒ w · 0 is trivial on T (Z)

and otherwise it is zero. Therefore

H•(∂[B](Γ0(p)\H2),Z
[1
p

]
) =

⊕
ξ,w:w·0 trivial on T (Z)

Z
[1
p

]
e(w · 0).

Now we consider a maximal parabolic subgroup P. We replace Z by the larger ring ZS where
we we have inverted p and the denominators of Eisenstein classes for the occurring congruence
subgroups of Gl2(Z). Then have a decomposition into the inner part and the Eisenstein part

Hp(ΓM
Pξ
\XM

Pξ , ˜Hq(UP ξ(Z)\UP ξ(R),ZS) =

Hp
! (ΓM

Pξ
\XM

Pξ , ˜Hq(UP ξ(Z)\UP ξ(R),ZS)⊕
Hp

Eis(ΓM
Pξ
\XM

Pξ , ˜Hq(UP ξ(Z)\UP ξ(R),ZS).

(19)

On the summands Hp
! (ΓM

Pξ
\XM

Pξ , ˜Hq(UP ξ(Z)\UP ξ(R)) all differentials d1p,q and also the higher
differentials vanish and hence the direct sum over the H! terms inject into the cohomology of the
boundary. We get

H•(∂(Γ0(p)\H2),ZS) = H•
! (∂(Γ0(p)\H2),ZS)⊕H•

Eis(∂(Γ0(p)\H2),ZS). (20)

We look at the ! summand first. We compute

Hq+1
! (∂(Γ0(p)\H2),ZS) =

⊕
P=P1,P2,ξ,q

H1
! (ΓM

Pξ
\XM

Pξ , ˜Hq(ΓU
Pξ
\UP ξ(R),ZS) (21)

ii) We consider the case P = P2. Then M(R) = Sl2(R) × R× hence M (1)(R) = Sl2(R) × {±1}
and M (1)(R) ∩K∞ = SO(2)× {±1}. Therefore

M (1)(R)/KM
∞ = Sl2(R)/SO(2) = H.

Hence we have to compute

H1
! (ΓM

Pξ
\H, ˜Hq(ΓU

Pξ
\UP ξ(R),ZS)).
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In this case ξ ∈ {e, {s1, s1s2}, s1s2s1}, if ξ = e or ξ = s1s2s1 then ΓM
Pξ

= Sl2(Z) and if ξ = s1
then

ΓM
Pξ

= {
(
a b
c d

)
∈ Sl2(Z)|b ≡ 0 mod p}. (22)

The coefficients are obtained from a M2 = Sl2 × Gm− module these are the modules of highest
weight

{. . . , w · 0, . . . }w∈WP2 = {0,−γ1 + γ̄2,−3γ1 + γ̄2,−4γ1} (23)

where γ̄2 is the fundamental weight of the group M2 (see [10] 9.1.3). These modules contribute to
cohomology in degree 1,2,3,4. Since −Id ∈ ΓM

Pξ
the contributions in degree 2 and 3 vanish, we get

H1
! ∂[P2](Γ0(p)\H2),ZS) =

⊕
ξH

1
! (ΓM

Pξ
\XM

Pξ ,ZSω(e · 0))

H4
! (∂[P2](Γ0(p)\H2),ZS) =

⊕
ξH

1
! (ΓM

Pξ
\XM

Pξ ,ZSω(s1s2s3 · 0)),

where the ω(w ·0) are generators of the rank one modules H l(w)(ΓU
Pξ
\UP ξ(R),Z

[
1
p

]
)), here l(w) =

0, 3.

For ξ = e or ξ = s1s2s1 the cohomology H1
! (ΓM

Pξ
\XM

Pξ ,Z
[
1
p

]
) = 0 (There are no cusp forms

of weight 2 for ΓM
Pξ

= Sl2(Z) ). But for ξ = s1 the cohomology

H1
! (ΓM

Pξ
\XM

Pξ ,ZSω(e · 0))⊕H1
! (ΓM

Pξ
\XM

Pξ ,ZSω(s1s2s3 · 0))) (24)

is not necessarily zero, In both degrees we get two copies of a Hecke module, which is isomorphic
to the space of cusp forms of weight 2 for ΓM

Pξ
.

iii) We consider the case P = P1. Under our present assumptions this is the most interesting
case. In this case MP = Gl2 and M (1)(R) = Gl±1

2 (R) = {g ∈ Gl2(R)|det(g) = ±1}. The group
KM

∞ = O(2) and hence we get again

XM = Gl±1
2 (R)/O(2) = Sl2(R)/SO(2) = H.

For both values of ξ the group

ΓM
Pξ

= {
(
a b
c d

)
∈ Gl2(Z)|b ≡ 0 mod p or ( depending on ξ) c ≡ 0 mod p}.

This group contains the group Γ
(1)
M

Pξ
= ΓM

Pξ
∩ Sl2(Z) as a subgroup of index 2. The coefficients

are highest weight modules of weight

{. . . , w · 0, . . . }w∈WP1 = {0,−γ2 + 2γ̄1,−2γ2 + 2γ̄1,−3γ2}. (25)

For w = s2 or w = s2s1 the module ZSw · 0 is the MP ξ module of rank 3 with highest weight
w · 0 (here it suffices that 2 ∈ S.)
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On H1
! (Γ

(1)
M

Pξ
\XM , Z̃Sw · 0) we have the action of π0(Gl2(R)) = O(2)/SO(2) and this cohomol-

ogy decomposes into a + and a − eigenspace. Then we get

H1
! (ΓM

Pξ
\XM

Pξ ,ZSw · 0) = H1
! (Γ

(1)
M

Pξ
\XM

Pξ ,ZSw · 0)(+). (26)

The tensor product of this module by C is -as a Hecke module- isomorphic to the space of

cusp forms for Γ
(1)
M

Pξ
, of weight 2, 4, 4, 2 respectively the cohomology groups sit in degrees 1, 2, 3, 4

respectively.

We rewrite (21)

H•
! (∂(Γ0(p)\H2),Z) =

⊕
P∈{P1,P2},ξ,w∈WP

H1
! (ΓM

Pξ
\XM

Pξ , Z̃(w · 0)) (27)

To compute the contribution of the Borel stratum we have to compute the differentials or in
other words we have to compute the E•,•

2 . This means we have to compute the extremal terms in
the exact sequence

0→ E0,q
2 → Hq

Eis(∂[P1](Γ0(p)\H2),Q)⊕Hq
Eis(∂[P2](Γ0(p)\H2),Q)→

Hq
Eis(∂[B](Γ0(p)\H2),Q)→ E1,q

2 → 0

and then we get

0→ E1,q−1
2 → Hq

Eis(∂(Γ0(p)\H2),Q)→ E0,q
2 → 0.

A somewhat tedious computation gives us

E0,0
2 = Q; E1,0

2 = Q4; E1,1
2 = Q; E0,3

2 = Q; E0,4
2 = Q4; E1,4

2 = Q and all others = 0, (28)

the exponent 4 in Q4 comes from the four connected components of π0(∂[B](Γ0(p)\H2)).

We summarize: We have complete understanding of the cohomology of the boundary as Hecke
module in terms of elliptic modular forms of low weight. Hence we can ask the next question: What
is the image Im(r) ?

To achieve this goal we need some information on local intertwining operators between Hecke-
Iwahori modules.

1.3.3 Interlude: Iwahori -Hecke modules.

We consider G/Z = GSp2/Z as a Chevalley scheme over Z, then K(0)
p = GSp2(Zp)) ⊂ GSp2(Qp)) is

a maximal compact subgroup. We have the standard reduction map G(Zp)→ G(Fp), let I ⊂ K(0)
p

be the Iwahori subgroup, it is the inverse image of the standard Borel B(Fp) ⊂ G(Fp). We define
the Iwahori-Hecke algebra

Hp,I := Cc(I\G(Qp)/I,Z)) = {f : G(Qp)→ Z |
f has compact support and is biinvariant under I}. (29)
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This algebra of functions is an algebra under convolution, the elements f ∈ HI act upon the
cohomology H•(Γ00(p)\H2,Z) where Γ00(p) is the inverse image of B(Fp).

Of course we can also define the parahoric subgroups I1, I2 which are the inverse images of the
groups P1(Fp), P2(Fp) respectively. The Iwahori subgroup corresponds to a fundamental simplex Σ

in the Bruhat-Tits building, our maximal compact subgroupK
(0)
p is one of the vertices, the parahoric

subgroups I1, I2 are the two faces of Σ, which meet in K
(0)
p . The other vertices of −term resp. I2

correspond to maximal compact subgroups K
(1)
p ( resp. K

(2)
p .) The subgroup K

(1)
p is conjugate to

K
(0)
p by an element of G(Qp) ( these are the hyper special maximal compact subgroups) and K

(2)
p

is not conjugate to K
(0)
p .

It Kp is one of these open compact subgroups then we can define the open compact subgroup
Kf (p) =

∏
ℓ̸=pG(Zℓ)×Kp ⊂ G(Af ), hereG(Af ) is the group of finite adeles. We define a congruence

subgroup
Γ = G(Q) ∩ (G(R)×Kf (p)) ⊂ G(Q).

If Kp = K
(2)
p then Γ is the so called paramodular subgroup in the symplectic group. If Kp = I2

then Γ = Γ0(p).

Later we will consider cohomology groups H•
c (Γ\H2,Z), H•(Γ\H2,Z) . . . as modules for the

Hecke algebra HKp
× H(p) where the second factor is the commutative unramified Hecke alge-

bra
⊗

ℓ ̸=p Cc(G(Qℓ)//G(Zℓ),Z)), where the // means the we consider functions which right and

left invariant under the action of G(Zℓ). The absolutely irreducible modules for H(p) are simply
homomorphisms h(σf ) : H(p) → F, where F/Q is a number field.

In this subsection we are interested in the structure of irreducible (or indecomposable) modules
for the Hecke algebra Hp,I more precisely we want to study finitely generated free Z -modules
with an action of Hp,I , (For this see also C. Jantzen ”Degenerate principal Series for Symplectic
Groups”, work of Casselman, Borel and P. Garrett.)

For any field L of characteristic zero, we consider the module of unramified characters
Hom(T (Qp)/T (Zp), L

×). We have the isomorphism X∗(T )
∼−→ T (Qp)/T (Zp) which is given by

χ 7→ χ(p) and since X∗(T ) and X
∗(T ) are duals of each other we get

Hom(T (Qp)/T (Zp), L
×) = X∗(T )⊗ L×.

For u = {u1, u2} ∈ L× × L× we define χu = γ1 ⊗ u1 + γ2 ⊗ u2. Since we have the homomorphism
B(Qp) → T (Qp) every character χu extends canonically to a character on B(Qp) → L× which is
also called χu.

We have a standard embedding X∗(T ) ↪→ Hom(T (Qp)/T (Zp), L
×) we simply send γ to |γ|p :

t 7→ |γ(t)|p. It is clear that this map is trivial on T (Zp). With respect to the above identification
this means that γ 7→ γ ⊗ p−1.

We define the induced module

Ind
G(Qp)

B(Qp)
χu = {f : G(Qp)→ L | f(bg) = χu(b)f(g),∀b ∈ B(Qp), g ∈ G(Qp)} (30)
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the group G(Qp) acts on this L-vector space by Rg(f)(x) = f(xg). It has invariants under the
action of the Iwahori subgroup I and it is easy to see that

(Ind
G(Qp)

B(Qp)
χu)

I = C(B(Fp)\G(Fp)/B(Fp), L) = C(W,L), (31)

where C(?, ??) means functions on ? with values in ??. This module of invariants under the group
I is a module for the Hecke algebra HI .

The theory of induced representations provides intertwining operators between these induced
modules. Let us assume for a moment that u1, u2 are algebraically independent over Q. For any
element w ∈W there is an intertwining operator

T st(w,χu) : Ind
G(Qp)

B(Qp)
χu → Ind

G(Qp)

B(Qp)
w · χu, (32)

which is defined by the integral

T st(w,χu) : (g 7→ f(g)) 7→ (g 7→
∫
U(w)(Qp)

f(w−1vg)dv)). (33)

Here of course χu → w·χu denotes the twisted action of the Weyl group, i.e. w·χu = w(χu)+w(ρ)−ρ
and U (w) =

∏
Uα where the product is taken over the positive roots α for which w−1(α) is negative.

Forming the integral is not problematic, it is an infinite sum, but up to a finite sum it is a sum of
nested geometric series.

This intertwining operator is an isomorphism, remember that we assumed that u1, u2 are alge-
braically independent. Since under this condition the induced modules are irreducible, the inter-

twining operators are unique up to a scalar. Let φu ∈ Ind
G(Qp)

B(Qp)
χu be the spherical function, i.e.

φu(g) = φu(bk) = χu(b), b ∈ B(Qp), k ∈ K(0)
p then T st(w,χu)(φu) = c(w,χu)φw·u where c(w, u) is

a non zero element in Q(u1, u2) ⊂ L. We also define the local intertwining operator

T loc(w,χu) : Ind
G(Qp)

B(Qp)
χu → Ind

G(Qp)

B(Qp)
w · χu (34)

by requiring T loc(w,χu)(φu) = φw·u.

We want to understand these intertwining operators. We apply the usual approach and write
them as composition of simpler intertwining operators. If our element w = si is a reflection at a
simple root αi then it is in the Weylgroup of the group the reductive group Mi and we can write
our induced module as a two step induction

Ind
G(Qp)

B(Qp)
χu = Ind

G(Qp)

Pi(Qp)
(Ind

Mi(Qp)

B̄i(Qp)
χu). (35)

Now we have the intertwining operator

T i,st(si, χu) : Ind
Mi(Qp)

B̄i(Qp)
χu → Ind

Mi(Qp)

B̄i(Qp)
si · χu (36)

and T st(si, χu) = Ind
G(Qp)

Pi(Qp)
T i,st(si, χu) is the induced intertwining operator. In this case a well

known and rather elementary calculation gives us (see [3], section 3)

c(si, χu) =
1− ui
1− pui

. (37)
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.
If now w = si1si2 . . . sir then the intertwining operator can be given as an iterated integral and

we get

T st(w,χu) = T st(sir , sirw
−1 · χu) ◦ · · · ◦ T st(si2 , si1 · χu) ◦ T st(si1 , χu). (38)

this gives us a simple expression for c(w,χu). If w0 ∈ W is the longest element then c(w0, χu) is a
meromorphic functions in the variables u1, u2. It has a pole-divisor D∞ and zero divisor D0, On
the complement {u = (u1, u2)|u ̸∈ D∞ ∪D0} we can evaluate and c(w,χu) ̸= 0,∞, then T st(w,χu)
is an isomorphism.

At the singular points u0 ∈ D∞∪D0 we can regularise T (w,χu) : We can find a simple expression
Pu0

(u1, u2) so that

T reg(w,χu) = Pu0
(u1, u2)T

st(w,χu)|u=u0
: Ind

G(Qp)

B(Qp)
χu0
→ Ind

G(Qp)

B(Qp)
w · χu0

(39)

becomes a non zero intertwining operator. If for instance w = si then we can define T reg(si, χu) =
(1− pui)T loc(w,χu), this operator can be evaluated at any value of u, it is an isomorphism, unless
we have ui = 1 (See below). Then we can define T reg(w,χu) using (38).

We want to study its restriction to the Hecke-module

T reg(w,χu) : (Ind
G(Qp)

B(Qp)
χu)

I → (Ind
G(Qp)

B(Qp)
w · χu)

I , (40)

it is an 8× 8 matrix with coefficients in L. We need to study this matrix in the neighbourhood of
certain singular points.

We consider the same situation for the two reductive Levi-subgroups Mi. Let Ii their standard
Iwahori subgroup. We consider induced representations and the intertwining operator

T i,st(si, χu) : Ind
Mi(Qp)

B̄i(Qp)
χu → Ind

Mi(Qp)

B̄i(Qp)
si · χu (41)

The composition is

T i,st(si, si · χu) ◦ T i,st(si, χu) =
(1− ui)(1− p−2u−1

i )

(1− p−1ui)(1− p−1u−1
i )

and this composition vanishes for ui = 1 and ui = p−2. It is easy to see that in case ui = 1 the
kernel of T i,st(si, χu) is the one dimensional subspace generated by φu . Then T i,st(si, χu) provides

an isomorphism between the irreducible quotient Ind
Mi(Qp)

B̄i(Qp)
χu/Lφu and a submodule St(u; i) ⊂

Ind
Mi(Qp)

B̄i(Qp)
si · χu which has codimension 1. Remember this notation means that ui = p−2 and the

value of the other coordinate ui′ is arbitrary.

This module St(u; i) is the Steinberg module. We will be mainly interested in the case i = 1
then we define St(1, τ) := St(u; 1) where u1 = 1 and u2 = τ.



146 G. Harder

We come to the case, which is especially relevant for our problem. We specialise our variable

u to values u = (1, τ). We consider the Steinberg module St(1, τ) ⊂ Ind
Mi(Qp)

B̄i(Qp)
χu and the induced

modules

Ind
G(Qp)

P1(Qp)
St(1, τ) ⊂ Ind

G(Qp)

P1(Qp)
χu. (42)

If we restrict to the the invariants under the Iwahori subgroup we get a rank four submodule

(Ind
G(Qp)

P1(Qp)
St(1, τ))I ⊂ (Ind

G(Qp)

P1(Qp)
χu)

I =
⊕
w∈W

R δw. (43)

This submodule can be described explicity. We numerate the elements in W, we write

W = {1, s2, s2s1, s2s1s2, s1, s1s2, s1s2s1, s1s2s1s2 = s2s1s2s1} (44)

and we define δi = δw if w is at place i. Then it is easy to see ([11], 2.4.1) that

(Ind
G(Qp)

P1(Qp)
St(1, τ))I = {x1(δ1 −

1

p
δ5) + x2(δ2 −

1

p
δ6) + x3(δ3 −

1

p
δ7) + x4(δ4 −

1

p
δ8)}. (45)

We define another intertwining operator

T st
P1
(St(1, τ)) : Ind

G(Qp)

P1(Qp)
St(1, τ)→ Ind

G(Qp)

P1(Qp)
St(1, p−3τ−1) (46)

which again is defined as an integral

T st
P1
(St(1, τ)) : (g 7→ f(g)) 7→ (g 7→

∫
U1(Qp)

f(s2s1s2vg)dv)).

We can extend this to the operator

T (χu, s2s1s2) : Ind
G(Qp)

P1(Qp)
Ind

Mi(Qp)

B̄i(Qp)
s1 · χu → Ind

G(Qp)

P1(Qp)
Ind

Mi(Qp)

B̄i(Qp)
s2s1s2 · (s1 · χu) (47)

For a moment we drop the assumption that u = (1, τ).We also drop the assumption that the prime
p is the one fixed at the beginning, it may be any prime. We compute the the value of the operator
at the spherical function, applying (38) gives us

T (χu, s2s1s2)(φs1·u) =
1− pu1u2
1− p2u1u2

1− p2u1u22
1− p3u1u22

1− u2
1− pu2

φs2s1s2·s1·u (48)

We come back to this formula in the next section.

Now p will be again our prime fixed at the beginning. We also assume that u = (1, τ). Then
s1 · u = (p−2, pτ) and (48) yields

T (χu, s2s1s2)(φu) =
1− τ
1− p2τ

1− p2τ2

1− p3τ2
φs2s1s2·u (49)



Can we compute denominators of Eisenstein classes? 147

We restrict the intertwining operator to the induced Steinberg module we take invariants under
the Iwahori subgroup and consider

T st
P1
(St(1, p−2τ)) : Ind

G(Qp)

P1(Qp)
St(1, p−2τ)I → Ind

G(Qp)

P1(Qp)
St(1, p−1τ−1)I , (50)

this operator is holomorphic at τ = 1. The following calculation is done with the help of Mathe-
matica and hopefully correct. We evaluate at τ = 1 then

T st
P1
(St(1, p−2)) : Ind

G(Qp)

P1(Qp)
St(1, p−2)I → Ind

G(Qp)

P1(Qp)
St(1, p−1)I

has a kernel, which equal to

ker(T st
P1
) = {x(δ1 −

1

p
δ5 −

1

p
δ2 +

1

p2
δ6)) + y(δ2 −

1

p
δ6 −

1

p
δ4 +

1

p2
δ8)}.

The intersection

(Ind
G(Qp)

P1(Qp)
St(1, p−2))I2 ∩ ker(T st

P1
)) = R(δ1 −

1

p
δ5 −

1

p
δ2 +

1

p2
δ6) = Rh(0)p . (51)

If we expand around τ = 1 then we get

T st
P1
(St(1, τp−2))(h(0)p ) =

p+ 1

p3(p3 − 1)
(τ − 1)h(0)p +O((τ − 1)2). (52)

This formula will become essential. We modify the factor in front slightly. The local Euler
factor attached to the representation St(1, p−2) is

L(St(1, p−2), z) =
1

1− p3p−z
(53)

Eventually we will put p−z = τ define the local intertwining operator

T loc
P1

(St(1, p−2τ)) =
L(St(1, p−2), z + 3)

L(St(1, p−2), z + 2)
T st
P1
(St(1, p−2τ)) (54)

and now our formula above becomes

T loc
P1

(St(1, p−2τ))(h(0)p ) =
(1 + p2)2

(−1 + p)(1 + p+ p2)2
(τ − 1)(h(0)p ) +O((τ − 1)2). (55)

We abbreviate

c(p) :=
(1 + p2)2

(−1 + p)(1 + p+ p2)2
(56)

Notice that we have written c(p) as a product of almost coprime factors.

This is the end of the interlude, we return to our study of the Eisenstein cohomology and the
image Im(r).
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1.4 Eisenstein cohomology

This image splits accordingly to (27)

Im(r) = Im!(r)⊕ ImEis(r) (57)

At the Oberwolfach meeting I distributed some handwritten notes where I claimed

Im!(r) ⊂
⊕

P∈{P1,P2}

⊕
ξ∈WP2/WP

⊕
w∈WP :l(w)≥2

H1
! (ΓM

Pξ
\XM

Pξ , Z̃(w · 0)) (58)

and the left hand side is of finite index in the right hand side.

THIS IS WRONG!

But it is only wrong in the case where we have P = P1 and l(w) = 2 i.e. w = s2s1.

To formulate the correct result we concentrate on this case, we return to our formulas (21) (27)
and tensor by Q. We start from our parabolic subgroup P = P1 and the element w = s2s1 ∈ WP1

and consider (see 1.3.1 , iii))

H1+l(w)(∂[P1](Γ0(p)\H2),Q) =
⊕

ξ∈WP2/WP1

H1
! (ΓM

Pξ
\XM

Pξ , Q̃(w · 0)), (59)

this is a direct summand and a semi simple module under the action of the Hecke algebra. If
we tensor by a suitable finite extension F/Q we get a decomposition into absolutely irreducible
modules

H1+l(w)(∂[P1](Γ0(p)\H2), F ) =
⊕
σf

⊕
ξ

H1
! (ΓM

Pξ
\XM

Pξ , F̃ (w · 0))(σf ) (60)

where here σf is the isomorphism type of an irreducible Hecke module for the Hecke algebraHM
Pξ

IM of

MP ξ . This Hecke algebra contains the Hecke algebra HI = Hp,I ×H(p) as a subalgebra, hence each

summand H1
! (ΓM

Pξ
\XM

Pξ , Q̃(w · 0))(σf ) is a HI module. Moreover we know that each summand

H1+l(w)(∂[P1](Γ0(p)\H2), F )(σf ) =
⊕
ξ

H1
! (ΓM

Pξ
\XM

Pξ , F̃ (w · 0))(σf ) (61)

is an irreducible HI module, i.e. comes with multiplicity one (see [13], [14]).

We may choose our splitting field F/Q to be a subfield of C, then there is a minimal splitting
field, it is a normal extension of Q. The Galois group Gal(F/Q) acts on the set of σf which occur,
because the cohomology is defined over Q. We denote this action by σf 7→ τσf . We have a τ -semi
linear isomorphism

Ψτ : H1+l(w)(∂[P1](Γ0(p)\H2), F )(σf )
∼−→ H1+l(w)(∂[P1](Γ0(p)\H2), F )(τσf ) (62)

which is induced by the action of the Galois group on the coefficient system. Then we define the
field Q(σf ) ⊂ F by Gal(Q̄/Q(σf )) = {τ |τσf = σf} We consider the orbit of [σf ] = {. . . , τσf , . . . }
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and let Q([σf ]) be the normal closure of Q(σf ) in F. The direct sum over the isotypical spaces in
the orbit is defined over Q

H1+l(w)(∂[P1](Γ0(p)\H2),Q)[σf ]⊗ F =
⊕
τ

H1+l(w)(∂[P1](Γ0(p)\H2), F )(τσf ) (63)

We look at the corresponding contribution for the element w′ = s2. We get

H1+l(w′)(∂[P1](Γ0(p)\H2), F ) =
⊕
σ′
f

⊕
ξ

H1
! (ΓM

Pξ
\XM

Pξ , F̃ (w′ · 0))(σ′
f ) (64)

and again we know that H1+l(w′)(∂[P1](Γ0(p)\H2), F )(σ
′
f ) is isotypical.

Now it follows from known facts in representation theory of ℓ-adic groups that the two HI
modules

H1+l(w)(∂[P1](Γ0(p)\H2), F )(σf ) and H
1+l(w′)(∂[P1](Γ0(p)\H2), F )(σ

′
f )

are isomorphic if and only if σ′
f = σ∨

f ⊗ |γ2|3. Here σ∨
f is the dual module of σf in our special

situation σ∨
f = σf ⊗ |γ2|2 (see [4]).

Our general principle tell us that the image Im!(r) ⊗ F is compatible with this decomposition
into isotypicals and hence our problem to compute the individual terms

Im!(r)(σf )⊗ F ⊂

H1+l(w′)(∂[P1](Γ0(p)\H2), F )(σ
∨
f ⊗ |γ2|3)⊕H1+l(w)(∂[P1](Γ0(p)\H2),Z)(σf ).

(65)

Now the general expectation is that the image should be just the second summand, but this is
not always the case.

We know that σf is the finite part of an automorphic representation

Vσ = Dk,ν ⊗ Vσf
⊂ Acusp(M1(Q)\M1(A)).

Here Dk,ν is a discrete series representation of M1(R). Recall that Cw · 0 is a finite dimensional
representation of M1 of a highest weight from the list (25), and k − 2 is the coefficient of γ̄1, ν
is the coefficient of γ2, hence k = 4, ν = −2. The parameter 2ν is the central character of the
representation, only the parity of ν plays a role.

Let m be the Lie algebra of M1, then

H1+l(w)(∂[P1](Γ0(p)\H2), F )(σf )⊗F C =

H1(m,KM1
∞ , Ind

G(R)
P1(R)Dk,ν ⊗ C(w · 0))⊗ Ind

G(Af )

P1(Af )
Vσf

.
(66)

Then it is known that H1(m,KM1
∞ , Ind

G(R)
P1(R)Dk,ν ⊗ C(w · 0)) is one dimensional. (See for instance

[10], Chapter 4., the group KM1
∞ is not connected. See also (26).)
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We apply Langlands theory of Eisenstein series and perform the procedure which is outlined in

[10], 9.3. We have the Eisenstein intertwining operator, it maps h ∈ (Ind
G(A)
P (A)Vσ ⊗ |γP |

z) to

Eis(z) : {g 7→ h(g)} 7→ {g 7→
∑

γ∈P1(Q)\G(Q)

h(γg)}, (67)

this infinite sum converges for ℜ(z) >> 0, and defines a holomorphic function in a suitable half
space. It has meromorphic continuation into the entire complex plane.

We want to evaluate at z = 0, hence we ask whether the Eisenstein intertwining operator
is holomorphic at z = 0. This depends on the constant term (see [10] Chapter 9). For h ∈
(Ind

G(A)
P1(A)Vσ ⊗ |γP |

z)K0,f

FP ◦ Eis(z)(h) = h+ L(σ, z)T loc(z)(h) ∈
Ind

G(A)
P (A)Vσ ⊗ |γP |

z ⊕ Ind
G(A)
P (A)Vσ∨ ⊗ |γP |3−z (68)

We remember that σ∨ ⊗ |γ2|3−z = σ ⊗ |γ2|1−z. Here the local intertwining operator T loc(z) is a
restricted tensor product of local operators

T loc
v (z) : Ind

G(Qv)
Pi(Qv)

Vσv
⊗ |γP |zv)→ Ind

G(Qv)
Pi(Qv)

Vσv
⊗ |γP |1−z

v ) (69)

the tensor product is taken over all places:

At the unramified finite places v = ℓ the local operator defined by sending the spherical function
to the spherical function. It does not depend on z.

At the (ramified) place ℓ = p the representation σp must be a Steinberg module because there
are no unramified cusp forms of weight 2 or 4. In this case σp = St(1, p−2) and we defined the local
operator by the formula (50). It depends on z and it is holomorphic at z = 0 (this corresponds to
τ = 1).

At the place v =∞ we also have a canonical choice of T loc
∞ , we require that induces the identity

on a certain specific K∞ type.
In the product of the local operators the only local operator depending on z is T loc

p (z) and this
operator is holomorphic at z = 0.

We come to the factor L(σ, z). In [10] Chapter 7 , 7.1.2 we attach cohomological L-functions
Lcoh(πf , r, z) to an irreducible Hecke module Hπf

which occurs in the cohomology of an arithmetic
group, the datum r is an (irreducible) representation of the dual group. These L-functions are
Euler products of local L-functions, i.e.

Lcoh(σf , r, z) =
∏
ℓ

Lcoh
ℓ (σf , r, z)

We apply this to our σf and put

L(σf , z) := Lcoh(σf , r1, z) (70)

here r1 is the tautological representation. In this special case the Eichler-Shimura isomorphism
yields a modular cusp form F of weight 4 to σf . This modular form has has a q expansion

F (z) = e2πiτ + a2e
2πi2τ + a3e

2πi3τ . . . (71)
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and then the above L-function

L(σf , z) := 1 +
a2
2z

+
a3
3z
· · · = 1

1− p3−2s

∏
ℓ:ℓ ̸=p

1

1− aℓℓ−z + ℓ3−2z
(72)

is the classical Hecke L-function defined by Hecke.

We also define the cohomological Euler factor at infinity, it is given by Lcoh
∞ (σ∞, z) = Γ(z)

(2π)z

and then the complete cohomological L-function will be

Λ(σ, z) = L∞(σ∞, z) · L(σf , z). (73)

and find

L(σ, z) = Λ(σ, z + 2)

Λ(σ, z + 3)

ζ(2z + 1)

ζ(2z + 2)
(74)

Hence we see that the constant term is holomorphic at z = 0 if the factor L(σ, z) is holomorphic
at z = 0. The argument z0 = 2 is the central point for the functional equation of Λcoh(σ, z) and we
know that Λ(σ, z) is holomorphic at z0 = 2. On the other hand we know that ζ(2z + 1) has a first
order pole at z = 0 and hence we see that

L(σ, z) has a first order pole at z = 0 ⇐⇒ Λ(σ, 2) ̸= 0. (75)

We recall that the cohomological L function satisfies a functional equation

Λ(σ, z) = pz−2ε(σ) · Λ(σ, 4− z) (76)

where the root number ε(σ) = ±1, the point z = 2 is the central point in this functional equation.
Hence we that necessarily Λ(σ, 2) = 0 if the root number is ε(σ) = −1. If the root number is +1
we still may have Λ(σ, 2) = 0, the zero is a second order zero.

Theorem 1.1. We assume that we are in the exceptional case P = P1 and l(w) = 2. If we have
Λcoh(σ, 2) = 0 then

Im!(r)(σf )⊗ F = H1+l(w)(∂[P1](Γ0(p)\H2), F )(σf )

The situation is different if we are in the case Λ(σ, 2) ̸= 0.

The cohomology H1+l(w)(∂[P1](Γ0(p)\H2),Z)(σf ) is a module under the Hecke algebra H =

⊗ℓ̸=pH(G(Qℓ))//G(Zℓ) ⊗ HI2
. More precisely we can say that H1+l(w)(∂[P1](Γ0(p)\H2),Z)(σf ) is

two dimensional F -vector space, the central part ⊗ℓ̸=pH(G(Qℓ)//G(Zℓ) acts by a homomorphism

h/σf ) : ⊗ℓ ̸=pH(G(Qℓ)//G(Zℓ))→ OF

and on this two dimensional space we have an action of HI2
. This is the module St(1, p−2)I2 .

At the same time we have the module H1+l(w′)(∂[P1](Γ0(p)\H2))(σf⊗|γ2|f ). These two modules
are isomorphic as modules for ⊗ℓ̸=pH(G(Qℓ)//G(Zℓ)), i.e. h/σf ) = h/σ′

f ).
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Theorem 1.2. We assume again that we are in the exceptional case P = P1, w = s2s1, w
′ = s2.

For a σf which occurs in H1+l(w)(∂P1
) we consider the map from the inverse image

r(σf ] : (H
2(Γ0(p)\H2, F )⊕H3(Γ0(p)\H2, F )[σf ]→

H1+l(w′)(∂P1)(σf ⊗ |γ2|f ))⊕H1+l(w)(∂P1)(σf )
(77)

If Λ(σ, 2) ̸= 0 then

Im(r[σf ]) = Im(T loc
P1

(St(1, p−2)))⊕ ker(T loc
P1

(St(1, p−2))) (78)

Proof. The Lie -algebra cohomology H1+l(w)(m,KM1
∞ ,Dk,ν ⊗ C(w · 0))) is one dimensional and in

[10] we explain how to choose a canonical generator ωε(ν) in this vector space. Here ε(ν) = ±1.
This generator provides an identification

h 7→ [ω+ ⊗ hf ]; Ind
G(Af )

P1(Af )
Vσf

∼−→ H1+l(w)(∂[P1](Γ0(p)\H2),Z)(σf )⊗ C (79)

We have to understand the behavior Eis(z)(ω+⊗ hf ⊗ |γ2|z) at z = 0 and hence we have to look at
the constant term

FPi ◦ Eis(z)(ω+ ⊗ hf ) = ω+ ⊗ h+ L(σ, z)T loc(z)(ω+ ⊗ hf ) (80)

and evaluate at z = 0. We are in the case where L(σ, z) has a first order pole at z = 0. The local
intertwining operator is a product of local intertwining operators at all places and only the factor
Tp(z) depends on z and is holomorphic at z = 0.

Now hf = hp ⊗
∏

ℓ ̸=p hℓ where the hℓ are the spherical function and if Tp(0)(hp) ̸= 0 then the
expression in (80) has a first order pole at z = 0 and we can take the residue

Resz=0FPi ◦ Eis(z)(ω ⊗ hf ) = Resz=0(L(σ, z))T loc(0)(ω ⊗ hf ). (81)

Before we continue we say a few words about the intertwining operator

T loc
∞ (z) : Ind

G(R)
P1(R)Vσ∞ ⊗ |γ2|z∞ → Ind

G(R)
P1(R)Vσ∞ ⊗ |γ2|1−z

∞

This local operator does not depend on z, we evaluate at z = 0. We study the effect of the
intertwining operator on the Lie-algebra complexes

HomK∞(Λ•(g/k), Ind
G(R)
P1(R)Vσ∞)→ HomK∞(Λ•(g/k), Ind

G(R)
P1(R)Vσ∞ ⊗ |γ2|∞)

We apply the formula of Delorme which computes the cohomology of the two above complexes and
finds that

H2(g,K∞, Ind
G(R)
P1(R)Vσ∞)) = 0 and dimH3(g,K∞, Ind

G(R)
P1(R)Vσ∞)) = 1, (82)

the generating cohomology class in degree 3 is represented by our form ω+. There is an element

ω2 ∈ HomK∞(Λ2(g/k, Ind
G(R)
P1(R)Vσ∞)) which is not closed, i. e. dω2 = ψ ̸= 0 but such that ψ is in the

kernel of T loc(0). Hence we get a closed form T loc(0)(ω2) = ω− ∈ H2(g,K∞, Ind
G(R)
P1(R)Vσ∞))⊗ |γ2|)
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We claim

H2(g,K∞, Vσ∞ ⊗ |γ2|) is one dimensional and generated by [ω−].

Hence we see that taking the residue (assumptions as above)

Resz=0Eis(z)(ω2 ⊗ hf ) (83)

provides a non zero cohomology class in H1+l(w′)(σf ⊗ |γ2|) where now l(w′) = 1.

But if we take as local component hp = h
(0)
p then (52) yields

T loc
p (h(0)p ) = c(p)(p−z − 1)h(0)p +O(z2) (84)

and hence we see that L(σ, z)T loc(z)(h
(0)
p ) is holomorphic at z = 0 and we see that

Eis(z)(ω+ ⊗ hf )

is holomorphic at z = 0 and provides a non trivial cohomology class whose restriction to the
boundary gives us back the class [ω+ ⊗ hf ]. q.e.d.

We summarize:

Theorem 1.3. In the exact sequence

0→ H•
! (Γ\X,F )→ H•(Γ\X,F )→ Im•(r)→ 0

we have complete understanding of Im•(r) (as module under the Hecke algebra ) in terms of spaces
of cusp forms of level p and of weight 2, 4.

a) We have have a splitting

Im•(r) = Im•
! (r)⊕ Im•

Eis(r) and Im•
! (r) = Im•

!,P1
(r)⊕ Im•

!,P2
(r)

b) For the parabolic P2 we have only one connected component ξ for which ΓM
Pξ
̸= Gl2(Z).

Hence we get

Im•
!,P2

(r) = Im4
!,P2

(r) = 2 copies of the space of cusp forms of weight two for ΓM
Pξ
.

(See (22))

c) The case of the parabolic group P1 is the most interesting case.

c1) Here we have in degree 4

Im4
!,P1

(r) = 2 copies of the space of cusp forms of weight two for ΓM
Pξ
.

(For each of the two components we get one copy of the space of cusp forms)
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c2) In degree q = 2 and degree q = 3 we have to look at the decomposition into eigenspaces

Im•
!,P1

(r) =
⊕
σf

Im•
!,P1

(r)(σf ) ⊂ H1+l(w′)(∂P1
)(σf ⊗ |γ2|2f ))⊕H1+l(w)(∂P1

)(σf )

If Λ(σ, 2) ̸= 0 then we get one copy of the space of modular cusp forms of weight 4 for ΓM
Pξ

in
degree 2 and one copy in degree 3.

If Λ(σ, 2) = 0 we get two copies of the space of modular cusp forms of weight 4 for ΓM
Pξ

in
degree 3 and nothing in degree 2.

d) For the Borel subgroup B we refer the computation of the Eisenstein part of the cohomology
of the boundary (see (28)). We get

Im0
Eis(r) = H0

Eis(∂(Γ0(p)\H2),Q) = Q, Im2
Eis(r) = H2

Eis(∂(Γ0(p)\H2),Q) = Q

Im4
Eis(r) = {(x1, x2, x3, x4) ∈ H4

Eis(∂(Γ0(p)\H2),Q) = Q4 |
∑
xi = 0} = Q3

On all these spaces the Hecke operator Tℓ acts by the eigenvalue ℓ3 + ℓ2 + ℓ+ 1.

1.5 What can the computer do for us?

In principle we want to extend the computations in [10] Chapter 3 section 3.3.5 to this situation
here. In the following our coefficient system will be the ring ZS , where S is a controlled finite set
of primes. At the beginning this set is empty. We have the exact sequence

0→ Hq
! (Γ0(p)\H2,Z)

j−→ Hq(Γ0(p)\H2,Z)
r−→ Hq(∂(Γ\H2),Z)→ Hq+1

c (Γ\H2,Z) (85)

The first challenge is to compute the modules in this exact sequence. We have control of the
torsion and we include all the primes which occur in the torsion into our set S. We are interested
in the degree q = 3 and get the exact sequence

0→ H3
! (Γ0(p)\H2,ZS)

j−→ H3(Γ0(p)\H2,ZS)
r−→ Im3(r)→ 0

and we get free modules

H3
! (Γ0(p)\H2,ZS) = ZSx1 ⊕ ZSx2 ⊕ · · · ⊕ ZSxs

Im3(r) = ZSy1 ⊕ ZSy2 ⊕ · · · ⊕ ZSyt

H3(Γ0(p)\H2,ZS) = H3
! (Γ0(p)\H2,ZS)⊕ ZS ỹ1 ⊕ ZS ỹ2 ⊕ · · · ⊕ ZS ỹt

such that r(xi) = 0 and r(ỹj) = yj .
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Now comes the hardest part, we have to compute an explicit expression for a Hecke operator
(See [10], section 6.3.2)

T coh,0
ℓ,χ (xi) =

∑
ai,jxj

T coh,0
ℓ,χ (ỹν) =

∑
µ bν,µxµ +

∑
j bν,j ỹj

(86)

here χ : Gm → T is a cocharacter and ℓ a prime. For the following it may be sufficient to take
ℓ = 2 and for χ one of the two fundamental cocharacters. The highest weight is λ = 0.

We pass to a splitting field F/Q let OF,S its ring of S integers. We pick a component σf , with
H1+l(w)(∂[P1](Γ0(p)\H2), F )(σf ) ̸= 0, we assume that Λ(σ, 2) ̸= 0. We consider the exact sequence

0→ H3
! (Γ0(p)\H2,OF,S)→ H3(Γ0(p)\H2,OF,S)[σf ]→ Im(r)3(σf )→ 0, (87)

here Im(r)3(σf ) = Im(r)3 ∩H3(∂(Γ\H2),OF,S) then Im3(r)(σf ) is a free rank one OF,S module.

Under these assumptions the Manin-Drinfeld principle holds, i.e. we have

HomH(Im3(σf ), H
3
! (Γ0(p)\H2, F )) = 0.

Remark: In the letter to Goresky and McPherson in [8] I made some very speculative calcula-
tions which give some support to this assumption. These calculation were based on the topological
trace formula and on the fundamental lemma. These calculations also implied that the Manin-
Drinfeld principle can fail if Λ(σ, 2) = 0. I will come back to this later. These facts have also been
confirmed in a personal conversation with Jim Arthur in Oberwolfach and follow from his general
results.

End remark

We get a decomposition

H3(Γ0(p)\H2, F )[σf ] = H3
! (Γ0(p)\H2, F )⊕ Im3(r)(σf )⊗ F (88)

Now we consider the cohomology with coefficients in OF,S The decomposition induces a decom-
position up to isogeny

H3(Γ0(p)\H2,OF,S)[σf ] ⊃ H3
! (Γ0(p)\H2,OF,S)⊕ Ĩm3(r)(σf ) (89)

where Ĩm3(r)(σf ) = Im3(r)(σf ) ∩H3(Γ0(p)\H2,OF,S).
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1.5.1 The main question

What can we say about the structure of the finite Hecke-module

H3(Γ0(p)\H2,OF,S)[σf ](H
3
! (Γ0(p)\H2,OF,S)[σf ]⊕ ˜Im3(r)(σf )) =

Im3(r)int(σf )/Ĩm
3(r)(σf )?

(90)

The OF module Im3(r)int(σf ) is locally free of rank one and therefore

Im3(r)(σf )/Ĩm
3(r)(σf ) = OF /(n(σf )) (91)

where (n(σf )) is a non zero integral ideal. This ideal is the denominator of the Eisenstein class
and this denominator can be computed in a given case once we have an effective program for the
computation of the cohomology and the Hecke operator.

We may for instance assume that we find a σf which is defined over Q
( There are a few of them in the modular forms data bank). Then we go back to (86) and we can
assume that Im3(r)(σf ) = ZSy1 and hence the second equation in (86) says

T coh,0
ℓ,χ (ỹ1) =

∑
µ

aν,µxµ + h(σf )(T
coh,0
ℓ,χ )(ỹ1) = xT + h(σf )(T

coh,0
ℓ,χ )(ỹ1).

We want to modify ỹ1 to ỹ1 + x0 such that

T coh,0
ℓ,χ (ỹ1 + x0) = h(σf )(T

coh,0
ℓ,χ )(ỹ1 + x0))

then Im3(r)(σf )⊗Q = Q(ỹ1 + x0).

For this we have to solve

(−T coh,0
ℓ,χ + h(σf )(T

coh,0
ℓ,χ )Id)x0 = xT . (92)

Now the Manin-Drinfeld principle says that we can find a ℓ and a χ such that−T coh,0
ℓ,χ +h(σf (T

coh,0
ℓ,χ )Id

induces an injection onH3
! (Γ0(p)\H2,ZS). This implies that we can solve (92) with x0 ∈ H3

! (Γ0(p)\H2,Q),
the denominator of this element is the denominator of the Eisenstein class.

Now it is shown in [13],[14] that there is an array of complex numbers

{. . . ,Ω(τσf ), . . . }τ∈Gal(Q([σf ])/Q(σf )))

which is well defined up to a unit in O×
F,S such that

1

Ω(τσf )

Λ(τσf , 2)

Λ(τσf , 3)
∈ F

and this expression transforms under Galois in the right way, i.e,

τ(
1

Ω(σf )

Λ(σf , 2)

Λ(σf , 3)
) =

1

Ω(τσf )

Λ(τσf , 2)

Λ(τσf , 3)
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This number has a denominator ideal Den( 1
Ω(ι,σf )

Λ(τσf ,2)
Λ(τσf ,3)

) and my conjectural answer says that

n(σf ) ≃ Den(
c(p)

Ω(σf )

Λ(σf , 2)

Λ(σf , 3)
) (93)

where ≃ means that we have to invert a small number of small primes.

We think that it of great interest to provide experimental data, which confirm (or falsify) this
conjecture. We get these data for a given prime p and σf once we can tackle task A) and B) in the
sequence (85).

1.6 The motivation

Finally I want to say a few words why I expect that this should be true. The following considerations
are not very precise, we speculate about certain objects namely the mixed motives, for which we
give some kind of a definition in [11]. Motives and mixed motives are also the topic in the two
volumes [16]. In these two volumes many of the results and even definitions are conditional and
depending on the truth of (accepted) conjectures.

We will see that certain versions of these well accepted conjectures imply half of the conjecture
above: The right hand side divides the left hand side, we get an estimate of the denominator from
below.

We pass to the smaller subgroup Γ00(p) (see ( 1.3.3) and consider the Borel-Serre compactifi-

cation Γ00(p)\H2
i−→ Γ00(p)\H2. The number of connected components in the different boundary

strata becomes larger, we have 4 connected components for each of the two maximal maximal
parabolic subgroups P1, P2 and 8 connected components for the Borel stratum. We are mainly in-
terested in the connected components of ∂P1

(Γ00(p)\H2). These connected components correspond
to the right action orbits of {e, s1} on the Weyl group W, we make a list

{ξ1, ξ2, ξ3, ξ4} := {{e, s1}, {s2, s2s1}, {s1s2, s1s2s1}, {s2s1s2, s2s1s2s1}}

of these orbits. Let Y1, Y2, Y3, Y4 be the corresponding boundary strata. We add Y3 and Y4 to
Γ00(p)\H2 and get an inclusion

i0 : Γ00(p)\H2 ↪→ Γ00(p)\H2 ∪ Y3 ∪ Y4,

the set on the right hand side is open in Γ00(p)\H2. We extend the sheaf Z on Γ00(p)\H2 by
zero to Γ00(p)\H2 ∪ Y3 ∪ Y4, i.e. we consider the sheaf i0,!(Z). Now we have the inclusion i∞ :

Γ00(p)\H2 ∪ Y3 ∪ Y4 ↪→ Γ00(p)\H2 and define the sheaf Z# := i∞,∗ ◦ i0,!(Z). We recollect that for
the Borel-Serre compactification the direct image functor i∞,∗ functor is exact.

We get an exact sequence of sheaves 0 → Z# → i∗(Z) → i∗(Z)/Z# → 0 and hence we get a



158 G. Harder

diagram of cohomology groups

H3(Γ00(p)\H2, i!(Z))
↘

H2(Y3 ∪ Y4,Z)→ H3(Γ00(p)\H2,Z#) → H3(Γ00(p)\H̄2,Z) → H3(Y3 ∪ Y4,Z)→
↘ r#12 ↓ r12

H3(Y1 ∪ Y2,Z)
↘

H4(Γ00(p)\H2, i!(Z))

(94)

We consider the tensor product of this diagram by Q. On this diagram we have an action
of the Hecke algebra H(p). We recall that an irreducible isomorphism type σf , which occurs in
the cohomology is defined by its restriction to H(p). (Strong multiplicity one). We pick a σf , for
simplicity we assume that σf is defined over Q. Then we know that H3(Y1 ∪ Y2,Q) = H3(Y1 ∪
Y2,Q)(σf )⊕H⊥, where the first summand is the σf isotypical component. Then we have seen that
H3(Y1 ∪ Y2,Q)(σf ) = Q2 and we also know that the image

Im(r#12 ⊗Q)(σf ) = Im(r12 ⊗Q)(σf ) = Q ⊂ Q2.

We may replace Q by a ring ZS . The set S contains those primes which yield inner congruences
between σf and other isotypical subspaces. Then H3(Y1 ∪ Y2,ZS)(σf ) will be a direct summand
in the Hecke module H3(Y1 ∪ Y2,ZS). The set S should also contain those primes which divide the
order of the torsion of H4

c (Γ00(p)\H2, i!(Z)).

Then it is clear that Im(r#12 ⊗ ZS) = Im(r12) ⊗ ZS = ZS is a direct summand in H3(Y1 ∪
Y2,ZS)(σf ) = Z2

S . Under our assumptions (91) n(σf ) ∈ H3(Y1∪Y2,ZS) can be lifted to an eigenclass

Eis(n(σf )) ∈ H3(Γ00(p)\H2,ZS) and the inverse image of this eigenclass in H3(Γ00(p)\H2,Z#
S )

provides a short exact sequence of Hecke modules

0→ ZS → K(σf )→ ZSEis(n(σf )→ 0 (95)

where the ZS on the left is Im(H2(Y3 ∪ Y4,ZS)→ H3(Γ00(p)\H2,Z#
S )).

The point is that we can interpret K(σf ) as a mixed Tate motive, more precisely as a mixed
Kummer-Tate motive.

Of course we believe that Γ00(p)\H2 is the set of complex points of a scheme Y(p)/Z[ 1p ] and we
consider the embedding into its toroidal compactification

i : Y(p)/Z[ 1
p
] ↪→ X (p)/Z[ 1

p
]←↩ Y∞(p)/Z[

1

p
] : j∞ (96)

where Y∞(p)/Z[ 1p ] is the complement of the open part Y(p)/Z[ 1p ]. It is a divisor with normal

crossings. The scheme Y(p)/Z[ 1p ] has a stratification, the strata are labelled by the connected
components of the boundary strata ∂P1 , ∂P2 , ∂B .We are mainly interested in the boundary stratum
attached to P1. It has four connected components Y1, . . . ,Y4. Again we define the sheaf Z# =
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i∗,∞ ◦ i0,!(Z), but now we have to be careful, because i∗,∞ is not exact, we have to take the derived
direct image.

We view (X (p),Z#
S ) as a mixed motive (whatever that means), in any case we can consider its

Betti-realisation HB(X (p),Z#
S ) = H•(X (p)(C),Z#

S ), its de-Rham realisation Hde−Rh(X (p),Q#)

and for all primes ℓ its etale realisations H•(X (p)×Q Q̄,Q#
ℓ ). Furthermore we have the comparison

isomorphism
IB−dRh : HB(X (p)(C),C#)

∼−→ Hde−Rh(X (p),Q#)⊗ C),

(See [11]). The triple

(Betti realisation, de-Rham realisation, IB−dRh)) (97)

will be called the Betti-de-Rham realisation.

We assumed that the set S contains all primes which divide the order the torsion of some H4
c (...),

then we know that for ℓ ̸∈ S and m >> 0

H3(X (p)(C),Z#
S )⊗ Z/ℓmZS = H3

et(X (p)×Q Q̄,Z/ℓmZ), (98)

the right hand side is a Gal(Q̄/Q)-module. We can form the projective limit and get

H3(X (p)(C),Z#
S )⊗ Zℓ = H3

et(X (p)×Q Q̄,Zℓ) (99)

and we get an action of the Galois group Gal(Q̄/Q) on the left hand side. This provides a Gal(Q̄/Q)-
module structure on K(σf )⊗ Zℓ. The results of Pink (See[19]) say that we have an exact sequence
of Galois-modules

0→ Zℓ(−1)→ K(σf )⊗ Zℓ → Zℓ(−2)→ 0. (100)

This Galois-module is unramified outside ℓ, p.

If we put all these realisations and the comparison isomorphisms into one object we get a mixed
Kummer-Tate motive

{0→ Z(−1)→ K(σf )→ Z(−2)→ 0}, (101)

which we we simply call K(σf ). We get the extension class

[K(σf )] ∈ Ext1MMZ[1/p]
(Z(−2),Z(−1)). (102)

We consider the different realisations of this extension class (See [11], 1.7.1-1.7.2)

[K(σf )]B−dRh ∈ Ext1B−dRh(Z(−2),Z(−1)) = R

[K(σf )]et,ℓ ∈ Ext1et,ℓ(Zℓ(−2),Zℓ(−1)) = Q×
ℓ

(103)

Now we are confronted with a fundamental problem:
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Since [K(σf )] is obtained from a global object (a mixed motive over Q ) we should have some
relationship between the extension classes in the different realisations.

The only conceivable solution to this problem I can think of is:

All the numbers [K(σf )]et,ℓ are equal to the same rational number

K(σf )† ∈ Q×

and moreover
e[K(σf )]B−dRh = K(σf )†

If this is not the case then we call K(σf ) an exotic mixed Kummer-Tate motive.

I think it would be a disaster if such an object exist.

Now let us assume that K(σf ) is not exotic. In [8], in [11] and [12] we developed a strategy to
compute the Betti-de-Rham extension classes of mixed Anderson-Tate motives. Our K(σf ) is an
Anderson-Kummer -Tate motive. We apply this strategy to this case and get

[K(σf )]B−dRh = n(σf )
c(p)

Ω(σf )

Λ(σf , 2)

Λ(σf , 3)
log(p). (104)

The number Ω(σf ) is a relative period it is well defined up to an element in Z×
S . (See further down

section 1.8). The log(p) comes from taking the limit limz→0(p
−z − 1)ζ(z + 1) for c(p) see (56).

Since we assumed that σf is defined over Q the factor 1
Ω(σf )

Λ(σf ,2)
Λ(σf ,3)

is a rational number. Then we

get the formula

K(σf )† = p
n(σf )

c(p)
Ω(σf )

Λ(σf ,2)

Λ(σf ,3) (105)

Since we know that the exponent must be an integer, we conclude that for a prime ℓ ̸∈ S for which

ℓm|Den
(

c(p)
Ω(σf )

Λ(σf ,2)
Λ(σf ,3)

)
we must have ℓm|n(σf ), and we get half of (93).

Therefore we see:

If for a σf the assertion (93) turns out to be wrong then K(σf ) must be exotic.

If σf is not defined over Q then basically the same reasoning works, but we have to argue with
motives with coefficients.

We get a very precise estimate for the denominator, we have good control over the primes
in S. We just remark that also the denominator of c(p) should contribute to the denominator of
the Eisenstein class. This would provide denominators of local origin whereas the denominators
induced by the denominators in ratio of L-values are denominators of global origin. Of course it
might be interesting to see what happens if we have a cancellation, i.e. if a prime ℓ occurs as well
in the numerator of the ratio of L-values and in the denominator of c(p).

Finally we remark that we have discussed a similar construction of Anderson-Kummer motives
for certain congruence subgroups Γ ⊂ Gl2(Z) in [11] Section 2. In this case we can show that the
mixed Anderson-Kummer motives are not exotic and we get estimates for the denominators of the
Eisenstein classes.
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1.7 Λ(σ, 2) = 0

This section is even more speculative. Our speculation does not provide a result that can be verified
or falsified by a computer. One might argue that this section does not belong into this article. On
the other hand the Saito-Kurokawa lift - or the more general results of Arthur- predict some subtle
assertions concerning the structure of the cohomology, which then may serve as a test for correctness
of the algorithm.

Of course we can also ask what happens if Λ(σf , 2) = 0, We have seen that this must be the
case if the root number ε(σf ) = −1, but it may also happen in the other case. For the following
we also refer to [8] Kapitel III, 3.1. and we hope to explain it in [11] in greater generality.

The Manin-Drinfeld fails if the root number ε(σf ) = −1, In this case it follows from Arthur’s
work that H3

! ((Γ00(p)\H2,Z)(σf ) ̸= 0 and this is a module of rank two over the Hecke algebra HI⊗
H(p). (It is the so called Saito-Kurokawa lift). This tells us that the argument which lead us to (95)

does not apply, the restriction r#12 in the diagram( (94) has a kernel A(σf ) ⊂ H3(Γ00(p)\H2,Z#)
and we get a diagram

0 0
↓ ↓

0 → H2(Y3 ∪ Y4,ZS) → A(σf ) → H3
! ((Γ00(p)\H2,ZS)(σf ) → 0

↓ ↓
H3(Γ00(p)\H2,Z#

S ) → B(σf )
↓ ↓

H3(Y1 ∪ Y2,ZS) H3(Y1 ∪ Y2,ZS)
↓ ↓
0 0

. (106)

As before this is a diagram of Betti-cohomology groups of a mixed motive, The horizontal exact
sequence and the vertical exact sequence on the right yield extension classes

[A(σf )] ∈ Ext1MMZ[1/p]
(H3

! (X (σf ),Z),Z(−1)2)

[B(σf )] ∈ Ext1MMZ[1/p]
(Z(−2)2, H3

! (X (σf ),Z))
(107)

and we consider the entire diagram as an enhanced biextension of H3
! (X ,Z)(σf ) by Z(−1)2,Z(−2)2,

the enhancement is the introduction of H3(Γ00(p)\H2,Z#
S ) in the middle.

If I understand correctly T. Scholl explains in [20] how to attach a bilinear pairing

< , >B: Z(−1)2 × Z(−2)2 → R (108)

to this enhanced biextension. (The subscript B stands for Beilinson.)

We recall that

ZS(−2)2 =
⊕

ξ∈{ξ1,ξ2}H
1
! (ΓM

Pξ
\XM

Pξ , ˜ZS(w · 0))(σf )
ZS(−1)2 =

⊕
ξ∈{ξ3,ξ4}H

1
! (ΓM

Pξ
\XM

Pξ , ˜ZS(w′ · 0))(σf ⊗ |γ2|3)
(109)
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At first we define a local pairing < , >p: ZS(−2)2 × ZS(−1)2 → Q. To do this we refer to section
1.3.3. We have the identification⊕

ξ∈{ξ1,ξ2}

H1
! (ΓM

Pξ
\XM

Pξ , ˜ZS(w · 0)) = ZS(δ1 −
1

p
δ5)⊕ ZS(δ2 −

1

p
δ6)⊕

ξ∈{ξ3,ξ4}

H1
! (ΓM

Pξ
\XM

Pξ , ˜ZS(w′ · 0))(σf ⊗ |γ2|3) = ZS(δ3 −
1

p
δ7)⊕ ZS(δ4 −

1

p
δ8).

(110)

On the second summand we define the obvious scalar product

< δi −
1

p
δi+4, δj −

1

p
δj+4 >= δij .

Now we can define the above local pairing: If hp ∈ ZS(δ1 − 1
pδ5) ⊕ ZS(δ2 − 1

pδ6) ⊂ (St(1, p−2))I

then

T st
P1
(St(1,p−2)(hp) ∈

4⊕
i=1

ZS(δi −
1

p
δi+4).

We project to the second summand then and get an element

T st,34
P1

(St(1, p−2))(hp) ∈ ZS(δ3 −
1

p
δ7)⊕ ZS(δ4 −

1

p
δ8).

Now we define

< hp, h
′
p >p:=< T st,34

P1
(St(1, p−2)(hp), h

′
p > . (111)

For the element h
(0)
p = −p(δ1 − 1

pδ5) + (δ2 − 1
pδ6) our Mathematica computation yields

T st
P1
(St(1, p−2)(h

(0)
p ) = 0 and therefore h

(0)
p lies in the kernel of the local pairing. We consider the or-

thogonal complement V of T st
P1
(St(1, p−2)(Z), in H2(Y3∪Y4,Z), then our pairing becomes a pairing

between the two rank one ZS modules < , >p: H
2(Y3 ∪ Y4,ZS)/V ×H3(Y3 ∪ Y4,ZS)/ZSh

(0)
p → Q.

The Mathematica code also gives that the module of values of the pairing is the fractional ideal

(
1

p2(p+ 1)(p2 + p+ 1)
) ⊂ Z.

Now I claim that we get a ”Gross-Zagier” formula for the value of this pairing:

The value of the height pairing is given by

< hp, h
′
p >B=< hp, h

′
p >p

Λ′(σf , 2)

Ω(σf )Λ(σf , 3)
(112)

I do not state this as a theorem because some computations still have to be checked.

Extensions of the type above have been constructed in [8], 3.1, 3.2 and there I do not say
anything about triviality or non triviality of these extensions. I hope to discuss this issue more
thoroughly in [11].
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1.8 Computational aspects

If we want to verify (93) we need to compute the relative period Ω(σf ) and the values Λ(σ, ν) for
ν = 2, 3 up to a very high precision. Of course we are we are happy if we find an algebraic number

α ∈ F which is not to big and which approximates the numerical value 1
Ω(σf )

Λ(σf ,2)
Λ(σf ,3)

) up a very

high precision -very high compared to the ”size” (height) of the number α, then we accept that

α = 1
Ω(σf )

Λ(σf ,2)
Λ(σf ,3)

.

The computation of these relative periods is a little bit delicate. When we discussed the coho-

mology of the Siegel stratum we introduced the group Γ
(1)
M

Pξ
⊂ Sl2(Z) and claimed that each σf

occurs twice in the cohomology (see (26))

H1
! (Γ

(1)
M

Pξ
\XM ,OFw · 0)(σf ) =

H1
!,+

(Γ
(1)
M

Pξ
\XM ,OFw · 0)(σf )⊕H1

!,−
(Γ

(1)
M

Pξ
\XM ,OFw · 0)(σf ).

Both modules on the right hand side are locally free OF− modules of rank one let us assume that
they are actually free. Then we can find an isomorphism T arith(σf ) between these two OF modules
which of course unique up to an element in O×

F . On the other hand we can use the Eichler-Shimura
isomorphism and construct a canonical isomorphism

T trans(σf ) : H
1
!,+

(Γ
(1)
M

Pξ
\XM ,OFw · 0)(σf )⊗F,ι C→

H1
!,−

(Γ
(1)
M

Pξ
\XM ,OFw · 0)(σf )⊗F,ι C,

(113)

these two isomorphisms differ by the relative period

1

Ω(σf )
T trans(σf ) = T arith(σf )⊗F C. (114)

Of course we have to do this for σf and its conjugates τσf und the action of the Galois group.
This is of course a rather theoretical definition, it is not clear how we can these numbers in practice.

We have good control over the set S, of course we should keep it as small as possible. The
primes ℓ ∈ S are essentially determined by the torsion in the cohomology, we do not employ the
Hecke operators to define S, The primes dividing p− 1 should be in S.

We will explain in [10] Chapter 8 that for a given σf can define two periods Ω+(σf ),Ω−(σf ) ∈
R>0, which are well defined up to a unit in O×

F such that

Λ(σf , 2)

Ω+(σf )
,
Λ(σf , 3)

Ω−(σf )
∈ OF (115)

then our relative period s given by

Ω(σf ) =
Ω+(σf )

Ω−(σf )
. (116)

Of course we have to explain how these periods are defined. The following will be explained in
in [10] Chapter 8. If we want to pin them down up to an element in O×

F we have to compute the
values Λ(σf ⊗ χ, ν) for ν = 2, 3 and all characters χ : Z/pZ× → C×. Here we use the fact that we
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have rather effective algorithms, which compute the values Λ(σf ⊗χ, 2),Λ(σf⊗, 3) with a very high
precision. It follows from the theorems of Manin and Shimura that viewed as points in projective
space

{. . . ,Λ(σf ⊗ χ, 2), . . . }χ ∈ P(F [ζp−1])

{. . . ,Λ(σf ⊗ χ, 3), . . . }χ ∈ P(F [ζp−1])
(117)

Then we choose the periods Ω±(σf ) such that the arrays

{. . . , Λ(σf ⊗ χ, 2)
Ω+(σ)

, . . . }χ; {
Λ(. . . , σf ⊗ χ, 3)

Ω−(σ)
, . . . }χ (118)

form arrays of coprime integers in OF [ζp−1]. (We ignore some classnumber problems.)

Then we expect that for the primes ℓ ̸∈ S which divide
Λ(σf ,3)
Ω−(σf )

it is a rare event that at the

same time ℓ|Λ(σf ,2)
Ω+(σf )

. Therefore we have to look at the primes ℓ which divide the numerator
Λ(σf ,3)
Ω−(σf )

,

if we want to find primes dividing the denominator of the Eisenstein class.
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