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1 Motives and their cohomological realizations

In this manuscript I use the concept of motives without defining what I really
mean by that. Basically a motive should be a piece in the cohomology of an
algebraic variety, but the rules how I get such pieces are not fixed. In any
case a motive must have various cohomological realizations, namely the Betti
realization, the de-Rham realization and the /-adic realizations for all primes /.

1.1 Pure Motives

I consider smooth projective schemes X/Spec(Q), we know that we can find
a nonempty open subset V = Spec(Zg) C Spec(Q) such that X extends to
a smooth projective scheme X — V. Let us choose such an extension. We
consider the cohomology of this scheme, I denote it by H*(X) and by this I
mean the various realizations

The Betti-cohomology:
Hp(X) = Hp(X(C),Z)

This a finitely generated Z-module together with the involution F, induced by
the complex conjugation on X (C)



The de-Rham-cohomology is defined as the hypercohomology of the complex
of coherent sheaves 0 — Ox — Q4% — ...Q% — 0. This cohomology is the
cohomology of a double complex

0 - Ox — QF —... 0¢—=o0
— O%’l — Q%’l — Qd’li—> 0
b ¥ 5
— @ﬁz — Q%’2 — Qd’2¢—> 0
p % s
{ { {

here the vertical complexes are resolutions of the coherent sheaves in the top
line by coherent acyclic sheaves. Then

Hipn(X) = H*(Q%*(X))
These cohomology groups are finite dimensional QQ vector space together with
the descending filtration. In degree e = n it is of the form
Hjpy(X) = FOHjlp),(X) D F'Hijpy(X) D -+ D F"Hjpy,(X) = H*(X, Q%) D F"* ' Hijp,,(X) = 0.
We have the comparison isomorphism

Ip_qrn : HR(X) ® C — Hip,(X)® C

The ¢-adic cohomology: For any prime £ the etale cohomology groups
ce(X) = H* (X x Q, Z)

they are modules for the Galois group Gal(Q/Q)
For any embedding Q; — C we have the comparison isomorphism

I+ HY (X)© C <5 Hy(X) © C

which is compatible with F.

Furthermore the complex conjugation acts on Hy (X (C),C) and H*(Q*(X))®
C via the complex conjugations cg and c¢pr. The comparison isomorphisms sat-
isfy in addition

lTocg®Fy =cprol .
Ijoc=Fyol, (cony)

If T consider the cohomology in a fixed degree n then I want to call the object
H™(X) a pure motive of weight n. This weight is visible as the length of the
de-Rham cohomology filtration.

Frobenius Inverse

It is also visible in the etale cohomology: For p € S and p # ¢ the modules
H™(X x Q,Qy) are unramified at p. The characteristic polynomial

det(T — @, |H*(X x Q,Q¢)) € Z[T)

is independent of ¢ and its roots ( the eigenvalues of Frobenius ®,!) are of

absolute value p™/2.



1.2 Some simple pure motives

Now Z(—n) = H*"(P",Z) is the following object

HY(P") =Z- 15 , Fo(lp) = (-1)"15
HZW(P") = Q- 1pgr + Filtration, F"Q(—n) = Q(—n), F*1Q(-n)
I:HY ®,C "5 HY, @g C

I:1p — (Qm) 1pr

IoF, ocg=cprol

HZ'(P") = Z¢(—n) Galoismodul

I : HF(P") © Ze — HZ(P", Z)

compatible with the action of Fy,

It will important that the comparison isomorphism gives us a canonical
generator in Z;(—n — 1). This generator can also be seen in the following way.
For all m we have the privileged £"*-s root of unity

(om = €7

and the canonical generator in Zy(—n) is given by C ym - These motives Z(—n)
for n € Z are called pure Tate motives.

If we have a finite extension K/Q, then we can consider P"/K and the
Weil restriction Rg/qP". Then we can consider the motive H"(Rg/oP") =
Z(—n)%/Q, Tts Betti-cohomology and étale cohomology

—n)K/Q K/Q _ 1,4Gal@/Q
7Z( ;Czhg, Zo(=n) "/ =Tnd gy o 2 Ze(—n).
o:K—

element lg/(@ =(.,1p,... )oik>C

These motives are Tate motives which are twisted by an Artin motive.

We also want to consider correspondences on " C X xg X, they induces
endomorphisms on the cohomology H*®(X), of course by this we mean that they
induce endomorphisms in any of the cohomological realizations. We consider
the ring generated by these endomorphisms and we try to find correspondences
which are projectors in all cohomological realizations. If we have such an endo-
morphism ¢ then we also want that (H*(X),q) is also a pure motive. In any
case it has all the cohomological realizations and this is my basic criterion for
something being a motive.

If we are lucky then we can find such projectors, which induce the identity
on the cohomology H™(X) in degree n and which are zero in the other degrees.
Then we may speak of H"(X) as a pure motive of weight n. It is also possible
that we can find only ”projectors with denominators”, i.e. endomorphism p
which satisfy p?> = mp with some non zero integer m. In such a case we get a
motive with coefficients. (See 1.8.)

=0



1.3 Mixed motives

Now I want to remove a closed subscheme Y C X. Let U = X \ Y, this is now
quasi projective. I want to consider the cohomology H*(U) of U and I want
explain that we may consider this (under certain conditions) as a mixed motive.
We denote the inclusions j : U — X,i: Y — X.
Let me assume for simplicity that Y C X is smooth, then Y = Spec(Ox/J)
and we consider the completion

NY = Spec(lim(Ox /JT™))

which I consider as being a tubular neighborhood of Y. Locally on Y this is of
the form Spec(Oy (W')[[f1,.--, fr]]), where the f; are generators of the ideal J
which form a system of local parameters.

If I remove the zero section Y from this scheme I get

NY=NY\Y

I want that the cohomology H®*(N Y) is a mixed motive and I will explain
why this is not an entirely absurd idea.

Let us start from the case that Y is just a finite number of Q-rational
points. In this case and our completion is simply a disjoint union of By =
SpecQ[[z1, . - ., zq4]] where d = dim(X). If we stick to one of these points P then

we have to understand the cohomology of By \ P =B, .
It is clear that from the point of view of Betti-cohomology this is just a
sphere of dimension 2d — 1 and we say

Hg(Bd) B 0 else

. {Zﬁpzoad—1
The involution Fi, acts by the identity in degree zero and by (—1)¢ in degree
2d — 1.

If we want to understand the de-Rham and the etale realization I begin with
the case d = 1. In this case we consider B, as ” homotopy equivalent” to the
multiplicative group scheme G,,. If we cover the projective line P! by two affine
planes Uy, U; then G,, = Uy NU; and we consider the resulting Mayer-Vietoris
sequence in cohomology, it provides and isomorphism

HY(G,,) = H?*(P")

Now we remember how we compute the cohomology of a sphere by using
the Mayer-Vietoris sequence. In By we can define the subschemes By[z; # 0]
and we can cover By by these subschemes. Writing down certain Mayer-Vietoris
sequences provides some convincing evidence that

H*"™(By) = Z(~d)

Now we consider the general case, our subscheme Y is still smooth. We

can view N' Y as a fibre bundle over Y where the fibres are By where d is the



C.Odimension of Y in X. If we consider the sheaf Z on 'Y and the inclusion
N'Y < NY then the direct image functor is not exact we have

R%j,(Z)=0if ¢ #2d—1,0

and in degree zero
J«(Z) is the constant sheaf Z

and

R2d7 1j* (Z)
is a local system of sheaves with stalk at a point isomorphic to Z(—d). This

is just the local system of the cohomology groups of the fibres By. I claim that
this local system is trivial because if we consider the Betti-cohomology, then we
have an orientation on the normal bundle and the stalk R??~1j,(Z), = Z. In
the other realizations we get trivializations from the comparison isomorphisms.

We get a spectral sequence for the cohomology with Es-term

HP(Y, R'j.(Z)) = H"(N' Y, Z)

and since there are only two columns we get the Gysin sequence

— H"(Y,R’j.(Z)) = H"(N'Y,Z) — H" >N (Y, R**1j(Z)) - H"" (Y, R%}.(Z))
Now we have to assume that the kernel and the cokernel of

H" 244y, R?=15,(7)) — H" (Y, R%j,(Z))

are pure motives. Since the local system R2471j,(Z) is trivial this map
H 2Ny, R*71G,(2)) = H" > N(Y, Z(=2d)) — H" (Y, R%j.(Z2))

is given by the multiplication by d-th the Chern class of the normal bundle and
we see that the map is induced by an algebraic cycle and this makes it clear

that we can consider H"(N Y, Z) as a mixed motive. Of course the kernel and
the cokernel are just the terms E5-0, gy 21241,

We want to say a few words about the de-Rham realization. At first we
consider the case that Y is of codimension one. We return to the global sit-
uation and consider ¥ < X. In a suitable neighborhood of a point yp € Y

the subscheme Y is given by an equation z; = 0, let 21, x9,...,xq, be a set of
local coordinates in this neighborhood. Then we define two modified de-Rham
complexes:

The first one is

Fa10g(2°(Y))yo =0 = Ox yo.10g(Y) — Q; (V)= ... (V) =

0,log 0,log

where Q7 ., 18 Ox,y,— module generated by the forms
dx
L Ndag, Adaig A AN
T



it is slightly large than 2% in all degrees > 0.
The second one is

j!,zcro(Q.)(Y)yo =0— xloX,yo — OX,yodxl D xloX,ygdl'Q D=

where the differentials in degree v are generated by the differentials dzi Adx;, A
...dwx;, and x1dx;, Adxg, A ... dx;, if all the ¢, are different from the index 1.
Now we can define

Hpp(U) = H* (X, ji10g(2°)(Y))

and

Hppo(U) = H*(X, juzero (2°)(Y))
and .
HprN'Y) = H* (X, Jitog(Q2°)(Y)/ Jx.zer () (Y)).
We define the Hodge filtration in the standard way, then we can verify that

n(Hp(U.Z)  Hpp(N Y. 3. (2) 0 F(Hp N V@) = )
(™ (U, 2) > F™(Hp (N Y.5.(2)))

If Z is not of codimension one, then we blow up X along Y, we get a diagram
Y — X « U
4 | I
Y =& X « U

where now Y is of codimension one. The reasoning in SGA4% IV.5 shows that

we have H"(/(f Y,Z) = H”(J:/ Y,Z) in the Betti and the ¢ adic realizations,
hence we define

HB RN Y,Z) = Hpp(N V', 2)

L]
and we have constructed all the realizations of our mixed motive H*(N Y, Z). It
has a weight filtration coming from our spectral sequence, this weight filtration
is visible on all realizations and compatible with the comparison isomorphisms.
The weights are n and n + 1.We get a long exact sequence
L]
— H}NU,Z) - H"(U,Z) - H"(N'Y,Z) —
Now we encounter a problem which we have seen in milder form before. We
certainly should try to show that the image of
L]
H™"(U,Z) — H"(N'Y,Z)
is the cohomology of a mixed motive and we also should show a similar assertion

for the kernel the map

H* YN Y,Z) —» H"(U,Z).



As far as I understand this is one of the major obstacles if we want to construct
an abelian category of mixed motives. If we can show that this is so under
certain assumptions or in a given concrete situation, then we might be justified
to say that

image (H(U,Z) — H"(U,Z)) = H\(U,Z)

is a pure motive and it sits in an exact sequence

0= H'(U,Z) — H'(U,Z) — ker(H"(N' Y, Z) -2 H'* (U, Z)) — 0.

The motive H{*(U,Z) is pure of weight n the kernel ker(d) = ker(H™(N
Y, Z) N H"(U,Z)) is mixed of weights n,n + 1. Hence H"(U,Z) has a
weight filtration with weights n,n + 1.

If dy is the dimension of U, then the dimension of Y is dy — d. If we assume
that n > 2(dyp — d) then the weight n part in H"(N Y, Z) becomes zero and we

have H"(U,Z) = H"(X,Z) independently of Y. Furthermore ker(H"(N' Y, Z) —
HIY(U,7Z)) is pure of weight n + 1 and we get

[H™(U,Z)] € Extyn(ker(0), H" (X, Z)).

Now we assume that the codimension of Y is one and we look at the co-
homology in degree n = 2dy — 1 In this case H?TY(U,Z) — Z(—dp) and
ker(§) — Z(—do)"~! where r is the number of connected components of Y.
Therefore we end up with an element

[H?TH (U, 7)) € Exth(Z(—do)" ™, H**~1(X,Z)).

For any element D € ker(§), D # 0 we can consider the line ZD € ker(9),
and the inverse image of this line provides a subextension

[H™(U,Z)][D] € Exthp(Z(—do), H"(X,Z)).

1.4 Bloch’s Idea

This construction is due to S. Bloch. If X/Q is a smooth, projective curve,
then the only choice we have is d = 1 and Y is simply a set of closed points
{P1,Ps,...,P.}. Let Q(F;) be the residue-field then we put n; = deg(P;) =
[Q(P;) : Q]. If all the P; are rational then H(Y, R'j,(Z)) = Z(—1)". In the
general case we have to twist these Tate motives by a finite dimensional repre-
sentation of the Galois group.

Now Y (C) is a set of n = ) n; points and

HYNY)=H'NY©).,2) =2"=P( P 2

I 0:Q(P;)—C

and an element D € H'(N Y (C),Z) is simply a divisor, this divisor is rational
over Q if its coeflicients at the points lying over a given closed point P; are
constant and hence all equal to an integer d;. Hence a divisor D = ) ;NP can



be viewed as an element in H5(N Y) and this element is in the kernel of §
if and only if the degree deg(D) = > n;d; = 0. Therefore we may remove the
points P; from X, we get an open subscheme U = X \ {Py,..., P} and

[H™(U, 2))[D] € Ext)ym(Z(-1), H' (X, Z)).

Now we can send the divisor D to its class [D] in the Picard group Pic(X)(Q)
and we get a diagram

ker(8)g = {D = Y. n;Pi,deg(D) =0} — Bxth(Z(-1), H'(X,Z))
pY ¢
Pic(X)(Q)

S. Bloch formulated the idea, that for a good theory of an abelian category
mixed motives the horizontal arrow in the top line should become surjective
provided the set of points removed is large enough. The vertical arrow is well
defined and should be an isomorphism.

We will also allow subvarieties Y C X which are singular, we should have
some control over the singularities. For instance the case that Y is a divisor
with normal crossings should be accepted.

We modify our construction slightly. We define the derived sheaf j.(Z). We
choose an injective resolution of our sheaf Z on U

0O - Z —- 0 —- 0 —

1

0 - J° - J' = J2 =

the complex of sheaves

3e(Z) =0 = ji(J%) = ju(J1) = ju(J?) =

we restrict this sheaf to Y and hope that we can show that

H*(Y, j.(Z))

is a mixed motive. I think that this has been proved by Deligne in his papers
WEeil IT and Hodge I-III.. Furthermore we hope that can can identify the kernel
and the image of
§: H*(Y,j.(2)) = H:T(U, Z)

as mixed motives, i.e. we can find certain projectors obtained from correspon-
dences which cut out these kernels and cokernels. I do not think that there is a
general theorem which asserts this, so it has to be decided in the given concrete
case. If we can do this we again get exact sequences

0 — HMU,Z) — H™(U,Z) — ker(6 : H(Y, j.(Z)) — H' (U, Z)) — 0.

Now the mixed motives will have longer weight filtrations, because H*(Y, j.(Z))
has a weight filtration with many different weights > n.

We get a second mixed motive, if we consider the cohomology with compact
supports, namely



0 — koker(H" ' (X,Z) — H" (Y, j.Z)) — H(U,Z) — H"(U,Z) — 0.

At this point it is not clear what it means that we have exact sequences of
mixed motives. But in any case we can look at the different realizations of these
motives and then we get exact sequences in the category Mp_rg( and Mgal
and this are abelian categories.

We briefly discuss an example. We may for instance remove three lines in
general position from X = P2, i.e. we consider

U=P*\ (Ul Uly) =P*\ A =5 Gy, x Gy,
Then U = G,,, x G,,, and the Kiinneth-formula yields
H:(U,Z) = HX(U,Z) ® H}(U,Z) ® H(U,Z) = 7.(0) ® Z(—1)* © Z(—2).

For the cohomology without supports we get

H(U,2) = HO(U,Z) & H(U,Z) & H*(U,Z) = 7(0) ® Z(~1)* & Z(~2).
Hence the map H2(U,Z) — H*(U,Z) is zero and this yields short exact se-

quences

0— H*(U,Z) — H*(A,i*(j.(Z)) — HYU,Z) — 0

The computation of the cohomology sheaves R®(i*(j.(Z)) becomes a little bit
more complicated, but we can easily compute the E? terms HP (A, R(i*(j.(Z))
and get

(0) for n=0

(-1)2 3 7(0) for n=1
Z(-2)® Z(-1)?  for n=2

(-2) for n=3

H"(A,i7(j«(2)) =

1.5 Construction principles

Now we give a vague outline how we may extend our construction principles to
construct certain objects, which may be called mixed motives. These principles
will be applied in concrete situations.

We may consider subvarieties Y which are singular, an interesting case is
when Y is a divisor with normal crossings. We may also replace the system
of coefficients Z by something more complicated namely a motivic sheaf F on
U. These motivic sheaves are obtained as follows. We may for instance have
a smooth, projective morphism 7 : Z — U. Then the cohomology R*w.(Z)
provides such a motivic sheaf. It may happen that certain correspondences
of this morphism define idempotents on R*m,(Z). In this case the cohomology
of R*7.(Z) decomposes into a direct sum, the summands again define motivic
sheaves. Finally we may extend a motivic sheaf F from U to X. This may be
done by requiring support conditions for the extensions. If for instance Y is the
disjoint union of to subschemes Y = Y7 UY5, then we may extend to the points

10



in Y7 by taking the direct image without support conditions and to Y5 by taking
compact supports. (See the construction of Anderson motives in [Ha-Eis] and
also later in this paper.) Then we get certain sheaves F# on X and we consider
their cohomology H*(X, F#). These objects will be "mixed motives.” We have
to take care that these mixed motives still have cohomological realizations, they
must have Betti-de-Rham realizations which are mixed Hodge-structures and
the f-adic realisations must be modules for the Galois group. Of course we
must be aware that we encounter incredibly complicated objects. These mixed
motives have very long weight filtration with with many different weights.

But if we are lucky then we can find correspondences, i.e. finite to finite
correspondences T C X x X which respect the subset U and then also the
subscheme Y. We have the two projections p1,ps : T — X. If we now have
a motivic sheaf F# on X and the resulting mixed motive H®(X,F#) (or a
piece cut out by an idempotent) then we get a morphism [T] : H*(X,F#) —
H*(T, pi(F#)) Now we have H*(T, p%(F#)) = H*(X, R*pa.(p}(F#)) and now
we hope or assume that we have a natural morphism ¢ : R®pa.(p} (F#)) — F#.
Then it is clear that the pair (7', ¢) induces an endomorphism

[T,¢]: H*(X,F#) — H*(X,F%).

These endomorphisms induce endomorphisms in the realizations we can con-
sider the ring of endomorphism generated by these correspondences. An element
¢ in this ring is called an idempotent if it induces an idempotent in any of the
realizations.

Then it is tempting to decompose

H* (X, F#) = H*(X, F*)[q = 1] @ H*(X,F¥)[g = 0],

we do not know what the individual summands are. But we consider them as
mixed motives and we know that they have cohomological realizations.

If we look at examples of these H®(X,F#) then we see that they become
very large, they have weight filtrations with many steps and the dimensions of
the cohomology groups become very large.

We hope to find projectors which cut out summands in our mixed motives
H*(X,F#). For instance we can try to construct mixed motives which have
only two steps in the weight filtration and where the filtration steps are Tate
motives, i.e. we want construct extension of Tate motives of the form

X={0—72Z0) — X —Z(—n—-1) — 0}, (MT)

we write X' € Ext}wyM (Z(—n—1),Z(0)). Such objects have been constructed in
[Ha-Eis], these are the Anderson motives. In the second volume of [Ha-Eis] we
will extend this construction of Anderson-motives to other groups.

A remark :These mized motives are Grothendieck motives and as far as
I understand we do mot know whether there is a abelian category of mixed
Grothendieck motives. There are constructions the derived category of mized
motives and an abelian subcategory MT of mized Tate motives (over number
fields), but it is by no means clear whether we can consider the objets above as
elements X € Ext}\/lﬁT(Z(fn —1),Z(0)). The point is that the above condition

11



q = ¢2 for projectors has to be true in the cohomological realizations. In the
architecture of a category MM the equivalence relation one puts on cycles is
much finer.

But anyway our objects above X have a Betti-de-Rham realization Xp_ggrp
and etale realizations Xet ¢ and these realizations are objets in abelian categories.
Therefore it makes sense to attach the extension classes

Xp_arn € Exti_gpn(Z(—n — 1), Z(0)), Xer,e € Exty, o(Ze(—n —1),Z4(0)) (2)

to these objects. We discuss these Ext! groups in section (1.7).

1.6 Some constructions of mixed Tate motives

We may also do the following. Let k& be an arbitrary field of characteristic zero.
As above we remove the triangle A from P?. Now we pick points @Q; € I;, these
point should be different from the intersection points of the lines P, = I,NI;,. We
get a second triangle As whose sides are the lines passing through the pairs of
points @Q;, ;. We blow up the three points );, we get a surfaces X. The triangle
A; can be viewed as a subscheme of X, the inverse image of As is a hexagon
A2 inside of X. Each line of the triangle A; meets intersects the hexagon in two
points.
We put V =X\ AQ N A; and we introduce the notation

Jo Ve X\ A 25 X

On X we define the sheaf Z# = j; .j21(Z). Now I hope that the cohomology
H?(X,Z%) is a very interesting Tate motive which has a three step filtration

0C Z(0) c M c H*(X,Z#),

where M/Z(0) — Z(—1), H*(X,Z#)/M = Z(—2). (This hope is supported
by some tentative computations). Furthermore I hope that

0—-20)—>M-—>7Z(-1) =0

is a Kummer motive, hence it corresponds to a number ¢ € k*. The other quo-
tient H2(X,Z#)/7(0) is also a Kummer-motive ®Z(—1). This Kummer-motive
should be given by the number 1 — ¢ € £*. The number ¢ should correspond to
the position of the third point 2 € l3. We denote this motive by My 1_,.

Such a motive is of course not in Exth v, (Z(—n—1),Z(0)), but we may form
"framed” direct sums

framed(@ Mg, 1—g,)-
i=1
Ifnow > 2;A(1—2;) = 0in A%2k* then we may hope that we can change the basis
in M/Z(0) = ®Z(—1)e; in such a way that 0 — Z(0) - M; — Z(—1)e; — 0
splits for s = 1,...,[r/2] and 0 — M, /Z(0) — H?(X,Z#); — Z(—2) — 0 splits
fori=[r/2]+1,...,r
This seems to indicate that in some sense (77)
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framed(é Mg 1—2,) ={0—2Z(0) > X = Z(-2) - 0} ® Z(-2)".
i=1

1.7 Extensions
Let us assume, that we produced extensions X', which are sequences
0 —Z(0) — X —Z(-n—-1) —0.
We consider their realizations:
The Betti realization X g is a free Z-module which sits in an exact sequence
0—7— Xp —7—0.

We have an involution Fi, on Xp which acts by 1 on the left copy of Z and
by (—1)"*! on the right. The extremal modules have canonical generators, in
other words as modules they are equal to Z.

The de-Rham realization yields is an exact sequence of Q vector spaces
0— Q0) — Xpgp — Q(—n—-1) — 0
together with a descending filtration

FOXDR D FlXDR == F”+1XDR > F"+2XDR =0
1
FrHQ(—n — 1) = Q.

where the downwards arrow is an isomorphism.
We have a comparison isomorphism between the two exact sequences
I1: XpC———Xpr®C.
an this comparison isomorphism satisfies
IOCBOFOO :CdRhOI

where the c77 is always the action of the complex conjugation on the coefficients.
We want to consider these objects (Xpg, Foo, Xpr, F,I) as objects of an
abelian category B—dRh it is related to the category of mixed Hodge-structures.

Finally we have the p-adic realizations. For each prime p we have an action
of the Galois group Gal(Q/Q) on Xp ® Z, and we get an exact sequence

0 —2Z,(0) - Xp®Z, — Zp(—n—1) — 0

and this action is unramified outside of S U {p}.
Again we notice that the comparison isomorphism gives us canonical gener-
ators in Z,(0) and Z,(—n — 1)

13



1.7.1 The Betti- de-Rham extension class

We can associate an extension class
[X]5-drn € Extp_gp,(Z(—n —1),Z(0))

to our objects X. To do this we have to understand Ext}_ 4z, (Z(—n—1), Z(0)).
We distinguish two cases.

In the first we assume that n even.

We know that Z(—n — 1) has a canonical generator 15_;"71). We have a

unique lift of this generator to an element 659_"_1) € Xp ® Q which lies in the

—1 eigenspace for F,. We also find a unique 653—]?—1) € F""'Xpr ® C which
maps to the image of I(lgnil)). Then egnfl) — I‘l(eggfl)) maps to zero in
C(—n —1) and therefore e{; "™ — I‘l(e(D_g_l)) € Zp(0) ® C.

Finally we look at the action of cg on this class. Since F, acts trivially on
Z(0) we get from the compatibility condition

5" = I Hepg D) = Fuoep(en™ Y — I epr )
=Fx(eg " —I ' cprlepy ) =
—(e "V = I e )

cp(e

and therefore we conclude that the extension class lies in iR. If we choose =1

27
as a basis element for R then we get an identification

Extp_qpn(Z(—n - 1),Z(0)) = R.

Now we consider the case that n is odd.

Again we know that Z(—n) has a canonical generator 1gn). We have a
non unique lift of this generator to an element 653_") € Xp®Q. We find a
unique esj_lg) € F"Xpr ®C which maps to the image of I(lgn)). Then 153—71) —
I_l(egg)) maps to zero in C(—n). Hence we see that 1gn) - I_l(eglg)) e C(0)
mod Z = C mod Z.

We compute the action of cp on this class and this time we get

cp(1™ = T71e5 1)) = Fo 0 ep(1y™ — 171 0))
=15 - 171

and hence
Extps_qp(Z(—n),Z(0)) = R/Z.

Now we encounter the fundamental question: What are the classes which
come from a mixed motive over QQ, in other words what is the image

Extl,(Z(—n — 1), Z(0)) — Exts_4pn(Z(—n — 1),7(0))?

Since the group on the left hand side is not really defined we may ask: How
many objects of the form

X={0—72Z(0) — X —Z(—n—1) — 0}
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can we find somewhere in the cohomology of an algebraic variety over Q and
what are the possible values for their extension class in the category B — dRh.

The general conjectures about the connection between K-theory and the
hypothetical category of mixed motives seems to suggest the following question:

The case n > 0 even:
Is it true that for any such object X the extension class

(X5_aru] = (' (—n)a(X) (Extp_qrn)

with some rational number a(X)? What are the possible denominators of a(X),
are they bounded?

The case n odd:
Is it true that for any such object X the extension class

(XB_arH] € Q/Z

in other words we get only torsion elements?

I think that we must be aware, that it is by no means clear, that our con-
struction principles do not go beyond the construction of mixed motives con-
structed by K-theory, or or other known approaches to the category of mixed
Tate-motives.

1.7.2 The Galois-module extension class
Now we consider the attached sequences of Galois modules
0—2Z,(0) - X®Zy, — Zp(—n—1) — 0
We consider exact sequences of Galois-modules Z,, x Gal(Q/Q)-Moduln
0—7Z,(0) > X = Zp(—n—1) = 0.

We assume that n is even and p > 2. Then we know especially p — 1 fn + 1.
Such a module provides an element X

[X] € Etha](@/Q)(ZZJ(_n - 1)7Zp(0)) = Hl(Gal(Q/@)vzp(n + 1)) =

lim - H'(Gal(Q/Q), Z/p" Z(n + 1)) ®)

It may be helpful if we introduce the notation

Zp/p" Lp(n+1) = M?fgmrl)

To understand this cohomology we pass to the cyclotomic extensions Q(¢,m)/Q
and we denote their Galoisgroups over QQ by I';,. We have the canonical isomor-
phism

a: Ty = Gal(Q(Gm) /Q)—(Z/p" 2)".

15



Our assumptions on p,n imply that we can find an « € (Z/p™Z)* such that
2"t £ 1 mod p and this implies that

HY (Do i) = HA(T o, ™) = 0
and the Hochschild-Serre spectral sequence yields an isomorphism
H (Gal(Q/Q), gy ) = H' (Gal(Q/Q(Gpm)) ™)

Since the Gal(Q/Q(¢,m))-module ,ufignﬂ) is trivial we have the Kummer iso-
morphism

H' (Gal(Q/Q(Gm)), s ™) = (QGm)™ @ i)™ =

(Q(Gm)* ®Z/p™Z)(—n) = {z|z € Q({m)* R Z/p"Z, 37 = 2@,
An element ¢ € H'(Gal(Q/Q), Zy(n + 1)) is a sequence of elements
E=(rbm )
which satisfy
bm € (QGr)” ® puf)'™ = H'(Gal(Q/Q), ppn™)

and are mapped to eachother by the transition map: The homomorphism
Z)pm 7 — Z/p™Z yields the projective system and consequently we get a
homomorphism

(QGme1)* @ U )T — Q)" ® p&0)"
and we have to identify this homomorphism. An easy computation yields
NQ(Cyms1)/Q¢pm) (Emt1) = &5
and we conclude that our homomorphism is given by
N’rln/fl,m . (Q(Cp’"+1)* ® ugyr}+l)F1n+1 - (Q(Cpm)* ® u?ﬁ)r”
With respect to these homomorphisms we have
HY(Q, Zy(n +1)) = Im(Q(Gpm)* ® pn))"™
We consider the restriction
H (Gal(Q/Q), Zy(n + 1)) — H'(Gal(Qy/Qy), Zy(n + 1).

Since 'y, = Gal(Q(¢m /Q) = Gal(Q,(¢ym /Q,) our considerations above using
the Hochschild -Serre sequence also apply to this situation: we may replace Q
by Q. Let

Uy € 0" = (ZylGpm])”

be the group of units congruent 1 mod p, then

(U @ pgm)'™ € (Qp(Gpm)* @ Z/p™Z)(—n).
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The projective limit

m(UY @ Z/p™)(—n) = Vp(—n).

n

and I claim that V(—n) is a free Z, -module of rank one .
(The Hilbert symbol yields a pairing

1
(U @ Z/p"Z) x (U @ Z/p™Z) — ]TmZ/Z(l)
and a generator in V,,,(—n) yields a homomorphism
() m 1
On+1: Uy @L/p™"Z — p—mZ/Z

which satisfies
St 1 (u7) = a(0)" 61 (u)

and this must be the Coates-Wiles homomorphism. (Washington, Chap. 13).
This has to be clarified.)

Now we assume that n is even. We introduce the subring O,, = Z[%, Cpm].
We define elements CS?ZL = Cpm @ Cpm -+ Q@ (pm € ,u?" and we construct the

Soulé¢ elements in (O, @ pan )™
Cn,m (P) = H (1 - Cgm)an ® C;?"ZL
(am)d:l,
a mod p™

and ern/fl,m(cn,mﬂ) = Cp,m. We get an element in the projective limit

en(p) = (.., cnm(P),...) € Hl(Q7Zp(n +1)).

These elements ¢, (p) and ¢, (p) do not depend on the choice of the prim-
itive p™-th root of unity, they are canonical elements in H*(Q,Z,(n + 1)).

If we send the elements c¢,(n) into the local Galois cohomology then they
become a multiple of a generator e,
Cn(p) = gp(n) c€n

with €,(n) € Z,. I think, that the results on p-adic L-functions and Iwasawas
results imply (Washington 13.56) that

ly(n) = (p(n+1) mod Z

where
(p(n+1) = lim ((n+1—(p—1)p%).

I also assume at this point that (,(n+1) # 0. In any case it is not clear whether
lim(O;, ® u?ﬁ)rm has a non zero image in H*(Q,Z,(n + 1)) without such an
—

assumption.

17



1.8 The p-adic extension classes

We assume that n > 0, even and that we have constructed a mixed motive over

Q

X={0—-7Z(0) =X —2Z(-n—-1) = 0}

it provides an extension class
[X], € H'(Gal(Q/Q), Zy(n + 1))

for all primes p. We can say that these Galois-modules form a ”compatible
system” of representations for the Galois group, because all the Galois-modules
come from the same global object. The Soulé elements allow us to formulate an
assertion which makes the above statement precise.

We ask:

Let X be a mized motive as above. Is it true that for all primes p

[‘X]p = cp(n)a(X) (Emtpfetale)

where a(X) is the same number which occurred in our formula for the Hodge-de
Rham extension class? Perhaps it is more reasonable to ask the weaker question
whether this relation holds for the image of [X], in H*(Gal(Q,/Q,), Zy(n +1))

It is the aim of this work to present constructions of mixed Tate
motives, which ”live” inside the cohomology of Shimura varieties, for
which the Betti-de-Rham extension class satisfies the above relation
(Extg_4rn). But we are not able to show, that the Galois-module
extension class also satisfies Ext,_ctqic.

This raises the next question:

1.9 Do exotic mixed Tate motives exist?

We call a mixed Tate motive X exotic if one of the above assertions fails. Clearly
there are various qualities of being exotic. In the course of these notes we
will construct mixed motives for which we know that (Extp_4g) is true, but
where we do not know how to prove (Exty_etqre). In my lecture notes volume
”Eisenstein Kohomologie und die Konstruktion gemischter Motive” I gave the
construction of the Anderson motives. For these motives I computed the Hodge-
de-Rham extension class and showed that in fact they are of the predicted form
a(X)¢'(~n).

I also hope that I can compute the p-adic extension classes, so both questions
can be answered positively for these motives. In their paper ”Dirichlet motives
via modular curves. ” Ann. Sci ecole normal superieur (4) 32 (1999) A. Huber
and G. Kings prove that the p-adic classes have the right form. But they use
K-theory and I do not understand completely how the object in K-theory can
be compared to the object which I construct.

T also will construct mixed Anderson motives X(f) for the symplectic group
GSp,, they will be labeled by classical elliptic modular forms f. Again I will
compute the Hodge-de-Rham extension class, the computation of the p-adic
extension class seems to be even much more difficult.
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On the other hand in the volume ”The 1-2-3 of modular forms” T pointed
out that the non existence of exotic mixed Tate-motives gives us a hint to prove
the conjectural congruences in my article ” A congruence between a Siegel and
an elliptic modular form.”

Of course the non existence of exotic Tate motives would be an interesting
theorem in arithmetic algebraic geometry. But it seems to me also interesting
that it has such concrete consequences which can be checked in examples.

T also will construct mixed Anderson motives for the symplectic group GSps,
they will be labeled by classical elliptic modular forms. Again I will compute
the Hodge-de-Rham extension class, the computation of the p-adic extension
class seems to be much more difficult.

1.9.1 Final remarks.

At this point I am always a little bit confused. Experts in K-theory keep telling
me that the answer to both questions is clearly yes, i.e. there are no exotic mixed
Tate motives. They say that this follows if we work in the category of mixed
Tate-motives over number fields, which has been constructed by Voevodsky. In
this category the computation of the extension groups Ext vqaq/q is reduced to
the computation of K-groups of number fields, which has been done by Borel.

But it is not clear to me whether the mixed Tate motives which I constructed
above can be viewed as objects in Voevodsky’s category.

We add some further speculations: Assume that we have always the above
relation between the Hodge-de-Rham extension class to the p-adic extension
class. If this would be the case then we would have a tool to attack the question
concerning the denominators of a(X). If for instance (,(n+1—(p—1)) 0
mod p we have seen that the image of c,(n) in H*(Gal(Q,/Q,),Z,(n+ 1)) is a
generator and therefore we can not have a p in the denominator of a(X’). But
if the (—value is zero mod p we get that c,(n) is locally at p a p— th power.
In such a case the Vandiver conjecture would still imply that c,(n) itself is not
a p-th power.

But independently of the validity of the Vandiver conjecture we can consider
we can pick an n as above and a prime p. If (,(n + 1) # 0 then we would know
that the p-denominator in a(X) is at most po»(™),

But of course at this point we cannot say anything for a single value n >
0. We have the remarkable result by Christophe Soulé that for p > wv(n) the
Vandiver conjecture is true for the n-component which means that we know
that ¢,(n,1) # 0 and this is equivalent to ¢,(n) is not a p-th power. Hence we
have to check a finite number of primes. hence we see that we can bound the
denominators and we have to check a finite set of primes. But this finite set is
so enormously large that we can not check them all.

We can also speculate what happens if n is odd. Then we have seen that the
p adic extension classes are all zero. This applies only to the projective limit,
the cohomology on the finite level may be non zero. This supports the idea that
the Hodge-de Rham classes should be torsion classes in this case.

We also need some information on the local Galois-cohomology H*(Qy, ,u?n(lnﬂ) )
for primes ¢ # p. We use the same approach, we have

HY(Qp, S ) = (Qu(Gpm)* © Z/p™Z) (—1) (4)
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but now the extension Qg ({pm)/Qp is unramified and

Gal(Qe(¢pm)/Q¢) = Ty ¢ = { cyclic subgroup with generator ¢ € (Z/p™Z)* }.
()

. this is the cyclic group of order k where k£ > 0 is the smallest number for
which ¢ =1 mod p™. Then

Qu(Gm)” ® Z/p"Z) = L)y LS F ) @ Z/p"T. (6)

Now we have to consider the action of I',, ; on this module, it acts trivially
on the first factor, in the second factor we identify Z/p™Z with the group of
p-th roots of unity, then the element ¢ € I',, , acts by multiplication by .
Hence we see that

HY(Qe, g2 = {(u,0) € Z/p"Z @ Z/p"Z | (1" =1)u=0 mod p™; ({*" —1)v =0 mod p™}

(7)
Hence we understand how the Galois cohomology H'(Qy, u?&"*”) depends on

the residue class of ¢ modulo p™. Especially if /=1 mod p™ we have
HY Qe pi" ™) = 2/p" L & 2/p™ L (8)

The second summand in (7 ) corresponds to unramified cohomology classes,
®(n+1) ®(n+1))

we denote the quotient H*(Qg, p1,m ) /second summand = H},,.. (Qe, prym

1.9.2 Anderson motives and Euler systems

In section 3.2.4 T construct certain extensions X, (pg) = HéiS(Xo(po),/\;le)
which depend on an auxiliary prime pg, they have very little ramification ( See
also my Lecture Notes volume) Hence we see that the image of [X,,(pg)] under
the map

r e HYQ, ™) = HY(Qpy i) @ @) HY Qe ™) (9)
t#p

is possibly non zero only at the components p, pg. Now we hope that varying pg,
or perhaps constructing some [X,(po, f2,f2,...))] yields a large subgroup and
we may get an estimate for the cokernel of 7. I come back to this later

2 Kummer-Anderson motives
2.1 Curves over Q and the construction of mixed Kummer-
Tate-motives

We start from a smooth absolutely irreducible curve S/Spec(Q). Let 0 = > n;x;
be a divisor which is of degree zero- i.e. > n; = 0 and which is rational over Q.
Let us denote the support of the divisor by Y., let 3¢ a second set of (at least
2) rational points. We assume g N X1 = . We have inclusions

S\ 20\ Boe =% 5\ Do == 8. (10)
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On S\ g \ ¥ we have the constant (motivic) sheaf Z and we extend it by
support conditions to a sheaf Z# on S. In a first step we extend it to a sheaf
i0,1(Z) on S\ X, i.e. we extend it by zero in the points in 3. We extend i 1(Z)
to a sheaf on S by taking the derived direct image 90 «(0,1)(Z).

We study the mixed motive H!(S,Z#). Of course this is equal to the relative
cohomology H'(S \ Yo, X0, Z), perhaps a less scaring object. Let us put U =
S\ Yoo, we have the sheaf Zy on U, we get an exact sequence of sheaves on U:

0 —io (Z)|y = Zy — @y, Zy, — 0 (11)
and hence
0= Z# — e o (Zy) — ©y, Ly, — 0 (12)

We are now in the situation described in section 1.4 but we have removed
two sets X, Xoo. Let us assume for simplicity that the points x;, y; are rational.
From our two exact sequences we get exact sequences

HO(S,Z) = ®,,HO(y;, Z) 22 HY(S,Z#) -2 H'(S, ine(Zy)) = 0

. (13)
— HY(Sivox(Zy)) —— @, H'(N 4, Z) — H2(S,Z) — 0

Both sequences are exact, the H%(y;,Z) = Z(0), the N x; are punctured discs
L]
and HY (N z;,Z) = Z(-1).

(If the points y; or x; are not rational we have to include a twist by the
Galois group)

Let us now return to our divisor ? = > n,;x;, we assume that it is primitive,
that means it is not divisible or the n; are coprime. We can view 0 as a rational
point on the Jacobian, in section 1.4 we explained how we can interpret 0 as
an extension class in Ext v (Z(—1), H*(S,Z)). The cohomology groups of the

L]
punctured discs H'(N w;,Z) = Ze; and hence our divisor is also a cohomology

L]
class ey € HY(N Yoo, Z).
Now we make the assumption that this extension class is zero, at least after
we tensor by Q, this means that 0 is a torsion point in the Jacobian. We invoke
Abels theorem. First we look at the comparison isomorphism

Hp_4rn(S\ 2s) ®C = H'(S(C) \ 8ee,Z) ® C (14)

The splitting of the extension class means that we can find a differential form
wp € HO(S, Qllog(Eoo)) which has residue n; at z; and for any homology class
[3] € H1(S(C) \ X, Z) which is represented by a cycle 3 we have

/ wy € 2miQ (15)

3

Hence the cohomology class 5= [ws] € HY(U(C),Q) its restriction to the

2me

[ ]
boundary is ey € ,, HY(N x;,Z). Tt is clear that the differential w, is unique,
because wy — wy would be holomorphic and hence it cannot have periods in
2miQ.
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Hence we see that Qwy € H}p, (U) and 5-[wy] € HY(U(C),Q) provide a

T

copy of Qles] = Q(—1) € H (U, Q). We have our map © in (13) and
Klws] = ©71(Qlea])

will the Betti-de-Rham realization of a mixed Kummer-Tate motive

0— (P H(1:,Q)) — Klwo] — Qlea] — 0 (16)

The term on the left is a direct sum of copies of Q(0), if we chose a non zero
linear form

K (@ H(y;,Q))/H°(S,Q) — Q(0)

and divide in (16) by the kernel of x then we get a mixed motive

< Ky ep >€ Exth v (Q(—1),Q(0)). (17)
which is given by the exact sequence
0—— (@ H(y;,Q)) /ker(r) — K[k, ws] — Qlea] — 0 (18)
Yi
We believe that
Extim(Q(-1),Q0)=Q0"2Q= H Q (19)
p:primes

and hence the question arises to compute < k,ep; >€ Q* @ Q.

To do this we go back to integral cohomology. We look at the denominator
A(D) of 5-[ws] , this is the smallest positive integer for which

27

A@) g L] € H(U(C),2), (20)

we will see in a moment that this is also the order of the torsion point d. Let
us consider the differential W, = A(0)w,, we fix a base point and write down a
meromorphic function on S(C)

Fo(z) = el @0 (21)

where we integrate along any path avoiding Y., and joining zy and z. This is
what Abel did to construct a meromorphic function with divisor 0.

If we fix two points y;,yx € Yo then this defines a linear form &;; :
(D, Hy;,2))/HY(S,Z) — Z(0) namely rjy : (ni,n2,...,n) — n; — ng.
Then it seems to be clear that

Fy(x))
FD (l’k)
Of course this equality is disputable since the isomorphism (19) is disputable.

We refer to the remark at the end of section (1.5) and discuss the extension
classes

€ Q~* (22)

< Kjky€o >=

P € H'(Gal(Q/Q), Ze(1)) = Qf
(23)
< Kj,ky€d0 >B—dRhE Ext}gdeh(Z(—l),Z(O))
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It seems to me that here we are in the only situation where the computation of
the extension class in Galois cohomology is easy, we get the tautological answer

Fy(z;)
Fy(w)

We compute the class < K, x,e0 >pB—arn - To do this we apply the recipes

), resp. 15;}%) are the classes e; resp. 2miep.
(=1

Hence we see that the class e, 5’ in section (1.7.1) is given by wy. The class eSY
has the same restriction to the boundary, but it has to satisfy Foo(egl))

—egl). Therefore it becomes clear that

< Rj. ks € >et;€:

from section (1.7.1). Our generators 155,_1

_ 1
eV = —(wo — Foo(wn))

here we view the comparison isomorphism as being the identity. Hence
1 1 1
e —chr' = (e + Fulwn)) € (@ B4, Q)/H(S,Q)  (24)
Yi

Now we remember that Wy = A(®)wp = d;;“ . To identify the class

1 1 an
A(0)4mi A(d)dmi Fy

we have to evaluate it on relative 1-cycles from y; to yi, therefore we get

(Z}D + Foo(a}D)) = —

< Kj k)€ >B—dRh= A}b) (log(Fo(zj) — log(Fo(wk)) € R (25)

remember that we have chosen == as basis element for iR. The difference of

2me
logarithms is of the form

log(Fy (x;) — log(Fa (k) = Z n(p,0)log(p) (26)

Fo(z;)

where of course n(p,0) is the power of p in Pl

. Hence we get

< Kjk,€ >B—dRh= ﬁ(z n(p,0)log(p)) (27)

2.2 The cohomology of /(/ )y

Our group G is G = Gla/Spec(Z), let B, T be the standard Borel subgroup and
the standard diagonal torus. Let K., = SO(2)Z°(R) C Gl2(R). We choose an
open compact subgroup Ky C [[Gla(Z,) and consider the space

SE, = GQ\X x G(As) /Ky (28)

where X = H; UH_ = Gl5(R)/SO(2)Z°(R) = Gl3(R)/K is the union of an
upper and a lower half plane. We assume that the determinant homomorphism
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det Ky — 7% is surjective. Therefore we have only one connected component
and our space is of the form

Si, =T\Hy (29)

where I' = Gl2(Q) NKKy. The curve has a canonical model Yy, /Q and if we add
the cusps, we get a projective curve Xg, = Yg, U¥ where ¥/Q is finite. We
want to apply the considerations in the previous section to these curves.

The set

2(C) = U(A)T(Q)\mo(Cla(R)) x G(Ay)/Ky = U(Z)T(Z)\{£1} x Glo(Z)/ K.

The factor {£1} corresponds to the two connected components Hy since T(Q)
acts transitively on {£1} we also have

S(C) = U(A)T T (Q\G(Af)/ Ky

On this set we have an action of Gal(Q/Q) which we describe next.

We define the coarse set of cusps
£(C) = B(Ap)\G(Af) /Ky = PN L)/ K,
we have the obvious projection
pp : B(C) — 2(C). (30)

On X(C) we have an action of mo(R) x T'(Af)/T(Q) by multiplication from
the left and the orbits of this action are exactly the fibers of pp. Our Shimura
datum which gives us the Q structure on Yy, yields a Shimura datum for the
(t) ?) Hence
we get an action of {£1} x G,,(A;)/Q* on %(C). For any y € % we there
is an open subgroup l, which acts trivially on bp(y), and hence we get an
action of {1} x G,,,(A)/Q*4L,. The reciprocity homomorphism Gal(Q/Q) —
{£1} x G, (Af)/Q* 4L, gives us the Galois action on py'(y), this gives us the
explicit description of our scheme X /Q,

boundary scheme X/Q and this is the homomorphism ¢ — (

In the next step give an explicit description of the cohomology H'(N ¥, 7).
We describe the tubular neighborhood of a point z € 3(C). The point y =
pp(z) € PY(Z)/K; can be represented by a rational point § € P!(Q) which
defines a Borel subgroup Bj/Spec(Z). This Borel subgroup yields the Farey
disks D(c,g) C Hy (See chap.2, 1.7) and the punctured tubular neighborhood

N x of z is
N & =Ty, \D(e,§) (31)

where I'y 5 = Uy(Q) N Ky C Uy(Z). (The stabilizer of § is of course B, (Z)
but since we selected the + component at the infinite place it reduces to the
subgroup B1(Z) =Ty 3(Z) x {—1d} of elements with determinant +1 and the
central element —Id acts trivially) The subgroup I'y,, is of finite index d(y) in
Uy (Z). (Spitzenbreite.)
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L]
Now it is clear that N z is a punctured disk and since this disk has a complex
structure we get

Hl(ﬁ/‘ z, L) = Zey (32)

where e, is the positive generator of the cohomology. We need to represent the
cohomology classes by a closed 1-forms.

Let o € X*(T) be the simple positive root, let |«| the induced character
T(A)/T(Q) — R*. It has the infinite component |a|s : T(R) — RZ, and the
finite component || : T(Ay) — Q. We consider the induced representation

Indggﬁmodoo. We also introduce the space of functions

Co ={f : {£1} xU(A\G(Af)/ K — Q|f(tg) = a(t) f(g) for all t € T(Q)}
(33)

this is of course a sophisticated description of the space of functions on 3(C).
Then we get an inclusion

Indf ) |ale @ Ca = AU(A)T(Q\G(A)/K ) (34)
and from this we get a homomorphism
Hom . (A (g/8), Ind3 () |aloc) @ Ca — Q1A 3) (35)

We have the standard decomposition of the induced representation into Ko
types

Indjlole = P Cin (36)

n:n even

where

b cos(@)  sin(¢) = |« cos isin n
w"((o t2> (—sin(qS) cos(¢)))_| |oo (t) (cos(¢) + (#) (37)

The Lie algebra g is a direct sum g = RH @ RE; @ RE_ & RZj, where

R e i R (S G R

Let V = E; + E_, we define the elements
PL=H+iQV,P_.=H—-iVegC (39)

which form a basis of g/t ® C. Under the adjoint action of K, they are eigen-
vectors

cos(¢)  sin(9) o in 9
Ad(( B0 NPy = costo) vism@) P 0

Let us denote by PY the dual elements in (g/¢)¥ @ C then

Whol = 4i P @ thy, Wnot = —4i PY @ ¢_y (41)
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form a basis of Homg__ (Al(g/E)Jndg%“a\oo). As in [Eis] 4.3.2 we define the
element

1 _
Wtop = i(whol + Whol)

and we know that who1 and wiep, define the same class in H' (g, Koo, Indggﬁg | oo)

and this class is a basis of this one dimensional cohomology group.

If NOW Woo = Whol OF Wiop, then following is clear (See also section 2.4.3
below) :

Proposition 2.1. If we choose an element in h € C,, then the image of ws ® h
under the map (35) represents the cohomology class

h(x)
[Woo ® h] = ——ey (42)
ﬁe;c) d(y)

where of course y = pp(x).

2.3 The Eisenstein lift

Let us now assume that ) ZE;; = 0, then we know that [wo ® h] is in the

image of the restriction map

H'(SE,,Z) 5 H'(N 2(C), 2). (43)

The theory of Eisenstein series gives us a lifting of this class in the cohomology of
the boundary to a class Eis(we, ®@h,0) € Hl(SIG(f ,C). We recall the construction
of this Eisenstein class. Let v = «/2 be the dominant weight. We twist the
induced representation by |y|* and get an embedding

(Ind5E) |l ® Ca) © [1]* = AU(A)T(Q\G(4)/K7) (44)
and by summation we get an embedding

Eis : (Ind3;(3) 0o ® Ca) @ [1* = A(GQ\G(A)/Ky) )
45
Eis(f,5)(9) = 2 ep@\c@ f(79)

This series converges for R(s) > 0 and extends to a meromorphic function in
the entire complex plane. From this we get a homomorphism

Homgoz) (A*(/8), Indig) [alo) ® Co ® 7]° = Homsoa) (A*(8/8), A(G(Q\G(4)/K7)

Eis: w® h® |y]* — Eis(w ® h, s)
(46)

It follows from the theory of Eisenstein series, that this operator has a simple
pole at s = 0. But we have
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Proposition 2.2. For all w € Homso(g)(A'(g/E),IndgE§;|a|m) and all h for

which ), % =0, the function Eis(w®h, s) is holomorphic at s = 0. If wee @ h
is as in (43) and Y, % = 0 then we get for the restriction of the cohomology

class res([Eis(wse ® h,0)]) = [woo @ h).
It follows from the Manin-Drinfeld principle that the class
[Bis(wae ® h,0)] € H'(S%,, Q).

Now we are ready to apply our consideration in the previous section to
construct the mixed Kummer-Anderson motives. We divide the set ¥ = X UX
(both subsets should contain at least two elements). We choose a divisor d =
> n;x; of degree zero which is supported on X,. We have the element hy € C,,
which is given by h(z;) = n;b(y;). Then we can choose for our element wy the
Eisenstein differential

wy = Eis(whel @ ho) € HO(SIG{fyglog(Zoo)) (47)
Then we multiply by the denominator such that
AQ)Eis(whor © hy) € H'(SE,,2) (48)
and we find a meromorphic function F, on Xg,(C) such that

dFy,

A(®)Eis(whol ® ho) = —= (49)
Fy
We have to discuss the field of definition of this function and to evaluate it

at the points of 3y to compute the resulting mixed Kummer motives.

To attain this goal we have to compute some intertwining operators.

2.4 Local intertwining operators
2.4.1 The local operator at a finite place

I want to resume a computation which appears already in my Lecture Notes
volume [Eis] on p. 128. Unfortunately it contains some errors which are not
relevant for the following, but which have to be corrected.

Our underlying group is still G = Gl,. We consider a specific representations
of G(Qp). The root a provides a character

lalp, = |’Y|;2> i B(Qp) — Q

by (5 )l
p 0 to to
The induced representation Indgggi ;|a|p admits a G(Q,) invariant linear map
to C, the kernel is the Steinberg module. Here we take the algebraic induction
and not the unitary induction.
Let n : T(F,) — C* be a character, we extend 7 to a character on T(Q,)

by putting n((% ;r;)) = 1. Let ¢ = |a|n. By ¢ (resp. 7)) we denote
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the restriction of ¢ (resp. 1) to the subgroup {(é t01> } We identify this

é t01>' Then we get

subgroup to Q by t (

m(t1)

(1) — 12
o = |p772(7f2)

We consider the induced module
Lop@lnle = Indgggg‘/’p ® |
Let K1,1(p) C GL2(Z,) the subgroup of matrices
LG o)
v 6

We have a basis fo,, foo,n for the vector space

v=0 mod p,aand § =1 modp}CGLg(Zp).

IKl.l(P)

s )

these are the same elements as in [Eis] p. 107, but we interchange the subscripts
0 and o so it may be better to write the definition again: The restriction to

GLy(Z,) is given by

0

fn,O:
t1 u 0 1 1 v
— 0

(tl u>—>0
0 t
t1 u 0 1 1 v

— m(t t
(0 t2> (—1 0> (0 1) m(t)na(t2)

Let n* the conjugate under the non trivial Weyl group element, then we define
the standard intertwining operator

(“ ;‘) s () mat)

fn,oo :

int __
Tp = Yoplvl® > L)y

which is given by the integral
) = [ fwug)du (50)
U(Qyp)

where vol(U(Z,)) = 1.
We want to see what happens to the elements f, o, f,00. We have an obvious

identification
Ki1,1(p) Ki1,1(p)
G(Qp) _ G(Qp)
(IndB(Qp) Y s) = <IndB(Qp) Wy ® (_5)>
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where we identify f,, 0 = fyw.0 = fo, fnco = fw,00 = foo-

We compute the integrals and during this process we correct the mistakes
in [Eis]. We have

T3 (fo) = als)fo + b(s) fo

T3 (foo) = c(5)fo + d(s) fo

(51)

where

a(s) =T, (fo)(e) , b(s) = T, (fo)(w) , c(s) = T, (foo)(e) , dls) = Tp" (foo) (w)

Now

2?0@@>—L;nwWMu+§§@Vwwééﬁ<w(éeﬂ”)>ﬁ.

(The volume factor p — p*~! is missing in [Eis], p. 128, volge(Z)) = 1.) The
first summand is zero. To compute the second term we decompose

0 1 1 e\ (0 1 _ [ep” -1 -1 0
-1 0/\0 1 T\-1 —ep) N0 €elpr)\—epr -1
and hence

f0< (_01 (1)) ((1) 6p1y>> = f0< (q(g)u 6—1_pl—u> <__€;u _01>> =W (e)p =t

Taking the factor p¥ — p*~! into account we get

a(s) = (171) P

p/1—pi=s

—1-s

if ™ =1 and zero otherwise.

Now we show that b(s) = %, to do this we compute

TW%M)éfMWW+§Wﬁ5@h@@(TvO%

In the first integral the integrand is zero for v ¢ pZ, and equal to 1 on pZ,

hence the integral gives %. To compute the second term we decompose

1 ep™ ! 0\ (p¥ = a B
v (0 1 )w - <6p‘” —1> - (0 p‘”) <7 —p”>’ (%3
where v Z 0 mod p. Therefore the value of fj is zero on this matrix and the

infinite sum is zero. To summarize we put 7 (p) = 1 if V) is trivial and 0
else, then
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ey (1 Ly _nM@p 1
1" () = (1= ) T g Jo i (54)

The same computation for f., yields

T (o)) = [ foolwnydu+ S 0" =) [ fuofw (L D) )de.
Zp v=1 Z; O 1
(55)

The integrand in the first integral is equal to one hence the value of the integral
is one. The value of the second integral is zero. Hence

T, (foe)(e) = 1 (56)

The second summation is a little bit more delicate.

T, (foo) (w) = / p foo(wuw)dwi(p"p“) / e <w (é v ) w>de.

(57)
For u € Z,, we have
0 if u € pZy,
o = 58
foo(wruw) {n(l)(_u—l) if u € ZY (58)
Therefore
eY 1
i foo (wuw)du = n*" (p)(1 - 13) (59)

For the second term we use again (53) and get

pY o x a B (D) (v (s4+2)v

0o —v v = € 60

f<(0p)(7 p)> e (60
Summing up yields

1. 1 e 1. pW(ppt=s
1—- p”/ f w< )w de=(1--)——————— (61
( p); 25 °°< 0 1 O e Y
Adding up the two contributions we get
1 1

T () (0) = (L= ) i o (62)
and we get
int — 1 —1
T (.foo) 7f0+(17p)1—77(1)(p)p_1_8f00 (63)
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Let us summarize:

—1—s .
T int _ (1_%)#%—%%]@0 if nM =1
P (fO) - 1
= foo else
p
(64)

in fO"i_(l_l T 1—17st0 lfn(l)zl
Tp t(fOO) :{ p)l P

fo else

In the meanwhile we may have forgotten our character ¢ and its restriction
oM to Q, - The local Euler factor attached to #1 it is defined by

1 1
Lp(¢( )75) = 1_ n(l)(p)e(p)_s (65)

so it is equal to 1 if (1) is ramified.
In view of the computation of the constant term of the Eisenstein series we
define the local intertwining operator by the relation

Lp(e7 5+ 1) loc

T, (f) = F——=4T, 66
) = ) ) (66)
so the numerator of the L— ratios in front swallows the pole at s = —1 in the

operator T ' the operator T ™ is holomorphic for R(s) > —2. We get the
following expression for the operator 7°¢

—1-s _—1l—s .
(1 - %) 18177275 fO + %41757275 foo if 77(1) =1

% fo else

|
(67)

_p—l-s .
P oo/

fo else

2.4.2 The unramified case

Now we assume for the moment that 7 is trivial. In this case the function
ho = fo+ fso is the spherical function, it is invariant under the maximal compact
subgroup G(Z,). In this the local operator is so designed that independently of
the value of s

T(ho) = To°(fo + foc) = fo + foo = ho. (68)

If we choose s = 0, then TP}OC annihilates the element fy, — % foo and hence

we get in accordance with what we know that Tzl,‘)C is not injective if s = 0. Its
kernel is the Steinberg module. We see that the final result in [Eis] on p. 128 is
correct up to a factor p%a on the right hand side.
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If we keep the parameter s and consider the image of fy — % foo under TII,OC
then we get

T (fo — L fu) =

_o—1l—s _o—1l—s
(1-2) b fot+ 2 — L (B fo+ (1-3) i fo)) =

—1-s_, -1 -2 —2—s —s_
pl_p72gs fO + pl_pE275 foo = Z_p—} (fO - %foo)
(69)

This expression vanishes at s = 0 and we obtain as expansion in the variable s

plogp

T (o= o foc) = —5T B0 (fo = ~fuc) . (70)

For a later reference we note that for s =0

2
p+1

TI(fy + %foo) — 2 (71)

2.4.3 The local operator at the infinite place.

The same kind of integral also defines an intertwining operator

in G(R s GR)|_|—s
T - Ind§E) oo ® 112, — Ind§ ) |15
(72)
flg)— fU(R) f(wug)du
where the measure is the standard Lebesgue measure. We have seen that
Hom . (A (g/8), Ind3 (%) oo ® [7]30) = Cwhol & Cpel, (73)

We evaluate at s = 0. We know that for s = 0 the intertwining operator
maps all K, types ¢, to zero except ¥y and

T ™ (4ho) = mbo (74)

(See slzweineu.pdf 4.1.5.) The kernel is the discrete series representation Dsy,
and Homg__(A'(g/t),Ds) = H'(g, Koo, D2) = Clwhnol] ® Clwnel]. We consider
the complexes

Hom__ (A°(g/t), Ind5(%)|afo) —  Homy (A (g/t), Ind5 D) afo))  —
0 (75)
Homg  (A'(g/t), D2)

We have g/t = CH @ CE; = t® u and the Delorme isomorphism gives us
Hom . (A*(g/t), Ind5 (%) [a]o) = Homger (A*(t @ u),Clal)  (76)
A straightforward computation shows

(whol — (Ijhol)(H) =47 and (whol — @hol)(EJr) =0 (77)
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and this implies that this implies that for the element ¢y € Hompg_ (A°(g/¥), Indggg o] o)
we get

. 1 _
—i dipg = i(whol — @hol) (78)

and hence wyo and @) represent the same class in H!(g, Koo, Indggg || oo )-

We see easily that
(Whol + @hot)(H) = 0 and (whol + @hol) (Ey) = 2 (79)
and hence we get
Whol (B4 ) = wiop(Ey) =1 (80)

and this justifies the assertion in proposition 2.1.
The author admits that keeping track of the powers of 2 as factors was
painful for him. But they are important.

2.5 The simplest modular Anderson-Kummer motives

Now I want to return to [Eis] and I will take up the discussion on p. 139. I
consider the case n = 0, but now I consider two primes pg and ¢. In principle I
keep the notations from Kap. IV. We apply our considerations to the curve

Y (pol) = Xo(pol).
We have four cusps. These cusps are obtained from the diagram

Xo(pol)
v ¢
Xo(po) Xo().

The curves Xo(po) (resp. Xo(£)) have the cusps {00p,, 0p, } (resp. {oog, 0¢}) and
hence

Xo(pol) \ Yo(pol) = X = {00p,, 0p } X {00r, 0r}

We construct sheaves Z# on Xg(pof) which will be obtained as extensions with
support conditions of the sheaf Z to Xo(pof). To do this we divide the set of
cusps into two subsets

Yoo = {(Oopovoé)a(opmoof)}

Yo = {(OOPO,OO[),(OPO,OE)}
and we have _ _
Yo(pol) == Yo(pol) U Eo — Xo(pol)-

We put
7# =iy 0 (Z)

and as usual we consider the cohomology H'(Xo(pof),Z*). Our above scheme
U = Yy(pol) U Xo.
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Now we choose ? = (00py,0¢) — (0p,,00¢) and k(z,y) =  — y and define
Hiso(Xo(pol), Q%) = K(r,wa) (81)

We compute the extension class of this motive in Q* ® Q.

Now we choose

Q/Zf = ® 1/’p®w{p0,é}’

P#po,¢

where of course again the factors different from pg, £ are given by the normalized
spherical function and

Vo = () o (174 102) -
L 2 e (1019 = @

=

L £
= el - L e s’

Then the class [wa ® 9] has a non zero restriction to the cusps (00p,,0¢)
and (0p,,00¢) and in fact the are generators of opposite sign.
Now we know that

Eis[weo ® ¥¢] € H'(SF (500 Q)

and we want to determine the number § which multiplies it into the integral
cohomology.

Here wy, is as above, we may choose for ws, the holomorphic form wye or
the topological form wyep. The form Eis(who ® 1/; #) will then be a holomorphic
1-form on Sgo (po0) which has a first order pole in the two cusps (0oy,, 0¢) resp.
(0py, 00¢) and which is holomorphic in the two other cusps. On the other hand
Eis(whe1 ® 1[) ¢) is the lift for the Betti-de-Rham realization. If we multiply this
form by § the residues become +¢ and it represents an integral class. But then
this form will be the logarithmic derivative of the function

F(z) = 6527ri IZ Eis(whol®1/3f)

and this function has the divisor 6((cop,,0¢) — (0py, 00¢)).
Now we recall that the extension class of our mixed motive Hy.(Xo(pof), Z7)
is given by the ratio of values

F((00py,500))
F((OPO’ 0@))

We have outlined in [Eis] how such a value can be computed.
We choose a 1-cycle 3 joining the two points zg = (cop,,00,) and z3 =
(0py, 0¢) and we compute the integral

/ EiS(whol X 1/;f)

3
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As in [Eis] we also consider the integral fa Eis(wiop ® ¥y). If we apply complex
conjugation c to this cycle and if we observe that complex conjugation map wiop,
t0 —wop, then we see that

/Eis(wtop ®py) = —/ Eis(wrop ® ¥y)),
3 €3
and hence

QLEiS(wtop @) = /c;, Eis(wiop ® 1))

But now we have a closed cycle and hence we know that
25/Eis(wmp ®@Yy) € Z.
3
We conclude that

. ~ 1
/Eis(wtop ®1f) — Bis(wiop ® Vy)) = /Eis(wtop ® 1f) mod % Z,
3 3

and hence we compute

/EiS(OJhol - Wtop) & &f)
3

Now we have seen that in Homg (A'(g/€), I, ) (See (78))

. 1 _
—t dipg = §(wh01 - whol)

and hence we get
/EiS((whol — Wiop) = —Eis(¥0 ® 7)) (00, 00¢)) + Eis(h0 ® 1)) (0o, 00¢))-
3

To evaluate these integrals we have to twist the Eisenstein series by a complex
parameter s and evaluate at s = 0. We have to compute the constant term at
s =0 and get

—1ho @ P7((00py,0¢)) + (Yo @ 15)) ((0p, 0r))

(L s oc/.T.
SHn 2 - ) T() (00p0, 000))+

E Tl s ocr T
s e T () (0, 00)+

The first two summands give zero by the construction of 1; ¢ as a product over
all primes. To compute the other two contributions we have to observe that
(s + 1) has a pole at s = 0 of residue 1 and this pole cancels because T'°¢(4) )
has a zero at s = 0. We have to evaluate the result of this cancellation. We
have to compute

1

- S T1(31)) ((00py, 000)) |s=0 +§ ST 1)) ((0pg, 00)) [s=0,  (83)
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and multiply the result by

1) <2

To compute Tloc(zZJ ¢) we only have to consider the two factors ¢, py and then
we have to apply the formulas from section to the original definition of ¢, .
We get

T (W1 pg.0y) =

S<10gp0( f(;vo) 31— (Po)) ® ul_lh(/) logﬁ(p +1 (Po) ® (22 . éﬁ) + 2t 1f(£))>
(84)

We have to evaluate at ((0op,,00¢)) and ((0p,,0¢)) and to take the difference.
The first term in the expression above yields

L
—logpo( f(Po) + Tl—lf(gm)) ® €+1 h( )((oop07 00g)) = ppgl Z—'%l

onN

(85)

2
S 1PN @ A h ((0p,, 00) = — 17 7y

_ —po_ ¢(po)
log po (725 foc® + 7

PG —1
and the difference is

Do 1 1 1 1 1
2 + = =
pf—14+1 p5g—104+1 py—1£0+4+1

For the second term in our formula above we get the same expression with pg, £
interchanged and therefore we get the final result

— £ T(05))(00pg, 000)) ls=0 ++5 - T°°(94)) ((0p5, 00)) |s=0=
(86)

11
mmlogpo e1p0+110g£

Hence our ratio of values which gives the extension class of our mixed motive

is given by
. ) 11 126
6 1
(627” (Po T “_1 log po— 711 P(J+1 logé)) ( (1;0—1 T p= 71 po+1)

We reached our goal: Since we know that the result must be in Q* we can say
something about §:
The exponents in the powers of pg, £ are

(po+1)(£—1) and (po—D)(L+1)
(n§— )2 -1) (p§ — D)2 -1)

If we multiply them by 126 they must become integers. If we define D(pg,¢) as
the greatest common divisor of the two numbers (pg+1)(¢ — 1), (po — 1)(£+ 1)
then we get the divisibility relation

2—1)(2 -1
D(pOa e)
We want to comment briefly on the factor 12 = 2 -2 -3 : The first factor 2

comes from the factor 2 in 274 and the comparison with 7 in equation (74) and
the factor 2 - 3 comes from the number 6 in the value of {(2).

(87)
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2.5.1 Some examples

We want to discuss a few examples. We have the action of mo(Gla(R)) on
H} (Yy(pol)(C),Z) which commutes with the Hecke operators, hence the inner
cohomology has a + and a — eigenspace. We also know that the character-
istic polynomial Ch(7T},)[z] of the Hecke operator acting H!(Yy(pol(C),Z)— is
equal to the characteristic polynomial of 7}, acting on the space of cusp forms
S2(To(pol)). For these characteristic polynomials we have the tables of W. Stein.
Let Zey the Hecke module on which the Hecke operator T}, acts by the eigen-
value Tpep = (p + 1)eg. At various places we explained that the denominator ¢
produces congruences, more precisely we get an embedding

Zeo @ 7.)87 — H!'(Yo(pol)(C),Z)_ ® 7.)57 (88)
This implies that we must have
Ch(T,)(p+1)=0 mod § (89)

If we take pg = 2,¢ = 11 the the number on the left in the above divisibility
relation is 60 and since we have factor 12 = 22 - 3 on the right hand side we
get 5[0. In fact looking at the tables we see that Ch(T3)[\] = (A + 1)? and
hence Ch(T3)[3 4+ 1] = 25. Here we notice that this congruence already occurs
in H!'(Yy(11)C),Z)— and hence it occurs twice in H,'(Yy(22)(C),Z)_ which
explains the square.

We want to stick to the case pyg = 2. We want to discuss examples where the
congruences are modulo divisors of £ + 1 because the others are well known.

We take £ = 149 then we get 52 - 37|5. We only consider the characteristic
polynomials on the space of new forms

Ch(T2%)(z) = x(z + 2) (2% — 22 — 2)(2® + 522 + 4o — 5)(2° — 2% — 102% + 1122 + 122 — 2)
Ch(TE%)(x) = (z + 2)(x + 4)(z% — 22 — 2)(2® — 22 — 4z — 1)(2° — 5ot + 223 + 922 — 2)

Ch(TY)(z) = (2 + 4o + 1) (25 — 62 — 3723 + 23622 + 322 — 704)(x + 5)?(x)3

We see that in all cases 52|Ch (75" (p+1) and for p = 13 we have 52||Ch(T75™ (14).
We may be even be a little bit more precise. We see that the characteristic poly-
nomial is always a product of two linear factors and then one factor of degree 2,
3 and 5. Then it is the factor of degree 5 which provides the divisibility relation.

At this point a more scrutinized examination of the relationship between the
structure of H{'(Yo(pol)(C),Z)— and the spaces of new and old forms should be
in order. This applies also to the next example.

We consider the case pg = 2, = 499 then 3 - 5% - 83|§ we are interested in
the power of 5. Again we look up the tables, the characteristic polynomial of
the Hecke operator T35™ factors

Ch(TE™)(x) = (22 + 122 + 16) (2> — 622 — 28z — 16)
(22 + 102% — 742" — 8362° + 110725 + 186502 + 233223 — 955172 + 413652 — 751) x R]z]

We know that 5%|Ch(T2¢") and we find that 5 JR[54] and 5|| P[54] for any of the
three factors in front. We conclude that 53||§ and we say that the congruence
is spread out over three factors
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Our last example is
po = 2,4 =127.

In this case the denominator § is divisible by 2°-32-7. where the Hecke operator
T, acts on Z/§Z[p + 1] by the eigenvalue p + 1 (p # po,£). This implies for the
characteristic polynomial T,,[X] of the Hecke operator that we have

T,lp+1 =0 mod ¢
We looked up William Stein’s tables and found

Ch(T3)(z) = 2%(x + 2)%(z — 2)%(2® + 22* — 102® — 1622 + 10z + 16)x
(23 + 322 — 3)%(27 — 32 — 122° + 392 + 262° — 12822 + 64z + 16)?

Ch(Ts)(z) = z(z — 2)(x + 3)(z + 1) (22 + = — 4) (25 + 2* — 202® — 1822 + 5dx + 54)x
(2% + 622 + 9z + 1)%(27 — 825 + 1125 + 532* — 14623 + 3222 + 1282 — 48)?

Ch(T%)(z) = x(z + 1)(x — 4)(z + 3) (22 — z — 4) (2 — 32* — 2023 + 4022 + 962 — 32) x
(2% + 322 — 3)%(27 + 325 — 202° — 412 + 11423 + 642% — 1122 — 16)?

Ch(T11)(x) = x(z + 3)(z — 4)(z — 1) (2% + T2 + 8)(a® — a* — 4423 + 7222 + 4807 — 1056) x
(23 — 212z — 37)2(27 — 282° — 172* + 8823 — 3722 — 50 + 3)?
where the square factors in the second line are ”old”. We should expect that
25|Ch(T},)(p + 1) and we find that this is always the case, in general we find a
divisibility by a much higher power of 2.
We also find that Ch(7%4)(12) is an odd number, hence we should expect
that we get an inclusion

Z)2°Zey — H,"V (Yo(254)(C),Z)_ @ Z/2°Z
and this in turn implies that
2°|Ch(Tp*") (p + 1)

Of course this true, actually we almost always find a divisibility by a very high
power of two. Only in the two cases p = 5 and p = 53 we find the exact
divisibility by 2°.

We can say that the Jacobian J"*%(X((254)) is up to isogeny a product of
four elliptic curves, an abelian surface and an abelian 5-fold. Two of the elliptic
curves admit a congruence mod 2 (resp.) mod 4 and both abelian varieties
admit a congruence mod 2. So the congruence mod 2° is spread out over several
cusp forms.

2.5.2 Euler systems ?

We want to indicate how we can use these mixed motives Hy, (Xo(pof), Q%) to
bound ideal class groups.

We see that we have to multiply this motive by ¢, if we want it to become an
integral motive. From this it follows that we have a (Hecke-invariant) inclusion

Z/8Z(—1) < H'(Yo(pol), Z/SZ) (90)
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We apply the arguments from [book] 3.3.8. For a suitable finite extension F//Q
we have a decomposition

H{ (Yo(pol), F @H, Yo(pol), F')(my) (91)

Tf

where 7y runs over a set of isomorphism classes of absolutely irreducible modules
for the Hecke algebra. These Hecke modules are unramified at all places different
from pg, £. This decomposition induces a Jordan-Holder filtration on the integral
cohomology (See [book], 3.3.8)

(0) ¢ THWHL, (Yo(pol), OF) C THPHL, \(Yo(pol), OF) C -+ C TH HL,  (Yo(pol), OF)
(92)

if we tensorize the subquotients by F we get the H!'(Yo(pol), F)(ms). The fil-
tration depends on an ordering of the ;.
We can tensorize this Jordan-Hoélder filtration by Z/6Z and we get

Op @ Z)67(—1)
!
0)c JHWHL, (Yolpol),Op) ®Z/SZ C - C  THHL, \(Yolpol),Or) @ L/5Z
(93)

where the vertical arrow is an inclusion.
We choose a prime p which divides § and we choose a prime p C Op above
p. Let p?||6 then we can localize at p and our diagram becomes

Op/pd(—1)
1
0)c JHWHL, (Yolpol), Op/pd) - JHTHL, (Yolpol), Op/p?)
(94)

Now we refer to the considerations in [book] 3.3.8. For simplicity we assume
that there is exactly one 77112315 among the above 7y which is congruent to the
Eisenstein class mod p. Then we can order the m; in such a way that the
vertical arrow factors through the first step in the filtration, i.e. we get an

inclusion

Op /p?(=1) = THW H ((Yo(pot), Or /p") () = Hi(Yo(pol), O /p?) (m§™)
(95)

The module on the right hand side is now a free O /p? module of rank 2, it is
a module under the action of the Galois group. If we divide it by Or/p?(—1)
then the Weil pairing implies that the quotient is O /p?(0)in other words it sits
in an exact sequence

0= Op/p(=1) = Hiy (Yo(pol), O /p")(nf™) = Op/p?(0) = 0 (96)

hence we have constructed an element

[Hiia(Yo(pot), Op /p?) (™)) € H'(Gal(Q/Q), OF /p(-1)) (97)
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Now we encounter several questions:

A) Is this class non trivial? Is this class even a class of order p?, i.e. does it
generate a cyclic submodule Op /p? € H'(Gal(Q/Q), Op/pd(—1))?

B) We can restrict this class to H'(Gal(Qy/Qy), Or/p%(—1)). Can we com-
pute this restriction? Is perhaps this restriction an element of order p??.

At this point I actually get stuck for the moment. Recall that we have £ = 1
mod p? and hence Cps € Qq. Then the twist disappears and we get the Kummer
isomorphism

HY(Q¢/Qu,Z/p°Z) = Qf @ Z/p°Z (98)

and the hope, which is expressed in B), is that the cohomology class which we
constructed is as ramified as possible, i.e.

[Hgiq (Yo(pol), OF/Pd)(W?iS)) = { x a unit (99)

I think it suffices to prove this for 6 = 1, I am somewhat optimistic.

2.5.3 Denominators and modular symbols

We notice that need the two primes ¢, py to produce denominators of Eisenstein
classes and therefore inclusions like (90).

In the [book] section 4.5 we will discuss another method to construct Eisen-
stein classes with denominator by using the theory of modular symbols.

We start from a prime ¢ and consider the modular curve Yy (¢)/Q. It has two
cusps 00g,0p = {x1, 22} and we have the exact sequence (see (13))

0 = H (Yo(0)(C), Z) — H! (Yo(t)(©),2) " @il (N, Z) ™ H2(Yo(0)/(C), Z) — 0,
(100)
here HY(N,,) = Z(—1),H2(Ys(¢)/(C),Z) = Z(—1) and &1 : (z,y) — = — y.
Hence, if h(x1) = 1,h(z2) = 1 the Eisenstein lift (See (2.3) Eis(weo ® h) €
H} (Yy(¢)(C), Q) has a denominator A(¢). This denominator is of course equal
to the order of the torsion point (z1) — (z2) in the Jacobian of Xy(¢). Now
we can use the method of modular symbols to get estimates: We can evaluate
Eis(weo ®h) on certain cycles (the modular symbols), the result will be a rational
number, and the denominator of this rational number gives us an estimate for
A(L).
Using this method we should get

For a prime p > 2 which satisfies p’|{ — 1 we have p°|A(f)

This occurs in principle already in Mazur [Mal]- THES .
Hence we see that this approach using modular symbols actually gives us
elements in

[Hiia(Yo(£), OF /p®) (™)) € H'(Gal(Q/Q), OF /p?(~1)) (101)

In a sense these considerations tell us that we may chose py = 1.

Of course we can also get this from a slight modification of our previous
consideration if we work with an auxiliary prime pg and consider the projection
Yo(pol) — Yo(¢). We pull back the divisor (x1) — (x2) to a divisor on Yy(pof)
and our previous arguments also give the denominator estimate.
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2.6 Poitou-Tate duality and bounding cohomology groups.

We want to indicate how the existence of these cohomology classes can be used
to bound some cohomology groups. The method is basically the methods of
Euler systems. We stick to our example. Let us also assume that the prime p
is completely split in F' and hence we may assume that Op /p? = Z/p?.

We pick a prime p > 2. We want to study the Galois cohomology

H'(Gal(Q/Q), Z/p°Z(~1)). (102)

more precisely we want to consider only classes which satisfy a certain local
condition at p we consider

H{,,(Gal(Q/Q), Z/p°Z(~1)) = {£[&, restricted to H'(Gal(Q,/Qp), Z/p’Z(~1)) = 0}
(103)

If S is a finite set of primes different from p then we denote by H S v} (Gal(Q/Q),Z/p°Z(—1))
those classes which are unramified outside S.

We also consider Hé,{p}(Gal(@/Q), 7,/p%(2))0) at the same time and get the
diagram

HY (Gal(Q/Q,Z/p°(2) % @yes.qpy H'(Gal(Qu/Qy, Z/p%(2))

X

HY (1 (Gal(@/Q,Z/p°(-1)) = D,espy H'(Cal(Qu/Qu. Z/p"(~1))
1
Q/Z.

(104)
The vertical arrow X is the direct sum of local pairings, i. e. x = ®,U,, where

Uo - HY(Gal(Qu/Qy, Z/p°(2)) x H(Gal(@,/Q, Z/p*(—1)) » Q/Z.  (105)
We know

Theorem 2.1. (Poitou-Tate) The vertical arrow is a non degenerate pairing
and the images of o and r_1 are mutual orthogonal complements of each other.

We analyze the local pairing U,. We have two cases

i) vo=10#p.

Let Q7" be a maximal unramified extension, then (,; € Qp'. Let &, €
Gal(Q}"/Qg) be the Frobenius element. We have the Hochschild-Serre spectral
sequence

0 — H'(Gal(Q}"/Q0), Z/p’ (k))) — H'(Gal(Q¢/Qe, Z/p’ (k) — (Hl(Gal((@e/()@?r%Z/p‘s(lf)))q”Z — 0.
106

Here k can be any integer. We denote the first term in the filtration by
H]! (Gal(Q¢/Qu,Z/p°(k))) and the second term (the quotient ) by HL  (Gal(Q./Qy,Z/p’(k))).
As before we have the Kummer isomorphism

H'(Gal(Qe/Qi"), Z/p (k) = (QF")* @ Z/p(k — 1), (107)
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the group (Q¥)* = Uyx < £ >, clearly $l, ® Z/p’ = 0 and hence our exact
sequence becomes

0 — Z/p’(k))/(1d = D) Z/p° (k) — H'(Gal(Qe/Qe, Z/p’ (K))) — (Z/p° (k (— 1)%‘1” =0
108

Since @, acts on Z/p’ (k) by ®2 = (*x we can rewrite the sequence

0= Z/p’(k)/(1 = €)Z/p° (k) — H'(Gal(Qe/Qe, Z/p° (K))) — {z €7Z/p6(lz - 1))))|(1 — 5Nz =0} =0
109

and hence finally

2 (Gal(Qe/Qe), Z/p° (k) = Z/p (k) (1 — )Z/p" (k); Hsam<Ga1<@z/@z>(, Z/§95<k>>> — ker(1 — 571,
110

Now it is clear how the pairing in (105) looks like. We consider the diagram

— Z/p° (k) /(1 = £*)Z/p° (k) — HY(Gal(Q,/Qy), Z/p°(k)))  — ker(l —£F=1) —
= Z/p°(1=k)/Q = 0"RZ/p° (1~ k) — H(Gal(Q/Qu),Z/p°(1 — k))) — ker(1—€7F) —
U
oz
(111)

and for the pairing Uy the modules
Z/p’(k)/(1 = ) Z/p° (k) and Z/p°(1 — k) /(1 = ") Z/p (1 — k)

are mutual orthogonal complements of each other. Recall that these modules
consist of the unramified classes H} .. The pairing U, now induces a pairings
between the ramified quotient of one sequence with the unramified submodule
of the other. This is given by the multiplication

ker(1 — 5~V x Z/p° (1 — k) /(1 — 2" FZ/p° (1 — k) — Q/Z
(112)
(z,y) = F
i) v = p.
Of course we start again from the Hochschild-Serre spectral sequence and
apply the Kummer isomorphism

0 — H'(Gal(Q(¢y)Qyp), Z/p°Z(k)) — H*(Gal(Qy/Qp, Z/p° Z(K)) — (Q(gpg)X ?Z/p‘SZ(k: — 1) — H%(...
113

Let us assume that p—1 fk, p—1 fk—1 then H'(Gal(Q((ys)/Qp), Z/p°Z(k)) =
0, H(Gal(Q((,s)Qyp), Z/p°Z(1 — k)) = 0 and

(Q(¢)* ®Z/P° Lk = 1)) = Z[p]* (1) ® Z/p°Z(k — 1) (114)
and these cohomology classes are totally ramified. This says that

H{, (Gal(Qy/Qy), Z/p°Z(k)) = H{,(Gal(Qy/Qy), Z/p°Z(K)) =0 (115)
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Now we describe the potential strategy to bound Galois-cohomology groups,
it is essentially the the same strategy as in the theory of Euler systems. We
start from a class

¢ € Hp 1,1(Gal(Q/Q, Z/p°(2)),

let p* be its order. We choose a § > a. We show that Tschebotareff den-
sity implies that there exists a prime ¢ = 1 mod p° such that the restriction
& € H (Gal(Qy/Qy, Z/p°(2)) still has order p®. Now we look at the elements
[Héis!(Yo(poﬁ),(’)F/pd)(ﬂ'?is)) in (99). Let us assume that we really can show
that (99) holds. Then this class is only ramified at ¢, the sum defining x has
only one term and Poitou Tate implies

al

€ x [y (Yo(pol), Or /p?)(7§™))] = p 0 (116)

and it follows that @ must be zero, hence £ = 0.

Hence we see that the success of strategy hinges on the assumption that the
classes [Hpy (Yo(pol), Or /p?)(n%))] are very ramified at £ and unramified at
all other places.

2.7 More ramification

We choose a slightly smaller open compact subgroup. Let us pick two different
primes po,¢ and consider the open compact subgroup Ky = Kj’io’e =[] K,
where K, = Gla(Z,) for p # po, ¢ and where

KPOZ{(Z Z>|C:O HlOdpo},KgZ{(Z Z>|a:1 mod ¢, ¢ =0 mod ¢}

(117)
We denote the the resulting Shimura varieties by Yy 1(po, £) C Xo1(po,?). We

still have -
E(C) = {(oopov OOZ)? (OOP()’OZ)v (Opo’ooé)v (Opo’ OZ)}

The group T'(F;) = F; xF, acts transitively on the fibers of pp : X(C) — £(C).
We can be more precise: We have two embeddings j; : F; < T'(F¢)( resp. ,jo :
F, — T(F;) ) by the first resp. the second entry on the diagonal. We get two
quotients

2O = T(Fy) /2 (F)) x {£1} ,E) = T(F,) /51 (F)) x {1} (118)

Let 2OV =(0°V) be the character modules. The element ( 0

1\ .
1 0) interchanges

these two character modules. We can summarize:
The fibers over (y,0;) € £(C) ( resp. (y,00¢) € X(C)) are torsors for Z©)

(resp. Z(>°) ) They have natural base points: The fiber over (y,0;) is Z(©) <(1) (1))

the fiber over (y,o0y) is Z(°) <_01 (1)) '

L]
From this we get give an even more explicit description of H(N ¥, Z).
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We have to be pedantic at this point. We define the ring
2] = ZIX)/ (X2 4o+ 1) (119)

it comes with a distinguished (¢ — 1)-th root of unity. We also choose a dis-

tinguished embedding j : Z[(;—1] < C, we send (r—1 — e?=1. We consider
characters x¢ : T(F¢)/{£1} — pe—1 C C* It is clear that each such character
is the £-component of a unique Dirichlet character x; : T(Af)/T(Q) — fo—1
which is unramified outside £. To x s we attach the algebraic Hecke character

o = lalpxy : T(Ap)/T(Q) — QlCe—1]*
and the induced representation I,, = Indggﬁi ;go 7, where we require that the

functions f € I, are Q((,—1) valued.
Then our space of functions (See (33)) - now with values in Q({s—1) - is

Ca®QG1)= @ @)~ (120)

X¢EEOVUE(eeV)

and we get the same equality if we replace a by the trivial character

Co0 ® Q(Cr—1) = b (L)%, (121)

XleE(O)VuE(ooV)

The module of invariants under Ky is

(Lo )57 = QU] @ QU] F2) © (QUGe-1]£eY, @ Qlee-1)FL,,,)

(122)
and the two factors have been described in section 2.4.1
We defined the intertwining operator (remember ¢; = |a|fx )
T s (I, )50 = (T, )™ (123)
it is essentially the tensor product
Tzlgc ® T, : (IWPU)KPO) ® (Ip,)"* — (wapo)KpO ® (Luy, )" (124)

The formulas for these local operators are in section 2.4.1

Now we apply the principles from section 2.2 and 2.3. We extend the coef-
ficients from Z to Z[(,_1] and consider the cohomology HY(N X, Z[(,—1]) We
start from an function h € C, ® Q({y,—1) then we can write it as the sum
h = EW izxf with ﬁ(xf) € (I,,)5r. If ha) ¢ 7 we get a cohomology class

d(y)
[wWhot] ® h € HY(N X,7Z). If the sum of the residues > Zg;g = 0 then we have
seen that Eis(wpe ® h) is a meromorphic 1 -form with simple poles at the cusps

in the support of h and residue Z(—Zj). We have to write a suitable multiple of

this form as the logarithmic derivative of a function H and to evaluate H at the
cusps outside the support of h.
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2.8 The computation of the extension class

We have to consider the constant term

A 1
Eis(w0®h,0)~am®h+zm
X )

(Here we notice that the character x in the argument of the completed L function
A should be x| the restriction of x to the torus T in Sly. But this torus is
identified to G, and under this identification we have x = x(!)). We consider
the ratio of the two values of the L-function. For a non trivial x the value
L(x, 1) is computed by the usual process. We write the character x, as a linear

combination .
xe(n) = Z gla, xe)e ="
a€lF,

T3 (o) © Ty (h(xs)) (125)

where

1 w1
gax) =5 D xelme Fo = SGla,xe),

l
n€L/lL

and where G(a,x/) is a Gaussian sum. We put x,(0) = 0 and since x; is
non-trivial, we get G(0, x¢) = 0.
Then we obtain the classical formula

LX) = 7 3 Glaxe) log(l — %),

aGFZ

To compute L(xy,2), we apply the functional equation. We have

I'(s/2) G(1, xe) - ( %)

ES/Q L — ’ . L 1 1— (1 s)/2
oz LG s) Vi (x H1—s)- =

and evaluate at s = 2

2

L(x,2) =~ - GLxa) - L, -1) - o
2

and hence we get for the ratio of the values of A at 1 and

a XZ 1 2mig
' log(1 — e 7 9).
Z G(1,xe) L(x~',-1) og(l—er™)

and since G(a, x¢) = Xg(a)_lG(l,Xg)) we get

- ng loglfep“).

aGFX
We plug this into equation (125) and get

Eis (10 © h, 0) ~ 0o @ b+ SX2DTIC(3g) @ T ((x0,¢)) =

P 2mi (@)1 TP (h(x4))
oo @ h = 2TI(0) @ (L emy log(1 — e FO) X O LGl
(126)
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Here a few comments are in order.

i) The character o is the trivial character, then A(xg, 1+ s) is the Riemann
¢ function completed by the I' factor. It has a pole at s = 0 which cancels if the
sum of residues is zero. To evaluate the second term in the first line we proceed
as in the previous section.

ii) If h € C,, then the inner sum
are rational.

—'Tc(h S
e xo W € C, i.e. its values

Now we play with different choices of h € C,. We choose a non trivial
character y, € 2V, In this situation we do not need the place po, hence we
choose h = 1) @ fé?(e, where 1) is the spherical function. Then we know

Tloc(féﬂ)“) =1 éﬁ),wm. The function h has support in the fibers over (y,0¢) and

féf?wxz has support in the fibers over (y,00z). Our expression for the constant
term of the Eisenstein class becomes

; i )t o
Eis(¢o ® h, ()) ~ 1y @ 1(po) ® fé?@ _ %wo ® 1(po) ® (Zae]F; log(l . 625 a)Xe(L()X—%ll;w)

(127)

We apply our previous considerations. Our function h can be interpreted as
a divisor with coefficients in Z[(y—1], its sum of the residues is zero. Hence we
know that it becomes a principal divisor if we multiply it by a suitable integer
A(h) € Z[¢e—1] i.e it becomes a divisor of a function H € Q(¢¢)(Xk,) ® Z[(r-1]-
To get an estimate for the denominator A(h) we have to evaluate the function
H at two points say x; and 1 in the fiber over (y,o0,) and look at the ratio,
this has to be a number in Q(¢{;)* ® Z[(;—1]. We know how two compute this
ratio is is equal to

H(xl) _ 2mig Xg(a)l)QmA(h)
i —(H(l e*F ) (128)

aeF;

Now we encounter a typical problem in the theory of cyclotomic fields. The
number

clxe) = [[ (@ —eFape@™ (129)

aEF;

is a cyclotomic unit in Z[{y]* & Z[(s—1]. It is not a root of unity but we do not
know whether or not it is a non trivial power of another unit. This is certainly
not the case if the class number AT (£) of the totally real field Q, ({) is one,
this is probably very often a case. On the other hand it is known that the class
number h*(¢) is the index of the cyclotomic units in the group of all units.
Therefore we get in any case

Theorem 2.2. The exponent

oht (6)7”("“) _
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W\

If our prime £ = 1 mod 4 then we may take for y, € 2V the quadratic

character (E)‘ Then our cyclotomic unit is
)= _ ey (3)
C((€>)1:[(1 *F0)® e Z[VEX (130)

We take for 1 a non residue and assume h(Z[v//]) = 1 then we get

4
——A(h)€Z 131
Lo .
We may of course choose the function h = fép ) g fé?“, then we have to

replace 1("0) the second summand on the right hand side in (127) by

1 ot 11-pyt
Tloc(f(()po)) _ (1 _ 7) Po 3(2170 (pO) (gpo) + = p(12Xp0 (pO)fégg) (132)
Po/ 1 —Dpy“Xpo (pO) Po 1 — Dy “Xpo (pO)

in the notation of (51) we have

_ (o = )Xpy (P0) b(py) = 22~ Xpo (P0)

a(Xp,) = 22— X (P0) P2 — Xpo (P0) (133)

(Comment: This is of course our formula (67), the functions fép O), fég(’) do not
depend on the unramified character x,, for our parameter s we have to choose
P~ = Xpo(P0).)

As before 95, denotes the divisor attached to h, it becomes principal if we
multiply it by the denominator A(h) and we find a function H with Div(H) =
A(h). We evaluate H at two different points in 3 which are not in the support
of h and compute the ratio of the values. The support of h is the fiber over
(0py,0¢) so we may evaluate in (Op,,2) and (0o, x) where z € F,/{£+1}. We
get for the values

a(xpg)xg L (=1) o P0pg)xg @)

A(h A(h
H((0p,)) = elxe)” 20070 50 H((00p0,2)) = ()™ 20170 2
(134)
Taking ratios of two such values we get expressions of the form
c(k)
C(Xé) (p%*Xpo(Po»L(x*lfl)A(h) (135)

where k is our pair of points and ¢(k) the resulting numerator. We denote by
n(po, x¢) the integral ideal generated by these c¢(x) then we find

Theorem 2.3.

+ Il(p07Xg)
O o)) LT, —1) ) < el (186)

2.9 Different interpretation using sheaves with support
conditions

Starting from characters x, € 20V = Hom(Z(®), C*) we consider the induced
representation of Gl (Fy)

G(Fy)
IXZ = IndB(F:) Xe
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and since this is also a representation of Gla(Z) we can construct a local system
I, on Xo(po)(C). As usual extend it to a sheaf I¥ by taking the direct image

at 0,, and extending by zero to 0o,,. Discuss Hy;, (Xo(po), fi) and relate it to
the above mixed motives.(Needs some improvement)

3 Higher Tate- Anderson motives

3.0.1 The coefficient systems

We recall the construction of mixed Anderson motives in [Eis] Kap. VI. Our
basic data are as in section 2.2. In addition we consider the representation of
Gl; on the space

Mz ={P(X,Y) =0, X" +an 1 X" 'Y+ +aY"|a, € Z} (137)

of homogenous polynomials in two variables X,Y of degree n and with coeffi-
cients a; € Z. We assume n > 0 and even. The center acts by the character
t — t". We may twist the representation by a power of the determinant then
M, z[v] = M,z ® det”, the twisted representation has the central character
t — t"*2”. We have an Gl invariant pairing

<, >q: Mn,Q[—n} X Mpg—Q (138)

is given by
o\ !
< XYY"V XTTRYHE >o= ( ) Oupu- (139)
I

This gives an isomorphism of Gls modules
Prq s My g[—n] = M, o (140)

Hence we get for the dual module

Mo z[—n]" = <Z) ay X*"Y" " ¥ay, € Z} (141)

In the following we will omit the stupid twist and only require that our
pairings and isomorphism are Sly invariant, or for the Harish-Chandra modules
that the are (g1, K,) invariant.

3.1 The construction of mixed Anderson motives

We choose an auxiliary prime py > n and consider the curves Yy(po) C X (po).
We have the two cusps {0p,,00,,} and we define the sheaf Mﬁz : We extend

the sheaf on Yy (po) by the direct image to 0,, and by zero to co,,. We consider
the cohomology (the mixed motive) (See [Eis], 4.2.2)
H(Xo(po), M7 ;)

We call it a mixed motive because it has different realizations:
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a) We have the Betti realization

Hp(Xo(po), M} 5) = H' (Xo(po)(C), M ;)

which is a finitely generated Z module with an involution Fi.

b) We have the de-Rham realization

Héth(XO(m)va,deh)
which are finite dimensional QQ vector spaces together with a filtration of
weights 0,n + 1,2n + 2.

c¢) For all primes ¢ we have the /— adic realizations

Helt(XO(pO) X @,M# )

n,Zg

these are finitely generated Z, modules with an action of Gal(Q/Q). We have the
usual comparison isomorphisms. We make the remark that in contrast to [Eis]
we do not make any attempt to discuss an integral structure on the de-Rham
realization.

We know the boundary cohomology H!(N EO,J\;lf’Z) = H'(N %o, My).
The tubular neighborhood N Yo = I'v\ Hy(c) where Hy(c) = {z|S(2) >
¢ >> 0}and I'y = {(1 mn

0 1
1 1
T = (0 1) and

Hl(./c/' Yo, Mz) = Mz /(1 —T)My = ZY™ & Tors = Z(—n — 1) & Tors

)} The group I'y is generated by the element

Then the following holds

We can find a polynomial P,(X,Y) = agX™ + a1 X" 'Y + --- + Y™ such
that its image Q0 € Mz/(1 —T) Mz satisfies

T,(Q,) = (" +1)Q,, for all Hecke operators T, with p # po (142)

and the Hecke operator T, is nilpotent on the p-torsion of the group Tors and

on the cohomology HCQ(Xo(po)J\;lﬁZ). For any p # po the Hecke operator T,
acts nilpotently on all p torsion subgroups in our cohomology groups. The only
non zero p-torsion occurs for p < n. From this we get especially that , is in

the image of the restriction map H}B(Xo(po)((C),/\;l:fZ) — Hl(./{f Yo, Mz).

This tells us that inside of our mixed motive H(Xo(po), M*

7)) we have a
sub motive

H]}Dis(XO(pO)7 Miz) (143)
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which is defined by the condition that for all p # pg the Hecke operator 7},
acts on all realizations by the (generalized) eigenvalue p"*! + 1. This motive is
of rank 2. Hence we get a diagram

H' (Xo(po), M ;) 25 HY(N S0, M )/ Tors = Z(~1 - n)
1 1 (144)
Héis(XO(pO)’ Mﬁ,z) == H]%is(N Yo, MZ)/TOTS = Z(_l - n)

where the two horizontal arrows are surjective an the upwards arrow on the
right is the multiplication by A(n), the denominator of the Eisenstein class.
This denominator can be computed by using the theory of modular sym-
bols ( [Ha], [Hab], [Kai]), in the following we discuss another strategy to get
information about this denominator.
By construction the motive Hg, (Xo(po), /\;liz) sits in an exact sequence

0 — Z(0) = H(Xo(po), M¥ 5) = Z(—n—1) > 0 (145)
and hence we can view it as an element in
[Hiso(Xo(po), M7 )] € Exctlu(Z(—n — 1), Z(0)) (146)

Of course this last equation does not make sense at this very moment, but
we have the extension classes for the Betti-de-Rham cohomology and for the
p-adic Galois-modules.

3.2 The Betti-de-Rham extension class
3.2.1 The intertwining operator

To compute the Betti-de-Rham extension class we have to apply the rules in
section 1.7.1. There we show that the extension class is simply a real number.
In principle this is also what we do in [Eis], 4.3.3. We essentially repeat
the calculation because the computation in [Eis], gives some wrong powers of
2 in the final formula and it is also much to complicated because of the totally
superfluous integrality considerations in the de-Rham cohomology.
We introduce the characters

t0 o t0 .
@, =T(A) > R*; ¢ (T = ftlte] e [ = [t

then the induced representations I, I, have non trivial (g, Ko )— cohomol-
ogy with coefficients in M,, g. We have the standard intertwining operator given
by an integral

T : I, — I (147)

between these two representations. We also have the local operators T'°¢ :
I,, — I, and these operators are related by

st g(n + 1) oc
T = D)) Q1 (148)
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where &(s) = Fﬁsff) (s) is the completed Riemann {— function. It satisfies the

functional equation £(s) = £(1 — s) and then the functional equation for the
Gamma-functionl yields

B2 e (—n—s)]omo

— —1—n +1—n 1 (—m _ n "(—n
Entl) _ my 1y en) g n+1(n+1)(%) i( )

o) T TR T T T w CHCEDT ()
—1—n
-=5

™

(149)

3.2.2 The (g, Ko,)— cohomology

We have the local intertwining operator T0e¢ : I, — I, its kernel is the
discrete series representation D, 1. The operator induces a homomorphism be-
tween complexes

Hompg_ (A'(g/8), Dpio @ M,,)

1
0— Hompg_(A%g/t), I, ® M,) — Homg_(A'(g/€),l,. ®M,) —
0,loc 1,loc
17% 1Ty
0— HOHIKDO(AO(Q/E),ISO{)O ®Mn) — HOHIKOC(AI(Q/E),LP(X) ®Mn) —

(150)
Following our procedure in [Eis] 4.3.3 we define differential forms w1, @nol €

Hompg  (A'(g/t), I, ® My, z1))):

wllol(P+) = 4i"+1¢n+2 ® (X - Zy)n’ whol(P—) =0
(151)
(I)hol(P+) =0, whol(Pf) = 41'7’“711#,”,2 (024 (X — ’LY)n

(They differ by a factor 4 from the differential forms defined in [Eis]). As before
we define

Wiop = %(Whol + Whol); Wnull = %(Whol — Whol)- (152)
Here we carry out the straightforward calculation for equation (77), we have
P, +P_=2H; P, — P_ =4iE, + 2iV where V € ¢ (153)
Hence wiop(41E4) = wiop(Py — P-) and
Wiop (Pr — P-) = 2i" M ap 0 @ (X —iY)" —2i "), o @ (X +iY)" =
20" ppgo @ (- +Y™) = 20T @ (- + (—1)"Y) =

2i(Ypao +V_p_2) @Y™ + terms without Y™
(154)

The term wyop(H) looks similar but the monomial Y™ does not occur.

The differential forms wye, Whol are closed and hence they define cohomology
classes. We have the Delorme isomorphism: Let t,u be the Lie algebras of the
torus and the unipotent radical of the Borel subgroup, then

H*(g, Koo, Ip @ My ) = H® (A (), H* ™ (u, Moy z14)) (155)
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Then our formula above implies that wyop represents the class in H 1(11, Mpz)
which is represented by the form Ey — Y™ H +— 0.

The form wyy) gives the trivial class in cohomology. Hence it is in the image
of the boundary map

Hompg_ (A%(g/%), 1, ® M, qp) 2 Homy_, (A (g/¢), Iy @ My, ) (156)

we have to write down an explicit bounding element. We know that I, con-
tains the discrete series representation D, 2 as a submodule and I,,/Dy 2 =
M., qpi) hence we can write an element

a=a, X —-i¥)"+ - +a_, @ (X +iY)"

in I, ® M,, gr;) whose image in I,/D ® M,, gf;) is invariant under Glp. Then it
is clear that da must be a multiple of wy,. We know how P, , P_ act on the
1, and get

Py (thn) = 200+ 1)tfn 2, P (1) = 20+ 1), (157)

and hence

dMH)z%muP++RJ:(n+Um¢MQ®LY—ﬂﬁ”+~~+mLma®L¥+ﬂﬁﬂ
(158)

On the other hand we have
So we get the answer that our a in the definition of « satisfies a(n+1) = i"*!
therefore we define

i(—1)"/? S An
aozﬁ(wn@)@(—zy) +o 4 Y, (X +4iY)™)

and then
dag = wnun
3.2.3 The secondary class

Since wyyy is annihilated by T'1:1°¢ it follows that the differential form ag maps to
a closed form T'°¢(ag) € Homg _ (A%(g/t), I, ® M, gpi)), and hence it defines
a cohomology class in

[Tloc(ao)} € H0(97K007I§0;0 ®Mn,(@[z])a

we call it the secondary class of ay. We need to compute this class: To do this
we observe
i) We have a (g, Ko )— invariant pairing

<, ooty Xy, = C5 <Yy >00= 00 p (159)
ii) We have the canonical inclusion trq : M, g(i) < I, which is defined by
mmeh:(zQHP@m (160)
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The pairing in i) induces a non degenerate pairing
<, > LPOO/D,,H_Q X Mn,@(z) —C (161)

iii) The local intertwining operator yields an isomorphism 712 : I, /D42 —

Mn,(C-
The pairing i) and the inclusion ii) together yield an isomorphism

Flocy—1
)

Uag: Muc =5 1 /Dyis <5 MY ¢ = Hom(M,, ¢, C) (162)
which is defined by

For m; € M, c,m € M,, gy we have W pq(my)(m) =< (T my),m >,
(163)

We have a second g!) invariant isomorphism (140)
Prq: Mng — M, g (164)

and these two isomorphisms differ by a scalar factor, ® o4 = ¢, W »q. The poly-
nomials g, = (X +iY)*(X —iY)" ™" € M, g@) are sent to 1Pa,_, under tpq.
Since our local operator is normalized such that T'°¢(1g) = 1o it follows that
Um(gz)(gz) =1
On the other hand we can easily check that
L
Pm(gn)(gzn) =< gz,gn >o= (n> 2"(-1)2
2

Our differential form T22°(cg) € My,g ® My g C Iy ® My, g, the non degen-
erate form <, >q€ M, g ® My g and then our computation yields

. —1
Tlo¢(ag) = nil (Z) 2" < >g (165)
2

Remark: Here we observe that something (seemingly) miraculous happens. The
scalar factor in front is -up to a sign and a factor 2 -the inverse of the factor in
front of the ratio of ¢ values in formula (149).

3.2.4 The extension class

We choose the open compact subgroup Ky = [ K}, where now K, = Glz(Z,)
for all p # po and K, is as in (191). We apply the considerations in section

2.2, and see that we can represent cohomology classes in H*(N Z,./\;ln,Q) by
elements

Weo @ h € Hompe_ (A'(g/€), I, © Mg) ® In! (166)

We have Ifff = Ij,(:)” = Qfép[)) D @féé’()). We see that the two forms whol, Weop
define the same class in H'(g, Koo, [,.. ® M, ) and it clear that the forms

53



Weop @ fép 0) , Whol ® fép 0) represent the class ,,. The Eisenstein differential forms
Eis(wiop ® f (po) ,0) resp. Eis(wno @ f; (po) ,0) represent classes in

[Eis(wiop ® £, 0)] € Hh 5(Xo(po), M¥ ),
(167)
[Eis(whot @ £7),0)] € Hi 4 pn(Xo(po), M¥ 41y, © C)

The class €, is the generator 1( "1 in section 1.7.1 and [Eis(wiop ® f(p‘)) 0]

?(resp.) [Eis(wpol ® f0p°) 0] are the Betti lift e( n=1) (resp. ) the de-Rham lift

epy ! and therefore the difference

Eis(wiop ® ), 0) — Eis(whot @ f§7,0) € C(0) € Hio(Xo(po), M ;) ® C
(168)

represents the Betti-de-Rham extension class. To compute this class we have
to look at the homology groups with coefficients in MX,Q and to consider the

exact sequence for the relative of the pair (Xo(po)(C),N )

Hi(Xo(po) (C), MY, o) = Hy ((Xo(p0)(C), N Se), MY o)) 2 Ho(N Sag, MY ) —
(169)

tent radical of the opposite (with respect to our standard torus) Borel subgroup

. 1 0
By, ie. 'y, = {(pom 1

The relative homology Hy (/(/ Yooy My o) = (M,] o)1, where Uy is the unipo-

) | m € Z}. The module of coinvariants is generated

by the element X". We realize this homology class as the boundary of an ex-

plicit 1 cycle 3 € C1((Xo(po)(C), NS 00 ), My). We refer to chap2.pdf section
1.7. The standard maximal torus 7" is contained in our two Borel subgroups

By, Bs, and the group T (R)(©) = {(é ) |t € RZ,} acts simply transitively

on the unique geodesic joining these two points in P}(Q). Let yo be any point
on this geodesic, then we can identify it to T3 (R)(O) If t — 0 then tyy goes to
By, if t = oo then tyg moves to Bs,. We choose a small number 1 >> ¢ > 0 and
consider the interval I, = {ty0| c <t < c '} and the chain I, ® X™. The point

Yo EN Yo and ¢ lyg EJ\/ Yo. The zero cycle ¢ 1y @ X™ € CO(J\/ Y0, My.z)

is a boundary of a cycle 39 € C1(N Yo, M,, z) because we have
n 1 ]- n—1 n—1
xm=(, ()XY -xnly (170)

Therefore the chain I, ® X™ — 39 = 3 bounds the zero chain cyy ® X". Then
it follows that the real number which gives our extension class is given by the
integral

[Hiso(Xo(po), M3 )5 —arn = /EiS(wnun ® f),0) (171)
3
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Then the theorem of Stokes yields
[Hss(Xo(po), Mﬁz)]B—dRh = Eis(ag ® £, 0)(cyo ® X™) (172)
We look at the constant term of the Eisenstein series
ap @ [P 4 T (g @ fP)) e I, @ I, (173)
we know from the theory of Eisenstein series that the

(a0 ® fP))(cyo @ X™) + T (ap @ P (cyo @ X™) — Eis(ap ® P, 0)(cyo ® X™) — 0
(174)

converges very rapidly to zero if ¢ — 0. The first of the three terms tends to zero
because f®0) has support in 0p,- Hence we have to compute lim._,o 7% (g ®
@) (eyo ® X™). Now we have to invoke our local formulae for the intertwining
operators (67),(165) and (149) and we get for the the extension class

patt —1 1 -2 ,
1oy () T

[Hso(Xo(po), M¥ )| B—arn =

3.2.5 The p-adic extension class

We consider the realization in etale cohomology: For any prime p # po we have
the Gal(Q/Q)— modules Hyy, ¢ (Xo(po) <, Q, /\/liz@Zp) which sit in an exact
sequence

0 — Zp(0) — Héis,ét(XO(pO) xQ Q’Mﬁz ® Zp) = Lp(—n—1) =0 (176)
and hence we get extension classes
[Hitis e (Xo(po) xq Q M, ® Z,] € H'(Gal(Q/Q, Zp(n +1)).  (177)

At this very moment we can only formulate a conjecture which in some sense
expresses the hope that these motives are not exotic. In other words we believe
that the Betti-de-Rham extension class should determine the p-adic extension
class.

We constructed canonical elements c,(n) € H*(Gal(Q/Q), Z,(n+1)) and in
a certain sense we should have

2 ()7 = Toa(ey(m) (178)

Then this leads to the conjecture

1
P6L+ -1 A

[Hsis 0 (Xo(po) X0 Q, Mt,z ®Zy)] = cp(n)ré Y (179)
3.2.6 The conjecture mod p

We can check this conjecture modulo p for almost all primes p. We choose a
prime p and assume that there is no p torsion. Furthermore we assume that
A(n) and ¢(—1 — n) are units at p.
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[Hisie et (Xo(po) xq QM ® Z/pZ)] € H'(Gal(Q/Q), Z/pZ(n +1)).  (180)
and we want to show that this class is equal to (See section 1.7.2)

ot g

- e e e
[Hsi 00 (Xo(po) xq@ QM 5 ® Z/pZ)] = can(p) 8™ 7 (181)

The module M,, ® F,, is a module for Gly(F,). We consider the character

Xn : B(F,) — F¢ given by (g Z) — " (182)

and consider the induced representation

G(Fp)

I B )Xo (183)

Xn

= Ind

We have an obvious inclusion of Glo(Fy)-modules M,, ® F,, — I, . These mod-
ules induce coefficient systems on Yy(pg)(C) and we can perform the usual con-
struction of extending them to sheaves on X(pg)(C). We get a homomorphism
of cohomology groups
H* (Xo(po) (C), M} , ® Z/pZ) — H*(Xo(po)(C). IF,) (184)
In our paper on p-adic interpolation we show that these modules are modules for
the Hecke algebra and we show that the Hecke operator 7T}, acts nilpotently on
the cohomology of the quotient sheaf (I / /\;lfyz) ® Z/pZ. (See [Ip], section 3,
3.1) This allows us to define the ordinary cohomology and we get an isomorphism
Ha(Xo(po) (C), MF, @ Z/pZ) = Ha(Xo(po)(©), 1F)  (18)

? T Xn

Since the Eisenstein sub motive is defined by the condition that T, — (p + 1)
acts nilpotently on it we get an isomorphism

Hiio(Xo(po)(C), M}, © Z/pZ) = Hisy(Xo(po)(C), IE,) (186)
and this is an isomorphism of Galois modules if we pass to the p-adic realization.
Hence we have to compute the class

[His(Xo(po) xo Q. IF)] € H'(Gal(Q/Q), Z/pZ(n + 1)), (187)

this extension is the reduction mod p of a Kummer-Anderson motive. We apply
the considerations from section 2.7 . The group of p — 1-th roots of unity
tp—1(Z[Cp—1]) is the cyclic group of order p — 1 generated by (,—1. We identify
it to pp—1(C) by sending (,—1 — e#"T. The Teichmiiller character provides an
inclusion w : F* — Z,;'. The prime p splits completely in Z[(p—1]. We choose a
prime p above p in Z[(,—1], this yields an inclusion i, : Z[(p—1] < Z, and hence
an identification i, = pp—1(Z[¢p—1]) — pp—1(Zy). Then we define the character
Xpp = ip oW : FX — pp—1(Z[Cp-1]) = pp—1(C). The notation indicates that
Xp,p is the local component at p of a character x, which is unramified outside
p. (See section 2.7).
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3.3 The p— adic approximation of higher Anderson-Tate
motives by Kummer motives

We describe a strategy to prove our conjecture by reducing it to the proof of a
congruence relation between special values of L-functions which looks as follows

1 pO_XPo(pO) nroloc/, + pg+1_1 1
Yoo Y BT, () (e) = B ——
@iy v MO ) T PE — Xo (Po) p?—1¢(-1-n)
(188)

Here the point is that that the inner sum is a local term obtained by a local
contribution at the two primes pg (the first factor) and p the second factor (this
is the reason why the local components of our character xp,, X, appear). The
shape of this second factor is in principle correct, the computation of it explicit
form is postponed.

We could also say that the second factor is a product of two factors

Po — Xpo (Po) AT a)) = P Xwo(po)
pg—Xpo(po)(ae§)x T (wn Oxp)) (@) 22— Xpo (P0) (Xp:n,r)  (189)

We explain the term 7(xp,n,7), to do this we extend the computation in section
(2.7) to higher ramification.

3.3.1 Wildly ramified Kummer-Anderson motives

I want to get rid of the problems with the center. We pass to the adjoint group
G = PGly/Z. We assume that n is even, then can define the Gly— module
M, [=5]/Z, we simply twist the Gl action by det™™/? then the representation
becomes trivial on the center and hence M,,[—%] is a G-module.

2
Kr= ] Gl(z,) x Ky, x K, (190)
q7#Po,p

where we allow wild ramification at p, i.e. we choose a number r > 1 and then

b
K,, = Ko(po) = {(CCL d) [c=0 mod po},

K,=K(p") = {(Ccl Z) la/d=1 modp", ¢ =0 modp"}

(191)
The group K, is the inverse image of the unipotent group U(p"). For the group
of real points we restrict to G (R), this is the subgroup of elements with deter-
minant > 0, i.e the topological connected component of G(R). We then have the
subgroup G (A) in the group of adeles and we define GT(Q), T (A), TT(Q)...
accordingly. From now on we will suppress the superscript . We denote the
the resulting Shimura varieties by Yy 1(po, p”) C Xo,1(po,p"). Again we consider
the set of cusps

Spow = {0por 0o X Epr = U(A\G(Af) /K = U(Fp)\P' (F )< (U ("G (")/U (p").
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The quotient
G")/UE") — A2\ {(0)}
where of course A2 is the affine 2 space. We identify
(A2\ {0} (p") = {(z, z,y)|zy + 2> = 0,2,y coprime }.
Then we get a covering (A% \ {0}) = W20 U Wizo.

We get a section
c: (AM\{0})(p") = G(")

e (21 7) <1+z x )

Y 1—=2

which is given by

We return to the situation discussed in (2.8) where in some sense we discussed
tamely ramified Kummer-Anderson motives, now we allow higher ramification.

Again we have the projection map pp from the set of cusps to the coarse set
of cusps

U (Fpo) \P'(Fp,) x U(p")\(A%\ {0})(p")
I pB (192)
B(Fp)\P'(Fpy) x (B(p")\(AZ\ {0}))(p").

where the projection in the first factor is a bijection. The torus T'(p") acts
transitively on the fibers.

We study the action of the diagonal torus T'(p") on A2\ {0})(p"), it is of
course the adjoint action on the section. We see

aacy (e =00 1)

and this means under this action we can achieve that = 1 on W0 (p").

If x =0 mod p then we can normalize y = 1. To get the complete description
of the set B(p")\(A?\ {0}))(p") will still have to divide by the action of U(p")
from the left. Then we see that the image of Wy.o(p") under pp is simply a
point which is represented by

Uoo = (1 (1)) the fiber pp' (uoo) is a torsor under T'(p").

The other points where y = 0 mod p are labelled according to the order
s = ord,(y) = ord,(z). Under the action of B(p") every point can be brought
into the form

(14 pe 1 PNX (2 TYX (e
we= (LD ) where e 7/ (- 29

where (p")*(m) ={a € (p")*|la=1 mod p™}. Of course
®")*/ ") (m) = (Zp/p™)* =T (Zp/p™).
On the fibers of p5'(us ) we have the transitive action of T(p"). The sta-
bilizer of us . is the subgroup T'(p")(ms,,) where m,, = min(s,r — s) so we

find
pgl(usx) = T(pTI)/T(pT)(ms,r)us,e = T(Zp/pms’r)us,e
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We pick an u, and a character x € TV (Z,/p™=") and define a function which
is supported on B(p")us,.:

r t u
fs,e,x : GlZ(p )/Kp — Zp[CpT*I]ﬂ fs,e,x(us,e) =1, fs,e,x((o 1> g) = X(t)fs,e,x
(193)
Our previous considerations imply that
Gla(
(Indi 2% y) % = EBZ 1] fax (194)
We consider the intertwining operator
al @p Gl2(Qp)
T Ind % alx © Q = Indg 3 4y © @ (195)
which is defined by
()0 = [ fwug)du (196)
U(Qp)

here the measure is normalized such that the volume U(Z,) becomes one. This of
course induces an intertwining operator between the subspaces of K, invariants

Tt IndGe? X ©Q = Indje ! wy © Q (197)

We apply this to our basis and then we get

TGt fs E,X Z as € t,n ft X (198)

of course we have to compute the matrix as ¢ ,(x). In the case r = 1 this is
done in (2.4.1), we postpone this computation.

We pass to the global situation. We assume that our character x = x,, i.e.
it is the local component at p of a global character which is unramified outside
.

We consider the function f (Po) fs,ex and this provides a divisor Dy ¢ y po
with coefficients Z,[(,--1] which is supported in the fiber p, (Op0 x X, ) Let
us assume that x is non trivial then the degree of this divisor is zero, and hence
we find a denominator Ag ¢y, € Zp[Cyr—1] such that Ay ey poDs.e,x.p, becomes
principal, we can write

Ag e x,p0Ds ex,p0 = DiV(Hs,ax,po) (199)
where
Div(Hs e, x,p0) € Q(Cpr-1)(X0,1(po, ")) ™ @ Zyp[Cpr—1] (200)

We play the same game as before: We pick two points x,y € p]_gl(oopO X f)pr,»)
then

Hs,e,xwo)(m)

Hyorpo) (@) & Q)" @ ZolGr] (201)
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and this numbers measures an extension class of a mixed Kummer-Anderson
motive

[As im0 Ds o [& = Y1) € Bxtiygag (Zp[Gpr-1] © X ® Z(=1), Zp[Gpr-1])  (202)

and our previous computation give us a formula for this extension class, it
is given by

H (1— Cgso)xp(a)h(zyy,s,eyx) (203)
a€(Z/p0Z)*
where
1
— st _ st 4
h(.’)37y, SvX) (T (fS,G’X)CI") T (fs,e,X)(y))L(X’ 71) (20 )

3.3.2 The p-adic approximation of higher Anderson-Tate motives by
Kummer-motives.

We apply our considerations in (3.2.6) to higher ramified Kummer-Anderson
motives. For any integer m we consider the homomorphisms

[e(m)], : T(p") — T(p") which are defined by z — z™. (205)
Our module M,,[—-3] is as above, we introduce the induced module

Ty = 0G0 (7600 0 11§ 1) ) = e300

(206)

As in our paper [Ha2] we can define the map

_n b

Mul=2@0" = Ly, : P> {fp <Z Z)HP(c,d)det <i d> ) (207)

this induces a homomorphism

H' (Xo(po)(C), My

n

2] ®pr) — Hl (XO(pO)((C)a Ie(%)r) (208)

and we know that this induces an isomorphism if we restrict this map to the
ordinary part (with respect to p) H lord on both sides. Since our module is
induced we get

H'(Xo(po)(C), Ie(z),) — H' (Xo(pop")(C),p" @ e(g)y-) C H'(X0,1(po,0")(C), I1e(2),))
(209)

The same applies to the cohomology of the boundary. Let N Yo, ,p~ be the
tubular neighborhood of p;l(O][,O x ,r) then we get

L] n L] e
H'(N Eopo,/\/ln[—g] ®@p") = H' (N S0, Ie(z),) = H' (N 3o, P
(210)

~ °
Our element Q,, (See 142) gives us an element €2, € HY(N X0,y P") and this
can be interpreted as a divisor module p".
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4  Anderson motives for the symplectic group

4.1 The basic situation

I may consider the group G = GSp, and consider the double quotient
GQN\X x G(Af)/ Ky

where K is a suitable open compact subgroup in the group of finite adeles and
X is the hermitian symmetric domain attached to this group. This quotient is
the set of complex valued point of a quasiprojective scheme

1
ng =S5 — Spec(Z[N])
where NN is the product of primes occurring in the congruences defining K.
Hence the topological space will now be denoted by

S, (C) = GQ\X x G(Ay)/Ky.

Remark: In the following exposition we have a slight notational inconsis-
tency. For any reductive group M/Q we can define the spaces

s}ffM = M(Q)\M(A)/KY x K} (211)

or more generally leads G leads to a Shimura variety, then we gave a different
meaning to ng in this case it is a scheme and the resulting locally symmetric

space is ng (C). Hence ng has two different meanings. In the following text

Sﬁf will be most of the time the topological space, and only under certain
circumstances we remember that the set of complex points of a scheme, which
is denoted by the same letter.

If we consider an irreducible rational representation
p: G/Q — GL(Mg)

of the algebraic group G/Q. This representation is given by its highest weight
A = > n;vy; +mpu, where the +; are the fundamental weights and where p is the
weight character. Then this representation provides a sheaf /\;l@ of Q-vector
spaces on our complex variety ng (C). If we are a little bit careful und if we

write
Sg,(C) =[] r\x

with some congruence subgroups I'; C G(Q) (or maybe even better I'; C G(Z)),
tlgen we can choose I';-invariant lattices in My in M and this provides sheaves
Mgz on ng (C).

During the progress of this notes we have to enlarge the ring Z to a larger
ring R at several occasions. This larger ring R will be obtained from Z by
inverting some primes and and then we take the integral closure of this new
ring in an algebraic extension K/Q. We tensorize the sheaves My by R and
the resulting sheaves will be denoted by M.

61



At the beginning of our discussion we do not know how big we have to choose
R, whenever I enlarge it I will say which new primes have to be inverted and
which further algebraic extensions have to be taken. These primes will be called
small primes.

These sheaves are obtained from the universal family of principally polarized
abelian varieties and products, symmetric parts and so on — over ng. Let us

denote this motivic sheaf also by M and rebaptize the old M to Mg, i.e. Mp
is the sheaf of Betti- cohomology groups of this motive. At this step we may
have invert some primes, I think tat the primes which are smaller than the
coefficients n;of our highest weight are enough.

We may also consider the sheaf of de-Rham cohomology groups

MARn/SE,
it comes with a filtration and the Gauss-Manin connection
v MdRh — MdRh & Qé

which is flat and satisfies a Griffith transversality condition.

Finally we can consider consider a prime [, which lies over a prime ¢ and
/\;l[ = /\;IB ® Ry, and this is a system of [-adic sheaves on Sﬁf. If ¢ is not
invertible in R then Ry is a field.

Let S <5 S™ where SM is a smooth compactification obtained by the
method of toroidal embeddings (Faltings-Chai). We have that

S\ = JSH) =S
[Pl

where [P] runs over the conjugacy classes of maximal parabolic subgroups. The
Levi-quotients of these maximal parabolic subgroups are essentially products
Gly_q X GSpg X Gy, where a runs from 0 to g — 1. We call the parabolic
for a = 0 the Siegel parabolic and for « = g — 1 the Klingen parabolic. The
boundary stratum corresponding to the Klingen parabolic subgroup is a union
of Shimura varieties attached to GSp,_1 together with their universal abelian
variety over it. So it is of codimension 1 and a smooth divisor provided Ky is
sufficiently small.

The S[/}J/]\ attached to the Siegel parabolic is a configuration smooth toroidal

varieties of dimension % — 1 with transversal intersections. The combina-

torics of this configuration is governed by taking certain cone decompositions
for the action of congruence subgroups I'' C Gl,(Z) on the positive definite
symmetric matrices in M,(R). I will come back to this point later. For the
other strata we get something in between.

We can construct “motivic sheaves” on S by extending M from S to
So where we require support conditions for these extensions. We are mainly
interested in the Siegel parabolic and hence we extend somehow to the strata
Sg" which are different from the Siegel stratum. Then we take an auxiliary
prime po and choose a congruence subgroup Ky(po) C K. (This is similar to
the construction in my book.) We get a decomposition of SGJ/]\ into different

connected components. And then according to certain rules we extend M to

AN
Sh.
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Of course we may still take the full direct image i, (M) (here we take the
derived functor) and we consider the cohomology

H* (Soc,i(M))

as a mixed motive over Z[ ] with coefficients in R.

If we consider the Betti cohomology of this motive then we can compute
it using the Borel-Serre compactification and we apply our considerations from
[MixMot 3.1].

We write the compactification

Si,(C) — S§,
and S[G{f is a manifold with corners. We have

SEA\SE, (@) =Jors =05
P

where now P runs over all parabolic subgroups containing a fixed Borel sub-
group.

We choose a Borel subgroup B and let us choose P to be the representative
of P which contains B.

Then we have a finite coset decomposition

G(Ag) = P(ApEsKy
&f

and we recall from [MixMot 3.1] that we have

H'(aPS,MR UH SKJ\IE )» ( M)R)>

P =™ (w,M)(w-N),

weWFP

where W7 is the set of Kostant representatives of W/W™ and where w - \ =
(A4 p)*¥ — p and p is the half sum of positive roots.

At this point I am rather imprecise about which primes should be inverted,
a safe choice would be to invert all primes which ae less or equal to the numbers
n; which enter in our highest weight. But I am not so sure whether this choice
is too cautious, I will discuss this problem later.

Remark. Let us assume for the moment that g = 2, Let P be the Siegel
parabolic and @ be the Klingen. T have explained that the strata Sp” and S5
are different in nature. This is also reflected in the Borel-Serre compactification
or better in the cohomology of the two strata. Let M (resp. M) be the reductive
quotient for the Siegel (resp. Klingen) parabolic. In the following discussion I
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suppress the {; because what I am saying does not depend on this variable. We
form the symmetric spaces S?(JM and 511\{41%41, then they are of the form
f f
M@Q)\MR)/KL = M(As)/K}
M(Q)\ Mi(R)/EX x Mi(Ag)/KG"

and the groups K2, KM are the images of P(R)N K, Q(R)N K respectively.

Both groups M, M; are naturally product of the form GLo x G,,, = M) x
Gm,Ml(l) X Gpm. Now Koo N MW(R) is not connected but Ko, N Ml(l)(]R) is.
This has some influence on the structure of the cohomology. We consider the
cohomology

H*(M(Q)\ M(R)/KX x M(Ag)/ Ky, H*(u, M)
as a module under the Hecke algebra
HM = C(KPT\ M(Af)/K}").

M

[e]

If we replace KM by its connected component K __, then the cohomology be-
comes a HM x mo(M(R))-module where my(M(R)) is as usual the group of
connected components. If we restrict to the action of the Hecke algebra, then

o M
H* (M(Q)\ M(R)/K, x M(Ay)/Ky, H*(u, M))

decomposes under HM into

o M
P H(M@Q\MR)/K, x M(Ay)/Ky, H(u, M)) (o) D

o M
P  HM@Q\MR)/K, x M(Ag)/Kg, H*(u, M))(y)

Tf

where oy, 7s are irreducible R-modules under the Hecke algebra. Here we must
enlarge our ring R. We have to be sure that the eigenvalues of the Hecke-
operators ( of course we only take Z-valued functions in the Hecke-algebra) lie
in R and we need that there are no congruence amoung the moular forms. The
isotypical components oy have multiplicity two.

Then we know:

The o; are modules given by Hecke modules on the space of certain cusp
forms where the weight and level are determined by M and Ky. The 7y cor-
respond to Hecke modules attached to Fisenstein series of the same weight and
level.

Now we know that the oy components come with multiplicity two and the
T¢ come with multiplicity one. These considerations are valid for M and for

M;.
oM

But now we observe that we have replaced K by K_ . It is easy to un-
derstand the effect of this manipulation. We recall that we have an action of
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7o(G(R)) and the image 7o (K) of KX in mo(G(R)) is non trivial (The connected
oM

component K goes to zero.). This means

H(M(Q)\ (M(R)/EKM) x M(As) /KM, He(u, M)) =
o M o~
H(M(Q)\ (M(R)/K o) x M(A)/KM, He(u, M), (212)

In the case of the Klingen parabolic subgroup mo(K) = 1 but in the case of
the Siegel parabolic subgroup the group 7o (K) has both eigenvalues 1 on the
isotypic components

H( L H()(op) = HL( L, H())(og) @ H2( , H* (1)) (o)

We return to the case of a general genus g, we will be mostly interested in
the Siegel parabolic in the following we reserve the name P for it, let M be
its reductive quotient it is a Gly; X G,,. If we consider the cohomology then
we have the surjective map from the cohomology with compact support to the
inner cohomology.

H2 (S HUO (4, M) (w - ) — H7 (S, HIO (, M) (10 - ).

These modules for the Hecke-algebra HM (M (A)//K "), according to a the-
orem of Franke and Schwermer the surjective map has a canonical rational
splitting. If some congruence primes for the cohomology are invertible in R and
the quotient field of R is large enough then we get an isotypical decompositions
over R

H.(SKMaHl(w)(u7M)(w : A)) —> HEIS S2) H' (SKMaHl(w)(uvM)(w : A))
HY (St HIO (u, M) =B (S, HIC (u, M) (w0 - X)) (o),

where the o are irreducible modules for the Hecke-algebra HM (M (A)//K J]c” ).
We have also the Hecke -algebra H%(G(A)//K) and I abbreviate the notation
by calling them HM, HE.

Ind?, Hy (SKM, Lw) (u, M) (w - \))(of) — H*(3S, M),

and again we may have to invert a few more primes.
The modules o¢ have a central character w(oy) which is an algebraic Hecke-
character and the type of this character can be read off from the data A, w.
From this algebraic Hecke character we get another algebraic Hecke character

(I)(O’f) : I@ﬁf — R*
whose weight is equal something computed from w - A and perhaps we call it

simply w(w - A).
Now we invoke a theorem of R. Pink which tells us that
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The isotypical component He (S¥ , HU) (u, M)(w-X))(oy) is pure Tate mo-
¥

tive
—_

HE (S, HIO (, M) (w0 V) (o) @ R(@(07)).

We have to inquire whether this inner cohomology can be non zero. A neces-

sary condition is that the representations of M on the cohomology H! ™) (u, M)(w-
A) is self dual. This is of course not a problem if g = 2 because in this case the
semi simple type of M is A;. We will discuss later what happens if g > 3

We want to discuss the construction of sheaves with support conditions on
S/, T assume that my subgroup is of the form K =[], K}, where K, is open
in G(Z,) and equal to it for almost all primes p. I choose an auxiliary prime pg
for which K, = G(Zy,). I consider a group Ko(po) C G(Zy,) whose reduction
mod po is a Borel subgroup B(F,,) C G(F,,). We define the new K (po) to
be the subgroup of Ky where I replace the component at py by Kf(po). With
respect to this choice of the open compact subgroup I define my space ng.

The boundary of ng will now have a certain combinatorial structure ob-
tained from the prime pg. We have an action of the group B(F,,) on the sets
of different types of parabolic subgroups. We form the simplicial set 7 whose
vertices are the maximal parabolic subgroups in G(F,,,) modulo this action and
the simplices of maximal dimension are the Borel subgroups modulo this action.
If we consider the character module X*(7T') of a maximal torus then the maximal
simplices are just the chambers and so on.

We from reduction theory we get a projection map

T:S =8""\S—T.

If we take a closed subset = C T then the inverse image of this closed subset
will be an open subset S, and its union with the interior will provide an open
subset Sz C S". We have the chain of inclusions

iT:S< Szandiz: Sz — T

We extend our sheaf M from ng to Sz by zero, i.e. we take the sheaf i (M)

and then we take the full direct image iz . (i (M)) This gives us a sheaf Mz
on S and we can consider its cohomology

H* (8", Mz).
Now we will investigate this sheaf and we want to analyze to what extend
we can find mixed Tate motives inside this cohomology.

To understand this we look at the middle dimension first. Let d = @
and we consider the maps in the Betti cohomology

Hd(SIG(f(C)vMB) - Hd(avaB)
HIY7H(9S, Mp) — HI(SE,(C), Mp)

We have the Dynkin Diagram as above but now o, will denote the long
root at the right end. To this root corresponds an injective cocharacter x, :
Gy, — T C G which is defined by < xg4,a; >= 2§;4 and by the requirement
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that it factors through the semisimple part G of G. Hence it is clear that
Xg(Gm) = A is the central torus of M intersected with G(1).

Let 70 : A — G, be the character for which vy o x4(z) = .

If as usual y1,72,. ..,y are the dominant weights, the vy, extends to a char-
acter on M and for the restriction to A we have v4|4 = ~7.

We select a oy which occurs in H'®) (u, M)(w - X) and we assume that
< Xgy W A> < — < Xg,pP >

so we are on the left hand side of the central point for cohomology. Then the
general results on Eisenstein cohomology tell us that the subspace

I, HO (S, HIO (u, M)(w - (o) © H*H)(DS, M)e

is in fact in the image of the cohomology provided the associated Eisenstein
series does not have a pole.

Actually what we have to do is to extend o to a representation o = 0o X 0
which now occurs in the cuspidal spectrum Acysp(M(Q)\M(A)). Let H, this
isotypical submodule so that we have

HO (S, HIO (4, M) (w0 (o) = H (m, K Hy @ H') (4, M)

We twist this representation by a character

| S

fhs 2 m > Jyg(m)

and we consider the induced representation

Iogs = {f : G(A) = Ho|f(pg) = o(m)us)(p)}

where m is the image of p in M (A). The functions should satisfy some finiteness
conditions.
We can form the Eisenstein series

Eis : I,gs — A(G(Q)\G(A)
given by

Eis(f)(g)= > fg)e)

PO\G(Q)

which is convergent for R(s) >> 0.

Let us assume that we are in the holomorphic case, i.e. the Eisenstein
operator is holomorphic at s = 0 Then we know that the Eisenstein series is
actually an intertwining operator

Eis: I, — A(G(Q)\G(A))

we get a homomorphism

Eis® : H*(g, Koo, I,.. ©® Mc) ® 05 — H*(S, Mc)
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and if we compose this with the restriction to the boundary then I claim that
this composition gives us a surjective map

roBis : H(g, Koo, Iy @ M) ® I, — Ind;‘ifH'(Sf\(/[}u L H®) (w0, M) (w - \) (o)

This means that as long as w - A is far enough to the right we know that
after tensorization by C the subspace

S, I} H* (Sie, H') (u, M) (w - N (07c)

is in the image of the restriction map. If now ©p € W7 is the longest
element then we can consider ©p - 0y = 0}/ and this module occurs in the

cohomology H*(SM,,, H')(u, M)(w' - \)) where v’ is the dual partner to w.
?

Here we have the opposite inequality
< Xgo W - A>> — < xg,pp >

and for these weights we find that the map
Ind}fas H* (S}, H'O) (u, M)(w - \) (o) — HEFHO) (S, M)

is injective if we do not have a pole.

If we pick such a oy then the module Indz; (o) provides a module under the
Hecke-algebra H©. This induced module is of course a restricted tensor product
over all primes p of local modules. If we consider the local induced modules at
po then we can use our support condition Z define submodules

= G
Ind;[’ltfl - Ind%if (O’f)

and quotients

G = G

U(O'f) : IndzM (O’}/) — Ind;{;;[ ,
where =’ is the complementary support condition. These submodules are not
modules for the full Hecke algebra, we have to take the identity element at the

prime py. We define

/

H* (8", Mz)(oy)

. . EHE 17e/ oM 1(w) . . o QAN AA_
to be the inverse image of Ind7y; H*(Sgow, H'™ (u, M)(w-A) (o) in H* (S, M=)

divided by the kernel of u(oy). Then by construction we have a map
r(og) : H (™ Mz)(og) = H* (S, H'™) (u, M) (w - ) (0r5)
which is surjective up to torsion. We also get a map
d(oy): Indzi (of) = H* (5", Mz)(oy).

If we divide the kernel of r(os) by the image of d(os) then we get the inner
cohomology.

Now I want to assume for a moment that = is everything and 2’ = {). T also
assume that

r(of) : H(S™, M)(oy) — H'(SﬁﬂmH“w)(wM)(w “N(oy)
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is in fact surjective on the integral level. Then we have rationally the Manin-
Drinfeld principle, this gives us a canonical section and a decomposition up to
isogeny

H*(S", M)(0y) > Hy (S, M) () @ HéiS(Sﬁgw7Hl(7”)(u7M)(w - A)(og).
We can not expect that the restriction

H];}is(S[A(l}W?Hl(w) (uv M)(w ' )‘)(Uf) — H* (S]J\ng ’ Hl(w) (u7 M)(’LU ' /\)(af)

is surjective. I explained in [Ha-book], chap3, 6.3 that I believe that the order
of the cokernel should be related to a special values of the L function attached
to o¢. More precisely the ”arithmetic” of the second constant term should tell
us something about this kokernel.

4.2 The Anderson motive

I want to explain that the discussion of the mixed Anderson motives gives
some further evidence that a result of this kind should be true. We take
a suitable 2. If we divide H*(S", M)(o;) by the image of §(os) then we
get as a quotient a submodule of the cohomology namely the inverse image

of H‘(S%%I,Hl(w)(u,/\/l)(w -A)(of,Z) in the cohomology. We get an almost

decomposition

H.(S/\Av M)(Uf)/ Im((s(a}/» o HI. (Slcéf ) M>@H]:315(S;\{/I}Wv Hl(w)(u7 M)(’LU)\)(O'f, E)
and this gives us the subobject Hyp, (S, M)(os) which sits in an exact se-
quence

0— IHd%GH-(S%fM,Hl(w’>(u7M)(w NeY) -5 Hy (S, Mz) (o)

I =HC w
5 Ind3 Y Hﬁis(S}ffM,Hl( ) (u, M)(w - A)(oy) =0
and the term in the middle is a mixed Tate motive X[o;] Here we have to
observe that § raises the degree by one and r respects the degree. The map

H];}is(sjj\(l}\f ) Hl(w) (uv M)(w ’ )‘)(Uf) — H* (SIJ\({‘M ) Hl(w) (u7 M)(’LU ’ A)(O-f)
has a finite cokernel, this cokernel will be given by a number A(oy).

So we assume g = 2 and we also assume that we do not have a pole of the
Eisenstein series.

I want to give some indication how the Hodge-de Rham extension classes
can be computed. We apply the same argument as in my SLN. Actually I
think I made the computations unnecessarily complicated there. To simplify
the considerations I also assume that o is defined over Q otherwise I have to
make a lot of noise about fields of definition and conjugation under Galois.

We follow the advice given by our general discussion of the computation of
the Hodge de-Rham Ext-group. We can twist by a Tate motive so that the
bottom becomes Z(0) and then the top will be Z(—n — 1) with n =7. Let us
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M
also assume for simplicity that our choice of Ky is so that aff is of rank one
so that H‘(S%M,Hl(w)(u,/\/l)(w -A)(of) = Z(—n — 1) is of rank one. Now we

5
assume that

H* (S, Mz=)(of) 2> Ind%H-(s;gffM,H“w)(u,M)(w Ny, 2)
is surjective. Then 1t~ Hp: (S, Mz)(of) — H*(SM,, H'™) (u, M)(w-\) (04, E)
F

Aloy)
will be surjective. We take a suitable differential form

Wiop € Homp_ (A*(g/%), I, ® C)

such that the Eisenstein intertwining operator maps wiop ® I, to
G
IndzMHms;‘ffM,H“w(u, M)(w - N)(oy,E)

and such that complex conjugation acts by —1 since n is even. This is the
canonical Betti lift which we described earlier. If we multiply be a denominator
d(n) then we will land in the integral cohomology of the boundary. Now we
can find ( at this point some details have to be fixed) a class wpo; such that
Whot and wiep define the same class in Homg__ (A3(g/€), I, @ C) and such that
Eis(wne) lies in the F? filtration step of the de Rham filtration. So this is the
de-Rham-lift. According to our rules we have to look at the difference

(Bis(whot) — Eis(wiop)) X 17 € IndZZH-(s;gffM,H“w)(u, M)(w - A (o)

Again this can be computed as an integral against a relative cycle.
First of all we notice that we can write the difference wpo — wiop as & dipo
where

Yoo € Homg (A*(g/t), 5., ® C)

This differential form can be interpreted as a form on
PQ\X x G(Ay)/Ky

more or less by construction. We have the level function

PQ\X x G(Ap)/Kr 2 R

and any level surface is homotopy equivalent to dpS. If we restrict this class to
such a level hypersurface it becomes closed and 3 x 9y will be a non zero class
in
H*(0pS, M) = Ind§ H1(SM,, H™ (u, M)(w - A)z). Now we can find a
¥
2-cycle 3 which represents a non zero class in

3] € Hy(0pS, M) = Hl(S;\(/I}\lle(uaM))

and this cycle can be bounded by a chain ¢ inside ng (C). Then it is the
definition that our extension class is given by the integral
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JEis((etor = wion) x 1) = [ i x )
c 3

and as in [Ha-book] we find that integral can be computed from the second
term in the constant term of the Eisenstein class. We copy the result from
SecOPs.pdf

coh ny no /_n1
X(f)H—dRhZ—C(apo,)\)< 1 At (f,m + +2))C( 1 ¢'(=nq)

Q(Uf)e(k,m) AP (f ny + ng + 3) —1—nq) ( 1'7r)
213

The factor C(op,,A) is a local contribution which stems from the auxiliary
prime pg. I have not yet done the computation but I think that up to a power
of po it is equal to the inverse of the local Euler factor at py in the ratio of
L-values. If ap, is the pp-th Fourier coeflicient, i.e. the eigenvalue of T}, then
Apo = Qpy + Bpo» Opo Bpy = P¥ 1 and we should have

Clon ) — (L= 0mg ™ (L= By ™ 727 11 g
a. s = — — — — — — _— — — =
" (1= apopg ™™™ 3)(1 — Bpopo " 3) Pol—py™ ?

1 _ apopanlf’nQ*Q +pan171 1 1 _ panlfl

1 _ apopa’ﬂlf’ngffj _|_p07n173 pO 1 _ pof’ﬂ172

(214)

We should interpret the formula (215) as follows: The last factor factor
w is an extension class in Exth_ypp, (Z(—2 —n1 —n2), Z(—1—ny)) and the
rest of this expression is an algebraic number. Since the period is defined up
to a unit, it makes sense to speak of the prime decomposition of this number.
Under certain conditions we expect congruences modulo primes which occur in

the denominator of this number.(See SecOps.pdf)

4.3 Non regular coefficients

So far we discussed only the regular case, this means the case where the Eisen-
stein series is holomorphic at s = 0. Our our special case this means that ny; > 0.
If we have n; = 0 then we have to study the behavior of the function

1 Acoh(f7n2+2+5))<(l+s) (215)

—C(0pg, A) (Q(Uf)e(k,m) Acob(fing +3+5)/ ((2+ )

at s =0.

Let us recall that f can be viewed as a modular form of weight £ = 4 +
ny + 2ne = 4 + 2ny. Hence we see in the numerator the expression A(f, % +3)
If this does not vanish at s = 0 then the Eisenstein series has a pole at s = 0.
Taking the residue we get some non zero residual classes in H? (S%f , M), they
are square integrable.

At this moment we are more interested in the case where A(f, %) = 0. Then
the Eisenstein class will be holomorphic at s = 0. Let us assume that we are in
the unramified case.
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It is already discussed in [Hal] that in this case the induced module Ind (o)
has a unitary quotient J(of), and this may have the consequence that

Homgy,c (Ind(oy), H?(ng , M) #0

and hence the Manin-Drinfeld principle is not valid under these circumstances.
This issue is discussed in [Hal]. In the appendix (letter to Goresky and MacPher-
son) we carry out a lacunary computation which shows that

J(o¢) occurs non trivially in H?(ng7/\/l,\)

216
if and only if the sign in the functional equation is — 1 (216)

We also discuss the relation between this assertion and the Saito Kurokawa lift.
Remark: At this point we should remark that we tacitly assume that we are
in the unramified case. This implies that actually I(cy) = J(oy) The assertion
that that I(oy) has a unitary quotient, means that after tensorization with C
a) we have an admissible representation I (o) of G(A ;) whose Hecke-module
of Ky invariant vectors is I(oy),
b) The G(A;)— module has a non trivial quotient J(o ) on which we have
a positive definite G(Ay) invariant hermitian scalar product and (o) injects.

In [Hal] 3.1.4 we also discuss the construction of a mixed motive attached to
o¢. It follows from Piatetkii-Shapiro that H (ng , M) ®F) contains a submod-

ule SK(of) which consists of two copies of J(of) and we get an exact sequence
0 — SK(oy) = H}(SE,, M @ F)(0y) = Ind(H?’(S]J\éM,M,\(w “N)(ap)) =0
(217)

The motive SKC(of) = M(oy,r1) and it provides an extension class
V(oy) € Extpgpm(Z(=k),M(0og,11)) = Extija(Z(=k),SK(oy))  (218)

In [Hal] we do not discuss the question of computing this extension class, in a
sense we did not know what that meant. But following T. Scholl we can give
some kind of an answer to this question. We choose an auxiliary prime py and
modify Ky at po to the Iwahori and the level will be K¢(py). We modify our
sheaf and construct a mixed motive H3 (SIG(f,Mf)(of). We have

HY(Sn, M)(w' - N)(o5)* C H (S, MY)(oy)

H(SE, ME)(o5) T HY Sy, M) - Ny )

The submodule in the top row is a Tate motive Z(—k + 1)* the quotient in
the bottom row is Z(—k)* where a = 1,2, b = 2,1 depending on the support
conditions defining M#. We can write two exact sequences

0 — HY(SM, M)(w' - \)(op)# — ker(r) — SK(os) — 0

= 22
0 8K(og) =+ HY(SE, ME)(o7) 75 HU(SM M)(w - N(op)# =0 P2

these two sequences are obtained from the diagram (219). They provide exten-
sion classes

Y(og) € Extipn(Z(=k), 5K (o), ¥'(0) € Extn(SK(og), Z(—k + 1))
(221)
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Such a pair is a biextension and to such a biextenion T. Scholl attaches an
”intersection number ” or ”height pairing”

i[(V(op), Y (0))]

, which is well defined modulo an ”element in Ext*(Z(—1),Z(0)).” To define this
pairing Scholl "intergrates” the pair of extension classes ((Y(o), Y'(c%)) into a
diagram of type (219) let us call it

((Y(of), V' (%)) (222)

and to such an object Scholl attaches an honest number

il(V(oy), V(o))

The ”integral” (222) is only defined modulo an element in Ext!(Z(—1),Z(0))
and this explains the ambiguity in the definition of i[(Y(of),Y'(07))]. Moreover
the existence of this integral is conjectural. o

But in our case we have an integral i[((Y(oy),)’(0%)], this is simply the
diagram (219). (It is like finding a primitive to a function f which is defined as
the derivative of a function F'.)

Now an extension of the computations in [Hal] Kap. IV 4.3.3 and Sec-
OPs.pdf to this case should yield

—~—

(07 Y (o)) ~ L (05,11, ) (223)

where ~ means up to some uninteresting non zero factors (JW). This is in a
certain sense a formula of Gross-Zagier type.

44 ¢>3

We consider the case g = 3. We start from a highest weight A = ny7y; + novye +
nsys for simplicity we assume that this yields a representation of the group
GSp; /Gy, then we have ny+n3 = 0 mod 2. The group M = Glz-G,, the locally
symmetric space S%I is of dimension 5, we look for cohomology in degree 2 and

3. We have the two interesting Kostant representatives w’ = 5382, w = $3525357.
For these two elements we consider the coefficient systems My (w’-X), My (w-A)
onS %M. Since we want to have non trivial inner cohomology we need to assume

that the coefficient systems are self dual and hence we need n; = 1+ 2n3. Then
we get for our coefficient systems

w' A = (24n2+2n3) (71 +93")+(—14+ns)ys, wA = (2+n2+2n3) (11 +72")+(—3—n3)7s.
and we can look for isotypical summands

HP (S, Ma(w' - M) (), HA (S, Ma(w - X)(o) (224)

We know that they provide motives, if we assume that Ky is unramified then
they are Tate motives of weight w(w’-\) respectively. Now a simple computation
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shows that the difference w(w-\) —w(w’- ) is even and therefore the extension
classes should be torsion and our source for congruences dries out. But this is
only good because at the time we can not expect a rationality result for the

ratios
ACOh(Uf7 vV — 1)

/\coh (Ufa l/)
because the motive M (o) should have a non zero middle Hodge number and
this puts a parity condition on the critical values, (or kills them all).

The situation changes if we the take the parabolic subgroup given by
a; — X <= ag,

the semi simple part is M = PSls x Sp;. The first factor has to be viewed as
the linear factor and corresponds to «q, the other factor is the hermitian factor.
Hence we see that our locally symmetric space is essentially a product

S}‘f% =81 X Ss. (225)

We pick a Kostant representative w € W¥ and write as usual
wA+p) = p=diy" + dz" + a(w, \)y2 (226)

The resulting coefficient system is a tensor product of coefficient systems on
the two factors and hence we see that in the isotypical decomposition (after a
suitable finite extension F'/Q)

HY ™ (S Ma(w - 2) @ F) = @ HY ™ (S, Ma(w - N)(op). - (227)
af

The oy = 74 % 0’} where Ty resp. U} are simply modular forms f of weight
k1 =d; 4+ 2 and g of weight k3 = d3 + 2. We simply write

oF =Ty XU}»:(f,g).

If we now apply the Eisenstein intertwining operator then we have to look at
the second term in the constant term. We find the formula for it in chap3.pdf
section 6.3. The Dynkin diagram of the semi-simple part of the dual group
MY = Glg X PSIQ is

af — x >= oy,
the first factor corresponds to Gly the second to PSly. We have to compute
the action of “M on the Lie-algebra u}. The roots in A;g are those BY =

a1y + aay + azay for which a > 0. By inspection we get 6 such roots with
Vv
a = 1 and one such root with a = 2. We can easily check that r}” = r; ® Ad and

vV
5" = det, where det is of course the determinant on the first factor. The highest
weight for the representation Ad is x1 = af +ay +2ay and x2 = of +2ay +2a

We compute the second constant term. We are interested in cases where we
can construct Anderson mixed motives and this means that we should deal with
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a pair of Kostant representatives w’, w where [(w) =4 and I(w’) = 3. We have
two such pairs

W) = $2818382 W] = $28153

Wy = $2838281 Wh = 28382

and then

wi(A+p) = B+ n2+2n3)71" + 3+ n1 + n2 +n3)y3" +1/2(—=1 — nz)ye

wi (A +p) = (3 +n2 + 2n3)y" + (3 + 11 + n2 + n3)y3" +1/2(+1 + n2)ye

wa(A+ p) = (54 n1 + 2ng + 2n3)7" + (14 n3)vd’ +1/2(—=1 — ny)ve

wh(A + p) = (54 n1 + 2na + 2n3)yM + (1 +nz)y M + 1/2(1 + n1)ye
(228)

The coefficients of vi resp.y3! are the numbers d; + 1 resp. ds + 1 in equation
(226). Then we find easily that

(229)

2d3—d1:2+2n1+n2(22) if w=w;
d172d3:4+n1+2n2(24) 1fw:w2

In other words: We give ourselves d, ds and we look for w = w; resp. w =
wy and for a solution of the equations in (228) with A dominant. Then d;,ds
determine the choice of w.

In the case w = wy we have the further constraint d; — ds = n3 — n; which
in the case d; < d3 implies n; > —d; + ds.

Then it becomes clear that the possible solutions for ny resp. n; are even

and 72 resp. 7 run through an interval

. 2d3—di1—2 di—2 ‘f —
[070,\}2{[07“11( )l fw=w (230)

[0, d1=2ds=1] if w=ws

We want to understand the expression in chap3.pdf (100). We get in the
two cases

< x1, 1M >= 129+ 2n1 + 3na +4ng)  b(wi, \) = —1(1+no)
< xo, M >=0 2b(wi, \) = —(1 + ny)

(231)
< x1, oM >= 3T+ n1 4+ 200 +4ng)  bwe, \) = —1(1+1n1)
< X2, M >=0 2b(wy, \) = —(1 + ny)

For w; this yields for the the following expression for the second constant
term (chap3.pdf (100)and SecOps.pdf).

T Acoh(q—xa},’rl ><Ad,5—|—nl+2n2+2n3) C(1+n2)
Q(of)e A (7 x U},Tl x Ad, 6+ ny + 2ns + 2n3) ((2 + na)

C*(0o0s VT (w) @ T (1))
(232)
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and for wq

AP (7 x a},rl x Ad, 4 +ny +ng +2n3) ¢(1+ n1)
Qo) A (T x 0,1 x Ad,5 +n1 +n2 + 2n3) (2 +n1)

C* (o0, VT (w) @ TP (¥5))
(233)

We give the ”arithmetic interpretation” of these two second terms. For the
beginning we forget the factors at the right we come from the infinite place.

Again we expect that these second terms give us the Betti-de-Rham exten-
sion class of a mixed Tate motive X' (o) and if we look at the formulae (228)
then we see that we get

X (o) € Extin(Z(—1 —n),Z(0)) (234)

where n = ny or ne depending on the case in which we are. Since we need non
torsion classes we have to assume that n is even. Then we apply the functional
equation for the Riemann (- function to the ratio of ¢ values and get

C(n+1) n+l ¢'(—n)

¢(n+2) m ((=1-mn)

and we get a factorization

coh /
(e sr) () (5 (259
Aoy Ao+ N\ -\ x
We assume that n is even. The last factor on the right is interpreted as extension
class in Exth_ . pham(Z(—1 —n),Z(0)), the factor in the middle is a rational
number. The first factor needs some more explanation. It depends on a pair
(f,g) of cusp forms on Gly(Z) of weight k; resp. k3. These weights are the
coefficients of ¥} resp. v41 in (228) augmented by 1. We have the symmetric

square lift of the automorphic form ¢’ to an automorphic form II; on Gl3/Z.
Let H = Gly x Gl3 then this lift provides an isotypical subspace

HY (St ) 7y x TLy) © HO(SHy) (236)
and then we have more or less by definition
AR (1 x o, 1 x Ad, 5) = AP (1 x TIy, 7y X 72, 8) (237)

where r1, 75 are the two tautological representations( In chap3.pdf erkléiren).
Now we have the results in [Ha-Rag] and we know that for integers v in a
certain interval [c(w, A), d(w, A)] the ratios

1 Acoh(y)
Qof) Ao (v +1)

(238)

are algebraic numbers in F. Here (o) is a period which is well defined up
to a unit in O (See [Ha-Rag]). The above intervall [c(w, ), d(w,\)] can be
determined from the data w, A. It is called the interval of critical arguments.
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4.5 Deligne conjecture

In [Ha-book] , chap3.pdf, 3.1 and 3.1.3. we discussed the hypothetical construc-
tion of motives attached to isotypical subspaces in the cohomology of arithmetic
groups. In our situation here this is actually not so difficult, we have

M(oy,r1 x Ad) = M(7p,7m1) x My, re) = M(7s,71) X Symz((M(a},rg)).
(239)

where the factors M(7¢,71),M(0,71) are the Deligne-Scholl motives attached
to the modular forms (f, g). Note that the motive attached to (os,71 x Ad) does
not change if we twist oy by a power of [dp f|.

For any pure motive M of weight w = w(M) Deligne defines a set of critical
arguments. To define this set we look a the Hodge-decomposition

MpeC= @ My (240)

P,q:ptHq=w

and we say that M has Hodge numbers (p, ¢) if M;? # 0. We define this set only
under the assumption that our motive does not have a middle Hodge number,
ie. h%% = 0. We look for the Hodge number (p.,q.) with p. > ¢. and p,.
minimal, then the set of critical arguments is the interval [g. + 1, p].

Under these conditions Deligne formulates the following conjecture (here we
assume that the motive is a motive with coefficients in Q)

There exist two periods Q4 € C* which are defined in terms of the compar-
ison of Betti- and de-Rham cohomology and which are unique up to an element
in Q* such that for all integers v € [g. + 1, p]

AM,v)
Q)

€Q (241)

In our situation the Hodge numbers are
(d1 + 1,0), (O,dl + ].) for M(Tf,?"l)

and
(2d3 +2,0), (ds + 1,d3 + 1), (0, 2d3 + 2) for Sym*((M(c}, 2)).

The Hodge numbers for M(oy, 71 x Ad) are the sums of these Hodge numbers.
The motive is pure of weight w = dy + 2d3 + 3 this number is odd and hence
we know that for all Hodge numbers we have p # g. Therefore we get

{dQl if dy < d if w=w;

d3— % ifdy >ds . (242)

%—dg—l 1fw:w2

w41
Pem Ty

Miraculously (?) this number is the number ¢y + 1 in (230). Our second
term in the constant term becomes

u ACOh(af’Tl X Adv WTH + %) C(l +n)
Qog)€ AP (as, 1 x Ad, WTH +5+1)¢(2+n)

C™(To0y NTE () © T (1))
(243)
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where n = n; or n = ny depending on the case. The argument WTH +5+1
runs exactly over the right half of the critical arguments.

If we believe in the existence of the motive M(oy, 71 x Ad) and the equality
of the motivic and the cohomological L-function then the conjecture of Deligne
predicts that in formula (243) the ratio

1 A“Mop,r x Ad, "+ 1)
Qo) At (op,ry x Ad, ¥ + 2 4+ 1)

(244)

is an algebraic number in F), provided v and v + 1 are critical and we choose as
period
Q(M(Uf7 ry X Ad))e(V+1)

Q(M(Jf, 7 X Ad))e(,,)

Qoy) =

In this form Delignes conjectures are not available, already the existence
of the motive is not clear. But there is still another drawback: The periods
Q(M(of,71 % Ad))(y are only defined modulo an element in /. The definition
of the periods uses the comparison between the Betti and de-Rham cohomology.

In our paper with Raghuram [Ha-Rag] we prove a rationality result about
special values of Rankin-Selberg L-functions which is weaker than Delignes con-
jecture but also in some sense stronger. Applied to our situation here it says
that we can define a period (o) which is well defined up to an element in Oj;.
With this definition of the period the numbers

1 A (op,ry x Ad, ¥H 4+ 2) 1

Qop)e A (op,ry x Ad, ¥ + 2 + 1) ((—1 —n)

C* (05, ) (245)

are in F'* are their prime decomposition is well defined. In [Ha-Rag] we
also show that the factor C*(00, A) is @ non zero rational number. It is an
important question to compute this number exactly. In the case g = 2 this
number in SecOps.pdf and it turns out to be very simple. A similar question
arises in [Ha-Mum] and has been solved by Don Zagier in the appendix to that
paper.

We are again at the point where we can ask the question whether primes [
dividing the denominator of the algebraic number in (245) create denominators
of the Eisenstein classes and therefore also congruences between eigenvalues of
modular forms on different groups.

We return to the ratios of L-values on p.3. The L-functions which occur in
these expressions are actually the ”automorphic” or "unitary” L functions. But
I think that I have strong reasons that we should express them in terms of the
”cohomological” L-function. In the case discussed in ”Eis-coh...” the arguments
of evaluation are exactly the critical points of the Scholl-motive M (f) attached
to the automorphic form and this is equal to the cohomological L-function.

In the special case which we consider we started from two modular forms
f, g of weights k1, ks respectively. For both of them we have the Scholl-motive
M(f),M(g) and the two dimensional ¢-adic Galois-representations

p(7) : Gal(Q/Q) — GUM (f))e), p(o) : Gal(Q/Q) — GUM (f))e),

and we have for the Frobenii:
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. 0 .
p(7)(®, ") = ( 0 Bp) 0+ By = ap, 0y = pt T = ph

_ 0 B
p(J)((I)p 1) = ('}37 5 ) y Tp + (5p = cp,q/pdp = pk3 1 :pd3+1
p

where a,, resp. ¢, is the p — th Fourier coefficient of f resp. g.
We take the symmetric square of p(o) and get

p(Sym*()) : Gal(Q/Q) — Gl3(Zy)

(here we assume that f, g have coefficients in Z.) Then

2

7 0 0
p(sym?(0)(@,") ~ [ 0yt 0
0 0 o7

Then we can write the finite part of the L-function as

cOo 1
L h(rxH,s):H > 5 5
p
" det(1d — (ap 0 )) o0 phtt o0 |p)
0 Bp 0 0 62
p

Here it becomes clear that this is the motivic L-function of the motive M (7 x
IT). Here the representation r of the dual group is the tensor product of the two
tautological representations.

The local Euler-factor is of degree 6 it can be expressed in terms of the
eigenvalues a,, ¢, and is given by

[(1 + (_apcf) + 2app—1+h) P + (a?]p—Q—‘rQh + C;l)p—l—‘rk _ 4C§p—2+h+k + 2p—3+2h+k)p—25+
_ _ _ _ _ 1 _3 _ —1
(apcgp 34+2h+k + 2app 4+3h+k:)p 3s +p 6+2(2h+k)p 48)) * (1 _ apph lp s +pk+2h 3p 23)]

Our motives M(f), M(g) have Hodge types {(d1 + 1,0),(0,dy + 1), (ds +
1,0),(0,ds + 1)} and therefore we get for the Hodge type of M (7 x II)

{(d142d3+3,0), (d1+d3+2,d3+1), (d1+1, 2d5+2), (2d3+2, d1+1), (d3+1, d1+d3+2), (0, d1+2d3+3) }

it is pure of weight d; + 2ds + 3.
We reorder these Hodge type according to the size of the second component
and get

{(U/,O), (w - ava)v (w - b7 b)» (b7w - b)v (aaw - a)» (va)}v

where now 0 <a <b < 3.
From the the Hodge type or from representation-theoretic considerations we
get a I' factor at infinity which is (if I am not mistaken)

L(s)I'(s —a)['(s —b)
(2m)3s

Loo(m x1I,s) =
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Again we put
AN (7 XTI, 8) = Loo (T x II,8) LM (7 x 11, 5).
This function satisfies a functional equation:
AP (7 x T0,5) = AP (7 x TLw + 1 — s)

Once we accept this functional equation then we have fast algorithms to compute
the values A" (7 x II, 59) at given argument so up to very high precision.

( For classical modular forms f of weight k we have the following formula

ainF(s, 2mn/A))

k—
) Snk:—s

1
2w
where I'(s, 2mnA) is the incomplete T' function and where A is a strictly positive
real number. The right hand side is independent of A (this gives a good test

that the functional equation is really correct) and A = 1 is the best choice. The
sum is rapidly converging, because the incomplete I' goes rapidly to zero.)

I remember that Don Zagier once mentioned that we always have such a
formula to compute values of L-functions, once we can guess the functional
equation and this formula can be used to confirm the guess.

This has been done by Tim Dokchitser in his Note ” Computing special values
of motivic L-functions. Experiment. Math. 13 (2004), no. 2, 137-149. 7

Finally we discuss the special values. We have the above list of Hodge types,
recall that the Hodge types lists those pairs (p, q) with p+¢ = w = dy +2d3 +2
for which h?4(M) # 0. The Deligne conjecture predicts that we have to look
at pairs (pe,q.) for which p. + ¢. = w,p. > ¢. for which hP=% = 0 and for
which A¥"*~% = 0 for all ¢. < v < p.. This is the critical interval M. =
[(Pes 4e), (ges pe)] of our motive. One should look at it as an interval on the line
p+qg=w.

We look at our Hodge types

{(d142d3+3,0), (d1+d3+2,d5+1), (d1+1, 2d3+2), (2d3+2,d1+1), (d3+1, d1+d3+2), (0, d14+2d5+3) }

We have to find the interval we have to distinguish cases. The first case is

a)
di < 2ds+1
Now we have two possibilities for the critical interval, it is either
al)
[(2d3 +2,dy + 1), (dy + 1,2d3 + 2)]
a2)

[(d1 +ds + 2,ds + 1),(d3 +1,dy +d3 +2)]
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depending on which one is smaller.

The second case is
b)
diy > 2ds +1

In this case the critical interval is clearly

[(dy +1,2d5 + 2),(2d5 + 2,d; + 1)],

In the paper with Raghuram [Ha-Rag] we will prove that we can define a
period Q(7y x IIy) which under our assumptions ( f, g have coefficients in Q) is
unique up to a sign such that

Al (7 x 11, a)
Acob (7 x I, a + 1)

Q(ry x Hf)g(“) € Q provided p. > a+1,a>¢q.+1

From our data [p.,q.] and the value of a we can reconstruct the coefficient
system .

”Large” primes occuring in the denominator of these rational number should
produce congruence between eigenvalues of Hecke operators on Siegel modular
forms of genus three and certain expressions in eigenvalues on pairs of modular
forms of genus one.

The computation of the period is somewhat delicate. We give a definition
in [Ha-Rag] and the period is well defined up to a unit ( under our special
assumptions up to +1) But it is not clear from the abstract definition how -
given explicit data, i.e. f, g -we can really compute a number with high precision
which gives us the value of the period.

There is a way out. Recall that we compute ratios of special values a,a + 1
where a runs through an interval [p. — 1, g. + 1] of integers, this interval can be
quite long. So we simply choose our period such that for ayg = p. — 1

Ao (r x T, ag)

=1.
Acob (7 x I, a0 + 1)

Q*(Tf X Hf)e(ao)

The correct period differs from this one by a rational number, which will
have some prime factors {p1,pa,...,pr} in it. Now we can start to verify the
above rationality assertion for all @ and we can compute these ratios as rational
numbers.

Recall that we are interested in arguments a for which our ratio of L-values
divided by the ”correct” period has a ”large” prime p in its factorization (in
the denominator). Now it would be really bad luck, if this prime p would be
(always) member of {p1,p2,...,Dr}

Hence if we find large primes p in the denominator of the ratios

A (7 x I, a)
Aoh (7 x I, a+1)

for some values of a then we can look for congruences mod p between different
kinds of Siegel modular forms.

@ (r x )<
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4.6 The Hecke operators on the boundary cohomology

We go back to the very general case that G/Spec(Z) is a Chevalley scheme
and let P C G be a maximal parabolic subgroup, here we assume that it is
conjugate to its opposite. We assume that T'/Spec(Z) is a maximal split torus
and T C B C P. Let m = {a1,qa,...,a,} be the set of simple positive roots,
let {v1,72,...,7-} be the set of dominant fundamental weights. We have

2< Vi, Qtj >
< g, 0 >

= 5ij7

the dominant weights are elements in X*(7') ® Q. We also consider the
cocharacters {x1,x2, ..., Xr} € X«(T) ®Q, which form the dual basis to the «;.
If we identify X, (T) ® Q = X*(T) ® Q via the canonical quadratic form, then

— 27;
Xi = <ag,a;>"

We choose a parabolic subgroup P, let «;, be the erased simple root. We
consider the cuspidal (inner ?) cohomology of the boundary stratum attached
to P and consider an isotypical subspace

Hf_l(m(SM,M(ﬁ’ . )\))(gf)) C H*(0p(S), M).

Actually we should take an induced module on the left hand side, but let
us assume that we only look at unramified cohomology, i.e. Ky = G(Z) Then
induction simply means that we restrict the action of H™ to the action of H“
on H!'_l(w) (SM M(w - \)). We want to derive a formula for a ”cohomological”

Hecke operator in HY as a sum over ”cohomological” Hecke operator in HM.

The algebra of Hecke operators is generated by local algebras Hf and these
local algebras commute (under our assumption that everything is unramified,
they are even commutative).

We fix a prime p. To get Hecke operators we start from cocharacters y =
> mixi : Gy — T, where the m; € Z. This provides an element x(p) € T(Q,),
and hence a double coset K,x(p)K, whose characteristic function is denoted
by T,. By convolution this defines an operator (also denoted by T)) on the
cohomology with 3.1.2 rational coefficients

T, : H'(S}G(f,MA ®Q) = H.(SIG(f7M/\ ® Q).

We have defined the modified operators, which act on the cohomology with
integral coeflicients

T =7 p"0eNT  HY(SE, M) — H*(SE,, M),

(See chap.3.pdf 3.1.2)

We have a formula for the action of 7, on the unramified spherical functions.
We consider unramified characters v, : T(Q,) — C*. Since T(Q,) = X.(T) ®
Q,; we have for the module of unramified characters

Hom,,,, (T'(Q,),C*) = Hom(X.(T),C*) = X*(T) ® C*

If we pick a x € X.(T) and a v, =€ Hom,, (T(Qp), C*)vp(x(p)) We have
the embedding X*(T') — Hom,,(T(Q,),C*) which is given by v — |y|, =
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(x = |y(z)|p). I want to distinguish carefully between the algebraic character
and its absolute value. If we have a v € X*(T') and a x € X, (T') then we put
Vp(x(p) =< x,7 >p=p~ X7~
Especially we have the half sum of positive roots p§ € X*(T) ® Q and the
resulting character |p%|.
We define the spherical function 1,,, by

Y, (9) = vp(bk) = v (b)

and this will be an eigenfunction for the convolution with a Hecke operator
Ty %y, = T\ (V)¢

This spherical function differs from the spherical function in chap3.pdf 2.3.4
they are related by the formula

w”p (g) = qZ)Vzo_|/7g l» (g)

We write a formula for T)/(1,) for the case that x = x; is one of our basis
cocharacters x;. We look at the orbit of x; under the Weyl group, let W; be the
stabilizer of x; in W, then

e,
T)\(/(VP) = p<X“pB> Z < WXy, Vp — |pg|17 > +6(X1)7

where 0(;) is a positive integer. It is zero if for all positive roots a we have
< xi,a >€ {0,1}, i.e. the coefficient of the root «; in any positive root is always
< 1. (This extra term comes bla bla)

If we now have an isotypical submodule H?(S%, M, )(rf),7f = ®,mp, and

Ty = Indggg‘; ;yp (algebraic induction) then our above formula says

. G . G
T (mp) = p=X P> (N < wxa, vp — [pBlp >) +pAMPEZS(x,). (246)
wW/W;

The exponent < y;, A + pg >= ¢(x, ), the § is equal to zero because of our
assumption.
Now we ask for a formula for the Hecke operator on T;Oh on an isotypical

piece H;_l(m (SM M(1w-)\)) (o)) in the cohomology of some boundary stratum.

We assume that o), = Indﬁi&’; vp. The Weyl group Wy acts on W/W; from the

left, let us choose a set of representatives {...,v,...} for this action. Then the
sum becomes

pxARE> (3 > <woxi v —lpg |y >) +pMEZ5 ()
vEWNM\W/W; woeWar /War,i
(247)
We want to transform this into a sum over Hecke operators acting on H,'_l(w) (SM, M(w-

M) (oy)) we write
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pXIARE> ( Z Z <wuxi, Vp — |pH |p — lpplp >) + pXMPEZ5(y;)
veWM\W/W; woeWar /Wi
(248)

The character pp = fp7y;, is invariant under the action of Wj; we can pull this
factor in front

el G
peAMTEZ (N T plrsae e Y T < woxa v — [pilp >) TR E(x)
WGWM\W/Wi 'lUEWM/WM,i
(249)

For a given v € W/ \W the inner sum is the value of a Hecke operator on the

cohomology H, i) (SM  M(w-N))(of)) times a correcting factor. To compute
this correcting factor we write

B+ pF) = i) + b1, \)vi, (250)

Note that this expression is - as it must be- independent of the representative v.
If we want to compute the correcting factor we have to choose the representative
v = wiv,wr € Wy such that vy x; is in the positive chamber with respect to
the given Borel subgroup in M, i.e.

< VX4, >> 0 for all v # g (251)

this is certainly true if vy is a Kostant representative.
Then the correcting factor becomes

p<ka¢7ﬁ£,;1,),\—b(w»>\)’nO> (252)
(note the minus sign!) and hence we get

Q) g )
p Xl AT NI Z N <, vy — o >= Tl (o) (253)
weWn /Wy 5

) =) 5 )
Z p<x1,A+p§>f<vkxl,u,u~,,fb(w,A)mo>Tkai (Uf)) +p<><i,k+p§>5(xi)
v EWn \W/W;
(254)

and this is equal to

) G_—1,~(1) 5/~ . P
Z pXiATPEU (N b(w’)‘)%f’»)Tvkxi(Uf)) +p<X“>\+pg>5(Xi)
v EWn \W/W;
(255)
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We can still write this differently, we have
ﬂgi;l,)A - b(ﬁ)v )‘)’yio = [1%(1117))\ + b(ﬁ)a )‘)’Yio - Qb(’i}, )‘)Pyio = ﬁ)()\ + Pg) - Qb(’UNJ, /\)7i0
(256)

and then (255) becomes

5 R N 5 (o) 5 )
v EWn \W/W;
(257)

The factor in front is equal to one if w = @ and otherwise the exponent is a
strictly positive number. Hence we get

TN (Ind () = Ty * (o) + Hecke-ind

T O @) ) A c5h ) 4 <A 5y
weEW P /W, w1

Let us call the first summand on the right hand side the "main” term. We
observe that for w # @ the exponent < i, (A + p&) — w™lw(A + p§) > >
0 and if X is regular this is also true for < x;,A > . This tells us that the
eigenvalue T} (Ind(0,)) is a p-adic unit if and only if T%(’mh(ap) is a p-adic
unit, provided A is regular or §(x;) = 0.

( For the special case G = GSps/Spec(Z) and P the Siegel parabolic this
yields the formulae in 3.1.2.1 in ”Eisenstein Kohomologie...”. The formula for
T, 5 is wrong, I overlooked the term p<X#:*>§(x;). This was discovered by Ger-
ard, the congruences for the second Hecke operator became wrong.)

4.7 The general philosophy

Now we can formulate how the general form of a Ramunujan-type congruence
should look like. We start from an isotypical subspace H*(SM, M(w - Ag)) (o)
where R = Z[1/N] where N is a suitable integer. Let I,, C H} be the anni-
hilator of oy. Then the quotient X} /I,, = R(oy) is an order in an algebraic
number field Q(o¢). We consider the second constant term of the Eisenstein
series evaluated at s,, = 0 and assume that it is of the form

a(o )Mot (o)

where a(oy) € Q(o) and where Mot(os) has some kind of an interpreta-
tion as an element in some Ext},,. Now we assume that a ”large” prime
[ C R(oy) divides the denominator of a(oy). We assume that o, is ordinary
at [, i.e. T (gy) & [ for all i (some ig ?).

Then we can hope for an isotypical component II; for the Hecke algebra
H$ in the cohomology H*®(S% M,)(Ilf), we consider the order HE /I, =
R(IIf), we expect to find a prime I; C R(II;) and an isomorphism between the
completions

®: R(Ily), — R(op):
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such that for all primes p

(T (1)) = TS (Ind(0p))  mod 1.

We consider the case where our modular forms f, g have rational coefficients,
i.e. are of weight 12,16, 18,20,22, 26 this means that the values for d;,ds are
10,14, 16, 18, 20, 24. Following a notation in representation theory we put

w-A=wA+p)—p=di(w- /\)72{ +d3(wo)\)'y£§ +1/2(—6 — n2)va,-

Given di,ds a value a in the upper half of the above range, we solve the
equations

d

dy(wy - A) =dy, ds(wy - ) = ds, %—l—?l—&—dg—&—Qza (casel)
ny d1

di(wa - A) =dy, d3(ws - A) = ds, 7+7+d3+3:a (case2)

We introduce the number
w =dq +2d3 + 3

and observe that d—21 +d3+2 = WT'H is the reflection point of the functional
equation. We rewrite our equations a little bit. In (casel)

ki—4=dy —2=ns+2n3
ks —4=d3s —2=mnq1+n9+ns3
20 —w—1=n9

and in (case2)

k176:d174:n1+2n2+2n3
k3—4:d3—2=n3
20—w—3=m

As it turns out that for our restricted choice of f, g we never have solutions
in (case2).

This gives us a unique highest weight A = A(dy,ds,a) and a space of holo-
morphic modular cusp forms Sy, n, 44n, in which we should look for a cusp
form satisfying congruences.

I want to give the precise form for the expected congruences. We choose the
Hecke operator T}, this is the operator whose eigenvalues are the traces of the
Frobenius, it has also the property that < y3,a >€ {—1,0,1} for all roots «,
and if we identify X.(T)g = X.(T)g then x3 = ~s.

The Weyl group W is the semidirect product of S3 and (Z/2Z)% and is of
order 48. The stabilizer W3 of x3 is the subgroup Ss, this is the Weyl group of
As. We have to study the double cosets

W \W/Ws = WP /Ws.

The quotient W/W3 has cardinality 8, on this quotient we have the action of
W, this is the group generated by the reflections s1, s3 and hence is of order 4.
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It is clear that we have two orbits of length 2 and one orbit of length 4. Hence
the sum in (Hecke-ind) has three terms.

The orbit of length 4 gives us the "main” term in our formula (Hecke-ind)
and T, gi’f‘)h(ap) = ap(f)ap(g), where of course the two factors are the eigenvalues
of f,g respectively.

The two other orbits correspond to the Kostant representatives e = (Id, O p,
they are fixed by s1, hence the W), orbits are given by {(e, s3), (Op,s30p)}.
This means that for choice of w we have T " (5.} = a,(g), it remains to
w—wx,; NP P
compute the factor in front. For w = e or w = ©p this factor is

p<(Id.—u~171 w)x3,A\+p>

Our element @ is one of the two Kostant representatives wi,ws on p. 1.
Then w~'Op is equal to the the corresponding elements v, vo. We get

< (Id —wyY)xs, A+ p >=ng +n3 +2 <(Id—viYHYxs, A+ p>=n3+1
<(Id—wgl)x3,)\+p>:n1+n2+n3+3 <(Id—v51)X3,A+p>:n2+n3+2

Hence we expect:

We choose triple di,ds,a and a pair of eigenforms f,g with weight d; +2 =
k1,ds+2 = ks. Let A solve the appropriate equations (casel), (case2). If a prime
[ divides the denominator of

At (7 x 11, q)
Acol(r x I,a+ 1)

Q(ry x Iy)

then we find an isotopical subspace HS (S, My)(I1) and a congruence
TS& (ﬁp) = ap(g)(p"3+1 +ap(f) +p”2+"3+2) mod [
in (casel) and
ng (ﬁp) = ap(g)(p"2+"3+2 + ap(f) +pn1+n2+n3+3) mod [

in (case2)
We compare to TABLE 1. in [BFG]: We have

(K1, k) = (m2,m1)

and
ry =mng +n3+ 2,79 =ng + 1 in (casel),

r1 =mn1 +ng +n3+ 3,70 =ng + ng + 2 in (case2).

Recall that we are interested in the special value a+ 1, we can say in (casel)

no+1 w r—Tot+wW
1= —+1l=———+1
a+ 5 +2+ 5 +
and in (case2)
no+1 w r —Trot+wW
1= —+1l=———+1
a+ 5 +2+ 5 +

Now I checked against TABLEL in [BFG] and Anton’s tables and the data
match perfectly. We even see some ”small” primes providing congruences. We
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see a 17% occuring in the case f of weight 12 and g of weight 18. We observe
that both forms are ordinary at 17.

Remark: In our special case the expression for 7" (Ind(0,)) is a sum of
three terms, the term in the middle a,(g)a,(f) has weight % + 1 the first
term has a lower weight the third term has a higher weight. The difference of
the weights of the first and third term is up to a shift our evaluation point a.
This means: The closer these two weights get, the closer a comes to the center
of the L function.

We go to g = 4. In this case our group M = Gly - G,,. We choose a highest
weight A = nq1vy1 4+ noye + n1ys + ngys, the central character is trivial. It seems
that the interesting Kostant representatives are

w' = 54535954 and W = 545352545351 (258)

We get

WA+ pG) = (2+n1 +n2) (W + ) + B+ ny +2n0)9 + L1+ 1),

wA+ pG) = (24 n1 +n2) (1 +137) + B+ n1 4+ 2n4)3" + 5(—=1 —n1)n
(259)

We see that My (w-A) is self dual, this is the reason why we have chosen ny = ns.
As usual we define numbers dy = ds, ds by

d1—|—1:d3+1:2+n1+n2,d2+1:3+n1—|—2n4 (260)

The dimension of SI% is 20, we look at our fundamental exact sequence

H (S} Ma(w' - 1) 5 HIO(SE M) = HOSE, My — HA (S}, Ma(w - X))
T )
HY (S, Ma(w' - X)) (0) Hy (S, Ma(w - A)) (o)
(261)

This is the constellation where we can hope for extensions of mixed Tate
motives. The difference of the weights of w’ and w is two, which seems to be
too big. But the cohomology of SIA(/[M is concentrated in degree 4 and 5, so we

get boundary cohomology in degree 9 and 10.
We have to compute the second constant term. To do this we have to study
the representation of the group LM on the Lie-algebra u},. The Dynkin diagram

for the Langlands dual group *G is
of — af - of >= a.

and we get UM if we erase ayy. The representation of LM on uY, decomposes
into two irreducible representations, the first one has highest weight

Vv Vv Vv Vv
M=o +0g +03 +0y
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and is up to a twist the tautological representation. The second one has highest
weight
ne = o) +2a3 + 2y + 2a)]

and is (again up to a twist) the A% of the tautological representation. It is
of dimension 6. We recall formula (100) in chap3.pdf. The number a in this
formula takes the values 1,2 and we get

=<, i >=T4+3n +nytng=di+idy+ 3

s ~(1) (262)
=<, @' >=5+2n1 +n2+2nyg=dy +dz +3
This implies that the second constant term is
1 ACO]’(af,r,]l ,A42n1+no+ny) AC(’h(o'f \Tng 64311 +n242n4)
Qoy) ACOh(G‘f,T’nl ,5+2n1+no+nyg) ACOh(D'f,’I"T,Q ,7T+3n1+ns+2n4)
= (263)

1 A (g A3 (14n1)) A (0 ,ry, TR 4 140)
Q(of) Aot (ap,rny gt +5(14n1)+1) AP (as,r0,, 2 +24n01)

Since assume that we are in the unramified case the two isotypical subspaces
o’ resp. oy in (261) provide Tate motives Z(—*3- + 1(n1 +1)) resp. Z(—¥ —
%(nl + 1)). Hence our usual construction of Anderson motives will provide ele-
ments

X(oy) € Exth(Z(—1—ny),2) (264)

Since we want non torsion classes, we assume n; even. This implies that ds
must be even and if we give ourselves d; > 1,ds > 2 and even, then we see that
for our given di,ds and given Kostant representative w = s483582545351 we find
a dominant A = ni7y; + neye + n1y3 + nNgay4 with

1
wA+p) = (di + 1)(1" +73") + (da + 13" — (1m0

if and only if n; € [0, min(d; — 1,dy — 2)] and even.
Again we consult [Ha-Rag] and find that the miracle happens again: The

numbers ¥ + 1(1+n4) + 1 run through the critical arguments, for ny = 0 the

number G + % is the smallest critical argument to the right from the central
w1

argument for the functional equation (= %).

Hence we know that the factor in front

L Aop,ry, 5+ 51+ M)
Qay) Ao (ap, 1y, , L+ %(1 +n1)+1)

(265)

is an algebraic number in F. The period Q(o) is locally well defined up to a unit
and hence we can speak of the prime decomposition of this algebraic number.
Hence we may apply the principles outlined in 2.1. and ask whether ”large”
primes [ which divide the denominator of the expression in (265) create eigen-
classes in H 10(81(5 . M) whose eigenvalues are congruent to the eigenvalues of
oy modulo [.

In our heuristic reasoning we encounter new difficulties, before we discuss
these problems I want to give the precise form of these congruences in the sense
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of (?77?,(Hecke-Ind)). The following considerations hold for arbitrary even value
of g.

We choose the cocharacter x, : ¢ — 1" which satisfies < x,a; >= 0 for i <
gand < x4,y >= 1. (This means the first g entries on the diagonal are
equal to t the other entries are equal to 1.) The stabilizer of this character in
the Weyl group is Sy = Wjs the Weyl group of M. Then we can represent the
cosets W/Wy, by the 29 elements which exchange some of the e; — fi, fi = —e;
and leave the others fixed. So we can say that W/W), is equal to the set of
subsets of {1,2,...,g}. The Weyl group W) also acts from the left on this coset
space and acts transitively transitively on the set of subsets of a fixed cardinality
h. Therefore the number of orbits is g + 1.

4.8 ¢g=14

We go back to the case g = 4, our cocharacter is x4 and our parabolic subgroup
is the Siegel parabolic subgroup, i.e. ig = 4. Let wp be the longest Kostant rep-
resentative. We have the choices vy = e, v = S4,Vp = 845352548351, WpS4, Wp,
they are Kostant representatives and hence they satisfy (251). We choose
W = $45352548357.

We investigate the expressions

<xi A+ G — ot (B p§) - 20, M) > (266)

these will give us the exponents in the powers of p which enter in the sum. To
do this we have to write

A+ oG — ot ( (A p%) — 2b(w, )\74) Zm]aJ (267)
and then
< x4 0§ — vt (w()\ + o) — 2b(w, Am) >=my (268)

Perhaps it it even simpler to rewrite this in the terms of the p-s. We observe

that < x4, ﬂi 2\ >= (0 and hence

my =< xa,b(e, \)ya — v, (/1551,))\ — b(w, )\)74) >=2b(e,\)— < x4,V ( G5 = b, N

(269)
If we choose v, = e or vy, = wp then v, ,u( ))\ = (1)>\ and hence < x4, v, ufﬂ )A >=
0, so
2b(e, \)— < 4,07 (,zg; — b, A)~y4) >= 2b(e, \) £ b(w, \) (270)
These numbers are easy to compute and equal to
542n1 +ng+2n4 £ (1+n1) (271)
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Now we consider the two choices vy = s4, wpss. In this case we get for the
exponents

3 ny 1

or more precisely we get
14+ny if v, = 84

24+n1+ng ifv, =wpss
(273)

my =< Xa,b(e, \)ya — vy, ! ([LS))A — b(w, )\)’y4> > = {

Finally we choose vy = s48352545351 = w. In this case the two p contri-
butions cancel and one also checks easily that < X4,v;1’y4 >= (. Hence the
exponent is zero. Since x4 is miniscule we get d(x4) = 0. We conclude that
formula (257) yields

The cocharacters x4, s4X4, WX4, WpS4, w, define conjugacy classes of cochar-
acters for the group M = Gl - G,,. Since we assumed for simplicity that the
central character of M is trivial we can divide by the factor G,, and consider
these cocharacters as homomorphisms from G,,, to the standard maximal torus
of M = Gly. The conjugacy classes of of these five cocharacters are x4, X3, X2, X1
in the notation of chap3.pdf 3.1.4. and x( which is the trivial character. We
observe that T21coh = T)cob — 1 and therefore we get

Tﬁ’co}l(lnd((fp)) — (p4+n1+n2+2n4 _,’_p6+3n1+n2+2n4)
+ p1+"4T%’C°h(OP) +p2+n1+n4T>]<\§[,coh(o_p) (274)
+ T ,)

Therefore we can express the eigenvalues of the above Hecke operators at a
prime p in terms of the Satake parameter w, = {w1 p,ws p, w3 p,wap} of T,. We
get

51
LMo = 3D e, (275)
I:#I=v

This has now the same shape as the expressions which we have seen before.
The numbers T%jOh (o) are algebraic integers. We have exactly one term which
does not have a strictly positive power of p in front of it. Therefore we may ask
whether for a ”large” prime [ C O, which divides the denominator of

1 ACOh(Jf7r77174+2n1 + n2 +n4)
Qo) At (af,7y,,5 + 201 + N2 + n4)

"creates” an isomorphism class class II; with HlO(SIG(f,M)\)(Hf)) # 0 such
that

Tﬁ’wh(l—[p) = 7% (Ind(s,)) mod I for all primes p (276)

This is in perfect analogy to the cases g = 2,3 where the congruences have
been verified experimentally.
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But we may have a problem. We still have the ”motivic” factor

AN (o, rp,, 6+ 301 + no + 2ny)

. 277
AN (o, 1p,, T+ 301 + no + 2n4) (277)

In our previous cases this was a ratio
¢(...) (278)

and this had an interpretation as an extension class in the Betti-de-Rham real-
ization.

We now assume that the analogous computations to the computation in
[Hal], 4.2. and SecOPs.pdf work and especially that the secondary operator is
non zero and is given by a ”simple” rational number. Then

XB_de—Rham(0f) € Exty_ypn(Z(—1 —ny),Z(0)) = iR (279)
is essentially equal to this motivic factor

ACOh(Uf,r,,z, 6+ 3n1 + na + 2ny)
ACOh(O'f,TUQ, 7+ 3n1 +ngo+ 2n4)'

(280)

This may challenge our belief that there are no exotic Tate motives, because
otherwise we must have a relation

ACOh(Uf, Tngs 6+ 3711 —+ no + 2%4)

Aot (g g, rp,, T+ 301 + ng + 2ny)

~ ('(=n1) (281)
where ~ means equal up to an algebraic number. This is hard to believe!

Of course some computations have to be checked. Especially we have to
check whether, in analogy with the case ¢ = 2, the secondary operator on
the cohomology of the relevant Harish-Chandra modules is non zero and has a
"reasonable” value. If this is so, then we can say:

If (281) is not true then we can construct a mized Tate motive X (o)
whose extension class in Exty 4.5, (Z(—1 — n1),7Z(0)) is not in the rational
line through ¢'(—ny)/im

This does not destroy our hope for congruences. We may ask for the image

of
1 BdR 1
Ext pm (Z(=1 = 1), Z(0)) = Extp g5, (Z(=1 = n1), Z(0)).

If our construction works then it seems to be plausible that this image may
generate even an infinite dimensional Q-vector space. But perhaps there is some
reason that its image is not infinitely divisible. Assuming this we can ask the
question about congruences formulated above.

In principle we can check these questions experimentally. For the congru-
ences Bergstrom and friends should extend their computations to g = 4. More
serious is the question whether (281) is true. If we find an algebraic number
such that

A (g p 7y, 6 + 301 + N2 + 2n4)

— (__
ACOh(O'f;Tn277+ 3Ny +no + 2714) - ﬂC ( nl)

92



up to a very high order of precision (high with respect to the height of ), then
this does not prove that (281) is true, but it makes us almost sure. If we do not
find such a number then it is very likely that (281) is false.

4.9 Non regular coefficients again

So far we always assumed that n; > 0. We expect that in this case the Eisenstein
intertwining operator is holomorphic at s = 0. The second term in the constant
term of the Eisenstein series is a product of two terms and the second factor is
a ratio of A2 -L values

ACOh(Jf,rn2,5 +2n1+ng+2ng+n3+1+5s)

282
AP (o f,rp,, 54 201 + N + 204 +1q + 2+ 5) (282)
where
Acoh Ufﬂ”nzv H H 7—H H (283)
p Iftl= 21—p2w pP p Iftl=2 T—&rpp—*

and 2 =< ng,ﬁg’))\ =54 2n; + ng + 2ny4.

Now the situation becomes very unclear. We have to evaluate at s = %> +
1+ ny. Our estimates for the @y , imply that ACOh(af, Tys,S) is holomorphic at
this argument if n; > 0. But if n; = 0 then we may have a first order pole.
Actually we do not know whether such a pole is a first order pole, we only know
from Langlands see 7?7 that the expression in (263) has at most a first order
pole. But let us assume that we have a first order pole. This pole cancels if

ACOh(Jf’ Tn1s 4 + ng + TL4) =0 (284)

This vanishing may be a rare event, but it can happen that for our given oy the
L-function in the first factor satisfies the functional equation

A (o p 1y, 8+ 200 + 204 — 8) = —A“P (0,1, ) (285)

and then (284) is forced.

The situation is now analogous to the situation in section 4.3 and we may
ask whether the minus sign in the functional equation implies that we have a
submodule SK(of) C H,lO(SIG;f,M,\) which is a direct sum of copies of J(oy)
and which provides a motive which is isomorphic to M(o,1,).

More precisely we can define SK*(o) as the image of the tautological map
Homyg (J(oy), HY (S8, M) @ J(o7) =% HA(SE, M) (280)
For any prime ideal [ we have an action of the Galois action on
HY(SF,, My ® F)

which commutes with action of the Hecke algebra. (see the remark at the
beginning of section 4 this induces an action on SK*®(of) ® Fy and therefore we
get an action of the Galois group on

W[(O’f) = HomHgf (J(O’f),H!.(ng,M)\) ® F[)
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such that the tautological map becomes an isomorphism of Galois x Hecke mod-
ules.

We still have the congruence relations and they tell us that for all primes p
the eigenvalues of the Frobenius ®, ! on Wi(o;) have to be taken from the list

_(1) .
Ly(of) = {pa(V)p<X"’Mw‘*>WI,p} (287)

of summands occurring in the formulas (274) and (275).
This implies that we can have an non trivial SKY (o) C H{ (SIG(f M) Q@ F)
only if we have some summands in our list £,(co;) which satisfy
el

M) q )
|pa(l/)p<Xu7M@,>\>w?,p| — p2++n2+2n4 — p<><2,u@,k> (288)

In analogy to what we have seen earlier we should choose ¢ = 10. If SK%(of) #

0 then we get that the members p<X""ﬁ$v)A>w;p € L,(of), which are also eigen-
values for ®, ! must have absolute value p<X2’ﬁSv)A> and hence we get |wy | =1
for those values of I. If we assume that actually all wy , € L,(0y) with #1 =2
occur as Frobenius eigenvalue, then we get the Ramanujan conjecture. Actually
it seems to be plausible that each eigenvalue in the sublist where #1I = 2 occurs
with multiplicity one. then we get that dim(Wi(os)) = 6. In this case we have
found the motive M(o,r2) in side the cohomology HY (ng,M,\) ® F).

If ACOh(O'f,T174 + ng + ng + s) has a first order zero at s = 0 then we can
construct Anderson mixed motives (as in section 4.3 ), i.e. extensions

V(of) € Extgpm(Z(—k), SK(oy))

V'(o}) € Exth o (SK(o}), Z(—k + 1)) (289)

where now k = 5 + ny + ny4, and these two extension come with a canonical
—_

“integral” to a biextension (3’(0%),)(0y)) and a computation like the one in
SecOPs.pdf should yield

_— ACOh’/(O'f,T174+'n2+n4) ACOh(varn276+n2+2n4+S)

Ress—o

y !/ A ~
iy (Uf)’y(gf)] Qop)A© (of, 71,5+ ng + nyg) AP (gp, 1, T4+ N2 + 204 +5)

(290)

This formula gives us a strong hint that we always should have SK*° (of) #0,
because otherwise

i1V/(0), V(o)) € Bxth_apn (Z(—k), Z(—k + 1))

and this last group is hypothetically log(QZ,) and this is again hard to believe.
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