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Many of the familiar (and not-so-familiar) invariants in the algebraic topol-
ogy of manifolds may be phrased as an index of an elliptic di�erential operator.
What is an elliptic di�erential operator? A di�erential operator D is linear map
between the smooth sections of two vector bundles on a manifold which looks
locally like a linear combination of partial derivatives (of course, there are also
more �functorial� descriptions). Ellipticity is a condition on the coe�cients of
the highest order terms, which ensures that both kernel and cokernel of the
di�erential operator are �nite-dimensional (i.e. if we consider the di�erential
equation Df = g, there are only �nitely many linear independent solutions for
f and given g and only �nitely many restrictions for what g the equation pos-
sesses a solution). The di�erence between the dimensions of kernel and cokernel
is called the (analytical) index.

At �rst sight, it seems that it requires the computation of the kernel and
cokernel of a di�erential operator D to compute its index and the computation
of the kernel means to �nd all solutions to the above di�erential equation, which
is, of course, in general hopeless. But this is not true: the index is much easier
to compute than the dimensions of the kernel and cokernel. For example, it
is a homotopy invariant, which gives the hope, we can �nd a formula for it in
terms of algebraic topology. This is exactly the content of the Atiyah-Singer
index theorem. For every di�erential operator D, Atiyah and Singer de�ne a
topological index and their theorem states:

Theorem 1 (Atiyah-Singer index theorem). The topological index of a di�er-
ential operator equals the analytic index.

The most natural form of the topological index uses K-theory (which is also
the formulation, which we use in the proof), but their is also a concrete formula
in characteristic classes in ordinary cohomology.

Of course, the Atiyah-Singer index theorem (ASIT) can be applied to get
information about di�erential equations on manifolds, but a remarkable thing is
that it can be used also the other way round. This is already apparent in Hirze-
bruch's signature theorem, one of the basic corollaries of the ASIT: it seems
at �rst that it is a formula for the signature in terms of characteristic classes.
But often one can use the knowledge of the signature to compute the charac-
teristic classes or at least to conclude that the complicated characteristic class
expression is an integer. The same happens in the ASIT: the characteristic class
formula is a priori only a rational number, but must be an integer because the
analytic index is an integer. This approach can be applied to show that some
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manifolds have no di�erentiable structure or that most spheres have no complex
structure (see talk 11).

The plan for the seminar is roughly this: In the �rst two talks, we collect
some analysis needed for the seminar, especially we �ll the words 'Index of an El-
liptic Di�erential Operator' with precise content and proof its basic properties.
In the third talk, we recall and introduce some concepts of K-theory, introduce
the topological index and can give the precise statement of the Atiyah-Singer
index theorem. Talks 4 to 7 are then primarly concerned with the proof of
the index theorem and deducing its cohomological form. Talk 8 will give some
basic applications, e.g. the signature theorem above, but also to the Hirzebruch-
Riemann-Roch formula, which is a basic tool in complex geometry. For deeper
applications, often the Dirac operator is of fundamental importance. Therefore,
the talks 9 and 10 are dedicated to the basics for Cli�ord modules and spin
geometry and the construction of the Dirac operator. The last two talks then
reconnect to the index theory. Talk 11 includes some basic study of the index
of the Dirac operator and gives the applications mentioned above and talk 12
is a survey and outlook to the question which exotic spheres admit metrics of
positive scalar cuvature (the surprising thing is that not all exotic spheres admit
such metrics!). Our main source will be [L-M] and all non-speci�ed references
will be to this book.

Talk 1 (Partial di�erential operators): Give a basic introduction to
partial di�erential operators. These are linear maps between the sections of two
vector bundles which locally look like a linear combination of partial deriva-
tives (page 167 in [L-M]); however, this local coordinate de�nition is awkward
to work with, so we will choose a more algebraic approach, following Chapter
10.1 in [Nic]. For smooth vector bundles E and F over a manifold M , let Γ(E)
resp. Γ(F ) denote the space of smooth sections of the vector bundle. These
spaces are modules over C∞(M); review the fact that C∞(M)-linear functions
Γ(E) → Γ(F ) are the same as vector bundle morphisms E → F . After this,
de�ne (partial) di�erential operators as on page 446 of [Nic] and give some
basic examples (for example 10.1.2 in [Nic]). Then prove that di�erential op-
erators are local (10.1.3) and explain 10.1.4 about their compositions. Next,
de�ne the symbol as on page 450 of [Nic] as a morphism π∗(E) → π∗(F ) with
π : T ∗M → M the cotangent bundle projection. This requires most of the
material covered on the previous two pages; in particular, you should prove
Lemma 10.1.8. (This is actually tricky if you don't know the trick; googling
for "Hadamard Lemma" and looking at the Wikipedia entry might be helpful.)
The symbol of a di�erential operator is the basic object of study throughout the
seminar, so you should explain it in as much detail as possible. Then at least
motivate Proposition 10.1.10 and de�ne elliptic operators (10.1.13). Finally, ex-
plain (as in the exercises 10.1.15 - 10.1.17) why our algebraic de�nition agrees
with the local coordinate one.

Talk 2 (Properties of elliptic operators). This talk will be rather
sketchy, but involves lots of functional analysis. The �rst aim of the talk is
to explain why elliptic di�erential operators are Fredholm, i.e., have �nite-
dimensional kernel and cokernel. A complete prove will not be possible, but
some of the functional analysis involved should be covered. You probably will
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have to introduce formal adjoints (10.1.3 in [Nic]), but you should not prove
anything about them - just assume whatever is necessary. Explain some of the
things in 10.2 and 10.3 of [Nic] and how they lead to the Fredholm property
of elliptic operators (10.4.7). In particular, the point where ellipticity actually
enters into the proof should be covered. There are many possible other sources
for this, including [L-M]; feel free to pick any other.
In the second part of the talk, discuss inhowfar the Fredholm index depends on
the symbol. The aim is Theorem 10.4.13 of [Nic] respectively 7.10 in [L-M]: the
index is locally constant on the space of elliptic operators, i.e. it is homotopy
invariant. Either follow [Nic] or [L-M] and explain the result in as much detail
as your time permits.

Talk 3 (K-Theory and the Topological Index): Recall some basic
de�nitions and properties of (complex) K-theory. For the choice what is impor-
tant for our purposes, you can orient yourself at [AS1], p. 488-494. As sources
[A1] and chapter I.9 of [L-M] are recommended, but you can, of course, use
other sources as well. Then de�ne the topological index of a (non-equivariant)
di�erential operator as in [AS1], �3, or [L-M], �13, and state the Atiyah-Singer
index theorem. If time permits, sketch the proof of Bott periodicity as in [A2]

Talk 4 (The analytic index revisited): The main goal of this talk is to re-
formulate the topological and the analytic index to get two maps Kcpt(T

∗X) →
Z, which are easier to compare than the integer numbers before. For this it is
necessary to introduce pseudo-di�erential operators. Two sources for pseudo-
di�erential operators are [L-M], III.3, and [AS1], �5 (you have, of course, to
omit much of the hard analysis). For the actual index map, you can use the
sources [L-M], p. 244-247, or [AS1], �6.

Talk 5 (Reductions and Equivariant K-Theory): Reduce the index
theorem to the two formal properties stated on [L-M], p. 247. Then prove prop-
erty 1 and the excision property ([L-M] III.13.4 or [AS1], �8 (where you have to
ignore the G-equivariance)). Next introduce equivariant K-theory and and the
equivariant index as in [L-M], III.9, or [AS1], �6.

Talk 6 (Multiplicative Properties): The goal of this talk is to inves-
tigate the properties of the analytic index in �bre bundles. See propositions
III.13.5 and III.3.16 in [L-M] (compare AS1, �9).

Talk 7 (Finishing the Proof and Deducing the Cohomological Form):
The �nal part of the proof essentially consists of computing the index map on
one conrete element. This is the statement III.13.7 in [L-M] or (B2) in �4 of
AS1. The proof consists of proposition 4.4, 4.7 and the end of �8 of [AS1] and a
short version is also presented in [L-M]. For time reasons you may ignore some
sign issues. Then you need do transform our K-theory formula into a character-
istic class formula. This is III.13.8 in [L-M] and proposition 2.12 in [AS3]. The
method of computation is in some sense more important than the actual formula.

Talk 8 (Basic Applications): The aim of this talk is to give some ba-
sic applications of the index theorem. Especially interesting corollaries are the
Hirzebruch signature theorem and the Hirzebruch-Riemann-Roch formula (the
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latter is of fundamental importance in complex geometry), but start with the
easy application [L-M], II.13.12 (see also the remark after proposition 9.2 of
[AS3]). You should then �rst prove proposition 2.17 of [AS3] and then explain
the relevant parts of �4 and �6. For the signature theorem, you will need to ex-
plain some basic Hodge theory, for which [Nic], 10.4.3, is a source. Alternative
sources for these applications are the theorems 13.9, 13.13, 13.14 in [L-M] and
(for a more extensive, but older account) chapters III, V and XIX in [Pal]. For
motivation of the Hirzebruch-Riemann-Roch you may have a look at [Huy]. If
time permits, you can also brie�y allude to G-equivariant theorems (but don't
state the concrete formulas!).

Talk 9 (Cli�ord Algebras): Following the �rst chapter of [L-M], de�ne
Cli�ord algebras, concentrating on the real and complex case from the outset.
Explain the Z2-grading and the relationship with the graded tensor product
(Prop. 1.5), de�ne the Spin group and explain how it is the double cover of
SO(n) (2.10). Then motivate the periodicity isomorphisms (4.10) which leads
to the classi�cation of Cli�ord algebras as certain matrix algebras. Then say
something about the representation theory of Cli�ord algebras, maybe concen-
trating on complex representations. Both ungraded and graded representations
and the relationship between the two should be mentioned. At some point in
the talk, you should also mention that Cli�ord algebras are "nearly" group rings
and the rami�cations of this for the representation theory (5.16). If time per-
mits, you could also mention the Atiyah-Bott-Shapiro construction (9.27 or the
original paper [ABS]).

Talk 10: Spinor bundles I Give a quick introduction to Spin manifolds
(II.1 and II.2 in [L-M]). De�ne the Cli�ord bundle associated to a Rieman-
nian manifold (or any vector bundle with an inner product) (II.3.4) and Spinor
bundles (II.3.6). Since any module over a Cli�ord algebra carries a compatible
scalar product (I.5.16), real Spinor bundles carry a Riemannian structure and
complex ones a Hermitian structure. Then de�ne the Dirac operator (II.5.0) of
a Spinor (or, more generally, a Dirac bundle, see II.5.2) and compute its sym-
bol. You probably need to explain some basic facts about connections on vector
bundles and the Levi-Civita connection on a Riemannian manifold.
For the remainder of the talk, you should concentrate on the even-dimensional
case. In even dimensions, it follows from the representation theory of Cli�ord
algebras that there is a unique irreducible complex ungraded Spinor bundle.
Show how to split this bundle using the complex volume element (the discus-
sion after II.3.10) and explain why the Dirac operator is an odd operator (II.6).
Finally, introduce the operator D+ to which we want to apply the Atiyah-Singer
Index theorem (II.6).

Talk 11: Spinor bundles II Prove Theorem III.13.10 in [L-M]. Again,
the method of computation is maybe more important than the actual result.
Give the �rst few terms of the Â-genus and an example of a non-Spin mani-
fold where it fails to be an integer. It follows that the Â-genus is an integer
for Spin manifolds; by a closer examination, one sees that it is an even integer
in dimensions = 4(8) (IV.1.1). Rohlin's theorem (IV.1.2) immediately follows
from this and the Hirzebruch signature theorem. The discussion after (IV.1.2)
about Freedman's non-smooth Spin manifolds should also be mentioned. Then
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you should prove (IV.1.4) and explain that this means that no high-dimensional
sphere carries a complex structure.
If time permits, you could mention the results about immersions of manifolds
(IV.2.1), or any other application of the Atiyah-Singer Index theorem.

Talk 12: The Clk-index theorem, positive scalar curvature and
exotic spheres This is more of an outlook/overview talk. Explain what scalar
curvature is and inhowfar there can be topological obstructions to prescribing
scalar curvature (Theorem 0.1 in [Ros]). You should also explain that there are
no obstructions in the non-spin case (IV.4.4). Then explain the Lichnerowicz
formula (II.8.8), which shows that the Â-genus has to vanish on a manifold with
positive scalar curvature. This is only an obstruction in dimensions = 4(8);
however, one can do slightly better. Explain the basics of Clk-linear operators
and the corresponding index theory (II.7), leading to the α̂-genus. Since the
Dirac operator is injective on a Spin manifold of positive scalar curvature, it
follows that also this re�ned index vanishes, which gives additional information
in dimensions = 1 and = 2(8). By a result of Stolz, this is the only obstruction
for positive scalar curvature in the simply-connected case. Finally, explain that
only half of the exotic spheres in these dimensions can carry positiv scalar
curvature (II.2.18 and the discussion before).
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