Exercises, Algebraic Geometry II – Week 10

Exercise 51. Components of fibres (3 points)
Let \(f : X \to Y \) be a projective morphism with \(Y \) locally Noetherian. Show that the connected components of a fibre \(X_y \) are in bijection to the maximal ideals of \((f_*\mathcal{O}_X)_y\).

Exercise 52. Globally generated line bundles (3 points)
Let \(L \) be a globally generated invertible sheaf on a projective scheme \(X \) over a field \(k \). Consider the induced morphism \(\varphi_L : X \to \mathbb{P}^N_k \). Show that the morphism \(\varphi \) can be decomposed as \(\varphi = g \circ \varphi' \) with \(\varphi' : X \to Z \) projective with connected fibre and \(g : Z \to \mathbb{P}^N_k \) finite such that:

(i) \(\deg(L|_C) = 0 \) for a complete integral curve \(C \subset X \) if and only if \(\varphi(C) = \text{pt.} \)

(ii) If \(X \) is normal, then \(Z \) is normal.

Assume that for every complete curve \(C \subset X \) we have \(\deg(L|_C) \neq 0 \). Show that then \(L \) is ample.

Exercise 53. Connectedness (3 points)
Let \(f : X \to Y \) be a surjective projective morphism of Noetherian schemes. Assume that \(Y \) and all fibres \(X_y \) are connected. Show that then also \(X \) is connected. Compare this with Exercise 26.

Exercise 54. Rigidity I (4 points)
Let \(f : X \to Y \) and \(g : X \to Z \) be projective morphisms of varieties (i.e. integral schemes of finite type over a field) with \(\mathcal{O}_Y \cong f_*\mathcal{O}_X \) and such that \(g \) contracts each fibre of \(f \) (i.e. \(g(f^{-1}(y)) \) is a point for each \(y \in Y \)). Show that there exists a morphism \(h : Y \to Z \) with \(h \circ f = g \).

(Hint: Study the image of the morphism \((f, g) : X \to Y \times Z\).)

Exercise 55. Rigidity II (4 points)
Let \(X, Y, \) and \(Z \) be varieties over an algebraically closed field \(k \), and let \(X \) be proper over \(k \).
Let \(f : X \times Y \to Z \) be a morphism. Assume that there exists a closed point \(y_0 \in Y \), such that \(f(X \times \{y_0\}) \) is a single point in \(Z \). Prove that there exists \(g : Y \to Z \), such that \(f = g \circ \pi_Y \) where \(\pi_Y : X \times Y \to Y \) is the projection.