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1. Spreading Let X be a projective scheme over a field K.

Exercise 1. (i) Consider a subfield k ⊂ K. Show that there exists an integral finite type
k-scheme S and a flat, projective morphism f : X // S of k-schemes such that the
function field of S is a sub-extension, i.e. k ⊂ K(S) ⊂ K, and the base change (Xη)K
of the generic fibre Xη considered as a scheme over k(η) = K(S) is isomorphic to X.

(ii) If we drop ‘flatness’ in (i), prove that one can choose S to be projective.

(iii) Assume X is a smooth K-scheme. Can one choose X // S to be smooth (and projec-
tive)?

(iv) Consider the curve X = V+(F ) ⊂ P2
K with F = x2

0x2−x3
1 + tx1x

2
2 and K = Q(t). Try to

find an explicit flat family f : X // S as above with S projective. Study one singular
fibre.

Solution (i) Pick a closed embedding X ⊂ PNK , so we write X as V+(F1, . . . , Fn) for finitely many homogenous
polynomials F1, . . . , Fn ∈ K[x0, . . . , xN ]. Consider the finite type k-algebra A generated by the finitely many coefficients
occurring in the finitely many polynomials Fi. Then we let S := Spec(A) and we can use the same polynomials to define
the closed subscheme X := V+(F1, . . . , Fn) ⊂ PNA = PNk ×k Spec(A). Clearly, K(S) is the quotient field of A, a finitely
generated field extension of k contained in K and the generic fibre Xη is a projective scheme over K(S) described as

V+(F1, . . . , Fn) ⊂ PN
K(S)

. Therefore, its base change to K gives back X.

Flatness is an open condition (Lecture 10), i.e. the set U ⊂ X of points x ∈ X for which OX ,x is flat over OS,f(x) is

open. The set is not empty, as it contains all the points in the generic fibre. The complement Z := X \ U is closed and,
since f is projective, its image is closed in S. However, f(Z) does not contain the generic point and, therefore, S \ f(Z)
is open and non-empty. Thus, f : X // S restricted to S′ := S \ f(Z) yields the desired flat projective family.

(ii) The (flat) family X // S constructed above, can be projectivized as follows: The S was an open subset of Spec(A)
with A a finite type k-algebra, i.e. there exists a surjection k[y1, . . . , ym] � A. Hence, Spec(A) ⊂ Amk ⊂ Pmk and we may

simply take the closure of S inside Pmk and the closure of X ⊂ PNA inside PN ×k Pmk .

(iii) Smoothness is also an open condition and, as in (i), we may restrict the original family X // S to some open
subset S′ ⊂ S to obtain a smooth projective family.

(iv) The obvious choice is S = P1
Q and X ⊂ P2

Q×Q P1
Q defined by the polynomial t0x2

0x2− t0x3
1 + t1x1x2

2, where t0, t1 are

the homogenous coordinates on P1
Q. The fibre over [1 : 0] is the curve with a cusp x2

0x2−x3
1 (on an affine chart given by

x2−y3). Flatness follows from the the fact that X is irreducible and S is one-dimensional (see Lecture 9). Alternatively,

one could argue via the Hilbert polynomial which is constant in the family as all fibres are curves of degree 3.

2. Curves and surfaces For simplicity we assume that k is an algebraically closed field.

Add simplifying assumptions on k, e.g. on the characteristic, when needed.

Exercise 2. Consider the surfaces St := V+(x4
0 + · · · + x4

3 + 4t
∏
xi) ⊂ P3

k depending on a
parameter t ∈ k.

(i) Determine for which value of t the surface St is smooth. How would you define S∞ and
what are its properties?

(ii) Compute the Hilbert polynomial of the surfaces St and explain how to view the surfaces
St as the fibres over k-rational points of a flat morphism S // P1.

(iii) Consider the projection π : S0
// P2, [x0 : x1 : x2 : x3] � // [x0 : x1 : x2] from the point

[0 : 0 : 0 : 1] onto the plane V+(x3) ∼= P2. Is π flat? Describe the locus of points in P2

over which π is étale. Is there are a line L ⊂ P2 such that its pre-image in S0 is smooth?
If there is, how many such lines are there? Can you find one explicitly?

(iv) In the above situation, determine the higher direct image sheavesRiπ∗OS0 and π!O(−3).
Describe the sheaf ΩS0/P2 .
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Solution (i) We assume char(k) 6= 2. The partial derivatives are 4x3
i + 4t

∏
j 6=i xj . Hence S0 is smooth. Moreover,

St, t 6= 0, is singular if and only if there exists a point [a0 : a1 : a2 : a3] with
∑
a4
i + 4t

∏
ai = 0 and t

∏
ai = −a4

j for

j = 0, . . . , 3. (In fact, by Euler’s equation the first equation follows from the latter ones.) The latter equalities imply
a4

0 = · · · = a4
3 and t4 = 1. Conversely, if t4 = 1, then indeed St is singular. More explicitly, for t = ±1 the point

[∓1 : 1 : 1 : 1] is a singular point of St and for t = ±
√
−1 the point [±

√
−1 : 1 : 1 : 1] is a singular point of St. Hence, St

is singular if and only if t4 = 1. The surface S∞ is naturally defined as V+(
∏
xi), which is the union of four hyperplanes

and in particular neither irreducible nor smooth.

(ii) The Hilbert polynomial of any quartic S ⊂ P3 is computed as follows: PS(n) := χ(S,OS(n)) = χ(P3,OP3 (n)) −
χ(P3,OP3 (n−4)) = 2n2+2. Alternatively, one can use the Riemann–Roch formula χ(S,OS(n)) = (1/2)(OS(n),OS(n))+
2 = (1/2)4n2 + 2. The universal family Suniv

// P := |OP3 (4)| of quartic hypersurfaces in P3 is flat and the surfaces
St are the fibres over t ∈ P1(k) of the family S := Suniv ×P P1, where P1 // P is the linear embedding [t0 :
t1]

� // t0
∑
xi + 4t1

∏
xi. As flatness is preserved under base change, also S // P1 is flat.

(iii) Since S0 and P2 are both smooth, the morphism π is flat if and only if the fibre dimension is constant (miracle
flatness, mentioned in Lecture 11). However, π∗O(1) = OS0

(1) is ample and trivial on all fibres of π, which therefore

have to be all zero-dimensional. This implies the flatness of π. The fibre over a point [a0 : a1 : a2] ∈ P2 consists of four
reduced points if and only if a4

0 +a4
1 +a4

2 6= 0. Hence, the maximal open subset over which π is étale is D+(x4
0 +x4

1 +x4
2).

By Bertini, the pre-image of a non-empty open subset of lines in P2, which we can be viewed as zero sets of the linear
system H0(P2,O(1)) ⊂ H0(S0,OS(1)), is smooth. Here one may want to assume k = k̄ and char(k) = 0, although this
is not necessary. For example, the pre-image of the line V+(x0) is smooth.

(iv) Since π is finite, we clearly have Riπ∗OS0
= 0 for i > 0. To compute π∗OS0

, observe that S0 can be realized as

the closed subscheme of V(O(1)) defined by f∗(x4
0 + x4

1 + x4
2)− t4 ∈ H0(V(O(1)), f∗O(4)). Here, f : V(O(1)) // P2

is the natural projection and t ∈ H0(V(O(1)), f∗O(1)) is the canonical section. Hence, S0 is the relative spectrum
Spec(O ⊕O(−1)⊕O(−2)⊕O(−3)) and, therefore, π∗OS0

∼= O ⊕O(−1)⊕O(−2)⊕O(−3).

To describe ΩS0/P2 we use the exact sequence π∗ΩP2
// ΩS0

// ΩS0/P2
// 0. In fact, since the first two sheaves

are locally free and the morphism is generically étale, this is a short exact sequence. Also recall the natural surjection

ΩS0
|C � ΩC for any curve C ⊂ S0. Applied to the ramification curve π : C

∼ // V+(x4
0 + x4

1 + x4
2) ⊂ P2, this eventually

yields ΩS0/P2
∼= i∗ωC ∼= i∗OC(1), where i : C

� � // S0 and OC(1) is the restriction of O(1) on P2 to V+(x4
0 + x4

1 + x4
2).

In class we have seen that π!ωP2
∼= ωS0

. Since ωP2
∼= O(−3) and ωS0

∼= OS0
, this implies π!O(−3) ∼= OS0

.

Exercise 3. Let L ⊂ P2 and C ⊂ P2 be a line and a smooth conic (i.e. a plane curve of
degree two), respectively. In the following we shall consider P2 embedded as a hyperplane in
P3.

(i) Assume L is contained in a smooth quartic S ⊂ P3, i.e. in a hypersurface of degree
four. Show that for its self intersection number as a curve on S we have (L.L) = −2.
Similarly, what is (C.C) if the conic C is contained in S?

(ii) Assume L and C are contained in the same hyperplane P2 ⊂ P3 and in the same
smooth quartic S ⊂ P3. Show that then (L.C) = 2. What can you say when L and C
are contained in S but not necessarily in the same hyperplane?

(iii) In the situation of (i), describe the restriction of ΩS/k to L ⊂ S. Compute h0(ΩS |L).

(iv) Is it possible that a smooth quartic S ⊂ P3 contains a smooth elliptic curve E ⊂ S (for
example a complete intersection)?

Solution (i) By adjunction formula, the dualizing (canonical) sheaf of S is ωS ∼= (ωP3⊗O(4))|S ∼= OS . For any smooth
curve D ⊂ S the adjunction formula says ωD ∼= (ωS⊗O(D))|D ∼= O(D)|D. Hence, 2g(D)−2 = deg(ωD) = deg(O(D)|D).
Applied to the line D = L or to the conic D = C, which are both smooth rational curves, this yields (L.L) = −2 = (C.C).

(ii) We know that (L.C) = dim(OL∩C) which is 2, as L,C ⊂ P2 intersect in two points (counted with multiplicities).
This does not hold when L and C are not contained in the same hyperplane. In fact, in this case we have (L.C) ≤ 1.

(iii) We use the short exact sequence 0 // TL // TS |L // OL(L) // 0. Using L ∼= P1, adjunction formula
tells us OL(L) ∼= O(−2). Furthermore, TL ∼= O(2). However, any extension 0 // O(2) // E // O(−2) // 0
on P1 splits. Therefore, TS |L ∼= O(2)⊕O(−2) and, in particular, h0(S, TS |L) = 3. Since ΩS ∼= TS ⊗ ωS ∼= TS , this also
answers the question for ΩS .

(iv) Yes, this is possible or at least the adjunction formula only shows that for an elliptic curve E ⊂ S one has

OE ∼= ωE ∼= (ωS ⊗O(E))|E and, therefore, O(E)|E ∼= OE , which does not imply the contradiction O(E) ∼= OS . In fact,

the quartic S = V+(x4
0 − x4

1 + x4
2 − x4

3) contains the elliptic curve given as the complete intersection V+(x2
0 − x2

1 + x2
2 +

x2
3, x

2
0 + x2

1 + x2
2 − x2

3).
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3. Base change Let us consider a projective morphism f : X // Y and a coherent sheaf F
on X.

Exercise 4. We wish to explore the limits of the base change theorems discussed in class.

(i) Describe an example where F is not f -flat and the function y � // hi(Xy,Fy) is not
upper semi-continuous.

(ii) Describe a concrete example of a coherent sheaf F on X for which the fibre of R1f∗F
at a closed point y ∈ Y is not isomorphic to H1(Xy,Fy). Can you even find an example
with f flat? Can this happen for f flat of relative dimension one?

(iii) We proved in class that for F ∈ Coh(X) f -flat the function y � // χ(Xy,Fy) is local-
ly constant and y � // hi(Xy,Fy) is upper-semicontinuous. What about the functions
y � //

∑
(−1)i dimk(y)(R

if∗F ⊗ k(y)) and y � // dimk(y)(R
if∗F ⊗ k(y))?

We suggest to consider the second projection from a product E ×E with E an elliptic
curve and F = pr∗1O(x)(−∆) for some closed point x ∈ E.

Solution (i) Let f : X := Bl0(A2) // Y := A2 be the blow-up of the origin with exceptional divisor E. Then
F := O(E) is locally free on X but not f -flat (since f is not flat). For y 6= 0 we have h0(Xy = Spec(k(y)),Fy ∼= k(y)) = 1
and for y = 0 one finds h0(Xy = E,Fy ∼= O(−1)) = 0.

(ii) We start with the standard example g : X′ := Bl0(A2) // Y := A2 and F ′ := O(E). The direct image of the exact
sequence 0 // O // O(E) // O(E)|E // 0 yields

0 // O ∼= g∗O // g∗O(E) // g∗(O(E)|E) = 0

and, hence, g∗O(E) ∼= O with fibre k(0) 6= 0 at 0 but H0(E ∼= P1,O(E)|E ∼= O(−1)) = 0. Eventually, let X := X′ ×C,
where C is an elliptic curve and F the pull-back of F ′.
It cannot happen for f flat of relative dimension one: In this case, we showed in Lecture 19 that the vanishing
H2(Xy ,Fy) = 0 (for dimension reasons) implies R1f∗F ⊗ k(y) ∼= H1(Xy ,Fy).

(iii) Since the second projection f = pr2 is flat and F is locally free, it is f -flat. The short exact sequence

0 // O(−∆) // O // O∆
// 0

on E × E tensored with pr∗1O(x) yields the long exact sequence

0 // f∗F // f∗pr∗1O(x)
η // f∗(O∆ ⊗ pr∗1O(x)) // R1f∗F // R1pr∗1O(x).

Now, f∗F has support contained in {x} and by Künneth

f∗pr∗1O(x) ∼= H0(E,O(x))⊗O and R1f∗pr∗1O(x) ∼= H1(E,O(x))⊗O = 0.

Thus, as f∗F ⊂ f∗pr∗1O(x), we must have f∗F = 0. Furthermore, f∗(O∆ ⊗ pr∗1O(x)) ∼= O(x) and the map η is the

evaluation map H0(E,O(x))⊗O // O(x), which is nothing but the inclusion O �
� // O(x), whose cokernel is k(x).

We conclude that f∗F = 0 and R1f∗F ∼= k(x). In particular, y
� // ∑(−1)i dimk(y) R

if∗F is constant zero on E \{x}
and takes the value −1 at x, so it is not upper-semicontinuous let alone locally constant.

Since by Serre the sheaves Rif∗F are coherent and for any coherent sheaf G the map y
� // dimk(y)(G ⊗ k(y)) is

upper-semicontinuous, the function y
� // dimk(y) R

if∗F ⊗ k(y) is indeed upper semi-continuous.
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