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1. Spreading Let X be a projective scheme over a field K.

Exercise 1. (i) Consider a subfield k ⊂ K. Show that there exists an integral finite type
k-scheme S and a flat, projective morphism f : X // S of k-schemes such that the
function field of S is a sub-extension, i.e. k ⊂ K(S) ⊂ K, and the base change (Xη)K
of the generic fibre Xη considered as a scheme over k(η) = K(S) is isomorphic to X.

(ii) If we drop ‘flatness’ in (i), prove that one can choose S to be projective.

(iii) Assume X is a smooth K-scheme. Can one choose X // S to be smooth (and projec-
tive)?

(iv) Consider the curve X = V+(F ) ⊂ P2
K with F = x20x2−x31+ tx1x

2
2 and K = Q(t). Try to

find an explicit flat family f : X // S as above with S projective. Study one singular
fibre.

2. Curves and surfaces For simplicity we assume that k is an algebraically closed field.

Add simplifying assumptions on k, e.g. on the characteristic, when needed.

Exercise 2. Consider the surfaces St := V+(x40 + · · · + x43 + 4t
∏
xi) ⊂ P3

k depending on a
parameter t ∈ k.

(i) Determine for which value of t the surface St is smooth. How would you define S∞ and
what are its properties?

(ii) Compute the Hilbert polynomial of the surfaces St and explain how to view the surfaces
St as the fibres over k-rational points of a flat morphism S // P1.

(iii) Consider the projection π : S0 // P2, [x0 : x1 : x2 : x3]
� // [x0 : x1 : x2] from the point

[0 : 0 : 0 : 1] onto the plane V+(x3) ∼= P2. Is π flat? Describe the locus of points in P2

over which π is étale. Is there are a line L ⊂ P2 such that its pre-image in S0 is smooth?
If there is, how many such lines are there? Can you find one explicitly?

(iv) In the above situation, determine the higher direct image sheavesRiπ∗OS0 and π!O(−3).
Describe the sheaf ΩS0/P2 .

Exercise 3. Let L ⊂ P2 and C ⊂ P2 be a line and a smooth conic (i.e. a plane curve of
degree two), respectively. In the following we shall consider P2 embedded as a hyperplane in
P3.

(i) Assume L is contained in a smooth quartic S ⊂ P3, i.e. in a hypersurface of degree
four. Show that for its self intersection number as a curve on S we have (L.L) = −2.
Similarly, what is (C.C) if the conic C is contained in S?

(ii) Assume L and C are contained in the same hyperplane P2 ⊂ P3 and in the same
smooth quartic S ⊂ P3. Show that then (L.C) = 2. What can you say when L and C
are contained in S but not necessarily in the same hyperplane?

(iii) In the situation of (i), describe the restriction of ΩS/k to L ⊂ S. Compute h0(ΩS |L).

(iv) Is it possible that a smooth quartic S ⊂ P3 contains a smooth elliptic curve E ⊂ S (for
example a complete intersection)?
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3. Base change Let us consider a projective morphism f : X // Y and a coherent sheaf F
on X.

Exercise 4. We wish to explore the limits of the base change theorems discussed in class.

(i) Describe an example where F is not f -flat and the function y � // hi(Xy,Fy) is not
upper semi-continuous.

(ii) Describe a concrete example of a coherent sheaf F on X for which the fibre of R1f∗F
at a closed point y ∈ Y is not isomorphic to H1(Xy,Fy). Can you even find an example
with f flat? Can this happen for f flat of relative dimension one?

(iii) We proved in class that for F ∈ Coh(X) f -flat the function y � // χ(Xy,Fy) is local-
ly constant and y � // hi(Xy,Fy) is upper-semicontinuous. What about the functions
y � //

∑
(−1)i dimk(y)(R

if∗F ⊗ k(y)) and y � // dimk(y)(R
if∗F ⊗ k(y))?

We suggest to consider the second projection from a product E ×E with E an elliptic
curve and F = pr∗1O(x)(−∆) for some closed point x ∈ E.
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