Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry I – Week 4

Exercise 21. Cohomology under closed embeddings (4 points)

Let X be a topological space and $i: Z \hookrightarrow X$ the inclusion of a closed subset. Prove the following assertions.

- (i) The direct image functor $i_* \colon \operatorname{Sh}(Z) \to \operatorname{Sh}(X)$ is exact.
- (ii) The direct image $i_*\mathcal{I}$ of a flasque sheaf is flasque again.
- (iii) For any sheaf $\mathcal{F} \in \mathrm{Sh}(Z)$, there exists an isomorphism $H^i(Z, \mathcal{F}) \cong H^i(X, i_*\mathcal{F})$ for all i.

Which of these assertions fails if instead $i: U \hookrightarrow X$ is the inclusion of an open subset?

Exercise 22. Cohomology with support (4 points)

Let X be a topological space and $i: Z \hookrightarrow X$ the inclusion of a closed subset. For $\mathcal{F} \in \mathrm{Sh}(X)$, recall the definition of the subgroup $\Gamma_Z(X, \mathcal{F}) \subset \Gamma(X, \mathcal{F})$ of sections of \mathcal{F} with support in Z.

- (i) Show that $\Gamma_Z(X, -)$: Sh $(X) \to (Ab)$ is a left-exact functor. Its right-derived functors are denoted by $H^i_Z(X, -)$ and are called *cohomology groups of* X with support in Z, and coefficients in a given sheaf.
- (ii) Show that $H^i_{\mathcal{Z}}(X, \mathcal{F}) = 0$ for all i > 0 and all flasque sheaves \mathcal{F} .
- (iii) Let $U = X \setminus Z$. Show that for any $\mathcal{F} \in \operatorname{Sh}(X)$, there is a long exact sequence of cohomology groups

$$0 \to H^0_Z(X, \mathcal{F}) \to H^0(X, \mathcal{F}) \to H^0(U, \mathcal{F}|_U) \to H^1_Z(X, \mathcal{F}) \to H^1(X, \mathcal{F}) \to \dots$$

Exercise 23. Normalization (4 points)

A scheme X is normal if all its local rings $\mathcal{O}_{X,x}$ are integrally closed domains. The normalization of an integral scheme X is an irreducible normal scheme \tilde{X} together with a dominant morphism $\nu : \tilde{X} \to X$ such that every dominant morphism $Z \to X$ from an irreducible normal scheme Z factors uniquely through ν .

- (i) Let $X = \operatorname{Spec}(A)$ for an integral domain A, let $\tilde{X} = \operatorname{Spec}(\tilde{A})$, where \tilde{A} is the integral closure of A in its field of fractions K(X), and let $\nu : \tilde{X} \to X$ be the morphism induced by the inclusion $A \subset \tilde{A}$. Show that \tilde{X} together with ν is the normalization of X.
- (ii) Show that every integral scheme admits a (necessarily unique) normalization.

Please turn over

Due Friday 27 November 2020.

Exercise 24. Direct image (3 points)

Consider the map $f: S^1 \to S^1$, $z \mapsto z^2$. Show that $R^1 f_* \underline{\mathbb{Z}} = 0$ and prove $(f_* \underline{\mathbb{Z}})_x \cong \mathbb{Z} \oplus \mathbb{Z}$ for all $x \in S^1$. Is $f_* \underline{\mathbb{Z}} \cong \underline{\mathbb{Z}}^{\oplus 2}$?

Exercise 25. Morphisms to affine schemes (3 points)

Let $(f, f^{\sharp}): X \to \operatorname{Spec}(A)$ be a morphism of schemes. Taking global sections of $f^{\sharp}: \mathcal{O}_{\operatorname{Spec}(A)} \to f_*\mathcal{O}_X$ yields a homomorphism of rings $A \to \Gamma(X, \mathcal{O}_X)$. Show that this defines a bijection

 $\operatorname{Mor}_{(Sch)}(X, \operatorname{Spec}(A)) \cong \operatorname{Mor}_{(Rings)}(A, \Gamma(X, \mathcal{O}_X)).$

Exercise 26. Schemes are T_0 -spaces (3 points) Let X be a scheme. Prove the following assertions.

- (i) If X is irreducible and consists of at least two points, then X is not Hausdorff.
- (ii) Show that X is a T_0 -space, i.e. for any two distinct points $x, y \in X$ there exists an open subset $U \subset X$ containing exactly one of the two points.

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 27. Injective resolutions of groups and modules (5 extra points) Let A be a ring and let I be an A-module.

(i) Show that I is injective if for any ideal $\mathfrak{a} \subset A$ the induced map

 $\operatorname{Hom}_A(A, I) \to \operatorname{Hom}_A(\mathfrak{a}, I)$

is surjective.

- (ii) Show that any divisible group G (i.e. $g \mapsto ng$ is surjective for all n > 0) is an injective object in (Ab). In particular, \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective.
- (iii) Show that $I(G) = \prod_{J(G)} \mathbb{Q}/\mathbb{Z}$ is a divisible (and hence injective) group. Here, the index set J(G) is the set $\operatorname{Hom}_{(Ab)}(G, \mathbb{Q}/\mathbb{Z})$.
- (iv) Show that the natural map $G \to I(G)$, $g \mapsto (f(g))_f$ is injective. (For $g \in G$ pick a non-trivial homomorphism $\langle g \rangle \to \mathbb{Q}/\mathbb{Z}$ and use the injectivity of \mathbb{Q}/\mathbb{Z} to extend it to a homomorphism $G \to \mathbb{Q}/\mathbb{Z}$.) Conclude that the category (Ab) of abelian groups has enough injectives.
- (v) Check that the same argument shows that the category of A-modules has enough injectives for any ring.