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Ruled surfaces

Throughout we assume that k is an algebraically closed field. Denote by Pn the projective
space Pnk and similarly An denotes Ank .

1. As a warm up we shall look at trivial vector bundles and trivial projective bundles.

Exercise 1. Let X be a projective integral scheme over k and let Yn := An×kX, n > 0 with
its natural (second) projection πn : Yn // X.

(i) Can πn be proper?

(ii) Show that πn : Yn // X is a vector bundle and determine the associated locally free
sheaf.

(iii) Describe the ring H0(Yn,OYn). Is it a field?

(iv) Show that Yn ×X Ym ∼= Yn+m.

(v) Assume we define in analogy Zn := Pn×kX // X. For which n and m does Zn×XZm ∼=
Zn+m hold?

2. A ruled surface is a projective surface S isomorphic (over k) to a projective bundle
π : P(E) // C associated with a locally free sheaf E of rank two on a regular projective
curve C.

Exercise 2. (i) With the above notation, show that there exists an embedding
Pic(C)× Z �

� // Pic(P(E)) given by (L, n) � // Ln := π∗L ⊗Oπ(n).

(In fact, one can show that this is an isomorphism. You may use this isomorphism in
the rest of the exam.)

(ii) Given Ln ∈ Pic(P(E)), show that n is the degree of Ln restricted to any fiber of π and
that π∗Ln ∼= L ⊗ Sn(E) for n ≥ 0.

(iii) Prove that P(E) ∼= P(F) over C if and only if E ∼= F ⊗L for some invertible sheaf L on
C.

(iv) Show that there exists an isomorphism P(E) ∼= P(E∗) compatible with the projections
to C.

(v) Show that every ruled surface over C is birational to P1 × C.

3. In the following we shall study Hirzebruch surfaces. By definition the n-th Hirzebruch
surface is the surface Fn := P(OP1 ⊕OP1(n)) viewed as a projective bundle over P1.

Exercise 3. (i) Show that any ruled surface over P1 is isomorphic (over P1) to Fn for a
uniquely determined n ≥ 0.

(ii) Assume there exists a short exact sequence 0 // O(−1) // E // O(1) // 0 on P1.

Show that either P(E) ∼= F0 or P(E) ∼= F2.

(iii) Show that O ⊕ O(n), n ≥ 0, on P1 can be globally generated and deduce from this a
closed embedding Fn �

� // P2 ×k P1 compatible with the projection to P1.

(iv) Use the embedding in (iii) to consider Fn ⊂ P2×k P1 as an effective divisor in P2×k P1

and show that O(Fn) ∼= O(1) �O(n) ∈ Pic(P2 ×k P1).

(Recall that Pic(P2 ×k P1) ∼= Z⊕2 is freely generated by the pull-backs of O(1) via the
two projections p1 and p2 and that O(a) �O(b) := p∗1O(a)⊗ p2O(b).)
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Now, we classify the Hirzebruch surfaces that can be realized as hypersurfaces in P3.

Exercise 4. (i) Compute the dimensions hi(Fn,OFn).

(ii) Discuss which Hirzebruch surfaces could possibly be isomorphic to hypersurfaces in P3.

4. Instead of vector bundles and projective bundles over P1 we now consider them over a
curve of genus one.

Consider a cubic curve C = V+(F ) ⊂ P2, F ∈ k[x0, x1, x2]3 which we assume to be integral
and regular in codimension one (a smooth cubic curve). For every closed point x ∈ C there
exists a unique non-split short exact sequence of the form

0 // OC // E(x) // OC(x) // 0 . (1)

For this one needs to recall that H0(C,OC(−x)) = 0 and the fact that H1(C,OC(−x)) ∼=
Ext1OC

(OC(x),OC) parametrizes all extensions (split or non-split) of the type (1). More gene-

rally, for two invertible sheaves L1,L2 the group Ext1(L2,L1) ∼= H1(C,L∗2⊗L1) parametrizes
all extensions of the form

0 // L1 // F // L2 // 0 . (2)

The class ξ ∈ Ext1(L2,L1) corresponding to (2) is zero if and only if (2) splits.

Exercise 5. (i) Show that every locally free sheaf E of rank two on C can be written as
an extension

0 // L1 // E // L2 // 0

with L1,L2 ∈ Pic(C).

(ii) Show that for any two closed points x, y ∈ C the sheaf E(x)(−y) := E(x) ⊗OC(−y) has
no global sections.

(iii) Compute the dimensions h0(C, E(x)) and h1(C, E(x)).

(iv) Show that E(x) is the unique locally free sheaf of rank two with determinant det(E(x)) :=∧2 E(x) isomorphic to OC(x), which is not a direct sum of invertible sheaves. Recall that

H1(C,L) = 0 for any L ∈ Pic(C) with deg(L) > 0.
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