The Extended Affine Lie Algebra Associated with a Connected Non-negative Unit Form

Gustavo Jasso Ahuja
Universidad Nacional Autónoma de México
ICRA XIV
August 12, 2010
Connected positive definite unit forms (corank 0).
Connected positive definite unit forms (corank 0) \leftrightarrow Simply-laced simple Lie algebras of finite type.
Connected **positive definite unit** forms (corank 0). ↔ Simply-laced simple Lie algebras of **finite** type.

Connected **non-negative unit** forms of corank 1.
Connected **positive definite** unit forms (corank 0).

Connected **non-negative** unit forms of corank 1.

\[\leftrightarrow\] Simply-laced simple Lie algebras of **finite** type.

\[\leftrightarrow\] Simply-laced Kac-Moody algebras of **affine** type.
Connected positive definite unit forms (corank 0) \leftrightarrow Simply-laced simple Lie algebras of finite type.

Connected non-negative unit forms of corank 1 \leftrightarrow Simply-laced Kac-Moody algebras of affine type.

Connected non-negative unit forms of corank ≥ 2.
Connected positive definite unit forms (corank 0) \leftrightarrow Simply-laced simple Lie algebras of finite type.

Connected non-negative unit forms of corank 1 \leftrightarrow Simply-laced Kac-Moody algebras of affine type.

Connected non-negative unit forms of corank ≥ 2. ?
Let $q : \mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative unit form unit form.

Connected positive definite unit forms (corank 0) \leftrightarrow Simply-laced simple Lie algebras of finite type.

Connected non-negative unit forms of corank 1 \leftrightarrow Simply-laced Kac-Moody algebras of affine type.

Connected non-negative unit forms of corank ≥ 2. ?
Let $q : \mathbb{Z}^n \rightarrow \mathbb{Z}$ be a connected non-negative unit form.

We associate with q a matrix C given by

$$C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).$$

Where $\{c_1, \ldots, c_n\}$ denotes the standard basis of \mathbb{Z}^n.
Let \(q : \mathbb{Z}^n \rightarrow \mathbb{Z} \) be a connected non-negative unit form.

We associate with \(q \) a matrix \(C \) given by

\[
C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).
\]

Where \(\{c_1, \ldots, c_n\} \) denotes the standard basis of \(\mathbb{Z}^n \). Also, let

\[
R^0 = q^{-1}(0) \quad R^\times = q^{-1}(1).
\]
Let \(q : \mathbb{Z}^n \to \mathbb{Z} \) be a connected non-negative unit form.

We associate with \(q \) a matrix \(C \) given by

\[
C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).
\]

Where \(\{c_1, \ldots, c_n\} \) denotes the standard basis of \(\mathbb{Z}^n \). Also, let

\[
R^0 = q^{-1}(0) \quad R^\times = q^{-1}(1).
\]

We call \(R = R^0 \cup R^\times \) the root system of \(q \).
Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with $3n$ generators

$$e_{-i}, h_i, e_i \quad i \in \{1, \ldots, n\}$$

Let $q : \mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative unit form.

We associate with q a matrix C given by

$$C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).$$

Where $\{c_1, \ldots, c_n\}$ denotes the standard basis of \mathbb{Z}^n. Also, let

$$R^0 = q^{-1}(0) \quad R^\times = q^{-1}(1).$$

We call $R = R^0 \cup R^\times$ the root system of q.

We call $R = R^0 \cup R^\times$ the root system of q.

Gustavo Jasso Ahuja (UNAM)
Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with $3n$ generators

$$e_{-i}, h_i, e_i \quad i \in \{1, \ldots, n\}$$

homogeneous of degrees

$$-c_i, 0, c_i \quad i \in \{1, \ldots, n\}$$

Let $q : \mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative unit form.

We associate with q a matrix C given by

$$C_{ij} = q(c_i + c_j) - q(c_i) - q(c_j).$$

Where $\{c_1, \ldots, c_n\}$ denotes the standard basis of \mathbb{Z}^n. Also, let

$$R^0 = q^{-1}(0) \quad R^\times = q^{-1}(1).$$

We call $R = R^0 \cup R^\times$ the root system of q.

The Algebra $\tilde{G}(q)$

Let $\text{corank } q \in \mathbb{Z}_{\geq 0}$ and let $G(q)$ be the quotient of FL by the ideal generated by the following generalized Serre relations:

Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with $3n$ generators $e_{-i}, h_i, e_i \quad i \in \{1, \ldots, n\}$ homogeneous of degrees $-c_i, 0, c_i \quad i \in \{1, \ldots, n\}$
The Algebra $\tilde{G}(q)$

Let $\text{corank } q \in \mathbb{Z}_{\geq 0}$ and let $G(q)$ be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all $i, j \in \{1, \ldots, n\}$ and $\varepsilon, \delta = \pm 1$ let

(S1) $[h_i, h_j] = 0$.

Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with $3n$ generators $e_{-i}, h_i, e_i \quad i \in \{1, \ldots, n\}$ homogeneous of degrees $-c_i, 0, c_i \quad i \in \{1, \ldots, n\}$.
The Algebra $\tilde{G}(q)$

Let $\text{corank } q \in \mathbb{Z}_{\geq 0}$ and let $G(q)$ be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all $i, j \in \{1, \ldots, n\}$ and $\varepsilon, \delta = \pm 1$ let

(S1) \[[h_i, h_j] = 0. \]

(S2) \[[h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}. \]

Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with $3n$ generators $e_{-i}, h_i, e_i \quad i \in \{1, \ldots, n\}$ homogeneous of degrees $-c_i, 0, c_i \quad i \in \{1, \ldots, n\}$.
The Algebra $\tilde{G}(q)$

Let $\text{corank } q \in \mathbb{Z}_{\geq 0}$ and let $G(q)$ be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all $i, j \in \{1, \ldots, n\}$ and $\varepsilon, \delta = \pm 1$ let

(S1) $[h_i, h_j] = 0$.

(S2) $[h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}$.

(S3) $[e_{\varepsilon i}, e_{-\varepsilon i}] = \varepsilon h_i$.

Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with $3n$ generators $e_{-i}, h_i, e_i \; i \in \{1, \ldots, n\}$ homogeneous of degrees $-c_i, 0, c_i \; i \in \{1, \ldots, n\}$.
The Algebra $\tilde{G}(q)$

Let $\text{corank} \, q \in \mathbb{Z}_{\geq 0}$ and let $G(q)$ be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all $i, j \in \{1, \ldots, n\}$ and $\varepsilon, \delta = \pm 1$ let

\begin{align*}
(S1) \quad [h_i, h_j] &= 0. \\
(S2) \quad [h_i, e_{\varepsilon j}] &= \varepsilon C_{ij} e_{\varepsilon j}. \\
(S3) \quad [e_{\varepsilon i}, e_{-\varepsilon i}] &= \varepsilon h_i. \\
(S\infty) \quad [e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] &= 0,
\end{align*}

whenever $q(\sum_{k=1}^{t} \varepsilon_k c_k) > 1$, for $\varepsilon_k = \pm 1$ and $i_k \in \{1, \ldots, n\}$.

Construction [Barot, Kussin, Lenzing]

Let FL be the free Lie algebra with $3n$ generators e_{-}, h, e_{i} $i \in \{1, \ldots, n\}$ homogeneous of degrees $-c_i, 0, c_i$ $i \in \{1, \ldots, n\}$
The Algebra $\tilde{G}(q)$

Remark
Every monomial $[e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] \in G(q)$ has a well defined degree,

The Algebra $\tilde{G}(q)$

Let $\text{corank } q \in \mathbb{Z}_{\geq 0}$ and let $G(q)$ be the quotient of FL by the ideal generated by the following generalized Serre relations:

For all $i, j \in \{1, \ldots, n\}$ and $\varepsilon, \delta = \pm 1$ let

(S1) \[[h_i, h_j] = 0. \]
(S2) \[[h_i, e_{\varepsilon j}] = \varepsilon C_{ij} e_{\varepsilon j}. \]
(S3) \[[e_{\varepsilon i}, e_{-\varepsilon i}] = \varepsilon h_i. \]
(S\infty) \[[e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] = 0, \]

whenever $q(\Sigma_{k=1}^t \varepsilon_k c_k) > 1$, for $\varepsilon_k = \pm 1$ and $i_k \in \{1, \ldots, n\}$.
The Algebra $\tilde{G}(q)$

Remark

Every monomial $[e_{\varepsilon_1i_1}, \ldots, e_{\varepsilon_ti_t}] \in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k.$$
The Algebra $\tilde{G}(q)$

Remark
Every monomial $[e_{\varepsilon i_1}, \ldots, e_{\varepsilon t i_t}] \in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k.$$

Definition

$$\tilde{G}(q) := G(q) \oplus (\text{rad } q)^*.$$
Properties of $\tilde{G}(q)$

(EA2) It has a finite dimensional abelian subalgebra H which equals its own centralizer in $\tilde{G}(q)$ and such that $\text{ad} \ h$ is diagonalizable for all $h \in H$.

The Algebra $\tilde{G}(q)$

Remark

Every monomial $[e_{\varepsilon_{i_1} i_1}, \ldots, e_{\varepsilon_{i_t} i_t}] \in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k.$$

Definition

$$\tilde{G}(q) := G(q) \oplus (\text{rad } q)^*.$$
Properties of $\tilde{G}(q)$

(EA2) It has a finite dimensional abelian subalgebra H which equals its own centralizer in $\tilde{G}(q)$ and such that $\text{ad} \ h$ is diagonalizable for all $h \in H$.

(EA3) $\text{ad} \ x_\alpha$ acts locally nilpotently for $\alpha \in R^\times$.

The Algebra $\tilde{G}(q)$

Remark

Every monomial $[e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] \in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k.$$

Definition

$$\tilde{G}(q) := G(q) \oplus (\text{rad } q)^*.$$
Properties of $\tilde{G}(q)$

(EA2) It has a finite dimensional abelian subalgebra H which equals its own centralizer in $\tilde{G}(q)$ and such that $\text{ad } h$ is diagonalizable for all $h \in H$.

(EA3) $\text{ad } x_\alpha$ acts locally nilpotently for $\alpha \in R^\times$.

(EA4) R is discrete.

The Algebra $\tilde{G}(q)$

Remark

Every monomial $[e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] \in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k.$$

Definition

$$\tilde{G}(q) := G(q) \oplus (\text{rad } q)^*.$$
Properties of $\tilde{G}(q)$

(EA2) It has a finite dimensional abelian subalgebra H which equals its own centralizer in $\tilde{G}(q)$ and such that $\text{ad} \ h$ is diagonalizable for all $h \in H$.

(EA3) $\text{ad} \ x_\alpha$ acts locally nilpotently for $\alpha \in R^\times$.

(EA4) R is discrete.

(EA5) R is irreducible.

The Algebra $\tilde{G}(q)$

Remark
Every monomial $[e_{\varepsilon_1 i_1}, \ldots, e_{\varepsilon_t i_t}] \in G(q)$ has a well defined degree, namely

$$\alpha = \sum_{k=1}^{t} \varepsilon_k c_k.$$

Definition

$$\tilde{G}(q) := G(q) \oplus (\text{rad } q)^*.$$
Extended Affine Lie Algebras

[Høegh-Krohn & Torresani. Allison, Azam, Berman, Gao, Pianzola]

An extended affine Lie algebra (EALA) is a complex Lie algebra which satisfies axioms (EA2)-(EA5) together with the following axiom:

\[
\tilde{\mathcal{G}}(q)
\]

Properties of $\tilde{\mathcal{G}}(q)$

- **(EA2)** It has a finite dimensional abelian subalgebra H which equals its own centralizer in $\tilde{\mathcal{G}}(q)$ and such that $\text{ad } h$ is diagonalizable for all $h \in H$.
- **(EA3)** $\text{ad } x_{\alpha}$ acts locally nilpotently for $\alpha \in R^\times$.
- **(EA4)** R is discrete.
- **(EA5)** R is irreducible.
Extended Affine Lie Algebras

[Høegh-Krohn & Torresani. Allison, Azam, Berman, Gao, Pianzola]

An extended affine Lie algebra (EALA) is a complex Lie algebra which satisfies axioms (EA2)-(EA5) together with the following axiom:

EA1 The algebra has a non-degenerate invariant symmetric bilinear form.

Properties of $\tilde{G}(q)$

(\textit{EA2}) It has a finite dimensional abelian subalgebra H which equals its own centralizer in $\tilde{G}(q)$ and such that $\text{ad} \ h$ is diagonalizable for all $h \in H$.

(\textit{EA3}) $\text{ad} \ x_\alpha$ acts locally nilpotently for $\alpha \in R^\times$.

(\textit{EA4}) R is discrete.

(\textit{EA5}) R is irreducible.
Remark

If \(\text{corank } q \geq 2 \), then the algebra \(\tilde{G}(q) \) is not an EALA.

Extended Affine Lie Algebras

[Høegh-Krohn & Torresani. Allison, Azam, Berman, Gao, Pianzola]

An extended affine Lie algebra (EALA) is a complex Lie algebra which satisfies axioms (EA2)-(EA5) together with the following axiom:

\((EA1)\) The algebra has a non-degenerate invariant symmetric bilinear form.
Remark
If \(\text{corank } q \geq 2 \), then the algebra \(\tilde{G}(q) \) is not an EALA.

One cannot define a \textit{non-degenerate} symmetric invariant bilinear form on \(\tilde{G}(q) \).
How do we fix it?
The algebra $\tilde{G}(q)$ is an H^*-graded H-module, hence it contains a unique maximal ideal I with respect to $I \cap H = \{0\}$.

Remark
If corank $q \geq 2$, then the algebra $\tilde{G}(q)$ is not an EALA.

One cannot define a non-degenerate symmetric invariant bilinear form on $\tilde{G}(q)$.

How do we fix it?
The algebra $\tilde{G}(q)$ is an H^*-graded H-module, hence it contains a unique maximal ideal I with respect to $I \cap H = \{0\}$.
The algebra $E(q) := \tilde{G}(q)/I$ is an EALA.

Remark
If corank $q \geq 2$, then the algebra $\tilde{G}(q)$ is not an EALA.
One cannot define a non-degenerate symmetric invariant bilinear form on $\tilde{G}(q)$.
Main result

Theorem

Let $q : \mathbb{Z}^n \to \mathbb{Z}$ be a connected non-negative unit form with associated root system R. Then the Lie algebra $E(q)$ is a centerless tame EALA with root system R.

How do we fix it?

The algebra $\tilde{G}(q)$ is an H^*-graded H-module, hence it contains a unique maximal ideal I with respect to $I \cap H = \{0\}$. The algebra $E(q) := \tilde{G}(q)/I$ is an EALA.
Main result

Theorem
Let \(q : \mathbb{Z}^n \to \mathbb{Z} \) be a connected non-negative unit form with associated root system \(R \). Then the Lie algebra \(E(q) \) is a centerless tame EALA with root system \(R \). Furthermore, if \(q' \) is a connected non-negative unit form which is equivalent to \(q \) then \(E(q) \) and \(E(q') \) are isomorphic as EALAs.

How do we fix it?
The algebra \(\tilde{G}(q) \) is an \(H^* \)-graded \(H \)-module, hence it contains a unique maximal ideal \(I \) with respect to \(I \cap H = \{0\} \).

The algebra \(E(q) := \tilde{G}(q)/I \) is an EALA.
Remark
In order to show that $E(q)$ is an EALA it is useful to introduce an alternative construction of this algebra.

Main result

Theorem
Let $q : \mathbb{Z}^n \rightarrow \mathbb{Z}$ be a connected non-negative unit form with associated root system R. Then the Lie algebra $E(q)$ is a centerless tame EALA with root system R. Furthermore, if q' is a connected non-negative unit form which is equivalent to q then $E(q)$ and $E(q')$ are isomorphic as EALAs.
The Algebra $\hat{E}(q)$

Construct a Lie algebra $\hat{E}(q)$

Remark
In order to show that $E(q)$ is an EALA it is useful to introduce an alternative construction of this algebra.
The Algebra $\hat{E}(q)$

such that there is a projection

$$\hat{E}(q) \xleftarrow{p} \tilde{G}(q)$$

Remark

In order to show that $E(q)$ is an EALA it is useful to introduce an alternative construction of this algebra.
The Algebra $\hat{E}(q)$

which factors

\[
\begin{array}{c}
\hat{E}(q) & \xrightarrow{p} & \tilde{G}(q) \\
\downarrow & & \uparrow \\
\tilde{G}(q)/\ker p & & \\
\end{array}
\]

Remark

In order to show that $E(q)$ is an EALA it is useful to introduce an alternative construction of this algebra.
The Algebra $\hat{E}(q)$

exactly through $E(q)$.

\[
\begin{array}{ccc}
\hat{E}(q) & \xleftarrow{p} & \tilde{G}(q) \\
& & \downarrow \\
\tilde{G}(q)/I & & \\
\end{array}
\]

Remark
In order to show that $E(q)$ is an EALA it is useful to introduce an alternative construction of this algebra.
The Algebra $\hat{E}(q)$

It suffices to show that $\hat{E}(q)$ is an EALA.

\[\hat{E}(q) \leftarrow^{p} \tilde{G}(q) \leftarrow \hat{E}(q) \]

Remark

In order to show that $E(q)$ is an EALA it is useful to introduce an alternative construction of this algebra.
The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_\alpha = \left\{ \right.$$

It suffices to show that $\hat{E}(q)$ is an EALA.
The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_{\alpha} = \begin{cases} \mathbb{C}e_{\alpha} & \text{if } \alpha \in R^\times, \end{cases}$$

It suffices to show that $\hat{E}(q)$ is an EALA.
The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_\alpha = \begin{cases} \mathbb{C}e_\alpha & \text{if } \alpha \in R^\times, \\ \mathbb{C}^n / \text{rad } q & \text{if } \alpha \in R^0 \setminus \{0\}, \end{cases}$$

It suffices to show that $\hat{E}(q)$ is an EALA.
The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_\alpha = \begin{cases}
 \mathbb{C}e_\alpha & \text{if } \alpha \in R^\times, \\
 \mathbb{C}^n / \text{rad } q & \text{if } \alpha \in R^0 \setminus \{0\}, \\
 \mathbb{C}^n \oplus (\text{rad } q)^* & \text{if } \alpha = 0.
\end{cases}$$

It suffices to show that $\hat{E}(q)$ is an EALA.
The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_\alpha = \begin{cases} C e_\alpha & \text{if } \alpha \in R^\times, \\ \mathbb{C}^n / \text{rad } q & \text{if } \alpha \in R^0 \setminus \{0\}, \\ \mathbb{C}^n \oplus (\text{rad } q)^* & \text{if } \alpha = 0. \end{cases}$$

An let $\hat{E}(q) = \bigoplus_{\alpha \in R} \hat{E}(q)_\alpha$ as a vector space.

It suffices to show that $\hat{E}(q)$ is an EALA.
Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_\alpha = \begin{cases} \mathbb{C} e_\alpha & \text{if } \alpha \in R^\times, \\ \mathbb{C}^n / \text{rad } q & \text{if } \alpha \in R^0 \setminus \{0\}, \\ \mathbb{C}^n \oplus (\text{rad } q)^* & \text{if } \alpha = 0. \end{cases}$$

An let $\hat{E}(q) = \bigoplus_{\alpha \in R} \hat{E}(q)_\alpha$ as a vector space.
The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

\[(B1) \quad [\pi_\sigma(v), \pi_\tau(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma).\]

The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$\hat{E}(q)_\alpha = \begin{cases}
\mathbb{C}e_\alpha & \text{if } \alpha \in R^\times, \\
\mathbb{C}^n / \text{rad } q & \text{if } \alpha \in R^0 \setminus \{0\}, \\
\mathbb{C}^n \oplus (\text{rad } q)^* & \text{if } \alpha = 0.
\end{cases}$

An let $\hat{E}(q) = \bigoplus_{\alpha \in R} \hat{E}(q)_\alpha$ as a vector space.
The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

(B1) $[\pi_\sigma(v), \pi_\tau(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma)$.

(B2) $[\pi_\sigma(v), e_\beta] = q(v, \beta)e_{\beta+\sigma}$.
The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

(B1) $[\pi_\sigma(v), \pi_\tau(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma)$.

(B2) $[\pi_\sigma(v), e_\beta] = q(v, \beta)e_{\beta+\sigma}$.

(B3)

$$[e_\alpha, e_\beta] = \begin{cases}
\epsilon(\alpha, \beta)e_{\alpha+\beta} & \text{if } \alpha + \beta \in R^\times, \\
\text{otherwise} &
\end{cases}$$

The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

$$\hat{E}(q)_\alpha = \begin{cases}
\mathbb{C}e_\alpha & \text{if } \alpha \in R^\times, \\
\mathbb{C}^n / \text{rad } q & \text{if } \alpha \in R^0 \setminus \{0\}, \\
\mathbb{C}^n \oplus (\text{rad } q)^* & \text{if } \alpha = 0.
\end{cases}$$

An let $\hat{E}(q) = \bigoplus_{\alpha \in R} \hat{E}(q)_\alpha$ as a vector space.
The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

(B1) \[[\pi_\sigma(v), \pi_\tau(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma). \]

(B2) \[[\pi_\sigma(v), e_\beta] = q(v, \beta)e_{\beta+\sigma}. \]

(B3) \[[e_\alpha, e_\beta] = \begin{cases}
\epsilon(\alpha, \beta)e_{\alpha+\beta} & \text{if } \alpha + \beta \in R^\times, \\
\epsilon(\alpha, \beta)\pi_{\alpha+\beta}(\alpha) & \text{if } \alpha + \beta \in R^0,
\end{cases} \]

The Algebra $\hat{E}(q)$

For $\alpha \in R$ we let

\[\hat{E}(q)_\alpha = \begin{cases}
\mathbb{C}e_\alpha & \text{if } \alpha \in R^\times, \\
\mathbb{C}^n / \text{rad } q & \text{if } \alpha \in R^0 \setminus \{0\}, \\
\mathbb{C}^n \oplus (\text{rad } q)^* & \text{if } \alpha = 0.
\end{cases} \]

An let $\hat{E}(q) = \bigoplus_{\alpha \in R} \hat{E}(q)_\alpha$ as a vector space.
The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

(B1) $[\pi_{\sigma}(v), \pi_{\tau}(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma)$.

(B2) $[\pi_{\sigma}(v), e_{\beta}] = q(v, \beta)e_{\beta+\sigma}$.

(B3) $[e_{\alpha}, e_{\beta}] = \begin{cases}
\epsilon(\alpha, \beta)e_{\alpha+\beta} & \text{if } \alpha + \beta \in R^\times, \\
\epsilon(\alpha, \beta)\pi_{\alpha+\beta}(\alpha) & \text{if } \alpha + \beta \in R^0, \\
0 & \text{otherwise.}
\end{cases}$
The Algebra $\hat{E}(q)$

Let $\beta \in R^\times$, $\tau \in R^0$, $w \in \mathbb{C}^n$ and $\xi, \zeta \in (\text{rad } q)^*$:

(B4) $[\xi, e_\beta] = -[e_\beta, \xi] = \xi \rho(\beta)e_\beta$.

The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

(B1) $[\pi_\sigma(v), \pi_\tau(w)] = q(v, w)\pi_{\sigma+\tau}(\sigma)$.
(B2) $[\pi_\sigma(v), e_\beta] = q(v, \beta)e_{\beta+\sigma}$.
(B3) $[e_\alpha, e_\beta] = \begin{cases}
\epsilon(\alpha, \beta)e_{\alpha+\beta} & \text{if } \alpha + \beta \in R^\times, \\
\epsilon(\alpha, \beta)\pi_{\alpha+\beta}(\alpha) & \text{if } \alpha + \beta \in R^0, \\
0 & \text{otherwise.}
\end{cases}$
The Algebra $\hat{E}(q)$

Let $\beta \in R^\times$, $\tau \in R^0$, $w \in \mathbb{C}^n$ and $\xi, \zeta \in (\text{rad } q)^*$:

(B4) $[\xi, e_{\beta}] = -[e_{\beta}, \xi] = \xi \rho(\beta) e_{\beta}$.

(B5) $[\xi, \pi_\tau(w)] = \xi \rho(\beta) \pi_\tau(w)$.

The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

(B1) $[\pi_\sigma(v), \pi_\tau(w)] = q(v, w) \pi_{\sigma + \tau}(\sigma)$.

(B2) $[\pi_\sigma(v), e_{\beta}] = q(v, \beta) e_{\beta + \sigma}$.

(B3) $[e_\alpha, e_{\beta}] = \begin{cases}
\epsilon(\alpha, \beta) e_{\alpha + \beta} & \text{if } \alpha + \beta \in R^\times, \\
\epsilon(\alpha, \beta) \pi_{\alpha + \beta}(\alpha) & \text{if } \alpha + \beta \in R^0, \\
0 & \text{otherwise}.
\end{cases}$
The Algebra $\hat{E}(q)$

Let $\beta \in R^\times$, $\tau \in R^0$, $w \in \mathbb{C}^n$ and
$\xi, \zeta \in (\text{rad } q)^*$:

(B4) $\ [\xi, e_\beta] = -[e_\beta, \xi] = \xi \rho(\beta) e_\beta.$

(B5) $\ [\xi, \pi_\tau(w)] = \xi \rho(\beta) \pi_\tau(w).$

(B6) $\ [\xi, \zeta] = 0.$

The Algebra $\hat{E}(q)$

Let $\alpha, \beta \in R^\times$, $\sigma, \tau \in R^0$, $v, w \in \mathbb{C}^n$:

(B1) $\ [\pi_\sigma(v), \pi_\tau(w)] = q(v, w) \pi_{\sigma+\tau}(\sigma).$

(B2) $\ [\pi_\sigma(v), e_\beta] = q(v, \beta) e_{\beta+\sigma}.$

(B3) $\ [e_\alpha, e_\beta] = \begin{cases}
\epsilon(\alpha, \beta) e_{\alpha+\beta} & \text{if } \alpha + \beta \in R^\times, \\
\epsilon(\alpha, \beta) \pi_{\alpha+\beta}(\alpha) & \text{if } \alpha + \beta \in R^0, \\ 0 & \text{otherwise.}
\end{cases}$
Thanks for your attention!

The Algebra $\hat{E}(q)$

Let $\beta \in R^\times$, $\tau \in R^0$, $w \in \mathbb{C}^n$ and $\xi, \zeta \in (\text{rad } q)^*$:

(B4) $[\xi, e_\beta] = -[e_\beta, \xi] = \xi \rho(\beta)e_\beta$.
(B5) $[\xi, \pi_\tau(w)] = \xi \rho(\beta)\pi_\tau(w)$.
(B6) $[\xi, \zeta] = 0$.

Gustavo Jasso Ahuja (UNAM)