Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin Summer term 2021

Exercises, Algebraic Geometry II – Week 3

Exercise 12. Relative Euler sequence (4 points)

Let \mathcal{E} be a locally free sheaf on a scheme Y and let $\pi \colon X := \mathbb{P}(\mathcal{E}) = \operatorname{Proj}(S^*(\mathcal{E})) \to Y$ be the associated projective bundle. Show that there exists a natural exact sequence

 $0 \to \Omega_{X/Y} \to \pi^* \mathcal{E} \otimes \mathcal{O}_{\pi}(-1) \to \mathcal{O}_X \to 0.$

Here, $\mathcal{O}_{\pi}(-1)$ is the invertible sheaf associated with $S^*(\mathcal{E})(-1)$.

Exercise 13. Plurigenera of smooth plane curves (4 points)

Consider a smooth curve $C \subset \mathbb{P}^2_k$ defined by a polynomial of degree d. In particular, $\Omega_{C/k}$ is an invertible sheaf.

- (i) Show that $\Omega_{C/k} \cong \mathcal{O}(d-3)|_C$.
- (ii) Compute the *n*-th plurigenus $h^0(C, \Omega_{C/k}^{\otimes n}) := \dim H^0(C, \Omega_{C/k}^{\otimes n})$.
- (iii) Compare $h^0(C, \Omega_{C/k})$ with the arithmetic genus of C.

Exercise 14. Flatness of morphisms (4 points)

Recall the definition of flatness of a morphism. Try to find examples and non-examples of flat morphisms. In particular, answer the following questions:

- (i) Let $f: X \to \mathbb{A}^n_k$ be the blow-up of the origin. Is f flat?
- (ii) Consider $X = V(3x^2 + 6y^2) \subset \mathbb{A}^2_{\mathbb{Z}}$ and the natural projection $f: X \to \text{Spec}(\mathbb{Z})$. Is f flat?
- (iii) Let $X \subset \mathbb{A}^2_{\mathbb{Z}}$ be the closure of $V(3x^2 + 6y^2) \subset \mathbb{A}^2_{\mathbb{Q}}$ in $\mathbb{A}^2_{\mathbb{Z}}$. Is the projection $f: X \to \mathbb{A}^2_{\mathbb{Z}}$ flat?

Exercise 15. Examples of Kähler differentials (3 points) Let k be a field.

- (i) Let $A = k[x, y]/(y^2 + xy x^3)$. Compute $\Omega_{A/k}$ and show that its torsion submodule $(\Omega_{A/k})_{tors}$ is annihilated by (x, y) and satisfies $\dim_k(\Omega_{A/k})_{tors} = 1$.
- (ii) Show that the conormal sequence for $\mathfrak{a} = (x^2, y^2) \subset k[x, y]$ is not exact on the left.
- (iii) Let $A = k[x]/(x^n)$ for some n > 0. Calculate $\Omega_{A/k}$ and observe that $\Omega_{A/k}$ is a free *A*-module if and only if char(k) | n.
- (iv) Compute the support of $\Omega_{\mathbb{Z}[i]/\mathbb{Z}}$.

Due Friday 07 May 2021.

The last two exercises are not strictly necessary for the understanding of the lectures at this point.

Exercise 16. The Jouanolou trick. (5 points)

Prologue: Let X be a projective variety over a field k (algebraically closed for simplicity). Is it feasible that there exists a surjective morphism $f: Y \to X$ with Y affine and all fibres isomorphic to affine spaces \mathbb{A}_k^n (of constant dimension)? Think about this question for ten minutes before doing the following exercise.

(i) Let V be a vector space of dimension n + 1 and V^* its dual. We write $\mathbb{P}(V) := \operatorname{Proj}(S^*(V^*))$ and $\mathbb{P}(V^*) = \operatorname{Proj}(S^*(V))$ (and think of them as the projective space of lines $\ell \subset V$ resp. hyperplanes $H \subset V$). Consider the 'incidence variety'

$$\Gamma := \{ (\ell, H) \mid \ell \subset H \} \subset \mathbb{P}(V) \times \mathbb{P}(V^*),$$

which is defined by the equation obtained from the dual pairing $V \times V^* \to k$.

- (ii) Use the Segre embedding to show that $Y \coloneqq \mathbb{P}(V) \times \mathbb{P}(V^*) \setminus \Gamma$ is affine.
- (iii) Show that the fibres of the first projection $\pi: Y \to \mathbb{P}(V)$ are isomorphic to affine spaces \mathbb{A}^n .
- (iv) Show that there exists an open covering $\mathbb{P}(V) = \bigcup U_i$ and isomorphisms $\pi^{-1}(U_i) \cong U_i \times \mathbb{A}^{n-1}$ compatible with the projections.
- (v) Use the above to prove the following statement: For any projective variety X there exists an affine variety Y and a morphism $\pi: Y \to X$ which is a Zariski locally trivial \mathbb{A}^n -bundle.

Epilogue: So, by passing to an \mathbb{A}^n -bundle, any projective variety X becomes affine.

The construction can be performed over $\operatorname{Spec}(\mathbb{Z})$. Moreover, $Y \to X$ as above exists for any scheme X smooth over $\operatorname{Spec}(A)$ with A a Noetherian and regular ring (Thomason's extension). Topologists phrase this result as: 'Up to \mathbb{A}^1 -weak equivalence, any smooth A-scheme is an affine scheme smooth over A'.

Exercise 17. The Jouanolou trick: Matrix version (4 points)

Let k be an algebraically closed field. Consider the set Y of all matrices $A \in M(n+1, n+1, k)$ of rank one satisfying $A^2 = A$.

- (i) Show that Y is naturally an affine variety.
- (ii) Show that the fibres of the morphism $\pi: Y \to \mathbb{P}^n_k, A \mapsto \operatorname{Im}(A)$ are isomorphic to \mathbb{A}^n_k .
- (iii) Compare this construction with the one in the previous exercise.