Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry I – Week 7

Exercise 42. Adjoint functors $f^* \dashv f_*$ (4 points) Consider a morphism of ringed spaces $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$. Show that f^* is left adjoint to f_* , i.e. for all $\mathcal{F} \in Mod(X, \mathcal{O}_X)$ and $\mathcal{G} \in Mod(Y, \mathcal{O}_Y)$ there exists an isomorphism (functorial in \mathcal{F} and \mathcal{G}):

 $\operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G},\mathcal{F})\cong \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G},f_*\mathcal{F}).$

Exercise 43. $M \mapsto \tilde{M}$ and adjunction (4 points)

Let X be the affine scheme Spec(A) and consider an A-module M and a sheaf \mathcal{F} of \mathcal{O}_X modules. Show that $(A\text{-mod}) \to \text{Mod}(X, \mathcal{O}_X), M \mapsto \tilde{M}$ is left adjoint to $\text{Mod}(X, \mathcal{O}_X) \to (A\text{-mod}), \mathcal{F} \mapsto \Gamma(X, \mathcal{F})$, i.e. that there exists a functorial (in M and \mathcal{F}) isomorphism

 $\operatorname{Hom}_A(M, \Gamma(X, \mathcal{F})) \cong \operatorname{Hom}_{\mathcal{O}_X}(\tilde{M}, \mathcal{F}).$

Exercise 44. f^* and \otimes are only right exact (5 points)

Let (X, \mathcal{O}_X) be a ringed space and consider $\mathcal{F}, \mathcal{G} \in Mod(X, \mathcal{O}_X)$. Show that for all $x \in X$ there exists a natural isomorphism

$$(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})_x \cong \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} \mathcal{G}_x.$$

Prove that $\mathcal{F} \otimes_{\mathcal{O}_X} ()$: $\operatorname{Mod}(X, \mathcal{O}_X) \to \operatorname{Mod}(X, \mathcal{O}_X)$ and $f^* \colon \operatorname{Mod}(Y, \mathcal{O}_Y) \to \operatorname{Mod}(X, \mathcal{O}_X)$ for a morphism of ringed spaces $f \colon (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ are both right exact functors. Describe examples showing that in general they are not left exact.

Exercise 45. *Projection formula* (4 points)

Consider a morphism of ringed spaces $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ and $\mathcal{F} \in \operatorname{Mod}(X, \mathcal{O}_X)$ and $\mathcal{G} \in \operatorname{Mod}(Y, \mathcal{O}_Y)$. Suppose \mathcal{G} is locally free of finite rank. Show that there exists a natural isomorphism

 $f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G}) \cong f_*\mathcal{F} \otimes_{\mathcal{O}_Y} \mathcal{G}.$

Please turn over

Due Monday 21 December 2020.

Exercise 46. *Fibre dimension* (4 points)

Let X be a noetherian scheme and let \mathcal{F} be a coherent sheaf on X. We will consider the function

$$\varphi(x) \coloneqq \dim_{k(x)} \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} k(x),$$

where $k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ is the residue field of the point $x \in X$. Use Nakayama lemma to prove the following statements.

- (i) The function φ is upper semi-continuous, i.e. for any $n \in \mathbb{Z}$ the set $\{x \in X \mid \varphi(x) \ge n\}$ is closed.
- (ii) If \mathcal{F} is locally free and X is connected, then φ is a constant function.
- (iii) Conversely, if X is reduced and φ is constant, then \mathcal{F} is locally free.

The last exercise is not strictly necessary for the understanding of the lectures at this point.

Exercise 47. Local Ext-sheaves (5 extra points)

Let (X, \mathcal{O}_X) be a ringed space and let $\mathcal{F}, \mathcal{G} \in Mod(X, \mathcal{O}_X)$. Similarly to Exercise 1, one can show that the presheaf of \mathcal{O}_X -modules

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}): U \mapsto \mathrm{Hom}_{\mathcal{O}_U}(\mathcal{F}|_U,\mathcal{G}|_U)$$

is a sheaf. Consider the functor

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, -) : \mathrm{Mod}(X, \mathcal{O}_X) \to \mathrm{Mod}(X, \mathcal{O}_X)$$

- (i) Show that $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, -)$ is a left exact functor. Deduce that its right derived functors $\mathcal{E}xt^i_{\mathcal{O}_X}(\mathcal{F}, -) := R^i\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, -)$ exist.
- (ii) Show that if $\mathcal{I} \in Mod(X, \mathcal{O}_X)$ is injective, then so is $\mathcal{I}|_U \in Mod(U, \mathcal{O}_U)$ for every open $U \subset X$. Deduce that

$$\mathcal{E}xt^{i}_{\mathcal{O}_{X}}(\mathcal{F},\mathcal{G})|_{U} \cong \mathcal{E}xt^{i}_{\mathcal{O}_{U}}(\mathcal{F}|_{U},\mathcal{G}|_{U}).$$

(iii) Consider an exact sequence

$$\ldots \to \mathcal{L}_1 \to \mathcal{L}_0 \to \mathcal{F} \to 0,$$

where the \mathcal{L}_i are locally free sheaves of finite rank on (X, \mathcal{O}_X) . Show that $\mathcal{E}xt^i_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}) \cong H^i(\mathcal{H}om_{\mathcal{O}_X}(\mathcal{L}_{\bullet}, \mathcal{G})).$

(Warning: Note that this does not imply that one can define derived functors $\mathcal{E}xt^i_{\mathcal{O}_X}(-,\mathcal{G})$ of the contravariant functor $\mathcal{H}om_{\mathcal{O}_X}(-,\mathcal{G})$, since $Mod(X,\mathcal{O}_X)$ usually does not admit enough projective objects.)

(iv) Assume that X is a Noetherian scheme and that \mathcal{F} is coherent. Show that for every point $x \in X$, one has

$$\mathcal{E}xt^i_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})_x \cong \operatorname{Ext}^i_{\mathcal{O}_{X,r}}(\mathcal{F}_x,\mathcal{G}_x),$$

where on the right hand side we consider the *i*-th derived functor of $\operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x, -)$: $\operatorname{Mod}(\mathcal{O}_{X,x}) \to \operatorname{Mod}(\mathcal{O}_{X,x}).$

(Notation: Sometimes, one writes $\mathcal{E}xt^i_X(\mathcal{F},\mathcal{G})$ resp. $\mathcal{E}xt^i(\mathcal{F},\mathcal{G})$ if the sheaf \mathcal{O}_X resp. the ringed space (X,\mathcal{O}_X) is clear from the context.)

Information from the Fachschaft:

This year's Math Christmas party will take place at Thursday, the 17.12. starting 18 ct. online via zoom. All current information can be found on https://fsmath.uni-bonn.de/events-detail/events/virtual-christmas-party.html. Swing by!