Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry I – Week 12

Exercise 72. Gonality of a curve (3 points)

Let X be an integral, projective, normal curve over an algebraically closed field k. Show that there exists a finite morphism $f: X \to \mathbb{P}^1_k$ of degree $\leq g(X) + 1$. In other words, the gonality of a curve X is bounded by $gon(X) \leq g(X) + 1$. Here, g(X) is the genus of X, i.e. $g(X) \coloneqq \dim_k H^1(X, \mathcal{O}_X) = p_a(X)$, see Exercise 57.

Exercise 73. Rational functions with prescribed poles (4 points)

Let X be an integral, projective, normal curve over an algebraically closed field k. Prove the following assertions.

- (i) For every closed point $x \in X$ there exists a rational function $f \in K(X)$ with a pole at x (of some order n > 0) and no pole anywhere else.
- (ii) For given closed points $x_1, \ldots, x_r \in X$ there exists a rational function $f \in K(X)$ with poles at all x_i (of some order $n_i > 0$) and no pole anywhere else.

Exercise 74. Inflection points of plane cubics (3 points)

Let $X \subset \mathbb{P}^2_k$, $k = \overline{k}$ be a normal cubic with an inflection point $x_0 \in X$ leading to a group structure on the set of closed points of X with x_0 as the origin. Show that any other inflection point $x \in X$ is of order three. Is the converse also true?

Exercise 75. Euler-Poincaré characteristic of invertible sheaves (4 points) Let X be an integral, projective, normal curve over an algebraically closed field k. Let \mathcal{L} be an invertible sheaf on X.

- (i) Show that, for every closed point $x \in X$, one has $\chi(\mathcal{L}(x)) = 1 + \chi(\mathcal{L})$.
- (ii) Deduce the Riemann–Roch theorem for invertible sheaves on curves:

$$\chi(\mathcal{L}) = \deg(\mathcal{L}) + 1 - g(X).$$

(In particular, $\chi(\mathcal{L})$ only depends on the degree of \mathcal{L} .)

Exercise 76. Morphisms from projective spaces (4 points)

Let $f: \mathbb{P}^n_k \to X$ be a morphism of projective k-schemes. Show that either the image of f consists of a single point or that f is quasi-finite (and in fact finite).

Due Friday 29 January 2021. This is the last sheet that counts towards the necessary 50% needed for the exam.

The last exercise is not strictly necessary for the understanding of the lectures at this point.

Exercise 77. The algebraic first Cousin problem (4 extra points)

Let $X = \mathbb{P}^1_k$, where k is an algebraically closed field. Let \mathcal{K}_X be the constant sheaf associated to the function field K(X) of X.

(i) For every closed point $x \in X$ set $I_x := K(X)/\mathcal{O}_{X,x}$, considered as a skyscraper sheaf on X with support $\{x\}$. Show that

$$\mathcal{K}_X/\mathcal{O}_X \cong \bigoplus_{x \in X \text{ closed}} I_x$$

(ii) Show that

$$0 \to \mathcal{O}_X \to \mathcal{K}_X \to \mathcal{K}_X \to \mathcal{O}_X \to 0$$

is a flabby resolution of \mathcal{O}_X .

(iii) Use (ii) to show that $H^i(X, \mathcal{O}_X) = 0$ for all i > 0.