Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry II – Week 2

Exercise 6. Conics (4 points)

Let $C \subset \mathbb{P}^2_k$ be a geometrically integral plane curve over an arbitrary field k defined by a quadratic equation (a 'smooth conic').

- (i) Show that $C \cong \mathbb{P}^1_k$ if and only if $C(k) \neq \emptyset$.
- (ii) Show that there always exists a quadratic field extension K of k such that C_K is rational.
- (iii) Find one example of k and C where C is not rational (i.e. $C \ncong \mathbb{P}^1$).

Exercise 7. Unirational varieties (4 points)

A variety X over a field k is unirational if there exists a dominant rational map $\mathbb{P}_k^n \dashrightarrow X$. Now, assume for simplicity that k is algebraically closed. Show that the following conditions are equivalent:

- (i) The variety X is unirational.
- (ii) There exists a generically finite dominant rational map $f: Y \rightarrow X$ with Y rational.
- (iii) The function field K(X) of X admits a finite extension that is purely transcendental over k.

Exercise 8. Conic bundles (4 points)

A rational conic bundle is a morphism between varieties $X \to S$ such that there exists an open set $\emptyset \neq U \subset S$ and an embedding $X_U \coloneqq X \times_S U \hookrightarrow \mathbb{P}^2_U$ identifying the fibers of $X_U \to U$ with conics in \mathbb{P}^2 . Assume $T \subset X$ is a subvariety dominating S. Prove the following assertions:

- (i) If $T \to S$ is birational and T is rational, then X is rational.
- (ii) If T is unirational, then so is X.

Exercise 9. Curves and function fields (4 points)

Let k be a field of characteristic different from 2 and 3. Consider the two function fields $K_1 := k(x_1, y_1)$ and $K_2 := k(x_2, y_2)$ with $y_1^2 = x_1^3 + 4x_1^2 + 3x_1$ and $y_2^4 + x_2^4 + 1 = 0$, respectively. Use geometry to show that they are not isomorphic.

Exercise 10. Cotangent sheaf of product (4 points)

Let X and Y be schemes over a scheme S. Show that $\Omega_{X \times_S Y/S}$ is isomorphic to the direct sum of the pull-backs of $\Omega_{X/S}$ and $\Omega_{Y/S}$, i.e.

$$\Omega_{X \times_S Y/S} \cong p_1^* \Omega_{X/S} \oplus p_2^* \Omega_{Y/S}.$$

Due Friday 30 April 2021.

The last exercise is not strictly necessary for the understanding of the lectures at this point.

Exercise 11. Tsen's theorem (4 points)

Let K be a function field over an algebraically closed field k.

- (i) Show *Tsen's theorem:* Every conic in \mathbb{P}^2_K has a *K*-rational point.
 - (Hint: Use that for an ample invertible sheaf \mathcal{L} on a regular projective curve C of genus g(C) over k with function field K one has $h^0(C, \mathcal{L}^m) = m \cdot \deg(\mathcal{L}) + 1 g(C)$ for $m \gg 0$ and consider the map $H^0(C, \mathcal{L}^m)^3 \to H^0(C, \mathcal{L}^{2m})$ defined by the quadratic homogeneous polynomial $F \in K[x_0, x_1, x_2]$ defining the conic.)
- (ii) Deduce that every rational conic bundle $\pi : X \to S$ over k, where S is an integral curve, admits a rational section, i.e. a section over an open subset of S.

More generally, one can show that function fields are C_1 -fields (also called quasi-algebraically closed fields), i.e. every hypersurface in \mathbb{P}_K^{n-1} of degree d has a K-rational point if n > d. For example, the *Chevalley–Warning theorem* asserts that finite fields are C_1 -fields.

(iii) Give an example of a field that is not C_1 .