Preprints


    Publications

    1. Dyckerhoff, T., Jasso, G., Lekili, Y.: The symplectic geometry of higher Auslander algebras: Symmetric products of disks. Forum Math. Sigma. 9, e10 (2021). doi:10.1017/fms.2021.2
    2. Dyckerhoff, T., Jasso, G., Walde, T.: Generalised BGP reflection functors via the Grothendieck construction. Int. Math. Res. Not. IMRN. 2021, 15733–15745 (2019). doi:10.1093/imrn/rnz194 Notes. rnz194
    3. Dyckerhoff, T., Jasso, G., Walde, T.: Simplicial structures in higher Auslander–Reiten theory. Adv. Math. 355, 106762 (2019). doi:10.1016/j.aim.2019.106762
    4. Jasso, G., Külshammer, J.: Higher Nakayama algebras I: Construction. Adv. Math. 351, 1139–1200 (2019). doi:10.1016/j.aim.2019.05.026
    5. Jasso, G., Kvamme, S.: An introduction to higher Auslander-Reiten theory. Bull. Lond. Math. Soc. 51, 1–24 (2019). doi:10.1112/blms.12204
    6. Demonet, L., Iyama, O., Jasso, G.: τ-tilting finite algebras, bricks, and g-vectors. Int. Math. Res. Not. IMRN. 852–892 (2019). doi:10.1093/imrn/rnx135
    7. Iyama, O., Jasso, G.: Higher Auslander Correspondence for Dualizing R-Varieties. Algebr. Represent. Theory. 20, 335–354 (2017). doi:10.1007/s10468-016-9645-0
    8. Jasso, G.: n-abelian and n-exact categories. Math. Z. 283, 703–759 (2016). doi:10.1007/s00209-016-1619-8
    9. Bergh, P.A., Jasso, G., Thaule, M.: Higher n-angulations from local rings. J. Lond. Math. Soc. (2). 93, 123–142 (2016). doi:10.1112/jlms/jdv064
    10. Jasso, G.: τ^2-stable tilting complexes over weighted projective lines. Adv. Math. 273, 1–31 (2015). doi:10.1016/j.aim.2014.12.018
    11. Jasso, G.: Reduction of τ-tilting modules and torsion pairs. Int. Math. Res. Not. IMRN. 7190–7237 (2015). doi:10.1093/imrn/rnu163
    12. Jasso, G.: The extended affine Lie algebra associated with a connected non-negative unit form. J. Algebra. 409, 148–161 (2014). doi:10.1016/j.jalgebra.2014.03.029
    13. Barot, M., Geiß, C., Jasso, G.: Tubular cluster algebras II: Exponential growth. J. Pure Appl. Algebra. 217, 1825–1837 (2013). doi:10.1016/j.jpaa.2012.12.012

    Remarks

    • My Ph.D. thesis comprises articles [3-4] and [6]
    • My master’s thesis comprises part of article [1]
    • My bachelor’s thesis comprises article [2]

    Proceedings, extended abstracts and other writings

    1. Jasso, G.: The symplectic geometry of higher Auslander algebras, an overview. In: Amiot, C., Crawley-Boevey, W., Iyama, O., and Krause, H. (eds.) Representation Theory of Quivers and Finite Dimensional Algebras
    2. Jasso, G.: Higher Auslander algebras of type A and the higher Waldhausen S-constructions. In: Šťovíček, J. and Trlifaj, J. (eds.) Representation theory and beyond. pp. 249–265. Amer. Math. Soc., Providence, RI (2020).
    3. Jasso, G., Külshammer, J.: Nakayama-type phenomena in higher Auslander-Reiten theory. In: Leuschke, G.J., Frauke Bleher, F., Schiffler, R., and Zacharia, D. (eds.) Representations of algebras. pp. 79–98. Amer. Math. Soc., Providence, RI (2018).
    4. Jasso, G.: Spherical objects in higher Auslander–Reiten theory (joint work with J. Külshammer). In: Crawley-Boevey, W., Iyama, O., and Krause, H. (eds.) Representation Theory of Quivers and Finite Dimensional Algebras. pp. 591–681 (2017).
    5. Jasso, G., Külshammer, J.: The naive approach for constructing the derived category of a d-abelian category fails. arXiv:1604.03473. (2016). Notes. not intended for publication.
    6. Jasso, G.: Reduction of τ-tilting modules and torsion classes. In: Proceedings of the 16th Workshop on Represenation Theory of Algebraic Groups and Quantum Groups. pp. 157–160 (2013).
    7. Jasso, G.: Cluster-tilted algebras of canonical type and quivers with potential. In: Proceedings of the 45th Symposium on Ring Theory and Representation Theory. pp. 61–68 (2012).
    8. Jasso, G.: Cluster-tilted algebras of canonical type and graded quivers with potential. In: Proceedings of the 15th Workshop on Represenation Theory of Algebraic Groups and Quantum Groups. pp. 13–18 (2012).

    Talks

    Below are the notes/slides from some of my talks.

    1. Generalised BGP reflection functors. Workshop: Representation Theory of Alegbras and Sheaves, Bielefeld, Germany (2021).
    2. Homological algebra in exact (infinity-)categories. 2021 London Mathematical Society Northern Regional Meeting and Conference (A conference in celebration of the work of Bill Crawley-Boevey), Bielefeld, Germany (online event) (2021).
    3. The Waldhausen S-dot construction and the symplectic geometry of surfaces and their symmetric products. Opening Workshop (IRP Higher Homotopical Structures), CRM Barcelona, Spain (online event) (2021).
    4. Universal properties of derived categories, after Lurie. BIREP Seminar, Bielefeld, Germany (online talk) (2021).
    5. Deriving a theorem of Ladkani. Flash Talks in Representation Theory at NTNU, Trondheim, Norway (online event) (2021).
    6. Partially wrapped Fukaya categories of symmetric products of marked disks. Winter School: Connections between representation theory and geometry, Bonn, Germany (online event) (2020).
    7. Stable ∞-categories: localisations and recollements. ‘Two Weeks of Silting’ Summer School, Stuttgart, Germany (2019).
    8. Higher-dimensional Auslander algebras of type A and the higher-dimensional Waldhausen S-constructions. XVIII International Conference on Representations of Algebras (ICRA), Prague, Czech Republic (2018).
    9. τ-tilting reduction. XV International Conference on Representations of Algebras (ICRA), Bielefeld, Germany (2012).
    10. The extended affine Lie algebra associated with a connected non-negative unit form. XIV International Conference on Representations of Algebras (ICRA), Tokyo, Japan (2010).

    Posters