Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry I – Week 2

Exercise 8. Gluing of sheaves (4 points)

Let X be a topological space and let $X = \bigcup U_i$ be an open covering. We use the shorthand $U_{ij} \coloneqq U_i \cap U_j$ and $U_{ijk} \coloneqq U_i \cap U_j \cap U_k$.

Consider sheaves \mathcal{F}_i on U_i and isomorphisms $(gluings) \varphi_{ij} \colon \mathcal{F}_i|_{U_{ij}} \xrightarrow{\sim} \mathcal{F}_j|_{U_{ij}}$. Show that if the cocycle condition $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on U_{ijk} is satisified, then there exists a sheaf \mathcal{F} on Xtogether with isomorphisms $\varphi_i \colon \mathcal{F}|_{U_i} \cong \mathcal{F}_i$ such that $\varphi_{ij} \circ \varphi_i = \varphi_j$ on U_{ij} . The sheaf (\mathcal{F}, φ_i) is unique up to unique isomorphism.

Exercise 9. Direct and inverse image are adjoint (5 points)

Let $f: X \to Y$ be a continuous map. Show that $f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$ is right adjoint to $f^{-1}: \operatorname{Sh}(Y) \to \operatorname{Sh}(X)$ (one writes $f^{-1} \dashv f_*$), i.e. for all $\mathcal{F} \in \operatorname{Sh}(X)$ and $\mathcal{G} \in \operatorname{Sh}(Y)$, there exists an isomorphism

$$\operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathcal{G},f_*\mathcal{F})$$

which is functorial in \mathcal{F} and \mathcal{G} . Show that, in particular, there exist natural homomorphisms

$$\mathcal{G} \to f_* f^{-1} \mathcal{G} \text{ and } f^{-1} f_* \mathcal{F} \to \mathcal{F}.$$

Verify also that for the composition of two continuous maps $f: X \to Y$ and $g: Y \to Z$ one has $(g \circ f)_* = g_* \circ f_*$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Exercise 10. Local rings of continuous functions (4 points)

Let X be a topological space and let \mathcal{C} be the sheaf of continuous functions on X. Consider for a point $x \in X$ the stalk \mathcal{C}_x . Show that the map $\mathcal{C}_x \to \mathbb{R}$, $f \mapsto f(x)$ is well defined and that \mathcal{C}_x is a local ring with maximal ideal $\mathfrak{m}_x := \{f \in \mathcal{C}_x \mid f(x) = 0\}$. Describe similar situations involving differentiable or holomorphic functions.

Exercise 11. Direct sum of sheaves (3 points)

Let \mathcal{F}, \mathcal{G} be two sheaves of abelian groups on a topological space X. Show that $\mathcal{F} \oplus \mathcal{G} \colon U \mapsto \mathcal{F}(U) \oplus \mathcal{G}(U)$ defines a sheaf.

Exercise 12. Functor of sections is left-exact (4 points)

Let $U \subset X$ be an open set. Prove that $\Gamma(U, : Sh(X) \to (Ab)$ is a left exact functor, i.e. for any short exact sequence of sheaves $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ the sequence $0 \to \mathcal{F}_1(U) \to \mathcal{F}_2(U) \to \mathcal{F}_3(U)$ is exact. (*Warning:* But usually $\mathcal{F}_2(U) \to \mathcal{F}_3(U)$ is not surjective, i.e. $\Gamma(U,)$ is not exact.)

Please turn over

Due Friday 13 November 2020.

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 13. Functor of points and the Yoneda lemma (4 extra points)

Let \mathcal{C} be a category with sets of morphisms between two objects X, Y denoted Mor(X, Y). Then every object X in \mathcal{C} induces a functor

$$h_X \colon \mathcal{C}^{\mathrm{op}} \to (Sets), \ Y \mapsto h_X(Y) \coloneqq \mathrm{Mor}(Y, X).$$

Observe that $h_X(X)$ contains a distinguished element.

- (i) Consider the three categories $C \coloneqq (Top)$ (of topological spaces); $C \coloneqq (Ab)$ (of abelian groups); $C \coloneqq (Rings)$ (of rings) and denote for each object X in C by |X| the underlying set (the set of points). Show that in all three cases there exists an object Z in C such that for all X the set of points |X| can be recovered as $|X| = h_X(Z)$.
- (ii) Consider the category of affine schemes C := (AffSch). Does there exist an object as in (i) in this case?
- (iii) For an arbitrary category \mathcal{C} , denote by Fun($\mathcal{C}^{\mathrm{op}}$, (*Sets*)) the category of functors $\mathcal{C}^{\mathrm{op}} \to (Sets)$ and consider the functor

$$h: \quad \mathcal{C} \quad \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, (Sets))$$
$$X \quad \mapsto h_X.$$

The Yoneda lemma then asserts that h is a fully faithful embedding, in other words h defines an equivalence of categories between C and a full subcategory of Fun(C^{op} , (Sets)). Spell out what this means and try to prove it. Check Vakil's notes on the subject (or any other source). Objects in the image of h (or, more precisely, objects isomorphic to objects in the image) are called *representable functors*.