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An h-principle is a method to reduce existence problems in differential geometry
to homotopy-theoretic problems. For example, let us consider the following problems
in differential geometry on the existence of structures on a given manifold M .

• Problem 0: Can we classify submersions M → W up to regular homotopy?
• Problem 1: Does M admit a Riemannian metric of positive/negative sec-

tional curvature?
• Problem 2: Does M admit a symplectic structure?
• Problem 3: Can we classify immersions M → W up to regular homotopy?
• Problem 4: Does M admit a foliation of a given codimension?

All these structures can be described as sections in certain fibre bundles on M
that obey a certain partial differential equation (Problems 2,4) or partial differential
inequality (Problems 0,1,3).

If the manifold M is open, i.e. M has no closed connected component, then a
very general theorem of Gromov reduces the problem of solving a partial differen-
tial inequality of the type of Problems 0,1,3 to a purely homotopy theory problem
provided. Consider the first problem. If f : M → W is a submersion, then the
differential Tf is a bundle epimorphism TM → TW . The classification of bundle
epimorphisms is a purely homotopy-theoretic problem, because a bundle epimor-
phism is a section into a certain fibre bundle over M . Gromov’s theorem states in
this case that any such bundle-epimorphism is homotopic to the differential of a
submersion. This was proven originally by Phillips.

The condition of having positive sectional curvature is a condition on the second
derivative of the metric. Gromov’s theorem implies then that any open manifold
has a metric of positive sectional curvature (the same statement is true for negative
sectional curvature).

Recall that a symplectic structure on M is a closed nondegenerate 2-form ω. It
determines two data: a cohomology class [ω] ∈ H2(M ; R) and a homotopy class
of almost complex structures on TM (these are endomorphisms J of TM and one

requires that ω(,̇J )̇ is positive definite). Although the existence of symplectic struc-
tures is a problem on a differential equation, but it can be reduced to a differential
inequality and then solved by the h-principle. The result is that if x ∈ H2(M ; R)
and an almost complex structure J are given, then there exists a symplectic form ω
(i.e. a nondegenerate closed 2-form), such that [ω] = x and such that J is compatible
with ω.

These examples show that similar statements are false for closed manifolds:

• No closed nonempty manifold M admits a submersion onto R (undergrad-
uate calculus), but a bundle epimorphism TM → TR exists if χ(M) = 0
(Poincaré-Hopf).
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• If the closed manifold M has a metric of positive sectional curvature, then
π1(M) is finite (Bonnet-Myers).

• If the closed manifold M has a metric of negative sectional curvature, then
M ' Bπ1(M) (Cartan-Hadamard).

• If ω ∈ H2(M ; R) is symplectic structure on the closed 2n-manifold M , then
[ω]n 6= 0 ∈ H2n(M).

For immersions, the answer is stronger: we will see that any bundle monomor-
phism TM → TW can be homotoped to the derivative of an immersion, even if M
is closed. This is the Smale-Hirsch theorem [16], [30]. This follows from Gromov’s
theorem by reducing it to a problem on an open manifold.If M = S2 and W = R3,
it has the amusing consequence that a sphere can be ”turned inside out”.

For Problem 4, the answer is more complicated. Naively, after seeing the solu-
tions to the first four problems, one would expect that any subbundle V ⊂ TM of
codimension is homotopic to a foliation. This, however, is false. There is a nec-
essary condition on the Pontrjagin classes of TM/V (Bott’s vanishing theorem).
Haefliger constructed a fibration BΓq → B GLq(R), such that the classifying map
of the normal bundle of a foliation admits a unique lift to BΓq. He also proved
the converse, for open manifolds M : if V ⊂ TM is a subbundle of codimension q
and the classifying map of TM/V admits a lift to BΓq, then V is homotopic to a
foliation. Gromov’s theorem is a crucial ingredient for the proof.

The h-principle is proven in a much more general framework and it was success-
fully applied to problems which do not look even remotely related to differential
inequalities. Examples are:

• Mc Duff’s work on configuration spaces [18], [19], which leads to an iso-
morphism Hk(C

r(M)) ∼= Hk(Γ(M ; Fr(M)×GLn(R) Sn)), where Cr(M) is the
configuration space of r points in the open n-manifold M , Fr(M) is the frame
bundle of M and Γ is the notation for ”space of sections” and r > 2k.

• Galatius’ work on the stable homology of automorphism groups of free groups
[5]. He showed that the natural map Σr → Aut(Fr) is an isomorphism in
homology in degrees less than r/2.

• A new proof of the Galatius-Madsen-Tillmann-Weiss theorem on the homo-
topy type of the cobordism category [6], asserting a homotopy equivalence
between BCobd, the classifying space of the d-dimensional cobordism cate-
gory and the infinite loop space of a certain Thom spectrum MTO(d). The
new proof was sketched in [5] and worked out later in [7] and [27] (the original
proof in [6], as well as the closely related proof of the Mumford conjecture
by Madsen and Weiss [22] rely on h-principles as well.

We will discuss the first and the third result, while the second result is beyond
the scope of the seminar. Instead of stating something close to precise definitions,
we give a hint how the problems above might be parallel to the differential relations
mentioned earlier by means of the following table.
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Submersion theory Configuration spaces Spaces of submanifolds General notion
Sub(M ; W ) C(M) space of d-dimensional micro-flexible sheaf

submanifolds of M F on M
Epi(TM ; TW ) map(M ; Sn) space of maps from M space of sections in the

to a certain Thom space fibre space Ffib
M → M

differential map scanning map Pontrjagin-Thom h-principle
construction comparison map

Gromov-Phillips Barratt-Priddy- Galatius-Madsen-
Submersion theorem Quillen-Segal Tillmann-Weiss

The seminar has of three parts, each consisting of three talks.

Part 1: Talks 1 and 2 introduce the language in which the h-principle is formu-
lated: Jet bundles, partial differential relations, microflexible sheaves Talk 3 is the
proof of the h-principle.

Part 2: Talk 4 discusses immediate applications, for example submersion and
immersion theory. Talks 5 and 6 are about foliations.

Part 3: The last part of the seminar consists in applications to configuration
spaces (talk 7) and spaces of manifolds (talks 8 and 9).

If you wish to give a talk, send an e-mail to both of us (ebert@math.uni-bonn.de,
andresangelalumni@googlemail.com) no later than March 12th. In order to faciliate
the distribution of the talks, you should name a first and a second choice. Needless
to say: each of the talks should be finished within half an afternoon.

Talk 1. (Jet bundles and differential relations, 22.4.)

The goal of this talk is to give the precise statement of Gromov’s h-principle for
open invariant differential relations (this is the ”main theorem” of [10], p. 129).
The statement of the theorem involves sections of jet bundles of fibre bundle, so you
need to discuss the definition and some important properties of jet bundles. You
also have to explain the notion of natural fibre bundles. Jet bundles are discussed in
[15], [1], [4], [9]. Don’t forget that the h-principle is about spaces of smooth maps,
so you need to discuss the topologies. Needless to say: give a few examples (maybe
other ones than immersions and submersions which are discussed later in detail, for
example curvature relations, [9], p.109 f).

Talk 2. (Microflexible sheaves, 22.4.)

The goal of this talk is to state Gromov’s h-principle for microflexible sheaves. The
statement can be found in the middle of page p.79 [9] and the relevant notions are
explained on p.74-75 loc. cit. There are alternative and more intuitive descriptions
of the sheaf Φ∗ and the h-principle comparison morphism ∆ : Φ → Φ∗ as a ”scanning
map”. The notion goes back to G. Segal [28], but an explanation that is closer to
our topic can be found in [27], section 6. See also [2], chapter 2, for more details.

The second goal is to explain why the h-principle for microflexible sheaves is a
generalization of the h-principle for differential relations. This is sketched in [9],
p.76, Remarks A’ and A” and it is your job to work out that sketch. Of course,
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you should discuss some examples: differential relations and something apart from
that. You can look into the sources of the talks 7, 8 and 9 to get an impression of
what sheaves the h-principle can be applied to. Gromov’s book [9] probably contains
a lot of examples and see also [2], but not all sheafs that are discussed there are
microflexible. Do not go into the details of the definition of the topologies on these
sheaves, let alone the proof that they are microflexible - this is done later.

Talk 3. (Proof of Gromov’s h-principle, 6.5.)

The proof is written down in [10] p. 133-140 for differential relations and it can
be generalized to microflexible sheaves by a mere change of notation and you should
present this generalization.

Remarks: 1.) The proof is only 7 pages long (with every detail spelled out!)
and elementary. 2.) Proposition 3 loc.cit. is somewhat technical. You might be
tempted to skip its proof, but do not dare to do so: it is the heart of the proof! 3.)
There are many formulae but few pictures in [10], so you have to develop your own
visualization of the situation, which won’t be easy. To get an idea of what is going
on, it might be helpful to consult also the relevant pages in [1], [8], [26], but they
can also be a source of confusion. 4.) The translation into the more abstract setting
of microflexible sheaves will be easy once you understand the proof in [10].

Talk 4. (Immediate applications of the h-principle, 6.5.)

Submersions, symplectic structures ([10], p.130-133). For some background on
symplectic structures, see the introductory chapters of [20]. Proof of the immersion
theorem from the submersion theorem, see [25], p.196. The sphere eversion [4].
Show one of the movies that circulate in the web, but do some serious maths as
well. Note that the movies do not show the homotopy provided by the proof we
discussed, but another one, so they do not help to illuminate the proof discussed
in talk 3. Question: in which dimensions is the sphere eversion possible? Browse
through [25], [26], [1], [4] to find other examples of differential relations.

You should also give some definite examples that show the (complete) breakdown
of the h-principle for closed manifolds (see the introduction)

Talk 5. (Foliations I, 10.6.)

Main sources: [11], [3]. Definition of foliations and distributions, the integrability
condition and the Frobenius theorem (without proof). This is a basic result covered
in many introductory textbooks on smooth manifolds, consult [17], [29]. Bott’s
vanishing theorem [3]. Maybe you sketch the proof, other sources are [9], p. 100
and [23]. Haefligers topological groupoid Γq. Then you should discuss briefly Γ-
structures for general groupoids Γ [11]. Then any foliation determines a Γq-structure.
Discuss the map Γq → GLq(R). Note: the notions of a ”Γ-structure” ([10]), a ”Γ-
torsor” (e.g. [24]), and a ”Γ-principal bundle” on as space X ([14]) are all equivalent.
The latter perspective also gives enough credibility to the result that [X, BΓq] is in
bijection with concordance classes of Γ-structures on X without a detailed proof.

Remark: we suggest to restrict to the C∞ case throughout. This might be too
much material for 75 minutes. If there is not enough time, then decide whether you
want to emphasize the proof of Bott’s theorem or the details of the classification
theorem for Γ-structures. The theory is also discussed in [1].



5

Talk 6. (Foliations II, 10.6.)

Haefligers classification theorem: the set of concordance classes of foliations on an
open manifold is in bijection with [X, BΓq], [11], p. 148. You can also consult [3].
The two main ingredients are the Gromov-Phillips theorem for maps transverse to a
foliation (straightforward application of Gromov’s theorem, see loc.cit., p. 147) and
a technical result which is hidden in [12], [13]. These sources are written in French,
but maybe you’ll skip the proof anyway. If you do that, you have time to discuss
some interesting results on the topology of BΓq; they are surveyed in [3] and [11]:
the map BΓq → B GLq is q-connected and 0 on the Pontrjagin ring in large degrees
(Bott). There is a surjective homomorphism π3(Γ1) → R [31]. See also the relevant
chapter of [23] and [1].

Talk 7. (Configuration spaces, 24.6.)

The goal is to prove Theorem 1 of [18], intended as a warm-up for the following
two talks. Instead of using the h-principle, Mac Duff rather tries to avoid it and she
proves it by hands for the sheaf under consideration. In the context of this research
seminar, there is of course a better way to to it. Prove that the sheaf C̃ of loc.
cit. is microflexible, which is not difficult at all. The second part is an argument
with group completions and homology fibrations ([21] and homological stability for
configuration spaces (see appendix of [28]).

Talk 8. (Spaces of submanifolds I, 24.6.)

The goal of this talk and the next one is to discuss a new proof of the main result
of [6], which determines the homotopy type of the d-dimensional cobordism category
as the infinite loop space of a certain Thom spectrum.

Start with the detailed statement of the result, i.e. Theorem A in [27]. Show
how this implies the main result of [6]. Suggestion: forget about the ”tangential
structures” throughout, for the sake of simpler notation and to save time.

First part of the proof. Definition of the sheaf Ψd of d-dimensional submanifolds of
Mn, [7], section 2 and [27], section 3. Then discuss [27], chapter 4, which compares
the embedded cobordism category with a sheaf.

Note: d = 0 is the case of configuration spaces, which was discussed in talk
7. Emphasizing the analogy might be helpful for the understanding, both for the
speaker and the audience!

Talk 9. (Spaces of submanifolds II, 15.7.)

Second part of the proof. Show that the sheaf Ψd is microflexible [27], section 5
and identify the homotopy type of Ψd(Rn) [7], Theorem 3.22. Conclude the main
result of [6]. If there is enough time, you can how the Mumford conjecture on the
homology of the stable mapping class group follows from this result, see [6], chapter
7.
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