Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry I – Week 11

Exercise 66. Ample invertible sheaves (3 points) Let X be a noetherian scheme.

- (i) Show that if \mathcal{L} and \mathcal{M} are two invertible sheaves on X such that \mathcal{L} is ample, then $\mathcal{L}^n \otimes \mathcal{M}$ is ample for $n \gg 0$. Conclude that any invertible sheaf \mathcal{M} on X is isomorphic to some $\mathcal{L}_1 \otimes \mathcal{L}_2^*$ with \mathcal{L}_1 and \mathcal{L}_2 ample if there exists an ample invertible sheaf on X at all.
- (ii) Is the tensor product $\mathcal{L}_1 \otimes \mathcal{L}_2$ of two ample (resp. very ample) invertible sheaves again ample (resp. very ample)?

Exercise 67. Base locus (4 points)

Let X be a projective integral scheme over an algebraically closed field k and let \mathcal{L} be an invertible sheaf on X. A point $x \in X$ is a base point of a linear system $V \subset H^0(X, \mathcal{L})$ (or of $\mathbb{P}(V) \subset |\mathcal{L}| \coloneqq \mathbb{P}(H^0(X, \mathcal{L}))$) if $s_x \in \mathfrak{m}_x \cdot \mathcal{L}$ for all $s \in V$. Thus, \mathcal{L} is globally generated if and only if $|\mathcal{L}|$ has no base points.

- (i) Prove that the base locus $Bs(V) \subset X$, i.e. the set of all base points, is closed.
- (ii) Assume that X is factorial. Show that for any \mathcal{L} with $|\mathcal{L}| \neq \emptyset$ there exists an effective (Cartier) divisor D such that the base locus of the complete linear system given by $\mathcal{L}(-D) \coloneqq \mathcal{L} \otimes \mathcal{O}_X(-D)$ is of codimension ≥ 2 and such that $\mathcal{L}(-D) \hookrightarrow \mathcal{L}$ induces an isomorphism $H^0(X, \mathcal{L}(-D)) \xrightarrow{\sim} H^0(X, \mathcal{L})$.
- (iii) Determine the base locus of the Hesse pencil

$$V := \{ f_{t_0, t_1} := t_0(x_0^3 + x_1^3 + x_2^3) + t_1 x_0 x_1 x_2 \} \subset H^0(\mathbb{P}^2_k, \mathcal{O}(3)).$$

Exercise 68. Ample invertible sheaves on the quadric surface (5 points) Consider the quadric $\mathbb{P}^1_k \times \mathbb{P}^1_k \cong Q = V_+(x_0x_3 - x_1x_2) \subset \mathbb{P}^3_k$ and use that $\operatorname{Pic}(Q) \cong \mathbb{Z} \oplus \mathbb{Z}$, i.e., every invertible sheaf on Q is isomorphic to a unique $\mathcal{O}(a,b) := p_1^*\mathcal{O}(a) \otimes p_2^*\mathcal{O}(b)$.

- (i) Determine all ample invertible sheaves on Q. Are they all very ample?
- (ii) Quite generally, if X and Y are two quasi-compact and separated schemes over k, \mathcal{F} is a quasi-coherent sheaf on X, and \mathcal{G} is a quasi-coherent sheaf on Y, then one can define the box product sheaf $\mathcal{F} \boxtimes \mathcal{G} := p_1^* \mathcal{F} \otimes p_2^* \mathcal{G}$ on $X \times Y$ and show that there is a Künneth isomorphism

$$H^n(X \times Y, \mathcal{F} \boxtimes \mathcal{G}) \cong \bigoplus_{i+j=n} H^i(X, \mathcal{F}) \otimes_k H^j(Y, \mathcal{G}).$$

This isomorphism can be used to determine the cohomology groups of all invertible sheaves on Q. Calculate as many cohomology groups $H^n(Q, \mathcal{O}(a, b))$ as you can without using the above Künneth isomorphism.

Due Friday 29 January 2021.

Exercise 69. Projection from a linear subspace (3 points)

Describe the linear system $V \subset H^0(\mathbb{P}^n_k, \mathcal{O}(1))$ that yields the linear projection from the plane $\mathbb{P}^2_k \subset \mathbb{P}^n_k$ defined by $x_{i>2} = 0$ onto $\mathbb{P}^{n-3}_k \subset \mathbb{P}^n_k$ defined by $x_0 = x_1 = x_2 = 0$.

Exercise 70. Base locus of powers (3 points)

Let X be a projective scheme over an algebraically closed field k and let $\mathcal{L} \in \operatorname{Pic}(X)$. Show that the base locus $\operatorname{Bs}(\mathcal{L}) := \operatorname{Bs}(H^0(X, \mathcal{L}))$ of \mathcal{L} contains the base locus $\operatorname{Bs}(\mathcal{L}^n)$ of any power \mathcal{L}^n , where n > 0. Is it true that for n > m one necessarily has $\operatorname{Bs}(\mathcal{L}^n) \subset \operatorname{Bs}(\mathcal{L}^m)$?

The last exercise is not strictly necessary for the understanding of the lectures at this point.

Exercise 71. The Grothendieck group of a scheme (5 extra points)

Let X be a noetherian scheme. The Grothendieck group $K_0(X)$ of X is defined as the quotient of the free abelian group generated by all coherent sheaves on X by the subgroup generated by the expressions $\mathcal{F} - \mathcal{F}' - \mathcal{F}''$, whenever there is an exact sequence

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

of coherent sheaves on X.

- (i) If X is integral and \mathcal{F} is a coherent sheaf on X, we define the rank of \mathcal{F} as rank $(\mathcal{F}) := \dim_{\mathcal{O}_{X,\eta}}(\mathcal{F}_{\eta})$, where η is the generic point of X. Show that rank(-) defines a surjective homomorphism from $K_0(X)$ to \mathbb{Z} .
- (ii) Let $Y \subset X$ be a closed subscheme and let \mathcal{F} be a coherent sheaf on X with support on Y. Show that \mathcal{F} admits a finite filtration by coherent sheaves

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_n = \mathcal{F}$$

such that each $\mathcal{F}_i/\mathcal{F}_{i-1}$ is the pushforward of a coherent sheaf on Y.

(iii) Let $\iota: Y \hookrightarrow X$ be a closed immersion. Show that there is an exact sequence

$$K_0(Y) \xrightarrow{\alpha} K_0(X) \xrightarrow{\beta} K_0(X-Y) \to 0,$$

where α is induced by ι_* and β is induced by $(-)|_{X-Y}$.

(Hints: First, note that $\beta \circ \alpha = 0$, so that β induces a homomorphism

$$\overline{\beta}: K_0(X)/\alpha(K_0(Y)) \to K_0(X-Y).$$

Then, use Exercise 59 and Part (ii) of the current exercise to construct an inverse to $\overline{\beta}$.)

(iv) Let k be a field. Calculate $K_0(\text{Spec } k), K_0(\mathbb{A}^1_k)$, and $K_0(\mathbb{P}^1_k)$.