Prof. Dr. Daniel Huybrechts Dr. Gebhard Martin

Exercises, Algebraic Geometry II – Week 1

Exercise 1. Sober topological spaces (5 points)

A topological space X is called *sober* if every closed irreducible set $Y \subset X$ contains a unique generic point. A *Zariski topological space* is a sober topological space that is also Noetherian.

- (i) Show that the topological space underlying an arbitrary scheme is sober.
- (ii) Show that the topological space underlying a Noetherian scheme is Zariski.
- (iii) Show that for any topological space X the space t(X) of all closed irreducible sets with the topology defined in class is sober.
- (iv) Let $(sobTop) \subset (Top)$ be the full subcategory of sober topological spaces of the category of all topological spaces. Consider $X \mapsto t(X)$ as a functor $t: (Top) \to (sobTop)$. Show that it is left adjoint to the inclusion.
- (v) Give a nice example of a topological space that is not sober.

Exercise 2. Maximal open sets of definition of rational functions/maps (4 points) Consider varieties X and Y (over an algebraically closed field k).

- (i) Show that for every rational function $f \in K(X)$ there exists a maximal open subset on which f is regular.
- (ii) Show that for every rational map $f: X \dashrightarrow Y$ there exists a maximal open subset on which f is a morphism.
- (iii) Suppose f in (ii) is a birational map. Is then the restriction $f|_U$ to the maximal open subset on which f is regular always injective?

Exercise 3. (4 points) Cremona transformations A birational map from \mathbb{P}^2_k (k an algebraically closed field) to itself is called *plane Cremona* transformation. One example is the quadratic transformation φ given by

 $[a_0:a_1:a_2] \mapsto [a_1a_2:a_0a_2:a_0a_1].$

- (i) Show that φ is birational and its own inverse.
- (ii) Find non-empty open subsets $U, V \subseteq \mathbb{P}^2_k$ such that φ induces an isomorphism $U \to V$.
- (iii) Describe the maximal open subset U on which φ is defined.
- (iv) Describe the automorphism of $K(\mathbb{P}^2_k)$ induced by φ .

Due Friday 23 April 2021.

Exercise 4. Dominant rational maps (3 points) Are there any dominant rational maps $\mathbb{P}^2_k \dashrightarrow \mathbb{P}^1_k$?

Exercise 5. Blow-up (4 points) Let Y be the cuspidal cubic curve $y^2 = x^3$ in \mathbb{A}^2_k (k an algebraically closed field). Blow up \mathbb{A}^2_k in the point O = (0,0). Let E be the exceptional curve, and let \tilde{Y} be the strict transform of Y. Show that E meets \tilde{Y} in one point, and that $\tilde{Y} \cong \mathbb{A}^1_k$. In this case the morphism $\varphi : \tilde{Y} \to Y$ is a homeomorphism, but it is not an isomorphism.