Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry I – Week 5

Exercise 28. Reduced schemes and reduction of schemes (4 points)

Let X be a scheme. The *reduction* of X is a reduced scheme X_{red} together with a morphism $\iota : X_{\text{red}} \to X$ such that every morphism $Z \to X$ from a reduced scheme Z factors uniquely through ι .

- (i) Show that X is reduced if and only if all local rings $\mathcal{O}_{X,x}$ are reduced.
- (ii) Show that if X = Spec(A) is affine, then $\text{Spec}(A/\mathfrak{N}(A))$, where $\mathfrak{N}(A)$ is the nilradical of A, together with the morphism ι induced by the quotient map $A \to A/\mathfrak{N}(A)$ is the reduction of X.
- (iii) Show that every scheme admits a (necessarily unique) reduction. Show that ι is a homeomorphism of topological spaces.

Exercise 29. Distinguished open sets (3 points)

Recall that the open sets $D(a) \subset \text{Spec}(A)$ of all prime ideals not containing $a \in A$ form a basis of the topology. Define similar sets $X_a \subset X$ for any scheme X and any $a \in \Gamma(X, \mathcal{O}_X)$. More precisely, let $X_a \subset X$ be the set of points $x \in X$ such that the stalk $a_x \in \mathcal{O}_{X,x}$ is not contained in the maximal ideal $\mathfrak{m}_x \subset \mathcal{O}_{X,x}$ (or, equivalently, that the image of a in the residue field k(x) is non-trivial).

- (i) Prove that X_a is an open subset.
- (ii) Give an example of a scheme X such that the X_a do not form a basis of the topology.

Exercise 30. *Fibres* (3 points)

Consider the subscheme $X \subset \mathbb{A}^2_{\mathbb{Z}} := \operatorname{Spec}(\mathbb{Z}[X, Y])$ given by $XY^2 - m$, for some $m \in \mathbb{Z}$. Study the fibres of $X \to \operatorname{Spec}(\mathbb{Z})$. Which ones are irreducible?

Exercise 31. Integral and irreducible fibres (4 points) Find examples for the following phenomena:

- (i) Show that there exist morphisms $X \to Y$ with Y integral and such that all fibres X_y are irreducible without X being irreducible.
- (ii) Show that there exist fields and morphisms $X \to \text{Spec}(k[x])$ with X integral, the generic fibre X_n non-empty and integral but no closed fibre integral.
- (iii) Show that there exist morphisms $X \to \operatorname{Spec}(\mathbb{Q}[x])$ with X integral and infinitely many irreducible and infinitely many reducible closed fibres. What happens for the geometric closed fibres in your example?

Due Friday 4 December 2020.

Exercise 32. Points under base change (3 points) Consider the natural morphism $\mathbb{A}^2_{\mathbb{Q}} \to \mathbb{A}^2_{\mathbb{Q}}$ and determine the images of the following points:

- (i) $(x \sqrt{2}, y \sqrt{2}),$
- (ii) $(x \sqrt{2}, y \sqrt{3}),$
- (iii) $(\sqrt{2}x \sqrt{3}y)$.

Exercise 33. Morphisms into separated schemes (5 points)

Consider schemes X and Y over a base scheme S, i.e. together with morphisms $\pi_X \colon X \to S$ and $\pi_Y: Y \to S$. Assume that X is reduced and that $Y \to S$ is separated. Show that two morphisms

 $f_1, f_2 \colon X \to Y$

over S (i.e. such that $\pi_X = \pi_Y \circ f_i$) that coincide on a dense open subset $U \subset X$ are actually equal. (*Hint*: Consider the composition of the graph $X \to X \times_S Y$ of f_2 with $(f_1, \mathrm{id}): X \times_S Y \to Y \times_S Y.$ Give counterexamples if one of the hypotheses is dropped.

The last exercise is not strictly necessary for the understanding of the lectures at this point.

Exercise 34. Functors of points (4 extra points)

We consider the category (Sch/S) of all S-schemes over a fixed scheme S. Thus, the objects of (Sch/S) consists of a scheme X together with a morphism $\pi_X \colon X \to S$. Morphisms $(X, \pi_X) \to (Y, \pi_Y)$ in (Sch/S) are morphisms of schemes $f: X \to Y$ with $\pi_Y \circ f = \pi_X$. Consider the functor of points $h_X: (Sch/S)^{\mathrm{op}} \to (Sets)$ that for a fixed S-scheme $X \to S$

maps any S-scheme $Y \to S$ to the set of morphisms $Mor_S(Y, X)$ of S-schemes $Y \to X$.

(i) Define the notion of fibre product functor $h_X \times h_Y \colon (Sch/S)^{\mathrm{op}} \to (Sets)$ and show that this functor is isomorphic to $h_{X \times_S Y}$, i.e.

$$h_{X \times_S Y} \cong h_X \times h_Y.$$

Compare this to the fact that the underlying topological space $|X \times_S Y|$ of $X \times_S Y$ is usually different from $|X| \times_{|S|} |Y|$ (example!).

- (ii) For $S = \operatorname{Spec}(k)$ and a field extension K/k, show that $h_X(\operatorname{Spec}(K)) = X(K)$, see Exercise 17.
- (iii) Find examples of morphisms $X \to Y$ (of S-schemes) which are not determined by their underlying continuous maps. Observe, however, that $X \to Y$ is determined by $h_X \to h_Y$.