Exercises, Algebraic Geometry II – Week 9

Exercise 46. Testing isomorphisms on local rings (3 points)

Let $f: X \to Y$ be a morphism of finite type with Y locally Noetherian. Suppose that for a point $y \in Y$ the induced morphism $X \times_Y \operatorname{Spec}(\mathcal{O}_{Y,y}) \to \operatorname{Spec}(\mathcal{O}_{Y,y})$ is an isomorphism. Show that then there exists an open neighbourhood $y \in U \subset Y$ such that the induced morphism $X \times_Y U \to U$ is an isomorphism. See [Liu, Ex. 3.2.5] for a relative version of this statement.

Exercise 47. Stein factorization and geometrically reduced fibers (4 points)

Let k be a field, X a normal variety over k and C an integral normal curve over k. Let $f: X \to C$ be a proper surjective morphism over k and let $f': C' \to C$ be the finite morphism in the Stein factorization $X \to C' \to C$ of f.

- (i) Show that C' is normal and f' is flat.
- (ii) Let $c' \in C'$ be a ramification point of f'. Show that the corresponding fiber $f^{-1}(f'(c'))$ is geometrically non-reduced. In particular, note that if all fibers of f are geometrically reduced, then f' is étale.
- (iii) Show that if $C = \mathbb{P}_k^1$ and all fibers of f are geometrically reduced, then $f_*\mathcal{O}_X = \mathcal{O}_C$. In particular, the fibers of f are connected.

Exercise 48. (Dis)connected fibres (2 points)

Find examples of morphisms $f: X \to Y$ between integral schemes with $\mathcal{O}_Y \cong f_*\mathcal{O}_X$ with all fibres being (geometrically) connected resp. all fibres being disconnected.

Exercise 49. Morphisms between curves (3 points)

Let $f: C \to D$ be a finite morphism between reduced projective curves over a field k. Show that f is an isomorphism if and only if the natural map $\mathcal{O}_D \to f_*\mathcal{O}_C$ is an isomorphism. Compare this to Hurwitz formula.

Exercise 50. Local analytic invariants (4 points)

Let C be an integral curve over a field k and let $f: \tilde{C} \to C$ be its normalization. For a closed point $x \in C$ define $\delta_x := \text{length}(\mathcal{O}_{\tilde{C},x}/\mathcal{O}_{C,x})$, where $\mathcal{O}_{C,x} \subset \mathcal{O}_{\tilde{C},x} \subset K(C)$ is the normalization. Show that for two curves (C, x) and (C', x') with $\widehat{\mathcal{O}}_{C,x} \cong \widehat{\mathcal{O}}_{C',x'}$ one has $\delta_x = \delta_{x'}$.

Information from the Student Council:

This year the Maths Summer Party will take place virtually on Friday, June 25, starting at 18 c.t.. Latest information can be found on

https://fsmath.uni-bonn.de/events-detail/events/sommerfest-kopie.html.

Come by!

Due Friday 25 June 2021.