Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry II – Week 8

Exercise 41. Étale vs. Zariski locally trivial (4 points)

Let $f: \mathcal{C} \to |\mathcal{O}(2)|_{sm}$ be the universal family of smooth conics in \mathbb{P}^2_k with $k = \bar{k}$ and $\operatorname{char}(k) \neq 2$. Then each closed fibre is isomorphic to \mathbb{P}^1_k . Show that f is locally trivial in the étale topology but not in the Zariski topology.

Exercise 42. Plane quartics are not hyperelliptic (4 points) Let $C \subset \mathbb{P}^2_k$ with $k = \overline{k}$ be a smooth curve of degree 4. Assume char $(k) \neq 2$.

- (i) Show that every divisor in $|K_C|$ is of the form $C \cap L$ for some line $L \subset \mathbb{P}^2_k$. Deduce from this that for every point $P \in C$, there is a unique effective divisor D such that $2P + D \in |K_C|$.
- (ii) Let D be an effective divisor on C with $2D \in |K_C|$. Show that $h^0(C, \mathcal{O}(D)) = 1$. Conclude that C is not hyperelliptic.

Exercise 43. (Dis)connected fibres (4 points) Consider a morphism $f: X \to Y$.

- (i) Show that the property $\mathcal{O}_Y \cong f_*\mathcal{O}_X$ (under the natural map) is stable under flat base change.
- (ii) Show that the property $\mathcal{O}_Y \cong f_*\mathcal{O}_X$ (under the natural map) is not necessarily stable under arbitrary base change.
- (iii) Show that having connected fibres is not even stable under flat base change.

Exercise 44. Flatness of the Frobenius (3 points)

Let X be a Noetherian scheme over \mathbb{F}_p and let $F_X : X \to X$ be the absolute Frobenius. Show that F_X is flat if X is regular.

(By a theorem of Kunz, the converse holds as well: If F_X is flat, then X is regular.)

Exercise 45. Analytically isomorphic singularities (4 points)

Let k be an algebraically closed field of characteristic $\neq 2$. Show that the completion of the local rings at the unique singular points of the curves $\operatorname{Spec}(k[x,y]/(xy))$ and $\operatorname{Spec}(k[x,y]/(x^2+x^3-y^2))$ are isomorphic. What about the singularity of $\operatorname{Spec}(k[x,y]/(y^2-x^4))$?

Due Friday 18 June 2021.