Exercises, Algebraic Geometry I – Week 13

Exercise 78. Line bundles over the projective space (5 points)

Consider the projective space $\mathbb{P}_k^n = \operatorname{Proj}(k[x_0, \dots, x_n])$ over a field k (or, alternatively, over any ring) and the line bundle $\mathbb{V}(\mathcal{O}(1))$ associated with the invertible sheaf $\mathcal{O}(1)$. Let $\mathbb{V}(\mathcal{O}(1))_0 \subseteq \mathbb{V}(\mathcal{O}(1))$ be the zero section, i.e., the image of the section of $\mathbb{V}(\mathcal{O}(1)) \to \mathbb{P}_k^n$ corresponding to $0 \in H^0(\mathbb{P}_k^n, \mathcal{O}(-1))$.

- (i) Show that there exists an isomorphism $\mathbb{V}(\mathcal{O}(1)) \setminus \mathbb{V}(\mathcal{O}(1))_0 \cong \mathbb{A}_k^{n+1} \setminus \{(0)\}.$
- (ii) Describe the resulting projection $\operatorname{Spec}(k[x_0,\ldots,x_n])\setminus\{0\}\to \operatorname{Proj}(k[x_0,\ldots,x_n])$ in terms of prime ideals.
- (iii) Show that every quasi-projective scheme over k admits a line bundle for which the complement of the zero section is quasi-affine (i.e. an open subset of an affine k-scheme).

(In the next term we will prove the Jouanolou trick that says that there exists an affine scheme $Y \to \mathbb{P}^n$ which Zariski locally is of the form $U \times \mathbb{A}^n \to U$ (without being a vector bundle)).

Exercise 79. *Projective bundles* (4 points)

Consider a locally free sheaf \mathcal{E} of rank r+1 on a scheme X and its symmetric algebra $\mathcal{S} := S^*(\mathcal{E}) = \bigoplus S^d(\mathcal{E})$. Show that for the projection $\pi : \mathbb{P}(\mathcal{E}) \to X$ there exist isomorphisms

$$\mathcal{E} \cong \pi_* \mathcal{O}_{\pi}(1)$$
 and $S^d(\mathcal{E}) \cong \pi_* \mathcal{O}_{\pi}(d)$.

Exercise 80. Splitting principle (3 points)

Under the assumptions of the previous exercise, show that there exists a short exact sequence

 $0 \longrightarrow \mathcal{O}_{\pi}(-1) \longrightarrow \pi^* \mathcal{E}^* \longrightarrow \mathcal{F}_1^* \longrightarrow 0$

with \mathcal{F}_1 locally free. Use this to prove the existence of morphisms

 $g\colon P_r \longrightarrow P_{r-1} \longrightarrow \cdots \longrightarrow P_0 = X ,$

for which each $P_i \to P_{i-1}$ is a \mathbb{P}^i -bundle and the pull-back of \mathcal{E} to P_r admits a filtration $0 = \mathcal{F}_{r+1} \subset \mathcal{F}_r \subset \cdots \subset \mathcal{F}_0 = g^* \mathcal{E}$ for which every quotient $\mathcal{F}_i / \mathcal{F}_{i+1}$ is an invertible sheaf.

Exercise 81. A blow-up does not determine its center (5 points)

Let X be a noetherian scheme and let \mathcal{I} be a coherent sheaf of ideals on X. Prove the following assertions:

- (i) For every d > 0, there is an isomorphism $\operatorname{Bl}_{V(\mathcal{I})}(X) \cong \operatorname{Bl}_{V(\mathcal{I}^d)}(X)$ over X.
- (ii) If \mathcal{J} is an invertible coherent sheaf of ideals on X, then there is an isomorphism $\operatorname{Bl}_{V(\mathcal{I})}(X) \cong \operatorname{Bl}_{V(\mathcal{I} \cdot \mathcal{J})}(X)$ over X.
- (iii) Give an example of X and \mathcal{I} such that $\operatorname{Bl}_{V(\mathcal{I})}(X) \cong \operatorname{Bl}_{V(\sqrt{\mathcal{I}})}(X)$, where $\sqrt{\mathcal{I}}$ is the radical of \mathcal{I} .