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1. Spreading

Exercise 1. Consider the following homogeneous polynomial F = x10
0 + x10

1 + x10
2 in three

variables.

(i) Define a scheme X together with a flat morphism π : X // Spec(Z) such that the fibre
over the generic point is V+(F ) ⊂ P2

Q.

(ii) Find a minimal positive integer N such that the restriction of π to the open subset
Spec(Z[1/N ]) ⊂ Spec(Z) is a smooth morphism.

(iii) Are there fibres of π that are non-reduced or reducible?

Solution (i) Define X := V+(F ) ⊆ P2
Z and π : X // P2

Z
// Spec(Z). Clearly, the generic fibre of π is V+(F ) ⊆

P2
Q. Since the target of π is reduced and the Hilbert polynomial of its fibers is constant, π is flat.

(ii) The partial derivates of F are 10x9
i . Hence, by the Jacobian criterion for smoothness, the fiber Xk of π over a field

k of characteristic p is smooth if and only if p 6= 2, 5. Thus, N = 10.

(iii) If p 6∈ {2, 5}, then Xk is smooth and connected (being a hypersurface in P2
k), hence irreducible and reduced. If

p ∈ {2, 5}, then F = (x
10/p
0 + x

10/p
1 + x

10/p
2 )p, hence Xk is non-reduced. In fact, F is the p-th power of a polynomial

defining a smooth curve (by the same argument as in (i)), hence Xk is irreducible. Summarizing, there are non-reduced

fibers of π, but all fibers are irreducible.

2. Curves on surfaces

Exercise 2. Let C be a smooth projective irreducible curve over an algebraically closed field
k and let S = C × C with the two projections pi : S // C, i = 1, 2.

(i) Show that p∗1 ⊕ p∗2 : Pic(C)⊕ Pic(C) // Pic(S) is injective.

(ii) Fix a closed point x ∈ C and consider the invertible sheaves OS(a, b) := p∗1OC(ax) ⊗
p∗2OC(bx). Decide for which a and b the sheaf OS(a, b) is ample.

(iii) Consider the diagonal C ∼= ∆ ⊂ S and determine the self-intersection number (∆.∆).
Is OS(∆) contained in the image of p∗1 ⊕ p∗2?

(iv) Compute the Hilbert polynomial of the curve ∆ with respect to an ample invertible
sheaf of the form OS(a, b)|∆. Is it equal to the Hilbert polynomial of the sheaf OS(∆)
with respect to the ample invertible sheaf OS(a, b)?

Solution Fix a closed point x ∈ C, let ι1 : C × {x} // S and ι2 : {x} × C // S be the two embeddings.

(i) Let L1,L2 ∈ Pic(C). Note that pi ◦ ιi = id while p1 ◦ ι2 and p2 ◦ ι1 factor through {x} // C. Hence,

ι∗i (p∗1L1 ⊗ p∗2L2) = Li. (1)

Thus, if p∗1L1 ⊗ p∗2L2 = OS , then Li = ι∗iOS = OC , so p∗1 ⊕ p∗2 is injective.

(ii) The restriction of an ample sheaf to a closed subscheme is still ample and an invertible sheaf on a curve is ample if
and only if it has positive degree. Applying this to fibers of the two projections yields that if OS(a, b) is ample, then
a, b > 0. Conversely, if a, b > 0, choose n� 0 such that OC(anx) and OC(bnx) are very ample and let fi : C // PNi

be the two induced closed embeddings. Then, composing f1 × f2 with the Segre embedding yields a closed embedding
f : S // PN such that f∗O(1) = OS(an, bn), hence OS(a, b) is ample.

(iii) Recall that O∆(−∆) ∼= ωC , hence we have (∆,∆) = degO∆(∆) = degω∗
C = 2 − 2g, where g is the genus of C.

Assume OS(∆) = p∗1L1 ⊗ p∗2L2. Let y 6= x ∈ C be another closed point. The restriction of OS(∆) to C × {x} is OC(x)
while the restriction of OS(∆) to C × {y} is OC(y). So, by (1), we have OC(x) = OC(y), that is, x and y are linearly
equivalent. Since x 6= y, this implies C ∼= P1. Conversely, we know that Pic(P1 × P1) = p∗1Pic(P1)⊕ p∗2Pic(P1), so O(∆)
is contained in the image of p∗1 ⊕ p∗2 in this case.

(iv) The two maps ∆ // S
pi // C for i = 1, 2 are isomorphisms, hence deg(O∆(a, b)) = a+b. By the Riemann-Roch

formula, we obtain

P (∆,O∆)(m) = χ(∆,O∆(am, bm))

= am+ bm− g + 1,

2



where g is the genus of C. Since this polynomial has degree 1 in m, it cannot be equal to the Hilbert polynomial of
OS(∆) with respect to any ample invertible sheaf, since the latter has degree 2 in m.

3. Higher direct images

Exercise 3. In the situation of Exercise 2, let ι : S̃ // S be the blow-up of the point (x, x) ∈
S and consider the composition f : S̃

ι // S
p1 // C

(i) Describe the maximal open subsets in S and C over which ι resp. f are flat. Answer
the same question for ‘flat’ replaced by ‘smooth’.

(ii) Determine the direct image sheaves Rif∗OS̃ . Do they satisfy base change? In other
words, for which points y ∈ C and for which i is the natural map

Rif∗OS̃ ⊗ k(y) // H i(S̃y,OS̃y
)

an isomorphism?

(iii) Describe a coherent sheaf F on S̃ that is not f -flat and such that f(Supp(F)) = C.

Determine and compare the functions y � // hi(S̃y,Fy) and y � // dimRif∗F ⊗ k(y)
(say on k-rational points y ∈ C).

Solution
(i) First, recall that ι is an isomorphism away from (x, x) and ι−1(x, x) ∼= P1. Since fiber dimension is constant in flat
families, the maximal open subset in S over which ι is flat is S \ {(x, x)} and this is also the maximal open subset over
which ι is smooth.

By the above, the fibers of f are the same as the fibers of p1 away from x. The fiber f−1(x) contains two irreducible

components, namely the exceptional curve for ι and the strict transform of p−1
1 (x).

Now, C and S are smooth, hence so is S̃, and therefore f is flat by miracle flatness, that is, the maximal open subset
in C over which f is flat is C itself. Since ι∗OS̃ = OS and (p1)∗OS = OC , we have f∗OS̃ = OC , hence the fibers of

f are connected. Thus, by the previous paragraph, the fiber f−1(x) is not smooth, hence f is not smooth over x. In
particular, the maximal open subset over which f is smooth is C \ {x}.

(ii) Since the fibers of f are 1-dimensional, we have Rif∗OS̃ = 0 = Hi(S̃y ,OS̃y
) for i ≥ 2. As explained in (i), we have

f∗OS̃ = OC . We claim that R1f∗OS̃ = (R1p1)∗OS = OC ⊗ H1(C,OC), so that in particular R1f∗OS̃ is locally free
and hence f∗OS̃ satisfies base change (alternatively, you can check directly that f∗OS̃ satisfies base change).

We have an exact sequence (which can be derived, for example, from the Leray spectral sequence)

0 // R1p1∗(ι∗OS̃) // R1f∗OS̃
// p1∗(R1ι∗OS̃) // 0.

As explained in (i), we have ι∗OS̃ = OS and from the lecture we know that R1ι∗OS̃ = 0. Thus, the exact sequence

shows that R1f∗OS̃
∼= (R1p1)∗OS . The latter is isomorphic to OC ⊗H1(C,OC) by base change (see Exercise 59 (ii)).

(iii) We take F = OS̃⊕k(y, y) for some point x 6= y ∈ C. Then, F is not f -flat, since F(y,y) = OS̃,(y,y)⊕k(y, y) is not a flat

OC,y-module. We have Supp(F) = S̃, hence f(Supp(F)) = C. Now, we calculate f∗F = f∗OS̃ ⊕ f∗k(y, y) = OC ⊕ k(y)

and Fy = OS̃,y ⊕ k(y). Hence, F also satisfies base change at y.

4. Étale morphisms

We study morphisms fi : Xi
// Yi, i = 1, 2, between finite type k-schemes, where k is an

algebraically closed field of characteristic 0.

Exercise 4. (i) Decide whether with fi smooth (flat, unramified, or étale) also the product
f := f1 × f2 : X1 ×k X2

// Y1 ×k Y2 of the fi is smooth (flat, unramified, resp. étale).
What about the composition p1 ◦ f with the first projection p1 : Y1 ×k Y2

// Y1?

(ii) Assume the fi are dominant morphisms between smooth integral k-schemes of the same
dimension. Describe the ramification divisor Rf in terms of Rfi . Describe ωX1×kX2 in
terms of ωY1×kY2 and Rf .
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(iii) Assume X and Y are smooth projective curves. Assume further that there exists an
isomorphism F : X ×k P1 // Y ×k P1. Are X and Y isomorphic?

(iv) How many étale morphisms Pn ×k Pm // PN ×k PM of degree at least 2 are there?
(Hint: First, show that such a morphism can only exist if {n,m} = {N,M}.)

Solution
(i) We can write f as X1×kX2

// Y1×kX2
// Y1×kY2, where the first arrow is the base change of f1 along the first

projection Y1×X2
// Y1 and the second arrow is the base change of f2 along the second projection Y1×Y2

// Y2.
Since being smooth (flat, unramified, or étale) is stable under base change and composition, f satisfies these properties
if the fi do.

The morphism p1 ◦ f is flat if fi is, since p1 : Y1 ×k Y2
// Y1 is flat. The other properties are usually not inherited

by p1 ◦ f : Indeed, take X1 = Y1 = Spec k and X2 = Y2 = Spec k[x]/(x2) with f2 = id. Then, the fi are étale but
p1 ◦ f2 = p1 : Spec k[x]/(x2) // Spec k is neither smooth nor unramified (let alone étale).

(ii) There is a natural isomorphism ΩX1×X2
∼= p∗1ΩX1

⊕p∗2ΩX2
and similarly for Y1×Y2. Hence, the cotangent sequence

for X1 ×k X2
// Y1 ×k Y2

// Spec k is isomorphic to

p∗1f
∗
1 ΩY1

⊕ p∗2f∗2 ΩY2
// p∗1ΩX1

⊕ p∗2ΩX2
// ΩX1×X2/Y1×Y2

// 0.

Thus, Rf = Rf1 ×X2 +X1 ×Rf2 . By definition of Rf , we have ωX1×X2
= f∗ωY1×Y2

⊗O(Rf ).

(iii) Yes. First, note that we have the equality of genera g(X) = 1−χ(OX×P1 ) = 1−χ(OY ×P1 ) = g(Y ), hence we may
assume that X and Y are curves of positive genus.

Consider the composition f : X × P1 F // Y × P1 // Y . Since g(Y ) > 0, the fibers of p1 are contracted by f , hence,
by rigidity (Exercise 54), the morphism f factors through a morphism g : X // Y . As F is an isomorphism, the
morphism g satisfies

g∗OX = g∗p1∗OX×P1 = f∗OX×P1 = p1∗OY ×P = OY .

By Exercise 49, this implies that g is an isomorphism.

(iv) There are none. Indeed, assume that there exists an étale morphism f : Pn × Pm // PN × PM . Note that f is
proper and étale, hence finite and surjective. Therefore, n+m = N +M .

First, assume that N 6= 0 and that n > N . Then, every morphism from Pn to PN is constant, hence, by rigidity (Exercise
54), there exists a morphism g : Pm // PN such that p1 ◦ f = g ◦ p2. Since p1 ◦ f is smooth and p2 is smooth and
surjective, g is smooth. In particular, g is surjective, hence m ≥ N . But m > N is impossible, for then g would be
constant hence N = 0. Thus, m = N and therefore n = M , i.e., {n,m} = {N,M}. The same argument applies if
m > N .

Next, assume that N = 0. Then we are looking at an étale morphism f : Pn×Pm // PN . Since f is étale, f∗O(−N −
1) = f∗ωPN = ωPn×Pm = O(−n − 1,−m − 1). Assume n,m 6= 0 so that n,m < N . Then Pic(Pn × Pm) = Z ⊕ Z, so
both −n− 1 and −m− 1 would have to be divisible by −N − 1, which is absurd. Therefore, either n = 0 or m = 0 and
thus {n,m} = {N,M}.
Now, since f is étale, we have

f∗O(N + 1,M + 1) = f∗ω∗
PN×PM = ω∗

Pn×Pm = O(n+ 1,m+ 1)

and since {N,M} = {n,m}, the induced pullback of global sections is not only injective (since f is dominant) but in fact

an isomorphism. In particular, f factors the closed immersion of Pn × Pm into projective space given by the complete

linear system of global sections of O(n+ 1,m+ 1). Hence, f is injective. Since f is also étale, it is an isomorphism.
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