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Surfaces in P3
k

We assume that k is an algebraically closed field and denote by Pn the projective space Pn
k .

1. A surface in P3 is the zero set
S := V+(F )

of a homogenous polynomial 0 6= F ∈ H0(P3,O(d)) of degree d > 0.

Exercise 1. (i) Consider the properties ‘integral’ and ‘non-reduced’. Give explicit examp-
les of surfaces S ⊂ P3 with these properties.

(ii) For fixed degree d, how many irreducible components can S maximally have? Give an
explicit example for each d realizing the maximum.

(iii) Assume S is integral. Determine the transcendence degree (over k) of its function field
K(S).

(iv) We know that H0(S,OS) ∼= k for integral S. Does this still hold true when S is not
integral?

(v) Describe explicitly an open affine cover of S.

We denote by OS(i) the restriction of O(i) to S ⊂ P3 and call the invertible sheaf ωS :=
OS(d− 4) the canonical sheaf of S.

Exercise 2. (i) Prove that H1(S,OS) = 0 = H1(S, ωS).

(ii) Prove that h2(S,OS) = h0(S, ωS) and express this number in terms of d.

(iii) Construct an isomorphism H2(S, ωS) ∼= k.

If at the end of the exam you still have time, you may want to prove that in fact

hi(S,OS(n)) = h2−i(S, ωS ⊗OS(−n))

for all n ∈ Z. This is generalized by Serre duality which for a locally free sheaf F on S and
its dual F∗ := HomOS

(F ,OS) asserts the existence of an isomorphism of k-vector spaces

H i(S,F) ∼= H2−i(S,F∗ ⊗ ωS)∗.

2. Consider the linear coordinates x0, x1, x2, x3 on P3 and the induced morphism

ξ : O // O(1)⊕4, λ � //
⊕

λxi

of coherent sheaves on P3. Observe that if U := H0(P3,O(1)), then ξ can be interpreted as
the map O // O(1)⊗ U∗1 corresponding to the global section in

H0(P3,O(1)⊗ U∗) ∼= U ⊗ U∗ ∼= End(U)

given by idU . We denote the sheaf cokernel of ξ by T (the tangent sheaf of P3).

For S = V+(F ) as before, consider the partial derivative ∂iF ∈ H0(P3,O(d − 1)). Then the
map (t0, t1, t2, t3)

� //
∑
ti∂iF defines a map

η : O(1)⊕4 // O(d).
1For a sheaf of OX -modules F the tensor product F ⊗U is by definition the tensor product of F as a sheaf

over the constant sheaf associated with k with the constant sheaf associated with U .
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Exercise 3. (i) Show that ξ is injective.

(ii) For any given point x ∈ P3 corresponding to a line ` ⊂ U∗ describe a natural isomor-
phism of the fibre of T at x with Hom(`, U∗/`). (Aside: One can show that Hom(`, U∗/`)
is also naturally isomorphic to the Zariski tangent space at x, which is why T is called
the tangent bundle.)

(iii) Show that T is locally free (of rank three).

(iv) Show that the restriction of η to S factors uniquely through the restriction OS(1)⊕4 �
T |S of ξ to S. (Use the well-known Euler identity

∑
xi∂iF = d · F .)

(v) Under which condition on F is the induced map T |S // OS(d) surjective? Write down
one example for F of degree d = 3 where surjectivity holds (under appropriate assump-
tions on the characteristic of k).

Assume that the assumption in (v) above holds and define the tangent bundle TS of S as the
kernel of T |S // OS(d). Thus, there exists a short exact sequence

0 // TS // T |S // OS(d) // 0 .

Recall that for a locally free sheaf F of rank r the determinant det(F) is defined as
∧r(F).

Exercise 4. (i) Show that there exists an isomorphism of invertible sheaves

ωS
∼= det(TS)∗.

(ii) If S is described as Proj(A = k[x0, . . . , x3]/(F )), how do you describe TS as M̃ for a
graded module over A?

(iii) Let now S be the image of the Segre embedding ψ : P1 × P1 � � // P3. Compute the
pull-back of TS and of ωS to P1 under the composition ϕ := ψ ◦∆: P1 � � // S.

3. We shall now restrict to cubic surfaces S = V+(F ), i.e. F is homogenous of degree three,
and to avoid complications we assume char(k) 6= 2, 3. A special example is the Fermat cubic
surface S0 = V+(F0) with F0 = x30 + x31 + x32 + x33.

We are interested in lines ` ⊂ P3 contained in cubic surfaces. Here, by definition, a line
` ⊂ P3 is a closed subscheme of the form V+(λ1, λ2), where λ1, λ2 ∈ H0(P3,O(1)) are linearly
independent. In particular, any line is isomorphic to P1 (over k).

Exercise 5. (i) Show that every line ` ⊂ P3 is contained in some cubic surface S ⊂ P3.
Describe the space of cubic surfaces containing a fixed line.

(ii) How many distinct lines ` ⊂ P3 can you describe in S0? Describe a triangle in S0, i.e.
a hyperplane section S0 ∩ P2 that is a union of lines.

(iii) Assume a line ` is contained in a factorial cubic surface S ⊂ P3 and consider ` as a
Weil divisor on S with associated invertible sheaf O(`). Then deg(O(`)|`) = −1. Try to
show this under suitable assumptions on ` and S. Deduce that O(`) is not isomorphic
to any OS(n).

(iv) Are the invertible sheaves O(`) ∈ Pic(S0) associated with the lines you found in (ii)
linearly independent in Pic(S0)?
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