Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry II – Week 13

Exercise 67. Blowing up surfaces

Let $\pi^* \colon \tilde{S} \to S$ be the blow-up of a closed point $x \in S$ in a smooth projective surface and denote by E the exceptional line. In class it was mentioned that the natural map $\pi^*\Omega_S \to \Omega_{\tilde{S}}$ is injective with cokernel ω_E .

- (i) Prove the details of this assertion.
- (ii) Furthermore, deduce from the resulting short exact sequence $0 \to \pi^* \Omega_S \to \Omega_{\tilde{S}} \to \omega_E \to 0$ that $\omega_{\tilde{S}} \cong \pi^* \omega_S \otimes \mathcal{O}(E)$.
- (iii) Also, prove directly (without evoking the general result), that $P_m(S) = P_m(\tilde{S})$ (equality of plurigenera), $\operatorname{kod}(S) = \operatorname{kod}(\tilde{S})$ (equality of Kodaira dimensions), and $R(S) \cong R(\tilde{S})$ (isomorphism of canonical rings).
- (iv) Compare the Riemann–Roch formulas for invertible sheaves on the two surfaces.
- (v) Can the blow-up \tilde{S} be isomorphic to a product of two curves?

Exercise 68. Curves on a surface

Assume $C \subset S$ is a smooth curve in a smooth projective surface S.

- (i) Recall the adjunction formula and apply it to compute the canonical bundle of C as a restriction of an invertible sheaf on S.
- (ii) Express the arithmetic genus of C as an intersection number on S. More precisely, show $2p_a(C) 2 = (\mathcal{O}(C) \cdot \mathcal{O}(C) \otimes \omega_S).$
- (iii) Describe an example in which $\operatorname{Pic}(S) \to \operatorname{Pic}(C)$ is not surjective.

Exercise 69. $c_1(S)^2$

- (i) Let $S \subset \mathbb{P}^3$ be a smooth hypersurface of degree d. Show that $(\omega_S . \omega_S) = d(d-4)^2$.
- (ii) Let $S = C_1 \times C_2$. Show that $(\omega_S . \omega_S) = 8(g(C_1) 1)(g(C_2) 1)$.

Find explicit examples of surfaces that do not fall in either of the two cases. (Be ambitious!)

Exercise 70. Ampleness under numerical equivalence

Assume \mathcal{L}, \mathcal{M} are two numerically equivalent invertible sheaves on a smooth projective surface. Show that \mathcal{L} is ample if and only if \mathcal{M} is ample.

Exercise 71. Very ample invertible sheaves on curves

Let C be a smooth projective irreducible curve of genus g and let \mathcal{L} be an invertible sheaf on C. Recall that if deg $(\mathcal{L}) \geq 2g + 1$, then \mathcal{L} is very ample.

- (i) Assume $g \leq 2$. Show that if \mathcal{L} is very ample, then $\deg(\mathcal{L}) \geq 2g + 1$.
- (ii) Assume $g \ge 3$. Show that there exist both very ample and non very ample divisors of degree 2g on C.
- (iii) Conclude that one cannot replace "ample" by "very ample" in Exercise 70.