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Ruled surfaces

Throughout we assume that k is an algebraically closed field. Denote by Pn the projective
space Pnk and similarly An denotes Ank .

1. As a warm up we shall look at trivial vector bundles and trivial projective bundles.

Exercise 1. Let X be a projective integral scheme over k and let Yn := An×kX, n > 0 with
its natural (second) projection πn : Yn // X.

(i) Can πn be proper?

(ii) Show that πn : Yn // X is a vector bundle and determine the associated locally free
sheaf.

(iii) Describe the ring H0(Yn,OYn). Is it a field?

(iv) Show that Yn ×X Ym ∼= Yn+m.

(v) Assume we define in analogy Zn := Pn×kX // X. For which n and m does Zn×XZm ∼=
Zn+m hold?

Solution
(i) The morphism πn is never proper. Indeed, if it were, then so would be An = Yn ×X x // x = Spec k for every
closed point x ∈ X. But An is not proper over Spec k.

(ii) Essentially by definition Yn is the vector bundle associated with the locally free sheaf O⊕nX .

(iii) In particular, we have H0(Yn,OYn ) ∼= H0(X,S∗(O⊕nX )) ∼= k[x1, . . . , xn] which is not a field.

(iv) By the standard rules for fibre products Yn×X Ym ∼= (An×kX)×X (Am×kX) ∼= (An×kAm)×kX ∼= An+m×kX ∼=
Yn+m.

(v) This never holds. Indeed, in this case the fibre of Zn×XZm // X (say over a closed point) is of the form Pn×kPm,

which is not isomorphic to any projective space if n,m > 0.

2. A ruled surface is a projective surface S isomorphic (over k) to a projective bundle
π : P(E) // C associated with a locally free sheaf E of rank two on a regular projective
curve C.

Exercise 2. (i) With the above notation, show that there exists an embedding
Pic(C)× Z �

� // Pic(P(E)) given by (L, n) � // Ln := π∗L ⊗Oπ(n).

(In fact, one can show that this is an isomorphism. You may use this isomorphism in
the rest of the exam.)

(ii) Given Ln ∈ Pic(P(E)), show that n is the degree of Ln restricted to any fiber of π and
that π∗Ln ∼= L ⊗ Sn(E) for n ≥ 0.

(iii) Prove that P(E) ∼= P(F) over C if and only if E ∼= F ⊗L for some invertible sheaf L on
C.

(iv) Show that there exists an isomorphism P(E) ∼= P(E∗) compatible with the projections
to C.



(v) Show that every ruled surface over C is birational to P1 × C.

Solution
(i) It suffices to show that the map is injective. If Ln ∼= O, then also its restriction to any (closed) fibre is trivial. But
the restriction is OP1 (n) and hence n = 0. Since π∗π∗L ∼= L by the projection formula, we also get L ∼= O.

(ii) Since π∗L has degree zero on every fiber and Oπ(n) has degree n, the invertible sheaf Ln has degree n on every
fiber. Now, π∗Ln ∼= L ⊗ Sn(E) is just the projection formula and Exercise 79.

(iii) We know from the lecture that P(E) ∼= P(F) if E and F differ by an invertible sheaf. Conversely, assume that
the two ruled surfaces are isomorphic via f : P(E) // P(F) and let π′ : P(F) // C be the natural map. Write
f∗Oπ′ (1) = π∗L⊗Oπ(n) for some L ∈ Pic(C) and n ∈ Z. Since f is an isomorphism over C and Oπ′ (1) has degree one
on every fiber, so does f∗Oπ′ (1), hence n = 1. Therefore, we have

L ⊗ E = π∗(f
∗Oπ′ (1)) = (π∗ ◦ (f−1)∗)Oπ′ (1) = π′∗Oπ′ (1) = F .

(iv) The dual E∗ of a locally free sheaf E of rank two is isomorphic to E ⊗ det(E)∗, where det(E) :=
∧2 E ∈ Pic(C).

Hence, P(E) = P(E∗) by (iii).

(v) Given a ruled surface π : P(E) // C choose a non-empty open subscheme U ⊂ C such that E|C ∼= O⊕2
U . Then,

P(E)|U ∼= P(O⊕2
U ) ∼= P1 × U .

3. In the following we shall study Hirzebruch surfaces. By definition the n-th Hirzebruch
surface is the surface Fn := P(OP1 ⊕OP1(n)) viewed as a projective bundle over P1.

Exercise 3. (i) Show that any ruled surface over P1 is isomorphic (over P1) to Fn for a
uniquely determined n ≥ 0.

(ii) Assume there exists a short exact sequence 0 // O(−1) // E // O(1) // 0 on P1.

Show that either P(E) ∼= F0 or P(E) ∼= F2.

(iii) Show that O ⊕ O(n), n ≥ 0, on P1 can be globally generated and deduce from this a
closed embedding Fn �

� // P2 ×k P1 compatible with the projection to P1.

(iv) Use the embedding in (iii) to consider Fn ⊂ P2×k P1 as an effective divisor in P2×k P1

and show that O(Fn) ∼= O(1) �O(n) ∈ Pic(P2 ×k P1).

(Recall that Pic(P2 ×k P1) ∼= Z⊕2 is freely generated by the pull-backs of O(1) via the
two projections p1 and p2 and that O(a) �O(b) := p∗1O(a)⊗ p2O(b).)

Solution
(i) We recall from Exercise 65 that E ∼= O(a)⊕O(b) for certain a, b ∈ Z which are uniquely determined up to permutation.
By part (iii) of the previous exercise, we have P(E) ∼= P(OP1 ⊕OP1 (b− a)) and after possibly interchanging a and b, we
may assume b−a ≥ 0 and thus P(E) ∼= Fb−a. Next, we have to show that O⊕O(n) and O⊕O(m) differ by an invertible
sheaf if and only if n = m. Thus, assume that O(a)⊕O(n+ a) ∼= O⊕O(m) for some a ≥ 0. Hence, {a, n+ a} = {0,m}
and, since n+ a ≥ a ≥ 0 and m ≥ 0, this implies a = 0. Therefore, n = m.

(ii) Recall again that E ∼= O(a) ⊕ O(b) for some a, b. Since det(E) ∼= O(−1) ⊗ O(1) ∼= O, we have a + b = 0. Then
observe that h0(E) = 2, which leaves only the possibilities E ∼= O⊕O or E ∼= O(−1)⊕O(1). Hence, P(E) ∼= F0 or ∼= F2
as claimed.

(iii) We use that O(n) on P1 is globally generated by xn0 , x
n
1 ∈ H0(P1,O(n)) for n ≥ 0. This yields a surjection

O⊕3 � O ⊕O(n) and, therefore, a closed immersion Fn
� � // P(O⊕3) ∼= P2 ×k P1.

(iv) Write O(Fn) ∼= O(a) � O(b). Restricting to the fibre of the projection to P1 shows that a = −1. Now tensor the

short exact sequence 0 // O(−Fn) // OP2×kP1
// OFn

// 0 with O(1) � O and take the direct image under

the projection to P1. Using O(−Fn) = O(−1) �O(−b) this yields the short exact sequence

0 // O(−b) // O⊕3 // O ⊕O(n) // 0

and taking determinants yields −b+ n = 0, i.e. b = n as claimed.

Now, we classify the Hirzebruch surfaces that can be realized as hypersurfaces in P3.

Exercise 4. (i) Compute the dimensions hi(Fn,OFn).
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(ii) Discuss which Hirzebruch surfaces could possibly be isomorphic to hypersurfaces in P3.

Solution
(i) Since O(Fn) ∼= O(1) �O(n) ∈ Pic(P2 ×k P1), we have as before a short exact sequence

0 // O(−1) �O(−n) // OP2×kP1
// OFn

// 0.

By the Künneth formula (Exercise 68), we have hi(P2 ×k P1,O(−1) �O(−n)) = 0 for i = 0, 1, 2. Hence, the long exact
sequence in cohomology associated to the above short exact sequence shows that hi(Fn,OFn ) = hi(P2×k P1,OP2×kP1 ).

The latter can again be calculated using the Künneth formula:

hi(Fn,OFn ) = hi(P2 ×k P1,OP2×kP1 ) =

{
1 if i = 0

0 else .

(ii) Clearly, F0
∼= P1 ×k P1 can be embedded into P3 via the Segre embedding ([x0 : x1], [y0 : y1])

� // [x0y0 : x0y1 :
x1y0 : x1y1], thus realizing F0 as a quadric hypersurface in P3. It turns out that this is the only Hirzebruch surface that
embeds into P3.

A hyperplane X in P3 is not a Hirzebruch surface, since X ∼= P2 and thus Pic(X) = Z. A hypersurface X in P3 of degree
d ≥ 4 has h2(X,OX) ≥ 1 by the long exact sequence in cohomology associated to

0 // OP3 (−d) // OP3
// OX // 0,

hence X 6∼= Fn by part (i).

Therefore, it suffices to show that cubic hypersurfaces in P3 are not ruled and that the only ruled quadric hypersurface
in P3 is F0. For the latter observe that since k is algebraically closed, after coordinate change any quadratic equation
F ∈ k[x1, x1, x2, x3] can be written as F =

∑
aix

2
i (standard fact from linear algebra) and even better as F = x20+· · ·+x2i

for some i ≤ 3. If i = 3, then V+(F ) ∼= F0. For i = 0 or i = 1, the hypersurface V+(F ) is not irreducible and, therefore,
not isomorphic to any Fn. Finally, for i = 2, the stalk of OV+(F ) at the point [0 : 0 : 0 : 1] is isomorphic to the

localization of k[X1, X1, X2]/(X2
0 +X2

1 +X2
2 ) which is not regular unlike any local ring OFn,x.

The case of cubic hypersurfaces is a little trickier. No point reduction if you did not come up with anything on this
case. Essentially this follows from things we observed in the first exam that cubic surfaces contain many (namely 27)
lines that yield to classes in Pic(S) which forces Pic(S) > 2. This is in contradiction to Pic(Fn) ∼= Z⊕2.

4. Instead of vector bundles and projective bundles over P1 we now consider them over a
curve of genus one.

Consider a cubic curve C = V+(F ) ⊂ P2, F ∈ k[x0, x1, x2]3 which we assume to be integral
and regular in codimension one (a smooth cubic curve). For every closed point x ∈ C there
exists a unique non-split short exact sequence of the form

0 // OC // E(x)
// OC(x) // 0 . (1)

For this one needs to recall that H0(C,OC(−x)) = 0 and the fact that H1(C,OC(−x)) ∼=
Ext1

OC (OC(x),OC) parametrizes all extensions (split or non-split) of the type (1). More gene-

rally, for two invertible sheaves L1,L2 the group Ext1(L2,L1) ∼= H1(C,L∗2⊗L1) parametrizes
all extensions of the form

0 // L1
// F // L2

// 0 . (2)

The class ξ ∈ Ext1(L2,L1) corresponding to (2) is zero if and only if (2) splits.

Exercise 5. (i) Show that every locally free sheaf E of rank two on C can be written as
an extension

0 // L1
// E // L2

// 0

with L1,L2 ∈ Pic(C).

(ii) Show that for any two closed points x, y ∈ C the sheaf E(x)(−y) := E(x) ⊗OC(−y) has
no global sections.
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(iii) Compute the dimensions h0(C, E(x)) and h1(C, E(x)).

(iv) Show that E(x) is the unique locally free sheaf of rank two with determinant det(E(x)) :=∧2 E(x) isomorphic to OC(x), which is not a direct sum of invertible sheaves. Recall that

H1(C,L) = 0 for any L ∈ Pic(C) with deg(L) > 0.

Solution
(i) Since C is projective, there exists an ample invertible sheaf L for which E ⊗ Ln is globally generated for n � 0.
However, if E ⊗ Ln can be written as an extension of invertible sheaves, then tensoring with L−n yields the desired
representation for E. Thus, we may assume that E itself is globally generated and, in particular and enough for our
purposes, that E has a non-trivial global section. Picking one such global section yields a short exact sequence

0 // OC // E // F // 0 .

If F is torsion free or, equivalently, invertible, then we are done. If not let L1 := ker(E // F // L2 := F/Torsion(F)).

(ii) Tensor (1) with OC(−y) and use that for x 6= y we have H0(OC(−y)) = 0 = H0(OC(x− y)). If x = y, observe that
if H0(C, E(x)(−x)) // H0(C,OC) is not zero if and only if (1) tensored with OC(−x) splits, which in turn would

imply that (1) splits.

(iii) We use the long exact cohomology sequence associated with (1) which reads

0 // k ∼= H0(OC) // H0(E(x)) // H0(C,OC(x))
δ // k ∼= H1(OC) // H1(E(x)) // H1(OC(x)) // 0

We know that H0(OC(x)) ∼= k and by the Riemann–Roch formula H1(OC(x)) = 0. It suffices to show that δ 6= 0 which
immediately yields h0(E(x)) = 1 and h1(E(x)) = 0. If δ = 0, then the unique section of OC(x) lifts to a section of E(x).
Then, either E(x) can be written in two different ways as an extension (1), which would would contradict the uniqueness,

or the section of E(x) can be extended to a map OC(x) // E(x) which would split the original sequence.

(iv) Assume E is locally free of rank two with determinant OC(x). According to (i) we can write E as an extension

0 // L1 // E // L2 // 0

of two invertible sheaves L1 and L2. The additivity of χ and the Riemann–Roch formula for invertible sheaves shows
that χ(E) = χ(L1) + χ(L2) = deg(L1) + deg(L2) = deg(L1 ⊗L2) = deg(det(E)) = 1. Hence, H0(E) 6= 0 and any choice
of a non-zero global section yields a short exact sequence

0 // OC // E // F // 0 .

If F is torsion free or, equivalently, locally free (we are on a smooth curve C), then it is invertible and in fact isomorphic
to OC(x), as OC(x) ∼= det(E) ∼= OC ⊗ F . In this case, either E ∼= E(x) or E is isomorphic to a direct sum of invertible
sheaves which is excluded. If F has non-trivial torsion, then there exists a short exact sequence

0 // L1 // E // L2 // 0

with L1,L2 ∈ Pic(C) and deg(L1) > 0. However, Ext1OC
(L2,L1) ∼= H1(C,L1 ⊗ L∗2) and deg(L1 ⊗ L∗2) = deg(L1) +

deg(L∗2) = deg(L1) + deg(L1(−x)) > 0. Now use that H1(C,L) = 0 for any invertible sheaf with deg(L) > 0, which

would lead to E ∼= L1 ⊕ L2 which is excluded by assumption.
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