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Exercise 55. Additivity of the Euler characteristic (4 points)
Let X be a projective scheme over a field k. Recall that by Serre’s theorem for every coherent
sheaf F on X the k-vector spaces H i(X,F) are finite-dimensional k-vector spaces. Define the
Euler characteristic of F as

χ(X,F) :=
∞∑
i=0

(−1)i dimkH
i(X,F).

Show that for a short exact sequence of coherent sheaves 0→ F → G → H → 0 one has

χ(X,G) = χ(X,F) + χ(X,H).

(We assume that H i(X,F) = 0 for i � 0 for every F , which we have not proved yet. This
is a result of Grothendieck, see [Hartshorne, III.Thm. 2.7] which holds for sheaves of abelian
groups on noetherian topological spaces and is not exceedingly hard to prove.)

Exercise 56. Global regular functions on projective schemes (3 points)
Let X be a projective scheme over a field k. Then H0(X,OX) is a finite-dimensional vector
space by Serre’s theorem. Show that H0(X,OX) is a finite field extension of k if X is integral.
In particular, H0(X,OX) = k if k is algebraically closed.

Exercise 57. Arithmetic genus (3 points)
The arithmetic genus of a projective scheme X of dimension n over a field k is defined as

pa(X) := (−1)n(χ(X,OX)− 1),

So if X is an integral curve and k = k̄, i.e. n = 1, then pa(X) = dimkH
1(X,OX). Show that

for X ⊂ P2
k given by a polynomial of degree d, pa(X) = (d− 1)(d− 2)/2.

Exercise 58. Products of Proj (5 points)
Let B =

⊕
d≥0Bd and C =

⊕
d≥0Cd be two graded rings with A := B0

∼= C0. Consider

B ×A C :=
⊕

d≥0Bd ⊗A Cd and the schemes X := Proj(B) and Y := Proj(C).

(i) Show that X ×Spec(A) Y ∼= Proj(B ×A C).

(ii) Prove that under this isomorphism O(1) on Proj(B ×A C) is isomorphic to p∗1OX(1)⊗
p∗2OY (1), where p1 and p2 are the two projections from X ×Spec(A) Y .
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The last exercise is not strictly necessary for the understanding of the lectures at this point.

Exercise 59. Extending coherent sheaves (5 extra points)
Consider the following statement:

(∗) If X is a Noetherian scheme, i : U ↪→ X is an open subscheme of X, F is a coherent sheaf
on U , and G is a quasi-coherent sheaf on X such that F ⊂ G|U , then there exists a coherent
subsheaf F ′ ⊂ G such that F ′|U = F .

(i) Prove that every quasi-coherent sheaf on a Noetherian affine scheme is the union of its
coherent subsheaves.

(Here, we say that a sheaf of abelian groups F on a topological space X is a union of
subsheaves of abelian groups Fα if for every open U ⊂ X the group F(U) is the union
of its subgroups Fα(U).)

(ii) Show that (∗) holds if X is affine.

(iii) Show that (∗) holds.

(iv) Note that, in the setting of (∗), i∗F is quasi-coherent and F = (i∗F)|U , so F always
extends to some coherent subsheaf of i∗F . Use this to show that if X is a projective
scheme over a field k (or, more generally, over a Noetherian ring), then F admits a
resolution by locally free sheaves Li of finite rank on U :

. . .→ L1 → L0 → F → 0

In fact, the Li can be assumed to be direct sums of line bundles on U .
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