Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry II – Week 4

Exercise 18. Complete intersection (4 points)

Consider a complete intersection $X \subset \mathbb{P}_k^n$ of type (d_1, \ldots, d_r) , i.e. $X = V_+(f_1, \ldots, f_r)$ with $f_i \in k[x_0, \ldots, x_n]_{d_i}$ and $\dim(X) = n - r$. Assume n > r.

- (i) Show that the restriction maps $H^0(\mathbb{P}^n, \mathcal{O}(m)) \to H^0(X, \mathcal{O}(m)|_X)$ are surjective.
- (ii) Show that X is geometrically connected.
- (iii) Assume X is smooth over k and show $\omega_{X/k} \cong \mathcal{O}(\sum d_i n 1)$.

Exercise 19. Flatness of morphisms (4 points)

Recall the definition of flatness of a morphism. Try to find examples of flat and non-flat morphisms. In particular, decide whether the following morphisms are flat.

- (i) The blow-up of the origin $f: X \to \mathbb{A}^n_k$.
- (ii) The natural projection $f: X \to \operatorname{Spec}(\mathbb{Z})$ where $X = V(3x^2 + 6y^2) \subset \mathbb{A}^2_{\mathbb{Z}}$.
- (iii) The natural projection $f: X \to \mathbb{A}^2_{\mathbb{Z}}$ where $X \subset \mathbb{A}^2_{\mathbb{Z}}$ is the closure of $V(3x^2 + 6y^2) \subset \mathbb{A}^2_{\mathbb{D}}$.

Exercise 20. Smoothness of morphisms (4 points)

Let k be a field of characteristic $\neq 2$. Decide whether the following morphisms are smooth and determine all singular (i.e. non-smooth) fibers.

- (i) The morphism $f \colon \mathbb{A}^1_k \to \mathbb{A}^1_k$ given by $k[x] \to k[y], x \mapsto y^2$.
- (ii) The natural projection $f: X \to \operatorname{Spec}(\mathbb{Z})$, where $X = V(y^2 z x^3 + x^2 z + xz^2 10z^3) \subset \mathbb{P}^2_{\mathbb{Z}}$.
- (iii) The natural projection $f: X \to \mathbb{A}^1_k, (x, y, t) \mapsto t$, where $X \subset \mathbb{A}^3_k$ is defined by $x^2 + y^2 = t$.

Exercise 21. Universal family (4 points)

Consider the 'incidence variety' $X \subset \mathbb{P}_k^n \times \mathbb{P}_k^N$ of all degree d hypersurfaces given by the equation $\sum_I a_I x^I$, where $x^I = x_0^{i_0} \dots x_n^{i_n}$ and the sum is over all $I = (i_0, \dots, i_n)$ with $\sum i_k = d$. (So, $N = \dim |\mathcal{O}_{\mathbb{P}_k^n}(d)| - 1$ or, in other words, $\mathbb{P}_k^N = |\mathcal{O}_{\mathbb{P}_k^n}(d)|$.) The second projection $f: X \to |\mathcal{O}_{\mathbb{P}_k^n}(d)|$ is called the universal family of hypersurfaces of degree d.

- (i) Show that f is flat.
- (ii) Describe the first projection $X \to \mathbb{P}_k^n$.
- (iii) Consider the fibres $X_{(a_I)}$, $(a_I) \in \mathbb{P}_k^N$. Are the dimensions $h^i(X_{(a_I)}, \mathcal{O}_{X_{(a_I)}})$ constant? What about $\chi(X_{(a_I)}, \mathcal{O}_{X_{(a_I)}})$ or $\chi(X_{(a_I)}, \mathcal{O}_{X_{(a_I)}}(m))$?

Due Friday 14 May 2021.

The last two exercises are not strictly necessary for the understanding of the lectures at this point.

Exercise 22. Koszul complex (4 points)

Let A be a ring and $a_1, \ldots, a_n \in A$ a sequence of elements. Recall that a sequence is called *regular*, if for any $1 \le i \le n$ the element a_i is not a zero-divisor in $A/(a_1, \ldots, a_{i-1})$. Consider the complex

$$K_i^{\bullet} \coloneqq \left(\dots \to 0 \to A \xrightarrow{a_i} A \to 0 \to \dots \right)$$

concentrated in degrees -1 and 0, where the only non-zero differential is multiplication by a_i . Let K^{\bullet} be the tensor product $K^{\bullet} \coloneqq K_1^{\bullet} \otimes_A \otimes_A \cdots \otimes_A K_n^{\bullet}$, so that K^{\bullet} is concentrated in degrees $-n, \ldots, 0$.

Assuming that the sequence a_1, \ldots, a_n is regular, prove that $H^i(K^{\bullet}) = 0$ for i < 0 and $H^0(K^{\bullet}) = A/(a_1, \ldots, a_n)$. The complex K^{\bullet} is called *Koszul complex* and it gives a free resolution of the A-module $A/(a_1, \ldots, a_n)$.

Now let \mathcal{E} be a locally free sheaf of finite rank r on a scheme X and $s \in H^0(X, \mathcal{E})$ a section which is locally given by a regular sequence of elements in the corresponding ring (this is true if the zero locus of s has codimension equal to the rank of E).

Let $Y \subset X$ be the zero locus of s. Observe that the local Koszul complexes glue into a global locally free resolution of \mathcal{O}_Y (which is also called Koszul complex):

$$0 \to \bigwedge^{r} \mathcal{E}^{*} \to \bigwedge^{r-1} \mathcal{E}^{*} \to \cdots \to \bigwedge^{2} \mathcal{E}^{*} \to \mathcal{C}_{X} \to \mathcal{O}_{Y} \to 0.$$

The differentials are given by convolution with s.

Exercise 23. Beilinson resolution (3 points)

Consider the projective space $\mathbb{P}_k^n \coloneqq \operatorname{Proj}(S^*V^*)$, where V^* is a vector space of dimension n+1 over a field k.

Let $s \in H^0(\mathbb{P}^n_k \times \mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(1) \boxtimes \mathcal{T}_{\mathbb{P}^n_k})$ be the global section given by the map

$$\mathcal{O}_{\mathbb{P}^n_k}(-1) \boxtimes \Omega_{\mathbb{P}^n_k/k} \to \mathcal{O}_{\mathbb{P}^n_k \times \mathbb{P}^n_k}$$

which at a point $(\ell, \ell') \in \mathbb{P}_k^n \times \mathbb{P}_k^n$ is given by $(x, \varphi) \mapsto \varphi(x)$. Here, ℓ and ℓ' are thought of as lines in $V, x \in \ell$, and $\varphi \in \Omega_{\mathbb{P}_k^n/k} \otimes k(\ell')$ is viewed as a linear form on V/ℓ' via the Euler sequence.

Show that the Koszul complex for s describes a locally free resolution of the structure sheaf \mathcal{O}_{Δ} of the diagonal $\Delta \subset \mathbb{P}^n_k \times \mathbb{P}^n_k$. Observe that all sheaves in this resolution are exterior products of locally free sheaves on the two factors. *Warning:* Typically, the structure sheaf of the diagonal $\Delta \subset X \times X$ of a variety does not posses any easy locally free resolution.