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Surfaces in P3
k

We assume that k is an algebraically closed field and denote by Pn the projective space Pnk .

1. A surface in P3 is the zero set
S := V+(F )

of a homogenous polynomial 0 6= F ∈ H0(P3,O(d)) of degree d > 0.

Exercise 1. (i) Consider the properties ‘integral’ and ‘non-reduced’. Give explicit examp-
les of surfaces S ⊂ P3 with these properties.

(ii) For fixed degree d, how many irreducible components can S maximally have? Give an
explicit example for each d realizing the maximum.

(iii) Assume S is integral. Determine the transcendence degree (over k) of its function field
K(S).

(iv) We know that H0(S,OS) ∼= k for integral S. Does this still hold true when S is not
integral?

(v) Describe explicitly an open affine cover of S.

Solution An example of a non-reduced surface of degree is given by V+(xd0). The surface V+(x0) ∼= P2 is integral.

The maximal number of irreducible component is d which is realized by the union S = V+(x0−λix1) of d hyperplanes.
Here, λ1, . . . , λd ∈ k are pairwise distinct. Indeed, if Si ⊂ S is an irreducible component then Si = V+(Fi) for an
irreducible polynomial Fi which divides F . Clearly, there are at most d pairwise distinct (up to scaling) Fi dividing F .

For (iii), use that K(S) equals the function fields of S∩D+(x0) ∼= V (F̄ ) ⊂ A3
k, where F̄ ∈ k[y1 := x1

x0
, y2 := x2

x0
, y3 := x3

x0
]

is the polynomial F (1, y1, y2, y3). Hence, K(S) ∼= Q(k[y1, y2, y3]/(F̄ )) whose transcendence degree equals the dimension
of k[y1, y2, y3]/(F̄ ) which is two. The argument is valid only in the case that S ∩D+(x0) 6= ∅, i.e. the case F = x0 has
to be excluded for which the assertion is clear.

In fact, for any S restriction defines an isomorphism H0(P3,O)
∼ //H0(S,OS), for the cokernel of the map is contained

in H1(P3,O(−d)) = 0. This answers (iv).

Clearly, the intersection S∩D+(xi) = V+(F )∩D+(xi) ⊂ A3 is affine and since P3 =
⋃3
i=0D+(xi), an open affine cover

is given by S =
⋃3
i=0(S ∩D+(xi)).

We denote by OS(i) the restriction of O(i) to S ⊂ P3 and call the invertible sheaf ωS :=
OS(d− 4) the canonical sheaf of S.

Exercise 2. (i) Prove that H1(S,OS) = 0 = H1(S, ωS).

(ii) Prove that h2(S,OS) = h0(S, ωS) and express this number in terms of d.

(iii) Construct an isomorphism H2(S, ωS) ∼= k.

If at the end of the exam you still have time, you may want to prove that in fact

hi(S,OS(n)) = h2−i(S, ωS ⊗OS(−n))

for all n ∈ Z. This is generalized by Serre duality which for a locally free sheaf F on S and
its dual F∗ := HomOS (F ,OS) asserts the existence of an isomorphism of k-vector spaces

H i(S,F) ∼= H2−i(S,F∗ ⊗ ωS)∗.

Solution For (i) we use the exact sequence

0 // O(−d) // O // i∗OS // 0 (1)
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for the inclusion i : S
� � // P3. Taking cohomology yields a long exact sequence

· · · // H1(P3,O) // H1(S,OS) // H2(P3,O(−d)) // · · · ,

where the outer terms vanish since Hi(Pn,O(m)) = 0 for all 0 < i < n and all m. Hence, also H1(S,OS) = 0. Similarly,
the long exact cohomology sequence associated with (1) after taking tensor product with O(d − 4) yields the second
vanishing H1(S, ωS) = 0.

For (ii), use again the long exact cohomology sequence associated with (1) to deduce the exact sequence

· · · // H2(P3,O) // H2(S,OS) // H3(P3,O(−d)) // H3(P3,O) // · · ·

Now H2(P3,O) = 0 and H3(P3,O(m)) = 0 for m > −4 and, therefore, H2(S,OS) ∼= H3(P3,O(−d)). The latter

space is zero for d < 4 and dual to the
(d−1

3

)
-dimensional space H0(P3,O(d − 4)). To determine h0(S, ωS) use the

isomorphism H0(P3,O(d − 4)) ∼= H0(S, ωS), which follows from the same long exact cohomology sequence and the
vanishings H0(P3,O(−4)) = 0 = H1(P3,O(−4)).

Eventually, to prove (iii) we tensor (1) with O(d−4). The long exact cohomology sequence then yields the exact sequence

· · · // H2(P3,O(d− 4)) // H2(S, ωS) // H3(P3,O(−4)) // H3(P3,O(d)),

where the outer terms vanish and H3(P3,O(−4)) is dual to H0(P3,O) which in turn is naturally isomorphic to k.

2. Consider the linear coordinates x0, x1, x2, x3 on P3 and the induced morphism

ξ : O // O(1)⊕4, λ � //
⊕

λxi

of coherent sheaves on P3. Observe that if U := H0(P3,O(1)), then ξ can be interpreted as
the map O // O(1)⊗ U∗1 corresponding to the global section in

H0(P3,O(1)⊗ U∗) ∼= U ⊗ U∗ ∼= End(U)

given by idU . We denote the sheaf cokernel of ξ by T (the tangent sheaf of P3).

For S = V+(F ) as before, consider the partial derivative ∂iF ∈ H0(P3,O(d − 1)). Then the
map (t0, t1, t2, t3) � //

∑
ti∂iF defines a map

η : O(1)⊕4 // O(d).

Exercise 3. (i) Show that ξ is injective.

(ii) For any given point x ∈ P3 corresponding to a line ` ⊂ U∗ describe a natural isomor-
phism of the fibre of T at x with Hom(`, U∗/`). (Aside: One can show that Hom(`, U∗/`)
is also naturally isomorphic to the Zariski tangent space at x, which is why T is called
the tangent bundle.)

(iii) Show that T is locally free (of rank three).

(iv) Show that the restriction of η to S factors uniquely through the restriction OS(1)⊕4 �
T |S of ξ to S. (Use the well-known Euler identity

∑
xi∂iF = d · F .)

(v) Under which condition on F is the induced map T |S // OS(d) surjective? Write down
one example for F of degree d = 3 where surjectivity holds (under appropriate assump-
tions on the characteristic of k).

1For a sheaf of OX -modules F the tensor product F ⊗U is by definition the tensor product of F as a sheaf
over the constant sheaf associated with k with the constant sheaf associated with U .
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Solution The composition of ξ with the first projection is the map O // O(1) given by the section x0 ∈
H0(P3,O(1)), which is non-zero. Then use that on an integral scheme any non-zero morphism L1 // L2 between two
invertible sheaves L1 and L2 is injective. This proves (i).

To prove (ii) recall that the fibre of O(1) at a point x ∈ P3 corresponding to a line ` ⊂ U∗ is naturally isomorphic to
the dual `∗. By the abstract description above the fibre of ξ at x is then given by k // `∗ ⊗ U∗ ∼= Hom(`, U∗) which
sends 1 ∈ k to the natural embedding `

� � // U∗. Clearly, its cokernel is Hom(`, U∗/`). For the identification with the
Zariski tangent space, recall first that the Zariski tangent space at a point x is the vector space Tx = (mx/m2

x)∗, so
that for the last part one needs to describe an isomorphism (mx/m2

x)∗ ∼= Hom(`, U∗/`) or, equivalently, an isomorphism
mx/m2

x
∼= (k · λ)⊗ ker(λ)∗, where λ is any non-zero element in ` viewed as a linear form U // k. Eventually use that

mx is the homogeneous localization of the homogeneous maximal ideal in S∗U corresponding to x which is generated
by Ker(λ) ⊂ U .

On each of the standard open subsets D+(xi) ∼= Spec(k[x0/xi, . . . , x3/xi]) the sheaf T corresponds to a module Ti over
Ai := k[x0/xi, . . . , x3/xi]. The polynomial ring Ai ∼= k[y1, y2, y3] is regular and, therefore, all Zariski tangent spaces are
of the same dimension three. Hence, Ti is an Ai-module with fibres all of the same dimension three. From commutative
algebra we know that this implies that all stalks Tx are free OP3,x-modules or rank three. This is enough to conclude

that T is locally free of rank three, cf. Exercise 46 (iii)

For (iv) observe that the short exact sequence 0 // O
ξ // O(1)⊕4 // T // 0 remains exact when restricted

to S and thus yields a short exact sequence 0 // OS
ξ|S // OS(1)⊕4 // T |S // 0 . Applying Hom( ,OS(d)) to

it yields the exact sequence

0 // Hom(T |S ,OS(d)) // Hom(OS(1)⊕4,O(d)) // Hom(OS ,OS(d)) // · · ·

By the Euler identity, the image of η|S ∈ Hom(OS(1)⊕4,O(d)) in Hom(OS ,OS(d)) is the restriction of d ·F to S which,
of course, vanishes. Hence, η|S can be written in a unique way as the composition of OS(1)⊕4 � T |S and a morphism
T |S // OS(d).

The map T |S // OS(d) is surjective if and only if η|S is surjective, which is equivalent to (∂iF )|S ∈ H0(S,OS(d−1))

generating the invertible sheaf OS(d − 1) or, still equivalent, to
⋂
V+(∂iF ) ∩ S = ∅. This is satisfied e.g. for F =

x30 + x31 + x32 + x33 assuming char(k) 6= 3, because then
⋂
V+(∂iF ) =

⋂
V+(x2i ) = ∅.

Assume that the assumption in (v) above holds and define the tangent bundle TS of S as the
kernel of T |S // OS(d). Thus, there exists a short exact sequence

0 // TS // T |S // OS(d) // 0 .

Recall that for a locally free sheaf F of rank r the determinant det(F) is defined as
∧r(F).

Exercise 4. (i) Show that there exists an isomorphism of invertible sheaves

ωS ∼= det(TS)∗.

(ii) If S is described as Proj(A = k[x0, . . . , x3]/(F )), how do you describe TS as M̃ for a
graded module over A?

(iii) Let now S be the image of the Segre embedding ψ : P1 × P1 � � // P3. Compute the
pull-back of TS and of ωS to P1 under the composition ϕ := ψ ◦∆: P1 � � // S.

Solution (i) Taking determinants of the two short exact sequences

0 // TS // T |S // OS(d) // 0 and 0 // OS // OS(1)⊕4 // T |S // 0 (2)

yields
det(TS)⊗OS(d) ∼= det(T |S) ∼= det(OS(1)⊕4) ∼= OS(4),

which immediately yields ωS ∼= OS(d− 4) ∼= det(TS)∗.

(ii) Abbreviate B := k[x0, . . . , x3]. Then, by definition, T ∼= Ñ with N := coker
(
B // B(1)⊕4, b

� // ⊕ bxi
)

and
we can take M := ker (N ⊗B A // A(d),⊕λi

� // ∑ ∂iFλi).

The Segre embedding is induced by the complete linear system H0(P1×P1,O(1)�O(1)). Hence, ψ∗OS(1) ∼= O(1)�O(1)

and, therefore, (ψ ◦∆)∗OS(1) ∼= ∆∗(O(1)�O(1)) ∼= O(2). Taking appropriate powers yields (ψ ◦∆)∗ωS ∼= O(2d− 8) ∼=
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O(−4), because S = V+(F := x0 · x1 − x2 · x3) is a surface of degree d = 2. In particular, ϕ∗TS is a locally free

sheaf of rank two with determinant O(4). In other words, writing ϕ∗TS ∼= O(a) ⊕ O(b), we know already a + b = 4

and we may assume a ≤ b. On the other hand, pulling back both sequences in (2), tensoring both sequences with

O(−3) (on P1!) shows h0(P1, (ϕ∗T |S)(−3)) = 2 and H1(P1, (ϕ∗T |S)(−3)) = 0. This implies h1(P1, (ϕ∗TS)(−3)) ≤
h0(P1,O(1)) = 2, i.e. a−3 ≥ −3. Hence, only the following options for (a, b) are possible: (a, b) = (0, 4), (a, b) = (1, 3), or

(a, b) = (2, 2). Twisting the pull back of (2) with O(−2) (on P1!) and using that (∂iF ) : H0(P1,O)⊕4 // H0(P1,O(2))

is surjective, implies H1(P1, (ϕ∗TS)(−2)) = 0 which excludes the case (a, b) = (0, 4). Suppose (a, b) = (1, 3), then

h1(P1, (ϕ∗TS)(−3)) = 1 and since H1(P1,O(1)) = 0, the pullback of the first exact sequence tensored with O(−3)

yields h1(P1, (ϕ∗T |S)(−3)) ≤ 1. On the other hand, the pullback of the second exact sequence tensored with O(−3)

together with h1(P1,O(−3)) = 2 and h1(P1,O(−2)⊕4) = 4 shows h1(P1, (ϕ∗T |S)(−3) ≥ 2. Contradiction. Hence,

(a, b) = (2, 2).

3. We shall now restrict to cubic surfaces S = V+(F ), i.e. F is homogenous of degree three,
and to avoid complications we assume char(k) 6= 2, 3. A special example is the Fermat cubic
surface S0 = V+(F0) with F0 = x3

0 + x3
1 + x3

2 + x3
3.

We are interested in lines ` ⊂ P3 contained in cubic surfaces. Here, by definition, a line
` ⊂ P3 is a closed subscheme of the form V+(λ1, λ2), where λ1, λ2 ∈ H0(P3,O(1)) are linearly
independent. In particular, any line is isomorphic to P1 (over k).

Exercise 5. (i) Show that every line ` ⊂ P3 is contained in some cubic surface S ⊂ P3.
Describe the space of cubic surfaces containing a fixed line.

(ii) How many distinct lines ` ⊂ P3 can you describe in S0? Describe a triangle in S0, i.e.
a hyperplane section S0 ∩ P2 that is a union of lines.

(iii) Assume a line ` is contained in a factorial cubic surface S ⊂ P3 and consider ` as a
Weil divisor on S with associated invertible sheaf O(`). Then deg(O(`)|`) = −1. Try to
show this under suitable assumptions on ` and S. Deduce that O(`) is not isomorphic
to any OS(n).

(iv) Are the invertible sheaves O(`) ∈ Pic(S0) associated with the lines you found in (ii)
linearly independent in Pic(S0)?

Solution (i) Fix a line ` ⊂ P3 and consider the associated exact sequence 0 // I` // O // i∗O` // 0 .

Tensoring with O(3) and taking global section shows that the space H0(P3, I`(3)) of homogenous cubic polynomials
vanishing on ` is the kernel of the restriction map r : H0(P3,O(3)) // H0(P1,O(3)). The latter is of dimension four,
while the former is of dimension 20. Hence, h0(P3, I`(3)) ≥ 16 and in fact equality holds, as r is surjective. The linear
system of all cubics containing a line is thus P(H0(P3, I`(3)) ∼= P15.

For (ii), observe that the following lines are contained in S0: V+(x0 + ξ1x1, x2 + ξ2x3), V+(x0 + ξ3x2, x1 + ξ4x3), and
V+(x0 + ξ5x3, x1 + ξ6x2), where ξ3i = −1. This yields 27 distinct lines contained in S0 which is in fact the maximum

number (for regular cubic surfaces). The intersection S0 ∩V+(x2 +x3) ⊂ V+(x2 +x3) ∼= P2 is described by the equation
x30 + x31. Since V+(x30 + x31) ⊂ P2 is the union of the three lines V+(x0 + ξx1) with ξ3 = −1, we have found a triangle
in S0.

(iii) If P2 ∩ S is a union ` ∪Q ⊂ P2 with ` not contained in Q. Then 1 = deg(O(1)|`) = deg(O(P2)|`) = deg(O(Q)|`) +
deg(O(`)|`) = 2 + deg(O(`)|`), which proves the claim. (Note that the last equality is obvious for the invertible sheaf
OP2 (Q) on P2 associated with Q ⊂ P2, which is OP2 (2). Here we need it for the invertible sheaf OS(Q) on S associated
with Q ⊂ S, which needs an extra argument: deg(O(Q)|`) = h0(`,O(Q)|`)− 1 = h0(`,O`) + h0(`,OQ∩`)− 1, which is

the same for OS(Q) and OP2 (Q) ∼= OP2 (2).) Suppose O(`) ∼= OS(n) for some n. Since H0(S,O(`)) 6= 0, we must have
n > 0. On the other hand, deg(O(`)|`) = −1, but OS(n)|` is clearly effective and even ample. Contradiction.

(iv) Whenever P2 ∩ S is a triangle, i.e. consists of three lines `1, `2, `3, O(`1)⊗O(`2)⊗O(`3) ∼= OS(1). Applying this

to two triangles yields a linear relation between the six involved lines. Explicitly, intersecting S0 with the two planes

V+(x2 + x3) and V+(x0 + x1) yields six lines `i := V+(x0 + ξix1, x2 + x3) and `′i := V+(x0 + x1, x2 + ξix3) with

O(`1)⊗O(`2)⊗O(`3) ∼= O(`′1)⊗O(`′2)⊗O(`′3).
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