Exercises, Algebraic Geometry II - Week 11

Exercise 56. Trivial direct image (3 points)
Let $f: X \rightarrow Y$ be a projective morphism with Y Noetherian, integral and of positive dimension. Let $\mathcal{F} \in \operatorname{Coh}(X)$ be flat over Y and assume that there exists at most one $y \in Y$ with $H^{0}\left(X_{y}, \mathcal{F}_{y}\right) \neq 0$. Show that then $f_{*} \mathcal{F}=0$. Find an example to show that the flatness of \mathcal{F} can not be dropped.

Exercise 57. Hodge bundles (3 points)
Let $f: X \rightarrow Y$ be a smooth projective morphism with Y Noetherian and $\operatorname{dim} X=\operatorname{dim} Y+1$. Show that the Hodge bundles $R^{q} f_{*}\left(\Omega_{X / Y}^{p}\right)$ are locally free sheaves. (In characteristic zero, this holds true without the assumption on the dimension.)

Exercise 58. Projection formula (3 points)
Let $f: X \rightarrow Y$ be a morphism and $\mathcal{F} \in \mathrm{Qcoh}(X)$. Show that for a locally free $\mathcal{G} \in \operatorname{Coh}(Y)$ one has

$$
R^{i} f_{*}\left(\mathcal{F} \otimes f^{*} \mathcal{G}\right) \cong R^{i} f_{*}(\mathcal{F}) \otimes \mathcal{G}
$$

Exercise 59. Künneth formula (5 points)
Let X_{1} and X_{2} be separated schemes over a field k. One writes $\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}$ for the sheaf $p_{1}^{*} \mathcal{F}_{1} \otimes p_{2}^{*} \mathcal{F}_{2}$ on $X_{1} \times_{k} X_{2}$ for quasi-coherent sheaves \mathcal{F}_{1} on X_{1} and \mathcal{F}_{2} on X_{2}. Here, $p_{i}: X \times_{k} X \rightarrow X$ is the i-th projection.
(i) Show that

$$
H^{n}\left(X_{1} \times_{k} X_{2}, \mathcal{F}_{1} \boxtimes \mathcal{F}_{2}\right) \cong \bigoplus_{i+j=n} H^{i}\left(X_{1}, \mathcal{F}_{1}\right) \otimes_{k} H^{j}\left(X_{2}, \mathcal{F}_{2}\right)
$$

(ii) Prove that $R^{n} p_{1 *}\left(\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}\right) \cong \mathcal{F}_{1} \otimes_{k} H^{n}\left(X_{2}, \mathcal{F}_{2}\right)$. Compare this with the assumptions on the previous exercise.

Exercise 60. Hodge numbers of products (2 points)
For a smooth projective variety X over a field k one defines the Hodge numbers

$$
h^{p, q}(X):=\operatorname{dim}_{k} H^{q}\left(X, \Omega_{X / k}^{p}\right)
$$

Compute the Hodge numbers $h^{p, q}\left(X_{1} \times_{k} X_{2}\right)$ of a product of two smooth projective varieties X_{1}, X_{2} in terms of $h^{p, q}\left(X_{i}\right)$.

Exercise 61. Projective bundles (2 points)
Let Y be a Noetherian scheme and \mathcal{E} a locally free sheaf of rank $n+1$ on Y. Let $\pi: X:=$ $\mathbb{P}(\mathcal{E}) \rightarrow Y$ and $\mathcal{O}(1)$ be the corresponding invertible sheaf on X. Denote by $\omega_{X / Y}:=\Omega_{X / Y}^{n}$ the relative canonical sheaf. Using the isomorphism $R^{n} \pi_{*} \omega_{X / Y} \cong \mathcal{O}_{Y}$ (which one can deduce from Serre duality) and the relative Euler sequence (see Exercise 12) prove that for any $\ell \in \mathbb{Z}$ we have $R^{n} \pi_{*} \mathcal{O}(\ell) \cong\left(\pi_{*} \mathcal{O}(-\ell-n-1)\right)^{*} \otimes\left(\bigwedge^{n+1} E\right)^{*}$.

